这是一篇来自已证抗体库的有关人类 ERK1的综述,是根据572篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合ERK1 抗体。
ERK1 同义词: ERK-1; ERK1; ERT2; HS44KDAP; HUMKER1A; P44ERK1; P44MAPK; PRKM3; p44-ERK1; p44-MAPK

圣克鲁斯生物技术
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 s3b
  • 免疫印迹; 人类; 图 s3b
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在小鼠样本上 (图 s3b) 和 被用于免疫印迹在人类样本上 (图 s3b). Nature (2019) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:200; 图 4s2a
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, SC7383)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4s2a). elife (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 s3a
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-514302)被用于被用于免疫印迹在人类样本上 (图 s3a). Sci Adv (2019) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 大鼠; 图 3c
圣克鲁斯生物技术 ERK1抗体(Santa, sc-135,900)被用于被用于免疫印迹在大鼠样本上 (图 3c). BMC Complement Altern Med (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:5000; 图 1c
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1c). Nat Commun (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 2e
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-514302)被用于被用于免疫印迹在人类样本上 (图 2e). Exp Mol Med (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 8a
圣克鲁斯生物技术 ERK1抗体(santa cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 8a). J Exp Med (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 4d
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology Inc, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 4d). J Clin Invest (2018) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Restor Neurol Neurosci (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Restor Neurol Neurosci (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, E-4)被用于被用于免疫印迹在人类样本上 (图 2b). Cell Death Dis (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 ERK1抗体(SantaCruz, E-4)被用于被用于免疫印迹在人类样本上 (图 5a). Cell Res (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 6d
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology Inc, SC-7383)被用于被用于免疫印迹在小鼠样本上 (图 6d). Neurotherapeutics (2018) ncbi
小鼠 单克隆(12D4)
  • 免疫组化-冰冻切片; 小鼠; 1:20; 图 s6f
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-81492)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:20 (图 s6f). Nat Commun (2018) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样本上 (图 3b). Int J Oncol (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5). Mol Med Rep (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2017) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 图 7a
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样本上 (图 7a). Cancer Lett (2017) ncbi
小鼠 单克隆(E-6)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术 ERK1抗体(SantaCruz, sc-271270)被用于被用于免疫印迹在人类样本上 (图 3b). Mol Cancer Res (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 3g
圣克鲁斯生物技术 ERK1抗体(SantaCruz, SC-7383)被用于被用于免疫印迹在小鼠样本上 (图 3g). J Exp Med (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3e
圣克鲁斯生物技术 ERK1抗体(SCB, E-4)被用于被用于免疫印迹在人类样本上 (图 3e). Cancer Res (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 3c
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Oncol Lett (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 4b
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 4b). J Exp Med (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 6a). Exp Mol Med (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上 (图 6a). Exp Mol Med (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 6A
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上 (图 6A). Sci Rep (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 6
圣克鲁斯生物技术 ERK1抗体(SantaCruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 6). J Ethnopharmacol (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:200; 图 2b
圣克鲁斯生物技术 ERK1抗体(SantaCruz, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2b). Toxicol In Vitro (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 2b
圣克鲁斯生物技术 ERK1抗体(SantaCruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b). Toxicol In Vitro (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 2b
圣克鲁斯生物技术 ERK1抗体(SantaCruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b). J Steroid Biochem Mol Biol (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:2000; 图 4a
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4a). Exp Ther Med (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 2e
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2e). Nat Commun (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在人类样本上 (图 1c). Mol Carcinog (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-石蜡切片; 小鼠
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫组化-石蜡切片在小鼠样本上. Acta Histochem (2017) ncbi
小鼠 单克隆(G-8)
  • 免疫印迹; 小鼠; 1:1000; 图 9a
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-271269)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9a). PLoS ONE (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:1000; 图 1a
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Int J Cancer (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5b). Int J Mol Med (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 图 3a
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在小鼠样本上 (图 3a). Int J Mol Sci (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 图 6b
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, Sc-7383)被用于被用于免疫印迹在大鼠样本上 (图 6b). Physiol Rep (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1500; 图 4a
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 4a). Oncol Lett (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1500; 图 4a
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 4a). Oncol Lett (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 ERK1抗体(santa Cruz, SC-7383)被用于被用于免疫印迹在小鼠样本上 (图 3). Blood Cancer J (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 ERK1抗体(santa Cruz, SC-514302)被用于被用于免疫印迹在小鼠样本上 (图 3). Blood Cancer J (2016) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫组化-石蜡切片; 人类; 图 7a
  • 免疫印迹; 人类; 1:500; 图 5a
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-136521)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7a) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 表 1
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (表 1). J Neuroinflammation (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6e
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, 7383)被用于被用于免疫印迹在人类样本上 (图 6e). Am J Physiol Heart Circ Physiol (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Mol Cell Biochem (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 3a). J Cereb Blood Flow Metab (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 7a
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Immunol (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 4). Mol Ther Methods Clin Dev (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在人类样本上 (图 5). Cell Rep (2016) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 大鼠; 图 5c
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, SC-136521)被用于被用于免疫印迹在大鼠样本上 (图 5c). PLoS ONE (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000; 图 2
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Cell Death Dis (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 3). Oncol Lett (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 2a
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 2a). J Cell Biol (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3h
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, E4)被用于被用于免疫印迹在人类样本上 (图 3h). Genes Cancer (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 图 6b
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上 (图 6b). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 5d
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Oncotarget (2016) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 1:200; 图 6A
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 6A). Front Pharmacol (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:200; 图 6A
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 6A). Front Pharmacol (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:1000; 图 s4
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4). Nat Commun (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 1:1000; 图 4
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000; 图 4
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 1:500; 图 5a
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, 7383)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 5a). Int J Endocrinol (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 7c
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 7c). J Biol Chem (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc7383)被用于被用于免疫印迹在人类样本上 (图 4). BMC Complement Altern Med (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 s2
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在小鼠样本上 (图 s2). Sci Rep (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:500; 图 3
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Oncoimmunology (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 6a). J Immunol Res (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:200; 图 5
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5). Genes Cancer (2016) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 1:200; 图 5
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5). Genes Cancer (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 ERK1抗体(Santa cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5). BMC Cancer (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫细胞化学; 小鼠; 1:50; 图 5
  • 免疫组化; 小鼠; 1:50; 图 5
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 5) 和 被用于免疫组化在小鼠样本上浓度为1:50 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 3c). Oncotarget (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠; 图 10a
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在大鼠样本上 (图 10a). Int J Mol Med (2016) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 1:500; 图 3d
  • 免疫印迹; 小鼠; 1:500; 图 3d
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-514302)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3d) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 3d). J Neurosci (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 5
  • 免疫印迹; 人类; 图 8
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, E-4)被用于被用于免疫印迹在小鼠样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 8). J Exp Med (2016) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 大鼠; 1:500; 图 6
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-81492)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 6). Exp Ther Med (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 1:1000; 图 5
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(12D4)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5
  • 免疫印迹; 小鼠; 1:1000; 图 5
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-81492)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 7e
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 7e). J Immunol (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 图 1d
  • 免疫组化; 小鼠; 图 7
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc7383)被用于被用于免疫印迹在大鼠样本上 (图 1d) 和 被用于免疫组化在小鼠样本上 (图 7). J Cell Mol Med (2016) ncbi
小鼠 单克隆(E-4)
  • 酶联免疫吸附测定; 人类; 1:500; 图 10
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:500 (图 10). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 1:500; 图 6
圣克鲁斯生物技术 ERK1抗体(Santa Cruze, sc-7383)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 ERK1抗体(santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 3). Drug Des Devel Ther (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 10
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 10). J Neuroinflammation (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 2
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s7
  • 免疫印迹; 小鼠; 1:1000; 图 2
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s7) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5c). Mol Cells (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5a). Apoptosis (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 S3
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 S3). Oncotarget (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上 (图 3). Biomed Res Int (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 s3
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 s3). J Immunol Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 8
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在人类样本上 (图 8). Oncotarget (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 6a). Oncogene (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, SC7383)被用于被用于免疫印迹在人类样本上. Int J Cancer (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术 ERK1抗体(SantaCruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 3c). Oncogene (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:8000; 图 7
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, SC-135900)被用于被用于免疫印迹在人类样本上浓度为1:8000 (图 7). Int J Mol Sci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 猪; 图 2
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在猪样本上 (图 2). J Immunol (2015) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 人类; 图 6b
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-81492)被用于被用于免疫印迹在人类样本上 (图 6b). BMC Cancer (2015) ncbi
小鼠 单克隆(E-6)
  • 免疫印迹; 人类; 图 6b
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-271270)被用于被用于免疫印迹在人类样本上 (图 6b). BMC Cancer (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 3). Cancer Sci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Cardiovasc Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Laboratories, SC7383)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 6b
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, E-4)被用于被用于免疫印迹在小鼠样本上 (图 6b). J Exp Med (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 1:1000
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Int J Neuropsychopharmacol (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-自由浮动切片; 大鼠
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫组化-自由浮动切片在大鼠样本上. Free Radic Biol Med (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 2). J Biomed Sci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, SC-7383)被用于被用于免疫印迹在小鼠样本上. Virol Sin (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 6
圣克鲁斯生物技术 ERK1抗体(Santa-Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). PLoS Pathog (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上. Neuropharmacology (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在小鼠样本上. Neuropharmacology (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 图 4d
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, SC-135900)被用于被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, SC-135900)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Cancer Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 s8
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 s8). Autophagy (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, SC-7383)被用于被用于免疫印迹在人类样本上 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(MK1)
  • 染色质免疫沉淀 ; 人类; 图 6
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotech, sc-135900)被用于被用于染色质免疫沉淀 在人类样本上 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:500
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Neuroscience (2015) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, SC-81492)被用于被用于免疫印迹在小鼠样本上. J Nutr Biochem (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, SC-135900)被用于被用于免疫印迹在小鼠样本上. J Nutr Biochem (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 图 5
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在大鼠样本上 (图 5). Mar Drugs (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, SC-7383)被用于被用于免疫印迹在人类样本上 (图 5). Br J Nutr (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 1:500; 图 4g
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4g). J Cell Sci (2015) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-136521)被用于被用于免疫印迹在人类样本上 (图 6). Curr Mol Med (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, E-4)被用于被用于免疫印迹在人类样本上. Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500. Cell Signal (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 2
圣克鲁斯生物技术 ERK1抗体(santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 小鼠; 1:500; 图 4a
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-81492)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4a). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5f
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5f). Cell Commun Signal (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 4
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnologies, SC-7383)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Endocrinology (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 s21
圣克鲁斯生物技术 ERK1抗体(Santa, sc-7383)被用于被用于免疫印迹在人类样本上 (图 s21). PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000. Exp Ther Med (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, SC-135900)被用于被用于免疫印迹在人类样本上. Mutat Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫沉淀; 人类; 图 3
  • 免疫印迹; 人类; 图 s9
圣克鲁斯生物技术 ERK1抗体(santa Cruz, sc-7383)被用于被用于免疫沉淀在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 s9). Cell Death Differ (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Leuk Lymphoma (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上. Leuk Lymphoma (2015) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在大鼠样本上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在大鼠样本上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, E4)被用于被用于免疫印迹在人类样本上 (图 2). Cell Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 2). Cell Cycle (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 2b). Environ Health Perspect (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:200
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, SC7383)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Mol Cell Biol (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, E-4)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫组化; 人类; 1:100
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫组化在人类样本上浓度为1:100. Cancer Lett (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Life Sci (2015) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-81492)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Life Sci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, E-4)被用于被用于免疫印迹在人类样本上浓度为1:1000. Tumour Biol (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Neurosci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 大鼠; 图 3
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在大鼠样本上 (图 3). Biochem Pharmacol (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:1000. Exp Cell Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000. Exp Cell Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, 7383)被用于被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:500; 图 2
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2). Nat Commun (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Biol Chem (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Biol Chem (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-石蜡切片; 大鼠
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, E-4, sc-7383)被用于被用于免疫组化-石蜡切片在大鼠样本上 和 被用于免疫印迹在大鼠样本上. Hippocampus (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:800
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, SC-135900)被用于被用于免疫印迹在人类样本上浓度为1:800. Growth Factors (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; kangaroo rats; 1:200; 图 2
圣克鲁斯生物技术 ERK1抗体(santa cruz, sc-7383)被用于被用于免疫印迹在kangaroo rats样本上浓度为1:200 (图 2). Cell Mol Neurobiol (2015) ncbi
小鼠 单克隆(12D4)
  • 免疫细胞化学; 人类; 1:300
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotech, sc-81492)被用于被用于免疫细胞化学在人类样本上浓度为1:300. Biores Open Access (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上. Biometals (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, SC-135900)被用于被用于免疫印迹在小鼠样本上. J Am Heart Assoc (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000. BMC Cancer (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-石蜡切片; 人类; 1:100
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc7383)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. J Gastroenterol Hepatol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 牛
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在牛样本上. Biomed Res Int (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Angiogenesis (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Int J Oncol (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上. Int J Oncol (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; domestic rabbit; 1:1,000
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:1,000. Stem Cells Dev (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上. Mol Cell Endocrinol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 ERK1抗体(Santa, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Mol Cancer Ther (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, SC-7383)被用于被用于免疫印迹在人类样本上. Biochem Pharmacol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc7383)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上. Electrophoresis (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上. Exp Mol Med (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 番茄
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, SC-7383)被用于被用于免疫印迹在番茄样本上. J Agric Food Chem (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, E-4)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Cancer Res (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫细胞化学; 大鼠
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫细胞化学在大鼠样本上 和 被用于免疫印迹在大鼠样本上. Glia (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Exp Cell Res (2014) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-136521)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Exp Cell Res (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上. Cancer Cell Int (2013) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500. Mol Neurodegener (2012) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500. J Neuroimmunol (2013) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 ERK1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在大鼠样本上. Lab Anim Res (2012) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 1:1000; 图 3b
圣克鲁斯生物技术 ERK1抗体(SantaCruz, E-4)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3b). Am J Physiol Gastrointest Liver Physiol (2011) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 ERK1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5). Leukemia (2011) ncbi
赛默飞世尔
小鼠 单克隆(MILAN8R)
  • 流式细胞仪; 人类; 图 s5
赛默飞世尔 ERK1抗体(eBioscience, MILAN8R)被用于被用于流式细胞仪在人类样本上 (图 s5). Eur J Immunol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4b
赛默飞世尔 ERK1抗体(Thermo Fisher Scientific, 44-654G)被用于被用于免疫印迹在大鼠样本上 (图 4b). Biosci Rep (2018) ncbi
domestic rabbit 重组(15H10L7)
  • 免疫印迹; 大鼠; 图 4a
赛默飞世尔 ERK1抗体(Thermo Fisher Scientific, 700012)被用于被用于免疫印迹在大鼠样本上 (图 4a). Biosci Rep (2018) ncbi
小鼠 单克隆(MILAN8R)
  • 流式细胞仪; 人类; 图 3b
赛默飞世尔 ERK1抗体(eBioscience, MILAN8R)被用于被用于流式细胞仪在人类样本上 (图 3b). J Immunol (2018) ncbi
小鼠 单克隆(3F8B3)
  • 免疫印迹; 人类; 图 4
  • 免疫印迹; Stylophora pistillata; 1:1000; 图 2a
赛默飞世尔 ERK1抗体(ThermoFisher, MA5-15605)被用于被用于免疫印迹在人类样本上 (图 4) 和 被用于免疫印迹在Stylophora pistillata样本上浓度为1:1000 (图 2a). F1000Res (2017) ncbi
domestic rabbit 单克隆(B.742.5)
  • 免疫印迹; Stylophora pistillata; 1:1000; 图 2a
  • 免疫印迹; 人类; 图 4
赛默飞世尔 ERK1抗体(ThermoFisher, MA5-15174)被用于被用于免疫印迹在Stylophora pistillata样本上浓度为1:1000 (图 2a) 和 被用于免疫印迹在人类样本上 (图 4). F1000Res (2017) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫沉淀; 人类; 图 5a
  • 免疫印迹; 人类; 图 5a
赛默飞世尔 ERK1抗体(Invitrogen, 13-6200)被用于被用于免疫沉淀在人类样本上 (图 5a) 和 被用于免疫印迹在人类样本上 (图 5a). Sci Rep (2017) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 1:500; 图 3a
赛默飞世尔 ERK1抗体(Invitrogen, 13-6200)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛默飞世尔 ERK1抗体(Invitrogen, 44-654G)被用于被用于免疫印迹在人类样本上 (图 1d). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛默飞世尔 ERK1抗体(Invitrogen, 44-680G)被用于被用于免疫印迹在人类样本上 (图 1d). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5f
赛默飞世尔 ERK1抗体(Invitrogen, 36-8800)被用于被用于免疫印迹在人类样本上 (图 5f). MAbs (2017) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 5e
赛默飞世尔 ERK1抗体(Invitrogen, 13-6200)被用于被用于免疫印迹在人类样本上 (图 5e). MAbs (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛默飞世尔 ERK1抗体(Invitrogen, 61-7400)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; African green monkey; 图 5c
赛默飞世尔 ERK1抗体(Zymed, 61-7400)被用于被用于免疫印迹在African green monkey样本上 (图 5c). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛默飞世尔 ERK1抗体(Invitrogen, 44-680G)被用于被用于免疫印迹在人类样本上 (图 1b). Int J Oncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3b
  • 免疫印迹; 小鼠; 图 5e
赛默飞世尔 ERK1抗体(生活技术, 44-654G)被用于被用于免疫印迹在人类样本上 (图 s3b) 和 被用于免疫印迹在小鼠样本上 (图 5e). Nat Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5e
  • 免疫印迹; 人类; 图 s3b
赛默飞世尔 ERK1抗体(生活技术, 44-680G)被用于被用于免疫印迹在小鼠样本上 (图 5e) 和 被用于免疫印迹在人类样本上 (图 s3b). Nat Immunol (2016) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 1:2000; 图 2a
赛默飞世尔 ERK1抗体(Thermo Fisher Scientific, ERK-7D8)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛默飞世尔 ERK1抗体(生活技术, 44-654-G)被用于被用于免疫印迹在人类样本上 (图 3). Int J Mol Sci (2016) ncbi
小鼠 单克隆(MILAN8R)
  • 流式细胞仪; 小鼠
赛默飞世尔 ERK1抗体(eBioscience, MILAN8R)被用于被用于流式细胞仪在小鼠样本上. Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛默飞世尔 ERK1抗体(Invitrogen, 44680G)被用于被用于免疫印迹在人类样本上 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛默飞世尔 ERK1抗体(Invitrogen, 368800)被用于被用于免疫印迹在人类样本上 (图 7a). Cell Death Differ (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3
  • 免疫印迹; 人类; 图 1
赛默飞世尔 ERK1抗体(Invitrogen, 44680G)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 1). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛默飞世尔 ERK1抗体(Invitrogen Biosource, 44-654G)被用于被用于免疫印迹在人类样本上 (图 6). J Biol Chem (2016) ncbi
小鼠 单克隆(12D11)
  • 免疫印迹; 人类; 图 s6
赛默飞世尔 ERK1抗体(ThermoFisher Scientific, MA1-13041)被用于被用于免疫印迹在人类样本上 (图 s6). Nat Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 5
赛默飞世尔 ERK1抗体(Zymed, 61-7400)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5). Neuropharmacology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5
赛默飞世尔 ERK1抗体(Invitrogen, 44-680G)被用于被用于免疫印迹在大鼠样本上 (图 5). Mol Biol Cell (2016) ncbi
小鼠 单克隆(ERK-6B11)
  • 免疫组化-石蜡切片; 小鼠; 图 3
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 ERK1抗体(Invitrogen, 13-8600)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3) 和 被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 ERK1抗体(Thermo Fisher Scientific, 44-680G)被用于. Biomed Res Int (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛默飞世尔 ERK1抗体(Invitrogen, 44-680G)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 ERK1抗体(Invitrogen, 13-6200)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠; 1:500; 图 5b
赛默飞世尔 ERK1抗体(Zymed, 13-6200)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5b). Nat Cell Biol (2015) ncbi
domestic rabbit 重组(15H10L7)
  • 免疫印迹; 人类
赛默飞世尔 ERK1抗体(Invitrogen, 700012)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类
赛默飞世尔 ERK1抗体(Zymed, 13-6200)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠
赛默飞世尔 ERK1抗体(Invitrogen, 13-6200)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(K.913.4)
  • 免疫组化-石蜡切片; 斑马鱼
  • 免疫印迹; 斑马鱼
赛默飞世尔 ERK1抗体(Pierce, MA5-15134)被用于被用于免疫组化-石蜡切片在斑马鱼样本上 和 被用于免疫印迹在斑马鱼样本上. Cell Res (2014) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类
赛默飞世尔 ERK1抗体(Zymed Laboratories, 13-6200)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(ERK-6B11)
  • 免疫印迹; 小鼠; 1:3000; 图 3
赛默飞世尔 ERK1抗体(Zymed, ERK-6B11)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 3). J Neurosci (2012) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 1:2500; 表 1
赛默飞世尔 ERK1抗体(Invitrogen, 136200)被用于被用于免疫印迹在大鼠样本上浓度为1:2500 (表 1). Amino Acids (2012) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类
赛默飞世尔 ERK1抗体(Zymed, 13-6200)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2011) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 ERK1抗体(Invitrogen, 13-6200)被用于被用于免疫印迹在人类样本上 (图 1). J Endocrinol Invest (2011) ncbi
小鼠 单克隆(ERK-6B11)
  • 免疫印迹; 小鼠; 1:3000
赛默飞世尔 ERK1抗体(Zymed, 13-8600)被用于被用于免疫印迹在小鼠样本上浓度为1:3000. J Neurosci (2009) ncbi
小鼠 单克隆(ERK-6B11)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 ERK1抗体(Zymed Laboratories, 13-8600)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2007) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠; 图 2a
赛默飞世尔 ERK1抗体(Zymed, 13-6200)被用于被用于免疫印迹在小鼠样本上 (图 2a). Nat Immunol (2006) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 图 6
赛默飞世尔 ERK1抗体(Zymed, ERK-7D8)被用于被用于免疫印迹在大鼠样本上 (图 6). Cardiovasc Res (2006) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 图 7
赛默飞世尔 ERK1抗体(Zymed, ERK-7D8)被用于被用于免疫印迹在大鼠样本上 (图 7). J Biomed Sci (2005) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 1:5000; 图 2
赛默飞世尔 ERK1抗体(Zymed, ERK-7D8)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 2). Life Sci (2005) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 图 5
赛默飞世尔 ERK1抗体(Zymed, 13-6200,)被用于被用于免疫印迹在大鼠样本上 (图 5). J Biol Chem (2004) ncbi
小鼠 单克隆(ERK-6B11)
  • 免疫印迹; 大鼠; 图 3
赛默飞世尔 ERK1抗体(Zymed, 13-8600)被用于被用于免疫印迹在大鼠样本上 (图 3). Int J Obes Relat Metab Disord (2003) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 ERK1抗体(Zymed Laboratories, clone ERK-7D8)被用于被用于免疫印迹在人类样本上 (图 2). J Neurochem (2000) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠
赛默飞世尔 ERK1抗体(Zymed, 13-6200)被用于被用于免疫印迹在大鼠样本上. J Clin Invest (1999) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠; 图 1, 2
赛默飞世尔 ERK1抗体(Zymed, 13-6200)被用于被用于免疫印迹在小鼠样本上 (图 1, 2). Neurochem Res (1998) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫沉淀; 小鼠
  • 免疫印迹; 小鼠
赛默飞世尔 ERK1抗体(Zymed, ERK-7D8)被用于被用于免疫沉淀在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Proc Natl Acad Sci U S A (1998) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 非洲爪蛙; 1:1000; 图 1
赛默飞世尔 ERK1抗体(Zymed, ERK-7D8)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:1000 (图 1). Science (1998) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 ERK1抗体(Zymed Laboratories, clone ERK-7D8)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (1997) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 ERK1抗体(Abcam, ab115799)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(EP197Y)
  • 免疫印迹; 大鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 ERK1抗体(Abcam, ab76299)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
艾博抗(上海)贸易有限公司 ERK1抗体(Abcam, ab115799)被用于被用于免疫印迹在人类样本上 (图 5b). Eur Rev Med Pharmacol Sci (2019) ncbi
domestic rabbit 单克隆(EPR17526)
  • 免疫印迹; 人类; 1:1000; 图 5c
艾博抗(上海)贸易有限公司 ERK1抗体(Abcam, ab184699)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Sci Rep (2017) ncbi
domestic rabbit 单克隆(EP197Y)
  • 免疫印迹; 人类; 1:1000; 图 5c
艾博抗(上海)贸易有限公司 ERK1抗体(Abcam, ab76299)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Sci Rep (2017) ncbi
domestic rabbit 单克隆(E337)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2a
艾博抗(上海)贸易有限公司 ERK1抗体(Abcam, ab32538)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 2a). J Clin Pathol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4a
艾博抗(上海)贸易有限公司 ERK1抗体(Abcam, ab196883)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Exp Ther Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 猕猴; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 ERK1抗体(Abcam, ab4819)被用于被用于免疫印迹在猕猴样本上浓度为1:1000 (图 2a). J Virol (2016) ncbi
domestic rabbit 单克隆(EPR17526)
  • 免疫印迹; 大鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司 ERK1抗体(Abcam, ab184699)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(9B3)
  • 免疫印迹; 人类; 图 7e
艾博抗(上海)贸易有限公司 ERK1抗体(Abcam, 9B3)被用于被用于免疫印迹在人类样本上 (图 7e). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(EP197Y)
  • 免疫印迹; 人类; 图 6e
艾博抗(上海)贸易有限公司 ERK1抗体(Abcam, ab76299)被用于被用于免疫印迹在人类样本上 (图 6e). Nat Genet (2016) ncbi
小鼠 单克隆(9B3)
  • 免疫印迹; 人类; 图 6e
艾博抗(上海)贸易有限公司 ERK1抗体(Abcam, ab36991)被用于被用于免疫印迹在人类样本上 (图 6e). Nat Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 鸡; 1:200; 图 2b
艾博抗(上海)贸易有限公司 ERK1抗体(Abcam, ab79853)被用于被用于免疫印迹在鸡样本上浓度为1:200 (图 2b). Biometals (2016) ncbi
小鼠 单克隆(9B3)
  • 免疫印迹; African green monkey; 1:1000; 图 6b
艾博抗(上海)贸易有限公司 ERK1抗体(Abcam, Ab366991)被用于被用于免疫印迹在African green monkey样本上浓度为1:1000 (图 6b). Nat Commun (2015) ncbi
小鼠 单克隆(9B3)
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司 ERK1抗体(Abcam, ab36991)被用于被用于免疫印迹在人类样本上 (图 6). Biomaterials (2015) ncbi
小鼠 单克隆(9B3)
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 ERK1抗体(Abcam, ab36991)被用于被用于免疫印迹在人类样本上 (图 2a). Med Oncol (2015) ncbi
domestic rabbit 单克隆(Y72)
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司 ERK1抗体(Abcam, ab32537)被用于被用于免疫印迹在人类样本上 (图 3c). Mol Cell Endocrinol (2015) ncbi
domestic rabbit 单克隆(E337)
  • 免疫印迹; 猪
艾博抗(上海)贸易有限公司 ERK1抗体(Abcam, ab32538)被用于被用于免疫印迹在猪样本上. Eur J Nutr (2015) ncbi
domestic rabbit 单克隆(Y72)
  • 免疫印迹; 猪
艾博抗(上海)贸易有限公司 ERK1抗体(Abcam, ab32537)被用于被用于免疫印迹在猪样本上. Eur J Nutr (2015) ncbi
安迪生物R&D
小鼠 单克隆(216703)
  • 免疫印迹; 小鼠; 图 4e
安迪生物R&D ERK1抗体(R&D Systems, 216703)被用于被用于免疫印迹在小鼠样本上 (图 4e). J Exp Med (2019) ncbi
小鼠 单克隆(631122)
  • 免疫印迹; 小鼠; 图 5a
安迪生物R&D ERK1抗体(R&D Systems, MAB15761)被用于被用于免疫印迹在小鼠样本上 (图 5a). Cell Signal (2018) ncbi
domestic rabbit 单克隆(269434)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
安迪生物R&D ERK1抗体(R&D Systems, MAB1018)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Cell Signal (2018) ncbi
小鼠 单克隆(216703)
  • 免疫印迹; 人类; 1:1000; 图 6a
安迪生物R&D ERK1抗体(R&D Systems, MAB1576)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Oncotarget (2017) ncbi
小鼠 单克隆(216703)
  • 免疫印迹; 人类; 图 1a
安迪生物R&D ERK1抗体(R&D Systems, MAB1576)被用于被用于免疫印迹在人类样本上 (图 1a). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
安迪生物R&D ERK1抗体(R&D Systems, AF1018)被用于被用于免疫印迹在人类样本上 (图 1a). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(269434)
  • 免疫印迹; 小鼠; 1:500
安迪生物R&D ERK1抗体(R&D Systems, MAB1018)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Cell Physiol Biochem (2014) ncbi
小鼠 单克隆(216703)
  • 免疫印迹; 大鼠; 0.5 ug/ml
安迪生物R&D ERK1抗体(R&D Systems, MAB1576)被用于被用于免疫印迹在大鼠样本上浓度为0.5 ug/ml. Mediators Inflamm (2014) ncbi
domestic rabbit 单克隆(269434)
  • 免疫印迹; 大鼠
安迪生物R&D ERK1抗体(R&D Systems, MAB1018)被用于被用于免疫印迹在大鼠样本上. Mediators Inflamm (2014) ncbi
domestic rabbit 单克隆(269434)
  • 免疫细胞化学; 人类; 图 2a
安迪生物R&D ERK1抗体(R&D Systems, MAB1018)被用于被用于免疫细胞化学在人类样本上 (图 2a). J Immunol (2014) ncbi
domestic rabbit 单克隆(269434)
  • 免疫印迹; 人类; 1:1000
安迪生物R&D ERK1抗体(R&D Systems, MAB1018)被用于被用于免疫印迹在人类样本上浓度为1:1000. FASEB J (2013) ncbi
小鼠 单克隆(216703)
  • 免疫印迹; 人类; 1:400
安迪生物R&D ERK1抗体(R&D Systems, MAB1576)被用于被用于免疫印迹在人类样本上浓度为1:400. FASEB J (2013) ncbi
亚诺法生技股份有限公司
domestic rabbit 单克隆(G15-B)
  • 免疫印迹; 人类
亚诺法生技股份有限公司 ERK1抗体(Abnova, G15-B)被用于被用于免疫印迹在人类样本上. J Transl Med (2015) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 s1b
西格玛奥德里奇 ERK1抗体(Sigma-Aldrich, M5670)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s1b). Nat Commun (2020) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:10,000; 图 s1c
西格玛奥德里奇 ERK1抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s1c). Nat Commun (2020) ncbi
小鼠 单克隆(ERK-PT115)
  • 免疫印迹; 人类; 1:1000; 图 7a
西格玛奥德里奇 ERK1抗体(Sigma-Aldrich, M7802)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). elife (2019) ncbi
小鼠 单克隆(ERK-NP2)
  • 免疫印迹; 人类; 1:250; 图 7a
西格玛奥德里奇 ERK1抗体(Sigma-Aldrich, M3807)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 7a). elife (2019) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
西格玛奥德里奇 ERK1抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). EMBO J (2019) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 大鼠; 图 5a
西格玛奥德里奇 ERK1抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在大鼠样本上 (图 5a). Cell Death Dis (2018) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 2c
西格玛奥德里奇 ERK1抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在人类样本上 (图 2c). Breast Cancer Res Treat (2018) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化; 小鼠; 图 s5d
西格玛奥德里奇 ERK1抗体(Sigma, M8159)被用于被用于免疫组化在小鼠样本上 (图 s5d). Science (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 4b
西格玛奥德里奇 ERK1抗体(Sigma Aldrich, M5670)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4b). Nat Commun (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:500; 图 4b
西格玛奥德里奇 ERK1抗体(Sigma Aldrich, M8159)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4b). Nat Commun (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:1000; 图 4d
西格玛奥德里奇 ERK1抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Mol Cell Biochem (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化; 斑马鱼; 1:500; 图 5I''
西格玛奥德里奇 ERK1抗体(Sigma-Aldrich, M8159)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 5I''). elife (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫细胞化学; 小鼠; 图 1a
  • 免疫印迹; 小鼠; 图 1c
西格玛奥德里奇 ERK1抗体(sigma, M9692)被用于被用于免疫细胞化学在小鼠样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 1c). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 表 4
西格玛奥德里奇 ERK1抗体(Sigma, M5670)被用于被用于免疫印迹在人类样本上 (表 4). Transl Psychiatry (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 表 4
西格玛奥德里奇 ERK1抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上 (表 4). Transl Psychiatry (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 黑腹果蝇; 1:2000; 图 s8a
西格玛奥德里奇 ERK1抗体(Sigma, M8159)被用于被用于免疫印迹在黑腹果蝇样本上浓度为1:2000 (图 s8a). Nat Commun (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 3c
西格玛奥德里奇 ERK1抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在人类样本上 (图 3c). J Biol Chem (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 猪; 图 1b
西格玛奥德里奇 ERK1抗体(Sigma, M9692)被用于被用于免疫印迹在猪样本上 (图 1b). Arthritis Rheumatol (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 4b
西格玛奥德里奇 ERK1抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 非洲爪蛙; 1:5000; 图 2f
西格玛奥德里奇 ERK1抗体(Sigma, M8159)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:5000 (图 2f). Open Biol (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 7e
西格玛奥德里奇 ERK1抗体(Sigma, MAPK-YT)被用于被用于免疫印迹在人类样本上 (图 7e). J Biol Chem (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:10,000; 图 2a
西格玛奥德里奇 ERK1抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2a). Dig Dis Sci (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 ERK1抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 图 7
西格玛奥德里奇 ERK1抗体(Sigma, M8159)被用于被用于免疫印迹在小鼠样本上 (图 7). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 5
西格玛奥德里奇 ERK1抗体(Sigma, M5670)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
西格玛奥德里奇 ERK1抗体(Sigma, M5670)被用于被用于免疫印迹在人类样本上 (图 3b). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(ERK-NP2)
  • 免疫印迹; 大鼠; 1:5000; 图 4a
西格玛奥德里奇 ERK1抗体(Sigma, M3807)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 4a). Neural Plast (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 5
西格玛奥德里奇 ERK1抗体(Sigma, M 5670)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:1000; 图 5
西格玛奥德里奇 ERK1抗体(Sigma, M 8159)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:40,000; 图 s2a
西格玛奥德里奇 ERK1抗体(Sigma, M5670)被用于被用于免疫印迹在大鼠样本上浓度为1:40,000 (图 s2a). Metallomics (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 犬; 图 1d
西格玛奥德里奇 ERK1抗体(Sigma, M8159)被用于被用于免疫印迹在犬样本上 (图 1d). BMC Genomics (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫细胞化学; 小鼠; 1:500; 图 1
  • 免疫印迹; 小鼠; 1:2000; 图 2
西格玛奥德里奇 ERK1抗体(Sigma, M9692)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 黑腹果蝇; 1:500
西格玛奥德里奇 ERK1抗体(Sigma, M8159)被用于被用于免疫印迹在黑腹果蝇样本上浓度为1:500. Development (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化-石蜡切片; 黑腹果蝇; 1:200; 图 2
西格玛奥德里奇 ERK1抗体(Sigma, M8159)被用于被用于免疫组化-石蜡切片在黑腹果蝇样本上浓度为1:200 (图 2). Nat Cell Biol (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化-冰冻切片; 斑马鱼; 1:50; 图 s5
西格玛奥德里奇 ERK1抗体(Sigma, M9692)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:50 (图 s5). PLoS ONE (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 s5
西格玛奥德里奇 ERK1抗体(Sigma, M9692)被用于被用于免疫印迹在人类样本上 (图 s5). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 8
西格玛奥德里奇 ERK1抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上 (图 8). Oncotarget (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 ERK1抗体(Sigma, 8159)被用于被用于免疫印迹在人类样本上 (图 5). Cancer Cell (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇 ERK1抗体(Sigma, M8159)被用于被用于免疫印迹在小鼠样本上 (图 4). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(ERK-PT115)
  • 免疫印迹; 人类; 1:500; 图 6
西格玛奥德里奇 ERK1抗体(Sigma, M 7802)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). Nat Commun (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类
西格玛奥德里奇 ERK1抗体(Sigma, M-9692)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 s4
西格玛奥德里奇 ERK1抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上 (图 s4). J Cell Sci (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化; 黑腹果蝇; 1:200
西格玛奥德里奇 ERK1抗体(Sigma, M8159)被用于被用于免疫组化在黑腹果蝇样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 ERK1抗体(Sigma, M8159)被用于被用于免疫印迹在小鼠样本上 (图 2). EMBO J (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 大鼠; 1:5000
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 ERK1抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 和 被用于免疫印迹在小鼠样本上浓度为1:5000. J Biol Chem (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇 ERK1抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上浓度为1:1000. Exp Neurol (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 1:500
西格玛奥德里奇 ERK1抗体(Sigma Aldrich, M9692)被用于被用于免疫印迹在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类
西格玛奥德里奇 ERK1抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
西格玛奥德里奇 ERK1抗体(Sigma, M8159)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). J Biol Chem (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫细胞化学; 人类; 图 5
西格玛奥德里奇 ERK1抗体(Sigma, # M 8159)被用于被用于免疫细胞化学在人类样本上 (图 5). Toxicol In Vitro (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫细胞化学; 大鼠; 1:250; 图 3
西格玛奥德里奇 ERK1抗体(Sigma-Aldrich, M9692)被用于被用于免疫细胞化学在大鼠样本上浓度为1:250 (图 3). J Biol Chem (2014) ncbi
小鼠 单克隆(ERK-PT115)
  • 免疫细胞化学; 人类
西格玛奥德里奇 ERK1抗体(Sigma-Aldrich, M7802)被用于被用于免疫细胞化学在人类样本上. Mol Biol Cell (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类
西格玛奥德里奇 ERK1抗体(Sigma-Aldrich, M9692)被用于被用于免疫印迹在人类样本上. Mol Biol Cell (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类
西格玛奥德里奇 ERK1抗体(SIGMA, M8159)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • reverse phase protein lysate microarray; 人类; 1:500
西格玛奥德里奇 ERK1抗体(Sigma, M-9692)被用于被用于reverse phase protein lysate microarray在人类样本上浓度为1:500. Pulm Pharmacol Ther (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 牛; 图 5, 6
西格玛奥德里奇 ERK1抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在牛样本上 (图 5, 6). Endocrinology (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类
西格玛奥德里奇 ERK1抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 4b
  • 免疫组化-石蜡切片; 人类; 图 4d
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 4b) 和 被用于免疫组化-石蜡切片在人类样本上 (图 4d). Drug Des Devel Ther (2020) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 6b). Cell Commun Signal (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 6b). Cell Commun Signal (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7a, 7b
赛信通(上海)生物试剂有限公司 ERK1抗体(CST, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a, 7b). Mol Cells (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1f
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 s1f). Cell (2020) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 3D7)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Nat Immunol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell signaling, 4372)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000. Nature (2019) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 1:500; 图 6a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6a). elife (2019) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9215S)被用于被用于免疫印迹在人类样本上 (图 4a). Breast Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 猪; 图 1h
  • 免疫印迹; 小鼠; 图 5f
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在猪样本上 (图 1h) 和 被用于免疫印迹在小鼠样本上 (图 5f). MBio (2019) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). elife (2019) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 6d
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6d). Neurobiol Dis (2019) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫组化-石蜡切片; 大鼠; 1:250; 图 8c, 9b
  • 免疫印迹; 大鼠; 1:250; 图 s1f
赛信通(上海)生物试剂有限公司 ERK1抗体(CST, 4631)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:250 (图 8c, 9b) 和 被用于免疫印迹在大鼠样本上浓度为1:250 (图 s1f). Histochem Cell Biol (2019) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 6a
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 3D7)被用于被用于免疫印迹在小鼠样本上 (图 6a) 和 被用于免疫印迹在人类样本上 (图 6f). J Exp Med (2019) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:2500; 图 3a, 3c, s3d
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 3a, 3c, s3d). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 猕猴; 图 1d
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在猕猴样本上 (图 1d). Sci Rep (2019) ncbi
domestic rabbit 单克隆(12F8)
  • 流式细胞仪; 人类; 图 2e
赛信通(上海)生物试剂有限公司 ERK1抗体(CST, 12F8)被用于被用于流式细胞仪在人类样本上 (图 2e). Front Immunol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Int J Mol Med (2019) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 s4b
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 s4b). Cell (2018) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell signaling technology, 4631)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell signaling technology, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 ERK1抗体(cell signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7f
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上 (图 7f). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 7c
赛信通(上海)生物试剂有限公司 ERK1抗体(CST, 9215)被用于被用于免疫印迹在人类样本上 (图 7c). Cell Death Differ (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 ERK1抗体(cell signaling technology, 9212s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). J Mol Cell Cardiol (2018) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:2500; 图 s4a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 s4a). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 s2
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s2). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9212s)被用于被用于免疫印迹在小鼠样本上 (图 4d). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 2i
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在小鼠样本上 (图 2i). Nat Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2i
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上 (图 2i). Nat Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9212S)被用于被用于免疫印迹在小鼠样本上 (图 6d). Neurotherapeutics (2018) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在人类样本上 (图 6f). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上 (图 6f). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 6a). Sci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8b
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8b). Br J Pharmacol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Mol Med Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Biol Chem (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 ERK1抗体(CST, 9212)被用于被用于免疫印迹在小鼠样本上 (图 5a). Mol Neurobiol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 3
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3). Exp Neurol (2018) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 1f
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 1f). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 6d). Infect Immun (2017) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫组化; 小鼠; 1:500; 图 3
赛信通(上海)生物试剂有限公司 ERK1抗体(cell signalling, 4631)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3). Hum Mol Genet (2017) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 s5b
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 s5b). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 1d). Biochem J (2017) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:200; 图 3d
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3d). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 ERK1抗体(CST, 9212)被用于被用于免疫印迹在人类样本上 (图 1e). J Immunol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 s5f
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s5f). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Exp Ther Med (2017) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 s7f
  • 免疫印迹; 小鼠; 图 s7e
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 s7f) 和 被用于免疫印迹在小鼠样本上 (图 s7e). Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 ERK1抗体(cell signalling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 1a). Cell Death Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 ERK1抗体(cell signalling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 1a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 4c). GeroScience (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 7b
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 7b). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1c
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在大鼠样本上 (图 1c). Toxicology (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 3). Front Aging Neurosci (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 ERK1抗体(CST, 9212)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:3000; 图 3a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 3a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 EV4a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 EV4a). EMBO Mol Med (2017) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 1g
赛信通(上海)生物试剂有限公司 ERK1抗体(cst, 9215s)被用于被用于免疫印迹在人类样本上 (图 1g). J Cell Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1g
赛信通(上海)生物试剂有限公司 ERK1抗体(CST, 9212S)被用于被用于免疫印迹在人类样本上 (图 1g). J Cell Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 4a) 和 被用于免疫印迹在小鼠样本上 (图 3a). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 EV3d
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 ERK1抗体(cell signalling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 EV3d) 和 被用于免疫印迹在人类样本上 (图 7a). EMBO J (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4e
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 4e). J Endocrinol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Stem Cell Res Ther (2017) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Stem Cell Res Ther (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212S)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5g
赛信通(上海)生物试剂有限公司 ERK1抗体(cell signalling, 9212)被用于被用于免疫印迹在人类样本上 (图 5g). Nucleic Acids Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5B
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 5B). Biochem J (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 ERK1抗体(CST, 9212)被用于被用于免疫印迹在人类样本上 (图 1b). Sci Rep (2017) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 S17A
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 3D7)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 S17A). Nat Commun (2017) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:2000; 图 s3
赛信通(上海)生物试剂有限公司 ERK1抗体(cell signalling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s3). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s3
赛信通(上海)生物试剂有限公司 ERK1抗体(cell signalling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 1:500; 图 6c
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6c). J Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 4a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 5b). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 3b). Mol Immunol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8c
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8c). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 ERK1抗体(Abcam, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Exp Ther Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 ERK1抗体(cell signalling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5). Nat Commun (2017) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 ERK1抗体(cell signalling, 4631)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5). Nat Commun (2017) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 4c). EMBO J (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7i
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212S)被用于被用于免疫印迹在人类样本上 (图 7i). J Cell Biochem (2017) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 1:2000; 图 5E
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5E). PLoS ONE (2017) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上 (图 2c). Cell Cycle (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 ERK1抗体(CST, 9212)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Am Heart Assoc (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Arch Biochem Biophys (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 8b
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 28B10)被用于被用于免疫印迹在小鼠样本上 (图 8b). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Respir Res (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Respir Res (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 s7b
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 s7b). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 7a). Cancer Gene Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在大鼠样本上 (图 4a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 2a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signalling, 9212)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 ERK1抗体(cell signalling, 9212)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6a). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫组化-石蜡切片; 大鼠; 1:25; 图 4b
  • 免疫印迹; 大鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 4631)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:25 (图 4b) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4c). Evid Based Complement Alternat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 6d
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6d). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 2). Lipids Health Dis (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 猪; 1:1000; 图 2A
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 3D7)被用于被用于免疫印迹在猪样本上浓度为1:1000 (图 2A). Toxins (Basel) (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫组化; 小鼠; 图 s10b
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signalling Technologies, 9216)被用于被用于免疫组化在小鼠样本上 (图 s10b). Open Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Tech, 9212)被用于被用于免疫印迹在大鼠样本上 (图 5). Carcinogenesis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell signaling, 9212)被用于被用于免疫印迹在大鼠样本上 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 大鼠; 图 2
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 4631)被用于被用于免疫印迹在大鼠样本上 (图 2). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上 (图 4a). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫组化; 斑马鱼; 1:500; 图 5a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9215)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 5a). Neurotox Res (2016) ncbi
小鼠 单克隆(28B10)
  • 流式细胞仪; 人类; 图 s18a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 28B10)被用于被用于流式细胞仪在人类样本上 (图 s18a). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 流式细胞仪; 人类; 图 5b
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 3D7)被用于被用于流式细胞仪在人类样本上 (图 5b). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 2c). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 s4a). Biol Reprod (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 s2
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在大鼠样本上 (图 s2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 4c). BMC Complement Altern Med (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 4631S)被用于被用于免疫印迹在小鼠样本上 (图 4c). BMC Complement Altern Med (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 大鼠; 图 4
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9216)被用于被用于免疫印迹在大鼠样本上 (图 4). Physiol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在大鼠样本上 (图 4). Physiol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signalling, 9212S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 4a). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS ONE (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signalling, 9212)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 1:2000; 图 3c
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3c). Leukemia (2017) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Tech, 9215S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Tech, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s6c
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6c). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell signaling, 9212)被用于被用于免疫印迹在大鼠样本上 (图 4a). Toxicol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Nat Med (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫细胞化学; 小鼠; 1:50; 图 3g
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9216)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 3g). Nat Med (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 s3e
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3e). Sci Rep (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 1:250; 图 6a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 6a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 1). FASEB J (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5d
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 4631)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5d). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 空肠弯曲杆菌; 图 4
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signalling Technology, 92125)被用于被用于免疫印迹在空肠弯曲杆菌样本上 (图 4). mSphere (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 4631)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS Pathog (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS Pathog (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Tech, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Front Cell Infect Microbiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell signaling, 9215)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). J Ovarian Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). J Ovarian Res (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 2C
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2C). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2b
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 s2b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s10b
赛信通(上海)生物试剂有限公司 ERK1抗体(CST, 9,212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s10b). Nat Commun (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 4631)被用于被用于免疫印迹在小鼠样本上 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫组化; 大鼠; 1:100; 图 6
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9216S)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 6). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). J Am Heart Assoc (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Tech, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Evid Based Complement Alternat Med (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 9e
  • 免疫印迹; 牛; 图 9f
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 9e) 和 被用于免疫印迹在牛样本上 (图 9f). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 牛; 图 9f
  • 免疫印迹; 人类; 图 9e
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在牛样本上 (图 9f) 和 被用于免疫印迹在人类样本上 (图 9e). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 4). BMC Complement Altern Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 1c). EMBO Rep (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 1c). EMBO Rep (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫细胞化学; 犬; 1:50; 图 4
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9215)被用于被用于免疫细胞化学在犬样本上浓度为1:50 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫细胞化学; 小鼠; 图 s1a,s1b
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 4631)被用于被用于免疫细胞化学在小鼠样本上 (图 s1a,s1b). Sci Rep (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell signaling, 4631)被用于被用于免疫印迹在小鼠样本上 (图 4a). elife (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4). Mol Cell Proteomics (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 1:1000; 图 s6
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 12F8)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signal, 9212S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 4
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Tech, 9212)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4). Aging (Albany NY) (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 8a, 8b
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 4631)被用于被用于免疫印迹在小鼠样本上 (图 8a, 8b). J Mol Cell Cardiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8a, 8b
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 8a, 8b). J Mol Cell Cardiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). J Am Heart Assoc (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signalling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9216S)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell signaling, 9216)被用于被用于免疫印迹在大鼠样本上 (图 3). Cell Stress Chaperones (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technologies, 9212P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncol Lett (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:1000; 图 s10f
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s10f). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 s10f
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s10f). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上. Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上 (图 3). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 6a). Cancer Res (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上 (图 8). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 3). Int J Cancer (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上 (图 3). Int J Cancer (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 7d
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 7d). J Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在小鼠样本上 (图 2c). Exp Hematol (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 1:1000; 图 s2a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2a). Nat Commun (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上 (图 6). Mol Biol Cell (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 s7
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7). Brain Behav (2015) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell signaling, 4631)被用于被用于免疫印迹在人类样本上 (图 2). J Cell Biol (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8). Biochem Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:800; 图 3e
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 3e). Am J Physiol Lung Cell Mol Physiol (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). Neuropharmacology (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9216S)被用于被用于免疫印迹在人类样本上 (图 2). Aging (Albany NY) (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9216S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 3d). Cell Death Differ (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Tech, 9215)被用于被用于免疫印迹在人类样本上 (图 1). J Cell Biol (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9212)被用于被用于免疫印迹在小鼠样本上 (图 4). Oncogene (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 大鼠; 图 7
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9216)被用于被用于免疫印迹在大鼠样本上 (图 7). Int J Mol Sci (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s5
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell signaling, 9212)被用于被用于免疫印迹在人类样本上 (图 s5). Cell Mol Life Sci (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell signaling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Sci Rep (2015) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 s5
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 28B10)被用于被用于免疫印迹在小鼠样本上 (图 s5). Nature (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; domestic rabbit; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signalling Technology, 9215)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:1000 (图 3). Sci Rep (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9215S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Am J Physiol Lung Cell Mol Physiol (2015) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 大鼠; 图 S3
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 4631)被用于被用于免疫印迹在大鼠样本上 (图 S3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Tech, 9215)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9212)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Mol Oncol (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 6). elife (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9,216)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Commun (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 2). Nat Immunol (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signalling, 9216)被用于被用于免疫印迹在人类样本上 (图 5). Int J Mol Med (2015) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9215)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 s8
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9216)被用于被用于免疫印迹在人类样本上 (图 s8). Autophagy (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上 (图 4). Int J Biol Sci (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫细胞化学; 人类
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9215)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在大鼠样本上. Toxicol Lett (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 1). FASEB J (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Int J Mol Sci (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:500; 图 4
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). J Physiol (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上 (图 1). EMBO J (2015) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 s7a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell signaling, 4631)被用于被用于免疫印迹在小鼠样本上 (图 s7a). Nat Immunol (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9216S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4). Nat Cell Biol (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9215S)被用于被用于免疫印迹在人类样本上 (图 5). Evid Based Complement Alternat Med (2015) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signalling, 9215)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cancer Lett (2015) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 4631)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 3a). Int J Oncol (2015) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 4631S)被用于被用于免疫印迹在大鼠样本上. Br J Pharmacol (2015) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Int Immunopharmacol (2014) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9215S)被用于被用于免疫印迹在小鼠样本上. J Agric Food Chem (2014) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell signaling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 6). Nat Commun (2014) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Med (2014) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 猪; 1:500
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在猪样本上浓度为1:500. Amino Acids (2014) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signalling, 9216S)被用于被用于免疫印迹在人类样本上. Mech Ageing Dev (2014) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上 (图 8). J Biol Chem (2014) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK1抗体(cell Signaling, 9215)被用于被用于免疫印迹在人类样本上. Mol Oncol (2014) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在人类样本上. Eur J Cancer (2014) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 1:200
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9216S)被用于被用于免疫印迹在人类样本上浓度为1:200. Biomed Res Int (2014) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫组化; 鸡; 1:400
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technologies, 12F8)被用于被用于免疫组化在鸡样本上浓度为1:400. Glia (2014) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 犬
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9216)被用于被用于免疫印迹在犬样本上. J Vet Med Sci (2014) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2014) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 ERK1抗体(CST, 9215)被用于被用于免疫印迹在大鼠样本上. FASEB J (2014) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(28B10)
  • 流式细胞仪; 小鼠
  • 免疫细胞化学; 小鼠; 1:50
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9216S)被用于被用于流式细胞仪在小鼠样本上 和 被用于免疫细胞化学在小鼠样本上浓度为1:50. Nat Med (2014) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 5). Biochem J (2014) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9216)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 1e
赛信通(上海)生物试剂有限公司 ERK1抗体(cell signalling technology, 9216)被用于被用于免疫印迹在小鼠样本上 (图 1e). Arthritis Res Ther (2014) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 4631S)被用于被用于免疫印迹在人类样本上浓度为1:500. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. J Dermatol Sci (2014) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 4631S)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technology, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Nat Med (2013) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling Technologies, 4631)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 猪
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9216)被用于被用于免疫印迹在猪样本上. Basic Res Cardiol (2013) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上. Am J Physiol Renal Physiol (2013) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell signaling, 4631)被用于被用于免疫组化-石蜡切片在小鼠样本上. Exp Toxicol Pathol (2013) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫组化-石蜡切片; 小鼠; 1:50
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 4631S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫组化-自由浮动切片; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 9215S)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:100 和 被用于免疫印迹在大鼠样本上浓度为1:1000. J Neurosci (2013) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 7d
赛信通(上海)生物试剂有限公司 ERK1抗体(Cell Signaling, 3D7)被用于被用于免疫印迹在人类样本上 (图 7d). EMBO J (2012) ncbi
上海普洛麦格生物产品有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7
上海普洛麦格生物产品有限公司 ERK1抗体(Promega, v1141)被用于被用于免疫印迹在小鼠样本上 (图 7). PLoS ONE (2016) ncbi
Anbo Biotechnology
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
Anbo Biotechnology ERK1抗体(Anbo, C11133)被用于被用于免疫印迹在人类样本上 (图 3b). Oncogene (2016) ncbi
碧迪BD
小鼠 单克隆(MK12)
  • 免疫印迹; 小鼠; 图 e2c
碧迪BD ERK1抗体(BD Biosciences, 610031)被用于被用于免疫印迹在小鼠样本上 (图 e2c). Nature (2016) ncbi
小鼠 单克隆(G262-118)
  • 免疫印迹; 人类; 图 s6
碧迪BD ERK1抗体(BD Biosciences, 554100)被用于被用于免疫印迹在人类样本上 (图 s6). Sci Rep (2016) ncbi
小鼠 单克隆(MK12)
  • 免疫印迹; 大鼠; 1:4000; 图 4
碧迪BD ERK1抗体(BD Transduction Laboratories, 610031)被用于被用于免疫印迹在大鼠样本上浓度为1:4000 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(MK12)
  • 免疫印迹; 小鼠; 图 5
碧迪BD ERK1抗体(BD Biosciences, 610031)被用于被用于免疫印迹在小鼠样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(MK12)
  • 免疫印迹; 小鼠; 图 2c
碧迪BD ERK1抗体(BD Biosciences, 610030)被用于被用于免疫印迹在小鼠样本上 (图 2c). Exp Hematol (2016) ncbi
小鼠 单克隆(MK12)
  • 免疫印迹; 人类; 图 3
碧迪BD ERK1抗体(BD Biosciences, 610031)被用于被用于免疫印迹在人类样本上 (图 3). Cell Mol Life Sci (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 图 s5c
碧迪BD ERK1抗体(BD Biosciences, 610408)被用于被用于免疫印迹在小鼠样本上 (图 s5c). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(MK12)
  • 免疫印迹; 大鼠; 1:5000
碧迪BD ERK1抗体(BD Biosciences, 610030)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. Cell Death Dis (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 1:5000; 图 7
碧迪BD ERK1抗体(BD Transduction Laboratories, 610408)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 7). PLoS ONE (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 图 1d
碧迪BD ERK1抗体(BD Biosciences, 610408)被用于被用于免疫印迹在小鼠样本上 (图 1d). Arthritis Res Ther (2014) ncbi
小鼠 单克隆(MK12)
  • 免疫印迹; 人类
碧迪BD ERK1抗体(BD Biosciences, 610031)被用于被用于免疫印迹在人类样本上. Eur J Cancer (2014) ncbi
小鼠 单克隆(MK12)
  • 免疫印迹; 小鼠; 1:2000
碧迪BD ERK1抗体(BD Transduction Laboratories, 610031)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. PLoS ONE (2013) ncbi
默克密理博中国
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3b
默克密理博中国 ERK1抗体(EMD Millipore, AB544)被用于被用于免疫印迹在小鼠样本上 (图 3b). J Clin Invest (2017) ncbi
domestic rabbit 重组(AW39R)
  • 免疫印迹; 大鼠; 1:1000; 图 5b
默克密理博中国 ERK1抗体(Millipore, 05-797R)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5b). Vascul Pharmacol (2017) ncbi
domestic rabbit 重组(AW39R)
  • 免疫印迹; 人类
默克密理博中国 ERK1抗体(Millipore, 05-797R)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2016) ncbi
domestic rabbit 重组(AW39R)
  • 免疫印迹; 人类; 图 1a
  • 免疫印迹; 小鼠; 图 1b
默克密理博中国 ERK1抗体(Millipore, 05-797R)被用于被用于免疫印迹在人类样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 1b). J Neuroinflammation (2016) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 小鼠; 图 1b
  • 免疫印迹; 人类; 图 1a
默克密理博中国 ERK1抗体(Millipore, 05-481)被用于被用于免疫印迹在小鼠样本上 (图 1b) 和 被用于免疫印迹在人类样本上 (图 1a). J Neuroinflammation (2016) ncbi
domestic rabbit 重组(AW39R)
  • 免疫印迹; 大鼠; 1:1000; 图 2e
默克密理博中国 ERK1抗体(Millipore, 05-797R)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2e). Front Behav Neurosci (2015) ncbi
domestic rabbit 重组(AW39R)
  • 免疫印迹; 人类
默克密理博中国 ERK1抗体(EMDMillipore, 05-797R)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2015) ncbi
domestic rabbit 重组(AW39R)
  • 免疫细胞化学; 小鼠
默克密理博中国 ERK1抗体(Millipore, 05-797R)被用于被用于免疫细胞化学在小鼠样本上. Glia (2015) ncbi
domestic rabbit 单克隆(Aw39)
  • 免疫印迹; 人类
默克密理博中国 ERK1抗体(Millipore, AW39)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(12D4)
  • 免疫组化-自由浮动切片; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:500
默克密理博中国 ERK1抗体(Millipore, 05-481)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:100 和 被用于免疫印迹在大鼠样本上浓度为1:500. J Neurosci (2013) ncbi
文章列表
  1. Xiang S, Chen K, Xu L, Wang T, Guo C. Bergenin Exerts Hepatoprotective Effects by Inhibiting the Release of Inflammatory Factors, Apoptosis and Autophagy via the PPAR-γ Pathway. Drug Des Devel Ther. 2020;14:129-143 pubmed 出版商
  2. Xu F, Liu Z, Liu R, Lu C, Wang L, Mao W, et al. Epigenetic induction of tumor stemness via the lipopolysaccharide-TET3-HOXB2 signaling axis in esophageal squamous cell carcinoma. Cell Commun Signal. 2020;18:17 pubmed 出版商
  3. Kennedy S, Jarboui M, Srihari S, Raso C, Bryan K, Dernayka L, et al. Extensive rewiring of the EGFR network in colorectal cancer cells expressing transforming levels of KRASG13D. Nat Commun. 2020;11:499 pubmed 出版商
  4. Kim K, Kim J, Kim I, Seong S, Kim N. Rev-erbα Negatively Regulates Osteoclast and Osteoblast Differentiation through p38 MAPK Signaling Pathway. Mol Cells. 2020;43:34-47 pubmed 出版商
  5. Lee J, Hall J, Kroehling L, Wu L, Najar T, Nguyen H, et al. Serum Amyloid A Proteins Induce Pathogenic Th17 Cells and Promote Inflammatory Disease. Cell. 2020;180:79-91.e16 pubmed 出版商
  6. Zewinger S, Reiser J, Jankowski V, Alansary D, Hahm E, Triem S, et al. Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation. Nat Immunol. 2020;21:30-41 pubmed 出版商
  7. Sarek G, Kotsantis P, Ruis P, Van Ly D, Margalef P, Borel V, et al. CDK phosphorylation of TRF2 controls t-loop dynamics during the cell cycle. Nature. 2019;: pubmed 出版商
  8. Hamilton W, Mosesson Y, Monteiro R, Emdal K, Knudsen T, Francavilla C, et al. Dynamic lineage priming is driven via direct enhancer regulation by ERK. Nature. 2019;: pubmed 出版商
  9. Wang Q, Yang Q, Zhang A, Kang Z, Wang Y, Zhang Z. Silencing of SPARC represses heterotopic ossification via inhibition of the MAPK signaling pathway. Biosci Rep. 2019;39: pubmed 出版商
  10. Sang D, Pinglay S, Wiewiora R, Selvan M, Lou H, Chodera J, et al. Ancestral reconstruction reveals mechanisms of ERK regulatory evolution. elife. 2019;8: pubmed 出版商
  11. Cibi D, Mia M, Guna Shekeran S, Yun L, Sandireddy R, Gupta P, et al. Neural crest-specific deletion of Rbfox2 in mice leads to craniofacial abnormalities including cleft palate. elife. 2019;8: pubmed 出版商
  12. Sabol R, Bowles A, Côté A, Wise R, O Donnell B, Matossian M, et al. Leptin produced by obesity-altered adipose stem cells promotes metastasis but not tumorigenesis of triple-negative breast cancer in orthotopic xenograft and patient-derived xenograft models. Breast Cancer Res. 2019;21:67 pubmed 出版商
  13. Nakai A, Fujimoto J, Miyata H, Stumm R, Narazaki M, Schulz S, et al. The COMMD3/8 complex determines GRK6 specificity for chemoattractant receptors. J Exp Med. 2019;: pubmed 出版商
  14. Zhao J, Sun H, Zhang J, Wang M, Du X, Zhang J. Long non-coding RNA ANRIL down-regulates microRNA-7 to protect human trabecular meshwork cells in an experimental model for glaucoma. Eur Rev Med Pharmacol Sci. 2019;23:3173-3182 pubmed 出版商
  15. Liu Y, Li R, Chen X, Zhi Y, Deng R, Zhou E, et al. Nonmuscle Myosin Heavy Chain IIA Recognizes Sialic Acids on Sialylated RNA Viruses To Suppress Proinflammatory Responses via the DAP12-Syk Pathway. MBio. 2019;10: pubmed 出版商
  16. Fletcher Jones A, Hildick K, Evans A, Nakamura Y, Wilkinson K, Henley J. The C-terminal helix 9 motif in rat cannabinoid receptor type 1 regulates axonal trafficking and surface expression. elife. 2019;8: pubmed 出版商
  17. Xu D, Li X, Shao F, Lv G, Lv H, Lee J, et al. The protein kinase activity of fructokinase A specifies the antioxidant responses of tumor cells by phosphorylating p62. Sci Adv. 2019;5:eaav4570 pubmed 出版商
  18. Udden S, Kwak Y, Godfrey V, Khan M, Khan S, Loof N, et al. NLRP12 suppresses hepatocellular carcinoma via downregulation of cJun N-terminal kinase activation in the hepatocyte. elife. 2019;8: pubmed 出版商
  19. Araiz C, Yan A, Bettedi L, Samuelson I, Virtue S, McGavigan A, et al. Enhanced β-adrenergic signalling underlies an age-dependent beneficial metabolic effect of PI3K p110α inactivation in adipose tissue. Nat Commun. 2019;10:1546 pubmed 出版商
  20. Chang H, Di T, Wang Y, Zeng X, Li G, Wan Q, et al. Seipin deletion in mice enhances phosphorylation and aggregation of tau protein through reduced neuronal PPARγ and insulin resistance. Neurobiol Dis. 2019;127:350-361 pubmed 出版商
  21. Mammone T, Chidlow G, Casson R, Wood J. Improved immunohistochemical detection of phosphorylated mitogen-activated protein kinases in the injured rat optic nerve head. Histochem Cell Biol. 2019;151:435-456 pubmed 出版商
  22. Mentrup T, Theodorou K, Cabrera Cabrera F, Helbig A, Happ K, Gijbels M, et al. Atherogenic LOX-1 signaling is controlled by SPPL2-mediated intramembrane proteolysis. J Exp Med. 2019;: pubmed 出版商
  23. Liu Z, Wu C, Pan Y, Liu H, Wang X, Yang Y, et al. NDR2 promotes the antiviral immune response via facilitating TRIM25-mediated RIG-I activation in macrophages. Sci Adv. 2019;5:eaav0163 pubmed 出版商
  24. Li J, Liu X, Chen H, Sun Z, Chen H, Wang L, et al. Multi-targeting chemoprevention of Chinese herb formula Yanghe Huayan decoction on experimentally induced mammary tumorigenesis. BMC Complement Altern Med. 2019;19:48 pubmed 出版商
  25. Hayashi H, Mamun A, Takeyama M, Yamamura A, Zako M, Yagasaki R, et al. Activator of G-protein signaling 8 is involved in VEGF-induced choroidal neovascularization. Sci Rep. 2019;9:1560 pubmed 出版商
  26. Jeong W, Park J, Kim W, Ro E, Jeon S, Lee S, et al. WDR76 is a RAS binding protein that functions as a tumor suppressor via RAS degradation. Nat Commun. 2019;10:295 pubmed 出版商
  27. Richardson J, Armbruster N, Günter M, Henes J, Autenrieth S. Staphylococcus aureus PSM Peptides Modulate Human Monocyte-Derived Dendritic Cells to Prime Regulatory T Cells. Front Immunol. 2018;9:2603 pubmed 出版商
  28. Chen Q, Xiang J, Gong R, Fang H, Xu C, Zhang H, et al. Atorvastatin downregulates HSP22 expression in an atherosclerotic model in vitro and in vivo. Int J Mol Med. 2019;43:821-829 pubmed 出版商
  29. Lee S, Cho Y, Cha P, Yoon J, Ro E, Jeong W, et al. A small molecule approach to degrade RAS with EGFR repression is a potential therapy for KRAS mutation-driven colorectal cancer resistance to cetuximab. Exp Mol Med. 2018;50:153 pubmed 出版商
  30. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  31. Panda S, Gekara N. The deubiquitinase MYSM1 dampens NOD2-mediated inflammation and tissue damage by inactivating the RIP2 complex. Nat Commun. 2018;9:4654 pubmed 出版商
  32. Fossati G, Pozzi D, Canzi A, Mirabella F, Valentino S, Morini R, et al. Pentraxin 3 regulates synaptic function by inducing AMPA receptor clustering via ECM remodeling and β1-integrin. EMBO J. 2019;38: pubmed 出版商
  33. Mu L, Tu Z, Miao L, Ruan H, Kang N, Hei Y, et al. A phosphatidylinositol 4,5-bisphosphate redistribution-based sensing mechanism initiates a phagocytosis programing. Nat Commun. 2018;9:4259 pubmed 出版商
  34. Luo H, Winkelmann E, Zhu S, Ru W, Mays E, Silvas J, et al. Peli1 facilitates virus replication and promotes neuroinflammation during West Nile virus infection. J Clin Invest. 2018;128:4980-4991 pubmed 出版商
  35. Fauster A, Rebsamen M, Willmann K, César Razquin A, Girardi E, Bigenzahn J, et al. Systematic genetic mapping of necroptosis identifies SLC39A7 as modulator of death receptor trafficking. Cell Death Differ. 2019;26:1138-1155 pubmed 出版商
  36. Chen S, Yun F, Yao Y, Cao M, Zhang Y, Wang J, et al. USP38 critically promotes asthmatic pathogenesis by stabilizing JunB protein. J Exp Med. 2018;215:2850-2867 pubmed 出版商
  37. Cao Y, Xu Y, Auchoybur M, Chen W, He S, Qin W, et al. Regulatory role of IKKɑ in myocardial ischemia/reperfusion injury by the determination of M1 versus M2 polarization of macrophages. J Mol Cell Cardiol. 2018;123:1-12 pubmed 出版商
  38. Liu Z, Qin Q, Wu C, Li H, Shou J, Yang Y, et al. Downregulated NDR1 protein kinase inhibits innate immune response by initiating an miR146a-STAT1 feedback loop. Nat Commun. 2018;9:2789 pubmed 出版商
  39. Imbrechts M, De Samblancx K, Fierens K, Brisse E, Vandenhaute J, Mitera T, et al. IFN-γ stimulates CpG-induced IL-10 production in B cells via p38 and JNK signalling pathways. Eur J Immunol. 2018;48:1506-1521 pubmed 出版商
  40. Lam J, van den Bosch M, Wegrzyn J, Parker J, Ibrahim R, Slowski K, et al. miR-143/145 differentially regulate hematopoietic stem and progenitor activity through suppression of canonical TGFβ signaling. Nat Commun. 2018;9:2418 pubmed 出版商
  41. Li F, Li Y, Liang H, Xu T, Kong Y, Huang M, et al. HECTD3 mediates TRAF3 polyubiquitination and type I interferon induction during bacterial infection. J Clin Invest. 2018;128:4148-4162 pubmed 出版商
  42. Li R, Sahu S, Schachner M. Phenelzine, a small organic compound mimicking the functions of cell adhesion molecule L1, promotes functional recovery after mouse spinal cord injury. Restor Neurol Neurosci. 2018;36:469-483 pubmed 出版商
  43. Lei F, Jin L, Liu X, Lai F, Yan X, Farrelly M, et al. RIP1 protects melanoma cells from apoptosis induced by BRAF/MEK inhibitors. Cell Death Dis. 2018;9:679 pubmed 出版商
  44. Xue Z, Vis D, Bruna A, Sustic T, van Wageningen S, Batra A, et al. MAP3K1 and MAP2K4 mutations are associated with sensitivity to MEK inhibitors in multiple cancer models. Cell Res. 2018;28:719-729 pubmed 出版商
  45. Jun H, Yu H, Gong J, Jiang J, Qiao X, Perkey E, et al. An immune-beige adipocyte communication via nicotinic acetylcholine receptor signaling. Nat Med. 2018;24:814-822 pubmed 出版商
  46. Huang M, Qi W, Fang S, Jiang P, Yang C, Mo Y, et al. Pigment Epithelium-Derived Factor Plays a Role in Alzheimer's Disease by Negatively Regulating Aβ42. Neurotherapeutics. 2018;15:728-741 pubmed 出版商
  47. Ahmad F, Salahuddin M, Alsamman K, Herzallah H, Al Otaibi S. Neonatal maternal deprivation impairs localized de novo activity-induced protein translation at the synapse in the rat hippocampus. Biosci Rep. 2018;38: pubmed 出版商
  48. Schönrogge M, Kerndl H, Zhang X, Kumstel S, Vollmar B, Zechner D. α-cyano-4-hydroxycinnamate impairs pancreatic cancer cells by stimulating the p38 signaling pathway. Cell Signal. 2018;47:101-108 pubmed 出版商
  49. Han Y, Liu Q, Hou J, Gu Y, Zhang Y, Chen Z, et al. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression. Cell. 2018;173:634-648.e12 pubmed 出版商
  50. Lino Cardenas C, Kessinger C, Cheng Y, MacDonald C, Macgillivray T, Ghoshhajra B, et al. An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun. 2018;9:1009 pubmed 出版商
  51. Markussen L, Winther S, Wicksteed B, Hansen J. GSK3 is a negative regulator of the thermogenic program in brown adipocytes. Sci Rep. 2018;8:3469 pubmed 出版商
  52. Qi Z, Xu H, Zhang S, Xu J, Li S, Gao H, et al. RIPK4/PEBP1 axis promotes pancreatic cancer cell migration and invasion by activating RAF1/MEK/ERK signaling. Int J Oncol. 2018;52:1105-1116 pubmed 出版商
  53. Lu Y, Kim N, Jiang Y, Zhang H, Zheng D, Zhu F, et al. Cambogin suppresses dextran sulphate sodium-induced colitis by enhancing Treg cell stability and function. Br J Pharmacol. 2018;175:1085-1099 pubmed 出版商
  54. De Pasquale V, Pezone A, Sarogni P, Tramontano A, Schiattarella G, Avvedimento V, et al. EGFR activation triggers cellular hypertrophy and lysosomal disease in NAGLU-depleted cardiomyoblasts, mimicking the hallmarks of mucopolysaccharidosis IIIB. Cell Death Dis. 2018;9:40 pubmed 出版商
  55. Park G, Kim D. Cigarette smoke-induced EGFR activation promotes epithelial mesenchymal migration of human retinal pigment epithelial cells through regulation of the FAK-mediated Syk/Src pathway. Mol Med Rep. 2018;17:3563-3574 pubmed 出版商
  56. Qian Z, Ryu B, Kang K, Heo S, Kang D, Bae S, et al. Cellular properties of the fermented microalgae Pavlova lutheri and its isolated active peptide in osteoblastic differentiation of MG?63 cells. Mol Med Rep. 2018;17:2044-2050 pubmed 出版商
  57. Sutavani R, Phair I, Barker R, McFarlane A, Shpiro N, Lang S, et al. Differential control of Toll-like receptor 4-induced interleukin-10 induction in macrophages and B cells reveals a role for p90 ribosomal S6 kinases. J Biol Chem. 2018;293:2302-2317 pubmed 出版商
  58. Cho M, Lee J, Shin M, Kim H, Choi Y, Rho S, et al. TSC-22 inhibits CSF-1R function and induces apoptosis in cervical cancer. Oncotarget. 2017;8:97990-98003 pubmed 出版商
  59. Wang C, Edilova M, Wagar L, Mujib S, Singer M, Bernard N, et al. Effect of IL-7 Therapy on Phospho-Ribosomal Protein S6 and TRAF1 Expression in HIV-Specific CD8 T Cells in Patients Receiving Antiretroviral Therapy. J Immunol. 2018;200:558-564 pubmed 出版商
  60. Urbanska M, Gozdz A, Macias M, Cymerman I, Liszewska E, Kondratiuk I, et al. GSK3β Controls mTOR and Prosurvival Signaling in Neurons. Mol Neurobiol. 2018;55:6050-6062 pubmed 出版商
  61. Bostner J, Alayev A, Berman A, Fornander T, Nordenskjold B, Holz M, et al. Raptor localization predicts prognosis and tamoxifen response in estrogen receptor-positive breast cancer. Breast Cancer Res Treat. 2018;168:17-27 pubmed 出版商
  62. Lu F, Shao G, Wang Y, Guan S, Burlingame A, Liu X, et al. Hypoxia-ischemia modifies postsynaptic GluN2B-containing NMDA receptor complexes in the neonatal mouse brain. Exp Neurol. 2018;299:65-74 pubmed 出版商
  63. Liang Z, Yang Y, He Y, Yang P, Wang X, He G, et al. SUMOylation of IQGAP1 promotes the development of colorectal cancer. Cancer Lett. 2017;411:90-99 pubmed 出版商
  64. Zhao F, Franco H, Rodriguez K, Brown P, Tsai M, Tsai S, et al. Elimination of the male reproductive tract in the female embryo is promoted by COUP-TFII in mice. Science. 2017;357:717-720 pubmed 出版商
  65. Magilnick N, Reyes E, Wang W, Vonderfecht S, Gohda J, Inoue J, et al. miR-146a-Traf6 regulatory axis controls autoimmunity and myelopoiesis, but is dispensable for hematopoietic stem cell homeostasis and tumor suppression. Proc Natl Acad Sci U S A. 2017;114:E7140-E7149 pubmed 出版商
  66. Naik S, Padhi A, Ganguli G, Sengupta S, Pati S, Das D, et al. Mouse Bone Marrow Sca-1+ CD44+ Mesenchymal Stem Cells Kill Avirulent Mycobacteria but Not Mycobacterium tuberculosis through Modulation of Cathelicidin Expression via the p38 Mitogen-Activated Protein Kinase-Dependent Pathway. Infect Immun. 2017;85: pubmed 出版商
  67. Courtial L, Picco V, Pagès G, Ferrier Pagès C. Validation of commercial ERK antibodies against the ERK orthologue of the scleractinian coral Stylophora pistillata. F1000Res. 2017;6:577 pubmed 出版商
  68. Olivares O, Mayers J, Gouirand V, Torrence M, Gicquel T, Borge L, et al. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat Commun. 2017;8:16031 pubmed 出版商
  69. Mamo T, Wittern A, Kleppa M, Bohnenpoll T, Weiss A, Kispert A. BMP4 uses several different effector pathways to regulate proliferation and differentiation in the epithelial and mesenchymal tissue compartments of the developing mouse ureter. Hum Mol Genet. 2017;26:3553-3563 pubmed 出版商
  70. Zhang C, Mao H, Cao Y. Nuclear accumulation of symplekin promotes cellular proliferation and dedifferentiation in an ERK1/2-dependent manner. Sci Rep. 2017;7:3769 pubmed 出版商
  71. Bae S, Lee M, Mun S, Giannopoulou E, Yong Gonzalez V, Cross J, et al. MYC-dependent oxidative metabolism regulates osteoclastogenesis via nuclear receptor ERR?. J Clin Invest. 2017;127:2555-2568 pubmed 出版商
  72. Szoka L, Karna E, Hlebowicz Sarat K, Karaszewski J, Palka J. Exogenous proline stimulates type I collagen and HIF-1? expression and the process is attenuated by glutamine in human skin fibroblasts. Mol Cell Biochem. 2017;435:197-206 pubmed 出版商
  73. Zhang J, MacArtney T, Peggie M, Cohen P. Interleukin-1 and TRAF6-dependent activation of TAK1 in the absence of TAB2 and TAB3. Biochem J. 2017;474:2235-2248 pubmed 出版商
  74. Nishimura S, Mishra Gorur K, Park J, Surovtseva Y, Sebti S, Levchenko A, et al. Combined HMG-COA reductase and prenylation inhibition in treatment of CCM. Proc Natl Acad Sci U S A. 2017;114:5503-5508 pubmed 出版商
  75. Ventura E, Weller M, Burghardt I. Cutting Edge: ERK1 Mediates the Autocrine Positive Feedback Loop of TGF-? and Furin in Glioma-Initiating Cells. J Immunol. 2017;198:4569-4574 pubmed 出版商
  76. Yoon C, Cho S, Chang K, Park D, Ryeom S, Yoon S. Role of Rac1 Pathway in Epithelial-to-Mesenchymal Transition and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma. Mol Cancer Res. 2017;15:1106-1116 pubmed 出版商
  77. Tian H, Ketova T, Hardy D, Xu X, Gao X, Zijlstra A, et al. Endoglin Mediates Vascular Maturation by Promoting Vascular Smooth Muscle Cell Migration and Spreading. Arterioscler Thromb Vasc Biol. 2017;37:1115-1126 pubmed 出版商
  78. Ma S, Wan X, Deng Z, Shi L, Hao C, Zhou Z, et al. Epigenetic regulator CXXC5 recruits DNA demethylase Tet2 to regulate TLR7/9-elicited IFN response in pDCs. J Exp Med. 2017;214:1471-1491 pubmed 出版商
  79. Kim D, Ko H, Park G, Hur D, Kim Y, Yang J. Vandetanib and ADAM inhibitors synergistically attenuate the pathological migration of EBV-infected retinal pigment epithelial cells by regulating the VEGF-mediated MAPK pathway. Exp Ther Med. 2017;13:1415-1425 pubmed 出版商
  80. Gaggianesi M, Turdo A, Chinnici A, Lipari E, Apuzzo T, Benfante A, et al. IL4 Primes the Dynamics of Breast Cancer Progression via DUSP4 Inhibition. Cancer Res. 2017;77:3268-3279 pubmed 出版商
  81. Yang Y, Liu B, Xu J, Wang J, Wu J, Shi C, et al. Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency. Cell. 2017;169:243-257.e25 pubmed 出版商
  82. Yan X, Zhu Z, Xu S, Yang L, Liao X, Zheng M, et al. MicroRNA-140-5p inhibits hepatocellular carcinoma by directly targeting the unique isomerase Pin1 to block multiple cancer-driving pathways. Sci Rep. 2017;7:45915 pubmed 出版商
  83. Wassermann Dozorets R, Rubinstein M. C/EBPβ LIP augments cell death by inducing osteoglycin. Cell Death Dis. 2017;8:e2733 pubmed 出版商
  84. Cong Q, Jia H, Li P, Qiu S, Yeh J, Wang Y, et al. p38α MAPK regulates proliferation and differentiation of osteoclast progenitors and bone remodeling in an aging-dependent manner. Sci Rep. 2017;7:45964 pubmed 出版商
  85. Perrott K, Wiley C, Desprez P, Campisi J. Apigenin suppresses the senescence-associated secretory phenotype and paracrine effects on breast cancer cells. GeroScience. 2017;39:161-173 pubmed 出版商
  86. Mon N, Senga T, Ito S. Interleukin-1? activates focal adhesion kinase and Src to induce matrix metalloproteinase-9 production and invasion of MCF-7 breast cancer cells. Oncol Lett. 2017;13:955-960 pubmed 出版商
  87. Schweighoffer E, Nys J, Vanes L, Smithers N, Tybulewicz V. TLR4 signals in B lymphocytes are transduced via the B cell antigen receptor and SYK. J Exp Med. 2017;214:1269-1280 pubmed 出版商
  88. Xiong G, Hindi S, Mann A, Gallot Y, Bohnert K, Cavener D, et al. The PERK arm of the unfolded protein response regulates satellite cell-mediated skeletal muscle regeneration. elife. 2017;6: pubmed 出版商
  89. Chambers T, Santiesteban L, Gomez D, Chambers J. Sab mediates mitochondrial dysfunction involved in imatinib mesylate-induced cardiotoxicity. Toxicology. 2017;382:24-35 pubmed 出版商
  90. Yang K, Chen Y, To K, Wang F, Li D, Chen L, et al. Alectinib (CH5424802) antagonizes ABCB1- and ABCG2-mediated multidrug resistance in vitro, in vivo and ex vivo. Exp Mol Med. 2017;49:e303 pubmed 出版商
  91. Balmer D, Bapst Wicht L, Pyakurel A, Emery M, Nanchen N, Bochet C, et al. Bis-Retinoid A2E Induces an Increase of Basic Fibroblast Growth Factor via Inhibition of Extracellular Signal-Regulated Kinases 1/2 Pathway in Retinal Pigment Epithelium Cells and Facilitates Phagocytosis. Front Aging Neurosci. 2017;9:43 pubmed 出版商
  92. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  93. Song Y, Lai L, Chong Z, He J, Zhang Y, Xue Y, et al. E3 ligase FBXW7 is critical for RIG-I stabilization during antiviral responses. Nat Commun. 2017;8:14654 pubmed 出版商
  94. Hammers D, Merscham Banda M, Hsiao J, ENGST S, Hartman J, Sweeney H. Supraphysiological levels of GDF11 induce striated muscle atrophy. EMBO Mol Med. 2017;9:531-544 pubmed 出版商
  95. Li L, Baxter S, Gu N, Ji M, Zhan X. Missing-in-metastasis protein downregulates CXCR4 by promoting ubiquitylation and interaction with small Rab GTPases. J Cell Sci. 2017;130:1475-1485 pubmed 出版商
  96. Obeid S, Wankell M, Charrez B, Sternberg J, Kreuter R, Esmaili S, et al. Adiponectin confers protection from acute colitis and restricts a B cell immune response. J Biol Chem. 2017;292:6569-6582 pubmed 出版商
  97. Lafont E, Kantari Mimoun C, Dráber P, De Miguel D, Hartwig T, Reichert M, et al. The linear ubiquitin chain assembly complex regulates TRAIL-induced gene activation and cell death. EMBO J. 2017;36:1147-1166 pubmed 出版商
  98. Fu S, Xu H, Gu M, Liu C, Wang Q, Wan X, et al. Adiponectin deficiency contributes to the development and progression of benign prostatic hyperplasia in obesity. Sci Rep. 2017;7:43771 pubmed 出版商
  99. Chung C, Chang C, Hsu C, Lin K, Peng H, Huang T. Aggretin Venom Polypeptide as a Novel Anti-angiogenesis Agent by Targeting Integrin alpha2beta1. Sci Rep. 2017;7:43612 pubmed 出版商
  100. de Oliveira R, de Campos Castilho G, da Cunha A, Miyajima F, de Oliveira Martins D. Dilodendron bipinnatum Radlk. inhibits pro-inflammatory mediators through the induction of MKP-1 and the down-regulation of MAPKp38/JNK/NF-?B pathways and COX-2 in LPS-activated RAW 264.7 cells. J Ethnopharmacol. 2017;202:127-137 pubmed 出版商
  101. Kang S, Yi H, Choi M, Ryu M, Jung S, Chung H, et al. ANGPTL6 expression is coupled with mitochondrial OXPHOS function to regulate adipose FGF21. J Endocrinol. 2017;233:105-118 pubmed 出版商
  102. Gautam J, Nirwane A, Yao Y. Laminin differentially regulates the stemness of type I and type II pericytes. Stem Cell Res Ther. 2017;8:28 pubmed 出版商
  103. Ni Y, Teng T, Li R, Simonyi A, Sun G, Lee J. TNFα alters occludin and cerebral endothelial permeability: Role of p38MAPK. PLoS ONE. 2017;12:e0170346 pubmed 出版商
  104. Nyati K, Masuda K, Zaman M, Dubey P, Millrine D, Chalise J, et al. TLR4-induced NF-?B and MAPK signaling regulate the IL-6 mRNA stabilizing protein Arid5a. Nucleic Acids Res. 2017;45:2687-2703 pubmed 出版商
  105. Bakshi S, Taylor J, Strickson S, McCartney T, Cohen P. Identification of TBK1 complexes required for the phosphorylation of IRF3 and the production of interferon ?. Biochem J. 2017;474:1163-1174 pubmed 出版商
  106. Neganova I, Chichagova V, Armstrong L, Lako M. A critical role for p38MAPK signalling pathway during reprogramming of human fibroblasts to iPSCs. Sci Rep. 2017;7:41693 pubmed 出版商
  107. Li C, Bi Y, Li Y, Yang H, Yu Q, Wang J, et al. Dendritic cell MST1 inhibits Th17 differentiation. Nat Commun. 2017;8:14275 pubmed 出版商
  108. Lim E, Nakanishi S, Hoghooghi V, Eaton S, Palmer A, Frederick A, et al. AlphaB-crystallin regulates remyelination after peripheral nerve injury. Proc Natl Acad Sci U S A. 2017;114:E1707-E1716 pubmed 出版商
  109. Mindos T, Dun X, North K, Doddrell R, Schulz A, Edwards P, et al. Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity. J Cell Biol. 2017;216:495-510 pubmed 出版商
  110. Pleines I, Woods J, Chappaz S, Kew V, Foad N, Ballester Beltrán J, et al. Mutations in tropomyosin 4 underlie a rare form of human macrothrombocytopenia. J Clin Invest. 2017;127:814-829 pubmed 出版商
  111. Yang H, Ju F, Guo X, Ma S, Wang L, Cheng B, et al. RNA-binding protein RBM3 prevents NO-induced apoptosis in human neuroblastoma cells by modulating p38 signaling and miR-143. Sci Rep. 2017;7:41738 pubmed 出版商
  112. Carpi S, Fogli S, Polini B, Montagnani V, Podestà A, Breschi M, et al. Tumor-promoting effects of cannabinoid receptor type 1 in human melanoma cells. Toxicol In Vitro. 2017;40:272-279 pubmed 出版商
  113. Difranco K, Mulligan J, Sumal A, Diamond G. Induction of CFTR gene expression by 1,25(OH)2 vitamin D3, 25OH vitamin D3, and vitamin D3 in cultured human airway epithelial cells and in mouse airways. J Steroid Biochem Mol Biol. 2017;173:323-332 pubmed 出版商
  114. Liu J, Wang H, Gu J, Deng T, Yuan Z, Hu B, et al. BECN1-dependent CASP2 incomplete autophagy induction by binding to rabies virus phosphoprotein. Autophagy. 2017;13:739-753 pubmed 出版商
  115. Lin Y, Lin Y, Huang M, Kuo P, Wu C, Lee M, et al. Tumor necrosis factor-alpha inhibitors suppress CCL2 chemokine in monocytes via epigenetic modification. Mol Immunol. 2017;83:82-91 pubmed 出版商
  116. Schober T, Magg T, Laschinger M, Rohlfs M, Linhares N, Puchalka J, et al. A human immunodeficiency syndrome caused by mutations in CARMIL2. Nat Commun. 2017;8:14209 pubmed 出版商
  117. Chen Q, Li C, Shao B, Gong Z, Liu H, Ling B, et al. Expression of the interleukin-21 and phosphorylated extracellular signal regulated kinase 1/2 in Kimura disease. J Clin Pathol. 2017;70:684-689 pubmed 出版商
  118. Graziano A, Cardile V, Avola R, Vicario N, Parenti C, Salvatorelli L, et al. Wilms' tumor gene 1 silencing inhibits proliferation of human osteosarcoma MG-63 cell line by cell cycle arrest and apoptosis activation. Oncotarget. 2017;8:13917-13931 pubmed 出版商
  119. Feng L, Xue D, Chen E, Zhang W, Gao X, Yu J, et al. HMGB1 promotes the secretion of multiple cytokines and potentiates the osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Exp Ther Med. 2016;12:3941-3947 pubmed 出版商
  120. Wu M, Chen W, Lu Y, Zhu G, Hao L, Li Y. Gα13 negatively controls osteoclastogenesis through inhibition of the Akt-GSK3β-NFATc1 signalling pathway. Nat Commun. 2017;8:13700 pubmed 出版商
  121. Peng Y, Shi X, Li Z, He X, Sun Y. Particularly interesting Cys-His-rich protein is highly expressed in human intracranial aneurysms and resists aneurysmal rupture. Exp Ther Med. 2016;12:3905-3912 pubmed 出版商
  122. Schwarz F, Landig C, Siddiqui S, Secundino I, Olson J, Varki N, et al. Paired Siglec receptors generate opposite inflammatory responses to a human-specific pathogen. EMBO J. 2017;36:751-760 pubmed 出版商
  123. Chandravanshi B, Bhonde R. Shielding Engineered Islets With Mesenchymal Stem Cells Enhance Survival Under Hypoxia. J Cell Biochem. 2017;118:2672-2683 pubmed 出版商
  124. Xu X, Fan Z, Liang C, Li L, Wang L, Liang Y, et al. A signature motif in LIM proteins mediates binding to checkpoint proteins and increases tumour radiosensitivity. Nat Commun. 2017;8:14059 pubmed 出版商
  125. Kozlovskaja GumbrienÄ— A, Yi R, Alexander R, Aman A, Jiskra R, Nagelberg D, et al. Proliferation-independent regulation of organ size by Fgf/Notch signaling. elife. 2017;6: pubmed 出版商
  126. Pyle C, Akhter S, Bao S, Dodd C, Schlesinger L, Knoell D. Zinc Modulates Endotoxin-Induced Human Macrophage Inflammation through ZIP8 Induction and C/EBP? Inhibition. PLoS ONE. 2017;12:e0169531 pubmed 出版商
  127. Kidger A, Rushworth L, Stellzig J, Davidson J, Bryant C, Bayley C, et al. Dual-specificity phosphatase 5 controls the localized inhibition, propagation, and transforming potential of ERK signaling. Proc Natl Acad Sci U S A. 2017;114:E317-E326 pubmed 出版商
  128. Babagana M, Johnson S, Slabodkin H, Bshara W, Morrison C, Kandel E. P21-activated kinase 1 regulates resistance to BRAF inhibition in human cancer cells. Mol Carcinog. 2017;56:1515-1525 pubmed 出版商
  129. Wamsley J, Issaeva N, An H, Lu X, Donehower L, Yarbrough W. LZAP is a novel Wip1 binding partner and positive regulator of its phosphatase activity in vitro. Cell Cycle. 2017;16:213-223 pubmed 出版商
  130. Chao M, Guo J, Cheng W, Zhu X, She Z, Huang Z, et al. Loss of Caspase-Activated DNase Protects Against Atherosclerosis in Apolipoprotein E-Deficient Mice. J Am Heart Assoc. 2016;5: pubmed 出版商
  131. Marmisolle I, Martínez J, Liu J, Mastrogiovanni M, Fergusson M, Rovira I, et al. Reciprocal regulation of acetyl-CoA carboxylase 1 and senescence in human fibroblasts involves oxidant mediated p38 MAPK activation. Arch Biochem Biophys. 2017;613:12-22 pubmed 出版商
  132. Harper K, Sosa M, Entenberg D, Hosseini H, Cheung J, Nobre R, et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature. 2016;540:588-592 pubmed 出版商
  133. Lopes M, Leal R, Guarnieri R, Schwarzbold M, Hoeller A, Diaz A, et al. A single high dose of dexamethasone affects the phosphorylation state of glutamate AMPA receptors in the human limbic system. Transl Psychiatry. 2016;6:e986 pubmed 出版商
  134. Jung J, Jung H, Neupane S, Kim K, Kim J, Yamamoto H, et al. Involvement of PI3K and PKA pathways in mouse tongue epithelial differentiation. Acta Histochem. 2017;119:92-98 pubmed 出版商
  135. Ramratnam M, Salama G, Sharma R, Wang D, Smith S, Banerjee S, et al. Gene-Targeted Mice with the Human Troponin T R141W Mutation Develop Dilated Cardiomyopathy with Calcium Desensitization. PLoS ONE. 2016;11:e0167681 pubmed 出版商
  136. Lee H, Khan S, Khaliqdina S, Altintas M, Grahammer F, Zhao J, et al. Absence of miR-146a in Podocytes Increases Risk of Diabetic Glomerulopathy via Up-regulation of ErbB4 and Notch-1. J Biol Chem. 2017;292:732-747 pubmed 出版商
  137. Choi S, Piao Z, Jin L, Kim J, Kim G, Ryu Y, et al. Piceatannol Attenuates Renal Fibrosis Induced by Unilateral Ureteral Obstruction via Downregulation of Histone Deacetylase 4/5 or p38-MAPK Signaling. PLoS ONE. 2016;11:e0167340 pubmed 出版商
  138. Bangi E, Murgia C, Teague A, Sansom O, Cagan R. Functional exploration of colorectal cancer genomes using Drosophila. Nat Commun. 2016;7:13615 pubmed 出版商
  139. Ferland D, Darios E, Neubig R, Sjögren B, Truong N, Torres R, et al. Chemerin-induced arterial contraction is Gi- and calcium-dependent. Vascul Pharmacol. 2017;88:30-41 pubmed 出版商
  140. Roversi F, Pericole F, Machado Neto J, da Silva Santos Duarte A, Longhini A, Corrocher F, et al. Hematopoietic cell kinase (HCK) is a potential therapeutic target for dysplastic and leukemic cells due to integration of erythropoietin/PI3K pathway and regulation of erythropoiesis: HCK in erythropoietin/PI3K pathway. Biochim Biophys Acta Mol Basis Dis. 2017;1863:450-461 pubmed 出版商
  141. Milara J, Cervera A, de Diego A, Sanz C, Juan G, Gavaldá A, et al. Non-neuronal cholinergic system contributes to corticosteroid resistance in chronic obstructive pulmonary disease patients. Respir Res. 2016;17:145 pubmed
  142. Hegedüs L, Garay T, Molnar E, Varga K, Bilecz A, Torok S, et al. The plasma membrane Ca2+ pump PMCA4b inhibits the migratory and metastatic activity of BRAF mutant melanoma cells. Int J Cancer. 2017;140:2758-2770 pubmed 出版商
  143. Alekhina O, Marchese A. ?-Arrestin1 and Signal-transducing Adaptor Molecule 1 (STAM1) Cooperate to Promote Focal Adhesion Kinase Autophosphorylation and Chemotaxis via the Chemokine Receptor CXCR4. J Biol Chem. 2016;291:26083-26097 pubmed
  144. Grugan K, Dorn K, Jarantow S, Bushey B, Pardinas J, Laquerre S, et al. Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells. MAbs. 2017;9:114-126 pubmed 出版商
  145. Han J, Bae J, Choi C, Choi S, Kang H, Jo E, et al. Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice. Autophagy. 2016;12:2326-2343 pubmed
  146. Ismail H, Didangelos A, Vincent T, Saklatvala J. Rapid Activation of Transforming Growth Factor ?-Activated Kinase 1 in Chondrocytes by Phosphorylation and K63 -Linked Polyubiquitination Upon Injury to Animal Articular Cartilage. Arthritis Rheumatol. 2017;69:565-575 pubmed 出版商
  147. Dey K, Bharti R, Dey G, Pal I, Rajesh Y, Chavan S, et al. S100A7 has an oncogenic role in oral squamous cell carcinoma by activating p38/MAPK and RAB2A signaling pathway. Cancer Gene Ther. 2016;23:382-391 pubmed 出版商
  148. Ulbrich F, Kaufmann K, Meske A, Lagrèze W, Augustynik M, Buerkle H, et al. The CORM ALF-186 Mediates Anti-Apoptotic Signaling via an Activation of the p38 MAPK after Ischemia and Reperfusion Injury in Retinal Ganglion Cells. PLoS ONE. 2016;11:e0165182 pubmed 出版商
  149. Che D, Zhou T, Lan Y, Xie J, Gong H, Li C, et al. High glucose-induced epithelial-mesenchymal transition contributes to the upregulation of fibrogenic factors in retinal pigment epithelial cells. Int J Mol Med. 2016;38:1815-1822 pubmed 出版商
  150. Li S, Yang B, Teguh D, Zhou L, Xu J, Rong L. Amyloid ? Peptide Enhances RANKL-Induced Osteoclast Activation through NF-?B, ERK, and Calcium Oscillation Signaling. Int J Mol Sci. 2016;17: pubmed
  151. Yue G, Xie S, Lee J, Kwok H, Gao S, Nian Y, et al. New potential beneficial effects of actein, a triterpene glycoside isolated from Cimicifuga species, in breast cancer treatment. Sci Rep. 2016;6:35263 pubmed 出版商
  152. Guan S, Zhao Y, Lu J, Yu Y, Sun W, Mao X, et al. Second-generation proteasome inhibitor carfilzomib sensitizes neuroblastoma cells to doxorubicin-induced apoptosis. Oncotarget. 2016;7:75914-75925 pubmed 出版商
  153. Gupta S, Zeglinski M, Rattan S, Landry N, Ghavami S, Wigle J, et al. Inhibition of autophagy inhibits the conversion of cardiac fibroblasts to cardiac myofibroblasts. Oncotarget. 2016;7:78516-78531 pubmed 出版商
  154. Yong K, Li A, Ou W, Hong C, Zhao W, Wang F, et al. Targeting SALL4 by entinostat in lung cancer. Oncotarget. 2016;7:75425-75440 pubmed 出版商
  155. Belliard A, Gulati G, Duan Q, Alves R, Brewer S, Madan N, et al. Ischemia/reperfusion-induced alterations of enzymatic and signaling functions of the rat cardiac Na+/K+-ATPase: protection by ouabain preconditioning. Physiol Rep. 2016;4: pubmed
  156. Zhong W, Wang X, Pan B, Li F, Kuang L, Su Z. Eupatilin induces human renal cancer cell apoptosis via ROS-mediated MAPK and PI3K/AKT signaling pathways. Oncol Lett. 2016;12:2894-2899 pubmed
  157. Jin Q, Ren Y, Wang M, Suraneni P, Li D, Crispino J, et al. Novel function of FAXDC2 in megakaryopoiesis. Blood Cancer J. 2016;6:e478 pubmed 出版商
  158. Wu X, Gu W, Lu H, Liu C, Yu B, Xu H, et al. Soluble Receptor for Advanced Glycation End Product Ameliorates Chronic Intermittent Hypoxia Induced Renal Injury, Inflammation, and Apoptosis via P38/JNK Signaling Pathways. Oxid Med Cell Longev. 2016;2016:1015390 pubmed
  159. Yan S, Wang Y, Liu P, Chen A, Chen M, Yao D, et al. Baicalin Attenuates Hypoxia-Induced Pulmonary Arterial Hypertension to Improve Hypoxic Cor Pulmonale by Reducing the Activity of the p38 MAPK Signaling Pathway and MMP-9. Evid Based Complement Alternat Med. 2016;2016:2546402 pubmed 出版商
  160. Doan K, Kinyua A, Yang D, Ko C, Moh S, Shong K, et al. FoxO1 in dopaminergic neurons regulates energy homeostasis and targets tyrosine hydroxylase. Nat Commun. 2016;7:12733 pubmed 出版商
  161. Chen B, Zeng X, He Y, Wang X, Liang Z, Liu J, et al. STC2 promotes the epithelial-mesenchymal transition of colorectal cancer cells through AKT-ERK signaling pathways. Oncotarget. 2016;7:71400-71416 pubmed 出版商
  162. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  163. Jansson D, Scotter E, Rustenhoven J, Coppieters N, Smyth L, Oldfield R, et al. Interferon-? blocks signalling through PDGFR? in human brain pericytes. J Neuroinflammation. 2016;13:249 pubmed
  164. Christensen B, Nellemann B, Jørgensen J, Pedersen S, Jessen N. Erythropoietin does not activate erythropoietin receptor signaling or lipolytic pathways in human subcutaneous white adipose tissue in vivo. Lipids Health Dis. 2016;15:160 pubmed 出版商
  165. Egholm C, Khammy M, Dalsgaard T, Mazur A, Tritsaris K, Hansen A, et al. GLP-1 inhibits VEGFA-mediated signaling in isolated human endothelial cells and VEGFA-induced dilation of rat mesenteric arteries. Am J Physiol Heart Circ Physiol. 2016;311:H1214-H1224 pubmed 出版商
  166. Torres A, Vargas Y, Uribe D, Jaramillo C, Gleisner A, Salazar Onfray F, et al. Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells. Oncotarget. 2016;7:67373-67386 pubmed 出版商
  167. Yadav V, Hong K, Zeldin D, Nayeem M. Vascular endothelial over-expression of soluble epoxide hydrolase (Tie2-sEH) enhances adenosine A1 receptor-dependent contraction in mouse mesenteric arteries: role of ATP-sensitive K+ channels. Mol Cell Biochem. 2016;422:197-206 pubmed
  168. Gross S, Devraj K, Feng Y, Macas J, Liebner S, Wieland T. Nucleoside diphosphate kinase B regulates angiogenic responses in the endothelium via caveolae formation and c-Src-mediated caveolin-1 phosphorylation. J Cereb Blood Flow Metab. 2017;37:2471-2484 pubmed 出版商
  169. Wu Y, Ren D, Chen G. Siglec-E Negatively Regulates the Activation of TLR4 by Controlling Its Endocytosis. J Immunol. 2016;197:3336-3347 pubmed
  170. Springler A, Hessenberger S, Schatzmayr G, Mayer E. Early Activation of MAPK p44/42 Is Partially Involved in DON-Induced Disruption of the Intestinal Barrier Function and Tight Junction Network. Toxins (Basel). 2016;8: pubmed 出版商
  171. Wang H, Han X, Bretz C, Becker S, Gambhir D, Smith G, et al. Retinal pigment epithelial cell expression of active Rap 1a by scAAV2 inhibits choroidal neovascularization. Mol Ther Methods Clin Dev. 2016;3:16056 pubmed 出版商
  172. Thamodaran V, Bruce A. p38 (Mapk14/11) occupies a regulatory node governing entry into primitive endoderm differentiation during preimplantation mouse embryo development. Open Biol. 2016;6: pubmed 出版商
  173. Qin Y, Liu Y, Hao W, Decker Y, Tomic I, Menger M, et al. Stimulation of TLR4 Attenuates Alzheimer's Disease-Related Symptoms and Pathology in Tau-Transgenic Mice. J Immunol. 2016;197:3281-3292 pubmed
  174. Hesler R, Huang J, Starr M, Treboschi V, Bernanke A, Nixon A, et al. TGF-?-induced stromal CYR61 promotes resistance to gemcitabine in pancreatic ductal adenocarcinoma through downregulation of the nucleoside transporters hENT1 and hCNT3. Carcinogenesis. 2016;37:1041-1051 pubmed 出版商
  175. García Carpizo V, Sarmentero J, Han B, Grana O, Ruiz Llorente S, Pisano D, et al. NSD2 contributes to oncogenic RAS-driven transcription in lung cancer cells through long-range epigenetic activation. Sci Rep. 2016;6:32952 pubmed 出版商
  176. Makita N, Sato T, Yajima Shoji Y, Sato J, Manaka K, Eda Hashimoto M, et al. Analysis of the V2 Vasopressin Receptor (V2R) Mutations Causing Partial Nephrogenic Diabetes Insipidus Highlights a Sustainable Signaling by a Non-peptide V2R Agonist. J Biol Chem. 2016;291:22460-22471 pubmed
  177. Ji M, Lu Y, Zhao C, Gao W, He F, Zhang J, et al. C5a Induces the Synthesis of IL-6 and TNF-? in Rat Glomerular Mesangial Cells through MAPK Signaling Pathways. PLoS ONE. 2016;11:e0161867 pubmed 出版商
  178. Zhang Y, Hu S, Chen Y, Guo M, Wang S. Hepatocyte growth factor inhibits hypoxia/reoxygenation-induced activation of xanthine oxidase in endothelial cells through the JAK2 signaling pathway. Int J Mol Med. 2016;38:1055-62 pubmed 出版商
  179. Cheng G, Gao F, Sun X, Bi H, Zhu Y. Paris saponin VII suppresses osteosarcoma cell migration and invasion by inhibiting MMP?2/9 production via the p38 MAPK signaling pathway. Mol Med Rep. 2016;14:3199-205 pubmed 出版商
  180. Caporali S, Alvino E, Lacal P, Levati L, Giurato G, Memoli D, et al. Targeting the PI3K/AKT/mTOR pathway overcomes the stimulating effect of dabrafenib on the invasive behavior of melanoma cells with acquired resistance to the BRAF inhibitor. Int J Oncol. 2016;49:1164-74 pubmed 出版商
  181. Shang W, Zhao L, Dong X, Zhao Z, Li J, Zhang B, et al. Curcumin inhibits osteoclastogenic potential in PBMCs from rheumatoid arthritis patients via the suppression of MAPK/RANK/c-Fos/NFATc1 signaling pathways. Mol Med Rep. 2016;14:3620-6 pubmed 出版商
  182. Jiao Z, Wu J, Liu C, Wen B, Zhao W, Du X. Nicotinic ?7 receptor inhibits the acylation stimulating protein?induced production of monocyte chemoattractant protein?1 and keratinocyte?derived chemokine in adipocytes by modulating the p38 kinase and nuclear factor??B signaling pathways. Mol Med Rep. 2016;14:2959-66 pubmed 出版商
  183. Ayala V, Trivett M, Barsov E, Jain S, Piatak M, Trubey C, et al. Adoptive Transfer of Engineered Rhesus Simian Immunodeficiency Virus-Specific CD8+ T Cells Reduces the Number of Transmitted/Founder Viruses Established in Rhesus Macaques. J Virol. 2016;90:9942-9952 pubmed 出版商
  184. Kasica N, Podlasz P, Sundvik M, Tamas A, Reglodi D, Kaleczyc J. Protective Effects of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Against Oxidative Stress in Zebrafish Hair Cells. Neurotox Res. 2016;30:633-647 pubmed
  185. Kagoya Y, Nakatsugawa M, Yamashita Y, Ochi T, Guo T, Anczurowski M, et al. BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. J Clin Invest. 2016;126:3479-94 pubmed 出版商
  186. Kupka S, De Miguel D, Dráber P, Martino L, Surinova S, Rittinger K, et al. SPATA2-Mediated Binding of CYLD to HOIP Enables CYLD Recruitment to Signaling Complexes. Cell Rep. 2016;16:2271-80 pubmed 出版商
  187. Hedl M, Yan J, Abraham C. IRF5 and IRF5 Disease-Risk Variants Increase Glycolysis and Human M1 Macrophage Polarization by Regulating Proximal Signaling and Akt2 Activation. Cell Rep. 2016;16:2442-55 pubmed 出版商
  188. Greenwood E, Maisel S, Ebertz D, Russ A, Pandey R, SCHROEDER J. Llgl1 prevents metaplastic survival driven by epidermal growth factor dependent migration. Oncotarget. 2016;7:60776-60792 pubmed 出版商
  189. Gómez Puerto M, Verhagen L, Braat A, Lam E, Coffer P, Lorenowicz M. Activation of autophagy by FOXO3 regulates redox homeostasis during osteogenic differentiation. Autophagy. 2016;12:1804-1816 pubmed
  190. Nadeau Vallée M, Boudreault A, Leimert K, Hou X, Obari D, Madaan A, et al. Uterotonic Neuromedin U Receptor 2 and Its Ligands Are Upregulated by Inflammation in Mice and Humans, and Elicit Preterm Birth. Biol Reprod. 2016;95:72 pubmed
  191. Ogasawara R, Fujita S, Hornberger T, Kitaoka Y, Makanae Y, Nakazato K, et al. The role of mTOR signalling in the regulation of skeletal muscle mass in a rodent model of resistance exercise. Sci Rep. 2016;6:31142 pubmed 出版商
  192. Stucky A, Bakshi K, Friedman E, Wang H. Prenatal Cocaine Exposure Upregulates BDNF-TrkB Signaling. PLoS ONE. 2016;11:e0160585 pubmed 出版商
  193. Tadjuidje E, Kofron M, Mir A, Wylie C, Heasman J, Cha S. Nodal signalling in Xenopus: the role of Xnr5 in left/right asymmetry and heart development. Open Biol. 2016;6: pubmed 出版商
  194. Jiang Q, Chen S, Hu C, Huang P, Shen H, Zhao W. Neuregulin-1 (Nrg1) signaling has a preventive role and is altered in the frontal cortex under the pathological conditions of Alzheimer's disease. Mol Med Rep. 2016;14:2614-24 pubmed 出版商
  195. Lyukmanova E, Shulepko M, Shenkarev Z, Bychkov M, Paramonov A, Chugunov A, et al. Secreted Isoform of Human Lynx1 (SLURP-2): Spatial Structure and Pharmacology of Interactions with Different Types of Acetylcholine Receptors. Sci Rep. 2016;6:30698 pubmed 出版商
  196. Kim J, Weeratunga P, Kim M, Nikapitiya C, Lee B, Uddin M, et al. Inhibitory effects of an aqueous extract from Cortex Phellodendri on the growth and replication of broad-spectrum of viruses in vitro and in vivo. BMC Complement Altern Med. 2016;16:265 pubmed 出版商
  197. Kawamoto E, Koshinaka K, Yoshimura T, Masuda H, Kawanaka K. Immobilization rapidly induces muscle insulin resistance together with the activation of MAPKs (JNK and p38) and impairment of AS160 phosphorylation. Physiol Rep. 2016;4: pubmed 出版商
  198. Lie E, Ko J, Choi S, Roh J, Cho Y, Noh R, et al. SALM4 suppresses excitatory synapse development by cis-inhibiting trans-synaptic SALM3-LAR adhesion. Nat Commun. 2016;7:12328 pubmed 出版商
  199. Di Siena S, Gimmelli R, Nori S, Barbagallo F, Campolo F, Dolci S, et al. Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury. Cell Death Dis. 2016;7:e2317 pubmed 出版商
  200. Møller C, Kjøbsted R, Enriori P, Jensen T, Garcia Rudaz C, Litwak S, et al. ?-MSH Stimulates Glucose Uptake in Mouse Muscle and Phosphorylates Rab-GTPase-Activating Protein TBC1D1 Independently of AMPK. PLoS ONE. 2016;11:e0157027 pubmed 出版商
  201. Wang J, Zhou J, Kho D, Reiners J, Wu G. Role for DUSP1 (dual-specificity protein phosphatase 1) in the regulation of autophagy. Autophagy. 2016;12:1791-1803 pubmed
  202. Ciaraldi T, Ryan A, Mudaliar S, Henry R. Altered Myokine Secretion Is an Intrinsic Property of Skeletal Muscle in Type 2 Diabetes. PLoS ONE. 2016;11:e0158209 pubmed 出版商
  203. Jiao K, Zeng G, Niu L, Yang H, Ren G, Xu X, et al. Activation of ?2A-adrenergic signal transduction in chondrocytes promotes degenerative remodelling of temporomandibular joint. Sci Rep. 2016;6:30085 pubmed 出版商
  204. Abdelbaset Ismail A, Borkowska Rzeszotek S, Kubis E, Bujko K, Brzeźniakiewicz Janus K, Bolkun L, et al. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1. Leukemia. 2017;31:446-458 pubmed 出版商
  205. Shi K, Qian J, Qi L, Mao D, Chen Y, Zhu Y, et al. Atorvastatin antagonizes the visfatin-induced expression of inflammatory mediators via the upregulation of NF-?B activation in HCAECs. Oncol Lett. 2016;12:1438-1444 pubmed
  206. Bao H, Liu P, Jiang K, Zhang X, Xie L, Wang Z, et al. Huaier polysaccharide induces apoptosis in hepatocellular carcinoma cells through p38 MAPK. Oncol Lett. 2016;12:1058-1066 pubmed
  207. Kojima Y, Volkmer J, McKenna K, Civelek M, Lusis A, Miller C, et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature. 2016;536:86-90 pubmed
  208. Raguz J, Jerić I, Niault T, Nowacka J, Kuzet S, Rupp C, et al. Epidermal RAF prevents allergic skin disease. elife. 2016;5: pubmed 出版商
  209. Babica P, Zurabian R, Kumar E, Chopra R, Mianecki M, Park J, et al. Methoxychlor and Vinclozolin Induce Rapid Changes in Intercellular and Intracellular Signaling in Liver Progenitor Cells. Toxicol Sci. 2016;153:174-85 pubmed 出版商
  210. Inda C, Dos Santos Claro P, Bonfiglio J, Senin S, Maccarrone G, Turck C, et al. Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling. J Cell Biol. 2016;214:181-95 pubmed 出版商
  211. Köchl R, Thelen F, Vanes L, Brazão T, Fountain K, Xie J, et al. WNK1 kinase balances T cell adhesion versus migration in vivo. Nat Immunol. 2016;17:1075-83 pubmed 出版商
  212. Wang C, Guo S, Wang J, Yan X, Farrelly M, Zhang Y, et al. Reactivation of ERK and Akt confers resistance of mutant BRAF colon cancer cells to the HSP90 inhibitor AUY922. Oncotarget. 2016;7:49597-49610 pubmed 出版商
  213. Huang C, Lee C, Lin H, Chang J. Cathepsin S attenuates endosomal EGFR signalling: A mechanical rationale for the combination of cathepsin S and EGFR tyrosine kinase inhibitors. Sci Rep. 2016;6:29256 pubmed 出版商
  214. Shen P, Chen M, He M, Chen L, Song Y, Xiao P, et al. Inhibition of ER?/ERK/P62 cascades induces "autophagic switch" in the estrogen receptor-positive breast cancer cells exposed to gemcitabine. Oncotarget. 2016;7:48501-48516 pubmed 出版商
  215. Elzi D, Song M, Blackman B, Weintraub S, Lopez Terrada D, Chen Y, et al. FGF19 functions as autocrine growth factor for hepatoblastoma. Genes Cancer. 2016;7:125-35 pubmed 出版商
  216. Lukjanenko L, Jung M, Hegde N, Perruisseau Carrier C, Migliavacca E, Rozo M, et al. Loss of fibronectin from the aged stem cell niche affects the regenerative capacity of skeletal muscle in mice. Nat Med. 2016;22:897-905 pubmed 出版商
  217. Rozo M, Li L, Fan C. Targeting ?1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice. Nat Med. 2016;22:889-96 pubmed 出版商
  218. Xiang N, Liu J, Liao Y, Huang Y, Wu Z, Bai Z, et al. Abrogating ClC-3 Inhibits LPS-induced Inflammation via Blocking the TLR4/NF-κB Pathway. Sci Rep. 2016;6:27583 pubmed 出版商
  219. Heckler M, Zeleke T, Divekar S, Fernandez A, Tiek D, Woodrick J, et al. Antimitotic activity of DY131 and the estrogen-related receptor beta 2 (ERRβ2) splice variant in breast cancer. Oncotarget. 2016;7:47201-47220 pubmed 出版商
  220. Subramaniam S, Ozdener M, Abdoul Azize S, Saito K, Malik B, Maquart G, et al. ERK1/2 activation in human taste bud cells regulates fatty acid signaling and gustatory perception of fat in mice and humans. FASEB J. 2016;30:3489-3500 pubmed
  221. Madureira P, Bharadwaj A, Bydoun M, Garant K, O Connell P, Lee P, et al. Cell surface protease activation during RAS transformation: Critical role of the plasminogen receptor, S100A10. Oncotarget. 2016;7:47720-47737 pubmed 出版商
  222. Zhang J, Jing X, Niu W, Zhang M, Ge L, Miao C, et al. Peroxiredoxin 1 has an anti-apoptotic role via apoptosis signal-regulating kinase 1 and p38 activation in mouse models with oral precancerous lesions. Oncol Lett. 2016;12:413-420 pubmed
  223. Aguilera O, Muñoz Sagastibelza M, Torrejón B, Borrero Palacios A, del Puerto Nevado L, Martínez Useros J, et al. Vitamin C uncouples the Warburg metabolic switch in KRAS mutant colon cancer. Oncotarget. 2016;7:47954-47965 pubmed 出版商
  224. Ahmad F, Chung Y, Tang Y, Hockman S, Liu S, Khan Y, et al. Phosphodiesterase 3B (PDE3B) regulates NLRP3 inflammasome in adipose tissue. Sci Rep. 2016;6:28056 pubmed 出版商
  225. Liu C, Lin S, Hsu H, Yang S, Lin C, Yang M, et al. Suspension survival mediated by PP2A-STAT3-Col XVII determines tumour initiation and metastasis in cancer stem cells. Nat Commun. 2016;7:11798 pubmed 出版商
  226. Tisza M, Zhao W, Fuentes J, Prijic S, Chen X, Levental I, et al. Motility and stem cell properties induced by the epithelial-mesenchymal transition require destabilization of lipid rafts. Oncotarget. 2016;7:51553-51568 pubmed 出版商
  227. Faber E, Gripp E, Maurischat S, Kaspers B, Tedin K, Menz S, et al. Novel Immunomodulatory Flagellin-Like Protein FlaC in Campylobacter jejuni and Other Campylobacterales. mSphere. 2016;1: pubmed 出版商
  228. Maugeri G, D Amico A, Reitano R, Magro G, Cavallaro S, Salomone S, et al. PACAP and VIP Inhibit the Invasiveness of Glioblastoma Cells Exposed to Hypoxia through the Regulation of HIFs and EGFR Expression. Front Pharmacol. 2016;7:139 pubmed 出版商
  229. Xu Y, Liu J, He M, Liu R, Belegu V, Dai P, et al. Mechanisms of PDGF siRNA-mediated inhibition of bone cancer pain in the spinal cord. Sci Rep. 2016;6:27512 pubmed 出版商
  230. Wang T, Pan D, Zhou Z, You Y, Jiang C, Zhao X, et al. Dectin-3 Deficiency Promotes Colitis Development due to Impaired Antifungal Innate Immune Responses in the Gut. PLoS Pathog. 2016;12:e1005662 pubmed 出版商
  231. Wang J, Farris A, Xu K, Wang P, Zhang X, Duong D, et al. GPRC5A suppresses protein synthesis at the endoplasmic reticulum to prevent radiation-induced lung tumorigenesis. Nat Commun. 2016;7:11795 pubmed 出版商
  232. Leonard S, Kinsella G, Benetti E, Findlay J. Regulating the effects of GPR21, a novel target for type 2 diabetes. Sci Rep. 2016;6:27002 pubmed 出版商
  233. Park J, Kotani T, Konno T, Setiawan J, Kitamura Y, Imada S, et al. Promotion of Intestinal Epithelial Cell Turnover by Commensal Bacteria: Role of Short-Chain Fatty Acids. PLoS ONE. 2016;11:e0156334 pubmed 出版商
  234. Schütz I, López Hernández T, Gao Q, Puchkov D, Jabs S, Nordmeyer D, et al. Lysosomal Dysfunction Caused by Cellular Accumulation of Silica Nanoparticles. J Biol Chem. 2016;291:14170-84 pubmed 出版商
  235. Yang Z, Jiang Q, Chen S, Hu C, Shen H, Huang P, et al. Differential changes in Neuregulin-1 signaling in major brain regions in a lipopolysaccharide-induced neuroinflammation mouse model. Mol Med Rep. 2016;14:790-6 pubmed 出版商
  236. Zheng J, Huang X, Tan W, Yu D, Du Z, Chang J, et al. Pancreatic cancer risk variant in LINC00673 creates a miR-1231 binding site and interferes with PTPN11 degradation. Nat Genet. 2016;48:747-57 pubmed 出版商
  237. Kohler T, Scholz A, Kiachludis D, Hammerschmidt S. Induction of Central Host Signaling Kinases during Pneumococcal Infection of Human THP-1 Cells. Front Cell Infect Microbiol. 2016;6:48 pubmed 出版商
  238. Zhang C, Li L, Zhao B, Jiao A, Li X, Sun N, et al. Ghrelin Protects against Dexamethasone-Induced INS-1 Cell Apoptosis via ERK and p38MAPK Signaling. Int J Endocrinol. 2016;2016:4513051 pubmed 出版商
  239. de Jong P, Taniguchi K, Harris A, Bertin S, Takahashi N, Duong J, et al. ERK5 signalling rescues intestinal epithelial turnover and tumour cell proliferation upon ERK1/2 abrogation. Nat Commun. 2016;7:11551 pubmed 出版商
  240. Ribeiro J, Schorl C, Yano N, Romano N, Kim K, Singh R, et al. HE4 promotes collateral resistance to cisplatin and paclitaxel in ovarian cancer cells. J Ovarian Res. 2016;9:28 pubmed 出版商
  241. Chen L, DeWispelaere A, Dastvan F, Osborne W, Blechner C, Windhorst S, et al. Smooth Muscle-Alpha Actin Inhibits Vascular Smooth Muscle Cell Proliferation and Migration by Inhibiting Rac1 Activity. PLoS ONE. 2016;11:e0155726 pubmed 出版商
  242. Park S, Yi H, Suh N, Park Y, Koh J, Jeong S, et al. Inhibition of EHMT2/G9a epigenetically increases the transcription of Beclin-1 via an increase in ROS and activation of NF-?B. Oncotarget. 2016;7:39796-39808 pubmed 出版商
  243. Miyawaki S, Kawamura Y, Oiwa Y, Shimizu A, Hachiya T, Bono H, et al. Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nat Commun. 2016;7:11471 pubmed 出版商
  244. Tortola L, Nitsch R, Bertrand M, Kogler M, Redouane Y, Kozieradzki I, et al. The Tumor Suppressor Hace1 Is a Critical Regulator of TNFR1-Mediated Cell Fate. Cell Rep. 2016;15:1481-1492 pubmed 出版商
  245. Yang Y, Andersson P, Hosaka K, Zhang Y, Cao R, Iwamoto H, et al. The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nat Commun. 2016;7:11385 pubmed 出版商
  246. Foxton R, Osborne A, Martin K, Ng Y, Shima D. Distal retinal ganglion cell axon transport loss and activation of p38 MAPK stress pathway following VEGF-A antagonism. Cell Death Dis. 2016;7:e2212 pubmed 出版商
  247. Xu Z, Mei F, Liu H, Sun C, Zheng Z. C-C Motif Chemokine Receptor 9 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy and Dysfunction. J Am Heart Assoc. 2016;5: pubmed 出版商
  248. Hu L, Tan J, Yang X, Tan H, Xu X, You M, et al. Polysaccharide Extracted from Laminaria japonica Delays Intrinsic Skin Aging in Mice. Evid Based Complement Alternat Med. 2016;2016:5137386 pubmed 出版商
  249. Ishizuka S, Askew E, Ishizuka N, Knudson C, Knudson W. 4-Methylumbelliferone Diminishes Catabolically Activated Articular Chondrocytes and Cartilage Explants via a Mechanism Independent of Hyaluronan Inhibition. J Biol Chem. 2016;291:12087-104 pubmed 出版商
  250. Wu Y, Lan C, Ren D, Chen G. Induction of Siglec-1 by Endotoxin Tolerance Suppresses the Innate Immune Response by Promoting TGF-?1 Production. J Biol Chem. 2016;291:12370-82 pubmed 出版商
  251. Choi H, Kim M, Choi Y, Shin Y, Cho S, Ko S. Rhus verniciflua Stokes (RVS) and butein induce apoptosis of paclitaxel-resistant SKOV-3/PAX ovarian cancer cells through inhibition of AKT phosphorylation. BMC Complement Altern Med. 2016;16:122 pubmed 出版商
  252. Afonina I, Van Nuffel E, Baudelet G, Driege Y, Kreike M, Staal J, et al. The paracaspase MALT1 mediates CARD14-induced signaling in keratinocytes. EMBO Rep. 2016;17:914-27 pubmed 出版商
  253. Kim S, Choi K, Cho S, Yun S, Jeon J, Koh Y, et al. Fisetin stimulates autophagic degradation of phosphorylated tau via the activation of TFEB and Nrf2 transcription factors. Sci Rep. 2016;6:24933 pubmed 出版商
  254. Wagstaff L, Goschorska M, Kozyrska K, Duclos G, Kucinski I, Chessel A, et al. Mechanical cell competition kills cells via induction of lethal p53 levels. Nat Commun. 2016;7:11373 pubmed 出版商
  255. Bianchi E, Boekelheide K, Sigman M, Lamb D, Hall S, Hwang K. Ghrelin Inhibits Post-Operative Adhesions via Blockage of the TGF-β Signaling Pathway. PLoS ONE. 2016;11:e0153968 pubmed 出版商
  256. Mendel I, Yacov N, Shoham A, Ishai E, Breitbart E. Treatment with Oxidized Phospholipids Directly Inhibits Nonalcoholic Steatohepatitis and Liver Fibrosis Without Affecting Steatosis. Dig Dis Sci. 2016;61:2545-53 pubmed 出版商
  257. Uto T, Fukaya T, Takagi H, Arimura K, Nakamura T, Kojima N, et al. Clec4A4 is a regulatory receptor for dendritic cells that impairs inflammation and T-cell immunity. Nat Commun. 2016;7:11273 pubmed 出版商
  258. Hamanoue M, Morioka K, Ohsawa I, Ohsawa K, Kobayashi M, Tsuburaya K, et al. Cell-permeable p38?MAP kinase promotes migration of adult neural stem/progenitor cells. Sci Rep. 2016;6:24279 pubmed 出版商
  259. Yu Z, Chen T, Li X, Yang M, Tang S, Zhu X, et al. Lys29-linkage of ASK1 by Skp1-Cullin 1-Fbxo21 ubiquitin ligase complex is required for antiviral innate response. elife. 2016;5: pubmed 出版商
  260. Maselli A, Capoccia S, Pugliese P, Raggi C, Cirulli F, Fabi A, et al. Autoantibodies specific to estrogen receptor alpha act as estrogen agonists and their levels correlate with breast cancer cell proliferation. Oncoimmunology. 2016;5:e1074375 pubmed
  261. Shi C, Iura A, Terajima M, Liu F, Lyons K, Pan H, et al. Deletion of BMP receptor type IB decreased bone mass in association with compromised osteoblastic differentiation of bone marrow mesenchymal progenitors. Sci Rep. 2016;6:24256 pubmed 出版商
  262. Alemán O, Mora N, Cortés Vieyra R, Uribe Querol E, Rosales C. Differential Use of Human Neutrophil Fc? Receptors for Inducing Neutrophil Extracellular Trap Formation. J Immunol Res. 2016;2016:2908034 pubmed 出版商
  263. Elisia I, Nakamura H, Lam V, Hofs E, Cederberg R, Cait J, et al. DMSO Represses Inflammatory Cytokine Production from Human Blood Cells and Reduces Autoimmune Arthritis. PLoS ONE. 2016;11:e0152538 pubmed 出版商
  264. Maugeri G, D Amico A, Rasà D, Reitano R, Saccone S, Federico C, et al. Expression profile of Wilms Tumor 1 (WT1) isoforms in undifferentiated and all-trans retinoic acid differentiated neuroblastoma cells. Genes Cancer. 2016;7:47-58 pubmed
  265. Huang J, Yao C, Chuang S, Yeh C, Lee L, Chen R, et al. Honokiol inhibits sphere formation and xenograft growth of oral cancer side population cells accompanied with JAK/STAT signaling pathway suppression and apoptosis induction. BMC Cancer. 2016;16:245 pubmed 出版商
  266. Margaryan N, Gilgur A, Seftor E, Purnell C, Arva N, Gosain A, et al. Melanocytes Affect Nodal Expression and Signaling in Melanoma Cells: A Lesson from Pediatric Large Congenital Melanocytic Nevi. Int J Mol Sci. 2016;17:418 pubmed 出版商
  267. Yang Y, Xu J, Chen H, Fei X, Tang Y, Yan Y, et al. MiR-128-2 inhibits common lymphoid progenitors from developing into progenitor B cells. Oncotarget. 2016;7:17520-31 pubmed 出版商
  268. Federspiel J, Codreanu S, Palubinsky A, Winland A, Betanzos C, McLaughlin B, et al. Assembly Dynamics and Stoichiometry of the Apoptosis Signal-regulating Kinase (ASK) Signalosome in Response to Electrophile Stress. Mol Cell Proteomics. 2016;15:1947-61 pubmed 出版商
  269. Sakakini N, Turchi L, Bergon A, Holota H, Rekima S, Lopez F, et al. A Positive Feed-forward Loop Associating EGR1 and PDGFA Promotes Proliferation and Self-renewal in Glioblastoma Stem Cells. J Biol Chem. 2016;291:10684-99 pubmed 出版商
  270. Relic B, Charlier E, Deroyer C, Malaise O, Neuville S, Desoroux A, et al. BAY 11-7085 induces glucocorticoid receptor activation and autophagy that collaborate with apoptosis to induce human synovial fibroblast cell death. Oncotarget. 2016;7:23370-82 pubmed 出版商
  271. Lee J, Kim H, Rho S, Lee S. eIF3f reduces tumor growth by directly interrupting clusterin with anti-apoptotic property in cancer cells. Oncotarget. 2016;7:18541-57 pubmed 出版商
  272. Kabe Y, Nakane T, Koike I, Yamamoto T, Sugiura Y, Harada E, et al. Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance. Nat Commun. 2016;7:11030 pubmed 出版商
  273. Morena D, Maestro N, Bersani F, Forni P, Lingua M, Foglizzo V, et al. Hepatocyte Growth Factor-mediated satellite cells niche perturbation promotes development of distinct sarcoma subtypes. elife. 2016;5: pubmed 出版商
  274. Mori F, Ferraiuolo M, Santoro R, Sacconi A, Goeman F, Pallocca M, et al. Multitargeting activity of miR-24 inhibits long-term melatonin anticancer effects. Oncotarget. 2016;7:20532-48 pubmed 出版商
  275. Acharya M, Sokolovska A, Tam J, Conway K, Stefani C, Raso F, et al. αv Integrins combine with LC3 and atg5 to regulate Toll-like receptor signalling in B cells. Nat Commun. 2016;7:10917 pubmed 出版商
  276. Yang H, Vainshtein A, Maik Rachline G, Peles E. G protein-coupled receptor 37 is a negative regulator of oligodendrocyte differentiation and myelination. Nat Commun. 2016;7:10884 pubmed 出版商
  277. Atiq R, Hertz R, Eldad S, Smeir E, Bar Tana J. Suppression of B-Raf(V600E) cancers by MAPK hyper-activation. Oncotarget. 2016;7:18694-704 pubmed 出版商
  278. Yang W, Yang Y, Yang J, Liang M, Song J. Treatment with bone marrow mesenchymal stem cells combined with plumbagin alleviates spinal cord injury by affecting oxidative stress, inflammation, apoptotis and the activation of the Nrf2 pathway. Int J Mol Med. 2016;37:1075-82 pubmed 出版商
  279. Bigenzahn J, Fauster A, Rebsamen M, Kandasamy R, Scorzoni S, Vladimer G, et al. An Inducible Retroviral Expression System for Tandem Affinity Purification Mass-Spectrometry-Based Proteomics Identifies Mixed Lineage Kinase Domain-like Protein (MLKL) as an Heat Shock Protein 90 (HSP90) Client. Mol Cell Proteomics. 2016;15:1139-50 pubmed
  280. Woo J, Srikanth S, Nishi M, Ping P, Takeshima H, Gwack Y. Junctophilin-4, a component of the endoplasmic reticulum-plasma membrane junctions, regulates Ca2+ dynamics in T cells. Proc Natl Acad Sci U S A. 2016;113:2762-7 pubmed 出版商
  281. Chusri P, Kumthip K, Hong J, Zhu C, Duan X, Jilg N, et al. HCV induces transforming growth factor β1 through activation of endoplasmic reticulum stress and the unfolded protein response. Sci Rep. 2016;6:22487 pubmed 出版商
  282. Moiseeva O, Lopes Paciencia S, Huot G, Lessard F, Ferbeyre G. Permanent farnesylation of lamin A mutants linked to progeria impairs its phosphorylation at serine 22 during interphase. Aging (Albany NY). 2016;8:366-81 pubmed
  283. Mason J, Davison Versagli C, Leliaert A, Pape D, McCallister C, Zuo J, et al. Oncogenic Ras differentially regulates metabolism and anoikis in extracellular matrix-detached cells. Cell Death Differ. 2016;23:1271-82 pubmed 出版商
  284. Li Y, Choi D, Lee E, Seo S, Lee S, Cho E. Sirtuin 3 (SIRT3) Regulates α-Smooth Muscle Actin (α-SMA) Production through the Succinate Dehydrogenase-G Protein-coupled Receptor 91 (GPR91) Pathway in Hepatic Stellate Cells. J Biol Chem. 2016;291:10277-92 pubmed 出版商
  285. Abdul Rahman N, Greenwood S, Brett R, Tossell K, Ungless M, Plevin R, et al. Mitogen-Activated Protein Kinase Phosphatase-2 Deletion Impairs Synaptic Plasticity and Hippocampal-Dependent Memory. J Neurosci. 2016;36:2348-54 pubmed 出版商
  286. Hu H, Wang H, Xiao Y, Jin J, Chang J, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213:399-414 pubmed 出版商
  287. Cao L, Qin X, Peterson M, Haller S, Wilson K, Hu N, et al. CARD9 knockout ameliorates myocardial dysfunction associated with high fat diet-induced obesity. J Mol Cell Cardiol. 2016;92:185-95 pubmed 出版商
  288. Yu C, Tang L, Liang C, Chen X, Song S, Ding X, et al. Angiotensin-Converting Enzyme 3 (ACE3) Protects Against Pressure Overload-Induced Cardiac Hypertrophy. J Am Heart Assoc. 2016;5: pubmed 出版商
  289. Huo L, Shi W, Chong L, Wang J, Zhang K, Li Y. Asiatic acid inhibits left ventricular remodeling and improves cardiac function in a rat model of myocardial infarction. Exp Ther Med. 2016;11:57-64 pubmed
  290. Lee M, Goralczyk A, Kriszt R, Ang X, Badowski C, Li Y, et al. ECM microenvironment unlocks brown adipogenic potential of adult human bone marrow-derived MSCs. Sci Rep. 2016;6:21173 pubmed 出版商
  291. Pecháčková S, Burdova K, Benada J, Kleiblova P, Jenikova G, Macurek L. Inhibition of WIP1 phosphatase sensitizes breast cancer cells to genotoxic stress and to MDM2 antagonist nutlin-3. Oncotarget. 2016;7:14458-75 pubmed 出版商
  292. Molteni R, Rossetti A, Savino E, Racagni G, Calabrese F. Chronic Mild Stress Modulates Activity-Dependent Transcription of BDNF in Rat Hippocampal Slices. Neural Plast. 2016;2016:2592319 pubmed 出版商
  293. Wang J, Goetsch L, Tucker L, Zhang Q, Gonzalez A, Vaidya K, et al. Anti-c-Met monoclonal antibody ABT-700 breaks oncogene addiction in tumors with MET amplification. BMC Cancer. 2016;16:105 pubmed 出版商
  294. Waters A, Stewart J, Atigadda V, Mroczek Musulman E, Muccio D, Grubbs C, et al. Preclinical Evaluation of UAB30 in Pediatric Renal and Hepatic Malignancies. Mol Cancer Ther. 2016;15:911-21 pubmed 出版商
  295. Hong M, Nam K, Kim K, Kim S, Kim I. The small molecule '1-(4-biphenylylcarbonyl)-4-(5-bromo-2-methoxybenzyl) piperazine oxalate' and its derivatives regulate global protein synthesis by inactivating eukaryotic translation initiation factor 2-alpha. Cell Stress Chaperones. 2016;21:485-97 pubmed 出版商
  296. Liu T, Fang Z, Wang G, Shi M, Wang X, Jiang K, et al. Anti-tumor activity of the TRPM8 inhibitor BCTC in prostate cancer DU145 cells. Oncol Lett. 2016;11:182-188 pubmed
  297. Demetriades C, Plescher M, Teleman A. Lysosomal recruitment of TSC2 is a universal response to cellular stress. Nat Commun. 2016;7:10662 pubmed 出版商
  298. Khalid S, Drasche A, Thurner M, Hermann M, Ashraf M, Fresser F, et al. cJun N-terminal kinase (JNK) phosphorylation of serine 36 is critical for p66Shc activation. Sci Rep. 2016;6:20930 pubmed 出版商
  299. Li S, Lu L, Liao X, Gao T, Wang F, Zhang L, et al. Manganese elevates manganese superoxide dismutase protein level through protein kinase C and protein tyrosine kinase. Biometals. 2016;29:265-74 pubmed 出版商
  300. O Sullivan C, Schubart A, Mir A, Dev K. The dual S1PR1/S1PR5 drug BAF312 (Siponimod) attenuates demyelination in organotypic slice cultures. J Neuroinflammation. 2016;13:31 pubmed 出版商
  301. Coke C, Scarlett K, Chetram M, Jones K, Sandifer B, Davis A, et al. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression. J Biol Chem. 2016;291:9991-10005 pubmed 出版商
  302. Liu L, Zhu J, Zhou L, Wan L. RACK1 promotes maintenance of morphine-associated memory via activation of an ERK-CREB dependent pathway in hippocampus. Sci Rep. 2016;6:20183 pubmed 出版商
  303. Tai D, Ragavendran A, Manavalan P, Stortchevoi A, Seabra C, Erdin S, et al. Engineering microdeletions and microduplications by targeting segmental duplications with CRISPR. Nat Neurosci. 2016;19:517-22 pubmed 出版商
  304. Hayashi H, Al Mamun A, Sakima M, Sato M. Activator of G-protein signaling 8 is involved in VEGF-mediated signal processing during angiogenesis. J Cell Sci. 2016;129:1210-22 pubmed 出版商
  305. Regan Anderson T, Ma S, Raj G, Cidlowski J, Helle T, Knutson T, et al. Breast Tumor Kinase (Brk/PTK6) Is Induced by HIF, Glucocorticoid Receptor, and PELP1-Mediated Stress Signaling in Triple-Negative Breast Cancer. Cancer Res. 2016;76:1653-63 pubmed 出版商
  306. Thornton T, Delgado P, Chen L, Salas B, Krementsov D, Fernández M, et al. Inactivation of nuclear GSK3β by Ser(389) phosphorylation promotes lymphocyte fitness during DNA double-strand break response. Nat Commun. 2016;7:10553 pubmed 出版商
  307. Abbey M, Hakim C, Anand R, Lafera J, Schambach A, Kispert A, et al. GTPase domain driven dimerization of SEPT7 is dispensable for the critical role of septins in fibroblast cytokinesis. Sci Rep. 2016;6:20007 pubmed 出版商
  308. van der Mijn J, Broxterman H, Knol J, Piersma S, de Haas R, Dekker H, et al. Sunitinib activates Axl signaling in renal cell cancer. Int J Cancer. 2016;138:3002-10 pubmed 出版商
  309. Stefanovic M, Tutusaus A, Martinez Nieto G, Bárcena C, de Gregorio E, Moutinho C, et al. Targeting glucosylceramide synthase upregulation reverts sorafenib resistance in experimental hepatocellular carcinoma. Oncotarget. 2016;7:8253-67 pubmed 出版商
  310. Peres T, Ong L, Costa A, Eyng H, Venske D, Colle D, et al. Tyrosine hydroxylase regulation in adult rat striatum following short-term neonatal exposure to manganese. Metallomics. 2016;8:597-604 pubmed 出版商
  311. Chen Y, Zheng Y, You X, Yu M, Fu G, Su X, et al. Kras Is Critical for B Cell Lymphopoiesis. J Immunol. 2016;196:1678-85 pubmed 出版商
  312. Peng K, Tian X, Qian Y, Skibba M, Zou C, Liu Z, et al. Novel EGFR inhibitors attenuate cardiac hypertrophy induced by angiotensin II. J Cell Mol Med. 2016;20:482-94 pubmed 出版商
  313. Daniele S, Barresi E, Zappelli E, Marinelli L, Novellino E, Da Settimo F, et al. Long lasting MDM2/Translocator protein modulator: a new strategy for irreversible apoptosis of human glioblastoma cells. Oncotarget. 2016;7:7866-84 pubmed 出版商
  314. Pivonello C, Negri M, De Martino M, Napolitano M, De Angelis C, Provvisiero D, et al. The dual targeting of insulin and insulin-like growth factor 1 receptor enhances the mTOR inhibitor-mediated antitumor efficacy in hepatocellular carcinoma. Oncotarget. 2016;7:9718-31 pubmed 出版商
  315. Lin C, Wang C, Hsu S, Liao L, Lin T, Hsueh C. Molecular Mechanisms Responsible for Neuron-Derived Conditioned Medium (NCM)-Mediated Protection of Ischemic Brain. PLoS ONE. 2016;11:e0146692 pubmed 出版商
  316. Hernandez R, Puro A, Manos J, Huitron Resendiz S, Reyes K, Liu K, et al. Transgenic mice with increased astrocyte expression of IL-6 show altered effects of acute ethanol on synaptic function. Neuropharmacology. 2016;103:27-43 pubmed 出版商
  317. Ishibashi T, Yaguchi A, Terada K, Ueno Yokohata H, Tomita O, Iijima K, et al. Ph-like ALL-related novel fusion kinase ATF7IP-PDGFRB exhibits high sensitivity to tyrosine kinase inhibitors in murine cells. Exp Hematol. 2016;44:177-88.e5 pubmed 出版商
  318. Fan S, Numata Y, Numata M. Endosomal Na+/H+ exchanger NHE5 influences MET recycling and cell migration. Mol Biol Cell. 2016;27:702-15 pubmed 出版商
  319. Roth Flach R, Skoura A, Matevossian A, Danai L, Zheng W, Cortes C, et al. Endothelial protein kinase MAP4K4 promotes vascular inflammation and atherosclerosis. Nat Commun. 2015;6:8995 pubmed 出版商
  320. He J, Johnson J, Monfregola J, Ramadass M, Pestonjamasp K, Napolitano G, et al. Munc13-4 interacts with syntaxin 7 and regulates late endosomal maturation, endosomal signaling, and TLR9-initiated cellular responses. Mol Biol Cell. 2016;27:572-87 pubmed 出版商
  321. Sun J, Fu X, Liu Y, Wang Y, Huo B, Guo Y, et al. Hypoglycemic effect and mechanism of honokiol on type 2 diabetic mice. Drug Des Devel Ther. 2015;9:6327-42 pubmed 出版商
  322. Franco Villanueva A, Wandosell F, Antón I. Neuritic complexity of hippocampal neurons depends on WIP-mediated mTORC1 and Abl family kinases activities. Brain Behav. 2015;5:e00359 pubmed 出版商
  323. Daniele S, Zappelli E, Martini C. Trazodone regulates neurotrophic/growth factors, mitogen-activated protein kinases and lactate release in human primary astrocytes. J Neuroinflammation. 2015;12:225 pubmed 出版商
  324. Bunda S, Burrell K, Heir P, Zeng L, Alamsahebpour A, Kano Y, et al. Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis. Nat Commun. 2015;6:8859 pubmed 出版商
  325. Lim J, Nguyen K, Han J, Jang I, Fabian C, Cho K. Direct Regulation of TLR5 Expression by Caveolin-1. Mol Cells. 2015;38:1111-7 pubmed 出版商
  326. Giri K, Pabelick C, Mukherjee P, Prakash Y. Hepatoma derived growth factor (HDGF) dynamics in ovarian cancer cells. Apoptosis. 2016;21:329-39 pubmed 出版商
  327. Ittig S, Schmutz C, Kasper C, Amstutz M, Schmidt A, Sauteur L, et al. A bacterial type III secretion-based protein delivery tool for broad applications in cell biology. J Cell Biol. 2015;211:913-31 pubmed 出版商
  328. E L, Swerdlow R. Lactate's effect on human neuroblastoma cell bioenergetic fluxes. Biochem Pharmacol. 2016;99:88-100 pubmed 出版商
  329. Awad K, Elinoff J, Wang S, Gairhe S, Ferreyra G, Cai R, et al. Raf/ERK drives the proliferative and invasive phenotype of BMPR2-silenced pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2016;310:L187-201 pubmed 出版商
  330. Kurioka T, Matsunobu T, Satoh Y, Niwa K, Endo S, Fujioka M, et al. ERK2 mediates inner hair cell survival and decreases susceptibility to noise-induced hearing loss. Sci Rep. 2015;5:16839 pubmed 出版商
  331. Wang Z, Ma B, Li H, Xiao X, Zhou W, Liu F, et al. Protein 4.1N acts as a potential tumor suppressor linking PP1 to JNK-c-Jun pathway regulation in NSCLC. Oncotarget. 2016;7:509-23 pubmed 出版商
  332. Shukla P, Vogl C, Wallner B, Rigler D, Müller M, Macho Maschler S. High-throughput mRNA and miRNA profiling of epithelial-mesenchymal transition in MDCK cells. BMC Genomics. 2015;16:944 pubmed 出版商
  333. Quintero Barceinas R, García Regalado A, Aréchaga Ocampo E, Villegas Sepúlveda N, González De la Rosa C. All-Trans Retinoic Acid Induces Proliferation, Survival, and Migration in A549 Lung Cancer Cells by Activating the ERK Signaling Pathway through a Transcription-Independent Mechanism. Biomed Res Int. 2015;2015:404368 pubmed 出版商
  334. Sabogal Guáqueta A, Osorio E, Cardona Gómez G. Linalool reverses neuropathological and behavioral impairments in old triple transgenic Alzheimer's mice. Neuropharmacology. 2016;102:111-20 pubmed 出版商
  335. Yen Y, Hsiao J, Jiang S, Chang J, Wang S, Shen Y, et al. Insulin-like growth factor-independent insulin-like growth factor binding protein 3 promotes cell migration and lymph node metastasis of oral squamous cell carcinoma cells by requirement of integrin β1. Oncotarget. 2015;6:41837-55 pubmed 出版商
  336. Waye S, Naeem A, Choudhry M, Parasido E, Tricoli L, Sivakumar A, et al. The p53 tumor suppressor protein protects against chemotherapeutic stress and apoptosis in human medulloblastoma cells. Aging (Albany NY). 2015;7:854-68 pubmed
  337. Vernot J, Perdomo Arciniegas A, Pérez Quintero L, Martínez D. Modulating p56Lck in T-Cells by a Chimeric Peptide Comprising Two Functionally Different Motifs of Tip from Herpesvirus saimiri. J Immunol Res. 2015;2015:395371 pubmed 出版商
  338. Li W, Wei S, Liu C, Song M, Wu H, Yang Y. Regulation of the osteogenic and adipogenic differentiation of bone marrow-derived stromal cells by extracellular uridine triphosphate: The role of P2Y2 receptor and ERK1/2 signaling. Int J Mol Med. 2016;37:63-73 pubmed 出版商
  339. Sipieter F, Cappe B, Gonzalez Pisfil M, Spriet C, Bodart J, Cailliau Maggio K, et al. Novel Reporter for Faithful Monitoring of ERK2 Dynamics in Living Cells and Model Organisms. PLoS ONE. 2015;10:e0140924 pubmed 出版商
  340. Wu R, Chen H, Ma J, He Q, Huang Q, Liu Q, et al. c-Abl-p38α signaling plays an important role in MPTP-induced neuronal death. Cell Death Differ. 2016;23:542-52 pubmed 出版商
  341. Wu S, Guo Z, Hopkins C, Wei N, Chu E, Wipf P, et al. Bis-cyclopropane analog of disorazole C1 is a microtubule-destabilizing agent active in ABCB1-overexpressing human colon cancer cells. Oncotarget. 2015;6:40866-79 pubmed 出版商
  342. Dumas A, Lê Bury G, Marie Anaïs F, Herit F, Mazzolini J, Guilbert T, et al. The HIV-1 protein Vpr impairs phagosome maturation by controlling microtubule-dependent trafficking. J Cell Biol. 2015;211:359-72 pubmed 出版商
  343. Park Y, Kim S, Kwon T, Kim J, Song I, Shin H, et al. Peroxiredoxin II promotes hepatic tumorigenesis through cooperation with Ras/Forkhead box M1 signaling pathway. Oncogene. 2016;35:3503-13 pubmed 出版商
  344. Barbáchano A, Fernández Barral A, Pereira F, Segura M, Ordóñez Morán P, Carrillo de Santa Pau E, et al. SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150. Oncogene. 2016;35:2991-3003 pubmed 出版商
  345. Salas E, Roy S, Marsh T, Rubin B, Debnath J. Oxidative pentose phosphate pathway inhibition is a key determinant of antimalarial induced cancer cell death. Oncogene. 2016;35:2913-22 pubmed 出版商
  346. Kim H, Lim J, Kim J, Kim Y, Park S, Sohn J. Panaxydol, a component of Panax ginseng, induces apoptosis in cancer cells through EGFR activation and ER stress and inhibits tumor growth in mouse models. Int J Cancer. 2016;138:1432-41 pubmed 出版商
  347. Zhu X, Wang K, Zhang K, Tan X, Wu Z, Sun S, et al. Tetramethylpyrazine Protects Retinal Capillary Endothelial Cells (TR-iBRB2) against IL-1β-Induced Nitrative/Oxidative Stress. Int J Mol Sci. 2015;16:21775-90 pubmed 出版商
  348. Xing R, Li L, Chen L, Gao Z, Wang H, Li W, et al. Copy number variations of HLA-I and activation of NKp30 pathway determine the sensitivity of gastric cancer cells to the cytotoxicity of natural killer cells. Oncogene. 2016;35:2584-91 pubmed 出版商
  349. Suzuki M, Watanabe M, Nakamaru Y, Takagi D, Takahashi H, Fukuda S, et al. TRIM39 negatively regulates the NFκB-mediated signaling pathway through stabilization of Cactin. Cell Mol Life Sci. 2016;73:1085-101 pubmed 出版商
  350. Ashford A, Dunkley T, Cockerill M, Rowlinson R, Baak L, Gallo R, et al. Identification of DYRK1B as a substrate of ERK1/2 and characterisation of the kinase activity of DYRK1B mutants from cancer and metabolic syndrome. Cell Mol Life Sci. 2016;73:883-900 pubmed 出版商
  351. Plescher M, Teleman A, Demetriades C. TSC2 mediates hyperosmotic stress-induced inactivation of mTORC1. Sci Rep. 2015;5:13828 pubmed 出版商
  352. Zhou X, Tao Y, Liang C, Zhang Y, Li H, Chen Q. BMP3 Alone and Together with TGF-β Promote the Differentiation of Human Mesenchymal Stem Cells into a Nucleus Pulposus-Like Phenotype. Int J Mol Sci. 2015;16:20344-59 pubmed 出版商
  353. Georgiannakis A, Burgoyne T, Lueck K, Futter C, Greenwood J, Moss S. Retinal Pigment Epithelial Cells Mitigate the Effects of Complement Attack by Endocytosis of C5b-9. J Immunol. 2015;195:3382-9 pubmed 出版商
  354. Gong Y, Qiu W, Ning X, Yang X, Liu L, Wang Z, et al. CCDC34 is up-regulated in bladder cancer and regulates bladder cancer cell proliferation, apoptosis and migration. Oncotarget. 2015;6:25856-67 pubmed 出版商
  355. Kumarasamy V, Shin Y, White J, Sun D. Selective repression of RET proto-oncogene in medullary thyroid carcinoma by a natural alkaloid berberine. BMC Cancer. 2015;15:599 pubmed 出版商
  356. Wong T, Lin S, Leung L. The Flavone Luteolin Suppresses SREBP-2 Expression and Post-Translational Activation in Hepatic Cells. PLoS ONE. 2015;10:e0135637 pubmed 出版商
  357. Zhao C, Su Y, Zhang J, Feng Q, Qu L, Wang L, et al. Fibrinogen-derived fibrinostatin inhibits tumor growth through anti-angiogenesis. Cancer Sci. 2015;106:1596-606 pubmed 出版商
  358. Sabet O, Stockert R, Xouri G, Brüggemann Y, Stanoev A, Bastiaens P. Ubiquitination switches EphA2 vesicular traffic from a continuous safeguard to a finite signalling mode. Nat Commun. 2015;6:8047 pubmed 出版商
  359. Bunaciu R, Jensen H, Macdonald R, Latocha D, Varner J, Yen A. 6-Formylindolo(3,2-b)Carbazole (FICZ) Modulates the Signalsome Responsible for RA-Induced Differentiation of HL-60 Myeloblastic Leukemia Cells. PLoS ONE. 2015;10:e0135668 pubmed 出版商
  360. Zhang Q, Zhao K, Shen Q, Han Y, Gu Y, Li X, et al. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature. 2015;525:389-393 pubmed 出版商
  361. Varela A, Piperi C, Sigala F, Agrogiannis G, Davos C, Andri M, et al. Elevated expression of mechanosensory polycystins in human carotid atherosclerotic plaques: association with p53 activation and disease severity. Sci Rep. 2015;5:13461 pubmed 出版商
  362. Sivaraj K, Li R, Albarrán Juárez J, Wang S, Tischner D, Grimm M, et al. Endothelial Gαq/11 is required for VEGF-induced vascular permeability and angiogenesis. Cardiovasc Res. 2015;108:171-80 pubmed 出版商
  363. Chichger H, Braza J, Duong H, Stark M, Harrington E. Neovascularization in the pulmonary endothelium is regulated by the endosome: Rab4-mediated trafficking and p18-dependent signaling. Am J Physiol Lung Cell Mol Physiol. 2015;309:L700-9 pubmed 出版商
  364. Sun D, Buttitta L. Protein phosphatase 2A promotes the transition to G0 during terminal differentiation in Drosophila. Development. 2015;142:3033-45 pubmed 出版商
  365. Simard E, Söllradl T, Maltais J, Boucher J, D Orléans Juste P, Grandbois M. Receptor for Advanced Glycation End-Products Signaling Interferes with the Vascular Smooth Muscle Cell Contractile Phenotype and Function. PLoS ONE. 2015;10:e0128881 pubmed 出版商
  366. Patel P, Dutta D, Edgar B. Niche appropriation by Drosophila intestinal stem cell tumours. Nat Cell Biol. 2015;17:1182-92 pubmed 出版商
  367. Wu M, Lee W, Hua K, Kuo M, Lin M. Macrophage Infiltration Induces Gastric Cancer Invasiveness by Activating the β-Catenin Pathway. PLoS ONE. 2015;10:e0134122 pubmed 出版商
  368. Zhang X, Wang X, Wu T, Li B, Liu T, Wang R, et al. Isoliensinine induces apoptosis in triple-negative human breast cancer cells through ROS generation and p38 MAPK/JNK activation. Sci Rep. 2015;5:12579 pubmed 出版商
  369. Picot N, Guerrette R, Beauregard A, Jean S, Michaud P, Harquail J, et al. Mammaglobin 1 promotes breast cancer malignancy and confers sensitivity to anticancer drugs. Mol Carcinog. 2016;55:1150-62 pubmed 出版商
  370. Zou Q, Jin J, Xiao Y, Hu H, Zhou X, Jie Z, et al. T cell development involves TRAF3IP3-mediated ERK signaling in the Golgi. J Exp Med. 2015;212:1323-36 pubmed 出版商
  371. Dahlhoff M, Schäfer M, Muzumdar S, Rose C, Schneider M. ERBB3 is required for tumor promotion in a mouse model of skin carcinogenesis. Mol Oncol. 2015;9:1825-33 pubmed 出版商
  372. Ito A, Hong C, Rong X, Zhu X, Tarling E, Hedde P, et al. LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. elife. 2015;4:e08009 pubmed 出版商
  373. Kim J, Lee G, Won Y, Lee M, Kwak J, Chun C, et al. Matrix cross-linking-mediated mechanotransduction promotes posttraumatic osteoarthritis. Proc Natl Acad Sci U S A. 2015;112:9424-9 pubmed 出版商
  374. García Pérez D, Laorden M, Milanés M. Regulation of Pleiotrophin, Midkine, Receptor Protein Tyrosine Phosphatase β/ζ, and Their Intracellular Signaling Cascades in the Nucleus Accumbens During Opiate Administration. Int J Neuropsychopharmacol. 2015;19: pubmed 出版商
  375. Gorojod R, Alaimo A, Porte Alcon S, Pomilio C, Saravia F, Kotler M. The autophagic- lysosomal pathway determines the fate of glial cells under manganese- induced oxidative stress conditions. Free Radic Biol Med. 2015;87:237-51 pubmed 出版商
  376. Wu C, Jiao H, Lai Y, Zheng W, Chen K, Qu H, et al. Kindlin-2 controls TGF-β signalling and Sox9 expression to regulate chondrogenesis. Nat Commun. 2015;6:7531 pubmed 出版商
  377. Chen K, Tsai M, Wu C, Jou M, Wei I, Huang C. AMPA Receptor-mTOR Activation is Required for the Antidepressant-Like Effects of Sarcosine during the Forced Swim Test in Rats: Insertion of AMPA Receptor may Play a Role. Front Behav Neurosci. 2015;9:162 pubmed 出版商
  378. Su X, Yu Y, Zhong Y, Giannopoulou E, Hu X, Liu H, et al. Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat Immunol. 2015;16:838-849 pubmed 出版商
  379. Zhao L, Liu S, Che X, Hou K, Ma Y, Li C, et al. Bufalin inhibits TGF-β-induced epithelial-to-mesenchymal transition and migration in human lung cancer A549 cells by downregulating TGF-β receptors. Int J Mol Med. 2015;36:645-52 pubmed 出版商
  380. Seo G, Ho M, Bui N, Kim Y, Koh D, Lim Y, et al. Novel naphthochalcone derivative accelerate dermal wound healing through induction of epithelial-mesenchymal transition of keratinocyte. J Biomed Sci. 2015;22:47 pubmed 出版商
  381. He L, Zang A, Du M, Ma D, Yuan C, Zhou C, et al. mTOR regulates TLR-induced c-fos and Th1 responses to HBV and HCV vaccines. Virol Sin. 2015;30:174-89 pubmed 出版商
  382. Roda D, Castillo J, Telechea Fernández M, Gil A, López Rodas G, Franco L, et al. EGF-Induced Acetylation of Heterogeneous Nuclear Ribonucleoproteins Is Dependent on KRAS Mutational Status in Colorectal Cancer Cells. PLoS ONE. 2015;10:e0130543 pubmed 出版商
  383. Westcot S, Hatzold J, Urban M, Richetti S, Skuster K, Harm R, et al. Protein-Trap Insertional Mutagenesis Uncovers New Genes Involved in Zebrafish Skin Development, Including a Neuregulin 2a-Based ErbB Signaling Pathway Required during Median Fin Fold Morphogenesis. PLoS ONE. 2015;10:e0130688 pubmed 出版商
  384. Pickard A, McDade S, McFarland M, McCluggage W, Wheeler C, McCance D. HPV16 Down-Regulates the Insulin-Like Growth Factor Binding Protein 2 to Promote Epithelial Invasion in Organotypic Cultures. PLoS Pathog. 2015;11:e1004988 pubmed 出版商
  385. Choi J, Kim J, Kim T, Park J, Lee J, Kim H, et al. TRH and TRH receptor system in the basolateral amygdala mediate stress-induced depression-like behaviors. Neuropharmacology. 2015;97:346-56 pubmed 出版商
  386. Wang S, Awad K, Elinoff J, Dougherty E, Ferreyra G, Wang J, et al. G Protein-coupled Receptor 40 (GPR40) and Peroxisome Proliferator-activated Receptor γ (PPARγ): AN INTEGRATED TWO-RECEPTOR SIGNALING PATHWAY. J Biol Chem. 2015;290:19544-57 pubmed 出版商
  387. Chen M, Yen C, Cheng C, Wu R, Huang S, Yu C, et al. Identification of SPHK1 as a therapeutic target and marker of poor prognosis in cholangiocarcinoma. Oncotarget. 2015;6:23594-608 pubmed
  388. Wu P, Yen J, Kou M, Wu M. Luteolin and Apigenin Attenuate 4-Hydroxy-2-Nonenal-Mediated Cell Death through Modulation of UPR, Nrf2-ARE and MAPK Pathways in PC12 Cells. PLoS ONE. 2015;10:e0130599 pubmed 出版商
  389. Faggi F, Codenotti S, Poliani P, Cominelli M, Chiarelli N, Colombi M, et al. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line. PLoS ONE. 2015;10:e0130287 pubmed 出版商
  390. Gopinathan G, Milagre C, Pearce O, Reynolds L, Hodivala Dilke K, Leinster D, et al. Interleukin-6 Stimulates Defective Angiogenesis. Cancer Res. 2015;75:3098-107 pubmed 出版商
  391. Nan X, Tamgüney T, Collisson E, Lin L, Pitt C, Galeas J, et al. Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway. Proc Natl Acad Sci U S A. 2015;112:7996-8001 pubmed 出版商
  392. Lee W, Shen S, Shih Y, Chou C, Tseng J, Chin S, et al. Early decline in serum phospho-CSE1L levels in vemurafenib/sunitinib-treated melanoma and sorafenib/lapatinib-treated colorectal tumor xenografts. J Transl Med. 2015;13:191 pubmed 出版商
  393. García Cano J, Ambroise G, Pascual Serra R, Carrión M, Serrano Oviedo L, Ortega Muelas M, et al. Exploiting the potential of autophagy in cisplatin therapy: A new strategy to overcome resistance. Oncotarget. 2015;6:15551-65 pubmed
  394. Li T, Lu H, Mukherjee D, Lahiri S, Shen C, Yu L, et al. Identification of epidermal growth factor receptor and its inhibitory microRNA141 as novel targets of Krüppel-like factor 8 in breast cancer. Oncotarget. 2015;6:21428-42 pubmed
  395. Luan Q, Jin L, Jiang C, Tay K, Lai F, Liu X, et al. RIPK1 regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy. Autophagy. 2015;11:975-94 pubmed 出版商
  396. Yen C, Chiang W, Liu S, Lin C, Liao K, Lin C, et al. Impacts of autophagy-inducing ingredient of areca nut on tumor cells. PLoS ONE. 2015;10:e0128011 pubmed 出版商
  397. Korotkevych N, Labyntsev A, Kolybo D, Komisarenko S. The Soluble Heparin-Binding EGF-Like Growth Factor Stimulates EGF Receptor Trafficking to the Nucleus. PLoS ONE. 2015;10:e0127887 pubmed 出版商
  398. Reigada D, Nieto Díaz M, Navarro Ruiz R, Caballero López M, Del Águila A, Muñoz Galdeano T, et al. Acute administration of ucf-101 ameliorates the locomotor impairments induced by a traumatic spinal cord injury. Neuroscience. 2015;300:404-17 pubmed 出版商
  399. Sun L, Xu C, Chen G, Yu M, Yang S, Qiu Y, et al. A Novel Role of OS-9 in the Maintenance of Intestinal Barrier Function from Hypoxia-induced Injury via p38-dependent Pathway. Int J Biol Sci. 2015;11:664-71 pubmed 出版商
  400. Bargut T, Mandarim de Lacerda C, Aguila M. A high-fish-oil diet prevents adiposity and modulates white adipose tissue inflammation pathways in mice. J Nutr Biochem. 2015;26:960-9 pubmed 出版商
  401. Li P, Sheu M, Ma W, Pan C, Sheu J, Wu C. Anti-Restenotic Roles of Dihydroaustrasulfone Alcohol Involved in Inhibiting PDGF-BB-Stimulated Proliferation and Migration of Vascular Smooth Muscle Cells. Mar Drugs. 2015;13:3046-60 pubmed 出版商
  402. Wong T, Lin S, Leung L. The flavone apigenin blocks nuclear translocation of sterol regulatory element-binding protein-2 in the hepatic cells WRL-68. Br J Nutr. 2015;113:1844-52 pubmed 出版商
  403. Cong X, Zhang Y, Li J, Mei M, Ding C, Xiang R, et al. Claudin-4 is required for modulation of paracellular permeability by muscarinic acetylcholine receptor in epithelial cells. J Cell Sci. 2015;128:2271-86 pubmed 出版商
  404. Waters A, Stewart J, Atigadda V, Mroczek Musulman E, Muccio D, Grubbs C, et al. Preclinical Evaluation of a Novel RXR Agonist for the Treatment of Neuroblastoma. Mol Cancer Ther. 2015;14:1559-69 pubmed 出版商
  405. Yu Y, Koehn C, Yue Y, Li S, Thiele G, Hearth Holmes M, et al. Celastrol inhibits inflammatory stimuli-induced neutrophil extracellular trap formation. Curr Mol Med. 2015;15:401-10 pubmed
  406. Zhang L, Wang H, Ding K, Xu J. FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells. Toxicol Lett. 2015;236:43-59 pubmed 出版商
  407. Lee E, Park E, Mun H, Chang E, Ko J, Kim D, et al. Soluble receptor for advanced glycation end products inhibits disease progression in autosomal dominant polycystic kidney disease by down-regulating cell proliferation. FASEB J. 2015;29:3506-14 pubmed 出版商
  408. Bhang S, Han J, Jang H, Noh M, La W, Yi M, et al. pH-triggered release of manganese from MnAu nanoparticles that enables cellular neuronal differentiation without cellular toxicity. Biomaterials. 2015;55:33-43 pubmed 出版商
  409. Pasqualon T, Pruessmeyer J, Weidenfeld S, Babendreyer A, Groth E, Schumacher J, et al. A transmembrane C-terminal fragment of syndecan-1 is generated by the metalloproteinase ADAM17 and promotes lung epithelial tumor cell migration and lung metastasis formation. Cell Mol Life Sci. 2015;72:3783-801 pubmed 出版商
  410. Daniele S, Da Pozzo E, Zappelli E, Martini C. Trazodone treatment protects neuronal-like cells from inflammatory insult by inhibiting NF-?B, p38 and JNK. Cell Signal. 2015;27:1609-29 pubmed 出版商
  411. Kim H, Kim I, Dong Y, Lee I, Kim J, Kim J, et al. Melanogenesis-inducing effect of cirsimaritin through increases in microphthalmia-associated transcription factor and tyrosinase expression. Int J Mol Sci. 2015;16:8772-88 pubmed 出版商
  412. Huang L, Counter C. Reduced HRAS G12V-Driven Tumorigenesis of Cell Lines Expressing KRAS C118S. PLoS ONE. 2015;10:e0123918 pubmed 出版商
  413. Yang Z, Zheng B, Zhang Y, He M, Zhang X, Ma D, et al. miR-155-dependent regulation of mammalian sterile 20-like kinase 2 (MST2) coordinates inflammation, oxidative stress and proliferation in vascular smooth muscle cells. Biochim Biophys Acta. 2015;1852:1477-89 pubmed 出版商
  414. Selvaraj N, Kedage V, Hollenhorst P. Comparison of MAPK specificity across the ETS transcription factor family identifies a high-affinity ERK interaction required for ERG function in prostate cells. Cell Commun Signal. 2015;13:12 pubmed 出版商
  415. Wilson C, Jurk D, Fullard N, Banks P, Page A, Luli S, et al. NFκB1 is a suppressor of neutrophil-driven hepatocellular carcinoma. Nat Commun. 2015;6:6818 pubmed 出版商
  416. Witkiewicz A, McMillan E, Balaji U, Baek G, Lin W, Mansour J, et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun. 2015;6:6744 pubmed 出版商
  417. Kim T, Lawson M. GnRH Regulates Gonadotropin Gene Expression Through NADPH/Dual Oxidase-Derived Reactive Oxygen Species. Endocrinology. 2015;156:2185-99 pubmed 出版商
  418. Boncompagni S, Arthurton L, Akujuru E, Pearson T, Steverding D, Protasi F, et al. Membrane glucocorticoid receptors are localised in the extracellular matrix and signal through the MAPK pathway in mammalian skeletal muscle fibres. J Physiol. 2015;593:2679-92 pubmed 出版商
  419. Brohée L, Demine S, Willems J, Arnould T, Colige A, Deroanne C. Lipin-1 regulates cancer cell phenotype and is a potential target to potentiate rapamycin treatment. Oncotarget. 2015;6:11264-80 pubmed
  420. Ko R, Park J, Ha H, Choi Y, Lee S. Glycogen synthase kinase 3β ubiquitination by TRAF6 regulates TLR3-mediated pro-inflammatory cytokine production. Nat Commun. 2015;6:6765 pubmed 出版商
  421. Meena J, Cerutti A, Beichler C, Morita Y, Bruhn C, Kumar M, et al. Telomerase abrogates aneuploidy-induced telomere replication stress, senescence and cell depletion. EMBO J. 2015;34:1371-84 pubmed 出版商
  422. Zhang Q, Kuang H, Chen C, Yan J, Do Umehara H, Liu X, et al. The kinase Jnk2 promotes stress-induced mitophagy by targeting the small mitochondrial form of the tumor suppressor ARF for degradation. Nat Immunol. 2015;16:458-66 pubmed 出版商
  423. Kawada M, Inoue H, Ohba S, Yoshida J, Masuda T, Yamasaki M, et al. Stromal cells positively and negatively modulate the growth of cancer cells: stimulation via the PGE2-TNFα-IL-6 pathway and inhibition via secreted GAPDH-E-cadherin interaction. PLoS ONE. 2015;10:e0119415 pubmed 出版商
  424. Qu D, Chen Y, Xu X, Zhang M, Zhang Y, Li S. Cbl-b-regulated extracellular signal-regulated kinase signaling is involved in the shikonin-induced apoptosis of lung cancer cells in vitro. Exp Ther Med. 2015;9:1265-1270 pubmed
  425. Wang B, Wu S, Tang S, Lai C, Ou C, Wu M, et al. Benzo[a]pyrene-induced cell cycle progression occurs via ERK-induced Chk1 pathway activation in human lung cancer cells. Mutat Res. 2015;773:1-8 pubmed 出版商
  426. Wilson F, Johannessen C, Piccioni F, Tamayo P, Kim J, Van Allen E, et al. A functional landscape of resistance to ALK inhibition in lung cancer. Cancer Cell. 2015;27:397-408 pubmed 出版商
  427. Chen W, Wu J, Li L, Zhang Z, Ren J, Liang Y, et al. Ppm1b negatively regulates necroptosis through dephosphorylating Rip3. Nat Cell Biol. 2015;17:434-44 pubmed 出版商
  428. Warren D, Tajsic T, Porter L, Minaisah R, Cobb A, Jacob A, et al. Nesprin-2-dependent ERK1/2 compartmentalisation regulates the DNA damage response in vascular smooth muscle cell ageing. Cell Death Differ. 2015;22:1540-50 pubmed 出版商
  429. Kollar P, Bárta T, KeltoÅ¡ová S, Trnová P, Müller Závalová V, Å mejkal K, et al. Flavonoid 4'-O-Methylkuwanon E from Morus alba Induces the Differentiation of THP-1 Human Leukemia Cells. Evid Based Complement Alternat Med. 2015;2015:251895 pubmed 出版商
  430. Kim S, Ka S, Lee Y, Park B, Fei X, Jung J, et al. The new 4-O-methylhonokiol analog GS12021 inhibits inflammation and macrophage chemotaxis: role of AMP-activated protein kinase α activation. PLoS ONE. 2015;10:e0117120 pubmed 出版商
  431. Murrow L, Malhotra R, Debnath J. ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat Cell Biol. 2015;17:300-10 pubmed 出版商
  432. Skarra D, Thackray V. FOXO1 is regulated by insulin and IGF1 in pituitary gonadotropes. Mol Cell Endocrinol. 2015;405:14-24 pubmed 出版商
  433. Guillaumond F, Bidaut G, Ouaissi M, Servais S, Gouirand V, Olivares O, et al. Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proc Natl Acad Sci U S A. 2015;112:2473-8 pubmed 出版商
  434. Curcio M, Salazar I, Inácio A, Duarte E, Canzoniero L, Duarte C. Brain ischemia downregulates the neuroprotective GDNF-Ret signaling by a calpain-dependent mechanism in cultured hippocampal neurons. Cell Death Dis. 2015;6:e1645 pubmed 出版商
  435. Fouladi F, Jehn L, Metzelder S, Hub F, Henkenius K, Burchert A, et al. Sorafenib induces paradoxical phosphorylation of the extracellular signal-regulated kinase pathway in acute myeloid leukemia cells lacking FLT3-ITD mutation. Leuk Lymphoma. 2015;56:2690-8 pubmed 出版商
  436. Kondapalli K, Llongueras J, Capilla González V, Prasad H, Hack A, Smith C, et al. A leak pathway for luminal protons in endosomes drives oncogenic signalling in glioblastoma. Nat Commun. 2015;6:6289 pubmed 出版商
  437. Castorina A, Waschek J, Marzagalli R, Cardile V, Drago F. PACAP interacts with PAC1 receptors to induce tissue plasminogen activator (tPA) expression and activity in schwann cell-like cultures. PLoS ONE. 2015;10:e0117799 pubmed 出版商
  438. Papadakis A, Sun C, Knijnenburg T, Xue Y, Grernrum W, Hölzel M, et al. SMARCE1 suppresses EGFR expression and controls responses to MET and ALK inhibitors in lung cancer. Cell Res. 2015;25:445-58 pubmed 出版商
  439. Bai L, Mao R, Wang J, Ding L, Jiang S, Gao C, et al. ERK1/2 promoted proliferation and inhibited apoptosis of human cervical cancer cells and regulated the expression of c-Fos and c-Jun proteins. Med Oncol. 2015;32:57 pubmed 出版商
  440. Kozlova N, Samoylenko A, Drobot L, Kietzmann T. Urokinase is a negative modulator of Egf-dependent proliferation and motility in the two breast cancer cell lines MCF-7 and MDA-MB-231. Mol Carcinog. 2016;55:170-81 pubmed 出版商
  441. Shaw A, Pickup M, Chytil A, Aakre M, Owens P, Moses H, et al. TGFβ signaling in myeloid cells regulates mammary carcinoma cell invasion through fibroblast interactions. PLoS ONE. 2015;10:e0117908 pubmed 出版商
  442. Xu B, Zhang Y, Tong X, Liu Y. Characterization of microRNA profile in human cumulus granulosa cells: Identification of microRNAs that regulate Notch signaling and are associated with PCOS. Mol Cell Endocrinol. 2015;404:26-36 pubmed 出版商
  443. Bele A, Mirza S, Zhang Y, Ahmad Mir R, Lin S, Kim J, et al. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells. Cell Cycle. 2015;14:990-1000 pubmed 出版商
  444. Albanito L, Lappano R, Madeo A, Chimento A, Prossnitz E, Cappello A, et al. Effects of atrazine on estrogen receptor α- and G protein-coupled receptor 30-mediated signaling and proliferation in cancer cells and cancer-associated fibroblasts. Environ Health Perspect. 2015;123:493-9 pubmed 出版商
  445. Seaberg B, Henslee G, Wang S, Paez Colasante X, Landreth G, Rimer M. Muscle-derived extracellular signal-regulated kinases 1 and 2 are required for the maintenance of adult myofibers and their neuromuscular junctions. Mol Cell Biol. 2015;35:1238-53 pubmed 出版商
  446. Schäker K, Bartsch S, Patry C, Stoll S, Hillebrands J, Wieland T, et al. The bipartite rac1 Guanine nucleotide exchange factor engulfment and cell motility 1/dedicator of cytokinesis 180 (elmo1/dock180) protects endothelial cells from apoptosis in blood vessel development. J Biol Chem. 2015;290:6408-18 pubmed 出版商
  447. Majuelos Melguizo J, Rodríguez M, López Jiménez L, Rodríguez Vargas J, Martí Martín Consuegra J, Serrano Sáenz S, et al. PARP targeting counteracts gliomagenesis through induction of mitotic catastrophe and aggravation of deficiency in homologous recombination in PTEN-mutant glioma. Oncotarget. 2015;6:4790-803 pubmed
  448. Zanotto Filho A, Braganhol E, Klafke K, Figueiró F, Terra S, Paludo F, et al. Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas. Cancer Lett. 2015;358:220-31 pubmed 出版商
  449. Passos E, Pereira C, Gonçalves I, Rocha Rodrigues S, Silva N, Guimarães J, et al. Role of physical exercise on hepatic insulin, glucocorticoid and inflammatory signaling pathways in an animal model of non-alcoholic steatohepatitis. Life Sci. 2015;123:51-60 pubmed 出版商
  450. Machado Neto J, Lazarini M, Favaro P, de Melo Campos P, Scopim Ribeiro R, Franchi Junior G, et al. ANKHD1 silencing inhibits Stathmin 1 activity, cell proliferation and migration of leukemia cells. Biochim Biophys Acta. 2015;1853:583-93 pubmed 出版商
  451. Kim E, Kim S, Jin X, Ham S, Kim J, Park J, et al. Epidermal growth factor receptor variant III renders glioma cancer cells less differentiated by JAGGED1. Tumour Biol. 2015;36:2921-8 pubmed 出版商
  452. Jilg C, Ketscher A, Metzger E, Hummel B, Willmann D, Rüsseler V, et al. PRK1/PKN1 controls migration and metastasis of androgen-independent prostate cancer cells. Oncotarget. 2014;5:12646-64 pubmed
  453. Pastor Clerigues A, Martí Bonmatí E, Milara J, Almudever P, Cortijo J. Anti-inflammatory and anti-fibrotic profile of fish oil emulsions used in parenteral nutrition-associated liver disease. PLoS ONE. 2014;9:e115404 pubmed 出版商
  454. Delloye Bourgeois C, Jacquier A, Charoy C, Reynaud F, Nawabi H, Thoinet K, et al. PlexinA1 is a new Slit receptor and mediates axon guidance function of Slit C-terminal fragments. Nat Neurosci. 2015;18:36-45 pubmed 出版商
  455. Diesenberg K, Beerbaum M, Fink U, Schmieder P, Krauss M. SEPT9 negatively regulates ubiquitin-dependent downregulation of EGFR. J Cell Sci. 2015;128:397-407 pubmed 出版商
  456. Bernusso V, Machado Neto J, Pericole F, Vieira K, Duarte A, Traina F, et al. Imatinib restores VASP activity and its interaction with Zyxin in BCR-ABL leukemic cells. Biochim Biophys Acta. 2015;1853:388-95 pubmed 出版商
  457. Xu T, Pan Z, Dong M, Yu C, Niu Y. Ferulic acid suppresses activation of hepatic stellate cells through ERK1/2 and Smad signaling pathways in vitro. Biochem Pharmacol. 2015;93:49-58 pubmed 出版商
  458. Tang D, Yu Y, Zhao X, Schachner M, Zhao W. Single chain fragment variable antibodies developed by using as target the 3rd fibronectin type III homologous repeat fragment of human neural cell adhesion molecule L1 promote cell migration and neuritogenesis. Exp Cell Res. 2015;330:336-45 pubmed 出版商
  459. Giovannini C, Minguzzi M, Baglioni M, Fornari F, Giannone F, Ravaioli M, et al. Suppression of p53 by Notch3 is mediated by Cyclin G1 and sustained by MDM2 and miR-221 axis in hepatocellular carcinoma. Oncotarget. 2014;5:10607-20 pubmed
  460. Heynen G, Fonfara A, Bernards R. Resistance to targeted cancer drugs through hepatocyte growth factor signaling. Cell Cycle. 2014;13:3808-17 pubmed 出版商
  461. Matsuoka S, Gupta S, Suzuki E, Hiromi Y, Asaoka M. gone early, a novel germline factor, ensures the proper size of the stem cell precursor pool in the Drosophila ovary. PLoS ONE. 2014;9:e113423 pubmed 出版商
  462. Li X, Sun Q, Li X, Cai D, Sui S, Jia Y, et al. Dietary betaine supplementation to gestational sows enhances hippocampal IGF2 expression in newborn piglets with modified DNA methylation of the differentially methylated regions. Eur J Nutr. 2015;54:1201-10 pubmed 出版商
  463. Janardhan S, Marks R, Gajewski T. Primary murine CD4+ T cells fail to acquire the ability to produce effector cytokines when active Ras is present during Th1/Th2 differentiation. PLoS ONE. 2014;9:e112831 pubmed 出版商
  464. Huang L, Carney J, Cardona D, Counter C. Decreased tumorigenesis in mice with a Kras point mutation at C118. Nat Commun. 2014;5:5410 pubmed 出版商
  465. Li Y, Kim B, Cho S, Bang M, Kim S, Park D. 6,7-di-O-acetylsinococuline (FK-3000) induces G2/M phase arrest in breast carcinomas through p38 MAPK phosphorylation and CDC25B dephosphorylation. Int J Oncol. 2015;46:578-86 pubmed 出版商
  466. Tao W, Moore R, Smith E, Xu X. Hormonal induction and roles of Disabled-2 in lactation and involution. PLoS ONE. 2014;9:e110737 pubmed 出版商
  467. Wang Y, Xiao X, Li N, Yang D, Xing Y, Huo R, et al. Oestrogen inhibits BMP4-induced BMP4 expression in cardiomyocytes: a potential mechanism of oestrogen-mediated protection against cardiac hypertrophy. Br J Pharmacol. 2015;172:5586-95 pubmed 出版商
  468. Rutkowska A, Preuss I, Gessier F, Sailer A, Dev K. EBI2 regulates intracellular signaling and migration in human astrocyte. Glia. 2015;63:341-51 pubmed 出版商
  469. Brun C, Périé L, Baraige F, Vernus B, Bonnieu A, Blanquet V. Absence of hyperplasia in Gasp-1 overexpressing mice is dependent on myostatin up-regulation. Cell Physiol Biochem. 2014;34:1241-59 pubmed 出版商
  470. Wang Y, Kuramitsu Y, Tokuda K, Baron B, Kitagawa T, Akada J, et al. Gemcitabine induces poly (ADP-ribose) polymerase-1 (PARP-1) degradation through autophagy in pancreatic cancer. PLoS ONE. 2014;9:e109076 pubmed 出版商
  471. Kannike K, Sepp M, Zuccato C, Cattaneo E, Timmusk T. Forkhead transcription factor FOXO3a levels are increased in Huntington disease because of overactivated positive autofeedback loop. J Biol Chem. 2014;289:32845-57 pubmed 出版商
  472. Zhang X, Zhang Q, Tu J, Zhu Y, Yang F, Liu B, et al. Prosurvival NMDA 2A receptor signaling mediates postconditioning neuroprotection in the hippocampus. Hippocampus. 2015;25:286-96 pubmed 出版商
  473. Zhou X, Tao Y, Wang J, Liang C, Wang J, Li H, et al. Roles of FGF-2 and TGF-beta/FGF-2 on differentiation of human mesenchymal stem cells towards nucleus pulposus-like phenotype. Growth Factors. 2015;33:23-30 pubmed 出版商
  474. Charlaftis N, Suddason T, Wu X, Anwar S, Karin M, Gallagher E. The MEKK1 PHD ubiquitinates TAB1 to activate MAPKs in response to cytokines. EMBO J. 2014;33:2581-96 pubmed 出版商
  475. Zhao X, Zhu L, Chang Q, Jiang C, You Y, Luo T, et al. C-type lectin receptor dectin-3 mediates trehalose 6,6'-dimycolate (TDM)-induced Mincle expression through CARD9/Bcl10/MALT1-dependent nuclear factor (NF)-κB activation. J Biol Chem. 2014;289:30052-62 pubmed 出版商
  476. Dou W, Zhang J, Ren G, Ding L, Sun A, Deng C, et al. Mangiferin attenuates the symptoms of dextran sulfate sodium-induced colitis in mice via NF-κB and MAPK signaling inactivation. Int Immunopharmacol. 2014;23:170-8 pubmed 出版商
  477. Pilchova I, Klacanova K, Chomova M, Tatarkova Z, Dobrota D, Racay P. Possible contribution of proteins of Bcl-2 family in neuronal death following transient global brain ischemia. Cell Mol Neurobiol. 2015;35:23-31 pubmed 出版商
  478. Huang S, Lee C, Wang H, Chang Y, Lin C, Chen C, et al. 6-Dehydrogingerdione restrains lipopolysaccharide-induced inflammatory responses in RAW 264.7 macrophages. J Agric Food Chem. 2014;62:9171-9 pubmed 出版商
  479. Sa S, Wong L, McCloskey K. Combinatorial fibronectin and laminin signaling promote highly efficient cardiac differentiation of human embryonic stem cells. Biores Open Access. 2014;3:150-61 pubmed 出版商
  480. Han P, Zhou X, Chang N, Xiao C, Yan S, Ren H, et al. Hydrogen peroxide primes heart regeneration with a derepression mechanism. Cell Res. 2014;24:1091-107 pubmed 出版商
  481. Tang S, Chen T, Yu Z, Zhu X, Yang M, Xie B, et al. RasGRP3 limits Toll-like receptor-triggered inflammatory response in macrophages by activating Rap1 small GTPase. Nat Commun. 2014;5:4657 pubmed 出版商
  482. Yu B, Chang J, Liu Y, Li J, Kevork K, Al Hezaimi K, et al. Wnt4 signaling prevents skeletal aging and inflammation by inhibiting nuclear factor-?B. Nat Med. 2014;20:1009-17 pubmed 出版商
  483. Li L, Wu P, Lee J, Li P, Hsieh W, Ho C, et al. Hinokitiol induces DNA damage and autophagy followed by cell cycle arrest and senescence in gefitinib-resistant lung adenocarcinoma cells. PLoS ONE. 2014;9:e104203 pubmed 出版商
  484. Zhang S, Ren M, Zeng X, He P, Ma X, Qiao S. Leucine stimulates ASCT2 amino acid transporter expression in porcine jejunal epithelial cell line (IPEC-J2) through PI3K/Akt/mTOR and ERK signaling pathways. Amino Acids. 2014;46:2633-42 pubmed 出版商
  485. Castorina A, Giunta S. Mucin 1 (MUC1) signalling contributes to increase the resistance to cell death in human bronchial epithelial cells exposed to nickel acetate. Biometals. 2014;27:1149-58 pubmed 出版商
  486. Kurz D, Payeli S, Greutert H, Briand Schumacher S, Luscher T, Tanner F. Epigenetic regulation of tissue factor inducibility in endothelial cell senescence. Mech Ageing Dev. 2014;140:1-9 pubmed 出版商
  487. Zeldich E, Chen C, Colvin T, Bove Fenderson E, Liang J, Tucker Zhou T, et al. The neuroprotective effect of Klotho is mediated via regulation of members of the redox system. J Biol Chem. 2014;289:24700-15 pubmed 出版商
  488. Kapur N, Qiao X, Paruchuri V, Mackey E, Daly G, Ughreja K, et al. Reducing endoglin activity limits calcineurin and TRPC-6 expression and improves survival in a mouse model of right ventricular pressure overload. J Am Heart Assoc. 2014;3: pubmed 出版商
  489. Maeda S, Wada H, Naito Y, Nagano H, Simmons S, Kagawa Y, et al. Interferon-? acts on the S/G2/M phases to induce apoptosis in the G1 phase of an IFNAR2-expressing hepatocellular carcinoma cell line. J Biol Chem. 2014;289:23786-95 pubmed 出版商
  490. Martin V, Corso S, Comoglio P, Giordano S. Increase of MET gene copy number confers resistance to a monovalent MET antibody and establishes drug dependence. Mol Oncol. 2014;8:1561-74 pubmed 出版商
  491. Hu J, Cheng Y, Li Y, Jin Z, Pan Y, Liu G, et al. microRNA-128 plays a critical role in human non-small cell lung cancer tumourigenesis, angiogenesis and lymphangiogenesis by directly targeting vascular endothelial growth factor-C. Eur J Cancer. 2014;50:2336-50 pubmed 出版商
  492. Chondrogiannis G, Kastamoulas M, Kanavaros P, Vartholomatos G, Bai M, Baltogiannis D, et al. Cytokine effects on cell viability and death of prostate carcinoma cells. Biomed Res Int. 2014;2014:536049 pubmed 出版商
  493. Martínez Pinilla E, Reyes Resina I, Oñatibia Astibia A, Zamarbide M, Ricobaraza A, Navarro G, et al. CB1 and GPR55 receptors are co-expressed and form heteromers in rat and monkey striatum. Exp Neurol. 2014;261:44-52 pubmed 出版商
  494. Chang P, Hung C, Wang S, Tsai P, Shih Y, Chen L, et al. Identification and characterization of two novel spliced genes located in the orf47-orf46-orf45 gene locus of Kaposi's sarcoma-associated herpesvirus. J Virol. 2014;88:10092-109 pubmed 出版商
  495. Rathore K, Cekanova M. Animal model of naturally occurring bladder cancer: characterization of four new canine transitional cell carcinoma cell lines. BMC Cancer. 2014;14:465 pubmed 出版商
  496. Fischer A, Zelinka C, Gallina D, Scott M, Todd L. Reactive microglia and macrophage facilitate the formation of Müller glia-derived retinal progenitors. Glia. 2014;62:1608-28 pubmed 出版商
  497. Ishikawa D, Shimada M, Utsunomiya T, Morine Y, Imura S, Ikemoto T, et al. Effect of Twist and Bmi1 on intraductal papillary mucinous neoplasm of the pancreas. J Gastroenterol Hepatol. 2014;29:2032-7 pubmed 出版商
  498. Zielniok K, Motyl T, Gajewska M. Functional interactions between 17 ? -estradiol and progesterone regulate autophagy during acini formation by bovine mammary epithelial cells in 3D cultures. Biomed Res Int. 2014;2014:382653 pubmed 出版商
  499. Enjoji S, Ohama T, Sato K. Regulation of epithelial cell tight junctions by protease-activated receptor 2. J Vet Med Sci. 2014;76:1225-9 pubmed
  500. Mena H, Lokajczyk A, Dizier B, Strier S, Voto L, Boisson Vidal C, et al. Acidic preconditioning improves the proangiogenic responses of endothelial colony forming cells. Angiogenesis. 2014;17:867-79 pubmed 出版商
  501. Attarha S, Andersson S, Mints M, Souchelnytskyi S. Mammalian sterile-like 1 kinase inhibits TGF? and EGF?dependent regulation of invasiveness, migration and proliferation of HEC-1-A endometrial cancer cells. Int J Oncol. 2014;45:853-60 pubmed 出版商
  502. Jiang Y, Kou Z, Wu T, An W, Zhou R, Wang H, et al. Xist deficiency and disorders of X-inactivation in rabbit embryonic stem cells can be rescued by transcription-factor-mediated conversion. Stem Cells Dev. 2014;23:2283-96 pubmed 出版商
  503. Cazanave S, Wang X, Zhou H, Rahmani M, Grant S, Durrant D, et al. Degradation of Keap1 activates BH3-only proteins Bim and PUMA during hepatocyte lipoapoptosis. Cell Death Differ. 2014;21:1303-12 pubmed 出版商
  504. Doughton G, Wei J, Tapon N, Welham M, Chalmers A. Formation of a polarised primitive endoderm layer in embryoid bodies requires fgfr/erk signalling. PLoS ONE. 2014;9:e95434 pubmed 出版商
  505. Abu El Asrar A, Siddiquei M, Nawaz M, Geboes K, Mohammad G. The proinflammatory cytokine high-mobility group box-1 mediates retinal neuropathy induced by diabetes. Mediators Inflamm. 2014;2014:746415 pubmed 出版商
  506. Kerdivel G, Boudot A, Habauzit D, Percevault F, Demay F, Pakdel F, et al. Activation of the MKL1/actin signaling pathway induces hormonal escape in estrogen-responsive breast cancer cell lines. Mol Cell Endocrinol. 2014;390:34-44 pubmed 出版商
  507. Chen P, Qin L, Zhuang Z, Tellides G, Lax I, Schlessinger J, et al. The docking protein FRS2? is a critical regulator of VEGF receptors signaling. Proc Natl Acad Sci U S A. 2014;111:5514-9 pubmed 出版商
  508. Guerra M, Wauson E, McGlynn K, Cobb M. Muscarinic control of MIN6 pancreatic ? cells is enhanced by impaired amino acid signaling. J Biol Chem. 2014;289:14370-9 pubmed 出版商
  509. Bölck B, Ibrahim M, Steinritz D, Morguet C, Dühr S, Suhr F, et al. Detection of key enzymes, free radical reaction products and activated signaling molecules as biomarkers of cell damage induced by benzo[a]pyrene in human keratinocytes. Toxicol In Vitro. 2014;28:875-84 pubmed 出版商
  510. Smith I, Godinez G, Singh B, McCaughey K, Alcantara R, Gururaja T, et al. Inhibition of Janus kinase signaling during controlled mechanical ventilation prevents ventilation-induced diaphragm dysfunction. FASEB J. 2014;28:2790-803 pubmed 出版商
  511. Maier P, Zemoura K, Acu a M, Y venes G, Zeilhofer H, Benke D. Ischemia-like oxygen and glucose deprivation mediates down-regulation of cell surface ?-aminobutyric acidB receptors via the endoplasmic reticulum (ER) stress-induced transcription factor CCAAT/enhancer-binding protein (C/EBP)-homologous protein (CH. J Biol Chem. 2014;289:12896-907 pubmed 出版商
  512. Wei N, Chu E, Wipf P, Schmitz J. Protein kinase d as a potential chemotherapeutic target for colorectal cancer. Mol Cancer Ther. 2014;13:1130-41 pubmed 出版商
  513. Yu P, Laird A, Du X, Wu J, Won K, Yamaguchi K, et al. Characterization of the activity of the PI3K/mTOR inhibitor XL765 (SAR245409) in tumor models with diverse genetic alterations affecting the PI3K pathway. Mol Cancer Ther. 2014;13:1078-91 pubmed 出版商
  514. Wang Q, Shen B, Chen L, Zheng P, Feng H, Hao Q, et al. Extracellular calumenin suppresses ERK1/2 signaling and cell migration by protecting fibulin-1 from MMP-13-mediated proteolysis. Oncogene. 2015;34:1006-18 pubmed 出版商
  515. Chapnick D, Liu X. Leader cell positioning drives wound-directed collective migration in TGF?-stimulated epithelial sheets. Mol Biol Cell. 2014;25:1586-93 pubmed 出版商
  516. Fernandez Estevez M, Casarejos M, Lopez Sendon J, Garcia Caldentey J, Ruiz C, Gomez A, et al. Trehalose reverses cell malfunction in fibroblasts from normal and Huntington's disease patients caused by proteosome inhibition. PLoS ONE. 2014;9:e90202 pubmed 出版商
  517. Son J, Jeong H, Kim H, Kim Y, Lee E, Lee H, et al. Pelargonidin attenuates PDGF-BB-induced aortic smooth muscle cell proliferation and migration by direct inhibition of focal adhesion kinase. Biochem Pharmacol. 2014;89:236-45 pubmed 出版商
  518. Ihunnah C, Wada T, Philips B, Ravuri S, Gibbs R, Kirisci L, et al. Estrogen sulfotransferase/SULT1E1 promotes human adipogenesis. Mol Cell Biol. 2014;34:1682-94 pubmed 出版商
  519. Wang Y, Kuramitsu Y, Tokuda K, Okada F, Baron B, Akada J, et al. Proteomic analysis indicates that overexpression and nuclear translocation of lactoylglutathione lyase (GLO1) is associated with tumor progression in murine fibrosarcoma. Electrophoresis. 2014;35:2195-202 pubmed 出版商
  520. Bernet J, Doles J, Hall J, Kelly Tanaka K, Carter T, Olwin B. p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat Med. 2014;20:265-71 pubmed 出版商
  521. Milara J, Peiró T, Serrano A, Guijarro R, Zaragozá C, Tenor H, et al. Roflumilast N-oxide inhibits bronchial epithelial to mesenchymal transition induced by cigarette smoke in smokers with COPD. Pulm Pharmacol Ther. 2014;28:138-48 pubmed 出版商
  522. Willemen H, Campos P, Lucas E, Morreale A, Gil Redondo R, Agut J, et al. A novel p38 MAPK docking-groove-targeted compound is a potent inhibitor of inflammatory hyperalgesia. Biochem J. 2014;459:427-39 pubmed 出版商
  523. Park E, Kim B, Lee E, Chang E, Kim D, Choi S, et al. Targeting of receptor for advanced glycation end products suppresses cyst growth in polycystic kidney disease. J Biol Chem. 2014;289:9254-62 pubmed 出版商
  524. Jin Y, Wi H, Choi M, Hong S, Bae Y. Regulation of anti-inflammatory cytokines IL-10 and TGF-? in mouse dendritic cells through treatment with Clonorchis sinensis crude antigen. Exp Mol Med. 2014;46:e74 pubmed 出版商
  525. Shin Y, Huh Y, Kim K, Kim S, Park K, Koh J, et al. Low-density lipoprotein receptor-related protein 5 governs Wnt-mediated osteoarthritic cartilage destruction. Arthritis Res Ther. 2014;16:R37 pubmed 出版商
  526. Gámez M, Calvo M, Selgas M, García M, Erler K, Böhm V, et al. Effect of E-beam treatment on the chemistry and on the antioxidant activity of lycopene from dry tomato peel and tomato powder. J Agric Food Chem. 2014;62:1557-63 pubmed 出版商
  527. Joannes A, Grelet S, Duca L, Gilles C, Kileztky C, Dalstein V, et al. Fhit regulates EMT targets through an EGFR/Src/ERK/Slug signaling axis in human bronchial cells. Mol Cancer Res. 2014;12:775-83 pubmed 出版商
  528. Cao M, Hou D, Liang H, Gong F, Wang Y, Yan X, et al. miR-150 promotes the proliferation and migration of lung cancer cells by targeting SRC kinase signalling inhibitor 1. Eur J Cancer. 2014;50:1013-24 pubmed 出版商
  529. Turner M, Cronin J, Healey G, Sheldon I. Epithelial and stromal cells of bovine endometrium have roles in innate immunity and initiate inflammatory responses to bacterial lipopeptides in vitro via Toll-like receptors TLR2, TLR1, and TLR6. Endocrinology. 2014;155:1453-65 pubmed 出版商
  530. Murcia Belmonte V, Medina Rodríguez E, Bribian A, De Castro F, Esteban P. ERK1/2 signaling is essential for the chemoattraction exerted by human FGF2 and human anosmin-1 on newborn rat and mouse OPCs via FGFR1. Glia. 2014;62:374-86 pubmed 出版商
  531. Krishna S, Luan C, Mishra R, Xu L, Scheidt K, Anderson W, et al. A fluorescence-based thermal shift assay identifies inhibitors of mitogen activated protein kinase kinase 4. PLoS ONE. 2013;8:e81504 pubmed 出版商
  532. Clayton K, Haaland M, Douglas Vail M, Mujib S, Chew G, Ndhlovu L, et al. T cell Ig and mucin domain-containing protein 3 is recruited to the immune synapse, disrupts stable synapse formation, and associates with receptor phosphatases. J Immunol. 2014;192:782-91 pubmed 出版商
  533. Xu C, Chen H, Wang X, Gao J, Che Y, Li Y, et al. S100A14, a member of the EF-hand calcium-binding proteins, is overexpressed in breast cancer and acts as a modulator of HER2 signaling. J Biol Chem. 2014;289:827-37 pubmed 出版商
  534. Castorina A, Scuderi S, D Amico A, Drago F, D Agata V. PACAP and VIP increase the expression of myelin-related proteins in rat schwannoma cells: involvement of PAC1/VPAC2 receptor-mediated activation of PI3K/Akt signaling pathways. Exp Cell Res. 2014;322:108-21 pubmed 出版商
  535. Zaganjor E, Osborne J, Weil L, Díaz Martínez L, Gonzales J, Singel S, et al. Ras regulates kinesin 13 family members to control cell migration pathways in transformed human bronchial epithelial cells. Oncogene. 2014;33:5457-66 pubmed 出版商
  536. Lee J, Park J, Kwon O, Kim H, Fornace A, Cha H. Off-target response of a Wip1 chemical inhibitor in skin keratinocytes. J Dermatol Sci. 2014;73:125-34 pubmed 出版商
  537. Evans C, Cook S, Coleman M, Gilley J. MEK inhibitor U0126 reverses protection of axons from Wallerian degeneration independently of MEK-ERK signaling. PLoS ONE. 2013;8:e76505 pubmed 出版商
  538. Lu Q, Harris V, Sun X, Hou Y, Black S. Ca²?/calmodulin-dependent protein kinase II contributes to hypoxic ischemic cell death in neonatal hippocampal slice cultures. PLoS ONE. 2013;8:e70750 pubmed 出版商
  539. Bittner S, Ruck T, Schuhmann M, Herrmann A, Moha Ou Maati H, Bobak N, et al. Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med. 2013;19:1161-5 pubmed 出版商
  540. Hauerslev S, Sveen M, Vissing J, Krag T. Protein turnover and cellular stress in mildly and severely affected muscles from patients with limb girdle muscular dystrophy type 2I. PLoS ONE. 2013;8:e66929 pubmed 出版商
  541. Moberly S, Mather K, Berwick Z, Owen M, Goodwill A, Casalini E, et al. Impaired cardiometabolic responses to glucagon-like peptide 1 in obesity and type 2 diabetes mellitus. Basic Res Cardiol. 2013;108:365 pubmed 出版商
  542. Zhou X, Wang H, Burg M, Ferraris J. High NaCl-induced inhibition of PTG contributes to activation of NFAT5 through attenuation of the negative effect of SHP-1. Am J Physiol Renal Physiol. 2013;305:F362-9 pubmed 出版商
  543. Aoshiba K, Tsuji T, Kameyama S, Itoh M, Semba S, Yamaguchi K, et al. Senescence-associated secretory phenotype in a mouse model of bleomycin-induced lung injury. Exp Toxicol Pathol. 2013;65:1053-62 pubmed 出版商
  544. Abbonante V, Gruppi C, Rubel D, Gross O, Moratti R, Balduini A. Discoidin domain receptor 1 protein is a novel modulator of megakaryocyte-collagen interactions. J Biol Chem. 2013;288:16738-46 pubmed 出版商
  545. Maeda Y, Fukushima K, Omichi R, Kariya S, Nishizaki K. Time courses of changes in phospho- and total- MAP kinases in the cochlea after intense noise exposure. PLoS ONE. 2013;8:e58775 pubmed 出版商
  546. Taylor D, Moser R, Regulier E, Breuillaud L, Dixon M, Beesen A, et al. MAP kinase phosphatase 1 (MKP-1/DUSP1) is neuroprotective in Huntington's disease via additive effects of JNK and p38 inhibition. J Neurosci. 2013;33:2313-25 pubmed 出版商
  547. Lin S, Hoffmann K, Xiao Z, Jin N, Galli U, Mohr E, et al. MEK inhibition induced downregulation of MRP1 and MRP3 expression in experimental hepatocellular carcinoma. Cancer Cell Int. 2013;13:3 pubmed 出版商
  548. van der Vorst E, Vanags L, Dunn L, Prosser H, Rye K, Bursill C. High-density lipoproteins suppress chemokine expression and proliferation in human vascular smooth muscle cells. FASEB J. 2013;27:1413-25 pubmed 出版商
  549. Slowik A, Merres J, Elfgen A, Jansen S, Mohr F, Wruck C, et al. Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE)--and amyloid beta 1-42-induced signal transduction in glial cells. Mol Neurodegener. 2012;7:55 pubmed 出版商
  550. Brandenburg L, Jansen S, Albrecht L, Merres J, Gerber J, Pufe T, et al. CpG oligodeoxynucleotides induce the expression of the antimicrobial peptide cathelicidin in glial cells. J Neuroimmunol. 2013;255:18-31 pubmed 出版商
  551. Muller M, Triaca V, Besusso D, Costanzi M, Horn J, Koudelka J, et al. Loss of NGF-TrkA signaling from the CNS is not sufficient to induce cognitive impairments in young adult or intermediate-aged mice. J Neurosci. 2012;32:14885-98 pubmed 出版商
  552. Kim J, Hwang I, Choi S, Lee H, Lee Y, Goo J, et al. Aqueous extract of Liriope platyphylla, a traditional Chinese medicine, significantly inhibits abdominal fat accumulation and improves glucose regulation in OLETF type II diabetes model rats. Lab Anim Res. 2012;28:181-91 pubmed 出版商
  553. Joaquin M, Gubern A, Gonzalez Nunez D, Josué Ruiz E, Ferreiro I, de Nadal E, et al. The p57 CDKi integrates stress signals into cell-cycle progression to promote cell survival upon stress. EMBO J. 2012;31:2952-64 pubmed 出版商
  554. Iio W, Matsukawa N, Tsukahara T, Toyoda A. The effects of oral taurine administration on behavior and hippocampal signal transduction in rats. Amino Acids. 2012;43:2037-46 pubmed 出版商
  555. Machado Neto J, Favaro P, Lazarini M, Costa F, Olalla Saad S, Traina F. Knockdown of insulin receptor substrate 1 reduces proliferation and downregulates Akt/mTOR and MAPK pathways in K562 cells. Biochim Biophys Acta. 2011;1813:1404-11 pubmed 出版商
  556. Urbanet R, Pilon C, Giorgino F, Vettor R, Fallo F. Insulin signaling in adipose tissue of patients with primary aldosteronism. J Endocrinol Invest. 2011;34:86-9 pubmed
  557. Chang J, Adams M, Clifton M, Liao M, Brooks J, Hasdemir B, et al. Urocortin 1 modulates immunosignaling in a rat model of colitis via corticotropin-releasing factor receptor 2. Am J Physiol Gastrointest Liver Physiol. 2011;300:G884-94 pubmed 出版商
  558. Modi H, Li L, Chu S, Rossi J, Yee J, Bhatia R. Inhibition of Grb2 expression demonstrates an important role in BCR-ABL-mediated MAPK activation and transformation of primary human hematopoietic cells. Leukemia. 2011;25:305-12 pubmed 出版商
  559. Musumeci G, Sciarretta C, Rodríguez Moreno A, Al Banchaabouchi M, Negrete Díaz V, Costanzi M, et al. TrkB modulates fear learning and amygdalar synaptic plasticity by specific docking sites. J Neurosci. 2009;29:10131-43 pubmed 出版商
  560. Wu J, Jin Y, Calaf G, Huang W, Yin Y. PAC1 is a direct transcription target of E2F-1 in apoptotic signaling. Oncogene. 2007;26:6526-35 pubmed
  561. Zha Y, Marks R, Ho A, Peterson A, Janardhan S, Brown I, et al. T cell anergy is reversed by active Ras and is regulated by diacylglycerol kinase-alpha. Nat Immunol. 2006;7:1166-73 pubmed
  562. Zhu M, Feng J, Lucchinetti E, Fischer G, Xu L, Pedrazzini T, et al. Ischemic postconditioning protects remodeled myocardium via the PI3K-PKB/Akt reperfusion injury salvage kinase pathway. Cardiovasc Res. 2006;72:152-62 pubmed
  563. Lo I, Shih J, Jiang M. Reactive oxygen species and ERK 1/2 mediate monocyte chemotactic protein-1-stimulated smooth muscle cell migration. J Biomed Sci. 2005;12:377-88 pubmed
  564. Tsai M, Jiang M. Extracellular signal-regulated kinase1/2 in contraction of vascular smooth muscle. Life Sci. 2005;76:877-88 pubmed
  565. Usui S, Sugimoto N, Takuwa N, Sakagami S, Takata S, Kaneko S, et al. Blood lipid mediator sphingosine 1-phosphate potently stimulates platelet-derived growth factor-A and -B chain expression through S1P1-Gi-Ras-MAPK-dependent induction of Kruppel-like factor 5. J Biol Chem. 2004;279:12300-11 pubmed
  566. Farnier C, Krief S, Blache M, Diot Dupuy F, Mory G, Ferre P, et al. Adipocyte functions are modulated by cell size change: potential involvement of an integrin/ERK signalling pathway. Int J Obes Relat Metab Disord. 2003;27:1178-86 pubmed
  567. Hernandez M, Barrero M, Crespo M, Nieto M. Lysophosphatidic acid inhibits Ca2+ signaling in response to epidermal growth factor receptor stimulation in human astrocytoma cells by a mechanism involving phospholipase C(gamma) and a G(alphai) protein. J Neurochem. 2000;75:1575-82 pubmed
  568. Chan E, Stang S, Bottorff D, Stone J. Hypothermic stress leads to activation of Ras-Erk signaling. J Clin Invest. 1999;103:1337-44 pubmed
  569. Korneyev A. Stress-induced tau phosphorylation in mouse strains with different brain Erk 1 + 2 immunoreactivity. Neurochem Res. 1998;23:1539-43 pubmed
  570. Webb C, Van Aelst L, Wigler M, Vande Woude G. Signaling pathways in Ras-mediated tumorigenicity and metastasis. Proc Natl Acad Sci U S A. 1998;95:8773-8 pubmed
  571. Duesbery N, Webb C, Leppla S, Gordon V, Klimpel K, Copeland T, et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science. 1998;280:734-7 pubmed
  572. Hidari K, Weyrich A, Zimmerman G, McEver R. Engagement of P-selectin glycoprotein ligand-1 enhances tyrosine phosphorylation and activates mitogen-activated protein kinases in human neutrophils. J Biol Chem. 1997;272:28750-6 pubmed