这是一篇来自已证抗体库的有关人类 ERG的综述,是根据56篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合ERG 抗体。
ERG 同义词: erg-3; p55

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR3864)
  • 免疫组化; 小鼠; 1:200; 图 2f
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab196149)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2f). elife (2022) ncbi
domestic rabbit 单克隆
  • 免疫组化; 小鼠; 1:200; 图 2f
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab196374)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2f). elife (2022) ncbi
domestic rabbit 单克隆(EPR3864)
  • 免疫细胞化学; 小鼠; 1:100; 图 s2d
  • 免疫组化; 小鼠; 1:200; 图 1e
  • 免疫印迹; 小鼠; 1:500; 图 s7e
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab92513)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s2d), 被用于免疫组化在小鼠样本上浓度为1:200 (图 1e) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 s7e). Development (2022) ncbi
domestic rabbit 单克隆(EPR3864)
  • 免疫组化; 小鼠; 1:100; 图 s3, s5
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab196149)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s3, s5). Nat Cardiovasc Res (2022) ncbi
domestic rabbit 单克隆(EPR3864)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3c
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab92513)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3c). elife (2021) ncbi
domestic rabbit 单克隆(EPR3864)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, Ab92513)被用于被用于免疫细胞化学在人类样本上. Circulation (2021) ncbi
domestic rabbit 单克隆(EPR3864)
  • 免疫组化; 小鼠; 1:200; 图 4d
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab92513)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4d). BMC Dev Biol (2021) ncbi
domestic rabbit 单克隆(EPR3864)
  • ChIP-Seq; 人类; 图 5a
  • 免疫组化-石蜡切片; 人类; 图 4d
  • 免疫印迹; 人类; 1:1000; 图 6h
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab92513)被用于被用于ChIP-Seq在人类样本上 (图 5a), 被用于免疫组化-石蜡切片在人类样本上 (图 4d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6h). Nat Commun (2021) ncbi
domestic rabbit 单克隆(EPR3864)
  • 免疫组化; 人类; 图 s5d
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, EPR3864)被用于被用于免疫组化在人类样本上 (图 s5d). Nat Commun (2021) ncbi
domestic rabbit 单克隆
  • 流式细胞仪; 人类; 1:200; 图 1a
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab196374)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 1a). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(EPR3864)
  • 流式细胞仪; 人类; 1:200; 图 1a
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab196149)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 1a). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(EPR3864)
  • 免疫组化; 小鼠; 1:200; 图 9a
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab92513)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 9a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(EPR3864)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 2c
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 2c
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab92513)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 2c) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 2c). Genes Dev (2021) ncbi
domestic rabbit 单克隆(EPR3863)
  • 免疫组化-冰冻切片; 小鼠; 1:150; 图 s1e
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab110639)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:150 (图 s1e). Sci Adv (2021) ncbi
domestic rabbit 单克隆(EPR3864)
  • 免疫组化; 小鼠; 1:2000; 图 2s
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab92513)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 2s). Nat Commun (2020) ncbi
domestic rabbit 单克隆(EPR3864)
  • 免疫组化; 小鼠; 1:400; 图 4d
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, Ab92513)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 4d). elife (2020) ncbi
domestic rabbit 单克隆(EPR3864)
  • 免疫组化; 小鼠; 1:100; 图 s5-3c
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab196149)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s5-3c). elife (2020) ncbi
domestic rabbit 单克隆(EPR3864)
  • 其他; 小鼠
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab92513)被用于被用于其他在小鼠样本上. elife (2020) ncbi
domestic rabbit 单克隆(EPR3864)
  • 免疫组化; 人类; 1:1000; 图 5g
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, EPR3864)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 5g). Medicine (Baltimore) (2020) ncbi
domestic rabbit 单克隆(EPR3863)
  • 免疫组化; 小鼠; 1:100; 图 3s2d
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab110639)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3s2d). elife (2020) ncbi
domestic rabbit 单克隆(EPR3863)
  • 免疫组化; 小鼠; 1:100; 图 1d
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab110639)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1d). elife (2019) ncbi
domestic rabbit 单克隆(EPR3864)
  • 免疫组化; 小鼠; 1:1000; 图 5j
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab92513)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5j). elife (2019) ncbi
domestic rabbit 单克隆(EPR3864)
  • 免疫组化; 小鼠; 1:500; 图 5a
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab92513)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5a). elife (2019) ncbi
domestic rabbit 单克隆(EPR3864)
  • 免疫组化; 小鼠; 图 2a, 3s4
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab92513)被用于被用于免疫组化在小鼠样本上 (图 2a, 3s4). elife (2019) ncbi
domestic rabbit 单克隆(EPR3864)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab92513)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Mol Cancer Ther (2019) ncbi
domestic rabbit 单克隆(EPR3863)
  • 免疫组化; 小鼠; 1:100; 图 1k
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab110639)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1k). Nat Commun (2019) ncbi
domestic rabbit 单克隆(EPR3864)
  • 免疫组化; 小鼠; 1:200; 图 3d
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab196149)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3d). Nat Commun (2019) ncbi
domestic rabbit 单克隆(EPR3863)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, Ab110639)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5a). Nat Commun (2019) ncbi
domestic rabbit 单克隆(EPR3864(2))
  • 免疫组化; 小鼠; 1:250
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab133264)被用于被用于免疫组化在小鼠样本上浓度为1:250. elife (2019) ncbi
domestic rabbit 单克隆(EPR3864(2))
  • 免疫组化-石蜡切片; 人类; 图 1g
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab133264)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1g). Cancer Med (2019) ncbi
domestic rabbit 单克隆(EPR3864)
  • 免疫组化; 小鼠; 1:500; 图 s1d
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab92513)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s1d). Cell (2019) ncbi
domestic rabbit 单克隆(EPR3864)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3g
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab92513)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3g). Science (2018) ncbi
domestic rabbit 单克隆(EPR3864)
  • 免疫印迹; 小鼠; 图 3s5b
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab92513)被用于被用于免疫印迹在小鼠样本上 (图 3s5b). elife (2018) ncbi
domestic rabbit 单克隆(EPR3864)
  • 免疫组化; 小鼠; 1:500; 图 4b
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab92513)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(EPR3864(2))
  • 免疫沉淀; 人类; 1:200; 图 2f
  • 免疫细胞化学; 人类; 1:200; 图 1g
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab133264)被用于被用于免疫沉淀在人类样本上浓度为1:200 (图 2f) 和 被用于免疫细胞化学在人类样本上浓度为1:200 (图 1g). Nat Commun (2017) ncbi
domestic rabbit 单克隆(EPR3864)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4e
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, EPR3864)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4e). Dev Biol (2017) ncbi
domestic rabbit 单克隆(EPR3864)
  • 免疫组化; 小鼠; 图 1g
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab92513)被用于被用于免疫组化在小鼠样本上 (图 1g). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(EPR3863)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2b
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab110639)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2b). Dev Biol (2017) ncbi
domestic rabbit 单克隆(EPR3864)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2
艾博抗(上海)贸易有限公司 ERG抗体(Zeta, EPR3864)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 2). Pathol Res Pract (2017) ncbi
domestic rabbit 单克隆(EPR3863)
  • 免疫组化; 小鼠; 图 2b
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab110639)被用于被用于免疫组化在小鼠样本上 (图 2b). Nature (2016) ncbi
domestic rabbit 单克隆(EPR3864)
  • 免疫印迹; 人类; 图 2f
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, EPR3864)被用于被用于免疫印迹在人类样本上 (图 2f). Oncotarget (2016) ncbi
domestic rabbit 单克隆(EPR3864)
  • 免疫印迹; 人类; 图 3b
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab92513)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(EPR3864)
  • 免疫组化; 人类; 1:100; 图 st1
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab92513)被用于被用于免疫组化在人类样本上浓度为1:100 (图 st1). Nat Med (2016) ncbi
domestic rabbit 单克隆(EPR3864)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab92513)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2). Nature (2016) ncbi
domestic rabbit 单克隆(EPR3864)
  • 免疫组化; 小鼠; 图 2
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab92513)被用于被用于免疫组化在小鼠样本上 (图 2). Front Cell Neurosci (2015) ncbi
domestic rabbit 单克隆(EPR3864)
  • 免疫组化; 小鼠; 图 s2
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab92513)被用于被用于免疫组化在小鼠样本上 (图 s2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(EPR3864(2))
  • 免疫组化; 人类; 1:3000; 图 3g
艾博抗(上海)贸易有限公司 ERG抗体(Epitomics, 5115-1)被用于被用于免疫组化在人类样本上浓度为1:3000 (图 3g). Nat Med (2015) ncbi
domestic rabbit 单克隆(EPR3864)
  • 免疫印迹; 小鼠; 图 6
艾博抗(上海)贸易有限公司 ERG抗体(Abcam, ab92513)被用于被用于免疫印迹在小鼠样本上 (图 6). Mol Cell (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(D-3)
  • 免疫印迹; 人类; 1:1000; 图 1i
圣克鲁斯生物技术 ERG抗体(Santa, sc271048)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1i). Adv Sci (Weinh) (2021) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 人类; 1:500; 图 1c
圣克鲁斯生物技术 ERG抗体(Santa Cruz Biotechnology, sc-376293)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1c). Nat Commun (2017) ncbi
北京傲锐东源
小鼠 单克隆(OTI5D10)
  • 酶联免疫吸附测定; 人类; 2 ug/ml; 图 4
北京傲锐东源 ERG抗体(Origene, TA600178)被用于被用于酶联免疫吸附测定在人类样本上浓度为2 ug/ml (图 4). J Transl Med (2015) ncbi
Biocare Medical
小鼠 单克隆(9FY)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
Biocare Medical ERG抗体(Biocare Medical LLC, CM 421 A, C)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(9FY)
  • 免疫组化-石蜡切片; 人类; 表 2
Biocare Medical ERG抗体(Biocare Medica, 9FY)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2). Turk J Urol (2016) ncbi
小鼠 单克隆(9FY)
  • 免疫组化-石蜡切片; 人类; 表 2
Biocare Medical ERG抗体(Biocare Medica, 9FY)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2). Methods Mol Biol (2016) ncbi
小鼠 单克隆(9FY)
  • 染色质免疫沉淀 ; 人类; 图 4c
Biocare Medical ERG抗体(Biocare Medical, CM421A)被用于被用于染色质免疫沉淀 在人类样本上 (图 4c). Oncotarget (2016) ncbi
小鼠 单克隆(9FY)
  • 免疫组化; 人类; 1:50; 图 2a
Biocare Medical ERG抗体(BioCare Medical, CM421C)被用于被用于免疫组化在人类样本上浓度为1:50 (图 2a). J Pathol (2016) ncbi
小鼠 单克隆(9FY)
  • 免疫印迹; 人类; 图 3b
Biocare Medical ERG抗体(Biocare Medical, 9FY)被用于被用于免疫印迹在人类样本上 (图 3b). Cell Commun Signal (2015) ncbi
小鼠 单克隆(9FY)
  • 免疫组化; 人类; 1:200
  • 免疫印迹; 人类; 1:1000
Biocare Medical ERG抗体(Biocare Medical, clone 9FY)被用于被用于免疫组化在人类样本上浓度为1:200 和 被用于免疫印迹在人类样本上浓度为1:1000. Mol Cancer Res (2015) ncbi
小鼠 单克隆(9FY)
  • 免疫组化; 人类; 1:50
Biocare Medical ERG抗体(BioCare Medical, CM421C)被用于被用于免疫组化在人类样本上浓度为1:50. Mod Pathol (2013) ncbi
丹科医疗器械技术服务(上海)有限公司
domestic rabbit 单克隆(EP111)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 ERG抗体(Dako, clone EP 111)被用于被用于免疫组化在人类样本上. Urol Oncol (2015) ncbi
文章列表
  1. Kuo A, Checa A, Niaudet C, Jung B, Fu Z, Wheelock C, et al. Murine endothelial serine palmitoyltransferase 1 (SPTLC1) is required for vascular development and systemic sphingolipid homeostasis. elife. 2022;11: pubmed 出版商
  2. D Amico G, Fernandez I, Gómez Escudero J, Kim H, Maniati E, Azman M, et al. ERG activity is regulated by endothelial FAK coupling with TRIM25/USP9x in vascular patterning. Development. 2022;149: pubmed 出版商
  3. Krolak T, Chan K, Kaplan L, Huang Q, Wu J, Zheng Q, et al. A High-Efficiency AAV for Endothelial Cell Transduction Throughout the Central Nervous System. Nat Cardiovasc Res. 2022;1:389-400 pubmed 出版商
  4. Sasson E, Anzi S, Bell B, Yakovian O, Zorsky M, Deutsch U, et al. Nano-scale architecture of blood-brain barrier tight-junctions. elife. 2021;10: pubmed 出版商
  5. Sáinz Jaspeado M, Smith R, Plunde O, Pawelzik S, Jin Y, Nordling S, et al. Palmdelphin Regulates Nuclear Resilience to Mechanical Stress in the Endothelium. Circulation. 2021;144:1629-1645 pubmed 出版商
  6. Khasawneh R, Kist R, Queen R, Hussain R, Coxhead J, Schneider J, et al. Msx1 haploinsufficiency modifies the Pax9-deficient cardiovascular phenotype. BMC Dev Biol. 2021;21:14 pubmed 出版商
  7. Goel S, Bhatia V, Kundu S, Biswas T, Carskadon S, Gupta N, et al. Transcriptional network involving ERG and AR orchestrates Distal-less homeobox-1 mediated prostate cancer progression. Nat Commun. 2021;12:5325 pubmed 出版商
  8. Risbridger G, Clark A, Porter L, Toivanen R, Bakshi A, Lister N, et al. The MURAL collection of prostate cancer patient-derived xenografts enables discovery through preclinical models of uro-oncology. Nat Commun. 2021;12:5049 pubmed 出版商
  9. Feng W, Cao Z, Lim P, Zhao H, Luo H, Mao N, et al. Rapid interrogation of cancer cell of origin through CRISPR editing. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  10. Quijada P, Trembley M, Misra A, Myers J, Baker C, Pérez Hernández M, et al. Coordination of endothelial cell positioning and fate specification by the epicardium. Nat Commun. 2021;12:4155 pubmed 出版商
  11. Su S, Chen J, Jiang Y, Wang Y, Vital T, Zhang J, et al. SPOP and OTUD7A Control EWS-FLI1 Protein Stability to Govern Ewing Sarcoma Growth. Adv Sci (Weinh). 2021;8:e2004846 pubmed 出版商
  12. Seavey C, Pobbati A, Hallett A, Ma S, Reynolds J, Kanai R, et al. WWTR1(TAZ)-CAMTA1 gene fusion is sufficient to dysregulate YAP/TAZ signaling and drive epithelioid hemangioendothelioma tumorigenesis. Genes Dev. 2021;35:512-527 pubmed 出版商
  13. Chen J, Sivan U, Tan S, Lippo L, De Angelis J, Labella R, et al. High-resolution 3D imaging uncovers organ-specific vascular control of tissue aging. Sci Adv. 2021;7: pubmed 出版商
  14. Tai Nagara I, Hasumi Y, Kusumoto D, Hasumi H, Okabe K, Ando T, et al. Blood and lymphatic systems are segregated by the FLCN tumor suppressor. Nat Commun. 2020;11:6314 pubmed 出版商
  15. Orsenigo F, Conze L, Jauhiainen S, Corada M, Lazzaroni F, Malinverno M, et al. Mapping endothelial-cell diversity in cerebral cavernous malformations at single-cell resolution. elife. 2020;9: pubmed 出版商
  16. Alonso Herranz L, Sahún Español Á, Paredes A, Gonzalo P, Gkontra P, Núñez V, et al. Macrophages promote endothelial-to-mesenchymal transition via MT1-MMP/TGFβ1 after myocardial infarction. elife. 2020;9: pubmed 出版商
  17. Prahst C, Ashrafzadeh P, Mead T, Figueiredo A, Chang K, Richardson D, et al. Mouse retinal cell behaviour in space and time using light sheet fluorescence microscopy. elife. 2020;9: pubmed 出版商
  18. Li D, Zhu R, Zhou L, Zhong D. Clinical, histopathologic, subtype, and immunohistochemical analysis of jaw phosphaturic mesenchymal tumors. Medicine (Baltimore). 2020;99:e19090 pubmed 出版商
  19. Sivaraj K, Dharmalingam B, Mohanakrishnan V, Jeong H, Kato K, Schröder S, et al. YAP1 and TAZ negatively control bone angiogenesis by limiting hypoxia-inducible factor signaling in endothelial cells. elife. 2020;9: pubmed 出版商
  20. Travisano S, Oliveira V, Prados B, Grego Bessa J, Piñeiro Sabarís R, Bou V, et al. Coronary arterial development is regulated by a Dll4-Jag1-EphrinB2 signaling cascade. elife. 2019;8: pubmed 出版商
  21. Gancz D, Raftrey B, Perlmoter G, Mar n Juez R, Semo J, Matsuoka R, et al. Distinct origins and molecular mechanisms contribute to lymphatic formation during cardiac growth and regeneration. elife. 2019;8: pubmed 出版商
  22. Zhao X, Nedvetsky P, Stanchi F, Vion A, Popp O, Zühlke K, et al. Endothelial PKA activity regulates angiogenesis by limiting autophagy through phosphorylation of ATG16L1. elife. 2019;8: pubmed 出版商
  23. Overman J, Fontaine F, Wylie Sears J, Moustaqil M, Huang L, Meurer M, et al. R-propranolol is a small molecule inhibitor of the SOX18 transcription factor in a rare vascular syndrome and hemangioma. elife. 2019;8: pubmed 出版商
  24. Mao N, Gao D, Hu W, Hieronymus H, Wang S, Lee Y, et al. Aberrant Expression of ERG Promotes Resistance to Combined PI3K and AR Pathway Inhibition through Maintenance of AR Target Genes. Mol Cancer Ther. 2019;18:1577-1586 pubmed 出版商
  25. Diéguez Hurtado R, Kato K, Giaimo B, Nieminen Kelhä M, Arf H, Ferrante F, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10:2817 pubmed 出版商
  26. Fernández Chacón M, Casquero García V, Luo W, Francesca Lunella F, Ferreira Rocha S, Del Olmo Cabrera S, et al. iSuRe-Cre is a genetic tool to reliably induce and report Cre-dependent genetic modifications. Nat Commun. 2019;10:2262 pubmed 出版商
  27. Lesch B, Tothova Z, Morgan E, Liao Z, Bronson R, Ebert B, et al. Intergenerational epigenetic inheritance of cancer susceptibility in mammals. elife. 2019;8: pubmed 出版商
  28. Cao Z, Ji J, Zhang C, Wang F, Xu H, Yu Y, et al. The preoperative neutrophil-to-lymphocyte ratio is not a marker of prostate cancer characteristics but is an independent predictor of biochemical recurrence in patients receiving radical prostatectomy. Cancer Med. 2019;8:1004-1012 pubmed 出版商
  29. Das S, Goldstone A, Wang H, Farry J, D Amato G, Paulsen M, et al. A Unique Collateral Artery Development Program Promotes Neonatal Heart Regeneration. Cell. 2019;176:1128-1142.e18 pubmed 出版商
  30. Segarra M, Aburto M, Cop F, Llaó Cid C, Härtl R, Damm M, et al. Endothelial Dab1 signaling orchestrates neuro-glia-vessel communication in the central nervous system. Science. 2018;361: pubmed 出版商
  31. Bergiers I, Andrews T, Vargel Bölükbaşı Ö, Buness A, Janosz E, Lopez Anguita N, et al. Single-cell transcriptomics reveals a new dynamical function of transcription factors during embryonic hematopoiesis. elife. 2018;7: pubmed 出版商
  32. Fang J, Coon B, Gillis N, Chen Z, Qiu J, Chittenden T, et al. Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification. Nat Commun. 2017;8:2149 pubmed 出版商
  33. Dufton N, Peghaire C, Osuna Almagro L, Raimondi C, Kalna V, Chuahan A, et al. Dynamic regulation of canonical TGFβ signalling by endothelial transcription factor ERG protects from liver fibrogenesis. Nat Commun. 2017;8:895 pubmed 出版商
  34. Guo H, Kazadaeva Y, Ortega F, Manjunath N, Desai T. Trinucleotide repeat containing 6c (TNRC6c) is essential for microvascular maturation during distal airspace sacculation in the developing lung. Dev Biol. 2017;430:214-223 pubmed 出版商
  35. Kim J, Kim Y, Kim J, Park D, Bae H, Lee D, et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest. 2017;127:3441-3461 pubmed 出版商
  36. Wang X, Chen D, Chen K, Jubran A, Ramirez A, Astrof S. Endothelium in the pharyngeal arches 3, 4 and 6 is derived from the second heart field. Dev Biol. 2017;421:108-117 pubmed 出版商
  37. Knief J, Reddemann K, Gliemroth J, Brede S, Bartscht T, Thorns C. ERG expression in multiple myeloma-A potential diagnostic pitfall. Pathol Res Pract. 2017;213:130-132 pubmed 出版商
  38. Strilic B, Yang L, Albarrán Juárez J, Wachsmuth L, Han K, Müller U, et al. Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis. Nature. 2016;536:215-8 pubmed
  39. Noh B, Sung J, Kim Y, Chang S, Park Y. Prognostic value of ERG, PTEN, CRISP3 and SPINK1 in predicting biochemical recurrence in prostate cancer. Oncol Lett. 2016;11:3621-3630 pubmed
  40. Yilmaz O, Berber U, Okcelik S, Soydan H, Ates F, Karademir K. TMPRSS2-ERG gene fusion in Turkish patients with localized prostate cancer: results of radical prostatectomy specimens. Turk J Urol. 2016;42:60-3 pubmed 出版商
  41. Winterhoff M, Brühmann S, Franke C, Breitsprecher D, Faix J. Visualization of Actin Assembly and Filament Turnover by In Vitro Multicolor TIRF Microscopy. Methods Mol Biol. 2016;1407:287-306 pubmed 出版商
  42. Blee A, Liu S, Wang L, Huang H. BET bromodomain-mediated interaction between ERG and BRD4 promotes prostate cancer cell invasion. Oncotarget. 2016;7:38319-38332 pubmed 出版商
  43. Zhang Z, Lanz R, Xiao L, Wang L, Hartig S, Ittmann M, et al. The tumor suppressive miR-200b subfamily is an ERG target gene in human prostate tumors. Oncotarget. 2016;7:37993-38003 pubmed 出版商
  44. Kumar P, Sharad S, Petrovics G, Mohamed A, Dobi A, Sreenath T, et al. Loss of miR-449a in ERG-associated prostate cancer promotes the invasive phenotype by inducing SIRT1. Oncotarget. 2016;7:22791-806 pubmed 出版商
  45. Beltran H, Prandi D, Mosquera J, Benelli M, Puca L, Cyrta J, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 2016;22:298-305 pubmed 出版商
  46. Wilhelm K, Happel K, Eelen G, Schoors S, Oellerich M, Lim R, et al. FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature. 2016;529:216-20 pubmed 出版商
  47. Stefanitsch C, Lawrence A, Olverling A, Nilsson I, Fredriksson L. tPA Deficiency in Mice Leads to Rearrangement in the Cerebrovascular Tree and Cerebroventricular Malformations. Front Cell Neurosci. 2015;9:456 pubmed 出版商
  48. Giampietro C, Deflorian G, Gallo S, di Matteo A, Pradella D, Bonomi S, et al. The alternative splicing factor Nova2 regulates vascular development and lumen formation. Nat Commun. 2015;6:8479 pubmed 出版商
  49. Haffner M, Weier C, Xu M, Vaghasia A, Gürel B, Gümüşkaya B, et al. Molecular evidence that invasive adenocarcinoma can mimic prostatic intraepithelial neoplasia (PIN) and intraductal carcinoma through retrograde glandular colonization. J Pathol. 2016;238:31-41 pubmed 出版商
  50. Zhu D, Wang Z, Zhao J, Calimeri T, Meng J, Hideshima T, et al. The Cyclophilin A-CD147 complex promotes the proliferation and homing of multiple myeloma cells. Nat Med. 2015;21:572-80 pubmed 出版商
  51. Roe J, Mercan F, Rivera K, Pappin D, Vakoc C. BET Bromodomain Inhibition Suppresses the Function of Hematopoietic Transcription Factors in Acute Myeloid Leukemia. Mol Cell. 2015;58:1028-39 pubmed 出版商
  52. Suryavanshi M, Mehta A, Jaipuria J, Sharma A, Rawal S, Seth N. Weaker ERG expression in patients with ERG-positive prostate cancer is associated with advanced disease and weaker androgen receptor expression: An Indian outlook. Urol Oncol. 2015;33:331.e9-15 pubmed 出版商
  53. He J, Schepmoes A, Shi T, Wu C, Fillmore T, Gao Y, et al. Analytical platform evaluation for quantification of ERG in prostate cancer using protein and mRNA detection methods. J Transl Med. 2015;13:54 pubmed 出版商
  54. Selvaraj N, Kedage V, Hollenhorst P. Comparison of MAPK specificity across the ETS transcription factor family identifies a high-affinity ERK interaction required for ERG function in prostate cells. Cell Commun Signal. 2015;13:12 pubmed 出版商
  55. Griner N, Young D, Chaudhary P, Mohamed A, Huang W, Chen Y, et al. ERG oncoprotein inhibits ANXA2 expression and function in prostate cancer. Mol Cancer Res. 2015;13:368-79 pubmed 出版商
  56. Lotan T, Gumuskaya B, Rahimi H, Hicks J, Iwata T, Robinson B, et al. Cytoplasmic PTEN protein loss distinguishes intraductal carcinoma of the prostate from high-grade prostatic intraepithelial neoplasia. Mod Pathol. 2013;26:587-603 pubmed 出版商