这是一篇来自已证抗体库的有关人类 ERK2的综述,是根据896篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合ERK2 抗体。
ERK2 同义词: ERK; ERK-2; ERK2; ERT1; MAPK2; P42MAPK; PRKM1; PRKM2; p38; p40; p41; p41mapk; p42-MAPK; mitogen-activated protein kinase 1; MAP kinase 1; MAP kinase 2; MAP kinase isoform p42; MAPK 2; extracellular signal-regulated kinase 2; mitogen-activated protein kinase 2; protein tyrosine kinase ERK2

圣克鲁斯生物技术
小鼠 单克隆(12A4)
  • 免疫印迹; 小鼠; 图 2d
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术 ERK2抗体(Santa, sc-81457)被用于被用于免疫印迹在小鼠样品上 (图 2d) 和 被用于免疫印迹在人类样品上 (图 3a). Oncogene (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 2e
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-514302)被用于被用于免疫印迹在人类样品上 (图 2e). Exp Mol Med (2018) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 小鼠; 图 3g, s7c
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-1647)被用于被用于免疫印迹在小鼠样品上 (图 3g, s7c). Cell (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 8a
圣克鲁斯生物技术 ERK2抗体(santa cruz, sc-7383)被用于被用于免疫印迹在小鼠样品上 (图 8a). J Exp Med (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 4d
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology Inc, sc-7383)被用于被用于免疫印迹在小鼠样品上 (图 4d). J Clin Invest (2018) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 5a). Restor Neurol Neurosci (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 5a). Restor Neurol Neurosci (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, E-4)被用于被用于免疫印迹在人类样品上 (图 2b). Cell Death Dis (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 ERK2抗体(SantaCruz, E-4)被用于被用于免疫印迹在人类样品上 (图 5a). Cell Res (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 6d
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology Inc, SC-7383)被用于被用于免疫印迹在小鼠样品上 (图 6d). Neurotherapeutics (2018) ncbi
小鼠 单克隆(12D4)
  • 免疫组化-冰冻切片; 小鼠; 1:20; 图 s6f
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-81492)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:20 (图 s6f). Nat Commun (2018) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样品上 (图 3b). Int J Oncol (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上 (图 5). Mol Med Rep (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上 (图 6a). Oncotarget (2017) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 图 7a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样品上 (图 7a). Cancer Lett (2017) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 小鼠; 1:1000; 图 s7a
圣克鲁斯生物技术 ERK2抗体(SantaCruz, sc-1647)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 s7a). Nat Commun (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 3g
圣克鲁斯生物技术 ERK2抗体(SantaCruz, SC-7383)被用于被用于免疫印迹在小鼠样品上 (图 3g). J Exp Med (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3e
圣克鲁斯生物技术 ERK2抗体(SCB, E-4)被用于被用于免疫印迹在人类样品上 (图 3e). Cancer Res (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 3c
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3c). Oncol Lett (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 4b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样品上 (图 4b). J Exp Med (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上 (图 6a). Exp Mol Med (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样品上 (图 6a). Exp Mol Med (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 6A
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样品上 (图 6A). Sci Rep (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 6
圣克鲁斯生物技术 ERK2抗体(SantaCruz, sc-7383)被用于被用于免疫印迹在小鼠样品上 (图 6). J Ethnopharmacol (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:200; 图 2b
圣克鲁斯生物技术 ERK2抗体(SantaCruz, sc-514302)被用于被用于免疫印迹在人类样品上浓度为1:200 (图 2b). Toxicol In Vitro (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 2b
圣克鲁斯生物技术 ERK2抗体(SantaCruz, sc-7383)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 2b). Toxicol In Vitro (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 2b
圣克鲁斯生物技术 ERK2抗体(SantaCruz, sc-7383)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 2b). J Steroid Biochem Mol Biol (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:2000; 图 4a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-514302)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 4a). Exp Ther Med (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, D-2)被用于被用于免疫印迹在人类样品上 (图 1a). Nucleic Acids Res (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 2e
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 2e). Nat Commun (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在人类样品上 (图 1c). Mol Carcinog (2017) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, D2)被用于被用于免疫印迹在人类样品上 (图 1a). J Biol Chem (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-石蜡切片; 小鼠
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫组化-石蜡切片在小鼠样品上. Acta Histochem (2017) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:1000; 图 1a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 1a). Int J Cancer (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上 (图 5b). Int J Mol Med (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 图 3a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在小鼠样品上 (图 3a). Int J Mol Sci (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 图 6b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, Sc-7383)被用于被用于免疫印迹在大鼠样品上 (图 6b). Physiol Rep (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1500; 图 4a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样品上浓度为1:1500 (图 4a). Oncol Lett (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1500; 图 4a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上浓度为1:1500 (图 4a). Oncol Lett (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 ERK2抗体(santa Cruz, SC-514302)被用于被用于免疫印迹在小鼠样品上 (图 3). Blood Cancer J (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 ERK2抗体(santa Cruz, SC-7383)被用于被用于免疫印迹在小鼠样品上 (图 3). Blood Cancer J (2016) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫组化-石蜡切片; 人类; 图 7a
  • 免疫印迹; 人类; 1:500; 图 5a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-136521)被用于被用于免疫组化-石蜡切片在人类样品上 (图 7a) 和 被用于免疫印迹在人类样品上浓度为1:500 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 表 1
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上浓度为1:500 (表 1). J Neuroinflammation (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6e
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, 7383)被用于被用于免疫印迹在人类样品上 (图 6e). Am J Physiol Heart Circ Physiol (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样品上 (图 4b). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 5a). Mol Cell Biochem (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样品上 (图 3a). J Cereb Blood Flow Metab (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 7a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样品上 (图 7a). J Immunol (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上 (图 4). Mol Ther Methods Clin Dev (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在人类样品上 (图 5). Cell Rep (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-1647)被用于被用于免疫印迹在人类样品上 (图 1a). J Biol Chem (2016) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 大鼠; 图 5c
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, SC-136521)被用于被用于免疫印迹在大鼠样品上 (图 5c). PLoS ONE (2016) ncbi
小鼠 单克隆(12A4)
  • 免疫沉淀; 大鼠; 图 5c
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, SC-81457)被用于被用于免疫沉淀在大鼠样品上 (图 5c). PLoS ONE (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000; 图 2
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 2). Cell Death Dis (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上 (图 3). Oncol Lett (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 2a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样品上 (图 2a). J Cell Biol (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3h
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, E4)被用于被用于免疫印迹在人类样品上 (图 3h). Genes Cancer (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 图 6b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样品上 (图 6b). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 5d
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 5d). Oncotarget (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:200; 图 6A
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样品上浓度为1:200 (图 6A). Front Pharmacol (2016) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 1:200; 图 6A
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样品上浓度为1:200 (图 6A). Front Pharmacol (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-1647)被用于被用于免疫印迹在小鼠样品上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:1000; 图 s4
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 s4). Nat Commun (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc1647)被用于被用于免疫印迹在人类样品上 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000; 图 4
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 1:1000; 图 4
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 1:500; 图 5a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, 7383)被用于被用于免疫印迹在大鼠样品上浓度为1:500 (图 5a). Int J Endocrinol (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 7c
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样品上 (图 7c). J Biol Chem (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc7383)被用于被用于免疫印迹在人类样品上 (图 4). BMC Complement Altern Med (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc1647)被用于被用于免疫印迹在人类样品上 (图 4). BMC Complement Altern Med (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 s2
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在小鼠样品上 (图 s2). Sci Rep (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:500; 图 3
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 3). Oncoimmunology (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上 (图 6a). J Immunol Res (2016) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 1:200; 图 5
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样品上浓度为1:200 (图 5). Genes Cancer (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:200; 图 5
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样品上浓度为1:200 (图 5). Genes Cancer (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 ERK2抗体(Santa cruz, sc-7383)被用于被用于免疫印迹在人类样品上 (图 5). BMC Cancer (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样品上 (图 6). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫细胞化学; 小鼠; 1:50; 图 5
  • 免疫组化; 小鼠; 1:50; 图 5
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫细胞化学在小鼠样品上浓度为1:50 (图 5) 和 被用于免疫组化在小鼠样品上浓度为1:50 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上 (图 3c). Oncotarget (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠; 图 10a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在大鼠样品上 (图 10a). Int J Mol Med (2016) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 1:500; 图 3d
  • 免疫印迹; 小鼠; 1:500; 图 3d
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-514302)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 3d) 和 被用于免疫印迹在小鼠样品上浓度为1:500 (图 3d). J Neurosci (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 8
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, E-4)被用于被用于免疫印迹在人类样品上 (图 8) 和 被用于免疫印迹在小鼠样品上 (图 5). J Exp Med (2016) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 大鼠; 1:500; 图 6
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-81492)被用于被用于免疫印迹在大鼠样品上浓度为1:500 (图 6). Exp Ther Med (2016) ncbi
小鼠 单克隆(C-8)
  • 免疫印迹; 小鼠; 图 8f
圣克鲁斯生物技术 ERK2抗体(santa cruz, C-8)被用于被用于免疫印迹在小鼠样品上 (图 8f). Front Endocrinol (Lausanne) (2015) ncbi
小鼠 单克隆(12D4)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5
  • 免疫印迹; 小鼠; 1:1000; 图 5
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-81492)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 5) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 1:1000; 图 5
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 7e
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样品上 (图 7e). J Immunol (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫组化; 小鼠; 图 7
  • 免疫印迹; 大鼠; 图 1d
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc7383)被用于被用于免疫组化在小鼠样品上 (图 7) 和 被用于免疫印迹在大鼠样品上 (图 1d). J Cell Mol Med (2016) ncbi
小鼠 单克隆(E-4)
  • 酶联免疫吸附测定; 人类; 1:500; 图 10
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于酶联免疫吸附测定在人类样品上浓度为1:500 (图 10). Oncotarget (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-1647)被用于被用于免疫印迹在人类样品上 (图 7). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上 (图 7). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 1:500; 图 6
圣克鲁斯生物技术 ERK2抗体(Santa Cruze, sc-7383)被用于被用于免疫印迹在大鼠样品上浓度为1:500 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(12A4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc81457)被用于被用于免疫印迹在人类样品上 (图 2). Breast Cancer Res (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 ERK2抗体(santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样品上 (图 3). Drug Des Devel Ther (2015) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 小鼠; 1:2000; 图 s3
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-1647)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 s3). Clin Cancer Res (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 10
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 10). J Neuroinflammation (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s7
  • 免疫印迹; 小鼠; 1:1000; 图 2
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 s7), 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 2) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上 (图 5c). Mol Cells (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上 (图 5a). Apoptosis (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 S3
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上 (图 S3). Oncotarget (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样品上 (图 3). Biomed Res Int (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上 (图 7). Oncotarget (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 s3
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样品上 (图 s3). J Immunol Res (2015) ncbi
小鼠 单克隆(D-2)
  • 免疫细胞化学; 小鼠; 1:200; 图 2
  • 免疫印迹; 小鼠; 1:1000; 图 2
  • 免疫组化; common platanna; 1:50; 图 5
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, D-2)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200 (图 2), 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 2) 和 被用于免疫组化在common platanna样品上浓度为1:50 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 8
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在人类样品上 (图 8). Oncotarget (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样品上 (图 6a). Oncogene (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, SC7383)被用于被用于免疫印迹在人类样品上. Int J Cancer (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 1:2000
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-1647)被用于被用于免疫印迹在人类样品上浓度为1:2000. Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术 ERK2抗体(SantaCruz, sc-7383)被用于被用于免疫印迹在人类样品上 (图 3c). Oncogene (2016) ncbi
小鼠 单克隆(H-9)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-271451)被用于被用于免疫印迹在人类样品上 (图 3a). Cancer Cell Int (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:8000; 图 7
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, SC-135900)被用于被用于免疫印迹在人类样品上浓度为1:8000 (图 7). Int J Mol Sci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 猪; 图 2
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在猪样品上 (图 2). J Immunol (2015) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 人类; 图 6b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-81492)被用于被用于免疫印迹在人类样品上 (图 6b). BMC Cancer (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样品上. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样品上 (图 3). Cancer Sci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样品上. Cardiovasc Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Laboratories, SC7383)被用于被用于免疫印迹在人类样品上. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 6b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, E-4)被用于被用于免疫印迹在小鼠样品上 (图 6b). J Exp Med (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 1:1000
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在大鼠样品上浓度为1:1000. Int J Neuropsychopharmacol (2015) ncbi
小鼠 单克隆(E-4)
  • immunohistochemistry - free floating section; 大鼠
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于immunohistochemistry - free floating section在大鼠样品上. Free Radic Biol Med (2015) ncbi
小鼠 单克隆(33)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-136288)被用于被用于免疫印迹在人类样品上浓度为1:500. Mol Med Rep (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上 (图 2). J Biomed Sci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, SC-7383)被用于被用于免疫印迹在小鼠样品上. Virol Sin (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 6
圣克鲁斯生物技术 ERK2抗体(Santa-Cruz, sc-7383)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 6). PLoS Pathog (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在小鼠样品上. Neuropharmacology (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样品上. Neuropharmacology (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 图 4d
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, SC-135900)被用于被用于免疫印迹在人类样品上 (图 4d). Oncotarget (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, SC-135900)被用于被用于免疫印迹在人类样品上. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在人类样品上. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Cancer Res (2015) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 小鼠; 图 s4
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-1647)被用于被用于免疫印迹在小鼠样品上 (图 s4). Br J Cancer (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 s8
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样品上 (图 s8). Autophagy (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, SC-7383)被用于被用于免疫印迹在人类样品上 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(MK1)
  • 染色质免疫沉淀 ; 人类; 图 6
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotech, sc-135900)被用于被用于染色质免疫沉淀 在人类样品上 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:500
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样品上浓度为1:500. Neuroscience (2015) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, SC-81492)被用于被用于免疫印迹在小鼠样品上. J Nutr Biochem (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, SC-135900)被用于被用于免疫印迹在小鼠样品上. J Nutr Biochem (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 图 5
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在大鼠样品上 (图 5). Mar Drugs (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, SC-7383)被用于被用于免疫印迹在人类样品上 (图 5). Br J Nutr (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 1:500; 图 4g
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在大鼠样品上浓度为1:500 (图 4g). J Cell Sci (2015) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-136521)被用于被用于免疫印迹在人类样品上 (图 6). Curr Mol Med (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, E-4)被用于被用于免疫印迹在人类样品上. Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样品上浓度为1:500. Cell Signal (2015) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 ERK2抗体(santa Cruz, sc-1647)被用于被用于免疫印迹在人类样品上 (图 1). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 2
圣克鲁斯生物技术 ERK2抗体(santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 小鼠; 1:500; 图 4a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-81492)被用于被用于免疫印迹在小鼠样品上浓度为1:500 (图 4a). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5f
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样品上 (图 5f). Cell Commun Signal (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 4
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnologies, SC-7383)被用于被用于免疫细胞化学在小鼠样品上 和 被用于免疫印迹在小鼠样品上. Endocrinology (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 s21
圣克鲁斯生物技术 ERK2抗体(Santa, sc-7383)被用于被用于免疫印迹在人类样品上 (图 s21). PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上浓度为1:1000. Exp Ther Med (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, SC-135900)被用于被用于免疫印迹在人类样品上. Mutat Res (2015) ncbi
小鼠 单克隆(D-2)
  • 免疫沉淀; 人类; 图 3
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 ERK2抗体(santa Cruz, sc-1647)被用于被用于免疫沉淀在人类样品上 (图 3), 被用于免疫细胞化学在人类样品上 (图 3) 和 被用于免疫印迹在人类样品上 (图 4). Cell Death Differ (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫沉淀; 人类; 图 3
  • 免疫印迹; 人类; 图 s9
圣克鲁斯生物技术 ERK2抗体(santa Cruz, sc-7383)被用于被用于免疫沉淀在人类样品上 (图 3) 和 被用于免疫印迹在人类样品上 (图 s9). Cell Death Differ (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样品上. Leuk Lymphoma (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样品上. Leuk Lymphoma (2015) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在大鼠样品上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在大鼠样品上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, E4)被用于被用于免疫印迹在人类样品上 (图 2). Cell Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样品上. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样品上 (图 2). Cell Cycle (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上 (图 2b). Environ Health Perspect (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:200
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, SC7383)被用于被用于免疫印迹在小鼠样品上浓度为1:200. Mol Cell Biol (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, E-4)被用于被用于免疫印迹在人类样品上 (图 1). J Biol Chem (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样品上. Oncotarget (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫组化; 人类; 1:100
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫组化在人类样品上浓度为1:100. Cancer Lett (2015) ncbi
小鼠 单克隆(D-2)
  • 免疫细胞化学; 人类; 1:200
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-1647)被用于被用于免疫细胞化学在人类样品上浓度为1:200 和 被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在大鼠样品上浓度为1:200. Life Sci (2015) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-81492)被用于被用于免疫印迹在大鼠样品上浓度为1:200. Life Sci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, E-4)被用于被用于免疫印迹在人类样品上浓度为1:1000. Tumour Biol (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Nat Neurosci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样品上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 大鼠; 图 3
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在大鼠样品上 (图 3). Biochem Pharmacol (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样品上浓度为1:1000. Exp Cell Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样品上浓度为1:1000. Exp Cell Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样品上. Oncotarget (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, 7383)被用于被用于免疫印迹在人类样品上 (图 1). Cell Cycle (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:500; 图 2
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样品上浓度为1:500 (图 2). Nat Commun (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上浓度为1:1000. J Biol Chem (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样品上浓度为1:1000. J Biol Chem (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-石蜡切片; 大鼠
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, E-4, sc-7383)被用于被用于免疫组化-石蜡切片在大鼠样品上 和 被用于免疫印迹在大鼠样品上. Hippocampus (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:800
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, SC-135900)被用于被用于免疫印迹在人类样品上浓度为1:800. Growth Factors (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; kangaroo rats; 1:200; 图 2
圣克鲁斯生物技术 ERK2抗体(santa cruz, sc-7383)被用于被用于免疫印迹在kangaroo rats样品上浓度为1:200 (图 2). Cell Mol Neurobiol (2015) ncbi
小鼠 单克隆(12D4)
  • 免疫细胞化学; 人类; 1:300
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotech, sc-81492)被用于被用于免疫细胞化学在人类样品上浓度为1:300. Biores Open Access (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样品上. Biometals (2014) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-1647)被用于被用于免疫印迹在人类样品上. Cancer Res (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, SC-135900)被用于被用于免疫印迹在小鼠样品上. J Am Heart Assoc (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上. J Virol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样品上浓度为1:1000. BMC Cancer (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-石蜡切片; 人类; 1:100
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc7383)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. J Gastroenterol Hepatol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 牛
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在牛样品上. Biomed Res Int (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样品上. Angiogenesis (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样品上. Int J Oncol (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样品上. Int J Oncol (2014) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-1647)被用于被用于免疫印迹在人类样品上. Pigment Cell Melanoma Res (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 兔; 1:1,000
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在兔样品上浓度为1:1,000. Stem Cells Dev (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上. Mol Cell Endocrinol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样品上. Mol Cancer Ther (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 ERK2抗体(Santa, sc-7383)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 1). Mol Cancer Ther (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上. Oncogene (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, SC-7383)被用于被用于免疫印迹在人类样品上. Biochem Pharmacol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc7383)被用于被用于免疫印迹在人类样品上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样品上. Electrophoresis (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样品上. Exp Mol Med (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 番茄
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, SC-7383)被用于被用于免疫印迹在番茄样品上. J Agric Food Chem (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, E-4)被用于被用于免疫印迹在人类样品上浓度为1:1000. Mol Cancer Res (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫细胞化学; 大鼠
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫细胞化学在大鼠样品上 和 被用于免疫印迹在大鼠样品上. Glia (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上. J Biol Chem (2014) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-136521)被用于被用于免疫印迹在大鼠样品上浓度为1:200. Exp Cell Res (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在大鼠样品上浓度为1:200. Exp Cell Res (2014) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, D2)被用于被用于免疫印迹在人类样品上. J Biol Chem (2013) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样品上. Cancer Cell Int (2013) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-1647)被用于被用于免疫印迹在人类样品上浓度为1:500. Mol Neurodegener (2012) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上浓度为1:500. Mol Neurodegener (2012) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-1647)被用于被用于免疫印迹在人类样品上浓度为1:500. J Neuroimmunol (2013) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上浓度为1:500. J Neuroimmunol (2013) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在大鼠样品上. Lab Anim Res (2012) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 1:1000; 图 3b
圣克鲁斯生物技术 ERK2抗体(SantaCruz, E-4)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 3b). Am J Physiol Gastrointest Liver Physiol (2011) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样品上 (图 5). Leukemia (2011) ncbi
赛默飞世尔
小鼠 单克隆(MILAN8R)
  • 流式细胞仪; 人类; 图 s5
赛默飞世尔 ERK2抗体(eBioscience, MILAN8R)被用于被用于流式细胞仪在人类样品上 (图 s5). Eur J Immunol (2018) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 4b
赛默飞世尔 ERK2抗体(Thermo Fisher Scientific, 44-654G)被用于被用于免疫印迹在大鼠样品上 (图 4b). Biosci Rep (2018) ncbi
兔 单克隆(15H10L7)
  • 免疫印迹; 大鼠; 图 4a
赛默飞世尔 ERK2抗体(Thermo Fisher Scientific, 700012)被用于被用于免疫印迹在大鼠样品上 (图 4a). Biosci Rep (2018) ncbi
兔 单克隆(B.742.5)
  • 免疫印迹; Stylophora pistillata; 1:1000; 图 2a
  • 免疫印迹; 人类; 图 4
赛默飞世尔 ERK2抗体(ThermoFisher, MA5-15174)被用于被用于免疫印迹在Stylophora pistillata样品上浓度为1:1000 (图 2a) 和 被用于免疫印迹在人类样品上 (图 4). F1000Res (2017) ncbi
小鼠 单克隆(3F8B3)
  • 免疫印迹; Stylophora pistillata; 1:1000; 图 2a
  • 免疫印迹; 人类; 图 4
赛默飞世尔 ERK2抗体(ThermoFisher, MA5-15605)被用于被用于免疫印迹在Stylophora pistillata样品上浓度为1:1000 (图 2a) 和 被用于免疫印迹在人类样品上 (图 4). F1000Res (2017) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫沉淀; 人类; 图 5a
  • 免疫印迹; 人类; 图 5a
赛默飞世尔 ERK2抗体(Invitrogen, 13-6200)被用于被用于免疫沉淀在人类样品上 (图 5a) 和 被用于免疫印迹在人类样品上 (图 5a). Sci Rep (2017) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 1:500; 图 3a
赛默飞世尔 ERK2抗体(Invitrogen, 13-6200)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 3a). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1d
赛默飞世尔 ERK2抗体(Invitrogen, 44-654G)被用于被用于免疫印迹在人类样品上 (图 1d). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1d
赛默飞世尔 ERK2抗体(Invitrogen, 44-680G)被用于被用于免疫印迹在人类样品上 (图 1d). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5f
赛默飞世尔 ERK2抗体(Invitrogen, 36-8800)被用于被用于免疫印迹在人类样品上 (图 5f). MAbs (2017) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 5e
赛默飞世尔 ERK2抗体(Invitrogen, 13-6200)被用于被用于免疫印迹在人类样品上 (图 5e). MAbs (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3b
赛默飞世尔 ERK2抗体(Invitrogen, 61-7400)被用于被用于免疫印迹在人类样品上 (图 3b). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; African green monkey; 图 5c
赛默飞世尔 ERK2抗体(Zymed, 61-7400)被用于被用于免疫印迹在African green monkey样品上 (图 5c). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1b
赛默飞世尔 ERK2抗体(Invitrogen, 44-680G)被用于被用于免疫印迹在人类样品上 (图 1b). Int J Oncol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s3b
  • 免疫印迹; 小鼠; 图 5e
赛默飞世尔 ERK2抗体(生活技术, 44-680G)被用于被用于免疫印迹在人类样品上 (图 s3b) 和 被用于免疫印迹在小鼠样品上 (图 5e). Nat Immunol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s3b
  • 免疫印迹; 小鼠; 图 5e
赛默飞世尔 ERK2抗体(生活技术, 44-654G)被用于被用于免疫印迹在人类样品上 (图 s3b) 和 被用于免疫印迹在小鼠样品上 (图 5e). Nat Immunol (2016) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 1:2000; 图 2a
赛默飞世尔 ERK2抗体(Thermo Fisher Scientific, ERK-7D8)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 2a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
赛默飞世尔 ERK2抗体(生活技术, 44-654-G)被用于被用于免疫印迹在人类样品上 (图 3). Int J Mol Sci (2016) ncbi
小鼠 单克隆(MILAN8R)
  • 流式细胞仪; 小鼠
赛默飞世尔 ERK2抗体(eBioscience, MILAN8R)被用于被用于流式细胞仪在小鼠样品上. Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
赛默飞世尔 ERK2抗体(Invitrogen, 44680G)被用于被用于免疫印迹在人类样品上 (图 4). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7a
赛默飞世尔 ERK2抗体(Invitrogen, 368800)被用于被用于免疫印迹在人类样品上 (图 7a). Cell Death Differ (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3
  • 免疫印迹; 人类; 图 1
赛默飞世尔 ERK2抗体(Invitrogen, 44680G)被用于被用于免疫组化-石蜡切片在人类样品上 (图 3) 和 被用于免疫印迹在人类样品上 (图 1). BMC Cancer (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6
赛默飞世尔 ERK2抗体(Invitrogen Biosource, 44-654G)被用于被用于免疫印迹在人类样品上 (图 6). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 5
赛默飞世尔 ERK2抗体(Zymed, 61-7400)被用于被用于免疫印迹在小鼠样品上浓度为1:5000 (图 5). Neuropharmacology (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 5
赛默飞世尔 ERK2抗体(Invitrogen, 44-680G)被用于被用于免疫印迹在大鼠样品上 (图 5). Mol Biol Cell (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔 ERK2抗体(Invitrogen, 44680G)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3). Int J Mol Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
赛默飞世尔 ERK2抗体(Thermo Fisher Scientific, 44-680G)被用于被用于免疫印迹在人类样品上 (图 3). Biomed Res Int (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛默飞世尔 ERK2抗体(生活技术, 44-654-G)被用于被用于免疫印迹在人类样品上. Oncotarget (2015) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 ERK2抗体(Invitrogen, 13-6200)被用于被用于免疫印迹在人类样品上 (图 1). Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
赛默飞世尔 ERK2抗体(Invitrogen, 44-680G)被用于被用于免疫印迹在人类样品上 (图 1). Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 ERK2抗体(Invitrogen, 44680G)被用于被用于免疫印迹在人类样品上浓度为1:1000. Biochem Pharmacol (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 图 1
赛默飞世尔 ERK2抗体(生活技术, 44680G)被用于被用于免疫细胞化学在大鼠样品上 (图 1). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 5b
赛默飞世尔 ERK2抗体(Biosource, 44-680G)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 5b). Nat Cell Biol (2015) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠; 1:500; 图 5b
赛默飞世尔 ERK2抗体(Zymed, 13-6200)被用于被用于免疫印迹在小鼠样品上浓度为1:500 (图 5b). Nat Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛默飞世尔 ERK2抗体(Invitrogen, CA 61-7400)被用于被用于免疫印迹在人类样品上. Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
赛默飞世尔 ERK2抗体(Invitrogen Life Technologies, 44680G)被用于被用于免疫印迹在人类样品上 (图 4). Cell Death Dis (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
赛默飞世尔 ERK2抗体(Invitrogen Life Technologies, 44-654G)被用于被用于免疫印迹在人类样品上 (图 4). Cell Death Dis (2015) ncbi
兔 单克隆(15H10L7)
  • 免疫印迹; 人类
赛默飞世尔 ERK2抗体(Invitrogen, 700012)被用于被用于免疫印迹在人类样品上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类
赛默飞世尔 ERK2抗体(Zymed, 13-6200)被用于被用于免疫印迹在人类样品上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠
赛默飞世尔 ERK2抗体(Invitrogen, 13-6200)被用于被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 2
赛默飞世尔 ERK2抗体(Zymed, 61-7400)被用于被用于免疫印迹在小鼠样品上浓度为1:5000 (图 2). Front Cell Neurosci (2014) ncbi
兔 单克隆(K.913.4)
  • 免疫组化-石蜡切片; 斑马鱼
  • 免疫印迹; 斑马鱼
赛默飞世尔 ERK2抗体(Pierce, MA5-15134)被用于被用于免疫组化-石蜡切片在斑马鱼样品上 和 被用于免疫印迹在斑马鱼样品上. Cell Res (2014) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类
赛默飞世尔 ERK2抗体(Zymed Laboratories, 13-6200)被用于被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000
赛默飞世尔 ERK2抗体(Zymed, 61-7400)被用于被用于免疫印迹在小鼠样品上浓度为1:5000. Front Integr Neurosci (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛默飞世尔 ERK2抗体(生活技术, 617400)被用于被用于免疫印迹在大鼠样品上. Brain Res (2014) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:50; 图 6
  • 免疫印迹; 人类; 1:1000; 图 4
赛默飞世尔 ERK2抗体(Invitrogen, 44-680G)被用于被用于免疫组化在人类样品上浓度为1:50 (图 6) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 4). Arch Immunol Ther Exp (Warsz) (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 ERK2抗体(BioSource, 44-654G)被用于被用于免疫印迹在人类样品上浓度为1:1000. Rheumatology (Oxford) (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 ERK2抗体(BioSource, 44-680G)被用于被用于免疫印迹在人类样品上浓度为1:1000. Rheumatology (Oxford) (2014) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 图 4
赛默飞世尔 ERK2抗体(Invitrogen, 36880)被用于被用于免疫组化在大鼠样品上 (图 4). Biochem Biophys Res Commun (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7
赛默飞世尔 ERK2抗体(Invitrogen, 44680G)被用于被用于免疫印迹在人类样品上 (图 7). PLoS ONE (2013) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 1:2500; 表 1
赛默飞世尔 ERK2抗体(Invitrogen, 136200)被用于被用于免疫印迹在大鼠样品上浓度为1:2500 (表 1). Amino Acids (2012) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛默飞世尔 ERK2抗体(BioSource, 44654G)被用于被用于免疫印迹在人类样品上. Nature (2011) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 ERK2抗体(Zymed, 61-7400)被用于被用于免疫印迹在小鼠样品上 (图 4). J Neuroimmunol (2011) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类
赛默飞世尔 ERK2抗体(Zymed, 13-6200)被用于被用于免疫印迹在人类样品上. Biochim Biophys Acta (2011) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 ERK2抗体(Invitrogen, 13-6200)被用于被用于免疫印迹在人类样品上 (图 1). J Endocrinol Invest (2011) ncbi
兔 多克隆
  • 免疫细胞化学; 秀丽隐杆线虫; 图 7
赛默飞世尔 ERK2抗体(Invitrogen, 44680G)被用于被用于免疫细胞化学在秀丽隐杆线虫样品上 (图 7). Nat Cell Biol (2011) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
赛默飞世尔 ERK2抗体(Invitrogen, 44-680G)被用于被用于免疫印迹在人类样品上 (图 3). J Biol Chem (2011) ncbi
兔 多克隆
  • 免疫组化; 人类; 0.5 ug/ul; 图 1
赛默飞世尔 ERK2抗体(Biosource, 44-680G)被用于被用于免疫组化在人类样品上浓度为0.5 ug/ul (图 1). Eur J Oral Sci (2010) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:50; 图 3
  • 免疫印迹; 大鼠; 图 3
赛默飞世尔 ERK2抗体(Biosource, 44-680G)被用于被用于免疫细胞化学在大鼠样品上浓度为1:50 (图 3) 和 被用于免疫印迹在大鼠样品上 (图 3). PLoS ONE (2010) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔 ERK2抗体(Invitrogen, 44680G)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 1). Mol Cancer Res (2010) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 ERK2抗体(Biosource, 44-680G)被用于被用于免疫印迹在小鼠样品上 (图 4). Mol Cell Biol (2009) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 ERK2抗体(Biosource, 44-654G)被用于被用于免疫印迹在小鼠样品上 (图 4). Mol Cell Biol (2009) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
赛默飞世尔 ERK2抗体(Bio-Source, 44-654G)被用于被用于免疫印迹在人类样品上 (图 3). Ann Rheum Dis (2010) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛默飞世尔 ERK2抗体(Zymed, 61-7400)被用于被用于免疫印迹在人类样品上. Oncogene (2009) ncbi
兔 多克隆
赛默飞世尔 ERK2抗体(Zymed, 61-7400)被用于. J Neuroimmunol (2008) ncbi
兔 多克隆
赛默飞世尔 ERK2抗体(BioSource, 44-680G)被用于. J Oral Pathol Med (2008) ncbi
兔 多克隆
赛默飞世尔 ERK2抗体(Invitrogen, 44-680G)被用于. Anal Biochem (2008) ncbi
兔 多克隆
赛默飞世尔 ERK2抗体(Biosource, 44-680)被用于. Exp Cell Res (2008) ncbi
兔 多克隆
赛默飞世尔 ERK2抗体(Zymed, 61-7400)被用于. Mol Cell Biol (2008) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠; 图 2a
赛默飞世尔 ERK2抗体(Zymed, 13-6200)被用于被用于免疫印迹在小鼠样品上 (图 2a). Nat Immunol (2006) ncbi
兔 多克隆
赛默飞世尔 ERK2抗体(Biosource, 44-680G)被用于. J Cell Biochem (2007) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 图 6
赛默飞世尔 ERK2抗体(Zymed, ERK-7D8)被用于被用于免疫印迹在大鼠样品上 (图 6). Cardiovasc Res (2006) ncbi
兔 多克隆
赛默飞世尔 ERK2抗体(Biosources, 44-680G)被用于. Brain Res (2006) ncbi
兔 多克隆
赛默飞世尔 ERK2抗体(BioSource, 44-680G)被用于. Arthritis Rheum (2005) ncbi
兔 多克隆
赛默飞世尔 ERK2抗体(Zymed, 61-7400)被用于. Am J Pathol (2005) ncbi
兔 多克隆
赛默飞世尔 ERK2抗体(Zymed, noca)被用于. J Biol Chem (2005) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 图 7
赛默飞世尔 ERK2抗体(Zymed, ERK-7D8)被用于被用于免疫印迹在大鼠样品上 (图 7). J Biomed Sci (2005) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 1:5000; 图 2
赛默飞世尔 ERK2抗体(Zymed, ERK-7D8)被用于被用于免疫印迹在大鼠样品上浓度为1:5000 (图 2). Life Sci (2005) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 图 5
赛默飞世尔 ERK2抗体(Zymed, 13-6200,)被用于被用于免疫印迹在大鼠样品上 (图 5). J Biol Chem (2004) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 ERK2抗体(Zymed Laboratories, clone ERK-7D8)被用于被用于免疫印迹在人类样品上 (图 2). J Neurochem (2000) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠
赛默飞世尔 ERK2抗体(Zymed, 13-6200)被用于被用于免疫印迹在大鼠样品上. J Clin Invest (1999) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠; 图 1, 2
赛默飞世尔 ERK2抗体(Zymed, 13-6200)被用于被用于免疫印迹在小鼠样品上 (图 1, 2). Neurochem Res (1998) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫沉淀; 小鼠
  • 免疫印迹; 小鼠
赛默飞世尔 ERK2抗体(Zymed, ERK-7D8)被用于被用于免疫沉淀在小鼠样品上 和 被用于免疫印迹在小鼠样品上. Proc Natl Acad Sci U S A (1998) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; common platanna; 1:1000; 图 1
赛默飞世尔 ERK2抗体(Zymed, ERK-7D8)被用于被用于免疫印迹在common platanna样品上浓度为1:1000 (图 1). Science (1998) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 ERK2抗体(Zymed Laboratories, clone ERK-7D8)被用于被用于免疫印迹在人类样品上 (图 3). J Biol Chem (1997) ncbi
艾博抗(上海)贸易有限公司
兔 单克隆(EPR19401)
  • 免疫印迹; 大鼠; 1:1000; 图 5c
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab201015)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 5c). Exp Ther Med (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:100; 图 5a
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab17942)被用于被用于免疫印迹在人类样品上浓度为1:100 (图 5a). Exp Ther Med (2017) ncbi
兔 单克隆(E460)
  • 免疫印迹; 人类; 1:100; 图 5b
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab32081)被用于被用于免疫印迹在人类样品上浓度为1:100 (图 5b). Exp Ther Med (2017) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 1:1000; 图 4b
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab54230)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 4b). Braz J Med Biol Res (2017) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠; 1:500; 图 3a
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab54230)被用于被用于免疫印迹在小鼠样品上浓度为1:500 (图 3a). J Mol Neurosci (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫细胞化学; 人类; 1:200; 图 6d
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab50011)被用于被用于免疫细胞化学在人类样品上浓度为1:200 (图 6d). J Cell Sci (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 4a
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab196883)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 4a). Exp Ther Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab17942)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4a). Oncotarget (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, Ab50011)被用于被用于免疫印迹在大鼠样品上. PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, Ab17942)被用于被用于免疫印迹在大鼠样品上. PLoS ONE (2016) ncbi
兔 单克隆(E460)
  • 免疫组化-石蜡切片; 人类; 图 1c
  • 免疫印迹; 人类; 图 6f
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab32081)被用于被用于免疫组化-石蜡切片在人类样品上 (图 1c) 和 被用于免疫印迹在人类样品上 (图 6f). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab17942)被用于被用于免疫印迹在人类样品上 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab50011)被用于被用于免疫印迹在人类样品上 (图 6). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 4
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab17942)被用于被用于免疫印迹在大鼠样品上 (图 4). Mol Brain (2016) ncbi
兔 单克隆(EPR19401)
  • 免疫印迹; 大鼠; 图 4
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab201015)被用于被用于免疫印迹在大鼠样品上 (图 4). Mol Brain (2016) ncbi
兔 多克隆
  • 免疫印迹; 鸡; 1:200; 图 2b
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab79853)被用于被用于免疫印迹在鸡样品上浓度为1:200 (图 2b). Biometals (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 2
艾博抗(上海)贸易有限公司 ERK2抗体(AbCam, Ab17942)被用于被用于免疫细胞化学在人类样品上 (图 2). Cancer Biol Ther (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 ERK2抗体(AbCam, Ab50011)被用于被用于免疫细胞化学在人类样品上 (图 2) 和 被用于免疫印迹在人类样品上 (图 5). Cancer Biol Ther (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab50011)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司 ERK2抗体(abcam, 50011)被用于被用于免疫印迹在人类样品上 (图 1d). Mar Drugs (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司 ERK2抗体(abcam, 115799)被用于被用于免疫印迹在人类样品上 (图 1d). Mar Drugs (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 3
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab17942)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化; 人类; 图 1
艾博抗(上海)贸易有限公司 ERK2抗体(abcam, ab50011)被用于被用于免疫组化在人类样品上 (图 1). Mol Cancer (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4d
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab17942)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4d). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a,b
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab17942)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 4a,b). PLoS ONE (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab50011)被用于被用于免疫印迹在人类样品上 (图 6). Biomaterials (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab50011)被用于被用于免疫印迹在人类样品上 (图 2a). Med Oncol (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化-石蜡切片; 斑马鱼; 1:300
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab50011)被用于被用于免疫组化-石蜡切片在斑马鱼样品上浓度为1:300. J Immunol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 3A
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab17942)被用于被用于免疫印迹在小鼠样品上浓度为1:5000 (图 3A). Biochimie (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s4
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab17942)被用于被用于免疫印迹在人类样品上 (图 s4). J Cell Sci (2015) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠; 1:2000; 图 1d
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab54230)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 1d). J Biol Chem (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化; 大鼠; 1:200
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab50011)被用于被用于免疫组化在大鼠样品上浓度为1:200. J Surg Res (2014) ncbi
兔 多克隆
  • 免疫印迹; 牛; 图 5, 6
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, AB17942)被用于被用于免疫印迹在牛样品上 (图 5, 6). Endocrinology (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:50-500
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab50011)被用于被用于免疫印迹在人类样品上浓度为1:50-500. Reprod Biol Endocrinol (2013) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化; 人类; 1:200
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab50011)被用于被用于免疫组化在人类样品上浓度为1:200. PLoS ONE (2013) ncbi
BioLegend
小鼠 单克隆(4B11B69)
  • 免疫印迹; 小鼠; 图 6c
BioLegend ERK2抗体(BioLegend, 4B11B69)被用于被用于免疫印迹在小鼠样品上 (图 6c). J Clin Invest (2018) ncbi
小鼠 单克隆(4B11B69)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend ERK2抗体(Biolegend, 4B11B69)被用于被用于流式细胞仪在小鼠样品上 (图 3b). Front Immunol (2017) ncbi
美天旎
人类 单克隆(REA186)
  • 流式细胞仪; 小鼠; 图 3a
美天旎 ERK2抗体(Miltenyi Biotec, REA186)被用于被用于流式细胞仪在小鼠样品上 (图 3a). Front Immunol (2017) ncbi
武汉三鹰
兔 多克隆
  • 免疫印迹; 人类; 1:3000; 图 8a
  • 免疫印迹; 小鼠; 1:3000; 图 8b
武汉三鹰 ERK2抗体(Proteintech, 16443-1-AP)被用于被用于免疫印迹在人类样品上浓度为1:3000 (图 8a) 和 被用于免疫印迹在小鼠样品上浓度为1:3000 (图 8b). J Cell Sci (2019) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000; 图 7
武汉三鹰 ERK2抗体(ProteinTech, 16443-1-AP)被用于被用于免疫印迹在人类样品上浓度为1:5000 (图 7). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
武汉三鹰 ERK2抗体(Proteintech, 16443-1-AP)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
GeneTex
兔 多克隆
  • 免疫印迹; 人类; 图 1b
GeneTex ERK2抗体(GeneTex, GTX17942)被用于被用于免疫印迹在人类样品上 (图 1b). Int J Oncol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
GeneTex ERK2抗体(Genetex, GTX17942)被用于被用于免疫印迹在人类样品上浓度为1:1000. Biochem Pharmacol (2015) ncbi
亚诺法生技股份有限公司
兔 单克隆(G15-B)
  • 免疫印迹; 人类
亚诺法生技股份有限公司 ERK2抗体(Abnova, G15-B)被用于被用于免疫印迹在人类样品上. J Transl Med (2015) ncbi
安迪生物R&D
山羊 多克隆
  • 免疫印迹; 小鼠
安迪生物R&D ERK2抗体(R&D Systems, AF12301)被用于被用于免疫印迹在小鼠样品上. In Vitro Cell Dev Biol Anim (2014) ncbi
赛信通(上海)生物试剂有限公司
兔 多克隆
  • 免疫印迹; 小鼠; 图 s5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 s5a). Science (2019) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4376)被用于被用于免疫印迹在人类样品上 (图 6c). elife (2019) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样品上 (图 5d). Cell Rep (2018) ncbi
兔 多克隆
  • proximity ligation assay; 人类; 1:100; 图 1b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102s)被用于被用于proximity ligation assay在人类样品上浓度为1:100 (图 1b). J Vis Exp (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 4b). Science (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 2d). Nat Commun (2018) ncbi
兔 单克隆(20G11)
  • 免疫细胞化学; 人类; 1:1000; 图 s3c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376)被用于被用于免疫细胞化学在人类样品上浓度为1:1000 (图 s3c). Genes Dev (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上 (图 7c). J Clin Invest (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样品上 (图 s3a). Immunity (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 2e). Cancer Res (2018) ncbi
兔 单克隆(20G11)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s17b
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s5j, s6h, s14f, s15g
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 s17b) 和 被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 s5j, s6h, s14f, s15g). Nat Med (2018) ncbi
兔 多克隆
  • 免疫印迹; scFv
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在scFv样品上. Nat Med (2018) ncbi
兔 多克隆
  • 流式细胞仪; 小鼠; 1:100-1:200; 图 s5e
  • 流式细胞仪; 人类; 1:100-1:200; 图 s5f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于流式细胞仪在小鼠样品上浓度为1:100-1:200 (图 s5e) 和 被用于流式细胞仪在人类样品上浓度为1:100-1:200 (图 s5f). Cell Stem Cell (2018) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:2000; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 197G2)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 2a). J Neurochem (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102S)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 5a). Biosci Rep (2018) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 4c
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫细胞化学在小鼠样品上 (图 4c) 和 被用于免疫印迹在人类样品上 (图 1a). Cell Mol Immunol (2018) ncbi
兔 单克隆(197G2)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于其他在人类样品上 (图 4c). Cancer Cell (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 s3a). J Clin Invest (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 s1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 s1a). Mol Genet Metab (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 6c). Cell (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s2d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 s2d). Nature (2018) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 1:1000; 图 8b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 8b). Br J Pharmacol (2018) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 4376)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 6e). Nat Commun (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s3f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 s3f). Nature (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 2a). Mol Med Rep (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 9102)被用于被用于免疫印迹在人类样品上 (图 5a). Oncogenesis (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 7a). J Biol Chem (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s2a
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 s2a) 和 被用于免疫印迹在小鼠样品上 (图 4a). J Biol Chem (2018) ncbi
兔 单克隆(197G2)
  • 流式细胞仪; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 197G2)被用于被用于流式细胞仪在小鼠样品上 (图 1c). J Clin Invest (2018) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样品上 (图 3a). Brain Behav Immun (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在小鼠样品上 (图 5a). Mol Neurobiol (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s10c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 s10c). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 13e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 13e). J Clin Invest (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6b, 6c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 6b, 6c). Gut (2018) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 人类; 图 9e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样品上 (图 9e). J Clin Invest (2017) ncbi
兔 单克隆(20G11)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 3d). BMC Cancer (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 3b). Mol Cancer Res (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 9102)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 3). Hum Mol Genet (2017) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样品上 (图 3e). Proc Natl Acad Sci U S A (2017) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 人类; 1:1000; 图 s4h
  • 免疫组化; 小鼠; 1:400; 图 4f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 s4h) 和 被用于免疫组化在小鼠样品上浓度为1:400 (图 4f). Nature (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s4f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 s4f). J Clin Invest (2017) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:3000; 图 3d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样品上浓度为1:3000 (图 3d). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在人类样品上 (图 1e). J Immunol (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s1b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 s1b). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000; 图 s5f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:5000 (图 s5f). Arterioscler Thromb Vasc Biol (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 4c). Cell Immunol (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 6a). Exp Ther Med (2017) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4a). Breast Cancer (Dove Med Press) (2017) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 9102S)被用于被用于免疫印迹在大鼠样品上浓度为1:500 (图 2a). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 3a). Biomed Res Int (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4A
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 4A). Neurochem Res (2017) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 7b). Toxicol Appl Pharmacol (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 9108)被用于被用于免疫印迹在人类样品上 (图 6b). elife (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 7e). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 3a). J Biol Chem (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 2d). Mol Cell (2017) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377S)被用于被用于免疫印迹在小鼠样品上 (图 3). Front Aging Neurosci (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4a
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 4a) 和 被用于免疫印迹在小鼠样品上 (图 3c). Sci Signal (2017) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 图 4a
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 197G2)被用于被用于免疫印迹在人类样品上 (图 4a) 和 被用于免疫印迹在小鼠样品上 (图 3c). Sci Signal (2017) ncbi
兔 单克隆(197G2)
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4377)被用于被用于reverse phase protein lysate microarray在人类样品上 (图 st6). Cancer Cell (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 5d). J Cell Sci (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 EV4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 EV4a). EMBO Mol Med (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102S)被用于被用于免疫印迹在人类样品上 (图 1f). J Cell Sci (2017) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 ERK2抗体(cst, 4377S)被用于被用于免疫印迹在人类样品上 (图 1f). J Cell Sci (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signalling, 9102)被用于被用于免疫印迹在人类样品上 (图 1f). Cancer Lett (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4a
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 4a) 和 被用于免疫印迹在小鼠样品上 (图 3a). J Biol Chem (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 3f). J Immunol (2017) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 4376)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 4). PLoS ONE (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000; 图 5c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上浓度为1:5000 (图 5c). Mol Biol Cell (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102S)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 3a). Oncotarget (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 5f). Br J Cancer (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 S6o
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 S6o). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102L)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 2a). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 1b). Cancer Res (2017) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样品上 (图 5a). Am J Respir Crit Care Med (2017) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 大鼠; 1:5000; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在大鼠样品上浓度为1:5000 (图 1a). Cell Death Differ (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s9a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 s9a). Arterioscler Thromb Vasc Biol (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 4d). Oncotarget (2017) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377S)被用于被用于免疫印迹在人类样品上 (图 3a). PLoS ONE (2017) ncbi
兔 多克隆
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于. Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 s7a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 s7a). Am J Hum Genet (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s3
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 s3). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 3d). Mol Immunol (2017) ncbi
兔 单克隆(197G2)
  • reverse phase protein lysate microarray; 人类; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于reverse phase protein lysate microarray在人类样品上 (图 3a). Nature (2017) ncbi
兔 单克隆(197G2)
  • 流式细胞仪; 人类; 1:200; 图 7b
  • 免疫印迹; 人类; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于流式细胞仪在人类样品上浓度为1:200 (图 7b) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 7a). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 4b). Breast Cancer Res (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2f
  • 免疫印迹; 人类; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 2f) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 2e). Mol Clin Oncol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 5a). J Biol Chem (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s5e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 s5e). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 7c). J Clin Invest (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 1c). Cell Mol Gastroenterol Hepatol (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 3c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:500 (图 3c). J Clin Invest (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 2a). Mol Cell Proteomics (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1A; 1B
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 1A; 1B). Oncotarget (2017) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 人类; 图 s5f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样品上 (图 s5f). Nature (2017) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 1b). J Cell Physiol (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 6e). JCI Insight (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 4a). Neural Plast (2016) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在人类样品上. Cell Syst (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样品上 (图 2a). J Biol Chem (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000. Biochim Biophys Acta Mol Cell Res (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 5). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3b) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 3a). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9108)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 6d). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 6a). J Cancer (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s7e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 s7e). J Clin Invest (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上. Circ Res (2017) ncbi
兔 多克隆
  • 免疫印迹; 斑马鱼; 1:200
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在斑马鱼样品上浓度为1:200. Dis Model Mech (2017) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:1000; 图 12
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377S)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 12). J Neurosci Res (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 12
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102S)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 12). J Neurosci Res (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 7e). FASEB J (2017) ncbi
兔 单克隆(20G11)
  • 免疫组化; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫组化在小鼠样品上 (图 3e). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 2c). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 3a). J Biol Chem (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 2a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 2d). Mol Neurobiol (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 6a). Oxid Med Cell Longev (2016) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 3). Cell Death Dis (2016) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376S)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 7). Respir Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2b
  • 免疫印迹; 大鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 2b) 和 被用于免疫印迹在大鼠样品上浓度为1:1000 (图 3a). Neuroreport (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102S)被用于被用于免疫印迹在人类样品上 (图 2a). Nat Chem Biol (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4G
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 4G). J Clin Invest (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s3h, s4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 s3h, s4a). Nature (2016) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样品上 (图 2d). J Exp Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 6a). Mol Neurobiol (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 s4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 s4b). Neoplasia (2016) ncbi
兔 多克隆
  • 免疫印迹; 狗; 表 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在狗样品上 (表 1). Mol Reprod Dev (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在人类样品上. J Proteome Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 5e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 5e). Cell Cycle (2016) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4377)被用于被用于免疫印迹在人类样品上 (图 2a). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102 S)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 s3). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫组化在人类样品上浓度为1:1000 (图 1a). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:800; 图 7a
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:800 (图 7a). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 5c). Eur J Cancer (2016) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 图 6h
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样品上 (图 6h). Nature (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 4a). Int J Mol Sci (2016) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样品上 (图 4a). Int J Mol Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 1c). Cell Death Dis (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000. Nat Commun (2016) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376S)被用于被用于免疫印迹在人类样品上 (图 7a). Cell (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 1d
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 1d). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上 (图 5c). J Exp Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s7e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 s7e). Nat Cell Biol (2016) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:2000; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 4377)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 5a). Int J Mol Med (2016) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3g). Oncogene (2017) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1a, 6f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 1a, 6f). J Pharmacol Exp Ther (2016) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 1:1000; 图 3h
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4377)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3h). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000; 图 3h
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:5000 (图 3h). Oncotarget (2016) ncbi
兔 单克隆(197G2)
  • 其他; 人类; 1:50; 图 5e
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于其他在人类样品上浓度为1:50 (图 5e) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 5a). BMC Cancer (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologies, 9102)被用于被用于免疫印迹在小鼠样品上 (图 6a). Clin Sci (Lond) (2016) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 5a). J Physiol Biochem (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 2c). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 1d). J Am Heart Assoc (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 5c). Mol Cell Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 s2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在大鼠样品上 (图 s2). Sci Rep (2016) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4376)被用于被用于免疫印迹在人类样品上 (图 1b). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 8) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 6c). EMBO Mol Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102S)被用于被用于免疫印迹在小鼠样品上 (图 4c). BMC Complement Altern Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 9102S)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 2). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6.a, b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 6.a, b). Cancer Chemother Pharmacol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4b
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 4b) 和 被用于免疫印迹在人类样品上 (图 4a). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4). Oncol Lett (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (表 1). Br J Cancer (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 5d). J Biol Chem (2016) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 20G11)被用于被用于免疫印迹在小鼠样品上 (图 2a). Proc Natl Acad Sci U S A (2016) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:1000; 图 s6c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 s6c). Nature (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s6c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 s6c). Nature (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 6). elife (2016) ncbi
兔 单克隆(20G11)
  • 免疫组化; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376)被用于被用于免疫组化在小鼠样品上 (图 6). elife (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在大鼠样品上 (图 4a). Toxicol Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s1
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 9102)被用于被用于免疫印迹在人类样品上 (图 s1) 和 被用于免疫印迹在小鼠样品上 (图 1b). J Cell Biol (2016) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 20G11)被用于被用于免疫印迹在小鼠样品上 (图 3a). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 9102)被用于被用于免疫印迹在人类样品上 (图 2a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 6). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 3a). Nat Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 7). PLoS ONE (2016) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4377S)被用于被用于免疫印迹在人类样品上 (图 3e). Nature (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 9102)被用于被用于免疫印迹在人类样品上 (图 6b). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 2d). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 9102)被用于被用于免疫印迹在人类样品上 (图 3d). Oncotarget (2016) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:2000; 图 S11
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 S11). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 3a). Oncogene (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在人类样品上 (图 2a). Cell Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102S)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 2). Oxid Med Cell Longev (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:800; 图 7A
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:800 (图 7A). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 1a,s6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 1a,s6). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 s4). Nat Commun (2016) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 人类; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376S)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 s4). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 4c). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 1a). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 5a). Proc Natl Acad Sci U S A (2016) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样品上 (图 2). PLoS ONE (2016) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样品上 (图 3a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5b
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 5b) 和 被用于免疫印迹在小鼠样品上 (图 5b). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 4b). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在大鼠样品上 (图 1a). Cell Signal (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 6). Mol Hum Reprod (2016) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样品上 (图 6). Mol Hum Reprod (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s10b
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9,102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 s10b). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 1). J Clin Invest (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Tech, 9102)被用于被用于免疫印迹在小鼠样品上 (图 6). Cell Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上. EMBO Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 2). Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 9
赛信通(上海)生物试剂有限公司 ERK2抗体(New England Biolabs, 9102)被用于被用于免疫印迹在人类样品上 (图 9). PLoS ONE (2016) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4377)被用于被用于免疫印迹在小鼠样品上 (图 4a). elife (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4b
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9108)被用于被用于免疫印迹在小鼠样品上 (图 4b) 和 被用于免疫印迹在人类样品上 (图 1b). Cell Signal (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在人类样品上 (图 4). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 5c). Mucosal Immunol (2017) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样品上 (图 5c). Mucosal Immunol (2017) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 3a). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Tech, 9102S)被用于被用于免疫印迹在人类样品上 (图 2). Biol Open (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在人类样品上 (图 5). Oncogenesis (2016) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4376)被用于被用于免疫印迹在人类样品上 (图 5). Oncogenesis (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signalling tecnology, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 5b). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 s2). Pediatr Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102P)被用于被用于免疫印迹在人类样品上 (图 7). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102s)被用于被用于免疫印迹在人类样品上 (图 3). Oncotarget (2016) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377S)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 6). Mol Biol Cell (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102S)被用于被用于免疫印迹在人类样品上 (图 3a). Int J Oncol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上 (图 5). Sci Rep (2016) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:1000; 图 s6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 20G11)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 s6). Nat Commun (2016) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:500; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹在小鼠样品上浓度为1:500 (图 6). Cell Death Differ (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 6). Mol Cancer Ther (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signal, 9102S)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 s2). Proc Natl Acad Sci U S A (2016) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signal, 4377S)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 s2). Proc Natl Acad Sci U S A (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 s1). Hepatology (2016) ncbi
兔 多克隆
  • 酶联免疫吸附测定; 小鼠; 1:200; 表 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于酶联免疫吸附测定在小鼠样品上浓度为1:200 (表 1). Eur J Pharm Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 表 1
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:5000 (表 1). J Alzheimers Dis (2016) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 20G11)被用于被用于免疫印迹在人类样品上 (图 5). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 1a). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s11
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 s11). Nat Commun (2016) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Tech, 4377S)被用于被用于免疫印迹在人类样品上 (图 3). Sci Signal (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Tech, 9102S)被用于被用于免疫印迹在人类样品上 (图 3). Sci Signal (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 4). Oncogene (2016) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 s5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样品上 (图 s5). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 7a). Stem Cells (2016) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 5e). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 2f). Sci Rep (2016) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样品上. Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样品上. Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102L)被用于被用于免疫印迹在人类样品上 (图 2a). Cancer Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Ozyme, 9102)被用于被用于免疫印迹在人类样品上 (图 5a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上浓度为1:5000 (图 2). Nat Commun (2016) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:1000; 图 5s3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 5s3). elife (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5s3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 5s3). elife (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 10
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 10). Pharmacol Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Tech, 9102)被用于被用于免疫印迹在人类样品上 (图 1). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 1). PLoS ONE (2016) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样品上 (图 1). PLoS ONE (2016) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377S)被用于被用于免疫印迹在人类样品上 (图 3d). J Exp Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; scFv; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 9102)被用于被用于免疫印迹在scFv样品上浓度为1:1000 (图 5a). Mol Med Rep (2016) ncbi
兔 单克隆(197G2)
  • 免疫印迹; scFv; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 4377)被用于被用于免疫印迹在scFv样品上浓度为1:1000 (图 5a). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(cell Signaling Tech, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样品上 (图 s7). Cell Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 5). Biomaterials (2016) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 1:500; 图 1b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 4377)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 1b). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 1b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 1b). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 st1). Liver Int (2016) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在小鼠样品上 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在大鼠样品上 (图 5). Mol Biol Cell (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 6). Development (2016) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹在人类样品上 (图 5). Target Oncol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 s7). Brain Behav (2015) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:1000; 图 s7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 s7). Brain Behav (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3). Nat Commun (2015) ncbi
兔 多克隆
  • 流式细胞仪; 人类; 图 8
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于流式细胞仪在人类样品上 (图 8) 和 被用于免疫印迹在人类样品上 (图 8). J Clin Invest (2016) ncbi
兔 单克隆(197G2)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 6b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, cs4377s)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:50 (图 6b). Development (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上 (图 5). Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 4). Cell Cycle (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 9
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 9). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 5a). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102S)被用于被用于免疫印迹在小鼠样品上 (图 3). Stem Cell Reports (2015) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在人类样品上 (图 1). Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样品上 (图 s5). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 3a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 4d). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3d). Am J Physiol Lung Cell Mol Physiol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3A
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 3A). Cell Adh Migr (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling Technology, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3). J Cell Mol Med (2016) ncbi
兔 多克隆
  • 免疫组化基因敲除验证; 小鼠; 图 3
  • 免疫印迹基因敲除验证; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9108)被用于被用于免疫组化基因敲除验证在小鼠样品上 (图 3) 和 被用于免疫印迹基因敲除验证在小鼠样品上 (图 3). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 4). Mol Cancer (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 4). J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上 (图 1) 和 被用于免疫印迹在小鼠样品上 (图 1). J Exp Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 s6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:500 (图 s6). J Clin Invest (2015) ncbi
兔 单克隆(197G2)
  • 流式细胞仪; 人类; 图 2
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于流式细胞仪在人类样品上 (图 2) 和 被用于免疫印迹在人类样品上 (图 2). Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 7e). J Natl Cancer Inst (2016) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377S)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 5a). Int J Mol Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 7). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5C
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Sgnaling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 5C). Mol Oncol (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 1). Neuroscience (2015) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样品上 (图 3). elife (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3a). Oncotarget (2016) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4b
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102S)被用于被用于免疫印迹在人类样品上 (图 4b) 和 被用于免疫印迹在小鼠样品上 (图 2). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 1). Proc Natl Acad Sci U S A (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 2). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 6). Cancer Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Tech, 9102)被用于被用于免疫印迹在人类样品上 (图 1). J Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologies, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000. Oncoscience (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样品上 (图 4) 和 被用于免疫印迹在人类样品上 (图 4). Oncogene (2016) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样品上 (图 1a). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 5). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 s5). PLoS ONE (2015) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Tech, 4377)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 3). Nat Neurosci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 5a). Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在大鼠样品上 (图 4b). Mol Neurobiol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 4a). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在大鼠样品上. Glia (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上. Development (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 3a). Mol Ther Nucleic Acids (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102L)被用于被用于免疫印迹在人类样品上 (图 3). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 S2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上 (图 S2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 4a). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 8). Sci Rep (2015) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 大鼠; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 8). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signalling technology, 9102)被用于被用于免疫印迹在大鼠样品上 (图 6). Cardiovasc Res (2015) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在小鼠样品上 (图 5c). Sci Signal (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1i
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 9102)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 1i). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 s5). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 5c). Cell Cycle (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 1). Oncotarget (2015) ncbi
兔 单克隆(20G11)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 s3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:150 (图 s3). Mol Cancer (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 3b). Int J Obes (Lond) (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在大鼠样品上 (图 7). Int J Mol Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4b,c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 4b,c). Leukemia (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在大鼠样品上 (图 4). J Neuroinflammation (2015) ncbi
兔 多克隆
  • 免疫印迹; 猪; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在猪样品上 (图 2). J Immunol (2015) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样品上 (图 6). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:500. FASEB J (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 6). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000. Mol Brain (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, CST-9102)被用于被用于免疫印迹在大鼠样品上浓度为1:1000. PLoS ONE (2015) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 小鼠; 图 s5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 20G11)被用于被用于免疫印迹在小鼠样品上 (图 s5). Nature (2015) ncbi
兔 多克隆
  • 其他; 小鼠; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于其他在小鼠样品上浓度为1:1000 (图 s1). Front Microbiol (2015) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376S)被用于被用于免疫印迹在小鼠样品上 (图 3). Nat Struct Mol Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 仓鼠; 图 5s1d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在仓鼠样品上 (图 5s1d). elife (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 3). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上. Breast Cancer Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102S)被用于被用于免疫印迹在大鼠样品上浓度为1:1000. Am J Physiol Lung Cell Mol Physiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 4). PLoS ONE (2015) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4376S)被用于被用于免疫印迹在大鼠样品上 (图 5). J Korean Med Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102S)被用于被用于免疫印迹在大鼠样品上 (图 5). J Korean Med Sci (2015) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 小鼠; 图 2,3,4,5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376s)被用于被用于免疫印迹在小鼠样品上 (图 2,3,4,5). Cell Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上. J Neurochem (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:2000. Mol Oncol (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 3a). BMC Complement Altern Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 6). elife (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 2c). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 2). elife (2015) ncbi
兔 单克隆(197G2)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6a, 6b
  • 免疫印迹; 人类; 图 3a, 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 6a, 6b) 和 被用于免疫印迹在人类样品上 (图 3a, 4a). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 2). Nat Immunol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling Technologies, 9102)被用于被用于免疫印迹在小鼠样品上. Cardiovasc Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 4b). ASN Neuro (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 1e). J Cell Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 5). BMC Genomics (2015) ncbi
兔 单克隆(20G11)
  • 免疫组化-石蜡切片; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500. Dev Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 1). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2a
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样品上 (图 2a) 和 被用于免疫印迹在人类样品上 (图 2b). Oncotarget (2015) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样品上 (图 4d). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 1). EBioMedicine (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 1). Oncotarget (2015) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样品上 (图 s1). Mol Cancer Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在大鼠样品上浓度为1:1000. Eur J Neurosci (2016) ncbi
兔 单克隆(20G11)
  • 免疫组化-石蜡切片; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 2). elife (2015) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4377)被用于被用于免疫印迹在人类样品上 (图 7). Oncotarget (2015) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 羊; 1:2500
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在羊样品上浓度为1:2500. Mol Cell Endocrinol (2015) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4377)被用于被用于免疫印迹在小鼠样品上 (图 1). J Immunol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s8
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上 (图 s8). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:200; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:200 (图 2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 4). Biochim Biophys Acta (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 5c). Nat Commun (2015) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologies, 4377)被用于被用于免疫印迹在人类样品上. PLoS Pathog (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologies, 9102)被用于被用于免疫印迹在人类样品上. PLoS Pathog (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 2). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 s6). Sci Rep (2015) ncbi
兔 单克隆(20G11)
  • 免疫组化-石蜡切片; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 5). Oncogene (2016) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 大鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 4376)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 4). Toxicology (2015) ncbi
兔 多克隆
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Tech, 9102)被用于. PLoS ONE (2015) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 197G2)被用于被用于免疫印迹在小鼠样品上 (图 6). Mol Biol Cell (2015) ncbi
兔 单克隆(20G11)
  • 免疫组化-石蜡切片; 狗
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 20G11)被用于被用于免疫组化-石蜡切片在狗样品上. Int J Oncol (2015) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在人类样品上. Mol Cancer Ther (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样品上 (图 1). Mol Biol Cell (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 7). J Cell Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在大鼠样品上 和 被用于免疫细胞化学在人类样品上. Toxicol Lett (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 2). J Neurotrauma (2015) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4377)被用于被用于免疫印迹在小鼠样品上 (图 1). FASEB J (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 1). FASEB J (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 8). Oncotarget (2015) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 1:1000; 图 s3c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologies,, 4377)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 s3c). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s3c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologies, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 s3c). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Tech, 9102)被用于被用于免疫印迹在大鼠样品上 (图 5). J Immunol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 3). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上. J Cell Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Int J Mol Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology., 9102)被用于被用于免疫印迹在人类样品上. Cell Signal (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4d). BMC Cancer (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 0.008 ug/ml; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为0.008 ug/ml (图 4). Endocrinology (2015) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 1:1500; 图 st8
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 197G2)被用于被用于免疫印迹在人类样品上浓度为1:1500 (图 st8). Gastroenterology (2015) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 20G11)被用于被用于免疫印迹在人类样品上. Acta Neuropathol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 4f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling TECHNOLOGY, 9102)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 4f). Sci Signal (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 s2). Nat Commun (2015) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:500; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样品上浓度为1:500 (图 4). J Physiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 s12
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 s12). Nat Genet (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Genes Cancer (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在人类样品上. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 2). Mol Biol Cell (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 5e). Nat Commun (2015) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 1:500; 表 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样品上浓度为1:500 (表 3). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 表 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:500 (表 3). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2b
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 2b) 和 被用于免疫印迹在人类样品上 (图 1a). Nature (2015) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 小鼠; 图 s7a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4376)被用于被用于免疫印迹在小鼠样品上 (图 s7a). Nat Immunol (2015) ncbi
兔 单克隆(20G11)
  • 免疫组化-石蜡切片; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling Technology, 4376)被用于被用于免疫组化-石蜡切片在人类样品上. Cancer Genet (2015) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 197G2)被用于被用于免疫印迹在人类样品上. PLoS ONE (2015) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 1:2000; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 5). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102s)被用于被用于免疫印迹在人类样品上浓度为1:1000. Exp Ther Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 7). Mol Endocrinol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上. Leukemia (2015) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 197G2)被用于被用于免疫印迹在人类样品上. J Cell Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9108)被用于被用于免疫印迹在大鼠样品上 (图 7). Int J Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 2). Pigment Cell Melanoma Res (2015) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 1a
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377S)被用于被用于免疫印迹在小鼠样品上 (图 1a) 和 被用于免疫印迹在人类样品上 (图 1a). Mol Carcinog (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上. Invest Ophthalmol Vis Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 2c). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9108)被用于被用于免疫印迹在人类样品上. Cell Signal (2015) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹在人类样品上. Cell Signal (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 3a). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(cst, 9102)被用于被用于免疫印迹在小鼠样品上 (图 4a). PLoS ONE (2015) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 197G2)被用于被用于免疫印迹在人类样品上 (图 2). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Age (Dordr) (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 2). Springerplus (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上. Neoplasia (2015) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 1). J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 1). Mol Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 7). Mol Cell Biol (2015) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 7). Mol Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上 (图 4). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 6). Cell Death Dis (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cst, 9102)被用于被用于免疫印迹在小鼠样品上. J Proteome Res (2015) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:1000; 图 s6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4377)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 s6). Development (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 s6). Development (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 3). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上. Neurobiol Learn Mem (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000. Oncotarget (2015) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 8
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377S)被用于被用于免疫印迹在小鼠样品上 (图 8). Mol Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:2000; 图 11
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在大鼠样品上浓度为1:2000 (图 11). J Appl Toxicol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, no. 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Am J Physiol Regul Integr Comp Physiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s7c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 s7c). Nature (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000. Tumour Biol (2015) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377S)被用于被用于免疫印迹在人类样品上浓度为1:1000. Am J Physiol Renal Physiol (2015) ncbi
兔 单克隆(20G11)
  • 免疫组化-石蜡切片; 小鼠; 1:25
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:25. PLoS Genet (2014) ncbi
兔 单克隆(20G11)
  • 免疫组化; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 20G11)被用于被用于免疫组化在人类样品上. Cancer Cell (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样品上 (图 5). Int J Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:250
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上浓度为1:250. J Neuropathol Exp Neurol (2015) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377S)被用于被用于免疫印迹在小鼠样品上 (图 8a). Free Radic Biol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上. Oncotarget (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 4). PLoS ONE (2014) ncbi
兔 单克隆(20G11)
  • 免疫组化-石蜡切片; 小鼠; 图 s4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 s4). Nat Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:6000; 图 3b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102S)被用于被用于免疫印迹在小鼠样品上浓度为1:6000 (图 3b). Nat Neurosci (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 3). Proteomics (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在大鼠样品上浓度为1:1000. Physiol Rep (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在大鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; scFv; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling Technology, 9102L)被用于被用于免疫印迹在scFv样品上浓度为1:1000. BMC Neurosci (2014) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样品上. J Mol Endocrinol (2014) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹在人类样品上 (图 6). Oncotarget (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上. J Thyroid Res (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3, 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上 (图 3, 4). Mol Cancer Res (2015) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 20G11)被用于被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 6). Nat Commun (2014) ncbi
兔 单克隆(20G11)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376S)被用于被用于免疫组化-石蜡切片在小鼠样品上 和 被用于免疫印迹在小鼠样品上. Neoplasia (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样品上 (图 3). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 4). Oncogene (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上. Oncotarget (2014) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:1000
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 和 被用于免疫印迹在人类样品上浓度为1:1000. Int Immunopharmacol (2014) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样品上 (图 6). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 6). PLoS ONE (2014) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling Technology, 4377S)被用于被用于免疫印迹在人类样品上 (图 1). Cell Prolif (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上. J Thorac Oncol (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在大鼠样品上. BMC Nephrol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s8
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 s8). Nature (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling technology, 9102L)被用于被用于免疫印迹在人类样品上 (图 5). Breast Cancer Res Treat (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样品上. Molecules (2014) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 猪; 1:500
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在猪样品上浓度为1:500. Amino Acids (2014) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹在小鼠样品上. Arthritis Rheumatol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 3). Eur J Immunol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(cell Signaling, #9102)被用于被用于免疫印迹在人类样品上. Mol Oncol (2014) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在人类样品上. Eur J Cancer (2014) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样品上浓度为1:500. Free Radic Biol Med (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Free Radic Biol Med (2014) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling technology, 4376)被用于被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样品上 (图 5). J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在大鼠样品上浓度为1:500 (图 3). J Biol Chem (2014) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 197G2)被用于被用于免疫印迹在小鼠样品上 (图 s1). Nat Immunol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102S)被用于被用于免疫印迹在小鼠样品上浓度为1:500. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上. Diabetes (2014) ncbi
兔 多克隆
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫沉淀在人类样品上 和 被用于免疫印迹在人类样品上. Mol Cell Biol (2014) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在人类样品上. Cell Death Differ (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上. Breast Cancer Res (2014) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样品上. J Immunol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 s1). Melanoma Res (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上. Proc Natl Acad Sci U S A (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Nat Cell Biol (2014) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377S)被用于被用于免疫印迹在大鼠样品上. Brain Res (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上. Oncogene (2014) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:2500
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样品上浓度为1:2500. Brain Behav (2014) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样品上. Breast Cancer Res (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 1). Mol Cancer Ther (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上. Clin Cancer Res (2014) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹在人类样品上浓度为1:1000. Int J Radiat Oncol Biol Phys (2014) ncbi
兔 单克隆(20G11)
  • 免疫组化-冰冻切片; 大鼠; 1:200
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200 和 被用于免疫印迹在大鼠样品上浓度为1:1000. BMC Complement Altern Med (2014) ncbi
兔 单克隆(197G2)
  • 流式细胞仪; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 197G2)被用于被用于流式细胞仪在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上浓度为1:1000. Nanomedicine (2014) ncbi
兔 单克隆(20G11)
  • 免疫组化-石蜡切片; 小鼠; 1:75; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:75 (图 2). Genes Dev (2014) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377S)被用于被用于免疫印迹在人类样品上. Neuro Oncol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样品上. J Biol Chem (2014) ncbi
兔 单克隆(197G2)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫组化-石蜡切片在小鼠样品上 和 被用于免疫印迹在小鼠样品上. J Biol Chem (2014) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologies, 4377)被用于被用于免疫印迹在小鼠样品上. Am J Respir Cell Mol Biol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:10000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样品上浓度为1:10000. Sci Signal (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling Technology, #9102)被用于被用于免疫印迹在人类样品上浓度为1:1000. Breast Cancer Res (2014) ncbi
兔 单克隆(20G11)
  • 免疫组化; 猪; 1:50
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 4376)被用于被用于免疫组化在猪样品上浓度为1:50. Dev Biol (2014) ncbi
兔 多克隆
  • 免疫组化; 猪; 1:50
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 9102)被用于被用于免疫组化在猪样品上浓度为1:50. Dev Biol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:200; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:200 (图 6). Sci Rep (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5, 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 5, 7). J Cell Sci (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样品上. Cancer Discov (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signaling, 9102)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Mol Neurobiol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologies, 9102)被用于被用于免疫印迹在人类样品上. Int J Biochem Cell Biol (2014) ncbi
兔 单克隆(20G11)
  • 免疫组化; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫组化在人类样品上. Mol Cancer Ther (2014) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Nat Med (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样品上 (图 5). Oncogene (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4
  • 免疫印迹; 小鼠; 1:1000; 图 5
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 4), 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 5) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 7). Sci Rep (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, CST-9102)被用于被用于免疫印迹在人类样品上 (图 4). Oncogene (2014) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样品上. PLoS ONE (2013) ncbi
兔 单克隆(197G2)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologies, 4377)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 和 被用于免疫印迹在人类样品上. PLoS ONE (2013) ncbi
兔 单克隆(20G11)
  • 免疫组化-石蜡切片; 人类; 1:400
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologies, 4376)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:400 和 被用于免疫印迹在人类样品上. PLoS ONE (2013) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹在小鼠样品上浓度为1:200. Nat Med (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 9102)被用于被用于免疫印迹在人类样品上 (图 4b). Int J Cancer (2014) ncbi
兔 单克隆(20G11)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologies, 4376)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 和 被用于免疫印迹在人类样品上浓度为1:1000. Oncotarget (2013) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologie, 4377)被用于被用于免疫印迹在人类样品上. Oncogenesis (2013) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在人类样品上浓度为1:1000. Head Neck (2014) ncbi
兔 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样品上. Cancer Cell Int (2013) ncbi
兔 单克隆(197G2)
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫组化在小鼠样品上 和 被用于免疫印迹在小鼠样品上 (图 2b). FASEB J (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102s)被用于被用于免疫印迹在人类样品上. J Biol Chem (2013) ncbi
兔 单克隆(197G2)
  • 免疫细胞化学; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫细胞化学在小鼠样品上 (图 4). Stem Cells (2012) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫细胞化学在人类样品上. Blood Cancer J (2011) ncbi
兔 单克隆(20G11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样品上. J Appl Physiol (1985) (2012) ncbi
兔 多克隆
  • 流式细胞仪; 人类; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, #9102)被用于被用于流式细胞仪在人类样品上 (图 3). Eur J Haematol (2012) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:200
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, #9102)被用于被用于免疫印迹在大鼠样品上浓度为1:200. Exp Physiol (2011) ncbi
兔 单克隆(20G11)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹基因敲除验证在小鼠样品上浓度为1:1000. Development (2007) ncbi
西格玛奥德里奇
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 4c). EMBO J (2019) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 大鼠; 图 5a
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在大鼠样品上 (图 5a). Cell Death Dis (2018) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 2c
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在人类样品上 (图 2c). Breast Cancer Res Treat (2018) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化; 小鼠; 图 s5d
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫组化在小鼠样品上 (图 s5d). Science (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:500; 图 4b
西格玛奥德里奇 ERK2抗体(Sigma Aldrich, M8159)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 4b). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 4b
西格玛奥德里奇 ERK2抗体(Sigma Aldrich, M5670)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 4b). Nat Commun (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:1000; 图 4d
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4d). Mol Cell Biochem (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化; 斑马鱼; 1:500; 图 5I''
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M8159)被用于被用于免疫组化在斑马鱼样品上浓度为1:500 (图 5I''). elife (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫细胞化学; 小鼠; 图 1a
  • 免疫印迹; 小鼠; 图 1c
西格玛奥德里奇 ERK2抗体(sigma, M9692)被用于被用于免疫细胞化学在小鼠样品上 (图 1a) 和 被用于免疫印迹在小鼠样品上 (图 1c). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 表 4
西格玛奥德里奇 ERK2抗体(Sigma, M0800)被用于被用于免疫印迹在人类样品上 (表 4). Transl Psychiatry (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 表 4
西格玛奥德里奇 ERK2抗体(Sigma, M5670)被用于被用于免疫印迹在人类样品上 (表 4). Transl Psychiatry (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 表 4
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在人类样品上 (表 4). Transl Psychiatry (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 果蝇; 1:2000; 图 s8a
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在果蝇样品上浓度为1:2000 (图 s8a). Nat Commun (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 3c
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在人类样品上 (图 3c). J Biol Chem (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 猪; 图 1b
西格玛奥德里奇 ERK2抗体(Sigma, M9692)被用于被用于免疫印迹在猪样品上 (图 1b). Arthritis Rheumatol (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 4b
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在人类样品上 (图 4b). Oncotarget (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; common platanna; 1:5000; 图 2f
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在common platanna样品上浓度为1:5000 (图 2f). Open Biol (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 7e
西格玛奥德里奇 ERK2抗体(Sigma, MAPK-YT)被用于被用于免疫印迹在人类样品上 (图 7e). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M0800)被用于被用于免疫印迹在人类样品上 (图 1) 和 被用于免疫印迹在小鼠样品上 (图 1). Cell Div (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:10,000; 图 2a
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在人类样品上浓度为1:10,000 (图 2a). Dig Dis Sci (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在人类样品上 (图 3). J Biol Chem (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 图 7
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在小鼠样品上 (图 7). elife (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 5
西格玛奥德里奇 ERK2抗体(Sigma, M5670)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 5). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3b
西格玛奥德里奇 ERK2抗体(Sigma, M5670)被用于被用于免疫印迹在人类样品上 (图 3b). Mol Cell Proteomics (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇 ERK2抗体(Sigma, M0800)被用于被用于免疫印迹在人类样品上 (图 3) 和 被用于免疫印迹在小鼠样品上 (图 3). Oncogenesis (2016) ncbi
小鼠 单克隆(ERK-NP2)
  • 免疫印迹; 大鼠; 1:5000; 图 4a
西格玛奥德里奇 ERK2抗体(Sigma, M3807)被用于被用于免疫印迹在大鼠样品上浓度为1:5000 (图 4a). Neural Plast (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 5
西格玛奥德里奇 ERK2抗体(Sigma, M 5670)被用于被用于免疫印迹在人类样品上浓度为1:10,000 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:1000; 图 5
西格玛奥德里奇 ERK2抗体(Sigma, M 8159)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 5). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 1
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M0800)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 1). Biochem Pharmacol (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:40,000; 图 s2a
西格玛奥德里奇 ERK2抗体(Sigma, M5670)被用于被用于免疫印迹在大鼠样品上浓度为1:40,000 (图 s2a). Metallomics (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:10,000; 图 s2b
西格玛奥德里奇 ERK2抗体(Sigma, M0800)被用于被用于免疫印迹在大鼠样品上浓度为1:10,000 (图 s2b). Metallomics (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000; 图 2
  • 免疫印迹; 小鼠; 1:5000; 图 2
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M5670)被用于被用于免疫印迹在人类样品上浓度为1:5000 (图 2) 和 被用于免疫印迹在小鼠样品上浓度为1:5000 (图 2). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 狗; 图 1d
西格玛奥德里奇 ERK2抗体(Sigma, M5670)被用于被用于免疫印迹在狗样品上 (图 1d). BMC Genomics (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 狗; 图 1d
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在狗样品上 (图 1d). BMC Genomics (2015) ncbi
兔 多克隆
  • 免疫印迹; 狗; 图 1d
西格玛奥德里奇 ERK2抗体(Sigma, M5670)被用于被用于免疫印迹在狗样品上 (图 1d). BMC Vet Res (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫细胞化学; 小鼠; 1:500; 图 1
  • 免疫印迹; 小鼠; 1:2000; 图 2
西格玛奥德里奇 ERK2抗体(Sigma, M9692)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500 (图 1) 和 被用于免疫印迹在小鼠样品上浓度为1:2000 (图 2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1500
西格玛奥德里奇 ERK2抗体(Sigma Chemical Co, M5670)被用于被用于免疫印迹在人类样品上浓度为1:1500. J Biol Chem (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 果蝇; 1:500
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在果蝇样品上浓度为1:500. Development (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化-石蜡切片; 果蝇; 1:200; 图 2
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫组化-石蜡切片在果蝇样品上浓度为1:200 (图 2). Nat Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
西格玛奥德里奇 ERK2抗体(Sigma, M-0800)被用于被用于免疫印迹在小鼠样品上. J Lipid Res (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化-冰冻切片; 斑马鱼; 1:50; 图 s5
西格玛奥德里奇 ERK2抗体(Sigma, M9692)被用于被用于免疫组化-冰冻切片在斑马鱼样品上浓度为1:50 (图 s5). PLoS ONE (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 s5
西格玛奥德里奇 ERK2抗体(Sigma, M9692)被用于被用于免疫印迹在人类样品上 (图 s5). Proc Natl Acad Sci U S A (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
西格玛奥德里奇 ERK2抗体(Zymed Laboratories, M0800)被用于被用于免疫印迹在大鼠样品上浓度为1:1000. Int J Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:800
西格玛奥德里奇 ERK2抗体(Sigma, M5670)被用于被用于免疫印迹在大鼠样品上浓度为1:800. Int J Mol Med (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇 ERK2抗体(Sigma, M 5670)被用于被用于免疫组化在小鼠样品上浓度为1:1000. Eur Neuropsychopharmacol (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇 ERK2抗体(Sigma, M 0800)被用于被用于免疫组化在小鼠样品上浓度为1:1000. Eur Neuropsychopharmacol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 8
西格玛奥德里奇 ERK2抗体(Sigma, M-5670)被用于被用于免疫印迹在人类样品上 (图 8). Oncotarget (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 8
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在人类样品上 (图 8). Oncotarget (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 ERK2抗体(Sigma, 8159)被用于被用于免疫印迹在人类样品上 (图 5). Cancer Cell (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在小鼠样品上 (图 4). Proc Natl Acad Sci U S A (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇 ERK2抗体(Sigma, M5670)被用于被用于免疫印迹在小鼠样品上 (图 4). Proc Natl Acad Sci U S A (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 6
西格玛奥德里奇 ERK2抗体(Sigma, M 5670)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 6). Nat Commun (2015) ncbi
小鼠 单克隆(ERK-PT115)
  • 免疫印迹; 人类; 1:500; 图 6
西格玛奥德里奇 ERK2抗体(Sigma, M 7802)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 6). Nat Commun (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类
西格玛奥德里奇 ERK2抗体(Sigma, M-9692)被用于被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 s4
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在人类样品上 (图 s4). J Cell Sci (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化; 果蝇; 1:200
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫组化在果蝇样品上浓度为1:200. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 ERK2抗体(Sigma, M0800)被用于被用于免疫印迹在人类样品上. J Biol Chem (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在小鼠样品上 (图 2). EMBO J (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 ERK2抗体(Sigma, M5670)被用于被用于免疫印迹在小鼠样品上 (图 2). EMBO J (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5b
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M5670)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 5b). J Mol Neurosci (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 1:5000
  • 免疫印迹; 大鼠; 1:5000
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在小鼠样品上浓度为1:5000 和 被用于免疫印迹在大鼠样品上浓度为1:5000. J Biol Chem (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在人类样品上浓度为1:1000. Exp Neurol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:20000
西格玛奥德里奇 ERK2抗体(Sigma, M5670)被用于被用于免疫印迹在人类样品上浓度为1:20000. Exp Neurol (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 1:500
西格玛奥德里奇 ERK2抗体(Sigma Aldrich, M9692)被用于被用于免疫印迹在小鼠样品上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在人类样品上. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 4a). J Biol Chem (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫细胞化学; 人类; 图 5
西格玛奥德里奇 ERK2抗体(Sigma, # M 8159)被用于被用于免疫细胞化学在人类样品上 (图 5). Toxicol In Vitro (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫细胞化学; 大鼠; 1:250; 图 3
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M9692)被用于被用于免疫细胞化学在大鼠样品上浓度为1:250 (图 3). J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:500; 图 3
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M5670)被用于被用于免疫细胞化学在大鼠样品上浓度为1:500 (图 3). J Biol Chem (2014) ncbi
小鼠 单克隆(ERK-PT115)
  • 免疫细胞化学; 人类
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M7802)被用于被用于免疫细胞化学在人类样品上. Mol Biol Cell (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M9692)被用于被用于免疫印迹在人类样品上. Mol Biol Cell (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 ERK2抗体(SIGMA, M5670)被用于被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类
西格玛奥德里奇 ERK2抗体(SIGMA, M8159)被用于被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • reverse phase protein lysate microarray; 人类; 1:500
西格玛奥德里奇 ERK2抗体(Sigma, M-9692)被用于被用于reverse phase protein lysate microarray在人类样品上浓度为1:500. Pulm Pharmacol Ther (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 牛; 图 5, 6
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在牛样品上 (图 5, 6). Endocrinology (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在人类样品上. Oncogene (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 7
西格玛奥德里奇 ERK2抗体(Sigma, 5670)被用于被用于免疫印迹在小鼠样品上 (图 7). PLoS Genet (2013) ncbi
默克密理博中国
兔 重组(AW39R)
  • 免疫印迹; 大鼠; 1:1000; 图 5b
默克密理博中国 ERK2抗体(Millipore, 05-797R)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 5b). Vascul Pharmacol (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7
默克密理博中国 ERK2抗体(Millipore, 06-182)被用于被用于免疫印迹在人类样品上 (图 7). Neuroendocrinology (2018) ncbi
小鼠 单克隆(1B3B9)
  • 免疫印迹; 人类; 图 5b,5c,6b,6c,6d
默克密理博中国 ERK2抗体(Millipore, 05-157)被用于被用于免疫印迹在人类样品上 (图 5b,5c,6b,6c,6d). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6
默克密理博中国 ERK2抗体(Millipore, 06-182)被用于被用于免疫印迹在人类样品上 (图 6). Cancer Cell Int (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 7
默克密理博中国 ERK2抗体(Millipore, 06-182)被用于被用于免疫印迹在小鼠样品上 (图 7). Nat Commun (2016) ncbi
兔 重组(AW39R)
  • 免疫印迹; 人类
默克密理博中国 ERK2抗体(Millipore, 05-797R)被用于被用于免疫印迹在人类样品上. Mol Cancer Ther (2016) ncbi
兔 重组(AW39R)
  • 免疫印迹; 小鼠; 图 1b
  • 免疫印迹; 人类; 图 1a
默克密理博中国 ERK2抗体(Millipore, 05-797R)被用于被用于免疫印迹在小鼠样品上 (图 1b) 和 被用于免疫印迹在人类样品上 (图 1a). J Neuroinflammation (2016) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 人类; 图 1a
  • 免疫印迹; 小鼠; 图 1b
默克密理博中国 ERK2抗体(Millipore, 05-481)被用于被用于免疫印迹在人类样品上 (图 1a) 和 被用于免疫印迹在小鼠样品上 (图 1b). J Neuroinflammation (2016) ncbi
小鼠 单克隆(1B3B9)
  • 免疫印迹; 人类; 1:250; 图 2
默克密理博中国 ERK2抗体(Millipore, 05-157)被用于被用于免疫印迹在人类样品上浓度为1:250 (图 2). elife (2016) ncbi
小鼠 单克隆(1B3B9)
  • 免疫印迹; 人类; 图 s4d
默克密理博中国 ERK2抗体(Millipore, 05-157)被用于被用于免疫印迹在人类样品上 (图 s4d). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4b
默克密理博中国 ERK2抗体(Millipore, 06-182)被用于被用于免疫印迹在人类样品上 (图 4b). Neuroendocrinology (2016) ncbi
兔 重组(AW39R)
  • 免疫印迹; 大鼠; 1:1000; 图 2e
默克密理博中国 ERK2抗体(Millipore, 05-797R)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 2e). Front Behav Neurosci (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:250; 图 4
默克密理博中国 ERK2抗体(Millipore, 06-182)被用于被用于免疫细胞化学在人类样品上浓度为1:250 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(1B3B9)
  • 免疫印迹; 小鼠; 图 1
默克密理博中国 ERK2抗体(Millipore, 05-157)被用于被用于免疫印迹在小鼠样品上 (图 1). Nature (2015) ncbi
兔 重组(AW39R)
  • 免疫印迹; 人类
默克密理博中国 ERK2抗体(EMDMillipore, 05-797R)被用于被用于免疫印迹在人类样品上. Mol Cancer Ther (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000
默克密理博中国 ERK2抗体(Millipore, 06-182)被用于被用于免疫印迹在人类样品上浓度为1:5000. Oncogene (2016) ncbi
兔 重组(AW39R)
  • 免疫细胞化学; 小鼠
默克密理博中国 ERK2抗体(Millipore, 05-797R)被用于被用于免疫细胞化学在小鼠样品上. Glia (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
默克密理博中国 ERK2抗体(Upstate Biotechnology Inc, 06-182)被用于被用于免疫印迹在小鼠样品上. Mol Reprod Dev (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
默克密理博中国 ERK2抗体(Millipore, 06-182)被用于被用于免疫印迹在小鼠样品上. Am J Pathol (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 7
默克密理博中国 ERK2抗体(Millipore, 07-467)被用于被用于免疫印迹在大鼠样品上浓度为1:500 (图 7). Pain (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:2000; 图 7
默克密理博中国 ERK2抗体(Millipore, 06-182)被用于被用于免疫印迹在大鼠样品上浓度为1:2000 (图 7). Pain (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 1
默克密理博中国 ERK2抗体(Millipore, 06-182)被用于被用于免疫印迹在大鼠样品上 (图 1). Hum Mol Genet (2014) ncbi
兔 单克隆(Aw39)
  • 免疫印迹; 人类
默克密理博中国 ERK2抗体(Millipore, AW39)被用于被用于免疫印迹在人类样品上. J Biol Chem (2013) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 ERK2抗体(Millipore, 06-182)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:100 和 被用于免疫印迹在大鼠样品上浓度为1:1000. J Neurosci (2013) ncbi
小鼠 单克隆(12D4)
  • immunohistochemistry - free floating section; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:500
默克密理博中国 ERK2抗体(Millipore, 05-481)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:100 和 被用于免疫印迹在大鼠样品上浓度为1:500. J Neurosci (2013) ncbi
碧迪BD
小鼠 单克隆(33/ERK2)
  • 免疫印迹; 人类; 图 s6
碧迪BD ERK2抗体(BD Biosciences, 610103)被用于被用于免疫印迹在人类样品上 (图 s6). Sci Rep (2016) ncbi
小鼠 单克隆(33/ERK2)
  • 免疫印迹; 人类
碧迪BD ERK2抗体(BD Biosciences, 610104)被用于被用于免疫印迹在人类样品上. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(G263-7)
  • 免疫印迹; 人类
碧迪BD ERK2抗体(BD Biosciences, 558530)被用于被用于免疫印迹在人类样品上. J Ethnopharmacol (2011) ncbi
文章列表
  1. He M, Chaurushiya M, Webster J, Kummerfeld S, Reja R, Chaudhuri S, et al. Intrinsic apoptosis shapes the tumor spectrum linked to inactivation of the deubiquitinase BAP1. Science. 2019;364:283-285 pubmed 出版商
  2. Zhang S, Liu W, Yang Y, Sun K, Li S, Xu H, et al. Tmem30a Deficiency in endothelial cells impairs cell proliferation and angiogenesis. J Cell Sci. 2019;: pubmed 出版商
  3. Yambire K, Fernández Mosquera L, Steinfeld R, Mühle C, Ikonen E, Milosevic I, et al. Mitochondrial biogenesis is transcriptionally repressed in lysosomal lipid storage diseases. elife. 2019;8: pubmed 出版商
  4. Simula L, Pacella I, Colamatteo A, Procaccini C, Cancila V, Bordi M, et al. Drp1 Controls Effective T Cell Immune-Surveillance by Regulating T Cell Migration, Proliferation, and cMyc-Dependent Metabolic Reprogramming. Cell Rep. 2018;25:3059-3073.e10 pubmed 出版商
  5. Zhao H, Martin E, Matalkah F, Shah N, Ivanov A, Ruppert J, et al. Conditional knockout of SHP2 in ErbB2 transgenic mice or inhibition in HER2-amplified breast cancer cell lines blocks oncogene expression and tumorigenesis. Oncogene. 2019;38:2275-2290 pubmed 出版商
  6. Lee S, Cho Y, Cha P, Yoon J, Ro E, Jeong W, et al. A small molecule approach to degrade RAS with EGFR repression is a potential therapy for KRAS mutation-driven colorectal cancer resistance to cetuximab. Exp Mol Med. 2018;50:153 pubmed 出版商
  7. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  8. Fossati G, Pozzi D, Canzi A, Mirabella F, Valentino S, Morini R, et al. Pentraxin 3 regulates synaptic function by inducing AMPA receptor clustering via ECM remodeling and β1-integrin. EMBO J. 2019;38: pubmed 出版商
  9. Karchugina S, Chernoff J. Detection of Heterodimerization of Protein Isoforms Using an in Situ Proximity Ligation Assay. J Vis Exp. 2018;: pubmed 出版商
  10. Ablain J, Xu M, Rothschild H, JORDAN R, Mito J, Daniels B, et al. Human tumor genomics and zebrafish modeling identify SPRED1 loss as a driver of mucosal melanoma. Science. 2018;362:1055-1060 pubmed 出版商
  11. Mu L, Tu Z, Miao L, Ruan H, Kang N, Hei Y, et al. A phosphatidylinositol 4,5-bisphosphate redistribution-based sensing mechanism initiates a phagocytosis programing. Nat Commun. 2018;9:4259 pubmed 出版商
  12. McCloskey A, Ibarra A, Hetzer M. Tpr regulates the total number of nuclear pore complexes per cell nucleus. Genes Dev. 2018;32:1321-1331 pubmed 出版商
  13. Chen S, Yun F, Yao Y, Cao M, Zhang Y, Wang J, et al. USP38 critically promotes asthmatic pathogenesis by stabilizing JunB protein. J Exp Med. 2018;215:2850-2867 pubmed 出版商
  14. Song K, Kim J, Lee Y, Bae H, Lee H, Woo S, et al. Mitochondrial reprogramming via ATP5H loss promotes multimodal cancer therapy resistance. J Clin Invest. 2018;128:4098-4114 pubmed 出版商
  15. Stathopoulou C, Gangaplara A, Mallett G, Flomerfelt F, Liniany L, Knight D, et al. PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells. Immunity. 2018;49:247-263.e7 pubmed 出版商
  16. Imbrechts M, De Samblancx K, Fierens K, Brisse E, Vandenhaute J, Mitera T, et al. IFN-γ stimulates CpG-induced IL-10 production in B cells via p38 and JNK signalling pathways. Eur J Immunol. 2018;48:1506-1521 pubmed 出版商
  17. Jung I, Kim Y, Yu H, Lee M, Kim S, Lee J. CRISPR/Cas9-Mediated Knockout of DGK Improves Antitumor Activities of Human T Cells. Cancer Res. 2018;78:4692-4703 pubmed 出版商
  18. Weiss J, Davies L, Karwan M, Ileva L, Ozaki M, Cheng R, et al. Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors. J Clin Invest. 2018;128:3794-3805 pubmed 出版商
  19. Li F, Li Y, Liang H, Xu T, Kong Y, Huang M, et al. HECTD3 mediates TRAF3 polyubiquitination and type I interferon induction during bacterial infection. J Clin Invest. 2018;128:4148-4162 pubmed 出版商
  20. Li R, Sahu S, Schachner M. Phenelzine, a small organic compound mimicking the functions of cell adhesion molecule L1, promotes functional recovery after mouse spinal cord injury. Restor Neurol Neurosci. 2018;36:469-483 pubmed 出版商
  21. Lei F, Jin L, Liu X, Lai F, Yan X, Farrelly M, et al. RIP1 protects melanoma cells from apoptosis induced by BRAF/MEK inhibitors. Cell Death Dis. 2018;9:679 pubmed 出版商
  22. Ruess D, Heynen G, Ciecielski K, Ai J, Berninger A, Kabacaoglu D, et al. Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat Med. 2018;24:954-960 pubmed 出版商
  23. Baumgartner C, Toifl S, Farlik M, Halbritter F, Scheicher R, Fischer I, et al. An ERK-Dependent Feedback Mechanism Prevents Hematopoietic Stem Cell Exhaustion. Cell Stem Cell. 2018;22:879-892.e6 pubmed 出版商
  24. Lautz J, Brown E, Williams VanSchoiack A, Smith S. Synaptic activity induces input-specific rearrangements in a targeted synaptic protein interaction network. J Neurochem. 2018;146:540-559 pubmed 出版商
  25. Xue Z, Vis D, Bruna A, Sustic T, van Wageningen S, Batra A, et al. MAP3K1 and MAP2K4 mutations are associated with sensitivity to MEK inhibitors in multiple cancer models. Cell Res. 2018;28:719-729 pubmed 出版商
  26. Wang X, Du C, He X, Deng X, He Y, Zhou X. MiR-4463 inhibits the migration of human aortic smooth muscle cells by AMOT. Biosci Rep. 2018;38: pubmed 出版商
  27. Huang M, Qi W, Fang S, Jiang P, Yang C, Mo Y, et al. Pigment Epithelium-Derived Factor Plays a Role in Alzheimer's Disease by Negatively Regulating Aβ42. Neurotherapeutics. 2018;15:728-741 pubmed 出版商
  28. Ahmad F, Salahuddin M, Alsamman K, Herzallah H, Al Otaibi S. Neonatal maternal deprivation impairs localized de novo activity-induced protein translation at the synapse in the rat hippocampus. Biosci Rep. 2018;38: pubmed 出版商
  29. Qiang L, Wang J, Zhang Y, Ge P, Chai Q, Li B, et al. Mycobacterium tuberculosis Mce2E suppresses the macrophage innate immune response and promotes epithelial cell proliferation. Cell Mol Immunol. 2018;: pubmed 出版商
  30. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  31. Lino Cardenas C, Kessinger C, Cheng Y, MacDonald C, Macgillivray T, Ghoshhajra B, et al. An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun. 2018;9:1009 pubmed 出版商
  32. zur Nedden S, Eith R, Schwarzer C, Zanetti L, Seitter H, Fresser F, et al. Protein kinase N1 critically regulates cerebellar development and long-term function. J Clin Invest. 2018;128:2076-2088 pubmed 出版商
  33. Summers M, Vasiljevski E, Mikulec K, Peacock L, Little D, Schindeler A. Developmental dosing with a MEK inhibitor (PD0325901) rescues myopathic features of the muscle-specific but not limb-specific Nf1 knockout mouse. Mol Genet Metab. 2018;123:518-525 pubmed 出版商
  34. Qi Z, Xu H, Zhang S, Xu J, Li S, Gao H, et al. RIPK4/PEBP1 axis promotes pancreatic cancer cell migration and invasion by activating RAF1/MEK/ERK signaling. Int J Oncol. 2018;52:1105-1116 pubmed 出版商
  35. Zhao P, Wong K, Sun X, Reilly S, Uhm M, Liao Z, et al. TBK1 at the Crossroads of Inflammation and Energy Homeostasis in Adipose Tissue. Cell. 2018;172:731-743.e12 pubmed 出版商
  36. Shen Q, Zhang Q, Shi Y, Shi Q, Jiang Y, Gu Y, et al. Tet2 promotes pathogen infection-induced myelopoiesis through mRNA oxidation. Nature. 2018;554:123-127 pubmed 出版商
  37. Lu Y, Kim N, Jiang Y, Zhang H, Zheng D, Zhu F, et al. Cambogin suppresses dextran sulphate sodium-induced colitis by enhancing Treg cell stability and function. Br J Pharmacol. 2018;175:1085-1099 pubmed 出版商
  38. De Pasquale V, Pezone A, Sarogni P, Tramontano A, Schiattarella G, Avvedimento V, et al. EGFR activation triggers cellular hypertrophy and lysosomal disease in NAGLU-depleted cardiomyoblasts, mimicking the hallmarks of mucopolysaccharidosis IIIB. Cell Death Dis. 2018;9:40 pubmed 出版商
  39. Velázquez Villegas L, Perino A, Lemos V, Zietak M, Nomura M, Pols T, et al. TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue. Nat Commun. 2018;9:245 pubmed 出版商
  40. Frattini V, Pagnotta S, Tala -, Fan J, Russo M, Lee S, et al. A metabolic function of FGFR3-TACC3 gene fusions in cancer. Nature. 2018;553:222-227 pubmed 出版商
  41. Park G, Kim D. Cigarette smoke-induced EGFR activation promotes epithelial mesenchymal migration of human retinal pigment epithelial cells through regulation of the FAK-mediated Syk/Src pathway. Mol Med Rep. 2018;17:3563-3574 pubmed 出版商
  42. Arrizabalaga O, Moreno Cugnon L, Auzmendi Iriarte J, Aldaz P, Ibanez de Caceres I, Garros Regulez L, et al. High expression of MKP1/DUSP1 counteracts glioma stem cell activity and mediates HDAC inhibitor response. Oncogenesis. 2017;6:401 pubmed 出版商
  43. Wu J, Xiang S, Zhang M, Fang B, Huang H, Kwon O, et al. Histone deacetylase 6 (HDAC6) deacetylates extracellular signal-regulated kinase 1 (ERK1) and thereby stimulates ERK1 activity. J Biol Chem. 2018;293:1976-1993 pubmed 出版商
  44. Qian Z, Ryu B, Kang K, Heo S, Kang D, Bae S, et al. Cellular properties of the fermented microalgae Pavlova lutheri and its isolated active peptide in osteoblastic differentiation of MG?63 cells. Mol Med Rep. 2018;17:2044-2050 pubmed 出版商
  45. Sutavani R, Phair I, Barker R, McFarlane A, Shpiro N, Lang S, et al. Differential control of Toll-like receptor 4-induced interleukin-10 induction in macrophages and B cells reveals a role for p90 ribosomal S6 kinases. J Biol Chem. 2018;293:2302-2317 pubmed 出版商
  46. Cho M, Lee J, Shin M, Kim H, Choi Y, Rho S, et al. TSC-22 inhibits CSF-1R function and induces apoptosis in cervical cancer. Oncotarget. 2017;8:97990-98003 pubmed 出版商
  47. Muro R, Nitta T, Nakano K, Okamura T, Takayanagi H, Suzuki H. γδTCR recruits the Syk/PI3K axis to drive proinflammatory differentiation program. J Clin Invest. 2018;128:415-426 pubmed 出版商
  48. Balan I, Warnock K, Puche A, GONDRE LEWIS M, Aurelian L. Innately activated TLR4 signal in the nucleus accumbens is sustained by CRF amplification loop and regulates impulsivity. Brain Behav Immun. 2018;69:139-153 pubmed 出版商
  49. Urbanska M, Gozdz A, Macias M, Cymerman I, Liszewska E, Kondratiuk I, et al. GSK3β Controls mTOR and Prosurvival Signaling in Neurons. Mol Neurobiol. 2018;55:6050-6062 pubmed 出版商
  50. Bostner J, Alayev A, Berman A, Fornander T, Nordenskjold B, Holz M, et al. Raptor localization predicts prognosis and tamoxifen response in estrogen receptor-positive breast cancer. Breast Cancer Res Treat. 2018;168:17-27 pubmed 出版商
  51. Xue X, Bredell B, Anderson E, Martin A, Mays C, Nagao Kitamoto H, et al. Quantitative proteomics identifies STEAP4 as a critical regulator of mitochondrial dysfunction linking inflammation and colon cancer. Proc Natl Acad Sci U S A. 2017;114:E9608-E9617 pubmed 出版商
  52. Liang Z, Yang Y, He Y, Yang P, Wang X, He G, et al. SUMOylation of IQGAP1 promotes the development of colorectal cancer. Cancer Lett. 2017;411:90-99 pubmed 出版商
  53. Kim J, Park D, Bae H, Park D, Kim D, Lee C, et al. Impaired angiopoietin/Tie2 signaling compromises Schlemm's canal integrity and induces glaucoma. J Clin Invest. 2017;127:3877-3896 pubmed 出版商
  54. Tsutsumi R, Harizanova J, Stockert R, Schröder K, Bastiaens P, Neel B. Assay to visualize specific protein oxidation reveals spatio-temporal regulation of SHP2. Nat Commun. 2017;8:466 pubmed 出版商
  55. Chong I, Aronson L, Bryant H, Gulati A, Campbell J, Elliott R, et al. Mapping genetic vulnerabilities reveals BTK as a novel therapeutic target in oesophageal cancer. Gut. 2018;67:1780-1792 pubmed 出版商
  56. Zhao F, Franco H, Rodriguez K, Brown P, Tsai M, Tsai S, et al. Elimination of the male reproductive tract in the female embryo is promoted by COUP-TFII in mice. Science. 2017;357:717-720 pubmed 出版商
  57. Kim J, Kim Y, Kim J, Park D, Bae H, Lee D, et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest. 2017;127:3441-3461 pubmed 出版商
  58. Quadri H, Aiken T, Allgaeuer M, Moravec R, Altekruse S, Hussain S, et al. Expression of the scaffold connector enhancer of kinase suppressor of Ras 1 (CNKSR1) is correlated with clinical outcome in pancreatic cancer. BMC Cancer. 2017;17:495 pubmed 出版商
  59. Courtial L, Picco V, Pagès G, Ferrier Pagès C. Validation of commercial ERK antibodies against the ERK orthologue of the scleractinian coral Stylophora pistillata. F1000Res. 2017;6:577 pubmed 出版商
  60. Olivares O, Mayers J, Gouirand V, Torrence M, Gicquel T, Borge L, et al. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat Commun. 2017;8:16031 pubmed 出版商
  61. Walter K, Goodman M, Singhal H, Hall J, Li T, Holloran S, et al. Interferon-Stimulated Genes Are Transcriptionally Repressed by PR in Breast Cancer. Mol Cancer Res. 2017;15:1331-1340 pubmed 出版商
  62. Mamo T, Wittern A, Kleppa M, Bohnenpoll T, Weiss A, Kispert A. BMP4 uses several different effector pathways to regulate proliferation and differentiation in the epithelial and mesenchymal tissue compartments of the developing mouse ureter. Hum Mol Genet. 2017;26:3553-3563 pubmed 出版商
  63. Zhang C, Mao H, Cao Y. Nuclear accumulation of symplekin promotes cellular proliferation and dedifferentiation in an ERK1/2-dependent manner. Sci Rep. 2017;7:3769 pubmed 出版商
  64. Wang R, Cao X, Kulej K, Liu W, Ma T, MacDonald M, et al. Uncovering BRD4 hyperphosphorylation associated with cellular transformation in NUT midline carcinoma. Proc Natl Acad Sci U S A. 2017;114:E5352-E5361 pubmed 出版商
  65. Kamerkar S, LeBleu V, Sugimoto H, Yang S, Ruivo C, Melo S, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 2017;546:498-503 pubmed 出版商
  66. Matsumoto Y, La Rose J, Lim M, Adissu H, Law N, Mao X, et al. Ubiquitin ligase RNF146 coordinates bone dynamics and energy metabolism. J Clin Invest. 2017;127:2612-2625 pubmed 出版商
  67. Szoka L, Karna E, Hlebowicz Sarat K, Karaszewski J, Palka J. Exogenous proline stimulates type I collagen and HIF-1? expression and the process is attenuated by glutamine in human skin fibroblasts. Mol Cell Biochem. 2017;435:197-206 pubmed 出版商
  68. Nishimura S, Mishra Gorur K, Park J, Surovtseva Y, Sebti S, Levchenko A, et al. Combined HMG-COA reductase and prenylation inhibition in treatment of CCM. Proc Natl Acad Sci U S A. 2017;114:5503-5508 pubmed 出版商
  69. Ventura E, Weller M, Burghardt I. Cutting Edge: ERK1 Mediates the Autocrine Positive Feedback Loop of TGF-? and Furin in Glioma-Initiating Cells. J Immunol. 2017;198:4569-4574 pubmed 出版商
  70. Hu L, Liang S, Chen H, Lv T, Wu J, Chen D, et al. ΔNp63α is a common inhibitory target in oncogenic PI3K/Ras/Her2-induced cell motility and tumor metastasis. Proc Natl Acad Sci U S A. 2017;114:E3964-E3973 pubmed 出版商
  71. Tian H, Ketova T, Hardy D, Xu X, Gao X, Zijlstra A, et al. Endoglin Mediates Vascular Maturation by Promoting Vascular Smooth Muscle Cell Migration and Spreading. Arterioscler Thromb Vasc Biol. 2017;37:1115-1126 pubmed 出版商
  72. Zhou X, Packialakshmi B, Xiao Y, Nurmukhambetova S, Lees J. Progression of experimental autoimmune encephalomyelitis is associated with up-regulation of major sodium transporters in the mouse kidney cortex under a normal salt diet. Cell Immunol. 2017;317:18-25 pubmed 出版商
  73. Ma S, Wan X, Deng Z, Shi L, Hao C, Zhou Z, et al. Epigenetic regulator CXXC5 recruits DNA demethylase Tet2 to regulate TLR7/9-elicited IFN response in pDCs. J Exp Med. 2017;214:1471-1491 pubmed 出版商
  74. Kim D, Ko H, Park G, Hur D, Kim Y, Yang J. Vandetanib and ADAM inhibitors synergistically attenuate the pathological migration of EBV-infected retinal pigment epithelial cells by regulating the VEGF-mediated MAPK pathway. Exp Ther Med. 2017;13:1415-1425 pubmed 出版商
  75. Chen M, Dai L, Fei A, Pan S, Wang H. Isoquercetin activates the ERK1/2-Nrf2 pathway and protects against cerebral ischemia-reperfusion injury in vivo and in vitro. Exp Ther Med. 2017;13:1353-1359 pubmed 出版商
  76. He L, Zhang L, Wang M, Wang W. miR-9 functions as a tumor inhibitor of cell proliferation in epithelial ovarian cancer through targeting the SDF-1/CXCR4 pathway. Exp Ther Med. 2017;13:1203-1208 pubmed 出版商
  77. Yang X, Qi L, Lin F, Ou Z. The role of the chemokine receptor XCR1 in breast cancer cells. Breast Cancer (Dove Med Press). 2017;9:227-236 pubmed 出版商
  78. Gaggianesi M, Turdo A, Chinnici A, Lipari E, Apuzzo T, Benfante A, et al. IL4 Primes the Dynamics of Breast Cancer Progression via DUSP4 Inhibition. Cancer Res. 2017;77:3268-3279 pubmed 出版商
  79. Honjoh C, Chihara K, Yoshiki H, Yamauchi S, Takeuchi K, Kato Y, et al. Association of C-Type Lectin Mincle with FcεRIβγ Subunits Leads to Functional Activation of RBL-2H3 Cells through Syk. Sci Rep. 2017;7:46064 pubmed 出版商
  80. El Gamal H, Eid A, Munusamy S. Renoprotective Effects of Aldose Reductase Inhibitor Epalrestat against High Glucose-Induced Cellular Injury. Biomed Res Int. 2017;2017:5903105 pubmed 出版商
  81. Yan X, Zhu Z, Xu S, Yang L, Liao X, Zheng M, et al. MicroRNA-140-5p inhibits hepatocellular carcinoma by directly targeting the unique isomerase Pin1 to block multiple cancer-driving pathways. Sci Rep. 2017;7:45915 pubmed 出版商
  82. Chen S, Sun J, Zhao G, Guo A, Chen Y, Fu R, et al. Liraglutide Improves Water Maze Learning and Memory Performance While Reduces Hyperphosphorylation of Tau and Neurofilaments in APP/PS1/Tau Triple Transgenic Mice. Neurochem Res. 2017;42:2326-2335 pubmed 出版商
  83. Bai X, Hong W, Cai P, Chen Y, Xu C, Cao D, et al. Valproate induced hepatic steatosis by enhanced fatty acid uptake and triglyceride synthesis. Toxicol Appl Pharmacol. 2017;324:12-25 pubmed 出版商
  84. Mon N, Senga T, Ito S. Interleukin-1? activates focal adhesion kinase and Src to induce matrix metalloproteinase-9 production and invasion of MCF-7 breast cancer cells. Oncol Lett. 2017;13:955-960 pubmed 出版商
  85. Schweighoffer E, Nys J, Vanes L, Smithers N, Tybulewicz V. TLR4 signals in B lymphocytes are transduced via the B cell antigen receptor and SYK. J Exp Med. 2017;214:1269-1280 pubmed 出版商
  86. Fischer A, Harrison K, Ramirez Y, Auer D, Chowdhury S, Prusty B, et al. Chlamydia trachomatis-containing vacuole serves as deubiquitination platform to stabilize Mcl-1 and to interfere with host defense. elife. 2017;6: pubmed 出版商
  87. Cai W, Sakaguchi M, Kleinridders A, Gonzalez Del Pino G, Dreyfuss J, O Neill B, et al. Domain-dependent effects of insulin and IGF-1 receptors on signalling and gene expression. Nat Commun. 2017;8:14892 pubmed 出版商
  88. González Pérez G, Lamousé Smith E. Gastrointestinal Microbiome Dysbiosis in Infant Mice Alters Peripheral CD8+ T Cell Receptor Signaling. Front Immunol. 2017;8:265 pubmed 出版商
  89. Juhasz A, Markel S, Gaur S, Liu H, Lu J, Jiang G, et al. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. J Biol Chem. 2017;292:7866-7887 pubmed 出版商
  90. Gupta A, Anjomani Virmouni S, Koundouros N, Dimitriadi M, Choo Wing R, Valle A, et al. PARK2 Depletion Connects Energy and Oxidative Stress to PI3K/Akt Activation via PTEN S-Nitrosylation. Mol Cell. 2017;65:999-1013.e7 pubmed 出版商
  91. Yang K, Chen Y, To K, Wang F, Li D, Chen L, et al. Alectinib (CH5424802) antagonizes ABCB1- and ABCG2-mediated multidrug resistance in vitro, in vivo and ex vivo. Exp Mol Med. 2017;49:e303 pubmed 出版商
  92. Balmer D, Bapst Wicht L, Pyakurel A, Emery M, Nanchen N, Bochet C, et al. Bis-Retinoid A2E Induces an Increase of Basic Fibroblast Growth Factor via Inhibition of Extracellular Signal-Regulated Kinases 1/2 Pathway in Retinal Pigment Epithelium Cells and Facilitates Phagocytosis. Front Aging Neurosci. 2017;9:43 pubmed 出版商
  93. CAROMILE L, Dortche K, Rahman M, Grant C, Stoddard C, Ferrer F, et al. PSMA redirects cell survival signaling from the MAPK to the PI3K-AKT pathways to promote the progression of prostate cancer. Sci Signal. 2017;10: pubmed 出版商
  94. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  95. Reynolds L, D Amico G, Lechertier T, Papachristodoulou A, Muñoz Félix J, De Arcangelis A, et al. Dual role of pericyte ?6?1-integrin in tumour blood vessels. J Cell Sci. 2017;130:1583-1595 pubmed 出版商
  96. Hammers D, Merscham Banda M, Hsiao J, ENGST S, Hartman J, Sweeney H. Supraphysiological levels of GDF11 induce striated muscle atrophy. EMBO Mol Med. 2017;9:531-544 pubmed 出版商
  97. Li L, Baxter S, Gu N, Ji M, Zhan X. Missing-in-metastasis protein downregulates CXCR4 by promoting ubiquitylation and interaction with small Rab GTPases. J Cell Sci. 2017;130:1475-1485 pubmed 出版商
  98. Li K, Mo C, Gong D, Chen Y, Huang Z, Li Y, et al. DDX17 nucleocytoplasmic shuttling promotes acquired gefitinib resistance in non-small cell lung cancer cells via activation of β-catenin. Cancer Lett. 2017;400:194-202 pubmed 出版商
  99. Obeid S, Wankell M, Charrez B, Sternberg J, Kreuter R, Esmaili S, et al. Adiponectin confers protection from acute colitis and restricts a B cell immune response. J Biol Chem. 2017;292:6569-6582 pubmed 出版商
  100. Chung C, Chang C, Hsu C, Lin K, Peng H, Huang T. Aggretin Venom Polypeptide as a Novel Anti-angiogenesis Agent by Targeting Integrin alpha2beta1. Sci Rep. 2017;7:43612 pubmed 出版商
  101. de Oliveira R, de Campos Castilho G, da Cunha A, Miyajima F, de Oliveira Martins D. Dilodendron bipinnatum Radlk. inhibits pro-inflammatory mediators through the induction of MKP-1 and the down-regulation of MAPKp38/JNK/NF-?B pathways and COX-2 in LPS-activated RAW 264.7 cells. J Ethnopharmacol. 2017;202:127-137 pubmed 出版商
  102. Hwang I, Park C, Harrison K, Kehrl J. Normal Thymocyte Egress, T Cell Trafficking, and CD4+ T Cell Homeostasis Require Interactions between RGS Proteins and Gαi2. J Immunol. 2017;198:2721-2734 pubmed 出版商
  103. Pan X, Wang Y, Lübke T, Hinek A, Pshezhetsky A. Mice, double deficient in lysosomal serine carboxypeptidases Scpep1 and Cathepsin A develop the hyperproliferative vesicular corneal dystrophy and hypertrophic skin thickenings. PLoS ONE. 2017;12:e0172854 pubmed 出版商
  104. Kumari P, Srivastava A, Ghosh E, Ranjan R, Dogra S, Yadav P, et al. Core engagement with ?-arrestin is dispensable for agonist-induced vasopressin receptor endocytosis and ERK activation. Mol Biol Cell. 2017;28:1003-1010 pubmed 出版商
  105. Wang H, Shan X, Qiao Y. PDK2 promotes chondrogenic differentiation of mesenchymal stem cells by upregulation of Sox6 and activation of JNK/MAPK/ERK pathway. Braz J Med Biol Res. 2017;50:e5988 pubmed 出版商
  106. Basu R, Wu S, Kopchick J. Targeting growth hormone receptor in human melanoma cells attenuates tumor progression and epithelial mesenchymal transition via suppression of multiple oncogenic pathways. Oncotarget. 2017;8:21579-21598 pubmed 出版商
  107. Mandl M, Zhang S, Ulrich M, Schmoeckel E, Mayr D, Vollmar A, et al. Inhibition of Cdk5 induces cell death of tumor-initiating cells. Br J Cancer. 2017;116:912-922 pubmed 出版商
  108. Vallejo A, Perurena N, Guruceaga E, Mazur P, Martínez Canarias S, Zandueta C, et al. An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer. Nat Commun. 2017;8:14294 pubmed 出版商
  109. Sethna F, Feng W, Ding Q, ROBISON A, Feng Y, Wang H. Enhanced expression of ADCY1 underlies aberrant neuronal signalling and behaviour in a syndromic autism model. Nat Commun. 2017;8:14359 pubmed 出版商
  110. Steinberg S, Shabaneh T, Zhang P, Martyanov V, Li Z, Malik B, et al. Myeloid Cells That Impair Immunotherapy Are Restored in Melanomas with Acquired Resistance to BRAF Inhibitors. Cancer Res. 2017;77:1599-1610 pubmed 出版商
  111. Radder J, Zhang Y, Gregory A, Yu S, Kelly N, Leader J, et al. Extreme Trait Whole-Genome Sequencing Identifies PTPRO as a Novel Candidate Gene in Emphysema with Severe Airflow Obstruction. Am J Respir Crit Care Med. 2017;196:159-171 pubmed 出版商
  112. Tao C, Hsu W, Ma Y, Cheng S, Lee E. Epigenetic regulation of HDAC1 SUMOylation as an endogenous neuroprotection against Aβ toxicity in a mouse model of Alzheimer's disease. Cell Death Differ. 2017;24:597-614 pubmed 出版商
  113. He Y, Wang X, Zhang J, Liu Z, Pan W, Shen Y, et al. Association of Serum HMGB2 Levels With In-Stent Restenosis: HMGB2 Promotes Neointimal Hyperplasia in Mice With Femoral Artery Injury and Proliferation and Migration of VSMCs. Arterioscler Thromb Vasc Biol. 2017;37:717-729 pubmed 出版商
  114. Umstead M, Xiong J, Qi Q, Du Y, Fu H. Aurora kinase A interacts with H-Ras and potentiates Ras-MAPK signaling. Oncotarget. 2017;8:28359-28372 pubmed 出版商
  115. Ni Y, Teng T, Li R, Simonyi A, Sun G, Lee J. TNFα alters occludin and cerebral endothelial permeability: Role of p38MAPK. PLoS ONE. 2017;12:e0170346 pubmed 出版商
  116. Roy D, Mondal S, Khurana A, Jung D, Hoffmann R, He X, et al. Loss of HSulf-1: The Missing Link between Autophagy and Lipid Droplets in Ovarian Cancer. Sci Rep. 2017;7:41977 pubmed 出版商
  117. Lee J, Hsu C, Michael M, Nanda A, Liu L, McMillan J, et al. Large Intragenic Deletion in DSTYK Underlies Autosomal-Recessive Complicated Spastic Paraparesis, SPG23. Am J Hum Genet. 2017;100:364-370 pubmed 出版商
  118. Lim E, Nakanishi S, Hoghooghi V, Eaton S, Palmer A, Frederick A, et al. AlphaB-crystallin regulates remyelination after peripheral nerve injury. Proc Natl Acad Sci U S A. 2017;114:E1707-E1716 pubmed 出版商
  119. Carpi S, Fogli S, Polini B, Montagnani V, Podestà A, Breschi M, et al. Tumor-promoting effects of cannabinoid receptor type 1 in human melanoma cells. Toxicol In Vitro. 2017;40:272-279 pubmed 出版商
  120. Difranco K, Mulligan J, Sumal A, Diamond G. Induction of CFTR gene expression by 1,25(OH)2 vitamin D3, 25OH vitamin D3, and vitamin D3 in cultured human airway epithelial cells and in mouse airways. J Steroid Biochem Mol Biol. 2017;173:323-332 pubmed 出版商
  121. Li M, Yuan Y, Hu B, Wu L. Study on Lentivirus-Mediated ABCA7 Improves Neurocognitive Function and Related Mechanisms in the C57BL/6 Mouse Model of Alzheimer's Disease. J Mol Neurosci. 2017;61:489-497 pubmed 出版商
  122. Lisse T, Rieger S. IKKα regulates human keratinocyte migration through surveillance of the redox environment. J Cell Sci. 2017;130:975-988 pubmed 出版商
  123. Lin Y, Lin Y, Huang M, Kuo P, Wu C, Lee M, et al. Tumor necrosis factor-alpha inhibitors suppress CCL2 chemokine in monocytes via epigenetic modification. Mol Immunol. 2017;83:82-91 pubmed 出版商
  124. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed 出版商
  125. Schober T, Magg T, Laschinger M, Rohlfs M, Linhares N, Puchalka J, et al. A human immunodeficiency syndrome caused by mutations in CARMIL2. Nat Commun. 2017;8:14209 pubmed 出版商
  126. Feng L, Xue D, Chen E, Zhang W, Gao X, Yu J, et al. HMGB1 promotes the secretion of multiple cytokines and potentiates the osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Exp Ther Med. 2016;12:3941-3947 pubmed 出版商
  127. Barcus C, O Leary K, Brockman J, Rugowski D, Liu Y, Garcia N, et al. Elevated collagen-I augments tumor progressive signals, intravasation and metastasis of prolactin-induced estrogen receptor alpha positive mammary tumor cells. Breast Cancer Res. 2017;19:9 pubmed 出版商
  128. Xia L, Plachynta M, Liu T, Xiao X, Song J, Li X, et al. Pro-inflammatory effect of a traditional Chinese medicine formula with potent anti-cancer activity in vitro impedes tumor inhibitory potential in vivo. Mol Clin Oncol. 2016;5:717-723 pubmed 出版商
  129. Peng Y, Shi X, Li Z, He X, Sun Y. Particularly interesting Cys-His-rich protein is highly expressed in human intracranial aneurysms and resists aneurysmal rupture. Exp Ther Med. 2016;12:3905-3912 pubmed 出版商
  130. Yoo S, Latifkar A, Cerione R, Antonyak M. Cool-associated Tyrosine-phosphorylated Protein 1 Is Required for the Anchorage-independent Growth of Cervical Carcinoma Cells by Binding Paxillin and Promoting AKT Activation. J Biol Chem. 2017;292:3947-3957 pubmed 出版商
  131. Asensio Juan E, Fueyo R, PAPPA S, Iacobucci S, Badosa C, Lois S, et al. The histone demethylase PHF8 is a molecular safeguard of the IFN? response. Nucleic Acids Res. 2017;45:3800-3811 pubmed 出版商
  132. Lee H, Diaz M, Price K, Ozuna J, Zhang S, Sevick Muraca E, et al. Fluid shear stress activates YAP1 to promote cancer cell motility. Nat Commun. 2017;8:14122 pubmed 出版商
  133. Kechele D, Blue R, Zwarycz B, Espenschied S, Mah A, Siegel M, et al. Orphan Gpr182 suppresses ERK-mediated intestinal proliferation during regeneration and adenoma formation. J Clin Invest. 2017;127:593-607 pubmed 出版商
  134. Xu X, Fan Z, Liang C, Li L, Wang L, Liang Y, et al. A signature motif in LIM proteins mediates binding to checkpoint proteins and increases tumour radiosensitivity. Nat Commun. 2017;8:14059 pubmed 出版商
  135. Halbrook C, Wen H, Ruggeri J, Takeuchi K, Zhang Y, di Magliano M, et al. Mitogen-activated Protein Kinase Kinase Activity Maintains Acinar-to-Ductal Metaplasia and Is Required for Organ Regeneration in Pancreatitis. Cell Mol Gastroenterol Hepatol. 2017;3:99-118 pubmed 出版商
  136. Kozlovskaja GumbrienÄ— A, Yi R, Alexander R, Aman A, Jiskra R, Nagelberg D, et al. Proliferation-independent regulation of organ size by Fgf/Notch signaling. elife. 2017;6: pubmed 出版商
  137. Hirai M, Arita Y, McGlade C, Lee K, Chen J, Evans S. Adaptor proteins NUMB and NUMBL promote cell cycle withdrawal by targeting ERBB2 for degradation. J Clin Invest. 2017;127:569-582 pubmed 出版商
  138. Clotet S, Soler M, Riera M, Pascual J, Fang F, Zhou J, et al. Stable Isotope Labeling with Amino Acids (SILAC)-Based Proteomics of Primary Human Kidney Cells Reveals a Novel Link between Male Sex Hormones and Impaired Energy Metabolism in Diabetic Kidney Disease. Mol Cell Proteomics. 2017;16:368-385 pubmed 出版商
  139. Cheng L, Li K, Yi N, Li X, Wang F, Xue B, et al. miRNA-141 attenuates UV-induced oxidative stress via activating Keap1-Nrf2 signaling in human retinal pigment epithelium cells and retinal ganglion cells. Oncotarget. 2017;8:13186-13194 pubmed 出版商
  140. Kidger A, Rushworth L, Stellzig J, Davidson J, Bryant C, Bayley C, et al. Dual-specificity phosphatase 5 controls the localized inhibition, propagation, and transforming potential of ERK signaling. Proc Natl Acad Sci U S A. 2017;114:E317-E326 pubmed 出版商
  141. Babagana M, Johnson S, Slabodkin H, Bshara W, Morrison C, Kandel E. P21-activated kinase 1 regulates resistance to BRAF inhibition in human cancer cells. Mol Carcinog. 2017;56:1515-1525 pubmed 出版商
  142. Matsumoto A, Pasut A, Matsumoto M, Yamashita R, Fung J, Monteleone E, et al. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature. 2017;541:228-232 pubmed 出版商
  143. Grossi M, Bhattachariya A, Nordström I, Turczynska K, Svensson D, Albinsson S, et al. Pyk2 inhibition promotes contractile differentiation in arterial smooth muscle. J Cell Physiol. 2017;232:3088-3102 pubmed 出版商
  144. Hammers D, Sleeper M, Forbes S, Coker C, Jirousek M, Zimmer M, et al. Disease-modifying effects of orally bioavailable NF-κB inhibitors in dystrophin-deficient muscle. JCI Insight. 2016;1:e90341 pubmed 出版商
  145. Ye Y, Zhao Z, Xu H, Zhang X, Su X, Yang Y, et al. Activation of Sphingosine 1-Phosphate Receptor 1 Enhances Hippocampus Neurogenesis in a Rat Model of Traumatic Brain Injury: An Involvement of MEK/Erk Signaling Pathway. Neural Plast. 2016;2016:8072156 pubmed 出版商
  146. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  147. Hayakawa M, Hayakawa H, Petrova T, Ritprajak P, Sutavani R, Jiménez Andrade G, et al. Loss of Functionally Redundant p38 Isoforms in T Cells Enhances Regulatory T Cell Induction. J Biol Chem. 2017;292:1762-1772 pubmed 出版商
  148. Su C, Gao X, Yang W, Zhao Y, Fu X, Cui X, et al. Phosphorylation of Tudor-SN, a novel substrate of JNK, is involved in the efficient recruitment of Tudor-SN into stress granules. Biochim Biophys Acta Mol Cell Res. 2017;1864:562-571 pubmed 出版商
  149. Ohtsuka T, Sakaguchi M, Yamamoto H, Tomida S, Takata K, Shien K, et al. Interaction of cytokeratin 19 head domain and HER2 in the cytoplasm leads to activation of HER2-Erk pathway. Sci Rep. 2016;6:39557 pubmed 出版商
  150. Takahashi M, Li Y, Dillon T, Stork P. Phosphorylation of Rap1 by cAMP-dependent Protein Kinase (PKA) Creates a Binding Site for KSR to Sustain ERK Activation by cAMP. J Biol Chem. 2017;292:1449-1461 pubmed 出版商
  151. Fourneaux B, Chaire V, Lucchesi C, Karanian M, Pineau R, Laroche Clary A, et al. Dual inhibition of the PI3K/AKT/mTOR pathway suppresses the growth of leiomyosarcomas but leads to ERK activation through mTORC2: biological and clinical implications. Oncotarget. 2017;8:7878-7890 pubmed 出版商
  152. Jerić I, Maurer G, Cavallo A, Raguz J, Desideri E, Tarkowski B, et al. A cell-autonomous tumour suppressor role of RAF1 in hepatocarcinogenesis. Nat Commun. 2016;7:13781 pubmed 出版商
  153. Wang S, Cheng Y, Zheng Y, He Z, Chen W, Zhou W, et al. PRKAR1A is a functional tumor suppressor inhibiting ERK/Snail/E-cadherin pathway in lung adenocarcinoma. Sci Rep. 2016;6:39630 pubmed 出版商
  154. Wymant J, Hiscox S, Westwell A, Urbé S, Clague M, Jones A. The Role of BCA2 in the Endocytic Trafficking of EGFR and Significance as a Prognostic Biomarker in Cancer. J Cancer. 2016;7:2388-2407 pubmed
  155. Lee S, Rho S, Park H, Park J, Kim J, Lee I, et al. Carbohydrate-binding protein CLEC14A regulates VEGFR-2- and VEGFR-3-dependent signals during angiogenesis and lymphangiogenesis. J Clin Invest. 2017;127:457-471 pubmed 出版商
  156. Ganta V, Choi M, Kutateladze A, Annex B. VEGF165b Modulates Endothelial VEGFR1-STAT3 Signaling Pathway and Angiogenesis in Human and Experimental Peripheral Arterial Disease. Circ Res. 2017;120:282-295 pubmed 出版商
  157. Lopes M, Leal R, Guarnieri R, Schwarzbold M, Hoeller A, Diaz A, et al. A single high dose of dexamethasone affects the phosphorylation state of glutamate AMPA receptors in the human limbic system. Transl Psychiatry. 2016;6:e986 pubmed 出版商
  158. Jung J, Jung H, Neupane S, Kim K, Kim J, Yamamoto H, et al. Involvement of PI3K and PKA pathways in mouse tongue epithelial differentiation. Acta Histochem. 2017;119:92-98 pubmed 出版商
  159. Mayrhofer M, Gourain V, Reischl M, Affaticati P, Jenett A, Joly J, et al. A novel brain tumour model in zebrafish reveals the role of YAP activation in MAPK- and PI3K-induced malignant growth. Dis Model Mech. 2017;10:15-28 pubmed 出版商
  160. Nagahara Y, Shimazawa M, Ohuchi K, Ito J, Takahashi H, Tsuruma K, et al. GPNMB ameliorates mutant TDP-43-induced motor neuron cell death. J Neurosci Res. 2017;95:1647-1665 pubmed 出版商
  161. Santo Domingo J, Chareyron I, Dayon L, Núñez Galindo A, Cominetti O, Pilar Giner Giménez M, et al. Coordinated activation of mitochondrial respiration and exocytosis mediated by PKC signaling in pancreatic ? cells. FASEB J. 2017;31:1028-1045 pubmed 出版商
  162. Weyandt J, Carney J, Pavlisko E, Xu M, Counter C. Isoform-Specific Effects of Wild-Type Ras Genes on Carcinogen-Induced Lung Tumorigenesis in Mice. PLoS ONE. 2016;11:e0167205 pubmed 出版商
  163. Tsai C, Lin Y, Huang C, Shih C, Tsai Y, Tsao N, et al. Thrombomodulin regulates monocye differentiation via PKC? and ERK1/2 pathway in vitro and in atherosclerotic artery. Sci Rep. 2016;6:38421 pubmed 出版商
  164. Battram A, Durrant T, Agbani E, Heesom K, Paul D, Piatt R, et al. The Phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) Binder Rasa3 Regulates Phosphoinositide 3-kinase (PI3K)-dependent Integrin αIIbβ3 Outside-in Signaling. J Biol Chem. 2017;292:1691-1704 pubmed 出版商
  165. Bangi E, Murgia C, Teague A, Sansom O, Cagan R. Functional exploration of colorectal cancer genomes using Drosophila. Nat Commun. 2016;7:13615 pubmed 出版商
  166. Torgersen M, Klokk T, Kavaliauskiene S, Klose C, Simons K, Skotland T, et al. The anti-tumor drug 2-hydroxyoleic acid (Minerval) stimulates signaling and retrograde transport. Oncotarget. 2016;7:86871-86888 pubmed 出版商
  167. Ferland D, Darios E, Neubig R, Sjögren B, Truong N, Torres R, et al. Chemerin-induced arterial contraction is Gi- and calcium-dependent. Vascul Pharmacol. 2017;88:30-41 pubmed 出版商
  168. Reuther C, Heinzle V, Nölting S, Herterich S, Hahner S, Halilovic E, et al. The HDM2 (MDM2) Inhibitor NVP-CGM097 Inhibits Tumor Cell Proliferation and Shows Additive Effects with 5-Fluorouracil on the p53-p21-Rb-E2F1 Cascade in the p53wild type Neuroendocrine Tumor Cell Line GOT1. Neuroendocrinology. 2018;106:1-19 pubmed 出版商
  169. Park J, Kim S, Yoo J, Jang J, Lee A, Oh J, et al. Novel Neuroprotective Effects of Melanin-Concentrating Hormone in Parkinson's Disease. Mol Neurobiol. 2017;54:7706-7721 pubmed 出版商
  170. Chou H, Fong Y, Lin H, Tsai E, Chen J, Chang W, et al. An Acetamide Derivative as a Camptothecin Sensitizer for Human Non-Small-Cell Lung Cancer Cells through Increased Oxidative Stress and JNK Activation. Oxid Med Cell Longev. 2016;2016:9128102 pubmed
  171. Roversi F, Pericole F, Machado Neto J, da Silva Santos Duarte A, Longhini A, Corrocher F, et al. Hematopoietic cell kinase (HCK) is a potential therapeutic target for dysplastic and leukemic cells due to integration of erythropoietin/PI3K pathway and regulation of erythropoiesis: HCK in erythropoietin/PI3K pathway. Biochim Biophys Acta Mol Basis Dis. 2017;1863:450-461 pubmed 出版商
  172. Wang Y, Chiang H, Huang Y, Hsu C, Yang P, Juan H, et al. A link between adipogenesis and innate immunity: RNase-L promotes 3T3-L1 adipogenesis by destabilizing Pref-1 mRNA. Cell Death Dis. 2016;7:e2458 pubmed 出版商
  173. Milara J, Cervera A, de Diego A, Sanz C, Juan G, Gavaldá A, et al. Non-neuronal cholinergic system contributes to corticosteroid resistance in chronic obstructive pulmonary disease patients. Respir Res. 2016;17:145 pubmed
  174. Flütsch A, Henry K, Mantuano E, Lam M, Shibayama M, Takahashi K, et al. Evidence that LDL receptor-related protein 1 acts as an early injury detection receptor and activates c-Jun in Schwann cells. Neuroreport. 2016;27:1305-1311 pubmed
  175. Spencer Smith R, Koide A, Zhou Y, Eguchi R, Sha F, Gajwani P, et al. Inhibition of RAS function through targeting an allosteric regulatory site. Nat Chem Biol. 2017;13:62-68 pubmed 出版商
  176. Marichal T, Gaudenzio N, El Abbas S, Sibilano R, Zurek O, Starkl P, et al. Guanine nucleotide exchange factor RABGEF1 regulates keratinocyte-intrinsic signaling to maintain skin homeostasis. J Clin Invest. 2016;126:4497-4515 pubmed 出版商
  177. Newton K, Wickliffe K, Maltzman A, Dugger D, Strasser A, Pham V, et al. RIPK1 inhibits ZBP1-driven necroptosis during development. Nature. 2016;540:129-133 pubmed 出版商
  178. Hegedüs L, Garay T, Molnar E, Varga K, Bilecz A, Torok S, et al. The plasma membrane Ca2+ pump PMCA4b inhibits the migratory and metastatic activity of BRAF mutant melanoma cells. Int J Cancer. 2017;140:2758-2770 pubmed 出版商
  179. Hu Y, Kim J, He K, Wan Q, Kim J, Flach M, et al. Scramblase TMEM16F terminates T cell receptor signaling to restrict T cell exhaustion. J Exp Med. 2016;213:2759-2772 pubmed
  180. Alekhina O, Marchese A. ?-Arrestin1 and Signal-transducing Adaptor Molecule 1 (STAM1) Cooperate to Promote Focal Adhesion Kinase Autophosphorylation and Chemotaxis via the Chemokine Receptor CXCR4. J Biol Chem. 2016;291:26083-26097 pubmed
  181. Grugan K, Dorn K, Jarantow S, Bushey B, Pardinas J, Laquerre S, et al. Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells. MAbs. 2017;9:114-126 pubmed 出版商
  182. Kunzler A, Zeidán Chuliá F, Gasparotto J, Girardi C, Klafke K, Petiz L, et al. Changes in Cell Cycle and Up-Regulation of Neuronal Markers During SH-SY5Y Neurodifferentiation by Retinoic Acid are Mediated by Reactive Species Production and Oxidative Stress. Mol Neurobiol. 2017;54:6903-6916 pubmed 出版商
  183. Ismail H, Didangelos A, Vincent T, Saklatvala J. Rapid Activation of Transforming Growth Factor ?-Activated Kinase 1 in Chondrocytes by Phosphorylation and K63 -Linked Polyubiquitination Upon Injury to Animal Articular Cartilage. Arthritis Rheumatol. 2017;69:565-575 pubmed 出版商
  184. Zhang Q, Zhang Y, Parsels J, Lohse I, Lawrence T, Pasca di Magliano M, et al. Fbxw7 Deletion Accelerates KrasG12D-Driven Pancreatic Tumorigenesis via Yap Accumulation. Neoplasia. 2016;18:666-673 pubmed 出版商
  185. Bulldan A, Shihan M, Goericke Pesch S, Scheiner Bobis G. Signaling events associated with gonadotropin releasing hormone-agonist-induced hormonal castration and its reversal in canines. Mol Reprod Dev. 2016;83:1092-1101 pubmed 出版商
  186. Richter E, Harms M, Ventz K, Nölker R, Fraunholz M, Mostertz J, et al. Quantitative Proteomics Reveals the Dynamics of Protein Phosphorylation in Human Bronchial Epithelial Cells during Internalization, Phagosomal Escape, and Intracellular Replication of Staphylococcus aureus. J Proteome Res. 2016;15:4369-4386 pubmed
  187. Zimmermann M, Arachchige Don A, Donaldson M, Patriarchi T, Horne M. Cyclin G2 promotes cell cycle arrest in breast cancer cells responding to fulvestrant and metformin and correlates with patient survival. Cell Cycle. 2016;15:3278-3295 pubmed
  188. Che D, Zhou T, Lan Y, Xie J, Gong H, Li C, et al. High glucose-induced epithelial-mesenchymal transition contributes to the upregulation of fibrogenic factors in retinal pigment epithelial cells. Int J Mol Med. 2016;38:1815-1822 pubmed 出版商
  189. Li S, Yang B, Teguh D, Zhou L, Xu J, Rong L. Amyloid ? Peptide Enhances RANKL-Induced Osteoclast Activation through NF-?B, ERK, and Calcium Oscillation Signaling. Int J Mol Sci. 2016;17: pubmed
  190. Yue G, Xie S, Lee J, Kwok H, Gao S, Nian Y, et al. New potential beneficial effects of actein, a triterpene glycoside isolated from Cimicifuga species, in breast cancer treatment. Sci Rep. 2016;6:35263 pubmed 出版商
  191. Tseng H, Vong C, Kwan Y, Lee S, Hoi M. TRPM2 regulates TXNIP-mediated NLRP3 inflammasome activation via interaction with p47 phox under high glucose in human monocytic cells. Sci Rep. 2016;6:35016 pubmed 出版商
  192. Kotsantis P, Silva L, Irmscher S, Jones R, Folkes L, Gromak N, et al. Increased global transcription activity as a mechanism of replication stress in cancer. Nat Commun. 2016;7:13087 pubmed 出版商
  193. Visuttijai K, Pettersson J, Mehrbani Azar Y, van den Bout I, Orndal C, Marcickiewicz J, et al. Lowered Expression of Tumor Suppressor Candidate MYO1C Stimulates Cell Proliferation, Suppresses Cell Adhesion and Activates AKT. PLoS ONE. 2016;11:e0164063 pubmed 出版商
  194. Zhao Y, Fan D, Ru B, Cheng K, Hu S, Zhang J, et al. 6-C-(E-phenylethenyl)naringenin induces cell growth inhibition and cytoprotective autophagy in colon cancer cells. Eur J Cancer. 2016;68:38-50 pubmed 出版商
  195. Rodina A, Wang T, Yan P, Gomes E, Dunphy M, Pillarsetty N, et al. The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature. 2016;538:397-401 pubmed 出版商
  196. Yong K, Li A, Ou W, Hong C, Zhao W, Wang F, et al. Targeting SALL4 by entinostat in lung cancer. Oncotarget. 2016;7:75425-75440 pubmed 出版商
  197. Belliard A, Gulati G, Duan Q, Alves R, Brewer S, Madan N, et al. Ischemia/reperfusion-induced alterations of enzymatic and signaling functions of the rat cardiac Na+/K+-ATPase: protection by ouabain preconditioning. Physiol Rep. 2016;4: pubmed
  198. Zhong W, Wang X, Pan B, Li F, Kuang L, Su Z. Eupatilin induces human renal cancer cell apoptosis via ROS-mediated MAPK and PI3K/AKT signaling pathways. Oncol Lett. 2016;12:2894-2899 pubmed
  199. Lu W, Shi J, Zhang J, Lv Z, Guo F, Huang H, et al. CXCL12/CXCR4 Axis Regulates Aggrecanase Activation and Cartilage Degradation in a Post-Traumatic Osteoarthritis Rat Model. Int J Mol Sci. 2016;17: pubmed
  200. Jin Q, Ren Y, Wang M, Suraneni P, Li D, Crispino J, et al. Novel function of FAXDC2 in megakaryopoiesis. Blood Cancer J. 2016;6:e478 pubmed 出版商
  201. Wu J, Sun Y, Zhang P, Qian M, Zhang H, Chen X, et al. The Fra-1-miR-134-SDS22 feedback loop amplifies ERK/JNK signaling and reduces chemosensitivity in ovarian cancer cells. Cell Death Dis. 2016;7:e2384 pubmed 出版商
  202. Ishikawa E, Kosako H, Yasuda T, Ohmuraya M, Araki K, Kurosaki T, et al. Protein kinase D regulates positive selection of CD4+ thymocytes through phosphorylation of SHP-1. Nat Commun. 2016;7:12756 pubmed 出版商
  203. Boo H, Min H, Jang H, Yun H, Smith J, Jin Q, et al. The tobacco-specific carcinogen-operated calcium channel promotes lung tumorigenesis via IGF2 exocytosis in lung epithelial cells. Nat Commun. 2016;7:12961 pubmed 出版商
  204. Chen B, Zeng X, He Y, Wang X, Liang Z, Liu J, et al. STC2 promotes the epithelial-mesenchymal transition of colorectal cancer cells through AKT-ERK signaling pathways. Oncotarget. 2016;7:71400-71416 pubmed 出版商
  205. Xin H, ZHONG C, Nudleman E, Ferrara N. Evidence for Pro-angiogenic Functions of VEGF-Ax. Cell. 2016;167:275-284.e6 pubmed 出版商
  206. Krepler C, Xiao M, Samanta M, Vultur A, Chen H, Brafford P, et al. Targeting Notch enhances the efficacy of ERK inhibitors in BRAF-V600E melanoma. Oncotarget. 2016;7:71211-71222 pubmed 出版商
  207. Jansson D, Scotter E, Rustenhoven J, Coppieters N, Smyth L, Oldfield R, et al. Interferon-? blocks signalling through PDGFR? in human brain pericytes. J Neuroinflammation. 2016;13:249 pubmed
  208. Roncagalli R, Cucchetti M, Jarmuzynski N, Gregoire C, Bergot E, Audebert S, et al. The scaffolding function of the RLTPR protein explains its essential role for CD28 co-stimulation in mouse and human T cells. J Exp Med. 2016;213:2437-2457 pubmed
  209. Johnson R, Finger E, Olcina M, Vilalta M, Aguilera T, Miao Y, et al. Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nat Cell Biol. 2016;18:1078-1089 pubmed 出版商
  210. Egholm C, Khammy M, Dalsgaard T, Mazur A, Tritsaris K, Hansen A, et al. GLP-1 inhibits VEGFA-mediated signaling in isolated human endothelial cells and VEGFA-induced dilation of rat mesenteric arteries. Am J Physiol Heart Circ Physiol. 2016;311:H1214-H1224 pubmed 出版商
  211. Torres A, Vargas Y, Uribe D, Jaramillo C, Gleisner A, Salazar Onfray F, et al. Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells. Oncotarget. 2016;7:67373-67386 pubmed 出版商
  212. Zhong Y, Zou L, Wang Z, Pan Y, Dai Z, Liu X, et al. Lrrc75b is a novel negative regulator of C2C12 myogenic differentiation. Int J Mol Med. 2016;38:1411-1418 pubmed 出版商
  213. Yadav V, Hong K, Zeldin D, Nayeem M. Vascular endothelial over-expression of soluble epoxide hydrolase (Tie2-sEH) enhances adenosine A1 receptor-dependent contraction in mouse mesenteric arteries: role of ATP-sensitive K+ channels. Mol Cell Biochem. 2016;422:197-206 pubmed
  214. Gross S, Devraj K, Feng Y, Macas J, Liebner S, Wieland T. Nucleoside diphosphate kinase B regulates angiogenic responses in the endothelium via caveolae formation and c-Src-mediated caveolin-1 phosphorylation. J Cereb Blood Flow Metab. 2017;37:2471-2484 pubmed 出版商
  215. Wu Y, Ren D, Chen G. Siglec-E Negatively Regulates the Activation of TLR4 by Controlling Its Endocytosis. J Immunol. 2016;197:3336-3347 pubmed
  216. Queisser A, Hagedorn S, Wang H, Schaefer T, Konantz M, Alavi S, et al. Ecotropic viral integration site 1, a novel oncogene in prostate cancer. Oncogene. 2017;36:1573-1584 pubmed 出版商
  217. Wang H, Han X, Bretz C, Becker S, Gambhir D, Smith G, et al. Retinal pigment epithelial cell expression of active Rap 1a by scAAV2 inhibits choroidal neovascularization. Mol Ther Methods Clin Dev. 2016;3:16056 pubmed 出版商
  218. Olianas M, Dedoni S, Onali P. LPA1 Mediates Antidepressant-Induced ERK1/2 Signaling and Protection from Oxidative Stress in Glial Cells. J Pharmacol Exp Ther. 2016;359:340-353 pubmed
  219. García Carpizo V, Sarmentero J, Han B, Grana O, Ruiz Llorente S, Pisano D, et al. NSD2 contributes to oncogenic RAS-driven transcription in lung cancer cells through long-range epigenetic activation. Sci Rep. 2016;6:32952 pubmed 出版商
  220. Makita N, Sato T, Yajima Shoji Y, Sato J, Manaka K, Eda Hashimoto M, et al. Analysis of the V2 Vasopressin Receptor (V2R) Mutations Causing Partial Nephrogenic Diabetes Insipidus Highlights a Sustainable Signaling by a Non-peptide V2R Agonist. J Biol Chem. 2016;291:22460-22471 pubmed
  221. Caporali S, Alvino E, Lacal P, Levati L, Giurato G, Memoli D, et al. Targeting the PI3K/AKT/mTOR pathway overcomes the stimulating effect of dabrafenib on the invasive behavior of melanoma cells with acquired resistance to the BRAF inhibitor. Int J Oncol. 2016;49:1164-74 pubmed 出版商
  222. Nettersheim D, Jostes S, Fabry M, Honecker F, Schumacher V, Kirfel J, et al. A signaling cascade including ARID1A, GADD45B and DUSP1 induces apoptosis and affects the cell cycle of germ cell cancers after romidepsin treatment. Oncotarget. 2016;7:74931-74946 pubmed 出版商
  223. Shang W, Zhao L, Dong X, Zhao Z, Li J, Zhang B, et al. Curcumin inhibits osteoclastogenic potential in PBMCs from rheumatoid arthritis patients via the suppression of MAPK/RANK/c-Fos/NFATc1 signaling pathways. Mol Med Rep. 2016;14:3620-6 pubmed 出版商
  224. Padhan N, Nordling T, Sundstrom M, Akerud P, Birgisson H, Nygren P, et al. High sensitivity isoelectric focusing to establish a signaling biomarker for the diagnosis of human colorectal cancer. BMC Cancer. 2016;16:683 pubmed 出版商
  225. Hong J, Shin M, Douglas I, Chung K, Kim E, Jung J, et al. Inhibition of EphA2/EphrinA1 signal attenuates lipopolysaccharide-induced lung injury. Clin Sci (Lond). 2016;130:1993-2003 pubmed
  226. Kupka S, De Miguel D, Dráber P, Martino L, Surinova S, Rittinger K, et al. SPATA2-Mediated Binding of CYLD to HOIP Enables CYLD Recruitment to Signaling Complexes. Cell Rep. 2016;16:2271-80 pubmed 出版商
  227. Pomares H, Palmeri C, Iglesias Serret D, Moncunill Massaguer C, Saura Esteller J, Núñez Vázquez S, et al. Targeting prohibitins induces apoptosis in acute myeloid leukemia cells. Oncotarget. 2016;7:64987-65000 pubmed 出版商
  228. Greenwood E, Maisel S, Ebertz D, Russ A, Pandey R, SCHROEDER J. Llgl1 prevents metaplastic survival driven by epidermal growth factor dependent migration. Oncotarget. 2016;7:60776-60792 pubmed 出版商
  229. Nehra S, Bhardwaj V, Bansal A, Saraswat D. Nanocurcumin accords protection against acute hypobaric hypoxia induced lung injury in rats. J Physiol Biochem. 2016;72:763-779 pubmed
  230. Gómez Puerto M, Verhagen L, Braat A, Lam E, Coffer P, Lorenowicz M. Activation of autophagy by FOXO3 regulates redox homeostasis during osteogenic differentiation. Autophagy. 2016;12:1804-1816 pubmed
  231. Li Y, Dillon T, Takahashi M, Earley K, Stork P. Protein Kinase A-independent Ras Protein Activation Cooperates with Rap1 Protein to Mediate Activation of the Extracellular Signal-regulated Kinases (ERK) by cAMP. J Biol Chem. 2016;291:21584-21595 pubmed
  232. Ruess D, Probst M, Marjanovic G, Wittel U, Hopt U, Keck T, et al. HDACi Valproic Acid (VPA) and Suberoylanilide Hydroxamic Acid (SAHA) Delay but Fail to Protect against Warm Hepatic Ischemia-Reperfusion Injury. PLoS ONE. 2016;11:e0161233 pubmed 出版商
  233. Hammers D, Sleeper M, Forbes S, Shima A, Walter G, Sweeney H. Tadalafil Treatment Delays the Onset of Cardiomyopathy in Dystrophin-Deficient Hearts. J Am Heart Assoc. 2016;5: pubmed 出版商
  234. Siljamäki E, Abankwa D. SPRED1 Interferes with K-ras but Not H-ras Membrane Anchorage and Signaling. Mol Cell Biol. 2016;36:2612-25 pubmed 出版商
  235. Ogasawara R, Fujita S, Hornberger T, Kitaoka Y, Makanae Y, Nakazato K, et al. The role of mTOR signalling in the regulation of skeletal muscle mass in a rodent model of resistance exercise. Sci Rep. 2016;6:31142 pubmed 出版商
  236. Stucky A, Bakshi K, Friedman E, Wang H. Prenatal Cocaine Exposure Upregulates BDNF-TrkB Signaling. PLoS ONE. 2016;11:e0160585 pubmed 出版商
  237. Tadjuidje E, Kofron M, Mir A, Wylie C, Heasman J, Cha S. Nodal signalling in Xenopus: the role of Xnr5 in left/right asymmetry and heart development. Open Biol. 2016;6: pubmed 出版商
  238. Lagares Tena L, García Monclús S, López Alemany R, Almacellas Rabaiget O, Huertas Martínez J, Sáinz Jaspeado M, et al. Caveolin-1 promotes Ewing sarcoma metastasis regulating MMP-9 expression through MAPK/ERK pathway. Oncotarget. 2016;7:56889-56903 pubmed 出版商
  239. Jiang Q, Chen S, Hu C, Huang P, Shen H, Zhao W. Neuregulin-1 (Nrg1) signaling has a preventive role and is altered in the frontal cortex under the pathological conditions of Alzheimer's disease. Mol Med Rep. 2016;14:2614-24 pubmed 出版商
  240. Salta E, Sierksma A, Vanden Eynden E, De Strooper B. miR-132 loss de-represses ITPKB and aggravates amyloid and TAU pathology in Alzheimer's brain. EMBO Mol Med. 2016;8:1005-18 pubmed 出版商
  241. Kim J, Weeratunga P, Kim M, Nikapitiya C, Lee B, Uddin M, et al. Inhibitory effects of an aqueous extract from Cortex Phellodendri on the growth and replication of broad-spectrum of viruses in vitro and in vivo. BMC Complement Altern Med. 2016;16:265 pubmed 出版商
  242. Lie E, Ko J, Choi S, Roh J, Cho Y, Noh R, et al. SALM4 suppresses excitatory synapse development by cis-inhibiting trans-synaptic SALM3-LAR adhesion. Nat Commun. 2016;7:12328 pubmed 出版商
  243. Fiedor E, Gregoraszczuk E. The molecular mechanism of action of superactive human leptin antagonist (SHLA) and quadruple leptin mutein Lan-2 on human ovarian epithelial cell lines. Cancer Chemother Pharmacol. 2016;78:611-22 pubmed 出版商
  244. Di Siena S, Gimmelli R, Nori S, Barbagallo F, Campolo F, Dolci S, et al. Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury. Cell Death Dis. 2016;7:e2317 pubmed 出版商
  245. Ho J, Hsu R, Wu C, Liao G, Gao H, Wang T, et al. Reduced miR-550a-3p leads to breast cancer initiation, growth, and metastasis by increasing levels of ERK1 and 2. Oncotarget. 2016;7:53853-53868 pubmed 出版商
  246. Wu X, Liu W, Duan Z, Gao Y, Li S, Wang K, et al. The Involvement of Protease Nexin-1 (PN1) in the Pathogenesis of Intervertebral Disc (IVD) Degeneration. Sci Rep. 2016;6:30563 pubmed 出版商
  247. Wang J, Zhou J, Kho D, Reiners J, Wu G. Role for DUSP1 (dual-specificity protein phosphatase 1) in the regulation of autophagy. Autophagy. 2016;12:1791-1803 pubmed
  248. Fecková B, Kimáková P, Ilkovičová L, Szentpéteriová E, Debeljak N, Solárová Z, et al. Far-western blotting as a solution to the non-specificity of the anti-erythropoietin receptor antibody. Oncol Lett. 2016;12:1575-1580 pubmed
  249. Shi K, Qian J, Qi L, Mao D, Chen Y, Zhu Y, et al. Atorvastatin antagonizes the visfatin-induced expression of inflammatory mediators via the upregulation of NF-?B activation in HCAECs. Oncol Lett. 2016;12:1438-1444 pubmed
  250. Nettersheim D, Arndt I, Sharma R, Riesenberg S, Jostes S, Schneider S, et al. The cancer/testis-antigen PRAME supports the pluripotency network and represses somatic and germ cell differentiation programs in seminomas. Br J Cancer. 2016;115:454-64 pubmed 出版商
  251. Kreger B, Dougherty A, Greene K, Cerione R, Antonyak M. Microvesicle Cargo and Function Changes upon Induction of Cellular Transformation. J Biol Chem. 2016;291:19774-85 pubmed 出版商
  252. Kang J, Park S, Jeong S, Han M, Lee C, Lee K, et al. Epigenetic regulation of Kcna3-encoding Kv1.3 potassium channel by cereblon contributes to regulation of CD4+ T-cell activation. Proc Natl Acad Sci U S A. 2016;113:8771-6 pubmed 出版商
  253. Kojima Y, Volkmer J, McKenna K, Civelek M, Lusis A, Miller C, et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature. 2016;536:86-90 pubmed
  254. Raguz J, Jerić I, Niault T, Nowacka J, Kuzet S, Rupp C, et al. Epidermal RAF prevents allergic skin disease. elife. 2016;5: pubmed 出版商
  255. Babica P, Zurabian R, Kumar E, Chopra R, Mianecki M, Park J, et al. Methoxychlor and Vinclozolin Induce Rapid Changes in Intercellular and Intracellular Signaling in Liver Progenitor Cells. Toxicol Sci. 2016;153:174-85 pubmed 出版商
  256. Inda C, Dos Santos Claro P, Bonfiglio J, Senin S, Maccarrone G, Turck C, et al. Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling. J Cell Biol. 2016;214:181-95 pubmed 出版商
  257. Fresco V, Kern C, Mohammadi M, Twal W. Fibulin-1 Binds to Fibroblast Growth Factor 8 with High Affinity: EFFECTS ON EMBRYO SURVIVAL. J Biol Chem. 2016;291:18730-9 pubmed 出版商
  258. Köchl R, Thelen F, Vanes L, Brazão T, Fountain K, Xie J, et al. WNK1 kinase balances T cell adhesion versus migration in vivo. Nat Immunol. 2016;17:1075-83 pubmed 出版商
  259. Wang C, Guo S, Wang J, Yan X, Farrelly M, Zhang Y, et al. Reactivation of ERK and Akt confers resistance of mutant BRAF colon cancer cells to the HSP90 inhibitor AUY922. Oncotarget. 2016;7:49597-49610 pubmed 出版商
  260. Huang C, Lee C, Lin H, Chang J. Cathepsin S attenuates endosomal EGFR signalling: A mechanical rationale for the combination of cathepsin S and EGFR tyrosine kinase inhibitors. Sci Rep. 2016;6:29256 pubmed 出版商
  261. Elzi D, Song M, Blackman B, Weintraub S, Lopez Terrada D, Chen Y, et al. FGF19 functions as autocrine growth factor for hepatoblastoma. Genes Cancer. 2016;7:125-35 pubmed 出版商
  262. Lukjanenko L, Jung M, Hegde N, Perruisseau Carrier C, Migliavacca E, Rozo M, et al. Loss of fibronectin from the aged stem cell niche affects the regenerative capacity of skeletal muscle in mice. Nat Med. 2016;22:897-905 pubmed 出版商
  263. Petrova L, Gran C, Bjoras M, Doetsch P. Efficient and Reliable Production of Vectors for the Study of the Repair, Mutagenesis, and Phenotypic Consequences of Defined DNA Damage Lesions in Mammalian Cells. PLoS ONE. 2016;11:e0158581 pubmed 出版商
  264. Chen Y, LaMarche M, Chan H, Fekkes P, García Fortanet J, Acker M, et al. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature. 2016;535:148-52 pubmed
  265. Madureira P, Bharadwaj A, Bydoun M, Garant K, O Connell P, Lee P, et al. Cell surface protease activation during RAS transformation: Critical role of the plasminogen receptor, S100A10. Oncotarget. 2016;7:47720-47737 pubmed 出版商
  266. Barcus C, Keely P, Eliceiri K, Schuler L. Prolactin signaling through focal adhesion complexes is amplified by stiff extracellular matrices in breast cancer cells. Oncotarget. 2016;7:48093-48106 pubmed 出版商
  267. Zhao Y, Li Y, Luo P, Gao Y, Yang J, Lao K, et al. XBP1 splicing triggers miR-150 transfer from smooth muscle cells to endothelial cells via extracellular vesicles. Sci Rep. 2016;6:28627 pubmed 出版商
  268. Chakedis J, French R, Babicky M, Jaquish D, Mose E, Cheng P, et al. Characterization of RON protein isoforms in pancreatic cancer: implications for biology and therapeutics. Oncotarget. 2016;7:45959-45975 pubmed 出版商
  269. Aguilera O, Muñoz Sagastibelza M, Torrejón B, Borrero Palacios A, del Puerto Nevado L, Martínez Useros J, et al. Vitamin C uncouples the Warburg metabolic switch in KRAS mutant colon cancer. Oncotarget. 2016;7:47954-47965 pubmed 出版商
  270. Gautheron J, Vucur M, Schneider A, Severi I, Roderburg C, Roy S, et al. The necroptosis-inducing kinase RIPK3 dampens adipose tissue inflammation and glucose intolerance. Nat Commun. 2016;7:11869 pubmed 出版商
  271. Khan S, Sikander M, Ebeling M, Ganju A, Kumari S, Yallapu M, et al. MUC13 interaction with receptor tyrosine kinase HER2 drives pancreatic ductal adenocarcinoma progression. Oncogene. 2017;36:491-500 pubmed 出版商
  272. Kemper K, Krijgsman O, Kong X, Cornelissen Steijger P, Shahrabi A, Weeber F, et al. BRAF(V600E) Kinase Domain Duplication Identified in Therapy-Refractory Melanoma Patient-Derived Xenografts. Cell Rep. 2016;16:263-277 pubmed 出版商
  273. Burger D, Turner M, Munkonda M, Touyz R. Endothelial Microparticle-Derived Reactive Oxygen Species: Role in Endothelial Signaling and Vascular Function. Oxid Med Cell Longev. 2016;2016:5047954 pubmed 出版商
  274. Zhou X, Wei Y, Qiu S, Xu Y, Zhang T, Zhang S. Propofol Decreases Endoplasmic Reticulum Stress-Mediated Apoptosis in Retinal Pigment Epithelial Cells. PLoS ONE. 2016;11:e0157590 pubmed 出版商
  275. Tisza M, Zhao W, Fuentes J, Prijic S, Chen X, Levental I, et al. Motility and stem cell properties induced by the epithelial-mesenchymal transition require destabilization of lipid rafts. Oncotarget. 2016;7:51553-51568 pubmed 出版商
  276. Maugeri G, D Amico A, Reitano R, Magro G, Cavallaro S, Salomone S, et al. PACAP and VIP Inhibit the Invasiveness of Glioblastoma Cells Exposed to Hypoxia through the Regulation of HIFs and EGFR Expression. Front Pharmacol. 2016;7:139 pubmed 出版商
  277. Desrochers L, Bordeleau F, Reinhart King C, Cerione R, Antonyak M. Microvesicles provide a mechanism for intercellular communication by embryonic stem cells during embryo implantation. Nat Commun. 2016;7:11958 pubmed 出版商
  278. Fagnocchi L, Cherubini A, Hatsuda H, Fasciani A, Mazzoleni S, Poli V, et al. A Myc-driven self-reinforcing regulatory network maintains mouse embryonic stem cell identity. Nat Commun. 2016;7:11903 pubmed 出版商
  279. Zhai W, Chen D, Shen H, Chen Z, Li H, Yu Z, et al. A1 adenosine receptor attenuates intracerebral hemorrhage-induced secondary brain injury in rats by activating the P38-MAPKAP2-Hsp27 pathway. Mol Brain. 2016;9:66 pubmed 出版商
  280. Hey F, Giblett S, Forrest S, Herbert C, Pritchard C. Phosphorylations of Serines 21/9 in Glycogen Synthase Kinase 3α/β Are Not Required for Cell Lineage Commitment or WNT Signaling in the Normal Mouse Intestine. PLoS ONE. 2016;11:e0156877 pubmed 出版商
  281. Wang J, Farris A, Xu K, Wang P, Zhang X, Duong D, et al. GPRC5A suppresses protein synthesis at the endoplasmic reticulum to prevent radiation-induced lung tumorigenesis. Nat Commun. 2016;7:11795 pubmed 出版商
  282. Han S, Ma X, Zhao Y, Zhao H, Batista A, Zhou S, et al. Identification of Glypican-3 as a potential metastasis suppressor gene in gastric cancer. Oncotarget. 2016;7:44406-44416 pubmed 出版商
  283. Zhou B, Ritt D, Morrison D, Der C, Cox A. Protein Kinase CK2? Maintains Extracellular Signal-regulated Kinase (ERK) Activity in a CK2? Kinase-independent Manner to Promote Resistance to Inhibitors of RAF and MEK but Not ERK in BRAF Mutant Melanoma. J Biol Chem. 2016;291:17804-15 pubmed 出版商
  284. Schütz I, López Hernández T, Gao Q, Puchkov D, Jabs S, Nordmeyer D, et al. Lysosomal Dysfunction Caused by Cellular Accumulation of Silica Nanoparticles. J Biol Chem. 2016;291:14170-84 pubmed 出版商
  285. Chesnokova V, Zonis S, Zhou C, Recouvreux M, Ben Shlomo A, Araki T, et al. Growth hormone is permissive for neoplastic colon growth. Proc Natl Acad Sci U S A. 2016;113:E3250-9 pubmed 出版商
  286. Yu H. Sphingosine-1-Phosphate Receptor 2 Regulates Proinflammatory Cytokine Production and Osteoclastogenesis. PLoS ONE. 2016;11:e0156303 pubmed 出版商
  287. Blee A, Liu S, Wang L, Huang H. BET bromodomain-mediated interaction between ERG and BRD4 promotes prostate cancer cell invasion. Oncotarget. 2016;7:38319-38332 pubmed 出版商
  288. Hanson R, Brown R, Steele M, Grandgenett P, Grunkemeyer J, Hollingsworth M. Identification of FRA-1 as a novel player in pancreatic cancer in cooperation with a MUC1: ERK signaling axis. Oncotarget. 2016;7:39996-40011 pubmed 出版商
  289. Yang Z, Jiang Q, Chen S, Hu C, Shen H, Huang P, et al. Differential changes in Neuregulin-1 signaling in major brain regions in a lipopolysaccharide-induced neuroinflammation mouse model. Mol Med Rep. 2016;14:790-6 pubmed 出版商
  290. Stein S, Mack E, Rome K, Pajcini K, Ohtani T, Xu L, et al. Trib2 Suppresses Tumor Initiation in Notch-Driven T-ALL. PLoS ONE. 2016;11:e0155408 pubmed 出版商
  291. Zhang C, Li L, Zhao B, Jiao A, Li X, Sun N, et al. Ghrelin Protects against Dexamethasone-Induced INS-1 Cell Apoptosis via ERK and p38MAPK Signaling. Int J Endocrinol. 2016;2016:4513051 pubmed 出版商
  292. Ishibashi R, Takemoto M, Akimoto Y, Ishikawa T, He P, Maezawa Y, et al. A novel podocyte gene, semaphorin 3G, protects glomerular podocyte from lipopolysaccharide-induced inflammation. Sci Rep. 2016;6:25955 pubmed 出版商
  293. Lee Y, Kim S, Song S, Hong H, Lee Y, Oh B, et al. Crosstalk between CCL7 and CCR3 promotes metastasis of colon cancer cells via ERK-JNK signaling pathways. Oncotarget. 2016;7:36842-36853 pubmed 出版商
  294. Bulldan A, Dietze R, Shihan M, Scheiner Bobis G. Non-classical testosterone signaling mediated through ZIP9 stimulates claudin expression and tight junction formation in Sertoli cells. Cell Signal. 2016;28:1075-85 pubmed 出版商
  295. Hudson C, McArdle C, López Bernal A. Steroid receptor co-activator interacting protein (SIP) mediates EGF-stimulated expression of the prostaglandin synthase COX2 and prostaglandin release in human myometrium. Mol Hum Reprod. 2016;22:512-25 pubmed 出版商
  296. Miyawaki S, Kawamura Y, Oiwa Y, Shimizu A, Hachiya T, Bono H, et al. Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nat Commun. 2016;7:11471 pubmed 出版商
  297. Lock R, Ingraham R, Maertens O, Miller A, Weledji N, Legius E, et al. Cotargeting MNK and MEK kinases induces the regression of NF1-mutant cancers. J Clin Invest. 2016;126:2181-90 pubmed 出版商
  298. Stepanenko A, Andreieva S, Korets K, Mykytenko D, Baklaushev V, Huleyuk N, et al. Temozolomide promotes genomic and phenotypic changes in glioblastoma cells. Cancer Cell Int. 2016;16:36 pubmed 出版商
  299. Illich D, Zhang M, Ursu A, Osorno R, Kim K, Yoon J, et al. Distinct Signaling Requirements for the Establishment of ESC Pluripotency in Late-Stage EpiSCs. Cell Rep. 2016;15:787-800 pubmed 出版商
  300. Wu Y, Lan C, Ren D, Chen G. Induction of Siglec-1 by Endotoxin Tolerance Suppresses the Innate Immune Response by Promoting TGF-?1 Production. J Biol Chem. 2016;291:12370-82 pubmed 出版商
  301. Choi H, Kim M, Choi Y, Shin Y, Cho S, Ko S. Rhus verniciflua Stokes (RVS) and butein induce apoptosis of paclitaxel-resistant SKOV-3/PAX ovarian cancer cells through inhibition of AKT phosphorylation. BMC Complement Altern Med. 2016;16:122 pubmed 出版商
  302. Frank R, Komiyama N, Ryan T, Zhu F, O Dell T, Grant S. NMDA receptors are selectively partitioned into complexes and supercomplexes during synapse maturation. Nat Commun. 2016;7:11264 pubmed 出版商
  303. Afonina I, Van Nuffel E, Baudelet G, Driege Y, Kreike M, Staal J, et al. The paracaspase MALT1 mediates CARD14-induced signaling in keratinocytes. EMBO Rep. 2016;17:914-27 pubmed 出版商
  304. Kim S, Choi K, Cho S, Yun S, Jeon J, Koh Y, et al. Fisetin stimulates autophagic degradation of phosphorylated tau via the activation of TFEB and Nrf2 transcription factors. Sci Rep. 2016;6:24933 pubmed 出版商
  305. Willmer T, Hare S, Peres J, Prince S. The T-box transcription factor TBX3 drives proliferation by direct repression of the p21(WAF1) cyclin-dependent kinase inhibitor. Cell Div. 2016;11:6 pubmed 出版商
  306. Cross A, Wilson A, Guerrero M, Thomas K, Bachir A, Kubow K, et al. Breast cancer antiestrogen resistance 3-p130Cas interactions promote adhesion disassembly and invasion in breast cancer cells. Oncogene. 2016;35:5850-5859 pubmed 出版商
  307. Dong F, Ling Q, Ye D, Zhang Z, Shu J, Chen G, et al. TCF7L2 involvement in estradiol- and progesterone-modulated islet and hepatic glucose homeostasis. Sci Rep. 2016;6:24859 pubmed 出版商
  308. Thompson A, Stephens J, Bain S, Kanamarlapudi V. Molecular Characterisation of Small Molecule Agonists Effect on the Human Glucagon Like Peptide-1 Receptor Internalisation. PLoS ONE. 2016;11:e0154229 pubmed 出版商
  309. Mendel I, Yacov N, Shoham A, Ishai E, Breitbart E. Treatment with Oxidized Phospholipids Directly Inhibits Nonalcoholic Steatohepatitis and Liver Fibrosis Without Affecting Steatosis. Dig Dis Sci. 2016;61:2545-53 pubmed 出版商
  310. Yu Z, Chen T, Li X, Yang M, Tang S, Zhu X, et al. Lys29-linkage of ASK1 by Skp1-Cullin 1-Fbxo21 ubiquitin ligase complex is required for antiviral innate response. elife. 2016;5: pubmed 出版商
  311. Macritchie N, Volpert G, Al Washih M, Watson D, Futerman A, Kennedy S, et al. Effect of the sphingosine kinase 1 selective inhibitor, PF-543 on arterial and cardiac remodelling in a hypoxic model of pulmonary arterial hypertension. Cell Signal. 2016;28:946-55 pubmed 出版商
  312. Xing M, Wang X, Chi Y, Zhou D. Gene therapy for colorectal cancer using adenovirus-mediated full-length antibody, cetuximab. Oncotarget. 2016;7:28262-72 pubmed 出版商
  313. Maselli A, Capoccia S, Pugliese P, Raggi C, Cirulli F, Fabi A, et al. Autoantibodies specific to estrogen receptor alpha act as estrogen agonists and their levels correlate with breast cancer cell proliferation. Oncoimmunology. 2016;5:e1074375 pubmed
  314. Damle S, Martin R, Cross J, Conrad D. Macrophage migration inhibitory factor deficiency enhances immune response to Nippostrongylus brasiliensis. Mucosal Immunol. 2017;10:205-214 pubmed 出版商
  315. Shi C, Iura A, Terajima M, Liu F, Lyons K, Pan H, et al. Deletion of BMP receptor type IB decreased bone mass in association with compromised osteoblastic differentiation of bone marrow mesenchymal progenitors. Sci Rep. 2016;6:24256 pubmed 出版商
  316. Fearnley G, Smith G, Abdul Zani I, Yuldasheva N, Mughal N, Homer Vanniasinkam S, et al. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis. Biol Open. 2016;5:571-83 pubmed 出版商
  317. Papadakis E, Barker C, Syed H, Reeves T, Schwaiger S, Stuppner H, et al. The Bag-1 inhibitor, Thio-2, reverses an atypical 3D morphology driven by Bag-1L overexpression in a MCF-10A model of ductal carcinoma in situ. Oncogenesis. 2016;5:e215 pubmed 出版商
  318. Alemán O, Mora N, Cortés Vieyra R, Uribe Querol E, Rosales C. Differential Use of Human Neutrophil Fc? Receptors for Inducing Neutrophil Extracellular Trap Formation. J Immunol Res. 2016;2016:2908034 pubmed 出版商
  319. Prieto J, León M, Ponsoda X, Sendra R, Bort R, Ferrer Lorente R, et al. Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming. Nat Commun. 2016;7:11124 pubmed 出版商
  320. Riggle K, Riehle K, Kenerson H, Turnham R, Homma M, Kazami M, et al. Enhanced cAMP-stimulated protein kinase A activity in human fibrolamellar hepatocellular carcinoma. Pediatr Res. 2016;80:110-8 pubmed 出版商
  321. Braley A, Kwak T, Jules J, Harja E, Landgraf R, Hudson B. Regulation of Receptor for Advanced Glycation End Products (RAGE) Ectodomain Shedding and Its Role in Cell Function. J Biol Chem. 2016;291:12057-73 pubmed 出版商
  322. Maugeri G, D Amico A, Rasà D, Reitano R, Saccone S, Federico C, et al. Expression profile of Wilms Tumor 1 (WT1) isoforms in undifferentiated and all-trans retinoic acid differentiated neuroblastoma cells. Genes Cancer. 2016;7:47-58 pubmed
  323. Huang J, Yao C, Chuang S, Yeh C, Lee L, Chen R, et al. Honokiol inhibits sphere formation and xenograft growth of oral cancer side population cells accompanied with JAK/STAT signaling pathway suppression and apoptosis induction. BMC Cancer. 2016;16:245 pubmed 出版商
  324. Margaryan N, Gilgur A, Seftor E, Purnell C, Arva N, Gosain A, et al. Melanocytes Affect Nodal Expression and Signaling in Melanoma Cells: A Lesson from Pediatric Large Congenital Melanocytic Nevi. Int J Mol Sci. 2016;17:418 pubmed 出版商
  325. Yang Y, Xu J, Chen H, Fei X, Tang Y, Yan Y, et al. MiR-128-2 inhibits common lymphoid progenitors from developing into progenitor B cells. Oncotarget. 2016;7:17520-31 pubmed 出版商
  326. Wen Y, Li H, Zeng Y, Wen W, Pendleton K, Lui V, et al. MAPK1E322K mutation increases head and neck squamous cell carcinoma sensitivity to erlotinib through enhanced secretion of amphiregulin. Oncotarget. 2016;7:23300-11 pubmed 出版商
  327. Sakakini N, Turchi L, Bergon A, Holota H, Rekima S, Lopez F, et al. A Positive Feed-forward Loop Associating EGR1 and PDGFA Promotes Proliferation and Self-renewal in Glioblastoma Stem Cells. J Biol Chem. 2016;291:10684-99 pubmed 出版商
  328. Relic B, Charlier E, Deroyer C, Malaise O, Neuville S, Desoroux A, et al. BAY 11-7085 induces glucocorticoid receptor activation and autophagy that collaborate with apoptosis to induce human synovial fibroblast cell death. Oncotarget. 2016;7:23370-82 pubmed 出版商
  329. Lee J, Kim H, Rho S, Lee S. eIF3f reduces tumor growth by directly interrupting clusterin with anti-apoptotic property in cancer cells. Oncotarget. 2016;7:18541-57 pubmed 出版商
  330. Kabe Y, Nakane T, Koike I, Yamamoto T, Sugiura Y, Harada E, et al. Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance. Nat Commun. 2016;7:11030 pubmed 出版商
  331. Obino D, Farina F, Malbec O, Sáez P, Maurin M, Gaillard J, et al. Actin nucleation at the centrosome controls lymphocyte polarity. Nat Commun. 2016;7:10969 pubmed 出版商
  332. Morena D, Maestro N, Bersani F, Forni P, Lingua M, Foglizzo V, et al. Hepatocyte Growth Factor-mediated satellite cells niche perturbation promotes development of distinct sarcoma subtypes. elife. 2016;5: pubmed 出版商
  333. Scott D, Tolbert C, Burridge K. Tension on JAM-A activates RhoA via GEF-H1 and p115 RhoGEF. Mol Biol Cell. 2016;27:1420-30 pubmed 出版商
  334. Kurimoto R, Iwasawa S, Ebata T, Ishiwata T, Sekine I, Tada Y, et al. Drug resistance originating from a TGF-β/FGF-2-driven epithelial-to-mesenchymal transition and its reversion in human lung adenocarcinoma cell lines harboring an EGFR mutation. Int J Oncol. 2016;48:1825-36 pubmed 出版商
  335. Afsar T, Trembley J, Salomon C, Razak S, Khan M, Ahmed K. Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways. Sci Rep. 2016;6:23077 pubmed 出版商
  336. Acharya M, Sokolovska A, Tam J, Conway K, Stefani C, Raso F, et al. αv Integrins combine with LC3 and atg5 to regulate Toll-like receptor signalling in B cells. Nat Commun. 2016;7:10917 pubmed 出版商
  337. Yang H, Vainshtein A, Maik Rachline G, Peles E. G protein-coupled receptor 37 is a negative regulator of oligodendrocyte differentiation and myelination. Nat Commun. 2016;7:10884 pubmed 出版商
  338. Atiq R, Hertz R, Eldad S, Smeir E, Bar Tana J. Suppression of B-Raf(V600E) cancers by MAPK hyper-activation. Oncotarget. 2016;7:18694-704 pubmed 出版商
  339. Thakur A, Nigri J, Lac S, Leca J, Bressy C, Berthezene P, et al. TAp73 loss favors Smad-independent TGF-β signaling that drives EMT in pancreatic ductal adenocarcinoma. Cell Death Differ. 2016;23:1358-70 pubmed 出版商
  340. Ardini E, Menichincheri M, Banfi P, Bosotti R, De Ponti C, Pulci R, et al. Entrectinib, a Pan-TRK, ROS1, and ALK Inhibitor with Activity in Multiple Molecularly Defined Cancer Indications. Mol Cancer Ther. 2016;15:628-39 pubmed 出版商
  341. Yang W, Yang Y, Yang J, Liang M, Song J. Treatment with bone marrow mesenchymal stem cells combined with plumbagin alleviates spinal cord injury by affecting oxidative stress, inflammation, apoptotis and the activation of the Nrf2 pathway. Int J Mol Med. 2016;37:1075-82 pubmed 出版商
  342. Bigenzahn J, Fauster A, Rebsamen M, Kandasamy R, Scorzoni S, Vladimer G, et al. An Inducible Retroviral Expression System for Tandem Affinity Purification Mass-Spectrometry-Based Proteomics Identifies Mixed Lineage Kinase Domain-like Protein (MLKL) as an Heat Shock Protein 90 (HSP90) Client. Mol Cell Proteomics. 2016;15:1139-50 pubmed
  343. Cannavo A, Liccardo D, Eguchi A, Elliott K, Traynham C, Ibetti J, et al. Myocardial pathology induced by aldosterone is dependent on non-canonical activities of G protein-coupled receptor kinases. Nat Commun. 2016;7:10877 pubmed 出版商
  344. Woo J, Srikanth S, Nishi M, Ping P, Takeshima H, Gwack Y. Junctophilin-4, a component of the endoplasmic reticulum-plasma membrane junctions, regulates Ca2+ dynamics in T cells. Proc Natl Acad Sci U S A. 2016;113:2762-7 pubmed 出版商
  345. Gong Q, Hu Z, Zhang F, Cui A, Chen X, Jiang H, et al. Fibroblast growth factor 21 improves hepatic insulin sensitivity by inhibiting mammalian target of rapamycin complex 1 in mice. Hepatology. 2016;64:425-38 pubmed 出版商
  346. Li M, Corbelli A, Watanabe S, Armelloni S, Ikehata M, Parazzi V, et al. Three-dimensional podocyte-endothelial cell co-cultures: Assembly, validation, and application to drug testing and intercellular signaling studies. Eur J Pharm Sci. 2016;86:1-12 pubmed 出版商
  347. Guillot F, Kemppainen S, Lavasseur G, Miettinen P, Laroche S, Tanila H, et al. Brain-Specific Basal and Novelty-Induced Alternations in PI3K-Akt and MAPK/ERK Signaling in a Middle-Aged AβPP/PS1 Mouse Model of Alzheimer's Disease. J Alzheimers Dis. 2016;51:1157-73 pubmed 出版商
  348. Eriksson J, Le Joncour V, Nummela P, Jahkola T, Virolainen S, Laakkonen P, et al. Gene expression analyses of primary melanomas reveal CTHRC1 as an important player in melanoma progression. Oncotarget. 2016;7:15065-92 pubmed 出版商
  349. Mason J, Davison Versagli C, Leliaert A, Pape D, McCallister C, Zuo J, et al. Oncogenic Ras differentially regulates metabolism and anoikis in extracellular matrix-detached cells. Cell Death Differ. 2016;23:1271-82 pubmed 出版商
  350. Abdul Rahman N, Greenwood S, Brett R, Tossell K, Ungless M, Plevin R, et al. Mitogen-Activated Protein Kinase Phosphatase-2 Deletion Impairs Synaptic Plasticity and Hippocampal-Dependent Memory. J Neurosci. 2016;36:2348-54 pubmed 出版商
  351. Yufune S, Satoh Y, Akai R, Yoshinaga Y, Kobayashi Y, Endo S, et al. Suppression of ERK phosphorylation through oxidative stress is involved in the mechanism underlying sevoflurane-induced toxicity in the developing brain. Sci Rep. 2016;6:21859 pubmed 出版商
  352. Hu H, Wang H, Xiao Y, Jin J, Chang J, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213:399-414 pubmed 出版商
  353. Willmer T, Cooper A, Sims D, Govender D, Prince S. The T-box transcription factor 3 is a promising biomarker and a key regulator of the oncogenic phenotype of a diverse range of sarcoma subtypes. Oncogenesis. 2016;5:e199 pubmed 出版商
  354. Sancho Martinez I, Nivet E, Xia Y, Hishida T, Aguirre A, Ocampo A, et al. Establishment of human iPSC-based models for the study and targeting of glioma initiating cells. Nat Commun. 2016;7:10743 pubmed 出版商
  355. Huo L, Shi W, Chong L, Wang J, Zhang K, Li Y. Asiatic acid inhibits left ventricular remodeling and improves cardiac function in a rat model of myocardial infarction. Exp Ther Med. 2016;11:57-64 pubmed
  356. Kline C, van den Heuvel A, Allen J, Prabhu V, Dicker D, El Deiry W. ONC201 kills solid tumor cells by triggering an integrated stress response dependent on ATF4 activation by specific eIF2α kinases. Sci Signal. 2016;9:ra18 pubmed 出版商
  357. Molteni R, Rossetti A, Savino E, Racagni G, Calabrese F. Chronic Mild Stress Modulates Activity-Dependent Transcription of BDNF in Rat Hippocampal Slices. Neural Plast. 2016;2016:2592319 pubmed 出版商
  358. Wang J, Goetsch L, Tucker L, Zhang Q, Gonzalez A, Vaidya K, et al. Anti-c-Met monoclonal antibody ABT-700 breaks oncogene addiction in tumors with MET amplification. BMC Cancer. 2016;16:105 pubmed 出版商
  359. Cui J, Xia T, Xie D, Gao Y, Jia Z, Wei D, et al. HGF/Met and FOXM1 form a positive feedback loop and render pancreatic cancer cells resistance to Met inhibition and aggressive phenotypes. Oncogene. 2016;35:4708-18 pubmed 出版商
  360. Waters A, Stewart J, Atigadda V, Mroczek Musulman E, Muccio D, Grubbs C, et al. Preclinical Evaluation of UAB30 in Pediatric Renal and Hepatic Malignancies. Mol Cancer Ther. 2016;15:911-21 pubmed 出版商
  361. Krause C, Popp O, Thirunarayanan N, Dittmar G, Lipp M, Müller G. MicroRNA-34a promotes genomic instability by a broad suppression of genome maintenance mechanisms downstream of the oncogene KSHV-vGPCR. Oncotarget. 2016;7:10414-32 pubmed 出版商
  362. Chang C, Hale S, Cox C, Blair A, Kronsteiner B, Grabowska R, et al. Junctional Adhesion Molecule-A Is Highly Expressed on Human Hematopoietic Repopulating Cells and Associates with the Key Hematopoietic Chemokine Receptor CXCR4. Stem Cells. 2016;34:1664-78 pubmed 出版商
  363. Ebbing E, Medema J, Damhofer H, Meijer S, Krishnadath K, van Berge Henegouwen M, et al. ADAM10-mediated release of heregulin confers resistance to trastuzumab by activating HER3. Oncotarget. 2016;7:10243-54 pubmed 出版商
  364. Li S, Lu L, Liao X, Gao T, Wang F, Zhang L, et al. Manganese elevates manganese superoxide dismutase protein level through protein kinase C and protein tyrosine kinase. Biometals. 2016;29:265-74 pubmed 出版商
  365. Liu Y, Takahashi Y, Desai N, Zhang J, Serfass J, Shi Y, et al. Bif-1 deficiency impairs lipid homeostasis and causes obesity accompanied by insulin resistance. Sci Rep. 2016;6:20453 pubmed 出版商
  366. O Sullivan C, Schubart A, Mir A, Dev K. The dual S1PR1/S1PR5 drug BAF312 (Siponimod) attenuates demyelination in organotypic slice cultures. J Neuroinflammation. 2016;13:31 pubmed 出版商
  367. Däbritz J, Judd L, Chalinor H, Menheniott T, Giraud A. Altered gp130 signalling ameliorates experimental colitis via myeloid cell-specific STAT3 activation and myeloid-derived suppressor cells. Sci Rep. 2016;6:20584 pubmed 出版商
  368. Coke C, Scarlett K, Chetram M, Jones K, Sandifer B, Davis A, et al. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression. J Biol Chem. 2016;291:9991-10005 pubmed 出版商
  369. Martin B, Chadwick W, Janssens J, Premont R, Schmalzigaug R, Becker K, et al. GIT2 Acts as a Systems-Level Coordinator of Neurometabolic Activity and Pathophysiological Aging. Front Endocrinol (Lausanne). 2015;6:191 pubmed 出版商
  370. Liu L, Zhu J, Zhou L, Wan L. RACK1 promotes maintenance of morphine-associated memory via activation of an ERK-CREB dependent pathway in hippocampus. Sci Rep. 2016;6:20183 pubmed 出版商
  371. Dorris E, Blackshields G, Sommerville G, Alhashemi M, Dias A, McEneaney V, et al. Pluripotency markers are differentially induced by MEK inhibition in thyroid and melanoma BRAFV600E cell lines. Cancer Biol Ther. 2016;17:526-42 pubmed 出版商
  372. Regan Anderson T, Ma S, Raj G, Cidlowski J, Helle T, Knutson T, et al. Breast Tumor Kinase (Brk/PTK6) Is Induced by HIF, Glucocorticoid Receptor, and PELP1-Mediated Stress Signaling in Triple-Negative Breast Cancer. Cancer Res. 2016;76:1653-63 pubmed 出版商
  373. Derangère V, Fumet J, Boidot R, Bengrine L, Limagne E, Chevriaux A, et al. Does bevacizumab impact anti-EGFR therapy efficacy in metastatic colorectal cancer?. Oncotarget. 2016;7:9309-21 pubmed 出版商
  374. Johnson D, Estrada M, Salgado R, Sanchez V, Doxie D, Opalenik S, et al. Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nat Commun. 2016;7:10582 pubmed 出版商
  375. Theodosiou M, Widmaier M, Böttcher R, Rognoni E, Veelders M, Bharadwaj M, et al. Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin. elife. 2016;5:e10130 pubmed 出版商
  376. Stefanovic M, Tutusaus A, Martinez Nieto G, Bárcena C, de Gregorio E, Moutinho C, et al. Targeting glucosylceramide synthase upregulation reverts sorafenib resistance in experimental hepatocellular carcinoma. Oncotarget. 2016;7:8253-67 pubmed 出版商
  377. Shang V, O Sullivan S, Kendall D, Roberts R. The endogenous cannabinoid anandamide increases human airway epithelial cell permeability through an arachidonic acid metabolite. Pharmacol Res. 2016;105:152-63 pubmed 出版商
  378. Koyani C, Kitz K, Rossmann C, Bernhart E, Huber E, Trummer C, et al. Activation of the MAPK/Akt/Nrf2-Egr1/HO-1-GCLc axis protects MG-63 osteosarcoma cells against 15d-PGJ2-mediated cell death. Biochem Pharmacol. 2016;104:29-41 pubmed 出版商
  379. Chung S, Moon H, Ju H, Kim D, Cho K, Ribback S, et al. Comparison of liver oncogenic potential among human RAS isoforms. Oncotarget. 2016;7:7354-66 pubmed 出版商
  380. Hattermann K, Gebhardt H, Krossa S, Ludwig A, Lucius R, Held Feindt J, et al. Transmembrane chemokines act as receptors in a novel mechanism termed inverse signaling. elife. 2016;5:e10820 pubmed 出版商
  381. Peres T, Ong L, Costa A, Eyng H, Venske D, Colle D, et al. Tyrosine hydroxylase regulation in adult rat striatum following short-term neonatal exposure to manganese. Metallomics. 2016;8:597-604 pubmed 出版商
  382. Yoshida T, Song L, Bai Y, Kinose F, Li J, Ohaegbulam K, et al. ZEB1 Mediates Acquired Resistance to the Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer. PLoS ONE. 2016;11:e0147344 pubmed 出版商
  383. Chan A, Punwani D, Kadlecek T, Cowan M, Olson J, Mathes E, et al. A novel human autoimmune syndrome caused by combined hypomorphic and activating mutations in ZAP-70. J Exp Med. 2016;213:155-65 pubmed 出版商
  384. Zheng F, Yue C, Li G, He B, Cheng W, Wang X, et al. Nuclear AURKA acquires kinase-independent transactivating function to enhance breast cancer stem cell phenotype. Nat Commun. 2016;7:10180 pubmed 出版商
  385. Lv P, Tong X, Peng Q, Liu Y, Jin H, Liu R, et al. Treatment with the herbal medicine, naoxintong improves the protective effect of high-density lipoproteins on endothelial function in patients with type 2 diabetes. Mol Med Rep. 2016;13:2007-16 pubmed 出版商
  386. Watari K, Shibata T, Nabeshima H, Shinoda A, Fukunaga Y, Kawahara A, et al. Impaired differentiation of macrophage lineage cells attenuates bone remodeling and inflammatory angiogenesis in Ndrg1 deficient mice. Sci Rep. 2016;6:19470 pubmed 出版商
  387. Chen Y, Zheng Y, You X, Yu M, Fu G, Su X, et al. Kras Is Critical for B Cell Lymphopoiesis. J Immunol. 2016;196:1678-85 pubmed 出版商
  388. Peng K, Tian X, Qian Y, Skibba M, Zou C, Liu Z, et al. Novel EGFR inhibitors attenuate cardiac hypertrophy induced by angiotensin II. J Cell Mol Med. 2016;20:482-94 pubmed 出版商
  389. Daniele S, Barresi E, Zappelli E, Marinelli L, Novellino E, Da Settimo F, et al. Long lasting MDM2/Translocator protein modulator: a new strategy for irreversible apoptosis of human glioblastoma cells. Oncotarget. 2016;7:7866-84 pubmed 出版商
  390. Pivonello C, Negri M, De Martino M, Napolitano M, De Angelis C, Provvisiero D, et al. The dual targeting of insulin and insulin-like growth factor 1 receptor enhances the mTOR inhibitor-mediated antitumor efficacy in hepatocellular carcinoma. Oncotarget. 2016;7:9718-31 pubmed 出版商
  391. Lin C, Wang C, Hsu S, Liao L, Lin T, Hsueh C. Molecular Mechanisms Responsible for Neuron-Derived Conditioned Medium (NCM)-Mediated Protection of Ischemic Brain. PLoS ONE. 2016;11:e0146692 pubmed 出版商
  392. Gu K, Zhang Q, Yan Y, Li T, Duan F, Hao J, et al. Pluripotency-associated miR-290/302 family of microRNAs promote the dismantling of naive pluripotency. Cell Res. 2016;26:350-66 pubmed 出版商
  393. Yang S, Krug S, Heitmann J, Hu L, Reinhold A, Sauer S, et al. Analgesic drug delivery via recombinant tissue plasminogen activator and microRNA-183-triggered opening of the blood-nerve barrier. Biomaterials. 2016;82:20-33 pubmed 出版商
  394. Matalkah F, Martin E, Zhao H, Agazie Y. SHP2 acts both upstream and downstream of multiple receptor tyrosine kinases to promote basal-like and triple-negative breast cancer. Breast Cancer Res. 2016;18:2 pubmed 出版商
  395. Yamaguchi T, Lu C, Ida L, Yanagisawa K, Usukura J, Cheng J, et al. ROR1 sustains caveolae and survival signalling as a scaffold of cavin-1 and caveolin-1. Nat Commun. 2016;7:10060 pubmed 出版商
  396. Guan X, Wang N, Cui F, Liu Y, Liu P, Zhao J, et al. Caveolin-1 is essential in the differentiation of human adipose-derived stem cells into hepatocyte-like cells via an MAPK pathway-dependent mechanism. Mol Med Rep. 2016;13:1487-94 pubmed 出版商
  397. Wang C, Che L, Hu J, Zhang S, Jiang L, Latte G, et al. Activated mutant forms of PIK3CA cooperate with RasV12 or c-Met to induce liver tumour formation in mice via AKT2/mTORC1 cascade. Liver Int. 2016;36:1176-86 pubmed 出版商
  398. Vivar O, Masi G, Carpier J, Magalhaes J, Galgano D, Pazour G, et al. IFT20 controls LAT recruitment to the immune synapse and T-cell activation in vivo. Proc Natl Acad Sci U S A. 2016;113:386-91 pubmed 出版商
  399. Hernandez R, Puro A, Manos J, Huitron Resendiz S, Reyes K, Liu K, et al. Transgenic mice with increased astrocyte expression of IL-6 show altered effects of acute ethanol on synaptic function. Neuropharmacology. 2016;103:27-43 pubmed 出版商
  400. Fan S, Numata Y, Numata M. Endosomal Na+/H+ exchanger NHE5 influences MET recycling and cell migration. Mol Biol Cell. 2016;27:702-15 pubmed 出版商
  401. Shih M, Pan K, Cherng J. Possible Mechanisms of Di(2-ethylhexyl) Phthalate-Induced MMP-2 and MMP-9 Expression in A7r5 Rat Vascular Smooth Muscle Cells. Int J Mol Sci. 2015;16:28800-11 pubmed 出版商
  402. Zhang Y, Fan J, Ho J, Hu T, Kneeland S, Fan X, et al. Crim1 regulates integrin signaling in murine lens development. Development. 2016;143:356-66 pubmed 出版商
  403. Sun J, Fu X, Liu Y, Wang Y, Huo B, Guo Y, et al. Hypoglycemic effect and mechanism of honokiol on type 2 diabetic mice. Drug Des Devel Ther. 2015;9:6327-42 pubmed 出版商
  404. Drilon A, Somwar R, Wagner J, Vellore N, Eide C, Zabriskie M, et al. A Novel Crizotinib-Resistant Solvent-Front Mutation Responsive to Cabozantinib Therapy in a Patient with ROS1-Rearranged Lung Cancer. Clin Cancer Res. 2016;22:2351-8 pubmed 出版商
  405. Huguet F, Fernet M, Giocanti N, Favaudon V, Larsen A. Afatinib, an Irreversible EGFR Family Inhibitor, Shows Activity Toward Pancreatic Cancer Cells, Alone and in Combination with Radiotherapy, Independent of KRAS Status. Target Oncol. 2016;11:371-81 pubmed 出版商
  406. Franco Villanueva A, Wandosell F, Antón I. Neuritic complexity of hippocampal neurons depends on WIP-mediated mTORC1 and Abl family kinases activities. Brain Behav. 2015;5:e00359 pubmed 出版商
  407. Schrage R, Schmitz A, Gaffal E, Annala S, Kehraus S, Wenzel D, et al. The experimental power of FR900359 to study Gq-regulated biological processes. Nat Commun. 2015;6:10156 pubmed 出版商
  408. Edmonds M, Boyd K, Moyo T, Mitra R, Duszynski R, Arrate M, et al. MicroRNA-31 initiates lung tumorigenesis and promotes mutant KRAS-driven lung cancer. J Clin Invest. 2016;126:349-64 pubmed 出版商
  409. Audette D, Anand D, So T, Rubenstein T, Lachke S, Lovicu F, et al. Prox1 and fibroblast growth factor receptors form a novel regulatory loop controlling lens fiber differentiation and gene expression. Development. 2016;143:318-28 pubmed 出版商
  410. Ceccon M, Merlo M, Mologni L, Poggio T, Varesio L, Menotti M, et al. Excess of NPM-ALK oncogenic signaling promotes cellular apoptosis and drug dependency. Oncogene. 2016;35:3854-3865 pubmed 出版商
  411. Adam M, Matt S, Christian S, Hess Stumpp H, Haegebarth A, Hofmann T, et al. SIAH ubiquitin ligases regulate breast cancer cell migration and invasion independent of the oxygen status. Cell Cycle. 2015;14:3734-47 pubmed 出版商
  412. Ogura Y, Hindi S, Sato S, Xiong G, Akira S, Kumar A. TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair. Nat Commun. 2015;6:10123 pubmed 出版商
  413. Aimi F, Georgiopoulou S, Kalus I, Lehner F, Hegglin A, Limani P, et al. Endothelial Rictor is crucial for midgestational development and sustained and extensive FGF2-induced neovascularization in the adult. Sci Rep. 2015;5:17705 pubmed 出版商
  414. Daniele S, Zappelli E, Martini C. Trazodone regulates neurotrophic/growth factors, mitogen-activated protein kinases and lactate release in human primary astrocytes. J Neuroinflammation. 2015;12:225 pubmed 出版商
  415. Yamakawa H, Muraoka N, Miyamoto K, Sadahiro T, Isomi M, Haginiwa S, et al. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions. Stem Cell Reports. 2015;5:1128-1142 pubmed 出版商
  416. Duchnowska R, Wysocki P, Korski K, Czartoryska ArÅ‚ukowicz B, NiwiÅ„ska A, Orlikowska M, et al. Immunohistochemical prediction of lapatinib efficacy in advanced HER2-positive breast cancer patients. Oncotarget. 2016;7:550-64 pubmed 出版商
  417. Bunda S, Burrell K, Heir P, Zeng L, Alamsahebpour A, Kano Y, et al. Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis. Nat Commun. 2015;6:8859 pubmed 出版商
  418. Debruyne D, Bhatnagar N, Sharma B, Luther W, Moore N, Cheung N, et al. ALK inhibitor resistance in ALK(F1174L)-driven neuroblastoma is associated with AXL activation and induction of EMT. Oncogene. 2016;35:3681-91 pubmed 出版商
  419. Lim J, Nguyen K, Han J, Jang I, Fabian C, Cho K. Direct Regulation of TLR5 Expression by Caveolin-1. Mol Cells. 2015;38:1111-7 pubmed 出版商
  420. Giri K, Pabelick C, Mukherjee P, Prakash Y. Hepatoma derived growth factor (HDGF) dynamics in ovarian cancer cells. Apoptosis. 2016;21:329-39 pubmed 出版商
  421. Ni Y, Nagashimada M, Zhuge F, Zhan L, Nagata N, Tsutsui A, et al. Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E. Sci Rep. 2015;5:17192 pubmed 出版商
  422. Chen J, Chen Y, Yen C, Chen W, Huang W. HBx sensitizes hepatocellular carcinoma cells to lapatinib by up-regulating ErbB3. Oncotarget. 2016;7:473-89 pubmed 出版商
  423. Miyamoto T, Kim D, Knox J, Johnson E, Mucke L. Increasing the Receptor Tyrosine Kinase EphB2 Prevents Amyloid-β-induced Depletion of Cell Surface Glutamate Receptors by a Mechanism That Requires the PDZ-binding Motif of EphB2 and Neuronal Activity. J Biol Chem. 2016;291:1719-34 pubmed 出版商
  424. Awad K, Elinoff J, Wang S, Gairhe S, Ferreyra G, Cai R, et al. Raf/ERK drives the proliferative and invasive phenotype of BMPR2-silenced pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2016;310:L187-201 pubmed 出版商
  425. Al Mahdi R, Babteen N, Thillai K, Holt M, Johansen B, Wetting H, et al. A novel role for atypical MAPK kinase ERK3 in regulating breast cancer cell morphology and migration. Cell Adh Migr. 2015;9:483-94 pubmed 出版商
  426. El Khattouti A, Selimovic D, Hannig M, Taylor E, Abd Elmageed Z, Hassan S, et al. Imiquimod-induced apoptosis of melanoma cells is mediated by ER stress-dependent Noxa induction and enhanced by NF-κB inhibition. J Cell Mol Med. 2016;20:266-86 pubmed 出版商
  427. Kurioka T, Matsunobu T, Satoh Y, Niwa K, Endo S, Fujioka M, et al. ERK2 mediates inner hair cell survival and decreases susceptibility to noise-induced hearing loss. Sci Rep. 2015;5:16839 pubmed 出版商
  428. van Jaarsveld M, van Kuijk P, Boersma A, Helleman J, Van Ijcken W, Mathijssen R, et al. miR-634 restores drug sensitivity in resistant ovarian cancer cells by targeting the Ras-MAPK pathway. Mol Cancer. 2015;14:196 pubmed 出版商
  429. Wang Z, Ma B, Li H, Xiao X, Zhou W, Liu F, et al. Protein 4.1N acts as a potential tumor suppressor linking PP1 to JNK-c-Jun pathway regulation in NSCLC. Oncotarget. 2016;7:509-23 pubmed 出版商
  430. Shukla P, Vogl C, Wallner B, Rigler D, Müller M, Macho Maschler S. High-throughput mRNA and miRNA profiling of epithelial-mesenchymal transition in MDCK cells. BMC Genomics. 2015;16:944 pubmed 出版商
  431. Ampofo E, Später T, Müller I, Eichler H, Menger M, Laschke M. The Marine-Derived Kinase Inhibitor Fascaplysin Exerts Anti-Thrombotic Activity. Mar Drugs. 2015;13:6774-91 pubmed 出版商
  432. Das R, Xu S, Nguyen T, Quan X, Choi S, Kim S, et al. Transforming Growth Factor β1-induced Apoptosis in Podocytes via the Extracellular Signal-regulated Kinase-Mammalian Target of Rapamycin Complex 1-NADPH Oxidase 4 Axis. J Biol Chem. 2015;290:30830-42 pubmed 出版商
  433. Quintero Barceinas R, García Regalado A, Aréchaga Ocampo E, Villegas Sepúlveda N, González De la Rosa C. All-Trans Retinoic Acid Induces Proliferation, Survival, and Migration in A549 Lung Cancer Cells by Activating the ERK Signaling Pathway through a Transcription-Independent Mechanism. Biomed Res Int. 2015;2015:404368 pubmed 出版商
  434. Prado A, Favaron P, da Silva L, Baccarin R, Miglino M, Maria D. Characterization of mesenchymal stem cells derived from the equine synovial fluid and membrane. BMC Vet Res. 2015;11:281 pubmed 出版商
  435. Zhang Z, Wu N, Lu Y, Davidson D, Colonna M, Veillette A. DNAM-1 controls NK cell activation via an ITT-like motif. J Exp Med. 2015;212:2165-82 pubmed 出版商
  436. Vogel S, Bodenstein R, Chen Q, Feil S, Feil R, Rheinlaender J, et al. Platelet-derived HMGB1 is a critical mediator of thrombosis. J Clin Invest. 2015;125:4638-54 pubmed 出版商
  437. Ksionda O, Melton A, Bache J, Tenhagen M, Bakker J, Harvey R, et al. RasGRP1 overexpression in T-ALL increases basal nucleotide exchange on Ras rendering the Ras/PI3K/Akt pathway responsive to protumorigenic cytokines. Oncogene. 2016;35:3658-68 pubmed 出版商
  438. Askoxylakis V, Ferraro G, Kodack D, Badeaux M, Shankaraiah R, Seano G, et al. Preclinical Efficacy of Ado-trastuzumab Emtansine in the Brain Microenvironment. J Natl Cancer Inst. 2016;108: pubmed 出版商
  439. Yen Y, Hsiao J, Jiang S, Chang J, Wang S, Shen Y, et al. Insulin-like growth factor-independent insulin-like growth factor binding protein 3 promotes cell migration and lymph node metastasis of oral squamous cell carcinoma cells by requirement of integrin β1. Oncotarget. 2015;6:41837-55 pubmed 出版商
  440. Vernot J, Perdomo Arciniegas A, Pérez Quintero L, Martínez D. Modulating p56Lck in T-Cells by a Chimeric Peptide Comprising Two Functionally Different Motifs of Tip from Herpesvirus saimiri. J Immunol Res. 2015;2015:395371 pubmed 出版商
  441. Li W, Wei S, Liu C, Song M, Wu H, Yang Y. Regulation of the osteogenic and adipogenic differentiation of bone marrow-derived stromal cells by extracellular uridine triphosphate: The role of P2Y2 receptor and ERK1/2 signaling. Int J Mol Med. 2016;37:63-73 pubmed 出版商
  442. Riesenberg S, Groetchen A, Siddaway R, Bald T, Reinhardt J, Smorra D, et al. MITF and c-Jun antagonism interconnects melanoma dedifferentiation with pro-inflammatory cytokine responsiveness and myeloid cell recruitment. Nat Commun. 2015;6:8755 pubmed 出版商
  443. Pai P, Rachagani S, Lakshmanan I, Macha M, Sheinin Y, Smith L, et al. The canonical Wnt pathway regulates the metastasis-promoting mucin MUC4 in pancreatic ductal adenocarcinoma. Mol Oncol. 2016;10:224-39 pubmed 出版商
  444. Stanojlović M, GuÅ¡evac I, Grković I, Zlatković J, Mitrović N, Zarić M, et al. Effects of chronic cerebral hypoperfusion and low-dose progesterone treatment on apoptotic processes, expression and subcellular localization of key elements within Akt and Erk signaling pathways in rat hippocampus. Neuroscience. 2015;311:308-21 pubmed 出版商
  445. Freedman T, Tan Y, Skrzypczynska K, Manz B, Sjaastad F, Goodridge H, et al. LynA regulates an inflammation-sensitive signaling checkpoint in macrophages. elife. 2015;4: pubmed 出版商
  446. Sipieter F, Cappe B, Gonzalez Pisfil M, Spriet C, Bodart J, Cailliau Maggio K, et al. Novel Reporter for Faithful Monitoring of ERK2 Dynamics in Living Cells and Model Organisms. PLoS ONE. 2015;10:e0140924 pubmed 出版商
  447. Ko T, Chin H, Chuah C, Huang J, Ng K, Khaw S, et al. The BIM deletion polymorphism: A paradigm of a permissive interaction between germline and acquired TKI resistance factors in chronic myeloid leukemia. Oncotarget. 2016;7:2721-33 pubmed 出版商
  448. Hirano T, Yasuda H, Tani T, Hamamoto J, Oashi A, Ishioka K, et al. In vitro modeling to determine mutation specificity of EGFR tyrosine kinase inhibitors against clinically relevant EGFR mutants in non-small-cell lung cancer. Oncotarget. 2015;6:38789-803 pubmed 出版商
  449. Antonucci L, Fagman J, Kim J, Todoric J, Gukovsky I, Mackey M, et al. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc Natl Acad Sci U S A. 2015;112:E6166-74 pubmed 出版商
  450. Wang Y, Zhang Y, Hu W, Xie S, Gong C, Iqbal K, et al. Rapid alteration of protein phosphorylation during postmortem: implication in the study of protein phosphorylation. Sci Rep. 2015;5:15709 pubmed 出版商
  451. Kurozumi A, Goto Y, Matsushita R, Fukumoto I, Kato M, Nishikawa R, et al. Tumor-suppressive microRNA-223 inhibits cancer cell migration and invasion by targeting ITGA3/ITGB1 signaling in prostate cancer. Cancer Sci. 2016;107:84-94 pubmed 出版商
  452. Wu S, Guo Z, Hopkins C, Wei N, Chu E, Wipf P, et al. Bis-cyclopropane analog of disorazole C1 is a microtubule-destabilizing agent active in ABCB1-overexpressing human colon cancer cells. Oncotarget. 2015;6:40866-79 pubmed 出版商
  453. Dumas A, Lê Bury G, Marie Anaïs F, Herit F, Mazzolini J, Guilbert T, et al. The HIV-1 protein Vpr impairs phagosome maturation by controlling microtubule-dependent trafficking. J Cell Biol. 2015;211:359-72 pubmed 出版商
  454. Webber P, Park C, Qui M, Ramalingam S, Khuri F, Fu H, et al. Combination of heat shock protein 90 and focal adhesion kinase inhibitors synergistically inhibits the growth of non-small cell lung cancer cells. Oncoscience. 2015;2:765-776 pubmed
  455. Park Y, Kim S, Kwon T, Kim J, Song I, Shin H, et al. Peroxiredoxin II promotes hepatic tumorigenesis through cooperation with Ras/Forkhead box M1 signaling pathway. Oncogene. 2016;35:3503-13 pubmed 出版商
  456. Ramcharan R, Aleksic T, Kamdoum W, Gao S, Pfister S, Tanner J, et al. IGF-1R inhibition induces schedule-dependent sensitization of human melanoma to temozolomide. Oncotarget. 2015;6:39877-90 pubmed 出版商
  457. Moncunill Massaguer C, Saura Esteller J, Pérez Perarnau A, Palmeri C, Núñez Vázquez S, Cosialls A, et al. A novel prohibitin-binding compound induces the mitochondrial apoptotic pathway through NOXA and BIM upregulation. Oncotarget. 2015;6:41750-65 pubmed 出版商
  458. Bauer J, Ozden O, Akagi N, Carroll T, Principe D, Staudacher J, et al. Activin and TGFβ use diverging mitogenic signaling in advanced colon cancer. Mol Cancer. 2015;14:182 pubmed 出版商
  459. Zomerman W, Plasschaert S, Diks S, Lourens H, Meeuwsen de Boer T, Hoving E, et al. Exogenous HGF Bypasses the Effects of ErbB Inhibition on Tumor Cell Viability in Medulloblastoma Cell Lines. PLoS ONE. 2015;10:e0141381 pubmed 出版商
  460. Lauková J, Kozubík A, Hofmanová J, Nekvindová J, Sova P, Moyer M, et al. Loss of PTEN Facilitates Rosiglitazone-Mediated Enhancement of Platinum(IV) Complex LA-12-Induced Apoptosis in Colon Cancer Cells. PLoS ONE. 2015;10:e0141020 pubmed 出版商
  461. Hruska M, Henderson N, Xia N, Le Marchand S, Dalva M. Anchoring and synaptic stability of PSD-95 is driven by ephrin-B3. Nat Neurosci. 2015;18:1594-605 pubmed 出版商
  462. Chakedis J, French R, Babicky M, Jaquish D, Howard H, Mose E, et al. A novel protein isoform of the RON tyrosine kinase receptor transforms human pancreatic duct epithelial cells. Oncogene. 2016;35:3249-59 pubmed 出版商
  463. Smith C, D Mello S. Cell and Context-Dependent Effects of the Heat Shock Protein DNAJB6 on Neuronal Survival. Mol Neurobiol. 2016;53:5628-39 pubmed 出版商
  464. Strizzi L, Sandomenico A, Margaryan N, Focà A, Sanguigno L, Bodenstine T, et al. Effects of a novel Nodal-targeting monoclonal antibody in melanoma. Oncotarget. 2015;6:34071-86 pubmed 出版商
  465. Gruosso T, Garnier C, Abélanet S, Kieffer Y, Lemesre V, Bellanger D, et al. MAP3K8/TPL-2/COT is a potential predictive marker for MEK inhibitor treatment in high-grade serous ovarian carcinomas. Nat Commun. 2015;6:8583 pubmed 出版商
  466. Barbáchano A, Fernández Barral A, Pereira F, Segura M, Ordóñez Morán P, Carrillo de Santa Pau E, et al. SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150. Oncogene. 2016;35:2991-3003 pubmed 出版商
  467. Peckham H, Giuffrida L, Wood R, Gonsalvez D, Ferner A, Kilpatrick T, et al. Fyn is an intermediate kinase that BDNF utilizes to promote oligodendrocyte myelination. Glia. 2016;64:255-69 pubmed 出版商
  468. Luehders K, Sasai N, Davaapil H, Kurosawa Yoshida M, Hiura H, Brah T, et al. The small leucine-rich repeat secreted protein Asporin induces eyes in Xenopus embryos through the IGF signalling pathway. Development. 2015;142:3351-61 pubmed 出版商
  469. Parsi S, Smith P, Goupil C, Dorval V, Hébert S. Preclinical Evaluation of miR-15/107 Family Members as Multifactorial Drug Targets for Alzheimer's Disease. Mol Ther Nucleic Acids. 2015;4:e256 pubmed 出版商
  470. Mehner C, Oberg A, Kalli K, Nassar A, Hockla A, Pendlebury D, et al. Serine protease inhibitor Kazal type 1 (SPINK1) drives proliferation and anoikis resistance in a subset of ovarian cancers. Oncotarget. 2015;6:35737-54 pubmed 出版商
  471. Reinardy J, Corey D, Golzio C, Mueller S, Katsanis N, Kontos C. Phosphorylation of Threonine 794 on Tie1 by Rac1/PAK1 Reveals a Novel Angiogenesis Regulatory Pathway. PLoS ONE. 2015;10:e0139614 pubmed 出版商
  472. Salas E, Roy S, Marsh T, Rubin B, Debnath J. Oxidative pentose phosphate pathway inhibition is a key determinant of antimalarial induced cancer cell death. Oncogene. 2016;35:2913-22 pubmed 出版商
  473. Görtz D, Braun G, Maruta Y, Djudjaj S, van Roeyen C, Martin I, et al. Anti-interleukin-6 therapy through application of a monogenic protein inhibitor via gene delivery. Sci Rep. 2015;5:14685 pubmed 出版商
  474. Kim H, Lim J, Kim J, Kim Y, Park S, Sohn J. Panaxydol, a component of Panax ginseng, induces apoptosis in cancer cells through EGFR activation and ER stress and inhibits tumor growth in mouse models. Int J Cancer. 2016;138:1432-41 pubmed 出版商
  475. Liu L, Li C, Lu Y, Zong X, Luo C, Sun J, et al. Baclofen mediates neuroprotection on hippocampal CA1 pyramidal cells through the regulation of autophagy under chronic cerebral hypoperfusion. Sci Rep. 2015;5:14474 pubmed 出版商
  476. Pellet Many C, Mehta V, Fields L, Mahmoud M, Lowe V, Evans I, et al. Neuropilins 1 and 2 mediate neointimal hyperplasia and re-endothelialization following arterial injury. Cardiovasc Res. 2015;108:288-98 pubmed 出版商
  477. Sun Y, Ju M, Lin Z, Fredrick T, Evans L, Tian K, et al. SOCS3 in retinal neurons and glial cells suppresses VEGF signaling to prevent pathological neovascular growth. Sci Signal. 2015;8:ra94 pubmed 出版商
  478. Poitelon Y, Bogni S, Matafora V, Della Flora Nunes G, Hurley E, Ghidinelli M, et al. Spatial mapping of juxtacrine axo-glial interactions identifies novel molecules in peripheral myelination. Nat Commun. 2015;6:8303 pubmed 出版商
  479. Brina D, Miluzio A, Ricciardi S, Clarke K, Davidsen P, Viero G, et al. eIF6 coordinates insulin sensitivity and lipid metabolism by coupling translation to transcription. Nat Commun. 2015;6:8261 pubmed 出版商
  480. Yang J, Zhang D, Yu Y, Zhang R, Hu X, Huang H, et al. Binding of FGF2 to FGFR2 in an autocrine mode in trophectoderm cells is indispensable for mouse blastocyst formation through PKC-p38 pathway. Cell Cycle. 2015;14:3318-30 pubmed 出版商
  481. Gu Y, Li H, Zhao L, Zhao S, He W, Rui L, et al. GRP78 confers the resistance to 5-FU by activating the c-Src/LSF/TS axis in hepatocellular carcinoma. Oncotarget. 2015;6:33658-74 pubmed 出版商
  482. Bollu L, Katreddy R, Blessing A, Pham N, Zheng B, Wu X, et al. Intracellular activation of EGFR by fatty acid synthase dependent palmitoylation. Oncotarget. 2015;6:34992-5003 pubmed 出版商
  483. Pearson H, McGlinn E, Phesse T, Schlüter H, Srikumar A, Gödde N, et al. The polarity protein Scrib mediates epidermal development and exerts a tumor suppressive function during skin carcinogenesis. Mol Cancer. 2015;14:169 pubmed 出版商
  484. Singh P, Sharma P, Sahakyan K, Davison D, Sert Kuniyoshi F, Romero Corral A, et al. Differential effects of leptin on adiponectin expression with weight gain versus obesity. Int J Obes (Lond). 2016;40:266-74 pubmed 出版商
  485. Davare M, Vellore N, Wagner J, Eide C, Goodman J, Drilon A, et al. Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors. Proc Natl Acad Sci U S A. 2015;112:E5381-90 pubmed 出版商
  486. Zhu X, Wang K, Zhang K, Tan X, Wu Z, Sun S, et al. Tetramethylpyrazine Protects Retinal Capillary Endothelial Cells (TR-iBRB2) against IL-1β-Induced Nitrative/Oxidative Stress. Int J Mol Sci. 2015;16:21775-90 pubmed 出版商
  487. Xing R, Li L, Chen L, Gao Z, Wang H, Li W, et al. Copy number variations of HLA-I and activation of NKp30 pathway determine the sensitivity of gastric cancer cells to the cytotoxicity of natural killer cells. Oncogene. 2016;35:2584-91 pubmed 出版商
  488. Ramírez de Arellano A, Lopez Pulido E, Martínez Neri P, Estrada Chávez C, González Lucano R, Fafutis Morris M, et al. STAT3 activation is required for the antiapoptotic effects of prolactin in cervical cancer cells. Cancer Cell Int. 2015;15:83 pubmed 出版商
  489. Zhou X, Tao Y, Liang C, Zhang Y, Li H, Chen Q. BMP3 Alone and Together with TGF-β Promote the Differentiation of Human Mesenchymal Stem Cells into a Nucleus Pulposus-Like Phenotype. Int J Mol Sci. 2015;16:20344-59 pubmed 出版商
  490. Higa Nakamine S, Maeda N, Toku S, Yamamoto H. Involvement of Protein Kinase D1 in Signal Transduction from the Protein Kinase C Pathway to the Tyrosine Kinase Pathway in Response to Gonadotropin-releasing Hormone. J Biol Chem. 2015;290:25974-85 pubmed 出版商
  491. Reuther C, Heinzle V, Spampatti M, Vlotides G, de Toni E, Spöttl G, et al. Cabozantinib and Tivantinib, but Not INC280, Induce Antiproliferative and Antimigratory Effects in Human Neuroendocrine Tumor Cells in vitro: Evidence for 'Off-Target' Effects Not Mediated by c-Met Inhibition. Neuroendocrinology. 2016;103:383-401 pubmed 出版商
  492. Thijssen R, Ter Burg J, van Bochove G, de Rooij M, Kuil A, Jansen M, et al. The pan phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor SAR245409 (voxtalisib/XL765) blocks survival, adhesion and proliferation of primary chronic lymphocytic leukemia cells. Leukemia. 2016;30:337-45 pubmed 出版商
  493. Liu H, Dolkas J, Hoang K, Angert M, Chernov A, Remacle A, et al. The alternatively spliced fibronectin CS1 isoform regulates IL-17A levels and mechanical allodynia after peripheral nerve injury. J Neuroinflammation. 2015;12:158 pubmed 出版商
  494. Georgiannakis A, Burgoyne T, Lueck K, Futter C, Greenwood J, Moss S. Retinal Pigment Epithelial Cells Mitigate the Effects of Complement Attack by Endocytosis of C5b-9. J Immunol. 2015;195:3382-9 pubmed 出版商
  495. Gong Y, Qiu W, Ning X, Yang X, Liu L, Wang Z, et al. CCDC34 is up-regulated in bladder cancer and regulates bladder cancer cell proliferation, apoptosis and migration. Oncotarget. 2015;6:25856-67 pubmed 出版商
  496. Zarpelon A, Rodrigues F, Lopes A, Souza G, Carvalho T, Pinto L, et al. Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain. FASEB J. 2016;30:54-65 pubmed 出版商
  497. Conde Perez A, Gros G, Longvert C, Pedersen M, Petit V, Aktary Z, et al. A caveolin-dependent and PI3K/AKT-independent role of PTEN in β-catenin transcriptional activity. Nat Commun. 2015;6:8093 pubmed 出版商
  498. Kumarasamy V, Shin Y, White J, Sun D. Selective repression of RET proto-oncogene in medullary thyroid carcinoma by a natural alkaloid berberine. BMC Cancer. 2015;15:599 pubmed 出版商
  499. Wong T, Lin S, Leung L. The Flavone Luteolin Suppresses SREBP-2 Expression and Post-Translational Activation in Hepatic Cells. PLoS ONE. 2015;10:e0135637 pubmed 出版商
  500. Zhao C, Su Y, Zhang J, Feng Q, Qu L, Wang L, et al. Fibrinogen-derived fibrinostatin inhibits tumor growth through anti-angiogenesis. Cancer Sci. 2015;106:1596-606 pubmed 出版商
  501. Garwood C, Ratcliffe L, Morgan S, Simpson J, Owens H, Vazquez Villaseñor I, et al. Insulin and IGF1 signalling pathways in human astrocytes in vitro and in vivo; characterisation, subcellular localisation and modulation of the receptors. Mol Brain. 2015;8:51 pubmed 出版商
  502. Jeong M, Kim S, Kang H, Park K, Park W, Yang S, et al. Cucurbitacin I Attenuates Cardiomyocyte Hypertrophy via Inhibition of Connective Tissue Growth Factor (CCN2) and TGF- β/Smads Signalings. PLoS ONE. 2015;10:e0136236 pubmed 出版商
  503. Zhang Q, Zhao K, Shen Q, Han Y, Gu Y, Li X, et al. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature. 2015;525:389-393 pubmed 出版商
  504. Liu J, Zhang X, Zhang W, Gu G, Wang P. Effects of Sevoflurane on Young Male Adult C57BL/6 Mice Spatial Cognition. PLoS ONE. 2015;10:e0134217 pubmed 出版商
  505. Chiang C, Uzoma I, Lane D, MemiÅ¡ević V, Alem F, Yao K, et al. A reverse-phase protein microarray-based screen identifies host signaling dynamics upon Burkholderia spp. infection. Front Microbiol. 2015;6:683 pubmed 出版商
  506. Park E, Kim N, Ficarro S, Zhang Y, Lee B, Cho A, et al. Structure and mechanism of activity-based inhibition of the EGF receptor by Mig6. Nat Struct Mol Biol. 2015;22:703-711 pubmed 出版商
  507. Å olman M, Ligabue A, BlaževitÅ¡ O, Jaiswal A, Zhou Y, Liang H, et al. Specific cancer-associated mutations in the switch III region of Ras increase tumorigenicity by nanocluster augmentation. elife. 2015;4:e08905 pubmed 出版商
  508. Sivaraj K, Li R, Albarrán Juárez J, Wang S, Tischner D, Grimm M, et al. Endothelial Gαq/11 is required for VEGF-induced vascular permeability and angiogenesis. Cardiovasc Res. 2015;108:171-80 pubmed 出版商
  509. Hwang J, Byun M, Kim A, Kim K, Cho H, Lee Y, et al. Extracellular Matrix Stiffness Regulates Osteogenic Differentiation through MAPK Activation. PLoS ONE. 2015;10:e0135519 pubmed 出版商
  510. Morancho B, Martínez Barriocanal Ã, Villanueva J, Arribas J. Role of ADAM17 in the non-cell autonomous effects of oncogene-induced senescence. Breast Cancer Res. 2015;17:106 pubmed 出版商
  511. Chichger H, Braza J, Duong H, Stark M, Harrington E. Neovascularization in the pulmonary endothelium is regulated by the endosome: Rab4-mediated trafficking and p18-dependent signaling. Am J Physiol Lung Cell Mol Physiol. 2015;309:L700-9 pubmed 出版商
  512. Sun D, Buttitta L. Protein phosphatase 2A promotes the transition to G0 during terminal differentiation in Drosophila. Development. 2015;142:3033-45 pubmed 出版商
  513. Kim J, Sato M, Choi J, Kim H, Yeh B, Larsen J, et al. Nuclear Receptor Expression and Function in Human Lung Cancer Pathogenesis. PLoS ONE. 2015;10:e0134842 pubmed 出版商
  514. Kim K, Byeon G, Kim H, Baek S, Shin S, Koo S. Mechanical Antiallodynic Effect of Intrathecal Nefopam in a Rat Neuropathic Pain Model. J Korean Med Sci. 2015;30:1189-96 pubmed 出版商
  515. Patel P, Dutta D, Edgar B. Niche appropriation by Drosophila intestinal stem cell tumours. Nat Cell Biol. 2015;17:1182-92 pubmed 出版商
  516. Wu M, Lee W, Hua K, Kuo M, Lin M. Macrophage Infiltration Induces Gastric Cancer Invasiveness by Activating the β-Catenin Pathway. PLoS ONE. 2015;10:e0134122 pubmed 出版商
  517. Zhang W, Zheng X, Du L, Sun J, Shen Z, Shi C, et al. High salt primes a specific activation state of macrophages, M(Na). Cell Res. 2015;25:893-910 pubmed 出版商
  518. He D, Chen H, Muramatsu H, Lasek A. Ethanol activates midkine and anaplastic lymphoma kinase signaling in neuroblastoma cells and in the brain. J Neurochem. 2015;135:508-21 pubmed 出版商
  519. Zou Q, Jin J, Xiao Y, Hu H, Zhou X, Jie Z, et al. T cell development involves TRAF3IP3-mediated ERK signaling in the Golgi. J Exp Med. 2015;212:1323-36 pubmed 出版商
  520. Dahlhoff M, Schäfer M, Muzumdar S, Rose C, Schneider M. ERBB3 is required for tumor promotion in a mouse model of skin carcinogenesis. Mol Oncol. 2015;9:1825-33 pubmed 出版商
  521. Cheng C, Lin J, Tang N, Kao S, Hsieh C. Electroacupuncture at different frequencies (5Hz and 25Hz) ameliorates cerebral ischemia-reperfusion injury in rats: possible involvement of p38 MAPK-mediated anti-apoptotic signaling pathways. BMC Complement Altern Med. 2015;15:241 pubmed 出版商
  522. Ito A, Hong C, Rong X, Zhu X, Tarling E, Hedde P, et al. LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. elife. 2015;4:e08009 pubmed 出版商
  523. Cao X, Kaneko T, Li J, Liu A, Voss C, Li S. A phosphorylation switch controls the spatiotemporal activation of Rho GTPases in directional cell migration. Nat Commun. 2015;6:7721 pubmed 出版商
  524. García Pérez D, Laorden M, Milanés M. Regulation of Pleiotrophin, Midkine, Receptor Protein Tyrosine Phosphatase β/ζ, and Their Intracellular Signaling Cascades in the Nucleus Accumbens During Opiate Administration. Int J Neuropsychopharmacol. 2015;19: pubmed 出版商
  525. Logue J, Cartagena Rivera A, Baird M, Davidson M, Chadwick R, Waterman C. Erk regulation of actin capping and bundling by Eps8 promotes cortex tension and leader bleb-based migration. elife. 2015;4:e08314 pubmed 出版商
  526. Gorojod R, Alaimo A, Porte Alcon S, Pomilio C, Saravia F, Kotler M. The autophagic- lysosomal pathway determines the fate of glial cells under manganese- induced oxidative stress conditions. Free Radic Biol Med. 2015;87:237-51 pubmed 出版商
  527. Yang S, Lin H, Chang V, Chen C, Liu Y, Wang J, et al. Lovastatin overcomes gefitinib resistance through TNF-α signaling in human cholangiocarcinomas with different LKB1 statuses in vitro and in vivo. Oncotarget. 2015;6:23857-73 pubmed
  528. Xiong H, Zhou S, Sun A, He Y, Li J, Yuan X. MicroRNA‑197 reverses the drug resistance of fluorouracil‑induced SGC7901 cells by targeting mitogen‑activated protein kinase 1. Mol Med Rep. 2015;12:5019-25 pubmed 出版商
  529. Chen K, Tsai M, Wu C, Jou M, Wei I, Huang C. AMPA Receptor-mTOR Activation is Required for the Antidepressant-Like Effects of Sarcosine during the Forced Swim Test in Rats: Insertion of AMPA Receptor may Play a Role. Front Behav Neurosci. 2015;9:162 pubmed 出版商
  530. Su X, Yu Y, Zhong Y, Giannopoulou E, Hu X, Liu H, et al. Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat Immunol. 2015;16:838-849 pubmed 出版商
  531. Andersson L, Scharin Täng M, Lundqvist A, Lindbom M, Mardani I, Fogelstrand P, et al. Rip2 modifies VEGF-induced signalling and vascular permeability in myocardial ischaemia. Cardiovasc Res. 2015;107:478-86 pubmed 出版商
  532. Seo G, Ho M, Bui N, Kim Y, Koh D, Lim Y, et al. Novel naphthochalcone derivative accelerate dermal wound healing through induction of epithelial-mesenchymal transition of keratinocyte. J Biomed Sci. 2015;22:47 pubmed 出版商
  533. Lebrun Julien F, Suter U. Combined HDAC1 and HDAC2 Depletion Promotes Retinal Ganglion Cell Survival After Injury Through Reduction of p53 Target Gene Expression. ASN Neuro. 2015;7: pubmed 出版商
  534. He L, Zang A, Du M, Ma D, Yuan C, Zhou C, et al. mTOR regulates TLR-induced c-fos and Th1 responses to HBV and HCV vaccines. Virol Sin. 2015;30:174-89 pubmed 出版商
  535. Ogiso H, Taniguchi M, Okazaki T. Analysis of lipid-composition changes in plasma membrane microdomains. J Lipid Res. 2015;56:1594-605 pubmed 出版商
  536. Ding B, Gomi K, Rafii S, Crystal R, Walters M. Endothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells. J Cell Sci. 2015;128:2983-8 pubmed 出版商
  537. Masotti A, Donninelli G, Da Sacco L, Varano B, Del Cornò M, Gessani S. HIV-1 gp120 influences the expression of microRNAs in human monocyte-derived dendritic cells via STAT3 activation. BMC Genomics. 2015;16:480 pubmed 出版商
  538. Noda K, Mishina Y, Komatsu Y. Constitutively active mutation of ACVR1 in oral epithelium causes submucous cleft palate in mice. Dev Biol. 2016;415:306-313 pubmed 出版商
  539. Roda D, Castillo J, Telechea Fernández M, Gil A, López Rodas G, Franco L, et al. EGF-Induced Acetylation of Heterogeneous Nuclear Ribonucleoproteins Is Dependent on KRAS Mutational Status in Colorectal Cancer Cells. PLoS ONE. 2015;10:e0130543 pubmed 出版商
  540. Westcot S, Hatzold J, Urban M, Richetti S, Skuster K, Harm R, et al. Protein-Trap Insertional Mutagenesis Uncovers New Genes Involved in Zebrafish Skin Development, Including a Neuregulin 2a-Based ErbB Signaling Pathway Required during Median Fin Fold Morphogenesis. PLoS ONE. 2015;10:e0130688 pubmed 出版商
  541. Blancafort A, Giró Perafita A, Oliveras G, Palomeras S, Turrado C, Campuzano Ã, et al. Dual fatty acid synthase and HER2 signaling blockade shows marked antitumor activity against breast cancer models resistant to anti-HER2 drugs. PLoS ONE. 2015;10:e0131241 pubmed 出版商
  542. Pickard A, McDade S, McFarland M, McCluggage W, Wheeler C, McCance D. HPV16 Down-Regulates the Insulin-Like Growth Factor Binding Protein 2 to Promote Epithelial Invasion in Organotypic Cultures. PLoS Pathog. 2015;11:e1004988 pubmed 出版商
  543. Choi J, Kim J, Kim T, Park J, Lee J, Kim H, et al. TRH and TRH receptor system in the basolateral amygdala mediate stress-induced depression-like behaviors. Neuropharmacology. 2015;97:346-56 pubmed 出版商
  544. Bresin A, Callegari E, D Abundo L, Cattani C, Bassi C, Zagatti B, et al. miR-181b as a therapeutic agent for chronic lymphocytic leukemia in the Eµ-TCL1 mouse model. Oncotarget. 2015;6:19807-18 pubmed
  545. Chen M, Yen C, Cheng C, Wu R, Huang S, Yu C, et al. Identification of SPHK1 as a therapeutic target and marker of poor prognosis in cholangiocarcinoma. Oncotarget. 2015;6:23594-608 pubmed
  546. Faggi F, Codenotti S, Poliani P, Cominelli M, Chiarelli N, Colombi M, et al. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line. PLoS ONE. 2015;10:e0130287 pubmed 出版商
  547. Yang L, Li Y, Bhattacharya A, Zhang Y. Inhibition of ERBB2-overexpressing Tumors by Recombinant Human Prolidase and Its Enzymatically Inactive Mutant. EBioMedicine. 2015;2:396-405 pubmed
  548. Hutchinson K, Johnson D, Johnson A, Sanchez V, Kuba M, Lu P, et al. ERBB activation modulates sensitivity to MEK1/2 inhibition in a subset of driver-negative melanoma. Oncotarget. 2015;6:22348-60 pubmed
  549. Gopinathan G, Milagre C, Pearce O, Reynolds L, Hodivala Dilke K, Leinster D, et al. Interleukin-6 Stimulates Defective Angiogenesis. Cancer Res. 2015;75:3098-107 pubmed 出版商
  550. Nan X, Tamgüney T, Collisson E, Lin L, Pitt C, Galeas J, et al. Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway. Proc Natl Acad Sci U S A. 2015;112:7996-8001 pubmed 出版商
  551. Hensel J, Duex J, Owens C, Dancik G, Edwards M, Frierson H, et al. Patient Mutation Directed shRNA Screen Uncovers Novel Bladder Tumor Growth Suppressors. Mol Cancer Res. 2015;13:1306-15 pubmed 出版商
  552. Lee W, Shen S, Shih Y, Chou C, Tseng J, Chin S, et al. Early decline in serum phospho-CSE1L levels in vemurafenib/sunitinib-treated melanoma and sorafenib/lapatinib-treated colorectal tumor xenografts. J Transl Med. 2015;13:191 pubmed 出版商
  553. Koos B, Cane G, Grannas K, Löf L, ArngÃ¥rden L, Heldin J, et al. Proximity-dependent initiation of hybridization chain reaction. Nat Commun. 2015;6:7294 pubmed 出版商
  554. Ronchi G, Haastert Talini K, Fornasari B, Perroteau I, Geuna S, Gambarotta G. The Neuregulin1/ErbB system is selectively regulated during peripheral nerve degeneration and regeneration. Eur J Neurosci. 2016;43:351-64 pubmed 出版商
  555. Unni A, Lockwood W, Zejnullahu K, Lee Lin S, Varmus H. Evidence that synthetic lethality underlies the mutual exclusivity of oncogenic KRAS and EGFR mutations in lung adenocarcinoma. elife. 2015;4:e06907 pubmed 出版商
  556. Wightman S, Uppal A, Pitroda S, Ganai S, Burnette B, Stack M, et al. Oncogenic CXCL10 signalling drives metastasis development and poor clinical outcome. Br J Cancer. 2015;113:327-35 pubmed 出版商
  557. García Cano J, Ambroise G, Pascual Serra R, Carrión M, Serrano Oviedo L, Ortega Muelas M, et al. Exploiting the potential of autophagy in cisplatin therapy: A new strategy to overcome resistance. Oncotarget. 2015;6:15551-65 pubmed
  558. Boeldt D, Grummer M, YI F, Magness R, Bird I. Phosphorylation of Ser-279/282 and Tyr-265 positions on Cx43 as possible mediators of VEGF-165 inhibition of pregnancy-adapted Ca2+ burst function in ovine uterine artery endothelial cells. Mol Cell Endocrinol. 2015;412:73-84 pubmed 出版商
  559. Tampella G, Kerns H, Niu D, Singh S, Khim S, Bosch K, et al. The Tec Kinase-Regulated Phosphoproteome Reveals a Mechanism for the Regulation of Inhibitory Signals in Murine Macrophages. J Immunol. 2015;195:246-56 pubmed 出版商
  560. Li T, Lu H, Mukherjee D, Lahiri S, Shen C, Yu L, et al. Identification of epidermal growth factor receptor and its inhibitory microRNA141 as novel targets of Krüppel-like factor 8 in breast cancer. Oncotarget. 2015;6:21428-42 pubmed
  561. Sawada T, Arai D, Jing X, Furushima K, Chen Q, Kawakami K, et al. Trans-Activation between EphA and FGFR Regulates Self-Renewal and Differentiation of Mouse Embryonic Neural Stem/Progenitor Cells via Differential Activation of FRS2α. PLoS ONE. 2015;10:e0128826 pubmed 出版商
  562. Luan Q, Jin L, Jiang C, Tay K, Lai F, Liu X, et al. RIPK1 regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy. Autophagy. 2015;11:975-94 pubmed 出版商
  563. Yen C, Chiang W, Liu S, Lin C, Liao K, Lin C, et al. Impacts of autophagy-inducing ingredient of areca nut on tumor cells. PLoS ONE. 2015;10:e0128011 pubmed 出版商
  564. Korotkevych N, Labyntsev A, Kolybo D, Komisarenko S. The Soluble Heparin-Binding EGF-Like Growth Factor Stimulates EGF Receptor Trafficking to the Nucleus. PLoS ONE. 2015;10:e0127887 pubmed 出版商
  565. Nagata T, Yasukawa H, Kyogoku S, Oba T, Takahashi J, Nohara S, et al. Cardiac-Specific SOCS3 Deletion Prevents In Vivo Myocardial Ischemia Reperfusion Injury through Sustained Activation of Cardioprotective Signaling Molecules. PLoS ONE. 2015;10:e0127942 pubmed 出版商
  566. Alexandrova E, Yallowitz A, Li D, Xu S, Schulz R, Proia D, et al. Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment. Nature. 2015;523:352-6 pubmed 出版商
  567. Reigada D, Nieto Díaz M, Navarro Ruiz R, Caballero López M, Del Águila A, Muñoz Galdeano T, et al. Acute administration of ucf-101 ameliorates the locomotor impairments induced by a traumatic spinal cord injury. Neuroscience. 2015;300:404-17 pubmed 出版商
  568. Petrov D, Pedrós I, Artiach G, Sureda F, Barroso E, Pallas M, et al. High-fat diet-induced deregulation of hippocampal insulin signaling and mitochondrial homeostasis deficiences contribute to Alzheimer disease pathology in rodents. Biochim Biophys Acta. 2015;1852:1687-99 pubmed 出版商
  569. Yu J, Ramasamy T, Murphy N, Holt M, Czapiewski R, Wei S, et al. PI3K/mTORC2 regulates TGF-β/Activin signalling by modulating Smad2/3 activity via linker phosphorylation. Nat Commun. 2015;6:7212 pubmed 出版商
  570. Bargut T, Mandarim de Lacerda C, Aguila M. A high-fish-oil diet prevents adiposity and modulates white adipose tissue inflammation pathways in mice. J Nutr Biochem. 2015;26:960-9 pubmed 出版商
  571. Greenfeld H, Takasaki K, Walsh M, Ersing I, Bernhardt K, Ma Y, et al. TRAF1 Coordinates Polyubiquitin Signaling to Enhance Epstein-Barr Virus LMP1-Mediated Growth and Survival Pathway Activation. PLoS Pathog. 2015;11:e1004890 pubmed 出版商
  572. Yufune S, Satoh Y, Takamatsu I, Ohta H, Kobayashi Y, Takaenoki Y, et al. Transient Blockade of ERK Phosphorylation in the Critical Period Causes Autistic Phenotypes as an Adult in Mice. Sci Rep. 2015;5:10252 pubmed 出版商
  573. Palla A, Piazzolla D, Alcazar N, Cañamero M, Graña O, Gómez López G, et al. The pluripotency factor NANOG promotes the formation of squamous cell carcinomas. Sci Rep. 2015;5:10205 pubmed 出版商
  574. Li P, Sheu M, Ma W, Pan C, Sheu J, Wu C. Anti-Restenotic Roles of Dihydroaustrasulfone Alcohol Involved in Inhibiting PDGF-BB-Stimulated Proliferation and Migration of Vascular Smooth Muscle Cells. Mar Drugs. 2015;13:3046-60 pubmed 出版商
  575. Pan D, Jiang C, Ma Z, Blonska M, You M, Lin X. MALT1 is required for EGFR-induced NF-?B activation and contributes to EGFR-driven lung cancer progression. Oncogene. 2016;35:919-28 pubmed 出版商
  576. Ji X, Li Z, Chen H, Li J, Tian H, Li Z, et al. Cytotoxic mechanism related to dihydrolipoamide dehydrogenase in Leydig cells exposed to heavy metals. Toxicology. 2015;334:22-32 pubmed 出版商
  577. Wong T, Lin S, Leung L. The flavone apigenin blocks nuclear translocation of sterol regulatory element-binding protein-2 in the hepatic cells WRL-68. Br J Nutr. 2015;113:1844-52 pubmed 出版商
  578. Chen Q, Arai D, Kawakami K, Sawada T, Jing X, Miyajima M, et al. EphA4 Regulates the Balance between Self-Renewal and Differentiation of Radial Glial Cells and Intermediate Neuronal Precursors in Cooperation with FGF Signaling. PLoS ONE. 2015;10:e0126942 pubmed 出版商
  579. Ketema M, Secades P, Kreft M, Nahidiazar L, Janssen H, Jalink K, et al. The rod domain is not essential for the function of plectin in maintaining tissue integrity. Mol Biol Cell. 2015;26:2402-17 pubmed 出版商
  580. Andersen N, Boguslawski E, Kuk C, Chambers C, Duesbery N. Combined inhibition of MEK and mTOR has a synergic effect on angiosarcoma tumorgrafts. Int J Oncol. 2015;47:71-80 pubmed 出版商
  581. Cong X, Zhang Y, Li J, Mei M, Ding C, Xiang R, et al. Claudin-4 is required for modulation of paracellular permeability by muscarinic acetylcholine receptor in epithelial cells. J Cell Sci. 2015;128:2271-86 pubmed 出版商
  582. Rios Doria J, Sabol D, Chesebrough J, Stewart D, Xu L, Tammali R, et al. A Monoclonal Antibody to ADAM17 Inhibits Tumor Growth by Inhibiting EGFR and Non-EGFR-Mediated Pathways. Mol Cancer Ther. 2015;14:1637-49 pubmed 出版商
  583. Boswell B, Musil L. Synergistic interaction between the fibroblast growth factor and bone morphogenetic protein signaling pathways in lens cells. Mol Biol Cell. 2015;26:2561-72 pubmed 出版商
  584. Lei Z, van Mil A, Brandt M, Grundmann S, Hoefer I, Smits M, et al. MicroRNA-132/212 family enhances arteriogenesis after hindlimb ischaemia through modulation of the Ras-MAPK pathway. J Cell Mol Med. 2015;19:1994-2005 pubmed 出版商
  585. Waters A, Stewart J, Atigadda V, Mroczek Musulman E, Muccio D, Grubbs C, et al. Preclinical Evaluation of a Novel RXR Agonist for the Treatment of Neuroblastoma. Mol Cancer Ther. 2015;14:1559-69 pubmed 出版商
  586. Yu Y, Koehn C, Yue Y, Li S, Thiele G, Hearth Holmes M, et al. Celastrol inhibits inflammatory stimuli-induced neutrophil extracellular trap formation. Curr Mol Med. 2015;15:401-10 pubmed
  587. Zhang L, Wang H, Ding K, Xu J. FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells. Toxicol Lett. 2015;236:43-59 pubmed 出版商
  588. Buonora J, Mousseau M, Jacobowitz D, Lazarus R, Yarnell A, Olsen C, et al. Autoimmune Profiling Reveals Peroxiredoxin 6 as a Candidate Traumatic Brain Injury Biomarker. J Neurotrauma. 2015;32:1805-14 pubmed 出版商
  589. Lee E, Park E, Mun H, Chang E, Ko J, Kim D, et al. Soluble receptor for advanced glycation end products inhibits disease progression in autosomal dominant polycystic kidney disease by down-regulating cell proliferation. FASEB J. 2015;29:3506-14 pubmed 出版商
  590. Bhang S, Han J, Jang H, Noh M, La W, Yi M, et al. pH-triggered release of manganese from MnAu nanoparticles that enables cellular neuronal differentiation without cellular toxicity. Biomaterials. 2015;55:33-43 pubmed 出版商
  591. Park J, Zhao L, Willingham M, Cheng S. Oncogenic mutations of thyroid hormone receptor β. Oncotarget. 2015;6:8115-31 pubmed
  592. SCANLON C, Banerjee R, Inglehart R, Liu M, Russo N, Hariharan A, et al. Galanin modulates the neural niche to favour perineural invasion in head and neck cancer. Nat Commun. 2015;6:6885 pubmed 出版商
  593. Bhushan S, Tchatalbachev S, Lu Y, Fröhlich S, Fijak M, Vijayan V, et al. Differential activation of inflammatory pathways in testicular macrophages provides a rationale for their subdued inflammatory capacity. J Immunol. 2015;194:5455-64 pubmed 出版商
  594. Qiu J, Zhang Y, Li Y, Zhao J, Zhang W, Jiang Q, et al. Trametinib modulates cancer multidrug resistance by targeting ABCB1 transporter. Oncotarget. 2015;6:15494-509 pubmed
  595. Pasqualon T, Pruessmeyer J, Weidenfeld S, Babendreyer A, Groth E, Schumacher J, et al. A transmembrane C-terminal fragment of syndecan-1 is generated by the metalloproteinase ADAM17 and promotes lung epithelial tumor cell migration and lung metastasis formation. Cell Mol Life Sci. 2015;72:3783-801 pubmed 出版商
  596. Daniele S, Da Pozzo E, Zappelli E, Martini C. Trazodone treatment protects neuronal-like cells from inflammatory insult by inhibiting NF-?B, p38 and JNK. Cell Signal. 2015;27:1609-29 pubmed 出版商
  597. Jang D, Kwon H, Jeong K, Lee J, Pak Y. Essential role of flotillin-1 palmitoylation in the intracellular localization and signaling function of IGF-1 receptor. J Cell Sci. 2015;128:2179-90 pubmed 出版商
  598. Chan S, Selth L, Li Y, Nyquist M, Miao L, Bradner J, et al. Targeting chromatin binding regulation of constitutively active AR variants to overcome prostate cancer resistance to endocrine-based therapies. Nucleic Acids Res. 2015;43:5880-97 pubmed 出版商
  599. Kim H, Kim I, Dong Y, Lee I, Kim J, Kim J, et al. Melanogenesis-inducing effect of cirsimaritin through increases in microphthalmia-associated transcription factor and tyrosinase expression. Int J Mol Sci. 2015;16:8772-88 pubmed 出版商
  600. Huang L, Counter C. Reduced HRAS G12V-Driven Tumorigenesis of Cell Lines Expressing KRAS C118S. PLoS ONE. 2015;10:e0123918 pubmed 出版商
  601. Yamana S, Tokiyama A, Mizutani K, Hirata K, Takai Y, Rikitake Y. The Cell Adhesion Molecule Necl-4/CADM4 Serves as a Novel Regulator for Contact Inhibition of Cell Movement and Proliferation. PLoS ONE. 2015;10:e0124259 pubmed 出版商
  602. Lodillinsky C, Infante E, Guichard A, Chaligné R, Fuhrmann L, Cyrta J, et al. p63/MT1-MMP axis is required for in situ to invasive transition in basal-like breast cancer. Oncogene. 2016;35:344-57 pubmed 出版商
  603. Yang Z, Zheng B, Zhang Y, He M, Zhang X, Ma D, et al. miR-155-dependent regulation of mammalian sterile 20-like kinase 2 (MST2) coordinates inflammation, oxidative stress and proliferation in vascular smooth muscle cells. Biochim Biophys Acta. 2015;1852:1477-89 pubmed 出版商
  604. Roffé M, Lupinacci F, Soares L, Hajj G, Martins V. Two widely used RSK inhibitors, BI-D1870 and SL0101, alter mTORC1 signaling in a RSK-independent manner. Cell Signal. 2015;27:1630-42 pubmed 出版商
  605. Pasiliao C, Chang C, Sutherland B, Valdez S, Schaeffer D, Yapp D, et al. The involvement of insulin-like growth factor 2 binding protein 3 (IMP3) in pancreatic cancer cell migration, invasion, and adhesion. BMC Cancer. 2015;15:266 pubmed 出版商
  606. Cookman C, Belcher S. Estrogen Receptor-β Up-Regulates IGF1R Expression and Activity to Inhibit Apoptosis and Increase Growth of Medulloblastoma. Endocrinology. 2015;156:2395-408 pubmed 出版商
  607. Selvaraj N, Kedage V, Hollenhorst P. Comparison of MAPK specificity across the ETS transcription factor family identifies a high-affinity ERK interaction required for ERG function in prostate cells. Cell Commun Signal. 2015;13:12 pubmed 出版商
  608. Zhang X, Liang D, Chi Z, Chu Q, Zhao C, Ma R, et al. Effect of zinc on high glucose-induced epithelial-to-mesenchymal transition in renal tubular epithelial cells. Int J Mol Med. 2015;35:1747-54 pubmed 出版商
  609. Hayashi Y, Bardsley M, Toyomasu Y, Milosavljevic S, Gajdos G, Choi K, et al. Platelet-Derived Growth Factor Receptor-α Regulates Proliferation of Gastrointestinal Stromal Tumor Cells With Mutations in KIT by Stabilizing ETV1. Gastroenterology. 2015;149:420-32.e16 pubmed 出版商
  610. Navis A, van Lith S, van Duijnhoven S, de Pooter M, Yetkin Arik B, Wesseling P, et al. Identification of a novel MET mutation in high-grade glioma resulting in an auto-active intracellular protein. Acta Neuropathol. 2015;130:131-44 pubmed 出版商
  611. Witkiewicz A, McMillan E, Balaji U, Baek G, Lin W, Mansour J, et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun. 2015;6:6744 pubmed 出版商
  612. Janes K. An analysis of critical factors for quantitative immunoblotting. Sci Signal. 2015;8:rs2 pubmed 出版商
  613. Chakraborty A, Diefenbacher M, Mylona A, Kassel O, Behrens A. The E3 ubiquitin ligase Trim7 mediates c-Jun/AP-1 activation by Ras signalling. Nat Commun. 2015;6:6782 pubmed 出版商
  614. Kim T, Lawson M. GnRH Regulates Gonadotropin Gene Expression Through NADPH/Dual Oxidase-Derived Reactive Oxygen Species. Endocrinology. 2015;156:2185-99 pubmed 出版商
  615. Boncompagni S, Arthurton L, Akujuru E, Pearson T, Steverding D, Protasi F, et al. Membrane glucocorticoid receptors are localised in the extracellular matrix and signal through the MAPK pathway in mammalian skeletal muscle fibres. J Physiol. 2015;593:2679-92 pubmed 出版商
  616. Moretti M, Budni J, Freitas A, Neis V, Ribeiro C, de Oliveira Balen G, et al. TNF-α-induced depressive-like phenotype and p38(MAPK) activation are abolished by ascorbic acid treatment. Eur Neuropsychopharmacol. 2015;25:902-12 pubmed 出版商
  617. Brohée L, Demine S, Willems J, Arnould T, Colige A, Deroanne C. Lipin-1 regulates cancer cell phenotype and is a potential target to potentiate rapamycin treatment. Oncotarget. 2015;6:11264-80 pubmed
  618. Schulze K, Imbeaud S, Letouzé E, Alexandrov L, Calderaro J, Rebouissou S, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet. 2015;47:505-511 pubmed 出版商
  619. Shin C, Grossmann A, Holmen S, Robinson J. The BRAF kinase domain promotes the development of gliomas in vivo. Genes Cancer. 2015;6:9-18 pubmed
  620. Richter E, Harms M, Ventz K, Gierok P, Chilukoti R, Hildebrandt J, et al. A multi-omics approach identifies key hubs associated with cell type-specific responses of airway epithelial cells to staphylococcal alpha-toxin. PLoS ONE. 2015;10:e0122089 pubmed 出版商
  621. Yazlovitskaya E, Tseng H, Viquez O, Tu T, Mernaugh G, McKee K, et al. Integrin α3β1 regulates kidney collecting duct development via TRAF6-dependent K63-linked polyubiquitination of Akt. Mol Biol Cell. 2015;26:1857-74 pubmed 出版商
  622. Salvucci O, Ohnuki H, Maric D, Hou X, Li X, Yoon S, et al. EphrinB2 controls vessel pruning through STAT1-JNK3 signalling. Nat Commun. 2015;6:6576 pubmed 出版商
  623. Chan N, He S, Spee C, Ishikawa K, Hinton D. Attenuation of choroidal neovascularization by histone deacetylase inhibitor. PLoS ONE. 2015;10:e0120587 pubmed 出版商
  624. Chen Z, Shojaee S, Buchner M, Geng H, Lee J, Klemm L, et al. Signalling thresholds and negative B-cell selection in acute lymphoblastic leukaemia. Nature. 2015;521:357-61 pubmed 出版商
  625. Zhang Q, Kuang H, Chen C, Yan J, Do Umehara H, Liu X, et al. The kinase Jnk2 promotes stress-induced mitophagy by targeting the small mitochondrial form of the tumor suppressor ARF for degradation. Nat Immunol. 2015;16:458-66 pubmed 出版商
  626. Graziani G, Artuso S, De Luca A, Muzi A, Rotili D, Scimeca M, et al. A new water soluble MAPK activator exerts antitumor activity in melanoma cells resistant to the BRAF inhibitor vemurafenib. Biochem Pharmacol. 2015;95:16-27 pubmed 出版商
  627. Kumar A, Pathak P, Purkait S, Faruq M, Jha P, Mallick S, et al. Oncogenic KIAA1549-BRAF fusion with activation of the MAPK/ERK pathway in pediatric oligodendrogliomas. Cancer Genet. 2015;208:91-5 pubmed 出版商
  628. Muro R, Nitta T, Okada T, Ideta H, Tsubata T, Suzuki H. The Ras GTPase-activating protein Rasal3 supports survival of naive T cells. PLoS ONE. 2015;10:e0119898 pubmed 出版商
  629. Kawada M, Inoue H, Ohba S, Yoshida J, Masuda T, Yamasaki M, et al. Stromal cells positively and negatively modulate the growth of cancer cells: stimulation via the PGE2-TNFα-IL-6 pathway and inhibition via secreted GAPDH-E-cadherin interaction. PLoS ONE. 2015;10:e0119415 pubmed 出版商
  630. Carnesecchi J, Malbouyres M, de Mets R, Balland M, Beauchef G, Vié K, et al. Estrogens induce rapid cytoskeleton re-organization in human dermal fibroblasts via the non-classical receptor GPR30. PLoS ONE. 2015;10:e0120672 pubmed 出版商
  631. Qu D, Chen Y, Xu X, Zhang M, Zhang Y, Li S. Cbl-b-regulated extracellular signal-regulated kinase signaling is involved in the shikonin-induced apoptosis of lung cancer cells in vitro. Exp Ther Med. 2015;9:1265-1270 pubmed
  632. Wang B, Wu S, Tang S, Lai C, Ou C, Wu M, et al. Benzo[a]pyrene-induced cell cycle progression occurs via ERK-induced Chk1 pathway activation in human lung cancer cells. Mutat Res. 2015;773:1-8 pubmed 出版商
  633. Liu Y, Li Y, Zhang D, Liu J, Gou K, Cui S. Mitogen-Activated Protein Kinase 8 (MAP3K8) Mediates the Signaling Pathway of Estradiol Stimulating Progesterone Production Through G Protein-Coupled Receptor 30 (GPR30) in Mouse Corpus Luteum. Mol Endocrinol. 2015;29:703-15 pubmed 出版商
  634. Gorantla S, Zirlik K, Reiter A, Yu C, Illert A, von Bubnoff N, et al. F604S exchange in FIP1L1-PDGFRA enhances FIP1L1-PDGFRA protein stability via SHP-2 and SRC: a novel mode of kinase inhibitor resistance. Leukemia. 2015;29:1763-70 pubmed 出版商
  635. Wilson F, Johannessen C, Piccioni F, Tamayo P, Kim J, Van Allen E, et al. A functional landscape of resistance to ALK inhibition in lung cancer. Cancer Cell. 2015;27:397-408 pubmed 出版商
  636. Münzberg C, Höhn K, Krndija D, Maaß U, Bartsch D, Slater E, et al. IGF-1 drives chromogranin A secretion via activation of Arf1 in human neuroendocrine tumour cells. J Cell Mol Med. 2015;19:948-59 pubmed 出版商
  637. Warren D, Tajsic T, Porter L, Minaisah R, Cobb A, Jacob A, et al. Nesprin-2-dependent ERK1/2 compartmentalisation regulates the DNA damage response in vascular smooth muscle cell ageing. Cell Death Differ. 2015;22:1540-50 pubmed 出版商
  638. Guo H, Liu B, Hou L, The E, Li G, Wang D, et al. The role of mAKAPβ in the process of cardiomyocyte hypertrophy induced by angiotensin II. Int J Mol Med. 2015;35:1159-68 pubmed 出版商
  639. Vogel C, Smit M, Maddalo G, Possik P, Sparidans R, van der Burg S, et al. Cooperative induction of apoptosis in NRAS mutant melanoma by inhibition of MEK and ROCK. Pigment Cell Melanoma Res. 2015;28:307-17 pubmed 出版商
  640. Silva G, Aboussekhra A. p16(INK4A) inhibits the pro-metastatic potentials of osteosarcoma cells through targeting the ERK pathway and TGF-β1. Mol Carcinog. 2016;55:525-36 pubmed 出版商
  641. Coorey N, Shen W, Zhu L, Gillies M. Differential Expression of IL-6/gp130 Cytokines, Jak-STAT Signaling and Neuroprotection After Müller Cell Ablation in a Transgenic Mouse Model. Invest Ophthalmol Vis Sci. 2015;56:2151-61 pubmed 出版商
  642. Cheng Z, Liu F, Zhu S, Tian H, Wang L, Wang Y. A rapid and convenient method for fluorescence analysis of in vitro cultivated metacestode vesicles from Echinococcus multilocularis. PLoS ONE. 2015;10:e0118215 pubmed 出版商
  643. Stolze B, Reinhart S, Bulllinger L, Fröhling S, Scholl C. Comparative analysis of KRAS codon 12, 13, 18, 61, and 117 mutations using human MCF10A isogenic cell lines. Sci Rep. 2015;5:8535 pubmed 出版商
  644. Wnorowski A, Sadowska M, Paul R, Singh N, Boguszewska Czubara A, Jimenez L, et al. Activation of β2-adrenergic receptor by (R,R')-4'-methoxy-1-naphthylfenoterol inhibits proliferation and motility of melanoma cells. Cell Signal. 2015;27:997-1007 pubmed 出版商
  645. Young C, Sinadinos A, Lefebvre A, Chan P, Arkle S, Vaudry D, et al. A novel mechanism of autophagic cell death in dystrophic muscle regulated by P2RX7 receptor large-pore formation and HSP90. Autophagy. 2015;11:113-30 pubmed 出版商
  646. Murrow L, Malhotra R, Debnath J. ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat Cell Biol. 2015;17:300-10 pubmed 出版商
  647. Skarra D, Thackray V. FOXO1 is regulated by insulin and IGF1 in pituitary gonadotropes. Mol Cell Endocrinol. 2015;405:14-24 pubmed 出版商
  648. Guillaumond F, Bidaut G, Ouaissi M, Servais S, Gouirand V, Olivares O, et al. Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proc Natl Acad Sci U S A. 2015;112:2473-8 pubmed 出版商
  649. Huang P, Chen C, Hsu I, Salim S, Kao S, Cheng C, et al. Huntingtin-associated protein 1 interacts with breakpoint cluster region protein to regulate neuronal differentiation. PLoS ONE. 2015;10:e0116372 pubmed 出版商
  650. Momeny M, Saunus J, Marturana F, McCart Reed A, Black D, Sala G, et al. Heregulin-HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines. Oncotarget. 2015;6:3932-46 pubmed
  651. Fouladi F, Jehn L, Metzelder S, Hub F, Henkenius K, Burchert A, et al. Sorafenib induces paradoxical phosphorylation of the extracellular signal-regulated kinase pathway in acute myeloid leukemia cells lacking FLT3-ITD mutation. Leuk Lymphoma. 2015;56:2690-8 pubmed 出版商
  652. Porquet D, Andrés Benito P, Griñán Ferré C, Camins A, Ferrer I, Canudas A, et al. Amyloid and tau pathology of familial Alzheimer's disease APP/PS1 mouse model in a senescence phenotype background (SAMP8). Age (Dordr). 2015;37:9747 pubmed 出版商
  653. Kondapalli K, Llongueras J, Capilla González V, Prasad H, Hack A, Smith C, et al. A leak pathway for luminal protons in endosomes drives oncogenic signalling in glioblastoma. Nat Commun. 2015;6:6289 pubmed 出版商
  654. Castorina A, Waschek J, Marzagalli R, Cardile V, Drago F. PACAP interacts with PAC1 receptors to induce tissue plasminogen activator (tPA) expression and activity in schwann cell-like cultures. PLoS ONE. 2015;10:e0117799 pubmed 出版商
  655. Papadakis A, Sun C, Knijnenburg T, Xue Y, Grernrum W, Hölzel M, et al. SMARCE1 suppresses EGFR expression and controls responses to MET and ALK inhibitors in lung cancer. Cell Res. 2015;25:445-58 pubmed 出版商
  656. Bai L, Mao R, Wang J, Ding L, Jiang S, Gao C, et al. ERK1/2 promoted proliferation and inhibited apoptosis of human cervical cancer cells and regulated the expression of c-Fos and c-Jun proteins. Med Oncol. 2015;32:57 pubmed 出版商
  657. Shaw A, Pickup M, Chytil A, Aakre M, Owens P, Moses H, et al. TGFβ signaling in myeloid cells regulates mammary carcinoma cell invasion through fibroblast interactions. PLoS ONE. 2015;10:e0117908 pubmed 出版商
  658. Santhana Kumar K, Tripolitsioti D, Ma M, Grählert J, Egli K, Fiaschetti G, et al. The Ser/Thr kinase MAP4K4 drives c-Met-induced motility and invasiveness in a cell-based model of SHH medulloblastoma. Springerplus. 2015;4:19 pubmed 出版商
  659. Cai K, Wang Y, Smith E, Smedberg J, Yang D, Yang W, et al. Global deletion of Trp53 reverts ovarian tumor phenotype of the germ cell-deficient white spotting variant (Wv) mice. Neoplasia. 2015;17:89-100 pubmed 出版商
  660. Bele A, Mirza S, Zhang Y, Ahmad Mir R, Lin S, Kim J, et al. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells. Cell Cycle. 2015;14:990-1000 pubmed 出版商
  661. Albanito L, Lappano R, Madeo A, Chimento A, Prossnitz E, Cappello A, et al. Effects of atrazine on estrogen receptor α- and G protein-coupled receptor 30-mediated signaling and proliferation in cancer cells and cancer-associated fibroblasts. Environ Health Perspect. 2015;123:493-9 pubmed 出版商
  662. Tian E, Stevens S, Guan Y, Springer D, Anderson S, Starost M, et al. Galnt1 is required for normal heart valve development and cardiac function. PLoS ONE. 2015;10:e0115861 pubmed 出版商
  663. Aki S, Yoshioka K, Okamoto Y, Takuwa N, Takuwa Y. Phosphatidylinositol 3-kinase class II α-isoform PI3K-C2α is required for transforming growth factor β-induced Smad signaling in endothelial cells. J Biol Chem. 2015;290:6086-105 pubmed 出版商
  664. Seaberg B, Henslee G, Wang S, Paez Colasante X, Landreth G, Rimer M. Muscle-derived extracellular signal-regulated kinases 1 and 2 are required for the maintenance of adult myofibers and their neuromuscular junctions. Mol Cell Biol. 2015;35:1238-53 pubmed 出版商
  665. Tontonoz P, Cortez Toledo O, Wroblewski K, Hong C, Lim L, Carranza R, et al. The orphan nuclear receptor Nur77 is a determinant of myofiber size and muscle mass in mice. Mol Cell Biol. 2015;35:1125-38 pubmed 出版商
  666. Chow H, Dong B, Duron S, Campbell D, Ong C, Hoeflich K, et al. Group I Paks as therapeutic targets in NF2-deficient meningioma. Oncotarget. 2015;6:1981-94 pubmed
  667. Pajaud J, Ribault C, Ben Mosbah I, Rauch C, Henderson C, Bellaud P, et al. Glutathione transferases P1/P2 regulate the timing of signaling pathway activations and cell cycle progression during mouse liver regeneration. Cell Death Dis. 2015;6:e1598 pubmed 出版商
  668. Azimzadeh O, Sievert W, Sarioglu H, Merl Pham J, Yentrapalli R, Bakshi M, et al. Integrative proteomics and targeted transcriptomics analyses in cardiac endothelial cells unravel mechanisms of long-term radiation-induced vascular dysfunction. J Proteome Res. 2015;14:1203-19 pubmed 出版商
  669. Schäker K, Bartsch S, Patry C, Stoll S, Hillebrands J, Wieland T, et al. The bipartite rac1 Guanine nucleotide exchange factor engulfment and cell motility 1/dedicator of cytokinesis 180 (elmo1/dock180) protects endothelial cells from apoptosis in blood vessel development. J Biol Chem. 2015;290:6408-18 pubmed 出版商
  670. de Oliveira S, Boudinot P, Calado Ã, Mulero V. Duox1-derived H2O2 modulates Cxcl8 expression and neutrophil recruitment via JNK/c-JUN/AP-1 signaling and chromatin modifications. J Immunol. 2015;194:1523-33 pubmed 出版商
  671. Majuelos Melguizo J, Rodríguez M, López Jiménez L, Rodríguez Vargas J, Martí Martín Consuegra J, Serrano Sáenz S, et al. PARP targeting counteracts gliomagenesis through induction of mitotic catastrophe and aggravation of deficiency in homologous recombination in PTEN-mutant glioma. Oncotarget. 2015;6:4790-803 pubmed
  672. Gao B, Huang Q, Jie Q, Wang L, Zhang H, Liu J, et al. Dose-response estrogen promotes osteogenic differentiation via GPR40 (FFAR1) in murine BMMSCs. Biochimie. 2015;110:36-44 pubmed 出版商
  673. Cheng Y, Chen P, Chiang H, Suen C, Hwang M, Lin T, et al. Candidate tumor suppressor B-cell translocation gene 3 impedes neoplastic progression by suppression of AKT. Cell Death Dis. 2015;6:e1584 pubmed 出版商
  674. Sathyamurthy A, Yin D, Barik A, Shen C, Bean J, Figueiredo D, et al. ERBB3-mediated regulation of Bergmann glia proliferation in cerebellar lamination. Development. 2015;142:522-32 pubmed 出版商
  675. Chen C, Hung T, Lee C, Wang L, Wu C, Ke C, et al. Berberine protects against neuronal damage via suppression of glia-mediated inflammation in traumatic brain injury. PLoS ONE. 2014;9:e115694 pubmed 出版商
  676. Lin T, Shih Y, Chen S, Lien C, Chang C, Huang T, et al. Running exercise delays neurodegeneration in amygdala and hippocampus of Alzheimer's disease (APP/PS1) transgenic mice. Neurobiol Learn Mem. 2015;118:189-97 pubmed 出版商
  677. Zanotto Filho A, Braganhol E, Klafke K, Figueiró F, Terra S, Paludo F, et al. Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas. Cancer Lett. 2015;358:220-31 pubmed 出版商
  678. Zhang X, Cheng S, Bian K, Wang L, Zhang X, Yan B, et al. MicroRNA-26a promotes anoikis in human hepatocellular carcinoma cells by targeting alpha5 integrin. Oncotarget. 2015;6:2277-89 pubmed
  679. Gonzalez Granado J, Navarro Puche A, Molina Sánchez P, Blanco Berrocal M, Viana R, Font de Mora J, et al. Sorting nexin 6 enhances lamin a synthesis and incorporation into the nuclear envelope. PLoS ONE. 2014;9:e115571 pubmed 出版商
  680. Salotti J, Sakchaisri K, Tourtellotte W, Johnson P. An Arf-Egr-C/EBPβ pathway linked to ras-induced senescence and cancer. Mol Cell Biol. 2015;35:866-83 pubmed 出版商
  681. Passos E, Pereira C, Gonçalves I, Rocha Rodrigues S, Silva N, Guimarães J, et al. Role of physical exercise on hepatic insulin, glucocorticoid and inflammatory signaling pathways in an animal model of non-alcoholic steatohepatitis. Life Sci. 2015;123:51-60 pubmed 出版商
  682. Pino M, Verstraeten S. Tl(I) and Tl(III) alter the expression of EGF-dependent signals and cyclins required for pheochromocytoma (PC12) cell-cycle resumption and progression. J Appl Toxicol. 2015;35:952-69 pubmed 出版商
  683. Machado Neto J, Lazarini M, Favaro P, de Melo Campos P, Scopim Ribeiro R, Franchi Junior G, et al. ANKHD1 silencing inhibits Stathmin 1 activity, cell proliferation and migration of leukemia cells. Biochim Biophys Acta. 2015;1853:583-93 pubmed 出版商
  684. Gammella E, Díaz V, Recalcati S, Buratti P, Samaja M, Dey S, et al. Erythropoietin's inhibiting impact on hepcidin expression occurs indirectly. Am J Physiol Regul Integr Comp Physiol. 2015;308:R330-5 pubmed 出版商
  685. Boucrot E, Ferreira A, Almeida Souza L, Debard S, Vallis Y, Howard G, et al. Endophilin marks and controls a clathrin-independent endocytic pathway. Nature. 2015;517:460-5 pubmed 出版商
  686. Kim E, Kim S, Jin X, Ham S, Kim J, Park J, et al. Epidermal growth factor receptor variant III renders glioma cancer cells less differentiated by JAGGED1. Tumour Biol. 2015;36:2921-8 pubmed 出版商
  687. Narumi K, Hirose T, Sato E, Mori T, Kisu K, Ishikawa M, et al. A functional (pro)renin receptor is expressed in human lymphocytes and monocytes. Am J Physiol Renal Physiol. 2015;308:F487-99 pubmed 出版商
  688. Pastor Clerigues A, Martí Bonmatí E, Milara J, Almudever P, Cortijo J. Anti-inflammatory and anti-fibrotic profile of fish oil emulsions used in parenteral nutrition-associated liver disease. PLoS ONE. 2014;9:e115404 pubmed 出版商
  689. Bifsha P, Yang J, Fisher R, Drouin J. Rgs6 is required for adult maintenance of dopaminergic neurons in the ventral substantia nigra. PLoS Genet. 2014;10:e1004863 pubmed 出版商
  690. Girotti M, Lopes F, Preece N, Niculescu Duvaz D, Zambon A, Davies L, et al. Paradox-breaking RAF inhibitors that also target SRC are effective in drug-resistant BRAF mutant melanoma. Cancer Cell. 2015;27:85-96 pubmed 出版商
  691. Delloye Bourgeois C, Jacquier A, Charoy C, Reynaud F, Nawabi H, Thoinet K, et al. PlexinA1 is a new Slit receptor and mediates axon guidance function of Slit C-terminal fragments. Nat Neurosci. 2015;18:36-45 pubmed 出版商
  692. Chuang C, Guh J, Lu C, Chen H, Chuang L. S100B is required for high glucose-induced pro-fibrotic gene expression and hypertrophy in mesangial cells. Int J Mol Med. 2015;35:546-52 pubmed 出版商
  693. Diesenberg K, Beerbaum M, Fink U, Schmieder P, Krauss M. SEPT9 negatively regulates ubiquitin-dependent downregulation of EGFR. J Cell Sci. 2015;128:397-407 pubmed 出版商
  694. Cai H, Liu W, Xue Y, Shang X, Liu J, Li Z, et al. Roundabout 4 regulates blood-tumor barrier permeability through the modulation of ZO-1, Occludin, and Claudin-5 expression. J Neuropathol Exp Neurol. 2015;74:25-37 pubmed 出版商
  695. Bernusso V, Machado Neto J, Pericole F, Vieira K, Duarte A, Traina F, et al. Imatinib restores VASP activity and its interaction with Zyxin in BCR-ABL leukemic cells. Biochim Biophys Acta. 2015;1853:388-95 pubmed 出版商
  696. Xu T, Pan Z, Dong M, Yu C, Niu Y. Ferulic acid suppresses activation of hepatic stellate cells through ERK1/2 and Smad signaling pathways in vitro. Biochem Pharmacol. 2015;93:49-58 pubmed 出版商
  697. Tang D, Yu Y, Zhao X, Schachner M, Zhao W. Single chain fragment variable antibodies developed by using as target the 3rd fibronectin type III homologous repeat fragment of human neural cell adhesion molecule L1 promote cell migration and neuritogenesis. Exp Cell Res. 2015;330:336-45 pubmed 出版商
  698. Olayanju A, Copple I, Bryan H, Edge G, Sison R, Wong M, et al. Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity-implications for therapeutic targeting of Nrf2. Free Radic Biol Med. 2015;78:202-12 pubmed 出版商
  699. Giovannini C, Minguzzi M, Baglioni M, Fornari F, Giannone F, Ravaioli M, et al. Suppression of p53 by Notch3 is mediated by Cyclin G1 and sustained by MDM2 and miR-221 axis in hepatocellular carcinoma. Oncotarget. 2014;5:10607-20 pubmed
  700. Heynen G, Fonfara A, Bernards R. Resistance to targeted cancer drugs through hepatocyte growth factor signaling. Cell Cycle. 2014;13:3808-17 pubmed 出版商
  701. Matsuoka S, Gupta S, Suzuki E, Hiromi Y, Asaoka M. gone early, a novel germline factor, ensures the proper size of the stem cell precursor pool in the Drosophila ovary. PLoS ONE. 2014;9:e113423 pubmed 出版商
  702. Wu C, Hung T, Chen C, Ke C, Lee C, Wang P, et al. Post-injury treatment with 7,8-dihydroxyflavone, a TrkB receptor agonist, protects against experimental traumatic brain injury via PI3K/Akt signaling. PLoS ONE. 2014;9:e113397 pubmed 出版商
  703. Janardhan S, Marks R, Gajewski T. Primary murine CD4+ T cells fail to acquire the ability to produce effector cytokines when active Ras is present during Th1/Th2 differentiation. PLoS ONE. 2014;9:e112831 pubmed 出版商
  704. Huang L, Carney J, Cardona D, Counter C. Decreased tumorigenesis in mice with a Kras point mutation at C118. Nat Commun. 2014;5:5410 pubmed 出版商
  705. Lee Y, Ehninger D, Zhou M, Oh J, Kang M, Kwak C, et al. Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome. Nat Neurosci. 2014;17:1736-43 pubmed 出版商
  706. Li J, Ballim D, Rodriguez M, Cui R, Goding C, Teng H, et al. The anti-proliferative function of the TGF-β1 signaling pathway involves the repression of the oncogenic TBX2 by its homologue TBX3. J Biol Chem. 2014;289:35633-43 pubmed 出版商
  707. Blair B, Wu X, Zahari M, Mohseni M, Cidado J, Wong H, et al. A phosphoproteomic screen demonstrates differential dependence on HER3 for MAP kinase pathway activation by distinct PIK3CA mutations. Proteomics. 2015;15:318-26 pubmed 出版商
  708. Bhattachariya A, TurczyÅ„ska K, Grossi M, Nordström I, Buckbinder L, Albinsson S, et al. PYK2 selectively mediates signals for growth versus differentiation in response to stretch of spontaneously active vascular smooth muscle. Physiol Rep. 2014;2: pubmed 出版商
  709. Matsuo R, Morihara H, Mohri T, Murasawa S, Takewaki K, Nakayama H, et al. The inhibition of N-glycosylation of glycoprotein 130 molecule abolishes STAT3 activation by IL-6 family cytokines in cultured cardiac myocytes. PLoS ONE. 2014;9:e111097 pubmed 出版商
  710. Musazzi L, Seguini M, Mallei A, Treccani G, Pelizzari M, Tornese P, et al. Time-dependent activation of MAPK/Erk1/2 and Akt/GSK3 cascades: modulation by agomelatine. BMC Neurosci. 2014;15:119 pubmed 出版商
  711. Blaabjerg L, Christensen G, Matsumoto M, van der Meulen T, Huising M, Billestrup N, et al. CRFR1 activation protects against cytokine-induced β-cell death. J Mol Endocrinol. 2014;53:417-27 pubmed 出版商
  712. Huertas Martínez J, Rello Varona S, Herrero Martín D, Barrau I, García Monclús S, Sáinz Jaspeado M, et al. Caveolin-1 is down-regulated in alveolar rhabdomyosarcomas and negatively regulates tumor growth. Oncotarget. 2014;5:9744-55 pubmed
  713. Rutkowska A, Preuss I, Gessier F, Sailer A, Dev K. EBI2 regulates intracellular signaling and migration in human astrocyte. Glia. 2015;63:341-51 pubmed 出版商
  714. Tohyama O, Matsui J, Kodama K, Hata Sugi N, Kimura T, Okamoto K, et al. Antitumor activity of lenvatinib (e7080): an angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J Thyroid Res. 2014;2014:638747 pubmed 出版商
  715. Puig M, Lugo R, Gabasa M, Giménez A, Velásquez A, Galgoczy R, et al. Matrix stiffening and β1 integrin drive subtype-specific fibroblast accumulation in lung cancer. Mol Cancer Res. 2015;13:161-73 pubmed 出版商
  716. Rai S, Tanaka H, Suzuki M, Ogoh H, Taniguchi Y, Morita Y, et al. Clathrin assembly protein CALM plays a critical role in KIT signaling by regulating its cellular transport from early to late endosomes in hematopoietic cells. PLoS ONE. 2014;9:e109441 pubmed 出版商
  717. Leung C, Yeung T, Yip K, Pradeep S, Balasubramanian L, Liu J, et al. Calcium-dependent FAK/CREB/TNNC1 signalling mediates the effect of stromal MFAP5 on ovarian cancer metastatic potential. Nat Commun. 2014;5:5092 pubmed 出版商
  718. Wang Y, Kuramitsu Y, Tokuda K, Baron B, Kitagawa T, Akada J, et al. Gemcitabine induces poly (ADP-ribose) polymerase-1 (PARP-1) degradation through autophagy in pancreatic cancer. PLoS ONE. 2014;9:e109076 pubmed 出版商
  719. Kannike K, Sepp M, Zuccato C, Cattaneo E, Timmusk T. Forkhead transcription factor FOXO3a levels are increased in Huntington disease because of overactivated positive autofeedback loop. J Biol Chem. 2014;289:32845-57 pubmed 出版商
  720. Zhang X, Zhang Q, Tu J, Zhu Y, Yang F, Liu B, et al. Prosurvival NMDA 2A receptor signaling mediates postconditioning neuroprotection in the hippocampus. Hippocampus. 2015;25:286-96 pubmed 出版商
  721. Zhou X, Tao Y, Wang J, Liang C, Wang J, Li H, et al. Roles of FGF-2 and TGF-beta/FGF-2 on differentiation of human mesenchymal stem cells towards nucleus pulposus-like phenotype. Growth Factors. 2015;33:23-30 pubmed 出版商
  722. Charlaftis N, Suddason T, Wu X, Anwar S, Karin M, Gallagher E. The MEKK1 PHD ubiquitinates TAB1 to activate MAPKs in response to cytokines. EMBO J. 2014;33:2581-96 pubmed 出版商
  723. Zhu X, Zhao L, Park J, Willingham M, Cheng S. Synergistic signaling of KRAS and thyroid hormone receptor β mutants promotes undifferentiated thyroid cancer through MYC up-regulation. Neoplasia. 2014;16:757-69 pubmed 出版商
  724. Naylor A, McGettrick H, Maynard W, May P, Barone F, Croft A, et al. A differential role for CD248 (Endosialin) in PDGF-mediated skeletal muscle angiogenesis. PLoS ONE. 2014;9:e107146 pubmed 出版商
  725. McGinnis L, Pelech S, Kinsey W. Post-ovulatory aging of oocytes disrupts kinase signaling pathways and lysosome biogenesis. Mol Reprod Dev. 2014;81:928-45 pubmed 出版商
  726. Song J, An N, Chatterjee S, Kistner Griffin E, Mahajan S, Mehrotra S, et al. Deletion of Pim kinases elevates the cellular levels of reactive oxygen species and sensitizes to K-Ras-induced cell killing. Oncogene. 2015;34:3728-36 pubmed 出版商
  727. De Santis R, Rosi A, Anastasi A, Chiapparino C, Albertoni C, Leoni B, et al. Efficacy of aerosol therapy of lung cancer correlates with EGFR paralysis induced by AvidinOX-anchored biotinylated Cetuximab. Oncotarget. 2014;5:9239-55 pubmed
  728. Dou W, Zhang J, Ren G, Ding L, Sun A, Deng C, et al. Mangiferin attenuates the symptoms of dextran sulfate sodium-induced colitis in mice via NF-κB and MAPK signaling inactivation. Int Immunopharmacol. 2014;23:170-8 pubmed 出版商
  729. Sackmann Sala L, Chiche A, Mosquera Garrote N, Boutillon F, Cordier C, Pourmir I, et al. Prolactin-induced prostate tumorigenesis links sustained Stat5 signaling with the amplification of basal/stem cells and emergence of putative luminal progenitors. Am J Pathol. 2014;184:3105-19 pubmed 出版商
  730. Pilchova I, Klacanova K, Chomova M, Tatarkova Z, Dobrota D, Racay P. Possible contribution of proteins of Bcl-2 family in neuronal death following transient global brain ischemia. Cell Mol Neurobiol. 2015;35:23-31 pubmed 出版商
  731. Candelaria N, Addanki S, Zheng J, Nguyen Vu T, Karaboga H, Dey P, et al. Antiproliferative effects and mechanisms of liver X receptor ligands in pancreatic ductal adenocarcinoma cells. PLoS ONE. 2014;9:e106289 pubmed 出版商
  732. Garraway S, Woller S, Huie J, Hartman J, Hook M, Miranda R, et al. Peripheral noxious stimulation reduces withdrawal threshold to mechanical stimuli after spinal cord injury: role of tumor necrosis factor alpha and apoptosis. Pain. 2014;155:2344-59 pubmed 出版商
  733. Gruol D, Vo K, Bray J. Increased astrocyte expression of IL-6 or CCL2 in transgenic mice alters levels of hippocampal and cerebellar proteins. Front Cell Neurosci. 2014;8:234 pubmed 出版商
  734. Tang J, Shen L, Yang Q, Zhang C. Overexpression of metadherin mediates metastasis of osteosarcoma by regulating epithelial-mesenchymal transition. Cell Prolif. 2014;47:427-34 pubmed 出版商
  735. Kodama T, Motoi N, Ninomiya H, Sakamoto H, Kitada K, Tsukaguchi T, et al. A novel mechanism of EML4-ALK rearrangement mediated by chromothripsis in a patient-derived cell line. J Thorac Oncol. 2014;9:1638-46 pubmed 出版商
  736. Niu H, Nie L, Liu M, Chi Y, Zhang T, Li Y. Benazepril affects integrin-linked kinase and smooth muscle α-actin expression in diabetic rat glomerulus and cultured mesangial cells. BMC Nephrol. 2014;15:135 pubmed 出版商
  737. Dannappel M, Vlantis K, Kumari S, Polykratis A, Kim C, Wachsmuth L, et al. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature. 2014;513:90-4 pubmed 出版商
  738. Plotkin A, Volmar C, Wahlestedt C, AYAD N, El Ashry D. Transcriptional repression of ER through hMAPK dependent histone deacetylation by class I HDACs. Breast Cancer Res Treat. 2014;147:249-63 pubmed 出版商
  739. Sa S, Wong L, McCloskey K. Combinatorial fibronectin and laminin signaling promote highly efficient cardiac differentiation of human embryonic stem cells. Biores Open Access. 2014;3:150-61 pubmed 出版商
  740. Han P, Zhou X, Chang N, Xiao C, Yan S, Ren H, et al. Hydrogen peroxide primes heart regeneration with a derepression mechanism. Cell Res. 2014;24:1091-107 pubmed 出版商
  741. Li L, Wu P, Lee J, Li P, Hsieh W, Ho C, et al. Hinokitiol induces DNA damage and autophagy followed by cell cycle arrest and senescence in gefitinib-resistant lung adenocarcinoma cells. PLoS ONE. 2014;9:e104203 pubmed 出版商
  742. Baek J, Kim J, Cheon Y, Park S, Ahn S, Yoon K, et al. Aconitum pseudo-laeve var. erectum inhibits receptor activator of nuclear factor kappa-B ligand-induced osteoclastogenesis via the c-Fos/nuclear factor of activated T-cells, cytoplasmic 1 signaling pathway and prevents lipopolysaccharide-induced bone. Molecules. 2014;19:11628-44 pubmed 出版商
  743. Noack M, Richter Landsberg C. Activation of autophagy by rapamycin does not protect oligodendrocytes against protein aggregate formation and cell death induced by proteasomal inhibition. J Mol Neurosci. 2015;55:99-108 pubmed 出版商
  744. Zhang S, Ren M, Zeng X, He P, Ma X, Qiao S. Leucine stimulates ASCT2 amino acid transporter expression in porcine jejunal epithelial cell line (IPEC-J2) through PI3K/Akt/mTOR and ERK signaling pathways. Amino Acids. 2014;46:2633-42 pubmed 出版商
  745. Watanabe T, Nakamura S, Ono T, Ui S, Yagi S, Kagawa H, et al. Pyrrolidinium fullerene induces apoptosis by activation of procaspase-9 via suppression of Akt in primary effusion lymphoma. Biochem Biophys Res Commun. 2014;451:93-100 pubmed 出版商
  746. Castorina A, Giunta S. Mucin 1 (MUC1) signalling contributes to increase the resistance to cell death in human bronchial epithelial cells exposed to nickel acetate. Biometals. 2014;27:1149-58 pubmed 出版商
  747. Wu T, Ye Y, Min S, Zhu J, Khobahy E, Zhou J, et al. Prevention of murine lupus nephritis by targeting multiple signaling axes and oxidative stress using a synthetic triterpenoid. Arthritis Rheumatol. 2014;66:3129-39 pubmed 出版商
  748. Boding L, Hansen A, Meroni G, Johansen B, Braunstein T, Bonefeld C, et al. Midline 1 directs lytic granule exocytosis and cytotoxicity of mouse killer T cells. Eur J Immunol. 2014;44:3109-18 pubmed 出版商
  749. Zeldich E, Chen C, Colvin T, Bove Fenderson E, Liang J, Tucker Zhou T, et al. The neuroprotective effect of Klotho is mediated via regulation of members of the redox system. J Biol Chem. 2014;289:24700-15 pubmed 出版商
  750. Kugel C, Hartsough E, Davies M, Setiady Y, Aplin A. Function-blocking ERBB3 antibody inhibits the adaptive response to RAF inhibitor. Cancer Res. 2014;74:4122-32 pubmed 出版商
  751. Kapur N, Qiao X, Paruchuri V, Mackey E, Daly G, Ughreja K, et al. Reducing endoglin activity limits calcineurin and TRPC-6 expression and improves survival in a mouse model of right ventricular pressure overload. J Am Heart Assoc. 2014;3: pubmed 出版商
  752. Martin V, Corso S, Comoglio P, Giordano S. Increase of MET gene copy number confers resistance to a monovalent MET antibody and establishes drug dependence. Mol Oncol. 2014;8:1561-74 pubmed 出版商
  753. Hu J, Cheng Y, Li Y, Jin Z, Pan Y, Liu G, et al. microRNA-128 plays a critical role in human non-small cell lung cancer tumourigenesis, angiogenesis and lymphangiogenesis by directly targeting vascular endothelial growth factor-C. Eur J Cancer. 2014;50:2336-50 pubmed 出版商
  754. Ribeiro M, Rosenstock T, Oliveira A, Oliveira C, Rego A. Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington's disease knock-in striatal cells. Free Radic Biol Med. 2014;74:129-44 pubmed 出版商
  755. Liu J, Ke F, Xu Z, Liu Z, Zhang L, Yan S, et al. CCR6 is a prognostic marker for overall survival in patients with colorectal cancer, and its overexpression enhances metastasis in vivo. PLoS ONE. 2014;9:e101137 pubmed 出版商
  756. Martínez Pinilla E, Reyes Resina I, Oñatibia Astibia A, Zamarbide M, Ricobaraza A, Navarro G, et al. CB1 and GPR55 receptors are co-expressed and form heteromers in rat and monkey striatum. Exp Neurol. 2014;261:44-52 pubmed 出版商
  757. Paatero I, Seagroves T, Vaparanta K, Han W, Jones F, Johnson R, et al. Hypoxia-inducible factor-1? induces ErbB4 signaling in the differentiating mammary gland. J Biol Chem. 2014;289:22459-69 pubmed 出版商
  758. Chang P, Hung C, Wang S, Tsai P, Shih Y, Chen L, et al. Identification and characterization of two novel spliced genes located in the orf47-orf46-orf45 gene locus of Kaposi's sarcoma-associated herpesvirus. J Virol. 2014;88:10092-109 pubmed 出版商
  759. Rathore K, Cekanova M. Animal model of naturally occurring bladder cancer: characterization of four new canine transitional cell carcinoma cell lines. BMC Cancer. 2014;14:465 pubmed 出版商
  760. Francis V, Abera A, Matjila M, Millar R, Katz A. Kisspeptin regulation of genes involved in cell invasion and angiogenesis in first trimester human trophoblast cells. PLoS ONE. 2014;9:e99680 pubmed 出版商
  761. Pysz M, Hao F, Hizli A, Lum M, Swetzig W, Black A, et al. Differential regulation of cyclin D1 expression by protein kinase C ? and ? signaling in intestinal epithelial cells. J Biol Chem. 2014;289:22268-83 pubmed 出版商
  762. Ishikawa D, Shimada M, Utsunomiya T, Morine Y, Imura S, Ikemoto T, et al. Effect of Twist and Bmi1 on intraductal papillary mucinous neoplasm of the pancreas. J Gastroenterol Hepatol. 2014;29:2032-7 pubmed 出版商
  763. Au Yeung B, Melichar H, Ross J, Cheng D, Zikherman J, Shokat K, et al. Quantitative and temporal requirements revealed for Zap70 catalytic activity during T cell development. Nat Immunol. 2014;15:687-94 pubmed 出版商
  764. Yan T, Li L, Sun B, Liu F, Yang P, Chen T, et al. Luteolin inhibits behavioral sensitization by blocking methamphetamine-induced MAPK pathway activation in the caudate putamen in mice. PLoS ONE. 2014;9:e98981 pubmed 出版商
  765. Zielniok K, Motyl T, Gajewska M. Functional interactions between 17 ? -estradiol and progesterone regulate autophagy during acini formation by bovine mammary epithelial cells in 3D cultures. Biomed Res Int. 2014;2014:382653 pubmed 出版商
  766. Nomiyama T, Kawanami T, Irie S, Hamaguchi Y, Terawaki Y, Murase K, et al. Exendin-4, a GLP-1 receptor agonist, attenuates prostate cancer growth. Diabetes. 2014;63:3891-905 pubmed 出版商
  767. Mena H, Lokajczyk A, Dizier B, Strier S, Voto L, Boisson Vidal C, et al. Acidic preconditioning improves the proangiogenic responses of endothelial colony forming cells. Angiogenesis. 2014;17:867-79 pubmed 出版商
  768. Attarha S, Andersson S, Mints M, Souchelnytskyi S. Mammalian sterile-like 1 kinase inhibits TGF? and EGF?dependent regulation of invasiveness, migration and proliferation of HEC-1-A endometrial cancer cells. Int J Oncol. 2014;45:853-60 pubmed 出版商
  769. Kardos G, Dai M, Robertson G. Growth inhibitory effects of large subunit ribosomal proteins in melanoma. Pigment Cell Melanoma Res. 2014;27:801-12 pubmed 出版商
  770. Jiang Y, Kou Z, Wu T, An W, Zhou R, Wang H, et al. Xist deficiency and disorders of X-inactivation in rabbit embryonic stem cells can be rescued by transcription-factor-mediated conversion. Stem Cells Dev. 2014;23:2283-96 pubmed 出版商
  771. Cen B, Xiong Y, Song J, Mahajan S, DuPont R, McEachern K, et al. The Pim-1 protein kinase is an important regulator of MET receptor tyrosine kinase levels and signaling. Mol Cell Biol. 2014;34:2517-32 pubmed 出版商
  772. Gruol D, Vo K, Bray J, Roberts A. CCL2-ethanol interactions and hippocampal synaptic protein expression in a transgenic mouse model. Front Integr Neurosci. 2014;8:29 pubmed 出版商
  773. Cazanave S, Wang X, Zhou H, Rahmani M, Grant S, Durrant D, et al. Degradation of Keap1 activates BH3-only proteins Bim and PUMA during hepatocyte lipoapoptosis. Cell Death Differ. 2014;21:1303-12 pubmed 出版商
  774. Tamaki S, Tokumoto Y. Overexpression of cyclin dependent kinase inhibitor P27/Kip1 increases oligodendrocyte differentiation from induced pluripotent stem cells. In Vitro Cell Dev Biol Anim. 2014;50:778-85 pubmed 出版商
  775. Doughton G, Wei J, Tapon N, Welham M, Chalmers A. Formation of a polarised primitive endoderm layer in embryoid bodies requires fgfr/erk signalling. PLoS ONE. 2014;9:e95434 pubmed 出版商
  776. Garimella S, Gehlhaus K, Dine J, Pitt J, Grandin M, Chakka S, et al. Identification of novel molecular regulators of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in breast cancer cells by RNAi screening. Breast Cancer Res. 2014;16:R41 pubmed 出版商
  777. Ost M, Werner F, Dokas J, Klaus S, Voigt A. Activation of AMPK?2 is not crucial for mitochondrial uncoupling-induced metabolic effects but required to maintain skeletal muscle integrity. PLoS ONE. 2014;9:e94689 pubmed 出版商
  778. Kerdivel G, Boudot A, Habauzit D, Percevault F, Demay F, Pakdel F, et al. Activation of the MKL1/actin signaling pathway induces hormonal escape in estrogen-responsive breast cancer cell lines. Mol Cell Endocrinol. 2014;390:34-44 pubmed 出版商
  779. Gürtler C, Carty M, Kearney J, Schattgen S, Ding A, Fitzgerald K, et al. SARM regulates CCL5 production in macrophages by promoting the recruitment of transcription factors and RNA polymerase II to the Ccl5 promoter. J Immunol. 2014;192:4821-32 pubmed 出版商
  780. Ng Y, Lee J, Supko K, Khan A, Torres S, Berwick M, et al. Pan-erbB inhibition potentiates BRAF inhibitors for melanoma treatment. Melanoma Res. 2014;24:207-18 pubmed 出版商
  781. Chen P, Qin L, Zhuang Z, Tellides G, Lax I, Schlessinger J, et al. The docking protein FRS2? is a critical regulator of VEGF receptors signaling. Proc Natl Acad Sci U S A. 2014;111:5514-9 pubmed 出版商
  782. Bejarano E, Yuste A, Patel B, Stout R, Spray D, Cuervo A. Connexins modulate autophagosome biogenesis. Nat Cell Biol. 2014;16:401-14 pubmed 出版商
  783. Lamprecht M, Morrison B. GPR30 activation is neither necessary nor sufficient for acute neuroprotection by 17?-estradiol after an ischemic injury in organotypic hippocampal slice cultures. Brain Res. 2014;1563:131-7 pubmed 出版商
  784. Guerra M, Wauson E, McGlynn K, Cobb M. Muscarinic control of MIN6 pancreatic ? cells is enhanced by impaired amino acid signaling. J Biol Chem. 2014;289:14370-9 pubmed 出版商
  785. Bölck B, Ibrahim M, Steinritz D, Morguet C, Dühr S, Suhr F, et al. Detection of key enzymes, free radical reaction products and activated signaling molecules as biomarkers of cell damage induced by benzo[a]pyrene in human keratinocytes. Toxicol In Vitro. 2014;28:875-84 pubmed 出版商
  786. Maier P, Zemoura K, Acu a M, Y venes G, Zeilhofer H, Benke D. Ischemia-like oxygen and glucose deprivation mediates down-regulation of cell surface ?-aminobutyric acidB receptors via the endoplasmic reticulum (ER) stress-induced transcription factor CCAAT/enhancer-binding protein (C/EBP)-homologous protein (CH. J Biol Chem. 2014;289:12896-907 pubmed 出版商
  787. Wong P, Yeoh C, Ahmad A, Chelala C, Gillett C, Speirs V, et al. Identification of MAGEA antigens as causal players in the development of tamoxifen-resistant breast cancer. Oncogene. 2014;33:4579-88 pubmed 出版商
  788. Anchan D, Clark S, Pollard K, Vasudevan N. GPR30 activation decreases anxiety in the open field test but not in the elevated plus maze test in female mice. Brain Behav. 2014;4:51-9 pubmed 出版商
  789. Singel S, Batten K, Cornelius C, Jia G, Fasciani G, Barron S, et al. Receptor-interacting protein kinase 2 promotes triple-negative breast cancer cell migration and invasion via activation of nuclear factor-kappaB and c-Jun N-terminal kinase pathways. Breast Cancer Res. 2014;16:R28 pubmed 出版商
  790. Tsai Y, Wang C, Leung P, Lin K, Chio C, Hu C, et al. Extracellular signal-regulated kinase 1/2 is involved in a tamoxifen neuroprotective effect in a lateral fluid percussion injury rat model. J Surg Res. 2014;189:106-16 pubmed 出版商
  791. Wei N, Chu E, Wipf P, Schmitz J. Protein kinase d as a potential chemotherapeutic target for colorectal cancer. Mol Cancer Ther. 2014;13:1130-41 pubmed 出版商
  792. Yu P, Laird A, Du X, Wu J, Won K, Yamaguchi K, et al. Characterization of the activity of the PI3K/mTOR inhibitor XL765 (SAR245409) in tumor models with diverse genetic alterations affecting the PI3K pathway. Mol Cancer Ther. 2014;13:1078-91 pubmed 出版商
  793. Roh J, Huang J, Hu W, Yang X, Jennings N, Sehgal V, et al. Biologic effects of platelet-derived growth factor receptor ? blockade in uterine cancer. Clin Cancer Res. 2014;20:2740-50 pubmed 出版商
  794. Wang Q, Shen B, Chen L, Zheng P, Feng H, Hao Q, et al. Extracellular calumenin suppresses ERK1/2 signaling and cell migration by protecting fibulin-1 from MMP-13-mediated proteolysis. Oncogene. 2015;34:1006-18 pubmed 出版商
  795. Chapnick D, Liu X. Leader cell positioning drives wound-directed collective migration in TGF?-stimulated epithelial sheets. Mol Biol Cell. 2014;25:1586-93 pubmed 出版商
  796. Linke R, Pries R, Könnecke M, Bruchhage K, Böscke R, Gebhard M, et al. The MEK1/2-ERK1/2 pathway is activated in chronic rhinosinusitis with nasal polyps. Arch Immunol Ther Exp (Warsz). 2014;62:217-29 pubmed 出版商
  797. Bokobza S, Jiang Y, Weber A, Devery A, Ryan A. Short-course treatment with gefitinib enhances curative potential of radiation therapy in a mouse model of human non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2014;88:947-54 pubmed 出版商
  798. Cheng C, Lin J, Su S, Tang N, Kao S, Hsieh C. Electroacupuncture-like stimulation at Baihui and Dazhui acupoints exerts neuroprotective effects through activation of the brain-derived neurotrophic factor-mediated MEK1/2/ERK1/2/p90RSK/bad signaling pathway in mild transient focal cerebral ischemi. BMC Complement Altern Med. 2014;14:92 pubmed 出版商
  799. Fernandez Estevez M, Casarejos M, Lopez Sendon J, Garcia Caldentey J, Ruiz C, Gomez A, et al. Trehalose reverses cell malfunction in fibroblasts from normal and Huntington's disease patients caused by proteosome inhibition. PLoS ONE. 2014;9:e90202 pubmed 出版商
  800. Okada T, Nitta T, Kaji K, Takashima A, Oda H, Tamehiro N, et al. Differential function of Themis CABIT domains during T cell development. PLoS ONE. 2014;9:e89115 pubmed 出版商
  801. Son J, Jeong H, Kim H, Kim Y, Lee E, Lee H, et al. Pelargonidin attenuates PDGF-BB-induced aortic smooth muscle cell proliferation and migration by direct inhibition of focal adhesion kinase. Biochem Pharmacol. 2014;89:236-45 pubmed 出版商
  802. Ihunnah C, Wada T, Philips B, Ravuri S, Gibbs R, Kirisci L, et al. Estrogen sulfotransferase/SULT1E1 promotes human adipogenesis. Mol Cell Biol. 2014;34:1682-94 pubmed 出版商
  803. Jo D, Kim J, Son J, Song N, Kim Y, Yu Y, et al. Anti-angiogenic effect of bare titanium dioxide nanoparticles on pathologic neovascularization without unbearable toxicity. Nanomedicine. 2014;10:1109-17 pubmed 出版商
  804. Okada N, Lin C, Ribeiro M, Biton A, Lai G, He X, et al. A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev. 2014;28:438-50 pubmed 出版商
  805. Wang Y, Kuramitsu Y, Tokuda K, Okada F, Baron B, Akada J, et al. Proteomic analysis indicates that overexpression and nuclear translocation of lactoylglutathione lyase (GLO1) is associated with tumor progression in murine fibrosarcoma. Electrophoresis. 2014;35:2195-202 pubmed 出版商
  806. Feng C, Zhang Y, Yin J, Li J, Abounader R, Zuo Z. Regulatory factor X1 is a new tumor suppressive transcription factor that acts via direct downregulation of CD44 in glioblastoma. Neuro Oncol. 2014;16:1078-85 pubmed 出版商
  807. Milara J, Peiró T, Serrano A, Guijarro R, Zaragozá C, Tenor H, et al. Roflumilast N-oxide inhibits bronchial epithelial to mesenchymal transition induced by cigarette smoke in smokers with COPD. Pulm Pharmacol Ther. 2014;28:138-48 pubmed 出版商
  808. Park E, Kim B, Lee E, Chang E, Kim D, Choi S, et al. Targeting of receptor for advanced glycation end products suppresses cyst growth in polycystic kidney disease. J Biol Chem. 2014;289:9254-62 pubmed 出版商
  809. Bloch O, Amit Vazina M, Yona E, Molad Y, Rapoport M. Increased ERK and JNK activation and decreased ERK/JNK ratio are associated with long-term organ damage in patients with systemic lupus erythematosus. Rheumatology (Oxford). 2014;53:1034-42 pubmed
  810. Lee M, Smith S, Murray S, Pham L, Minoo P, Nielsen H. Dihydrotestosterone potentiates EGF-induced ERK activation by inducing SRC in fetal lung fibroblasts. Am J Respir Cell Mol Biol. 2014;51:114-24 pubmed 出版商
  811. Jin Y, Wi H, Choi M, Hong S, Bae Y. Regulation of anti-inflammatory cytokines IL-10 and TGF-? in mouse dendritic cells through treatment with Clonorchis sinensis crude antigen. Exp Mol Med. 2014;46:e74 pubmed 出版商
  812. Gámez M, Calvo M, Selgas M, García M, Erler K, Böhm V, et al. Effect of E-beam treatment on the chemistry and on the antioxidant activity of lycopene from dry tomato peel and tomato powder. J Agric Food Chem. 2014;62:1557-63 pubmed 出版商
  813. Xiang M, Birkbak N, Vafaizadeh V, Walker S, Yeh J, Liu S, et al. STAT3 induction of miR-146b forms a feedback loop to inhibit the NF-?B to IL-6 signaling axis and STAT3-driven cancer phenotypes. Sci Signal. 2014;7:ra11 pubmed 出版商
  814. Joannes A, Grelet S, Duca L, Gilles C, Kileztky C, Dalstein V, et al. Fhit regulates EMT targets through an EGFR/Src/ERK/Slug signaling axis in human bronchial cells. Mol Cancer Res. 2014;12:775-83 pubmed 出版商
  815. Jordan N, Dutkowski C, Barrow D, Mottram H, Hutcheson I, Nicholson R, et al. Impact of dual mTORC1/2 mTOR kinase inhibitor AZD8055 on acquired endocrine resistance in breast cancer in vitro. Breast Cancer Res. 2014;16:R12 pubmed 出版商
  816. Valdez Magaña G, Rodriguez A, Zhang H, Webb R, Alberio R. Paracrine effects of embryo-derived FGF4 and BMP4 during pig trophoblast elongation. Dev Biol. 2014;387:15-27 pubmed 出版商
  817. Turner M, Cronin J, Healey G, Sheldon I. Epithelial and stromal cells of bovine endometrium have roles in innate immunity and initiate inflammatory responses to bacterial lipopeptides in vitro via Toll-like receptors TLR2, TLR1, and TLR6. Endocrinology. 2014;155:1453-65 pubmed 出版商
  818. Izumikawa T, Sato B, Kitagawa H. Chondroitin sulfate is indispensable for pluripotency and differentiation of mouse embryonic stem cells. Sci Rep. 2014;4:3701 pubmed 出版商
  819. Zemljic Harpf A, Godoy J, Platoshyn O, Asfaw E, Busija A, Domenighetti A, et al. Vinculin directly binds zonula occludens-1 and is essential for stabilizing connexin-43-containing gap junctions in cardiac myocytes. J Cell Sci. 2014;127:1104-16 pubmed 出版商
  820. Murcia Belmonte V, Medina Rodríguez E, Bribian A, De Castro F, Esteban P. ERK1/2 signaling is essential for the chemoattraction exerted by human FGF2 and human anosmin-1 on newborn rat and mouse OPCs via FGFR1. Glia. 2014;62:374-86 pubmed 出版商
  821. Balko J, Giltnane J, Wang K, Schwarz L, Young C, Cook R, et al. Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets. Cancer Discov. 2014;4:232-45 pubmed 出版商
  822. Xu C, Chen H, Wang X, Gao J, Che Y, Li Y, et al. S100A14, a member of the EF-hand calcium-binding proteins, is overexpressed in breast cancer and acts as a modulator of HER2 signaling. J Biol Chem. 2014;289:827-37 pubmed 出版商
  823. Alzoubi K, Alkadhi K. Chronic nicotine treatment reverses hypothyroidism-induced impairment of L-LTP induction phase: critical role of CREB. Mol Neurobiol. 2014;49:1245-55 pubmed 出版商
  824. Ashlin T, Buckley M, Salter R, Johnson J, Kwan A, Ramji D. The anti-atherogenic cytokine interleukin-33 inhibits the expression of a disintegrin and metalloproteinase with thrombospondin motifs-1, -4 and -5 in human macrophages: Requirement of extracellular signal-regulated kinase, c-Jun N-terminal kinase an. Int J Biochem Cell Biol. 2014;46:113-23 pubmed 出版商
  825. Wang J, Chen J, Miller D, Li W. Synergistic combination of novel tubulin inhibitor ABI-274 and vemurafenib overcome vemurafenib acquired resistance in BRAFV600E melanoma. Mol Cancer Ther. 2014;13:16-26 pubmed 出版商
  826. Castorina A, Scuderi S, D Amico A, Drago F, D Agata V. PACAP and VIP increase the expression of myelin-related proteins in rat schwannoma cells: involvement of PAC1/VPAC2 receptor-mediated activation of PI3K/Akt signaling pathways. Exp Cell Res. 2014;322:108-21 pubmed 出版商
  827. Zaganjor E, Osborne J, Weil L, Díaz Martínez L, Gonzales J, Singel S, et al. Ras regulates kinesin 13 family members to control cell migration pathways in transformed human bronchial epithelial cells. Oncogene. 2014;33:5457-66 pubmed 出版商
  828. Chua J, Reddy S, Merry D, Adachi H, Katsuno M, Sobue G, et al. Transcriptional activation of TFEB/ZKSCAN3 target genes underlies enhanced autophagy in spinobulbar muscular atrophy. Hum Mol Genet. 2014;23:1376-86 pubmed 出版商
  829. Udagawa T, Farny N, Jakovcevski M, Kaphzan H, Alarcon J, Anilkumar S, et al. Genetic and acute CPEB1 depletion ameliorate fragile X pathophysiology. Nat Med. 2013;19:1473-7 pubmed 出版商
  830. Cagnet S, Faraldo M, Kreft M, Sonnenberg A, Raymond K, Glukhova M. Signaling events mediated by ?3?1 integrin are essential for mammary tumorigenesis. Oncogene. 2014;33:4286-95 pubmed 出版商
  831. Whittington R, Bretteville A, Virag L, Emala C, Maurin T, Marcouiller F, et al. Anesthesia-induced hypothermia mediates decreased ARC gene and protein expression through ERK/MAPK inactivation. Sci Rep. 2013;3:1388 pubmed 出版商
  832. Sohn Y, Lee N, Chung A, Saavedra J, Scott Turner R, Pak D, et al. Antihypertensive drug Valsartan promotes dendritic spine density by altering AMPA receptor trafficking. Biochem Biophys Res Commun. 2013;439:464-70 pubmed 出版商
  833. Chen Z, Chen J, Gu Y, Hu C, Li J, Lin S, et al. Aberrantly activated AREG-EGFR signaling is required for the growth and survival of CRTC1-MAML2 fusion-positive mucoepidermoid carcinoma cells. Oncogene. 2014;33:3869-77 pubmed 出版商
  834. Lu J, Chang Y, Wang C, Lin Y, Lin C, Wu Z. Trichostatin A modulates thiazolidinedione-mediated suppression of tumor necrosis factor ?-induced lipolysis in 3T3-L1 adipocytes. PLoS ONE. 2013;8:e71517 pubmed 出版商
  835. O Brien M, Carbin S, Morrison J, Smith T. Decreased myometrial p160 ROCK-1 expression in obese women at term pregnancy. Reprod Biol Endocrinol. 2013;11:79 pubmed 出版商
  836. Kucherlapati M, Esfahani S, Habibollahi P, Wang J, Still E, Bronson R, et al. Genotype directed therapy in murine mismatch repair deficient tumors. PLoS ONE. 2013;8:e68817 pubmed 出版商
  837. O Bryan M, Clark B, McLaughlin E, D Sylva R, O Donnell L, Wilce J, et al. RBM5 is a male germ cell splicing factor and is required for spermatid differentiation and male fertility. PLoS Genet. 2013;9:e1003628 pubmed 出版商
  838. Bittner S, Ruck T, Schuhmann M, Herrmann A, Moha Ou Maati H, Bobak N, et al. Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med. 2013;19:1161-5 pubmed 出版商
  839. Yu P, Yan M, Lai H, Huang R, Chou Y, Lin W, et al. Downregulation of miR-29 contributes to cisplatin resistance of ovarian cancer cells. Int J Cancer. 2014;134:542-51 pubmed 出版商
  840. Li Y, Takahashi M, Stork P. Ras-mutant cancer cells display B-Raf binding to Ras that activates extracellular signal-regulated kinase and is inhibited by protein kinase A phosphorylation. J Biol Chem. 2013;288:27646-57 pubmed 出版商
  841. Mao X, Hütt Cabezas M, Orr B, Weingart M, Taylor I, Rajan A, et al. LIN28A facilitates the transformation of human neural stem cells and promotes glioblastoma tumorigenesis through a pro-invasive genetic program. Oncotarget. 2013;4:1050-64 pubmed
  842. Beckham T, Cheng J, Lu P, Shao Y, Troyer D, Lance R, et al. Acid ceramidase induces sphingosine kinase 1/S1P receptor 2-mediated activation of oncogenic Akt signaling. Oncogenesis. 2013;2:e49 pubmed 出版商
  843. Henderson Y, Toro Serra R, Chen Y, Ryu J, Frederick M, Zhou G, et al. Src inhibitors in suppression of papillary thyroid carcinoma growth. Head Neck. 2014;36:375-84 pubmed 出版商
  844. Wickert L, Blanchette J, Waldschmidt N, Bertics P, Denu J, Denlinger L, et al. The C-terminus of human nucleotide receptor P2X7 is critical for receptor oligomerization and N-linked glycosylation. PLoS ONE. 2013;8:e63789 pubmed 出版商
  845. Ahnstedt H, Cao L, Krause D, Warfvinge K, Saveland H, Nilsson O, et al. Male-female differences in upregulation of vasoconstrictor responses in human cerebral arteries. PLoS ONE. 2013;8:e62698 pubmed 出版商
  846. Abbonante V, Gruppi C, Rubel D, Gross O, Moratti R, Balduini A. Discoidin domain receptor 1 protein is a novel modulator of megakaryocyte-collagen interactions. J Biol Chem. 2013;288:16738-46 pubmed 出版商
  847. Taylor D, Moser R, Regulier E, Breuillaud L, Dixon M, Beesen A, et al. MAP kinase phosphatase 1 (MKP-1/DUSP1) is neuroprotective in Huntington's disease via additive effects of JNK and p38 inhibition. J Neurosci. 2013;33:2313-25 pubmed 出版商
  848. Lin S, Hoffmann K, Xiao Z, Jin N, Galli U, Mohr E, et al. MEK inhibition induced downregulation of MRP1 and MRP3 expression in experimental hepatocellular carcinoma. Cancer Cell Int. 2013;13:3 pubmed 出版商
  849. Cieslik K, Trial J, Carlson S, Taffet G, Entman M. Aberrant differentiation of fibroblast progenitors contributes to fibrosis in the aged murine heart: role of elevated circulating insulin levels. FASEB J. 2013;27:1761-71 pubmed 出版商
  850. Vartanian S, BENTLEY C, Brauer M, Li L, Shirasawa S, Sasazuki T, et al. Identification of mutant K-Ras-dependent phenotypes using a panel of isogenic cell lines. J Biol Chem. 2013;288:2403-13 pubmed 出版商
  851. Slowik A, Merres J, Elfgen A, Jansen S, Mohr F, Wruck C, et al. Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE)--and amyloid beta 1-42-induced signal transduction in glial cells. Mol Neurodegener. 2012;7:55 pubmed 出版商
  852. Brandenburg L, Jansen S, Albrecht L, Merres J, Gerber J, Pufe T, et al. CpG oligodeoxynucleotides induce the expression of the antimicrobial peptide cathelicidin in glial cells. J Neuroimmunol. 2013;255:18-31 pubmed 出版商
  853. Kim J, Hwang I, Choi S, Lee H, Lee Y, Goo J, et al. Aqueous extract of Liriope platyphylla, a traditional Chinese medicine, significantly inhibits abdominal fat accumulation and improves glucose regulation in OLETF type II diabetes model rats. Lab Anim Res. 2012;28:181-91 pubmed 出版商
  854. Turco M, Furia L, Dietze A, Fernandez Diaz L, Ronzoni S, Sciullo A, et al. Cellular heterogeneity during embryonic stem cell differentiation to epiblast stem cells is revealed by the ShcD/RaLP adaptor protein. Stem Cells. 2012;30:2423-36 pubmed 出版商
  855. Kaiser M, Kühnl A, Reins J, Fischer S, Ortiz Tánchez J, Schlee C, et al. Antileukemic activity of the HSP70 inhibitor pifithrin-? in acute leukemia. Blood Cancer J. 2011;1:e28 pubmed 出版商
  856. Iio W, Matsukawa N, Tsukahara T, Toyoda A. The effects of oral taurine administration on behavior and hippocampal signal transduction in rats. Amino Acids. 2012;43:2037-46 pubmed 出版商
  857. Lemire B, Debigare R, Dubé A, Thériault M, Cote C, Maltais F. MAPK signaling in the quadriceps of patients with chronic obstructive pulmonary disease. J Appl Physiol (1985). 2012;113:159-66 pubmed 出版商
  858. Lamottke B, Kaiser M, Mieth M, Heider U, Gao Z, Nikolova Z, et al. The novel, orally bioavailable HSP90 inhibitor NVP-HSP990 induces cell cycle arrest and apoptosis in multiple myeloma cells and acts synergistically with melphalan by increased cleavage of caspases. Eur J Haematol. 2012;88:406-15 pubmed 出版商
  859. Yoo S, Starnes T, Deng Q, Huttenlocher A. Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature. 2011;480:109-12 pubmed 出版商
  860. Gruol D, Puro A, Hao C, Blakely P, Janneke E, Vo K. Neuroadaptive changes in cerebellar neurons induced by chronic exposure to IL-6. J Neuroimmunol. 2011;239:28-36 pubmed 出版商
  861. Liu C, Chen C, Huang A, Li J. Subamolide A, a component isolated from Cinnamomum subavenium, induces apoptosis mediated by mitochondria-dependent, p53 and ERK1/2 pathways in human urothelial carcinoma cell line NTUB1. J Ethnopharmacol. 2011;137:503-11 pubmed 出版商
  862. Machado Neto J, Favaro P, Lazarini M, Costa F, Olalla Saad S, Traina F. Knockdown of insulin receptor substrate 1 reduces proliferation and downregulates Akt/mTOR and MAPK pathways in K562 cells. Biochim Biophys Acta. 2011;1813:1404-11 pubmed 出版商
  863. Urbanet R, Pilon C, Giorgino F, Vettor R, Fallo F. Insulin signaling in adipose tissue of patients with primary aldosteronism. J Endocrinol Invest. 2011;34:86-9 pubmed
  864. Witte K, Schuh A, Hegermann J, Sarkeshik A, Mayers J, Schwarze K, et al. TFG-1 function in protein secretion and oncogenesis. Nat Cell Biol. 2011;13:550-8 pubmed 出版商
  865. Chang J, Adams M, Clifton M, Liao M, Brooks J, Hasdemir B, et al. Urocortin 1 modulates immunosignaling in a rat model of colitis via corticotropin-releasing factor receptor 2. Am J Physiol Gastrointest Liver Physiol. 2011;300:G884-94 pubmed 出版商
  866. Ferreira A, Shenoy V, Qi Y, Fraga Silva R, Santos R, Katovich M, et al. Angiotensin-converting enzyme 2 activation protects against hypertension-induced cardiac fibrosis involving extracellular signal-regulated kinases. Exp Physiol. 2011;96:287-94 pubmed 出版商
  867. Modi H, Li L, Chu S, Rossi J, Yee J, Bhatia R. Inhibition of Grb2 expression demonstrates an important role in BCR-ABL-mediated MAPK activation and transformation of primary human hematopoietic cells. Leukemia. 2011;25:305-12 pubmed 出版商
  868. Grassian A, Schafer Z, Brugge J. ErbB2 stabilizes epidermal growth factor receptor (EGFR) expression via Erk and Sprouty2 in extracellular matrix-detached cells. J Biol Chem. 2011;286:79-90 pubmed 出版商
  869. Brusevold I, Husvik C, Schreurs O, Schenck K, Bryne M, Søland T. Induction of invasion in an organotypic oral cancer model by CoCl2, a hypoxia mimetic. Eur J Oral Sci. 2010;118:168-76 pubmed 出版商
  870. Yang L, Zhang Q, Zhou C, Yang F, Zhang Y, Wang R, et al. Extranuclear estrogen receptors mediate the neuroprotective effects of estrogen in the rat hippocampus. PLoS ONE. 2010;5:e9851 pubmed 出版商
  871. Lu Z, Cox Hipkin M, Windsor W, Boyapati A. 3-phosphoinositide-dependent protein kinase-1 regulates proliferation and survival of cancer cells with an activated mitogen-activated protein kinase pathway. Mol Cancer Res. 2010;8:421-32 pubmed 出版商
  872. Cerezo A, Guadamillas M, Goetz J, Sánchez Perales S, Klein E, Assoian R, et al. The absence of caveolin-1 increases proliferation and anchorage- independent growth by a Rac-dependent, Erk-independent mechanism. Mol Cell Biol. 2009;29:5046-59 pubmed 出版商
  873. Molad Y, Amit Vasina M, Bloch O, Yona E, Rapoport M. Increased ERK and JNK activities correlate with disease activity in patients with systemic lupus erythematosus. Ann Rheum Dis. 2010;69:175-80 pubmed 出版商
  874. Lee J, Kang M, Jang S, Qian T, Kim H, Kim C, et al. Id-1 activates Akt-mediated Wnt signaling and p27(Kip1) phosphorylation through PTEN inhibition. Oncogene. 2009;28:824-31 pubmed 出版商
  875. Bajova H, Nelson T, Gruol D. Chronic CXCL10 alters the level of activated ERK1/2 and transcriptional factors CREB and NF-kappaB in hippocampal neuronal cell culture. J Neuroimmunol. 2008;195:36-46 pubmed 出版商
  876. Søland T, Husvik C, Koppang H, Boysen M, Sandvik L, Clausen O, et al. A study of phosphorylated ERK1/2 and COX-2 in early stage (T1-T2) oral squamous cell carcinomas. J Oral Pathol Med. 2008;37:535-42 pubmed 出版商
  877. Rauh Adelmann C, Moskow J, Graham J, Yen L, Boucher J, Murphy C, et al. Quantitative measurement of epidermal growth factor receptor-mitogen-activated protein kinase signal transduction using a nine-plex, peptide-based immunoassay. Anal Biochem. 2008;375:255-64 pubmed 出版商
  878. Klees R, Salasznyk R, Ward D, Crone D, Williams W, Harris M, et al. Dissection of the osteogenic effects of laminin-332 utilizing specific LG domains: LG3 induces osteogenic differentiation, but not mineralization. Exp Cell Res. 2008;314:763-73 pubmed 出版商
  879. Lefloch R, Pouyssegur J, Lenormand P. Single and combined silencing of ERK1 and ERK2 reveals their positive contribution to growth signaling depending on their expression levels. Mol Cell Biol. 2008;28:511-27 pubmed
  880. Kunath T, Saba El Leil M, Almousailleakh M, Wray J, Meloche S, Smith A. FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development. 2007;134:2895-902 pubmed
  881. Zha Y, Marks R, Ho A, Peterson A, Janardhan S, Brown I, et al. T cell anergy is reversed by active Ras and is regulated by diacylglycerol kinase-alpha. Nat Immunol. 2006;7:1166-73 pubmed
  882. Salasznyk R, Klees R, Boskey A, Plopper G. Activation of FAK is necessary for the osteogenic differentiation of human mesenchymal stem cells on laminin-5. J Cell Biochem. 2007;100:499-514 pubmed
  883. Zhu M, Feng J, Lucchinetti E, Fischer G, Xu L, Pedrazzini T, et al. Ischemic postconditioning protects remodeled myocardium via the PI3K-PKB/Akt reperfusion injury salvage kinase pathway. Cardiovasc Res. 2006;72:152-62 pubmed
  884. Hao H, Schwaber J. Epidermal growth factor receptor induced Erk phosphorylation in the suprachiasmatic nucleus. Brain Res. 2006;1088:45-8 pubmed
  885. Carulli M, Ong V, Ponticos M, Shiwen X, Abraham D, Black C, et al. Chemokine receptor CCR2 expression by systemic sclerosis fibroblasts: evidence for autocrine regulation of myofibroblast differentiation. Arthritis Rheum. 2005;52:3772-82 pubmed
  886. Riemenschneider M, Mueller W, Betensky R, Mohapatra G, Louis D. In situ analysis of integrin and growth factor receptor signaling pathways in human glioblastomas suggests overlapping relationships with focal adhesion kinase activation. Am J Pathol. 2005;167:1379-87 pubmed
  887. Auger R, Motta I, Benihoud K, Ojcius D, Kanellopoulos J. A role for mitogen-activated protein kinase(Erk1/2) activation and non-selective pore formation in P2X7 receptor-mediated thymocyte death. J Biol Chem. 2005;280:28142-51 pubmed
  888. Lo I, Shih J, Jiang M. Reactive oxygen species and ERK 1/2 mediate monocyte chemotactic protein-1-stimulated smooth muscle cell migration. J Biomed Sci. 2005;12:377-88 pubmed
  889. Tsai M, Jiang M. Extracellular signal-regulated kinase1/2 in contraction of vascular smooth muscle. Life Sci. 2005;76:877-88 pubmed
  890. Usui S, Sugimoto N, Takuwa N, Sakagami S, Takata S, Kaneko S, et al. Blood lipid mediator sphingosine 1-phosphate potently stimulates platelet-derived growth factor-A and -B chain expression through S1P1-Gi-Ras-MAPK-dependent induction of Kruppel-like factor 5. J Biol Chem. 2004;279:12300-11 pubmed
  891. Hernandez M, Barrero M, Crespo M, Nieto M. Lysophosphatidic acid inhibits Ca2+ signaling in response to epidermal growth factor receptor stimulation in human astrocytoma cells by a mechanism involving phospholipase C(gamma) and a G(alphai) protein. J Neurochem. 2000;75:1575-82 pubmed
  892. Chan E, Stang S, Bottorff D, Stone J. Hypothermic stress leads to activation of Ras-Erk signaling. J Clin Invest. 1999;103:1337-44 pubmed
  893. Korneyev A. Stress-induced tau phosphorylation in mouse strains with different brain Erk 1 + 2 immunoreactivity. Neurochem Res. 1998;23:1539-43 pubmed
  894. Webb C, Van Aelst L, Wigler M, Vande Woude G. Signaling pathways in Ras-mediated tumorigenicity and metastasis. Proc Natl Acad Sci U S A. 1998;95:8773-8 pubmed
  895. Duesbery N, Webb C, Leppla S, Gordon V, Klimpel K, Copeland T, et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science. 1998;280:734-7 pubmed
  896. Hidari K, Weyrich A, Zimmerman G, McEver R. Engagement of P-selectin glycoprotein ligand-1 enhances tyrosine phosphorylation and activates mitogen-activated protein kinases in human neutrophils. J Biol Chem. 1997;272:28750-6 pubmed