这是一篇来自已证抗体库的有关人类 ERK2的综述,是根据1684篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合ERK2 抗体。
ERK2 同义词: ERK; ERK-2; ERK2; ERT1; MAPK2; P42MAPK; PRKM1; PRKM2; p38; p40; p41; p41mapk; p42-MAPK

圣克鲁斯生物技术
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc7383)被用于被用于免疫印迹在人类样本上 (图 3). Int J Mol Sci (2022) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-石蜡切片; 人类; 1:20; 图 3c, 3i
  • 免疫印迹; 人类; 图 3b, 3e
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20 (图 3c, 3i) 和 被用于免疫印迹在人类样本上 (图 3b, 3e). Mol Oncol (2022) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:200; 图 s2a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 s2a). Neurooncol Adv (2022) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 图 s11a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-1647)被用于被用于免疫印迹在人类样本上 (图 s11a). Proc Natl Acad Sci U S A (2022) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 1h
  • 免疫印迹; 小鼠; 1:1000; 图 1h
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1h) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1h). Biomedicines (2022) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1h
  • 免疫印迹; 人类; 1:1000; 图 1h
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1h) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1h). Biomedicines (2022) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 s7b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 s7b). iScience (2021) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 3a). Int J Mol Sci (2021) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000; 图 1g
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1g). Front Pharmacol (2021) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 图 1f
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样本上 (图 1f). Cell Death Discov (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上 (图 5b). Front Immunol (2021) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样本上 (图 5b). Front Immunol (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 7a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). Sci Rep (2021) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5c). Biomol Ther (Seoul) (2021) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000; 图 2g
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2g). J Parkinsons Dis (2021) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:200; 图 2f
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2f). Oncogene (2021) ncbi
小鼠 单克隆(4C11C11C4)
  • 免疫印迹; 人类; 1:300; 图 7d
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-65981)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 7d). Cancers (Basel) (2021) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:200; 图 7d
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 7d). Cancers (Basel) (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 3g, 3h
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在小鼠样本上 (图 3g, 3h). Front Pharmacol (2021) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 小鼠; 图 3g, 3h
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-81492)被用于被用于免疫印迹在小鼠样本上 (图 3g, 3h). Front Pharmacol (2021) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 s3a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 s3a). Front Med (Lausanne) (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:5000; 图 8a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 8a). Front Cell Neurosci (2021) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:5000; 图 8a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 8a). Front Cell Neurosci (2021) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000; 图 6c
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Nutrients (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 犬; 1:1000; 图 5a
  • 免疫印迹; 人类; 1:1000; 图 5b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 5a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Int J Mol Sci (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠; 1:2000; 图 9a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 9a). Oxid Med Cell Longev (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 7k
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383 HRP)被用于被用于免疫印迹在人类样本上 (图 7k). Amino Acids (2021) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2d
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 2d). Biomolecules (2021) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 小鼠; 图 2b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc1647)被用于被用于免疫印迹在小鼠样本上 (图 2b). Front Immunol (2020) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:3000
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:3000. elife (2020) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠; 图 s9b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在大鼠样本上 (图 s9b). Cardiovasc Res (2021) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 人类; 1:1000; 图 6b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-81492)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Antioxidants (Basel) (2020) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 6b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Antioxidants (Basel) (2020) ncbi
小鼠 单克隆(E-4)
  • 免疫组化; 人类; 1:200; 图 3
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫组化在人类样本上浓度为1:200 (图 3) 和 被用于免疫印迹在人类样本上 (图 6). Eur J Histochem (2020) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 s3b
  • 免疫印迹; 小鼠; 图 s3b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上 (图 s3b) 和 被用于免疫印迹在小鼠样本上 (图 s3b). Nature (2019) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogene (2020) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Oncol Lett (2019) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:200; 图 4s2a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, SC7383)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4s2a). elife (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:2000; 图 6a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6a). Front Endocrinol (Lausanne) (2019) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 人类; 1:2000; 图 6a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-81492)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6a). Front Endocrinol (Lausanne) (2019) ncbi
小鼠 单克隆(33)
  • 免疫沉淀; 人类; 图 3d
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-136288)被用于被用于免疫沉淀在人类样本上 (图 3d) 和 被用于免疫印迹在人类样本上 (图 2b). Oncogenesis (2019) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:200; 图 3c, 3d, s8b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3c, 3d, s8b). Science (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 s3a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-514302)被用于被用于免疫印迹在人类样本上 (图 s3a). Sci Adv (2019) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 大鼠; 图 3c
圣克鲁斯生物技术 ERK2抗体(Santa, sc-135,900)被用于被用于免疫印迹在大鼠样本上 (图 3c). BMC Complement Altern Med (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:5000; 图 1c
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1c). Nat Commun (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 1b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-514,302)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). EBioMedicine (2019) ncbi
小鼠 单克隆(12A4)
  • 免疫印迹; 人类; 图 3a
  • 免疫印迹; 小鼠; 图 2d
圣克鲁斯生物技术 ERK2抗体(Santa, sc-81457)被用于被用于免疫印迹在人类样本上 (图 3a) 和 被用于免疫印迹在小鼠样本上 (图 2d). Oncogene (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 2e
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-514302)被用于被用于免疫印迹在人类样本上 (图 2e). Exp Mol Med (2018) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 小鼠; 图 3g, s7c
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-1647)被用于被用于免疫印迹在小鼠样本上 (图 3g, s7c). Cell (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 8a
圣克鲁斯生物技术 ERK2抗体(santa cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 8a). J Exp Med (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 4d
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology Inc, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 4d). J Clin Invest (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Restor Neurol Neurosci (2018) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Restor Neurol Neurosci (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, E-4)被用于被用于免疫印迹在人类样本上 (图 2b). Cell Death Dis (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 ERK2抗体(SantaCruz, E-4)被用于被用于免疫印迹在人类样本上 (图 5a). Cell Res (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 6d
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology Inc, SC-7383)被用于被用于免疫印迹在小鼠样本上 (图 6d). Neurotherapeutics (2018) ncbi
小鼠 单克隆(12D4)
  • 免疫组化-冰冻切片; 小鼠; 1:20; 图 s6f
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-81492)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:20 (图 s6f). Nat Commun (2018) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样本上 (图 3b). Int J Oncol (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5). Mol Med Rep (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2017) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 图 7a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样本上 (图 7a). Cancer Lett (2017) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 小鼠; 1:1000; 图 s7a
圣克鲁斯生物技术 ERK2抗体(SantaCruz, sc-1647)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7a). Nat Commun (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 3g
圣克鲁斯生物技术 ERK2抗体(SantaCruz, SC-7383)被用于被用于免疫印迹在小鼠样本上 (图 3g). J Exp Med (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3e
圣克鲁斯生物技术 ERK2抗体(SCB, E-4)被用于被用于免疫印迹在人类样本上 (图 3e). Cancer Res (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 3c
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Oncol Lett (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 4b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 4b). J Exp Med (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上 (图 6a). Exp Mol Med (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 6a). Exp Mol Med (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 6A
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上 (图 6A). Sci Rep (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 6
圣克鲁斯生物技术 ERK2抗体(SantaCruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 6). J Ethnopharmacol (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:200; 图 2b
圣克鲁斯生物技术 ERK2抗体(SantaCruz, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2b). Toxicol In Vitro (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 2b
圣克鲁斯生物技术 ERK2抗体(SantaCruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b). Toxicol In Vitro (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 2b
圣克鲁斯生物技术 ERK2抗体(SantaCruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b). J Steroid Biochem Mol Biol (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:2000; 图 4a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4a). Exp Ther Med (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, D-2)被用于被用于免疫印迹在人类样本上 (图 1a). Nucleic Acids Res (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 2e
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2e). Nat Commun (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在人类样本上 (图 1c). Mol Carcinog (2017) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, D2)被用于被用于免疫印迹在人类样本上 (图 1a). J Biol Chem (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-石蜡切片; 小鼠
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫组化-石蜡切片在小鼠样本上. Acta Histochem (2017) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:1000; 图 1a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Int J Cancer (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5b). Int J Mol Med (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 图 3a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在小鼠样本上 (图 3a). Int J Mol Sci (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 图 6b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, Sc-7383)被用于被用于免疫印迹在大鼠样本上 (图 6b). Physiol Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1500; 图 4a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 4a). Oncol Lett (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1500; 图 4a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 4a). Oncol Lett (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 ERK2抗体(santa Cruz, SC-7383)被用于被用于免疫印迹在小鼠样本上 (图 3). Blood Cancer J (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 ERK2抗体(santa Cruz, SC-514302)被用于被用于免疫印迹在小鼠样本上 (图 3). Blood Cancer J (2016) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫组化-石蜡切片; 人类; 图 7a
  • 免疫印迹; 人类; 1:500; 图 5a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-136521)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7a) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 表 1
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (表 1). J Neuroinflammation (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6e
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, 7383)被用于被用于免疫印迹在人类样本上 (图 6e). Am J Physiol Heart Circ Physiol (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Mol Cell Biochem (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 3a). J Cereb Blood Flow Metab (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 7a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Immunol (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 4). Mol Ther Methods Clin Dev (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在人类样本上 (图 5). Cell Rep (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-1647)被用于被用于免疫印迹在人类样本上 (图 1a). J Biol Chem (2016) ncbi
小鼠 单克隆(12A4)
  • 免疫沉淀; 大鼠; 图 5c
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, SC-81457)被用于被用于免疫沉淀在大鼠样本上 (图 5c). PLoS ONE (2016) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 大鼠; 图 5c
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, SC-136521)被用于被用于免疫印迹在大鼠样本上 (图 5c). PLoS ONE (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000; 图 2
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Cell Death Dis (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 3). Oncol Lett (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 2a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 2a). J Cell Biol (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3h
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, E4)被用于被用于免疫印迹在人类样本上 (图 3h). Genes Cancer (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 图 6b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上 (图 6b). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 5d
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Oncotarget (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:200; 图 6A
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 6A). Front Pharmacol (2016) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 1:200; 图 6A
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 6A). Front Pharmacol (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-1647)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:1000; 图 s4
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4). Nat Commun (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc1647)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 1:1000; 图 4
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000; 图 4
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 1:500; 图 5a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, 7383)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 5a). Int J Endocrinol (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 7c
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 7c). J Biol Chem (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc1647)被用于被用于免疫印迹在人类样本上 (图 4). BMC Complement Altern Med (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc7383)被用于被用于免疫印迹在人类样本上 (图 4). BMC Complement Altern Med (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 s2
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在小鼠样本上 (图 s2). Sci Rep (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:500; 图 3
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Oncoimmunology (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 6a). J Immunol Res (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:200; 图 5
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5). Genes Cancer (2016) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 1:200; 图 5
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5). Genes Cancer (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 ERK2抗体(Santa cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5). BMC Cancer (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫细胞化学; 小鼠; 1:50; 图 5
  • 免疫组化; 小鼠; 1:50; 图 5
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 5) 和 被用于免疫组化在小鼠样本上浓度为1:50 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 3c). Oncotarget (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠; 图 10a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在大鼠样本上 (图 10a). Int J Mol Med (2016) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 1:500; 图 3d
  • 免疫印迹; 小鼠; 1:500; 图 3d
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-514302)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3d) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 3d). J Neurosci (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 5
  • 免疫印迹; 人类; 图 8
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, E-4)被用于被用于免疫印迹在小鼠样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 8). J Exp Med (2016) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 大鼠; 1:500; 图 6
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-81492)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 6). Exp Ther Med (2016) ncbi
小鼠 单克隆(C-8)
  • 免疫印迹; 小鼠; 图 8f
圣克鲁斯生物技术 ERK2抗体(santa cruz, C-8)被用于被用于免疫印迹在小鼠样本上 (图 8f). Front Endocrinol (Lausanne) (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 1:1000; 图 5
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(12D4)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5
  • 免疫印迹; 小鼠; 1:1000; 图 5
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-81492)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 7e
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 7e). J Immunol (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫组化; 小鼠; 图 7
  • 免疫印迹; 大鼠; 图 1d
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc7383)被用于被用于免疫组化在小鼠样本上 (图 7) 和 被用于免疫印迹在大鼠样本上 (图 1d). J Cell Mol Med (2016) ncbi
小鼠 单克隆(E-4)
  • 酶联免疫吸附测定; 人类; 1:500; 图 10
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:500 (图 10). Oncotarget (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-1647)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 1:500; 图 6
圣克鲁斯生物技术 ERK2抗体(Santa Cruze, sc-7383)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(12A4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc81457)被用于被用于免疫印迹在人类样本上 (图 2). Breast Cancer Res (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 ERK2抗体(santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 3). Drug Des Devel Ther (2015) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 小鼠; 1:2000; 图 s3
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-1647)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s3). Clin Cancer Res (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 10
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 10). J Neuroinflammation (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s7
  • 免疫印迹; 小鼠; 1:1000; 图 2
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s7), 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5c). Mol Cells (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5a). Apoptosis (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 S3
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 S3). Oncotarget (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上 (图 3). Biomed Res Int (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 s3
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 s3). J Immunol Res (2015) ncbi
小鼠 单克隆(D-2)
  • 免疫组化; 非洲爪蛙; 1:50; 图 5
  • 免疫细胞化学; 小鼠; 1:200; 图 2
  • 免疫印迹; 小鼠; 1:1000; 图 2
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, D-2)被用于被用于免疫组化在非洲爪蛙样本上浓度为1:50 (图 5), 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 8
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在人类样本上 (图 8). Oncotarget (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 6a). Oncogene (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, SC7383)被用于被用于免疫印迹在人类样本上. Int J Cancer (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 1:2000
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-1647)被用于被用于免疫印迹在人类样本上浓度为1:2000. Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术 ERK2抗体(SantaCruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 3c). Oncogene (2016) ncbi
小鼠 单克隆(H-9)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-271451)被用于被用于免疫印迹在人类样本上 (图 3a). Cancer Cell Int (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:8000; 图 7
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, SC-135900)被用于被用于免疫印迹在人类样本上浓度为1:8000 (图 7). Int J Mol Sci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; pigs ; 图 2
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在pigs 样本上 (图 2). J Immunol (2015) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 人类; 图 6b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-81492)被用于被用于免疫印迹在人类样本上 (图 6b). BMC Cancer (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 3). Cancer Sci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Cardiovasc Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Laboratories, SC7383)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 6b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, E-4)被用于被用于免疫印迹在小鼠样本上 (图 6b). J Exp Med (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 1:1000
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Int J Neuropsychopharmacol (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-自由浮动切片; 大鼠
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫组化-自由浮动切片在大鼠样本上. Free Radic Biol Med (2015) ncbi
小鼠 单克隆(33)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-136288)被用于被用于免疫印迹在人类样本上浓度为1:500. Mol Med Rep (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 2). J Biomed Sci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, SC-7383)被用于被用于免疫印迹在小鼠样本上. Virol Sin (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 6
圣克鲁斯生物技术 ERK2抗体(Santa-Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). PLoS Pathog (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在小鼠样本上. Neuropharmacology (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上. Neuropharmacology (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 图 4d
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, SC-135900)被用于被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, SC-135900)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Cancer Res (2015) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 小鼠; 图 s4
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-1647)被用于被用于免疫印迹在小鼠样本上 (图 s4). Br J Cancer (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 s8
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 s8). Autophagy (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, SC-7383)被用于被用于免疫印迹在人类样本上 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(MK1)
  • 染色质免疫沉淀 ; 人类; 图 6
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotech, sc-135900)被用于被用于染色质免疫沉淀 在人类样本上 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:500
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Neuroscience (2015) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, SC-81492)被用于被用于免疫印迹在小鼠样本上. J Nutr Biochem (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, SC-135900)被用于被用于免疫印迹在小鼠样本上. J Nutr Biochem (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 图 5
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在大鼠样本上 (图 5). Mar Drugs (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, SC-7383)被用于被用于免疫印迹在人类样本上 (图 5). Br J Nutr (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 1:500; 图 4g
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4g). J Cell Sci (2015) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-136521)被用于被用于免疫印迹在人类样本上 (图 6). Curr Mol Med (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, E-4)被用于被用于免疫印迹在人类样本上. Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500. Cell Signal (2015) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 ERK2抗体(santa Cruz, sc-1647)被用于被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 2
圣克鲁斯生物技术 ERK2抗体(santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 小鼠; 1:500; 图 4a
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-81492)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4a). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5f
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5f). Cell Commun Signal (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 4
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnologies, SC-7383)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Endocrinology (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 s21
圣克鲁斯生物技术 ERK2抗体(Santa, sc-7383)被用于被用于免疫印迹在人类样本上 (图 s21). PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000. Exp Ther Med (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, SC-135900)被用于被用于免疫印迹在人类样本上. Mutat Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫沉淀; 人类; 图 3
  • 免疫印迹; 人类; 图 s9
圣克鲁斯生物技术 ERK2抗体(santa Cruz, sc-7383)被用于被用于免疫沉淀在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 s9). Cell Death Differ (2015) ncbi
小鼠 单克隆(D-2)
  • 免疫沉淀; 人类; 图 3
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 ERK2抗体(santa Cruz, sc-1647)被用于被用于免疫沉淀在人类样本上 (图 3), 被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 4). Cell Death Differ (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Leuk Lymphoma (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上. Leuk Lymphoma (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在大鼠样本上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在大鼠样本上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, E4)被用于被用于免疫印迹在人类样本上 (图 2). Cell Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 2). Cell Cycle (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 2b). Environ Health Perspect (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:200
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, SC7383)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Mol Cell Biol (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, E-4)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫组化; 人类; 1:100
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫组化在人类样本上浓度为1:100. Cancer Lett (2015) ncbi
小鼠 单克隆(D-2)
  • 免疫细胞化学; 人类; 1:200
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-1647)被用于被用于免疫细胞化学在人类样本上浓度为1:200 和 被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-81492)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Life Sci (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Life Sci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, E-4)被用于被用于免疫印迹在人类样本上浓度为1:1000. Tumour Biol (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Neurosci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 大鼠; 图 3
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在大鼠样本上 (图 3). Biochem Pharmacol (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:1000. Exp Cell Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000. Exp Cell Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, 7383)被用于被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:500; 图 2
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2). Nat Commun (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Biol Chem (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Biol Chem (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-石蜡切片; 大鼠
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, E-4, sc-7383)被用于被用于免疫组化-石蜡切片在大鼠样本上 和 被用于免疫印迹在大鼠样本上. Hippocampus (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:800
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, SC-135900)被用于被用于免疫印迹在人类样本上浓度为1:800. Growth Factors (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; kangaroo rats; 1:200; 图 2
圣克鲁斯生物技术 ERK2抗体(santa cruz, sc-7383)被用于被用于免疫印迹在kangaroo rats样本上浓度为1:200 (图 2). Cell Mol Neurobiol (2015) ncbi
小鼠 单克隆(12D4)
  • 免疫细胞化学; 人类; 1:300
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotech, sc-81492)被用于被用于免疫细胞化学在人类样本上浓度为1:300. Biores Open Access (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上. Biometals (2014) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-1647)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, SC-135900)被用于被用于免疫印迹在小鼠样本上. J Am Heart Assoc (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000. BMC Cancer (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-石蜡切片; 人类; 1:100
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc7383)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. J Gastroenterol Hepatol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 牛
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在牛样本上. Biomed Res Int (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Angiogenesis (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上. Int J Oncol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Int J Oncol (2014) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-1647)被用于被用于免疫印迹在人类样本上. Pigment Cell Melanoma Res (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; domestic rabbit; 1:1,000
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:1,000. Stem Cells Dev (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上. Mol Cell Endocrinol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 ERK2抗体(Santa, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Mol Cancer Ther (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, SC-7383)被用于被用于免疫印迹在人类样本上. Biochem Pharmacol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc7383)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上. Electrophoresis (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上. Exp Mol Med (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 番茄
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, SC-7383)被用于被用于免疫印迹在番茄样本上. J Agric Food Chem (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, E-4)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Cancer Res (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫细胞化学; 大鼠
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫细胞化学在大鼠样本上 和 被用于免疫印迹在大鼠样本上. Glia (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Exp Cell Res (2014) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-136521)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Exp Cell Res (2014) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, D2)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上. Cancer Cell Int (2013) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-1647)被用于被用于免疫印迹在人类样本上浓度为1:500. Mol Neurodegener (2012) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500. Mol Neurodegener (2012) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-1647)被用于被用于免疫印迹在人类样本上浓度为1:500. J Neuroimmunol (2013) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500. J Neuroimmunol (2013) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 ERK2抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在大鼠样本上. Lab Anim Res (2012) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 1:1000; 图 3b
圣克鲁斯生物技术 ERK2抗体(SantaCruz, E-4)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3b). Am J Physiol Gastrointest Liver Physiol (2011) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 ERK2抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5). Leukemia (2011) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR19401)
  • 免疫印迹; 小鼠; 1:1000; 图 s7a
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab201015)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7a). J Immunother Cancer (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5j
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, 17942)被用于被用于免疫印迹在人类样本上 (图 5j). Cell Death Differ (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, 17942)被用于被用于免疫印迹在人类样本上 (图 5a). Front Oncol (2021) ncbi
domestic rabbit 单克隆(EPR19401)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 10a
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab201015)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 10a). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(EPR19401)
  • 免疫印迹; 小鼠; 图 6c
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab201015)被用于被用于免疫印迹在小鼠样本上 (图 6c). Antioxidants (Basel) (2021) ncbi
domestic rabbit 单克隆(EPR19401)
  • 免疫印迹; 大鼠; 图 5a
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab201015)被用于被用于免疫印迹在大鼠样本上 (图 5a). J Inflamm Res (2021) ncbi
domestic rabbit 单克隆(EPR19401)
  • 免疫组化; 人类; 1:100; 图 1n
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab201015)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1n). Int J Med Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3d
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab17942)被用于被用于免疫印迹在大鼠样本上 (图 3d). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3e
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab214362)被用于被用于免疫印迹在大鼠样本上 (图 3e). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 5f
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab214362)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5f). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5f
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab17942)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5f). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 8s2p
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, Ab15282)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 8s2p). elife (2020) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 2d
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab50011)被用于被用于免疫印迹在人类样本上 (图 2d). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(E460)
  • 免疫组化; 人类; 图 8c
  • 免疫印迹; 人类; 图 6g
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab32081)被用于被用于免疫组化在人类样本上 (图 8c) 和 被用于免疫印迹在人类样本上 (图 6g). Mol Cancer (2020) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 6e, 6g
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab54230)被用于被用于免疫印迹在人类样本上 (图 6e, 6g). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6e, 6g
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab214362)被用于被用于免疫印迹在人类样本上 (图 6e, 6g). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(EPR19401)
  • 免疫印迹; 人类; 1:1000; 图 2b
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab201015)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Sci Rep (2019) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 1:1000; 图 2b
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab54230)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Sci Rep (2019) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠; 1:500; 图 5a
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab-54230)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5a). Am J Transl Res (2019) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 1:500; 图 5a
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab-5011)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5a). Am J Transl Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab115799)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s4
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab214362,)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4f
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab17942)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). Nat Commun (2019) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:1000; 图 4f
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab50011)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). Nat Commun (2019) ncbi
domestic rabbit 单克隆(EPR18444)
  • 免疫印迹; 人类; 图 5b
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab214036)被用于被用于免疫印迹在人类样本上 (图 5b). Eur Rev Med Pharmacol Sci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab115799)被用于被用于免疫印迹在人类样本上 (图 5b). Eur Rev Med Pharmacol Sci (2019) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠; 图 7a
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab54230)被用于被用于免疫印迹在小鼠样本上 (图 7a). Int J Biol Sci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab17942)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Lab Invest (2019) ncbi
domestic rabbit 单克隆(EPR19401)
  • 免疫印迹; 大鼠; 1:1000; 图 5c
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab201015)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5c). Exp Ther Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:100; 图 5a
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab17942)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 5a). Exp Ther Med (2017) ncbi
domestic rabbit 单克隆(E460)
  • 免疫印迹; 人类; 1:100; 图 5b
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab32081)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 5b). Exp Ther Med (2017) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 1:1000; 图 4b
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab54230)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4b). Braz J Med Biol Res (2017) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠; 1:500; 图 3a
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab54230)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3a). J Mol Neurosci (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫细胞化学; 人类; 1:200; 图 6d
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab50011)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 6d). J Cell Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4a
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab196883)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Exp Ther Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab17942)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Oncotarget (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, Ab50011)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, Ab17942)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2016) ncbi
domestic rabbit 单克隆(E460)
  • 免疫组化-石蜡切片; 人类; 图 1c
  • 免疫印迹; 人类; 图 6f
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab32081)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c) 和 被用于免疫印迹在人类样本上 (图 6f). Oncotarget (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab50011)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab17942)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab17942)被用于被用于免疫印迹在大鼠样本上 (图 4). Mol Brain (2016) ncbi
domestic rabbit 单克隆(EPR19401)
  • 免疫印迹; 大鼠; 图 4
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab201015)被用于被用于免疫印迹在大鼠样本上 (图 4). Mol Brain (2016) ncbi
  • 免疫组化; 人类; 图 5
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab131438)被用于被用于免疫组化在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 ERK2抗体(AbCam, Ab50011)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 5). Cancer Biol Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2
艾博抗(上海)贸易有限公司 ERK2抗体(AbCam, Ab17942)被用于被用于免疫细胞化学在人类样本上 (图 2). Cancer Biol Ther (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab50011)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司 ERK2抗体(abcam, 50011)被用于被用于免疫印迹在人类样本上 (图 1d). Mar Drugs (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化; 人类; 图 1
艾博抗(上海)贸易有限公司 ERK2抗体(abcam, ab50011)被用于被用于免疫组化在人类样本上 (图 1). Mol Cancer (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab50011)被用于被用于免疫印迹在人类样本上 (图 6). Biomaterials (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab50011)被用于被用于免疫印迹在人类样本上 (图 2a). Med Oncol (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化-石蜡切片; 斑马鱼; 1:300
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab50011)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:300. J Immunol (2015) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠; 1:2000; 图 1d
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab54230)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1d). J Biol Chem (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化; 大鼠; 1:200
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab50011)被用于被用于免疫组化在大鼠样本上浓度为1:200. J Surg Res (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:50-500
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab50011)被用于被用于免疫印迹在人类样本上浓度为1:50-500. Reprod Biol Endocrinol (2013) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化; 人类; 1:200
艾博抗(上海)贸易有限公司 ERK2抗体(Abcam, ab50011)被用于被用于免疫组化在人类样本上浓度为1:200. PLoS ONE (2013) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛默飞世尔 ERK2抗体(Thermo Fisher Scientific, 44-6544)被用于被用于免疫印迹在人类样本上 (图 6). Eur J Histochem (2020) ncbi
小鼠 单克隆(MILAN8R)
  • 流式细胞仪; 人类; 图 s5
赛默飞世尔 ERK2抗体(eBioscience, MILAN8R)被用于被用于流式细胞仪在人类样本上 (图 s5). Eur J Immunol (2018) ncbi
domestic rabbit 重组(15H10L7)
  • 免疫印迹; 大鼠; 图 4a
赛默飞世尔 ERK2抗体(Thermo Fisher Scientific, 700012)被用于被用于免疫印迹在大鼠样本上 (图 4a). Biosci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4b
赛默飞世尔 ERK2抗体(Thermo Fisher Scientific, 44-654G)被用于被用于免疫印迹在大鼠样本上 (图 4b). Biosci Rep (2018) ncbi
小鼠 单克隆(MILAN8R)
  • 流式细胞仪; 人类; 图 3b
赛默飞世尔 ERK2抗体(eBioscience, MILAN8R)被用于被用于流式细胞仪在人类样本上 (图 3b). J Immunol (2018) ncbi
小鼠 单克隆(3F8B3)
  • 免疫印迹; 人类; 图 4
  • 免疫印迹; Stylophora pistillata; 1:1000; 图 2a
赛默飞世尔 ERK2抗体(ThermoFisher, MA5-15605)被用于被用于免疫印迹在人类样本上 (图 4) 和 被用于免疫印迹在Stylophora pistillata样本上浓度为1:1000 (图 2a). F1000Res (2017) ncbi
domestic rabbit 单克隆(B.742.5)
  • 免疫印迹; Stylophora pistillata; 1:1000; 图 2a
  • 免疫印迹; 人类; 图 4
赛默飞世尔 ERK2抗体(ThermoFisher, MA5-15174)被用于被用于免疫印迹在Stylophora pistillata样本上浓度为1:1000 (图 2a) 和 被用于免疫印迹在人类样本上 (图 4). F1000Res (2017) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫沉淀; 人类; 图 5a
  • 免疫印迹; 人类; 图 5a
赛默飞世尔 ERK2抗体(Invitrogen, 13-6200)被用于被用于免疫沉淀在人类样本上 (图 5a) 和 被用于免疫印迹在人类样本上 (图 5a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛默飞世尔 ERK2抗体(Thermo Scientific, PA1-4703)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Mol Neurobiol (2018) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 1:500; 图 3a
赛默飞世尔 ERK2抗体(Invitrogen, 13-6200)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛默飞世尔 ERK2抗体(Invitrogen, 44-654G)被用于被用于免疫印迹在人类样本上 (图 1d). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛默飞世尔 ERK2抗体(Invitrogen, 44-680G)被用于被用于免疫印迹在人类样本上 (图 1d). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5f
赛默飞世尔 ERK2抗体(Invitrogen, 36-8800)被用于被用于免疫印迹在人类样本上 (图 5f). MAbs (2017) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 5e
赛默飞世尔 ERK2抗体(Invitrogen, 13-6200)被用于被用于免疫印迹在人类样本上 (图 5e). MAbs (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛默飞世尔 ERK2抗体(Invitrogen, 61-7400)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; African green monkey; 图 5c
赛默飞世尔 ERK2抗体(Zymed, 61-7400)被用于被用于免疫印迹在African green monkey样本上 (图 5c). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛默飞世尔 ERK2抗体(Invitrogen, 44-680G)被用于被用于免疫印迹在人类样本上 (图 1b). Int J Oncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3b
  • 免疫印迹; 小鼠; 图 5e
赛默飞世尔 ERK2抗体(生活技术, 44-654G)被用于被用于免疫印迹在人类样本上 (图 s3b) 和 被用于免疫印迹在小鼠样本上 (图 5e). Nat Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3b
  • 免疫印迹; 小鼠; 图 5e
赛默飞世尔 ERK2抗体(生活技术, 44-680G)被用于被用于免疫印迹在人类样本上 (图 s3b) 和 被用于免疫印迹在小鼠样本上 (图 5e). Nat Immunol (2016) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 1:2000; 图 2a
赛默飞世尔 ERK2抗体(Thermo Fisher Scientific, ERK-7D8)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛默飞世尔 ERK2抗体(生活技术, 44-654-G)被用于被用于免疫印迹在人类样本上 (图 3). Int J Mol Sci (2016) ncbi
小鼠 单克隆(MILAN8R)
  • 流式细胞仪; 小鼠
赛默飞世尔 ERK2抗体(eBioscience, MILAN8R)被用于被用于流式细胞仪在小鼠样本上. Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛默飞世尔 ERK2抗体(Invitrogen, 44680G)被用于被用于免疫印迹在人类样本上 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛默飞世尔 ERK2抗体(Invitrogen, 368800)被用于被用于免疫印迹在人类样本上 (图 7a). Cell Death Differ (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3
  • 免疫印迹; 人类; 图 1
赛默飞世尔 ERK2抗体(Invitrogen, 44680G)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 1). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛默飞世尔 ERK2抗体(Invitrogen Biosource, 44-654G)被用于被用于免疫印迹在人类样本上 (图 6). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 5
赛默飞世尔 ERK2抗体(Zymed, 61-7400)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5). Neuropharmacology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5
赛默飞世尔 ERK2抗体(Invitrogen, 44-680G)被用于被用于免疫印迹在大鼠样本上 (图 5). Mol Biol Cell (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 ERK2抗体(Invitrogen, 44680G)被用于. Int J Mol Sci (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 ERK2抗体(Thermo Fisher Scientific, 44-680G)被用于. Biomed Res Int (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 ERK2抗体(生活技术, 44-654-G)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛默飞世尔 ERK2抗体(Invitrogen, 44-680G)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 ERK2抗体(Invitrogen, 13-6200)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 ERK2抗体(Invitrogen, 44680G)被用于. Biochem Pharmacol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 ERK2抗体(生活技术, 44680G)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠; 1:500; 图 5b
赛默飞世尔 ERK2抗体(Zymed, 13-6200)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5b). Nat Cell Biol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 ERK2抗体(Biosource, 44-680G)被用于. Nat Cell Biol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 ERK2抗体(Invitrogen, CA 61-7400)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 ERK2抗体(Invitrogen Life Technologies, 44-654G)被用于. Cell Death Dis (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 ERK2抗体(Invitrogen Life Technologies, 44680G)被用于. Cell Death Dis (2015) ncbi
domestic rabbit 重组(15H10L7)
  • 免疫印迹; 人类
赛默飞世尔 ERK2抗体(Invitrogen, 700012)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类
赛默飞世尔 ERK2抗体(Zymed, 13-6200)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠
赛默飞世尔 ERK2抗体(Invitrogen, 13-6200)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(K.913.4)
  • 免疫组化-石蜡切片; 斑马鱼
  • 免疫印迹; 斑马鱼
赛默飞世尔 ERK2抗体(Pierce, MA5-15134)被用于被用于免疫组化-石蜡切片在斑马鱼样本上 和 被用于免疫印迹在斑马鱼样本上. Cell Res (2014) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类
赛默飞世尔 ERK2抗体(Zymed Laboratories, 13-6200)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 1:2500; 表 1
赛默飞世尔 ERK2抗体(Invitrogen, 136200)被用于被用于免疫印迹在大鼠样本上浓度为1:2500 (表 1). Amino Acids (2012) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类
赛默飞世尔 ERK2抗体(Zymed, 13-6200)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2011) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 ERK2抗体(Invitrogen, 13-6200)被用于被用于免疫印迹在人类样本上 (图 1). J Endocrinol Invest (2011) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠; 图 2a
赛默飞世尔 ERK2抗体(Zymed, 13-6200)被用于被用于免疫印迹在小鼠样本上 (图 2a). Nat Immunol (2006) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 图 6
赛默飞世尔 ERK2抗体(Zymed, ERK-7D8)被用于被用于免疫印迹在大鼠样本上 (图 6). Cardiovasc Res (2006) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 图 7
赛默飞世尔 ERK2抗体(Zymed, ERK-7D8)被用于被用于免疫印迹在大鼠样本上 (图 7). J Biomed Sci (2005) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 1:5000; 图 2
赛默飞世尔 ERK2抗体(Zymed, ERK-7D8)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 2). Life Sci (2005) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 图 5
赛默飞世尔 ERK2抗体(Zymed, 13-6200,)被用于被用于免疫印迹在大鼠样本上 (图 5). J Biol Chem (2004) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 ERK2抗体(Zymed Laboratories, clone ERK-7D8)被用于被用于免疫印迹在人类样本上 (图 2). J Neurochem (2000) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠
赛默飞世尔 ERK2抗体(Zymed, 13-6200)被用于被用于免疫印迹在大鼠样本上. J Clin Invest (1999) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠; 图 1, 2
赛默飞世尔 ERK2抗体(Zymed, 13-6200)被用于被用于免疫印迹在小鼠样本上 (图 1, 2). Neurochem Res (1998) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫沉淀; 小鼠
  • 免疫印迹; 小鼠
赛默飞世尔 ERK2抗体(Zymed, ERK-7D8)被用于被用于免疫沉淀在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Proc Natl Acad Sci U S A (1998) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 非洲爪蛙; 1:1000; 图 1
赛默飞世尔 ERK2抗体(Zymed, ERK-7D8)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:1000 (图 1). Science (1998) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 ERK2抗体(Zymed Laboratories, clone ERK-7D8)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (1997) ncbi
BioLegend
小鼠 单克隆(4B11B69)
  • 流式细胞仪; 小鼠; 图 5f
BioLegend ERK2抗体(Biolegend, 675508)被用于被用于流式细胞仪在小鼠样本上 (图 5f). Proc Natl Acad Sci U S A (2021) ncbi
小鼠 单克隆(4B11B69)
  • 流式细胞仪; 小鼠; 1:1000; 图 2d
BioLegend ERK2抗体(Biolegend, 675504)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 2d). PLoS Biol (2021) ncbi
小鼠 单克隆(4B11B69)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s2e
BioLegend ERK2抗体(BioLegend, 675502)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s2e). Nat Commun (2021) ncbi
小鼠 单克隆(4B11B69)
  • 免疫印迹; 人类; 1:5000; 图 3a
BioLegend ERK2抗体(BioLegend, 675502)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3a). Nat Commun (2020) ncbi
大鼠 单克隆(W15133B)
  • 免疫印迹; 人类; 1:1000; 图 3a
BioLegend ERK2抗体(BioLegend, 686902)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Nat Commun (2020) ncbi
小鼠 单克隆(6B8B69)
  • 流式细胞仪; 人类; 图 4c
  • 免疫印迹; 人类; 图 3d
BioLegend ERK2抗体(BioLegend, 369506)被用于被用于流式细胞仪在人类样本上 (图 4c) 和 被用于免疫印迹在人类样本上 (图 3d). Cell (2019) ncbi
小鼠 单克隆(4B11B69)
  • 免疫印迹; 小鼠; 图 6c
BioLegend ERK2抗体(BioLegend, 4B11B69)被用于被用于免疫印迹在小鼠样本上 (图 6c). J Clin Invest (2018) ncbi
小鼠 单克隆(4B11B69)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend ERK2抗体(Biolegend, 4B11B69)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Front Immunol (2017) ncbi
美天旎
人类 单克隆(REA186)
  • 流式细胞仪; 小鼠; 图 3a
美天旎 ERK2抗体(Miltenyi Biotec, REA186)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Front Immunol (2017) ncbi
亚诺法生技股份有限公司
domestic rabbit 单克隆(G15-B)
  • 免疫印迹; 人类
亚诺法生技股份有限公司 ERK2抗体(Abnova, G15-B)被用于被用于免疫印迹在人类样本上. J Transl Med (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a, 2c
  • 免疫印迹; 小鼠; 1:1000; 图 7g
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a, 2c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7g). Cell Death Discov (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 s4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s4a). iScience (2022) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:2000; 图 5d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5d). elife (2022) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 小鼠; 1:1000; 图 5a, 6b, s9a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4696)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a, 6b, s9a). Nat Commun (2022) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:1000; 图 5a, 6b, s9a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a, 6b, s9a). Nat Commun (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 8g, 8h
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4348)被用于被用于免疫印迹在小鼠样本上 (图 8g, 8h). PLoS Pathog (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s7e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 s7e). Commun Biol (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:2000; 图 4c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4c). Cell Death Dis (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Int J Mol Sci (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 5a). Cancers (Basel) (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Front Cardiovasc Med (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在人类样本上 (图 7a). Int J Med Sci (2022) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4376)被用于被用于免疫印迹在人类样本上 (图 7a). Int J Med Sci (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 5b). Sci Adv (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在人类样本上 (图 2g). Cancer Discov (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4a, 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在人类样本上 (图 4a, 4b). Molecules (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 7f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上 (图 7f). Int J Mol Sci (2022) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 大鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3a). J Ovarian Res (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 5b
  • 免疫印迹; 人类; 1:1000; 图 5g
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695T)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5g). Nat Commun (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫组化-石蜡切片; 人类; 图 7b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7b). Sci Adv (2022) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 人类; 图 3b, 3e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4696)被用于被用于免疫印迹在人类样本上 (图 3b, 3e). Mol Oncol (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 5a
  • 免疫印迹; 小鼠; 图 s6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 5a) 和 被用于免疫印迹在小鼠样本上 (图 s6a). Cancer Commun (Lond) (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 6a, 6b, 6c, 6d
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在人类样本上 (图 6a, 6b, 6c, 6d). Cell Oncol (Dordr) (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:2000; 图 3e
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3e). Nat Commun (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c, s3d
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在人类样本上 (图 3c, s3d). J Immunother Cancer (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 5h
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5h). Theranostics (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Adv Sci (Weinh) (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 2g, s2f, s2g
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695T)被用于被用于免疫印迹在人类样本上 (图 2g, s2f, s2g). Sci Adv (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在大鼠样本上 (图 5b). J Neuroinflammation (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695T)被用于被用于免疫印迹在人类样本上 (图 3a). Thorac Cancer (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 s2a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2a). Neurooncol Adv (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫组化-冰冻切片; 小鼠; 图 7b
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 137F5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7b). Cells (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 3a, 3d, 5a, 5b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 3a, 3d, 5a, 5b). Cell Death Dis (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Cell Rep Med (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3g). Mol Ther Nucleic Acids (2022) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3g). Mol Ther Nucleic Acids (2022) ncbi
domestic rabbit 单克隆(197G2)
  • 流式细胞仪; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4377)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Cell Rep (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). iScience (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). iScience (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6d). Front Pharmacol (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 1b, 3b, s11a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 1b, 3b, s11a). Oncogene (2022) ncbi
小鼠 单克隆(L34F12)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4696)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5b). Exp Brain Res (2022) ncbi
小鼠 单克隆(D1H6G)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 6b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 5726)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 6b). Exp Brain Res (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 1:5000; 图 1e, 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 1e, 4b). BMC Pulm Med (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 2c). Lab Invest (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 2m
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2m). Nat Commun (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 5a). Front Immunol (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). elife (2022) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4696)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Exp Med (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6f). Proc Natl Acad Sci U S A (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫细胞化学; 人类; 图 7a
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫细胞化学在人类样本上 (图 7a) 和 被用于免疫印迹在人类样本上 (图 6d). Cell Rep (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5g
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样本上 (图 5g). Int J Biol Sci (2022) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 6c, 6d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样本上 (图 6c, 6d). Cell Death Discov (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s3d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3d). Nat Commun (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在斑马鱼样本上浓度为1:1000 (图 7a). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上 (图 5b). Clin Transl Med (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 7c). Clin Transl Med (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Life Sci Alliance (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 137F5)被用于被用于免疫印迹在人类样本上 (图 s1). Oncoimmunology (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 137F5)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Sci Transl Med (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 7f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7f). J Clin Invest (2022) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:1000; 图 7f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7f). J Clin Invest (2022) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Cell Death Discov (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 6g
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6g). Front Immunol (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Front Neurosci (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 s1c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 s1c). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Cancers (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Nat Commun (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 9a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在人类样本上 (图 9a). Sci Adv (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). NPJ Breast Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在小鼠样本上 (图 1b). Cell Mol Gastroenterol Hepatol (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102S)被用于被用于免疫印迹在小鼠样本上 (图 5b). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在小鼠样本上 (图 6a). Front Neurosci (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在大鼠样本上 (图 6a). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 s11b
  • 免疫印迹; 人类; 图 s11a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 137F5)被用于被用于免疫印迹在小鼠样本上 (图 s11b) 和 被用于免疫印迹在人类样本上 (图 s11a). J Immunother Cancer (2021) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 s11a
  • 免疫印迹; 小鼠; 图 s11b
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 197G2)被用于被用于免疫印迹在人类样本上 (图 s11a) 和 被用于免疫印迹在小鼠样本上 (图 s11b). J Immunother Cancer (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling technology, 4695S)被用于被用于免疫印迹在小鼠样本上 (图 4). Antioxidants (Basel) (2021) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling technology, 4377S)被用于被用于免疫印迹在小鼠样本上 (图 4). Antioxidants (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). elife (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s8c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样本上 (图 s8c). Sci Adv (2021) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Dis Model Mech (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Dis Model Mech (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Int J Mol Med (2021) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Int J Mol Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102S)被用于被用于免疫印迹在人类样本上 (图 5a). Ther Adv Urol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样本上 (图 2b). BMC Cancer (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 s4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4a). Cell Rep (2021) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:3000; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 4a). NPJ Precis Oncol (2021) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:500; 图 6b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4377)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6b). J Lipid Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 6b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6b). J Lipid Res (2021) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 小鼠; 1:500-1:1000; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在小鼠样本上浓度为1:500-1:1000 (图 1a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在小鼠样本上 (图 5a). J Am Heart Assoc (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在人类样本上 (图 1f). Sci Adv (2021) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9107s)被用于被用于免疫印迹在人类样本上 (图 3b). CNS Neurosci Ther (2021) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4374s)被用于被用于免疫印迹在人类样本上 (图 3b). CNS Neurosci Ther (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 s2). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样本上 (图 4e). Cell Rep Med (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologies, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7c). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling Technology, CST9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). BMC Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2h
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 2h). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 s5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 137F5)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5a). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:1000; 图 s5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 197G2)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5a). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 1c
  • 免疫印迹; 人类; 1:1000; 图 1a, s1b, s1d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1a, s1b, s1d). Adv Sci (Weinh) (2021) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9107)被用于被用于免疫印迹在小鼠样本上 (图 5a). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 大鼠; 1:1000; 图 3i
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3i). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 1:1000; 图 3i
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3i). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 7i
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在小鼠样本上 (图 7i). Adv Sci (Weinh) (2021) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7b). Commun Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7b). Commun Biol (2021) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化; 大鼠; 1:50; 图 4c
  • 免疫印迹; 大鼠; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4376)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 4c) 和 被用于免疫印迹在大鼠样本上 (图 4a). J Neuroinflammation (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalin, 4695)被用于被用于免疫印迹在人类样本上 (图 1c). Cancers (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102S)被用于被用于免疫印迹在小鼠样本上 (图 4a). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4376S)被用于被用于免疫印迹在人类样本上 (图 5a). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695S)被用于被用于免疫印迹在人类样本上 (图 5a). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 3c
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3c). J Dev Biol (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 5e
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在小鼠样本上 (图 5e). Cell Rep (2021) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4g). Cell Rep (2021) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 1:500; 图 s3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106S)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s3). Acta Neuropathol Commun (2021) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 小鼠; 1:500; 图 s2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4696S)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s2). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:5000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3a). Clin Transl Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). BMC Cancer (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 7g
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 137F5)被用于被用于免疫印迹在人类样本上 (图 7g). Commun Biol (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 1:2000; 图 6c, 6h
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 6c, 6h). Front Neurosci (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上 (图 6d). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在人类样本上 (图 6d). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 s7). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Oncogene (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 6a). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在人类样本上 (图 5e). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 7f
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102s)被用于被用于免疫印迹在大鼠样本上 (图 7f). Circulation (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695T)被用于被用于免疫印迹在小鼠样本上 (图 4b). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4c, 4h
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上 (图 4c, 4h). Theranostics (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:500; 图 s1c
  • 免疫印迹; 人类; 1:500; 图 s1c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s1c) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 s1c). Mol Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 14g
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 14g). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:2000; 图 3d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3d). Front Immunol (2021) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 s4b, s4d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上 (图 s4b, s4d). Commun Biol (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 s4b, s4d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 s4b, s4d). Commun Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7i
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7i). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 s2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 s2a). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:2000; 图 3e
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3e). J Biol Chem (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102S)被用于被用于免疫印迹在小鼠样本上 (图 7e). Nucleic Acids Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:700; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在人类样本上浓度为1:700 (图 6). Int J Endocrinol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). JCI Insight (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上 (图 5c). Biomol Ther (Seoul) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在大鼠样本上 (图 5f). Front Mol Biosci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; pigs
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在pigs 样本上. Nucleic Acids Res (2021) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 图 s5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9107)被用于被用于免疫印迹在人类样本上 (图 s5a). Theranostics (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). Cancer Genomics Proteomics (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7c). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 10a, 10c
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 10a, 10c). Nat Commun (2021) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化; 小鼠; 1:100; 图 4a
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376S)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 1:1000; 图 9a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 9a). J Cardiothorac Surg (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Environ Health Perspect (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 1:1000; 图 1g
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1g). Cell Prolif (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在小鼠样本上 (图 6a). Front Immunol (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling technology, 4695)被用于被用于免疫印迹在人类样本上 (图 6a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在人类样本上 (图 6a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). Cancers (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 1:2000; 图 3d, 5e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在斑马鱼样本上浓度为1:2000 (图 3d, 5e). EMBO Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 1a). Endocr Relat Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s9c
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在人类样本上 (图 s9c). Sci Rep (2021) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 人类; 图 1c
  • 免疫印迹; 人类; 图 s9c
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4376)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c) 和 被用于免疫印迹在人类样本上 (图 s9c). Sci Rep (2021) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:3000; 图 2b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 2b). Nat Commun (2021) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. iScience (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 3f
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在小鼠样本上 (图 3f). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 4377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Nat Commun (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 4a, 4b, 4c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a, 4b, 4c). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 8d
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8d). Nat Commun (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫组化; 人类; 1:100; 图 1j
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1j). Int J Med Sci (2021) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 小鼠; 1:2000; 图 s7-1e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4696)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s7-1e). elife (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:5000; 图 1f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1f). Antioxidants (Basel) (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在人类样本上 (图 6c). J Cardiovasc Dev Dis (2021) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 图 6e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 20G11)被用于被用于免疫印迹在小鼠样本上 (图 6e). Biomolecules (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 6e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 137F5)被用于被用于免疫印迹在小鼠样本上 (图 6e). Biomolecules (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Am J Cancer Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102S)被用于被用于免疫印迹在小鼠样本上 (图 3e). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Mol Metab (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Mol Metab (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Ren Fail (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4h
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在人类样本上 (图 4h). Theranostics (2021) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 4h
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9106)被用于被用于免疫印迹在人类样本上 (图 4h). Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3j
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3j). Br J Pharmacol (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 3a, s3b, s8, 5f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 3a, s3b, s8, 5f). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 s7a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7a). PLoS Biol (2021) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 小鼠; 1:2000; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9107)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4b). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102S)被用于被用于免疫印迹在人类样本上浓度为1:200. Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 7e). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6m
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6m). Cell Death Differ (2021) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 小鼠; 1:1000; 图 6f
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4696)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6f). PLoS Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 6b). Oncogenesis (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologies, 9102)被用于被用于免疫印迹在小鼠样本上 (图 5b). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在小鼠样本上 (图 4b). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 2b). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 6d). Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signalling, 9102S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Mol Psychiatry (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3i
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 3i). Sci Adv (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 6f
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6f). Nat Commun (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4c). Dis Model Mech (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 3f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 3f). Signal Transduct Target Ther (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6a, 6b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 6a, 6b). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:2000; 图 3b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3b). BMC Cancer (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8a). Oxid Med Cell Longev (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 6a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在人类样本上 (图 6a). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 4a). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5h
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5h). Basic Res Cardiol (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 s10c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s10c). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:1000; 图 s10c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s10c). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Cancer Sci (2021) ncbi
小鼠 单克隆(L34F12)
  • 免疫组化; 斑马鱼; 图 1f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4696S)被用于被用于免疫组化在斑马鱼样本上 (图 1f). Front Mol Neurosci (2020) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化; fruit fly ; 1:100; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫组化在fruit fly 样本上浓度为1:100 (图 1a). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). Cells (2021) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376 S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Commun Biol (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695 S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Commun Biol (2021) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 7c
  • 免疫组化; 人类; 1:200; 图 7a
  • 免疫组化; 小鼠; 1:200; 图 5f, 5g
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 7c), 被用于免疫组化在人类样本上浓度为1:200 (图 7a) 和 被用于免疫组化在小鼠样本上浓度为1:200 (图 5f, 5g). Nat Commun (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫组化; 小鼠; 图 5d
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695S)被用于被用于免疫组化在小鼠样本上 (图 5d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 图 6e
  • 免疫印迹; 人类; 1:1000; 图 6a, 6f, s1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫沉淀在人类样本上 (图 6e) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6a, 6f, s1). Front Oncol (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Nat Commun (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 s7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s7). Theranostics (2021) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 3a, s3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377S)被用于被用于免疫印迹在小鼠样本上 (图 3a, s3a). Mol Metab (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a, s3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102S)被用于被用于免疫印迹在小鼠样本上 (图 3a, s3a). Mol Metab (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Commun Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4d, s2g, s3e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d, s2g, s3e). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样本上 (图 4c). Redox Biol (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s6-2a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s6-2a). elife (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 s4b, s5b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4b, s5b). Sci Signal (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 4d, 4e
  • 免疫印迹; 人类; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d, 4e) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 ev1i
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 ev1i). EMBO Mol Med (2021) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 3m
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在人类样本上 (图 3m). Cell Death Dis (2021) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 小鼠; 1:2500; 图 5d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4696)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 5d). Transl Psychiatry (2021) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 图 s4d
  • 免疫印迹; 小鼠; 图 s4c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在人类样本上 (图 s4d) 和 被用于免疫印迹在小鼠样本上 (图 s4c). Cancer Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1h
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1h). Nat Commun (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫细胞化学; 人类; 1:1000; 图 1f
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1f). Nat Commun (2021) ncbi
小鼠 单克隆(D1H6G)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 5726)被用于被用于免疫印迹在人类样本上 (图 6c). Cancers (Basel) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 6c). Cancers (Basel) (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在小鼠样本上 (图 s4a). Nat Commun (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Bone Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102S)被用于被用于免疫印迹在小鼠样本上 (图 s3). Cell Death Discov (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1a). J Neurosci (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在人类样本上 (图 5a). Cancer Sci (2021) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9106S)被用于被用于免疫印迹在人类样本上 (图 5a). Cell Mol Life Sci (2020) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 大鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologies, 4696)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1c). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样本上 (图 s3). Cancers (Basel) (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫组化; 小鼠; 1:1000; 图 9d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 9d). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫组化; 小鼠; 1:1000; 图 9d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 9d). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, L34F12)被用于被用于免疫印迹在小鼠样本上 (图 2b). Front Immunol (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 2h
  • 免疫印迹; 小鼠; 图 2i
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 2h) 和 被用于免疫印迹在小鼠样本上 (图 2i). J Clin Invest (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). Curr Eye Res (2021) ncbi
domestic rabbit 多克隆
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于. J Pathol (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫细胞化学; 人类; 图 3f
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫细胞化学在人类样本上 (图 3f) 和 被用于免疫印迹在人类样本上 (图 3f). Front Oncol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 2d). Cancer Sci (2021) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 1:2000; 图 5i
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106s)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5i). Science (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5i
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5i). Science (2020) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:1000; 图 7g
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling Technology, 9106)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7g). elife (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 s5-1a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5-1a). elife (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6e). Front Oncol (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 137F5)被用于被用于免疫印迹在小鼠样本上 (图 5a). Cell Commun Signal (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 图 6b
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在大鼠样本上 (图 6b). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 6c). elife (2020) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 1:1000; 图 s3-1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3-1). elife (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:2000; 图 s3-1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s3-1). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1f). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signalling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). elife (2020) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:2000; 图 5s2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signalling, 9106S)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5s2a). elife (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:2000; 图 5s2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signalling, 4695S)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5s2a). elife (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 1:100; 图 7a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在大鼠样本上浓度为1:100 (图 7a). Cell Rep (2020) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 图 s6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在人类样本上 (图 s6). BMC Nephrol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2020) ncbi
domestic rabbit 单克隆(197G2)
  • 流式细胞仪; 人类; 图 6b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 197G2)被用于被用于流式细胞仪在人类样本上 (图 6b). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 单克隆(137F5)
  • 流式细胞仪; 人类; 图 6b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 137F5)被用于被用于流式细胞仪在人类样本上 (图 6b). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样本上 (图 6d). Cancers (Basel) (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 6e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在小鼠样本上 (图 6e). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling technology, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Front Immunol (2020) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 1:1000; 图 4i
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologies, 4376)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4i). Nature (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 4f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4f). elife (2020) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 1:1000; 图 s5c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5c). Genome Biol (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). elife (2020) ncbi
小鼠 单克隆(L34F12)
  • 免疫组化; 斑马鱼; 1:500; 图 2d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4696)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 2d). elife (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 s3b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在人类样本上 (图 s3b). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Commun Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Nat Commun (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). PLoS ONE (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 1a, 2s1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 137F5)被用于被用于免疫印迹在人类样本上 (图 1a, 2s1). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4g
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样本上 (图 4g). Cell (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上 (图 5a). J Adv Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:2000; 图 s2g
  • 免疫印迹; 小鼠; 1:2000; 图 2h
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 s2g) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2h). Sci Adv (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 137F5)被用于被用于免疫印迹在人类样本上 (图 6e). Theranostics (2020) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 小鼠; 图 1e
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4696S)被用于被用于免疫印迹在小鼠样本上 (图 1e). Aging Cell (2020) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 图 1e
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4376S)被用于被用于免疫印迹在小鼠样本上 (图 1e). Aging Cell (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 7b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 7b). J Cardiovasc Dev Dis (2020) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4696)被用于被用于免疫印迹在人类样本上 (图 2a). Mol Cancer Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4e
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102S)被用于被用于免疫印迹在小鼠样本上 (图 4e) 和 被用于免疫印迹在人类样本上 (图 4a). Cancer Res (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在小鼠样本上 (图 4d). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 8f
赛信通(上海)生物试剂有限公司 ERK2抗体(CST Biological Reagents Co, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8f). Int J Mol Med (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 3g
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 3g). Cell Death Differ (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在小鼠样本上 (图 6d). Hepatology (2021) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:2000; 图 10d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 10d). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 10d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 10d). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2j, 4s4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2j, 4s4a). elife (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 137F5)被用于被用于免疫印迹在人类样本上 (图 2e). Theranostics (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2500; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 1a). Oncogene (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 猕猴; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在猕猴样本上浓度为1:1000 (图 5a). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). J Clin Invest (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:2000; 图 6c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6c). Oncogene (2020) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Theranostics (2020) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 1:500; 图 4c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 20G11)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4c). Oncol Lett (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 137F5)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Oncol Lett (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8a). Sci Rep (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 7a). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). Br J Pharmacol (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 4g
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 4g). Sci Adv (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 1:1000; 图 s2a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s2a). Bone Res (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在人类样本上 (图 1f). FASEB Bioadv (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 家羊; 1:1000; 图 s10d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在家羊样本上浓度为1:1000 (图 s10d). Int J Mol Sci (2020) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 6l
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样本上 (图 6l). PLoS Biol (2020) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, #9106)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. elife (2020) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, L34F12)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Oncogenesis (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, #4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4g). Eneuro (2020) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在小鼠样本上 (图 5d). JACC Basic Transl Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:50; 图 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 7). BMC Pregnancy Childbirth (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫组化; 人类; 图 8c
  • 免疫印迹; 人类; 图 7f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫组化在人类样本上 (图 8c) 和 被用于免疫印迹在人类样本上 (图 7f). Mol Cancer (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000. elife (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在人类样本上 (图 6b). Cell Commun Signal (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 犬; 1:2000; 图 3c
  • 免疫印迹; 人类; 1:2000; 图 6g
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102s)被用于被用于免疫印迹在犬样本上浓度为1:2000 (图 3c) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 6g). Sci Adv (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 1k
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1k). Sci Adv (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上 (图 4a). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在人类样本上 (图 4a). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 小鼠; 1:2000; 图 3s2b
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9107)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3s2b). elife (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 8c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signallin, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8c). Oncogene (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Basic Res Cardiol (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 s9h
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s9h). Nat Commun (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 3i
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3i). J Neuroinflammation (2020) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4696)被用于被用于免疫印迹在小鼠样本上. elife (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling technology, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 ev1c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 ev1c). EMBO Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 1b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1b). Sci Rep (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 1:1000; 图 1d, 6c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1d, 6c). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 1:1000; 图 10a, 11g
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695P)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 10a, 11g). Int J Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Int J Mol Med (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:400; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在人类样本上浓度为1:400 (图 4a). Int J Oncol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样本上 (图 1f). Adv Sci (Weinh) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). Front Immunol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Artif Cells Nanomed Biotechnol (2020) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 人类; 图 s8c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4696)被用于被用于免疫印迹在人类样本上 (图 s8c). Nature (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 5b). J Cancer Res Clin Oncol (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Cancer Lett (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7a, 7b
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a, 7b). Mol Cells (2020) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上 (图 5a). BMC Cardiovasc Disord (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 5a). BMC Cardiovasc Disord (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在大鼠样本上 (图 6a). Aging (Albany NY) (2019) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:1000; 图 e6d
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9106)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 e6d). Nature (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 137F5)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Nat Immunol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4a). Sci Adv (2019) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 197G2)被用于被用于免疫印迹在人类样本上 (图 5c). Breast Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Int J Oncol (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 s6b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 137F5)被用于被用于免疫印迹在人类样本上 (图 s6b). Science (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在小鼠样本上 (图 3b). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在人类样本上 (图 6b). Braz J Med Biol Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s13h
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102S)被用于被用于免疫印迹在小鼠样本上 (图 s13h). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样本上 (图 3e). Mol Med Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 2a, 3f, 3k
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2a, 3f, 3k). elife (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; fruit fly ; 图 4h
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在fruit fly 样本上 (图 4h). Cell Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a, 3c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 3a, 3c). J Am Heart Assoc (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Front Oncol (2019) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4696)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Breast Cancer Res Treat (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 2a
  • 免疫印迹; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Science (2019) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9107)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 9102S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5a). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 e2b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 e2b). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). J Exp Med (2020) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). J Exp Med (2020) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 s9e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 s9e). Sci Adv (2019) ncbi
小鼠 单克隆(E10)
  • 流式细胞仪; 小鼠; 1:200; 图 3b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3b). Science (2019) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 大鼠; 图 1b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在大鼠样本上 (图 1b). Cell (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 图 1b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在大鼠样本上 (图 1b). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102L)被用于被用于免疫印迹在人类样本上 (图 3b). Cancer Cell (2019) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 大鼠; 1:600; 图 4f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹在大鼠样本上浓度为1:600 (图 4f). Sci Signal (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 4f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4f). Sci Signal (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 e1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 137F5)被用于被用于免疫印迹在小鼠样本上 (图 e1a). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102S)被用于被用于免疫印迹在人类样本上 (图 4a). Cells (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). elife (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 6b
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在小鼠样本上 (图 6b) 和 被用于免疫印迹在人类样本上 (图 6a). Int J Chron Obstruct Pulmon Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102S)被用于被用于免疫印迹在小鼠样本上 (图 7a). elife (2019) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样本上 (图 7a). elife (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 11a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 11a). Biomolecules (2019) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:1000; 图 6a
  • 免疫印迹; 小鼠; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6b). elife (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3f). elife (2019) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3f). elife (2019) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 小鼠; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling Technology, 4696)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). Breast Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). J Physiol Biochem (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 2f). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在大鼠样本上 (图 5c). Nat Commun (2019) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在人类样本上. Nature (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上. Nature (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Stem Cells (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling Technology, 4695)被用于被用于免疫印迹在人类样本上 (图 4a). BMC Cancer (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Cell Mol Gastroenterol Hepatol (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:5000; 图 s8b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s8b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6g
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6g). Cell Metab (2019) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4696)被用于被用于免疫印迹在人类样本上 (图 1b). Mol Cell (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 4d). Theranostics (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologies, 9102)被用于被用于免疫印迹在人类样本上 (图 4a). Science (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). J Cell Biochem (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). BMC Cancer (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 1e). J Exp Med (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在人类样本上 (图 4a). J Immunol (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 6g
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6g). Int J Oncol (2019) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 1:1000; 图 6g
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6g). Int J Oncol (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 137F5)被用于被用于免疫印迹在人类样本上 (图 5b). Kidney Int (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3g). Nat Commun (2019) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3g). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Nat Commun (2019) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, E10)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Sci Rep (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Int J Mol Sci (2019) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:2000; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Int J Mol Sci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1s2b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1s2b). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 2e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在大鼠样本上 (图 2e). Sci Adv (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 3j
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 3j). elife (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 s3e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 s3e). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 图 s3e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样本上 (图 s3e). J Clin Invest (2019) ncbi
小鼠 单克隆(E10)
  • 免疫组化-石蜡切片; 人类; 图 6a
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6a) 和 被用于免疫印迹在人类样本上 (图 2d). Oncogenesis (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b, 2d
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在人类样本上 (图 2b, 2d). Nature (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; pigs ; 图 1h
  • 免疫印迹; 小鼠; 图 5f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在pigs 样本上 (图 1h) 和 被用于免疫印迹在小鼠样本上 (图 5f). MBio (2019) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 人类; 1:10,000; 图 7a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalin, 4696)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 7a). elife (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signaling, 4695S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Front Pharmacol (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上 (图 3b). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 s5a). Science (2019) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 1:1000; 图 e2b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 e2b). Nature (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:2000; 图 4d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4d). elife (2019) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 图 s1i
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样本上 (图 s1i). Cell (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 s1i
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 s1i). Cell (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 4f). Cancer Cell Int (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:2000; 图 s2b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s2b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 1:2000; 图 s2b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376S)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s2b). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 7b). Cell (2019) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上 (图 7b). Cell (2019) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样本上 (图 1b). Cell Stem Cell (2019) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在小鼠样本上 (图 3d). Nature (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 6c
  • 免疫印迹; 仓鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 137F5)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6c) 和 被用于免疫印迹在仓鼠样本上浓度为1:1000 (图 6c). Exp Cell Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样本上 (图 4a). Autophagy (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:25,000; 图 1e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:25,000 (图 1e). Science (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 ERK2抗体(Signaling Technology, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s1a
  • 免疫组化-石蜡切片; 大鼠; 1:2000; 图 s2i
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1a) 和 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:2000 (图 s2i). Histochem Cell Biol (2019) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 大鼠; 1:2000; 图 2c
  • 免疫印迹; 大鼠; 1:1000; 图 s1b
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4376)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:2000 (图 2c) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s1b). Histochem Cell Biol (2019) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 图 1i
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106s)被用于被用于免疫印迹在小鼠样本上 (图 1i). Cell (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 5d
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 137F5)被用于被用于免疫印迹在小鼠样本上 (图 5d) 和 被用于免疫印迹在人类样本上 (图 5b). J Exp Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 2b). Cancer Cell Int (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 e10a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 e10a). Nature (2019) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4376)被用于被用于免疫印迹在人类样本上 (图 6c). elife (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 6c). elife (2019) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 小鼠; 1:1000; 图 3a, 3c, s3d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4696)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a, 3c, s3d). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 仓鼠; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在仓鼠样本上浓度为1:1000 (图 8a). J Gen Virol (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上 (图 2a). Blood Cancer J (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在人类样本上 (图 1b). BMC Med Genomics (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 猕猴; 图 1d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在猕猴样本上 (图 1d). Sci Rep (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 1h
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在小鼠样本上 (图 1h) 和 被用于免疫印迹在人类样本上 (图 1a). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 137F5)被用于被用于免疫印迹在人类样本上 (图 4c). Cancer Sci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4f
  • 免疫印迹; 人类; 图 1d, s1b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 4f) 和 被用于免疫印迹在人类样本上 (图 1d, s1b). Cell (2019) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 人类; 图 4j
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4696)被用于被用于免疫印迹在人类样本上 (图 4j). Nat Cell Biol (2019) ncbi
domestic rabbit 单克隆(20G11)
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于. Nature (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:5000; 图 3a
  • 免疫印迹; 小鼠; 1:5000; 图 3c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3a) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3c). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4e). Cancer Cell Int (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 s4c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9108)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s4c). Nat Commun (2019) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, E10)被用于被用于免疫印迹在小鼠样本上 (图 2e). Nat Microbiol (2019) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在小鼠样本上 (图 5b). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在小鼠样本上 (图 6a). Hepatology (2019) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 图 s1d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在人类样本上 (图 s1d). Science (2018) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 137F5)被用于被用于免疫印迹在人类样本上 (图 s2). Mol Oncol (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在小鼠样本上 (图 5d). Cell Rep (2018) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样本上 (图 5d). Cell Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 3a). J Biol Chem (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Int J Mol Sci (2018) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 3s1d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 3s1d). elife (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1g
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 1g). J Neurosci (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6d). Behav Brain Res (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Cell Stem Cell (2018) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 4c). Redox Biol (2019) ncbi
小鼠 单克隆(D1H6G)
  • proximity ligation assay; 人类; 1:100; 图 1b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 5726s)被用于被用于proximity ligation assay在人类样本上浓度为1:100 (图 1b). J Vis Exp (2018) ncbi
domestic rabbit 多克隆
  • proximity ligation assay; 人类; 1:100; 图 1b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102s)被用于被用于proximity ligation assay在人类样本上浓度为1:100 (图 1b). J Vis Exp (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 4b). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d). Nat Commun (2018) ncbi
domestic rabbit 单克隆(197G2)
  • 流式细胞仪; 人类; 图 5a
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于流式细胞仪在人类样本上 (图 5a) 和 被用于免疫印迹在人类样本上 (图 6c). J Virol (2019) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 小鼠; 图 10c
  • 免疫印迹; 人类; 图 s10b, s10d, s12b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在小鼠样本上 (图 10c) 和 被用于免疫印迹在人类样本上 (图 s10b, s10d, s12b). Science (2018) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107S)被用于被用于免疫印迹在小鼠样本上 (图 5b). Science (2018) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫细胞化学; 人类; 图 s3c
  • 免疫印迹; 人类; 1:1000; 图 s3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫细胞化学在人类样本上 (图 s3c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s3a). Genes Dev (2018) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫细胞化学; 人类; 1:1000; 图 s3c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s3c). Genes Dev (2018) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫细胞化学; 人类; 1:2000; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695T)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 4a). J Cell Biochem (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signaling technology, 4695s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). J Mol Cell Cardiol (2018) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样本上 (图 7c). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 4a). Int J Cancer (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; fruit fly ; 图 1c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在fruit fly 样本上 (图 1c). PLoS ONE (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样本上 (图 s3a). Immunity (2018) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 人类; 1:2000; 图 s6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4696S)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s6a). Science (2018) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 小鼠; 1:1000; 图 s4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4696)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4a). Nat Commun (2018) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 1a). BMC Cancer (2018) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹在人类样本上 (图 5d). FASEB J (2019) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上 (图 5d). FASEB J (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 2e). Cancer Res (2018) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 ex1m
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 ex1m). Nature (2018) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 图 s1b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在人类样本上 (图 s1b). Genes Dev (2018) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上 (图 2d). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上 (图 4a). Oncoimmunology (2018) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 1:2000; 图 4e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 3A7)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4e). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 多克隆
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于. Nat Med (2018) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s17b
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s5j, s6h, s14f, s15g
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s17b) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s5j, s6h, s14f, s15g). Nat Med (2018) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 1:100-1:200; 图 s5e
  • 流式细胞仪; 人类; 1:100-1:200; 图 s5f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于流式细胞仪在小鼠样本上浓度为1:100-1:200 (图 s5e) 和 被用于流式细胞仪在人类样本上浓度为1:100-1:200 (图 s5f). Cell Stem Cell (2018) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:2000; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 197G2)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2a). J Neurochem (2018) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:2000; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 137F5)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2a). J Neurochem (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Biosci Rep (2018) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 137F5)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). Exp Hematol (2018) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 2a). Oncogene (2018) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologies, 4695)被用于被用于免疫印迹在小鼠样本上 (图 3b). Cell Death Dis (2018) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在小鼠样本上 (图 5b). Oncogene (2018) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 人类; 图 s2f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4696)被用于被用于免疫印迹在人类样本上 (图 s2f). Science (2018) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上 (图 6f). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
  • 免疫细胞化学; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 1a) 和 被用于免疫细胞化学在小鼠样本上 (图 4c). Cell Mol Immunol (2018) ncbi
domestic rabbit 单克隆(197G2)
  • 流式细胞仪; 小鼠; 图 9a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 197G2)被用于被用于流式细胞仪在小鼠样本上 (图 9a). J Exp Med (2018) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 s2f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9106)被用于被用于免疫印迹在人类样本上 (图 s2f). Cell Death Dis (2018) ncbi
domestic rabbit 单克隆(137F5)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(197G2)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2018) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 s3a). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 s1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s1a). Mol Genet Metab (2018) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Science (2018) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Biochem Biophys Res Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 6c). Cell (2018) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 s3b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 s3b). Cell (2018) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上 (图 1b). Mol Cell Proteomics (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s2d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 s2d). Nature (2018) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 1:1000; 图 8b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8b). Br J Pharmacol (2018) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 8b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8b). Br J Pharmacol (2018) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 4376)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6e). Nat Commun (2018) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6e). Nat Commun (2018) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 1c). Cell (2018) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Mol Med Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s3f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3f). Nature (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Mol Med Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 9102)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogenesis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102S)被用于被用于免疫印迹在小鼠样本上 (图 3a). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在人类样本上 (图 2b). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 7a). J Biol Chem (2018) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在小鼠样本上 (图 1a). Immunity (2017) ncbi
domestic rabbit 单克隆(34B2)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 2325)被用于被用于免疫印迹在人类样本上 (图 4d). Immunity (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
  • 免疫印迹; 人类; 图 s2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 4a) 和 被用于免疫印迹在人类样本上 (图 s2a). J Biol Chem (2018) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 2a). Cancer Res (2018) ncbi
domestic rabbit 单克隆(197G2)
  • 流式细胞仪; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 197G2)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 s5o
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 s5o). Nature (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Nat Commun (2017) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上 (图 3a). Brain Behav Immun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在小鼠样本上 (图 5a). Mol Neurobiol (2018) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在人类样本上 (图 2c). Oncotarget (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 2c). Breast Cancer Res Treat (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 10a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在大鼠样本上 (图 10a). J Biol Chem (2018) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 小鼠; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 9107)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). J Endocrinol (2018) ncbi
小鼠 单克隆(L34F12)
  • 免疫组化; 斑马鱼; 1:500; 图 e9a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4696)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 e9a). Nature (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上 (图 4). Cell Biol Int (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s10c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 s10c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4348)被用于被用于免疫印迹在人类样本上 (图 7b). Clin Cancer Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 13e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 13e). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Basic Clin Pharmacol Toxicol (2018) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 137F5)被用于被用于免疫印迹在小鼠样本上 (图 6b). Mol Biol Cell (2017) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在人类样本上 (图 6f). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6b, 6c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b, 6c). Gut (2018) ncbi
domestic rabbit 单克隆(34B2)
  • 免疫印迹; fruit fly ; 图 5c
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 2325)被用于被用于免疫印迹在fruit fly 样本上 (图 5c). Dev Cell (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 9e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 9e). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 图 9e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样本上 (图 9e). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3d). BMC Cancer (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 3b). Mol Cancer Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 9102)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3). Hum Mol Genet (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 ERK2抗体(New England Biolabs, 4695)被用于被用于免疫印迹在人类样本上 (图 1b). J Cell Physiol (2018) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上 (图 3e). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 3e). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, E10)被用于被用于免疫印迹在人类样本上 (图 2c). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 137F5)被用于被用于免疫印迹在人类样本上 (图 2c). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在人类样本上 (图 6a). Placenta (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 2h
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 2h). Cancer Res (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 5). Exp Neurol (2018) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 1:1000; 图 s4h
  • 免疫组化; 小鼠; 1:400; 图 4f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4h) 和 被用于免疫组化在小鼠样本上浓度为1:400 (图 4f). Nature (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 犬; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在犬样本上 (图 5a). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s4f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 s4f). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 5e). Oncogene (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 1c). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:3000; 图 3d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 3d). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在人类样本上 (图 2c). Leukemia (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在人类样本上 (图 1e). J Immunol (2017) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9106)被用于被用于免疫印迹在人类样本上 (图 1e). J Immunol (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Cell Death Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 s1b). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 8e
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 8e) 和 被用于免疫印迹在人类样本上 (图 7a). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 s5f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s5f). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 4c). Cell Immunol (2017) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 3A7)被用于被用于免疫印迹在人类样本上 (图 1a). Cancer Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Exp Ther Med (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:4000; 图 3h
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 3h). Stem Cell Res Ther (2017) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Breast Cancer (Dove Med Press) (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上 (图 3c). Mol Vis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 9102S)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 2a). Sci Rep (2017) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 大鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3a). Biomed Res Int (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3a). Biomed Res Int (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 1a). Cell Death Dis (2017) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 9107)被用于被用于免疫印迹在小鼠样本上 (图 2d). Sci Rep (2017) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 9106s)被用于被用于免疫印迹在小鼠样本上 (图 2d). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4A
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4A). Neurochem Res (2017) ncbi
小鼠 单克隆(E10)
  • 免疫组化; fruit fly ; 1:500; 图 3e
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 9106)被用于被用于免疫组化在fruit fly 样本上浓度为1:500 (图 3e). J Cell Biol (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 5013)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7b). Toxicol Appl Pharmacol (2017) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7b). Toxicol Appl Pharmacol (2017) ncbi
domestic rabbit 单克隆(D13.14.4E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4094)被用于被用于免疫印迹在人类样本上 (图 4a). Front Cell Infect Microbiol (2017) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 9106)被用于被用于免疫印迹在人类样本上 (图 6b). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 9108)被用于被用于免疫印迹在人类样本上 (图 6b). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7e). Nat Commun (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 2). FEBS Lett (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3a). Front Neurosci (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:10; 图 3c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:10 (图 3c). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 3a). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 3c). Mol Ther Nucleic Acids (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 5a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫细胞化学; 小鼠; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 7c). Sci Rep (2017) ncbi
小鼠 单克隆(E10)
  • 免疫细胞化学; 小鼠; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 7c). Sci Rep (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 图 1c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在大鼠样本上 (图 1c). Toxicology (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 2d). Mol Cell (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 4695)被用于被用于免疫印迹在人类样本上 (图 1b). Cell Death Dis (2017) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377S)被用于被用于免疫印迹在小鼠样本上 (图 3). Front Aging Neurosci (2017) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 3c
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 197G2)被用于被用于免疫印迹在小鼠样本上 (图 3c) 和 被用于免疫印迹在人类样本上 (图 4a). Sci Signal (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3c
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 3c) 和 被用于免疫印迹在人类样本上 (图 4a). Sci Signal (2017) ncbi
domestic rabbit 单克隆(197G2)
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4377)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 4695)被用于被用于免疫印迹在人类样本上 (图 5d). Cell Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). J Cell Sci (2017) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 小鼠; 1:2000; 图 9b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 9b). J Clin Invest (2017) ncbi
小鼠 单克隆(E10)
  • 免疫细胞化学; 人类; 图 s1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫细胞化学在人类样本上 (图 s1). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 EV4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 EV4a). EMBO Mol Med (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 2a
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在人类样本上 (图 2a) 和 被用于免疫印迹在小鼠样本上 (图 2b). Mol Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102S)被用于被用于免疫印迹在人类样本上 (图 1f). J Cell Sci (2017) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 ERK2抗体(cst, 4377S)被用于被用于免疫印迹在人类样本上 (图 1f). J Cell Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signalling, 9102)被用于被用于免疫印迹在人类样本上 (图 1f). Cancer Lett (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 3a) 和 被用于免疫印迹在人类样本上 (图 4a). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 EV3d
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 EV3d) 和 被用于免疫印迹在人类样本上 (图 7a). EMBO J (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫组化; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫组化在人类样本上. Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3f). J Immunol (2017) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 1:2000; 图 3f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3f). J Immunol (2017) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 4376)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 5c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5c). Mol Biol Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102S)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3a). Oncotarget (2017) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上 (图 5f). Br J Cancer (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 5f). Br J Cancer (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 S6o
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 S6o). Nat Commun (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 5a
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 5a) 和 被用于免疫印迹在小鼠样本上 (图 5b). EMBO Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102L)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 5a). Sci Rep (2017) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 鸡; 图 8d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在鸡样本上 (图 8d). Mol Biol Cell (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 7a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 1:1000; 图 4A
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4A). Int J Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 1b). Cancer Res (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 5a). Am J Respir Crit Care Med (2017) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上 (图 5a). Am J Respir Crit Care Med (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 6g
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologies, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6g). FASEB J (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7b). Cell Signal (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Fundam Clin Pharmacol (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 1:5000; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 1a). Cell Death Differ (2017) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 大鼠; 1:5000; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 1a). Cell Death Differ (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s9a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 s9a). Arterioscler Thromb Vasc Biol (2017) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在人类样本上 (图 6c). Cell Death Discov (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 6a,6b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a,6b). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2017) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Stem Cell Res Ther (2017) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107S)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377S)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于. Sci Rep (2017) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9106)被用于被用于免疫印迹在人类样本上 (图 3a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 5d). Sci Rep (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695P)被用于被用于免疫印迹在小鼠样本上 (图 7a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 s7a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s7a). Am J Hum Genet (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Mol Pharmacol (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 3c). Cell Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s3
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 s7e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上 (图 s7e). Sci Rep (2017) ncbi
domestic rabbit 单克隆(34B2)
  • 免疫印迹; brewer's yeast; 图 s3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 2325)被用于被用于免疫印迹在brewer's yeast样本上 (图 s3a). Mol Cell (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 7a). Autophagy (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 5b). Autophagy (2017) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在人类样本上 (图 5e). Biomed Pharmacother (2017) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上 (图 5e). Biomed Pharmacother (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 3a). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 3d). Mol Immunol (2017) ncbi
domestic rabbit 单克隆(197G2)
  • reverse phase protein lysate microarray; 人类; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 3a). Nature (2017) ncbi
domestic rabbit 单克隆(197G2)
  • 流式细胞仪; 人类; 1:200; 图 7b
  • 免疫印迹; 人类; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 7b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). Nat Commun (2017) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上 (图 2a). Cell (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 2a). Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4b). Breast Cancer Res (2017) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 9106)被用于被用于免疫印迹在人类样本上 (图 6a). Cell Death Dis (2017) ncbi
小鼠 单克隆(E10)
  • 流式细胞仪; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于流式细胞仪在人类样本上浓度为1:1000 (图 3). Integr Biol (Camb) (2017) ncbi
小鼠 单克隆(E10)
  • 免疫细胞化学; 斑马鱼; 图 3b
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9106)被用于被用于免疫细胞化学在斑马鱼样本上 (图 3b). Sci Rep (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2f
  • 免疫印迹; 人类; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). Mol Clin Oncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Am J Physiol Cell Physiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s5e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 s5e). Nat Commun (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上. FEBS Open Bio (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7c). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在大鼠样本上 (图 5a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 1c). Cell Mol Gastroenterol Hepatol (2017) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 大鼠; 图 7a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在大鼠样本上 (图 7a). Front Neurosci (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 大鼠; 图 7a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在大鼠样本上 (图 7a). Front Neurosci (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). PLoS ONE (2017) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在小鼠样本上 (图 1b). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 3c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3c). J Clin Invest (2017) ncbi
  • 免疫印迹; 人类; 1:2000; 图 s9b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 8201)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s9b). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 2a). Mol Cell Proteomics (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1A; 1B
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 1A; 1B). Oncotarget (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫细胞化学; 小鼠; 图 1a
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 4695)被用于被用于免疫细胞化学在小鼠样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 1c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9107)被用于被用于免疫印迹在人类样本上 (图 4c). Oncotarget (2017) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 图 s5f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样本上 (图 s5f). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1b). J Cell Physiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 6e). JCI Insight (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a). Neural Plast (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样本上 (图 2a). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000. Biochim Biophys Acta Mol Cell Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Am Heart Assoc (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 2b). J Immunol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Nat Commun (2016) ncbi
小鼠 单克隆(L34F12)
  • 免疫细胞化学; 人类; 图 2c
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4696)被用于被用于免疫细胞化学在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9108)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6a). J Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s7e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 s7e). J Clin Invest (2017) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 s7e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上 (图 s7e). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 s6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s6). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上. Circ Res (2017) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). JCI Insight (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 1:200
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在斑马鱼样本上浓度为1:200. Dis Model Mech (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 12
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 12). J Neurosci Res (2017) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:1000; 图 12
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 12). J Neurosci Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 7e). FASEB J (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 8b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 137F5)被用于被用于免疫印迹在小鼠样本上 (图 8b). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫组化在小鼠样本上 (图 3e). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 2c). Sci Rep (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上 (图 2c). Sci Rep (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:2000; 图 6b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 3a). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 1a
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695P)被用于被用于免疫印迹在人类样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 1a). Sci Signal (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:2000; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Nature (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 大鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4696S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5b). Vascul Pharmacol (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 s4a,s4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4a,s4b). Gastroenterology (2017) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 4695)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 2d). Mol Neurobiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 6a). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 8h
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 137F5)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8h). elife (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 2a, 2b, 2c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 2a, 2b, 2c). Oncotarget (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 2a, 2b, 2c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上 (图 2a, 2b, 2c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Respir Res (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Respir Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2b
  • 免疫印迹; 大鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3a). Neuroreport (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102S)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Chem Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4G
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 4G). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3h, s4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 s3h, s4a). Nature (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, C4695)被用于被用于免疫印迹在小鼠样本上 (图 2d). J Exp Med (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样本上 (图 2d). J Exp Med (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 4780)被用于被用于免疫印迹在人类样本上 (图 4c). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 1). Endocrinology (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 s5d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5d). Nat Commun (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在小鼠样本上 (图 5a). Front Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Mol Neurobiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 s4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s4b). Neoplasia (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 犬; 表 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在犬样本上 (表 1). Mol Reprod Dev (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在大鼠样本上 (图 3a). PLoS ONE (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9106)被用于被用于免疫印迹在人类样本上. J Proteome Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在人类样本上. J Proteome Res (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 5e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5e). Cell Cycle (2016) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4696)被用于被用于免疫印迹在小鼠样本上 (图 5a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 2a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4377)被用于被用于免疫印迹在人类样本上 (图 2a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102 S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 1a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:800; 图 7a
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 7a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 仓鼠; 1:2000; 图 9c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695S)被用于被用于免疫印迹在仓鼠样本上浓度为1:2000 (图 9c). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 5c). Eur J Cancer (2016) ncbi
小鼠 单克隆(E10)
  • 免疫细胞化学; 人类; 图 s12
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4375S)被用于被用于免疫细胞化学在人类样本上 (图 s12). Mol Biol Cell (2016) ncbi
domestic rabbit 单克隆(34B2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 2325)被用于被用于免疫印迹在人类样本上. J Virol (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 6h
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 6h). Nature (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 6h
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上 (图 6h). Nature (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 3d). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 4a). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上 (图 4a). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 s4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Tech, 4695)被用于被用于免疫印迹在小鼠样本上 (图 s4). Biol Sex Differ (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 1c). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695P)被用于被用于免疫印迹在人类样本上 (图 1e). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Nat Immunol (2016) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 9107)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:2000; 图 6d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在人类样本上 (图 7a). Cell (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376S)被用于被用于免疫印迹在人类样本上 (图 7a). Cell (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Cell Commun Signal (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 7b). Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 1d
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1d). Oncotarget (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106)被用于被用于免疫印迹在人类样本上 (图 5c). J Exp Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样本上 (图 5c). J Exp Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s7e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s7e). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:2000; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 4377)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5a). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:2000; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5a). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 s5a, s6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 s5a, s6a). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3g). Oncogene (2017) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3g). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1a, 6f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1a, 6f). J Pharmacol Exp Ther (2016) ncbi
小鼠 单克隆(E10)
  • 免疫组化; 小鼠; 图 s4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling Technologies, 9106)被用于被用于免疫组化在小鼠样本上 (图 s4b). Open Biol (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; African green monkey; 图 5c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, E10)被用于被用于免疫印迹在African green monkey样本上 (图 5c). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 137F5)被用于被用于免疫印迹在小鼠样本上 (图 5a). PLoS ONE (2016) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 大鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4696)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4b). Pharmacol Rep (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在大鼠样本上 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 4a). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 1:1000; 图 3h
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3h). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 3h
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3h). Oncotarget (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:2000; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4a). Stem Cell Reports (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 其他; 人类; 1:50; 图 5e
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于其他在人类样本上浓度为1:50 (图 5e) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:3000; 图 6c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 6c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:2000; 图 s15
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s15). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologies, 9102)被用于被用于免疫印迹在小鼠样本上 (图 6a). Clin Sci (Lond) (2016) ncbi
小鼠 单克隆(E10)
  • 流式细胞仪; 人类; 图 s18a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, E10)被用于被用于流式细胞仪在人类样本上 (图 s18a). J Clin Invest (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:2000; 图 5
  • 免疫印迹; 小鼠; 1:2000; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5). BMC Biol (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; fruit fly ; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 137F5)被用于被用于免疫印迹在fruit fly 样本上浓度为1:1000 (图 3). elife (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). J Physiol Biochem (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 1:500; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 5a). J Physiol Biochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 2c). Autophagy (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 s9
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, E10)被用于被用于免疫印迹在人类样本上 (图 s9). PLoS ONE (2016) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4696)被用于被用于免疫印迹在小鼠样本上 (图 4b). Neuropharmacology (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 3d). Biol Reprod (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). J Am Heart Assoc (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 5c). Mol Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 s2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在大鼠样本上 (图 s2). Sci Rep (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, E10)被用于被用于免疫印迹在人类样本上 (图 4a). Cell Signal (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4376)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6c
  • 免疫印迹; 人类; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 8). EMBO Mol Med (2016) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 人类; 图 2f
  • 免疫印迹; 小鼠; 图 2f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4696)被用于被用于免疫印迹在人类样本上 (图 2f) 和 被用于免疫印迹在小鼠样本上 (图 2f). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102S)被用于被用于免疫印迹在小鼠样本上 (图 4c). BMC Complement Altern Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 9102S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6.a, b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6.a, b). Cancer Chemother Pharmacol (2016) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4696)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 4b) 和 被用于免疫印迹在人类样本上 (图 4a). Autophagy (2016) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9107)被用于被用于免疫印迹在人类样本上 (图 7). Tumour Biol (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 4695)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncol Lett (2016) ncbi
小鼠 单克隆(L34F12)
  • 免疫细胞化学; 人类; 1:100; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, L34F12)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4b). J Cancer Res Clin Oncol (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9106)被用于被用于免疫印迹在小鼠样本上 (图 5a). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 1). Br J Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 20G11)被用于被用于免疫印迹在小鼠样本上 (图 2a). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s6c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6c). Nature (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:1000; 图 s6c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6c). Nature (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376)被用于被用于免疫组化在小鼠样本上 (图 6). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). elife (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 图 s9
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 9106)被用于被用于免疫印迹在小鼠样本上 (图 s9). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在大鼠样本上 (图 4a). Toxicol Sci (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上 (图 2f). Biochim Biophys Acta (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 46955)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 4b). Nucleic Acids Res (2016) ncbi
domestic rabbit 单克隆(D13.14.4E)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, D13.14.4E)被用于被用于免疫印迹在小鼠样本上 (图 6). Mol Cancer Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1b
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 1b) 和 被用于免疫印迹在人类样本上 (图 s1). J Cell Biol (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 20G11)被用于被用于免疫印迹在小鼠样本上 (图 3a). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Gut (2017) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:750; 图 s2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上浓度为1:750 (图 s2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 9102)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Nat Med (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Nat Med (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Tech, 4695)被用于被用于免疫印迹在人类样本上 (图 s1). Sci Rep (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Tech, 9106)被用于被用于免疫印迹在人类样本上 (图 s1). Sci Rep (2016) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 小鼠; 1:1000; 图 s3c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4696)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3c). Sci Rep (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9106)被用于被用于免疫印迹在小鼠样本上 (图 7). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 7). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4377S)被用于被用于免疫印迹在人类样本上 (图 3e). Nature (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 5
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 1). FASEB J (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 9102)被用于被用于免疫印迹在人类样本上 (图 6b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 2d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 9102)被用于被用于免疫印迹在人类样本上 (图 3d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 4695)被用于被用于免疫印迹在人类样本上 (图 5). Hum Mutat (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:2000; 图 S11
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 S11). Nat Commun (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:2000; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 3a). Oncogene (2017) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9106)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:800; 图 7A
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 7A). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 1a,s6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1a,s6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 s4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 4c). Oncotarget (2016) ncbi
小鼠 单克隆(E10)
  • 免疫组化; 大鼠; 图 5g
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling Technology, 9106)被用于被用于免疫组化在大鼠样本上 (图 5g). J Cell Sci (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 1a). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 5a). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2). Stem Cell Reports (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Tech, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Front Cell Infect Microbiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5b
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 5b) 和 被用于免疫印迹在人类样本上 (图 5b). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 8). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D13.14.4E)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, D13.14.4E)被用于被用于免疫印迹在人类样本上 (图 3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 3
  • 免疫组化-石蜡切片; 小鼠; 图 1
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 137F5)被用于被用于免疫印迹在人类样本上 (图 3), 被用于免疫组化-石蜡切片在小鼠样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D13.14.4E)
  • 免疫印迹; 小鼠; 1:1000; 图 2
  • 免疫印迹; 人类; 1:1000; 图 2
  • 免疫印迹; pigs ; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4094P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2), 被用于免疫印迹在人类样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在pigs 样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:500; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9106)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Future Oncol (2016) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4696S)被用于被用于免疫印迹在人类样本上 (图 7b). Biochim Biophys Acta (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在大鼠样本上 (图 1a). Cell Signal (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上 (图 6). Mol Hum Reprod (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 6). Mol Hum Reprod (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s10b
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9,102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s10b). Nat Commun (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:3000; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 2a). Nat Commun (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 1). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; pigs ; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Tech, 4695)被用于被用于免疫印迹在pigs 样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 5e). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 s3
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 s3) 和 被用于免疫印迹在小鼠样本上 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Tech, 9102)被用于被用于免疫印迹在小鼠样本上 (图 6). Cell Rep (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). J Am Heart Assoc (2016) ncbi
小鼠 单克隆(L34F12)
  • 免疫组化-自由浮动切片; 斑马鱼; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4696)被用于被用于免疫组化-自由浮动切片在斑马鱼样本上 (图 3). Neuron (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上 (图 2e). Nat Struct Mol Biol (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 2e). Nat Struct Mol Biol (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 牛; 图 9f
  • 免疫印迹; 人类; 图 9e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在牛样本上 (图 9f) 和 被用于免疫印迹在人类样本上 (图 9e). J Biol Chem (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 大鼠; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9106)被用于被用于免疫印迹在大鼠样本上 (图 4). Neural Plast (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4g
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 4g). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上. EMBO Rep (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 3). Mol Metab (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:2500; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 137F5)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 1a). Oncotarget (2016) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 图 1D
  • 免疫印迹; 小鼠; 图 1C
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9107)被用于被用于免疫印迹在人类样本上 (图 1D) 和 被用于免疫印迹在小鼠样本上 (图 1C). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 9
赛信通(上海)生物试剂有限公司 ERK2抗体(New England Biolabs, 9102)被用于被用于免疫印迹在人类样本上 (图 9). PLoS ONE (2016) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, E10)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 4695)被用于被用于免疫印迹在人类样本上 (图 6a). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 s2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在小鼠样本上 (图 s2). Oncogene (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 2). J Exp Clin Cancer Res (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:2000; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5). Nat Commun (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4377)被用于被用于免疫印迹在小鼠样本上 (图 4a). elife (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 4a). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9108)被用于被用于免疫印迹在人类样本上 (图 1b) 和 被用于免疫印迹在小鼠样本上 (图 4b). Cell Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9106)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 137F5)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncoimmunology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 5c). Mucosal Immunol (2017) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样本上 (图 5c). Mucosal Immunol (2017) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 7). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫细胞化学; 小鼠; 1:200; 图 6
  • 免疫印迹; 小鼠; 1:200; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 6) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 3). Dev Cell (2016) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9107)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Tech, 9106S)被用于被用于免疫印迹在人类样本上 (图 2). Biol Open (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Tech, 9102S)被用于被用于免疫印迹在人类样本上 (图 2). Biol Open (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在人类样本上 (图 5). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4376)被用于被用于免疫印迹在人类样本上 (图 5). Oncogenesis (2016) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, L34F12)被用于被用于免疫印迹在人类样本上 (图 5a). Cell Oncol (Dordr) (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 3). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signalling tecnology, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Nat Commun (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 1:2000; 图 5b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signalling tecnology, 9106)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5b). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 s2). Pediatr Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102P)被用于被用于免疫印迹在人类样本上 (图 7). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Genes Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102s)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:500; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5). elife (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 137F5)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). J Exp Med (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, E10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). J Exp Med (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上 (图 1). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695S)被用于被用于免疫印迹在人类样本上 (图 4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 6). Mol Biol Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102S)被用于被用于免疫印迹在人类样本上 (图 3a). Int J Oncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 5). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:1000; 图 s6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 20G11)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6). Nat Commun (2016) ncbi
小鼠 单克隆(3A7)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 s1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 s1). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:500; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6). Cell Death Differ (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 6). Mol Cancer Ther (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 5a). J Immunol (2016) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 图 s1b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在人类样本上 (图 s1b). Neoplasia (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signal, 4377S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signal, 9102S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9106)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在小鼠样本上 (图 s1). Hepatology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 s1). Hepatology (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 酶联免疫吸附测定; 小鼠; 1:200; 表 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为1:200 (表 1). Eur J Pharm Sci (2016) ncbi
小鼠 单克隆(E10)
  • 酶联免疫吸附测定; 小鼠; 1:400; 表 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9106)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为1:400 (表 1). Eur J Pharm Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 表 1
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (表 1). J Alzheimers Dis (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4348)被用于被用于免疫印迹在人类样本上 (图 2b). Cancer Res (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 20G11)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(E10)
  • 免疫组化; 小鼠; 1:500; 图 3d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3d). J Neurosci (2016) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4696)被用于被用于免疫印迹在人类样本上. elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 1a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 斑马鱼; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling Technology, 4695)被用于被用于免疫印迹在斑马鱼样本上 (图 4). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s11
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 s11). Nat Commun (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 5). Life Sci (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). J Am Heart Assoc (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Tech, 9102S)被用于被用于免疫印迹在人类样本上 (图 3). Sci Signal (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Tech, 4377S)被用于被用于免疫印迹在人类样本上 (图 3). Sci Signal (2016) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在人类样本上 (图 3). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 8201)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 s5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样本上 (图 s5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:2000; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologies, 4695P)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在小鼠样本上 (图 5). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 7a). Stem Cells (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Oncotarget (2016) ncbi
domestic rabbit 单克隆(34B2)
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 2325)被用于. Cell Commun Signal (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Cell Commun Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 2f). Sci Rep (2016) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 小鼠; 1:2500; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling technologies, 9107)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 1). Stem Cells (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样本上. Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样本上. Sci Rep (2016) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 大鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4696)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). J Exp Med (2016) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 人类; 1:2000; 图 1e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4696)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1e). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102L)被用于被用于免疫印迹在人类样本上 (图 2a). Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Ozyme, 9102)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; domestic rabbit; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:1000 (图 4). Int J Clin Exp Pathol (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 4). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:1000; 图 5s3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5s3). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5s3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5s3). elife (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 10
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上 (图 10). Pharmacol Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 10
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 10). Pharmacol Res (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 s7a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 s7a). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Tech, 9102)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377S)被用于被用于免疫印迹在人类样本上 (图 3d). J Exp Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 9102)被用于. Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(197G2)
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 4377)被用于. Mol Med Rep (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(cell Signaling Tech, 9106)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(cell Signaling Tech, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 137F5)被用于被用于免疫印迹在小鼠样本上 (图 8a). Crit Care Med (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样本上 (图 s7). Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Biomaterials (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫细胞化学在人类样本上. Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 1b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1b). Nat Commun (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 1:500; 图 1b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 4377)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1b). Nat Commun (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695P)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologies, CST4695)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:2000; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 人类; 1:800; 图 s2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4696S)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 s2). PLoS ONE (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上 (图 st1). Liver Int (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在小鼠样本上 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 1:5000; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695P)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 6). Peerj (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在大鼠样本上 (图 5). Mol Biol Cell (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7). Mol Brain (2015) ncbi
domestic rabbit 单克隆(D13.14.4E)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, D13.14.4E)被用于被用于免疫印迹在小鼠样本上 (图 5). Sci Rep (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Reprod Domest Anim (2016) ncbi
domestic rabbit 单克隆(D13.14.4E)
  • 免疫印迹; 小鼠; 1:800; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 4094)被用于被用于免疫印迹在小鼠样本上浓度为1:800 (图 4b). Reprod Domest Anim (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Development (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 鸡; 图 7a
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在鸡样本上 (图 7a). Sci Rep (2015) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹在人类样本上 (图 5). Target Oncol (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:1000; 图 s7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7). Brain Behav (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, E10)被用于被用于免疫印迹在人类样本上 (图 4a). Mol Hum Reprod (2016) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 大鼠; 1:10,000; 图 12
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9107)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 12). J Neurosci (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9106)被用于被用于免疫印迹在小鼠样本上 (图 4b). Nat Commun (2015) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 图 8
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于流式细胞仪在人类样本上 (图 8) 和 被用于免疫印迹在人类样本上 (图 8). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:15,000; 图 s9i
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:15,000 (图 s9i). Development (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 6b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, cs4377s)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 6b). Development (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 s2
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 137F5)被用于被用于免疫印迹在小鼠样本上 (图 s2). Science (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 9107)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 10
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 10). J Neuroinflammation (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9106s)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2016) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Tech, 4696)被用于被用于免疫印迹在小鼠样本上 (图 1). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在人类样本上. J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Am J Physiol Lung Cell Mol Physiol (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 3c). Nat Commun (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling Technology, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Cell Mol Med (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 犬; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695P)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上 (图 4a). Biol Cell (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, E10)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). J Exp Med (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 流式细胞仪; 人类; 图 2
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于流式细胞仪在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7e). J Natl Cancer Inst (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695P)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5C
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Sgnaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5C). Mol Oncol (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样本上 (图 3). elife (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Sci Rep (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在大鼠样本上. Redox Biol (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Cancer Sci (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Tech, 9106)被用于被用于免疫印迹在人类样本上 (图 1). J Cell Biol (2015) ncbi
domestic rabbit 单克隆(D13.14.4E)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4094)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Mol Med Rep (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在人类样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 4). Oncogene (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Sci Rep (2015) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9107S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在小鼠样本上 (图 4). Endocrinology (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Tech, 4377)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Nat Neurosci (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在大鼠样本上 (图 4b). Mol Neurobiol (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 s7a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s7a). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 9106)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Nat Commun (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:2000; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4b). Exp Cell Res (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在大鼠样本上. Glia (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 137F5)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D13.14.4E)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, D13.14.4E)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 3). Genes Dev (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 S2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106)被用于被用于免疫印迹在人类样本上 (图 S2). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 4c). Oncogene (2016) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 大鼠; 1:1000; 图 9f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9107)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 9f). Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 大鼠; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8). Sci Rep (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:2000; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D13.14.4E)
  • 免疫组化-石蜡切片; fruit fly ; 1:200; 图 2b
  • 免疫印迹; fruit fly ; 1:2000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, D13.14.4E)被用于被用于免疫组化-石蜡切片在fruit fly 样本上浓度为1:200 (图 2b) 和 被用于免疫印迹在fruit fly 样本上浓度为1:2000 (图 3a). Dis Model Mech (2015) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在小鼠样本上 (图 5c). Sci Signal (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 5c). Sci Signal (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:3000; 图 s5c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 s5c). Nat Med (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Mol Cell Biochem (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 s3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 s3). Mol Cancer (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 3b). Int J Obes (Lond) (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上. Eur Neuropsychopharmacol (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 大鼠; 图 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在大鼠样本上 (图 7). Int J Mol Sci (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 s3d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 s3d). Oncogene (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9106)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 4). Cell Mol Life Sci (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上 (图 3). Cell Mol Life Sci (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:2000; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4). Sci Rep (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 1:10,000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695S)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000. Exp Neurol (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b,c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在人类样本上 (图 4b,c). Leukemia (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). FASEB J (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4374)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Int J Mol Med (2015) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4696)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Int J Mol Med (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9102)被用于被用于免疫印迹在小鼠样本上浓度为1:500. FASEB J (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Commun (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:3000; 图 s2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695P)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 s2). Nat Neurosci (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Front Cell Neurosci (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 4695S)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2015) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 图 s5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 20G11)被用于被用于免疫印迹在小鼠样本上 (图 s5). Nature (2015) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376S)被用于被用于免疫印迹在小鼠样本上 (图 3). Nat Struct Mol Biol (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 仓鼠; 图 2f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在仓鼠样本上 (图 2f). elife (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 137F5)被用于被用于免疫印迹在人类样本上. Cardiovasc Res (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling technology, 4695)被用于被用于免疫印迹在人类样本上 (图 6). Am J Cancer Res (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 图 S3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在大鼠样本上 (图 S3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4376S)被用于被用于免疫印迹在大鼠样本上 (图 5). J Korean Med Sci (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 1:2000; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3). Nat Commun (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上. Sci Adv (2015) ncbi
小鼠 单克隆(3A7)
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling Technology, 9107)被用于. Clin Exp Immunol (2015) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 2,3,4,5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在小鼠样本上 (图 2,3,4,5). Cell Res (2015) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 图 2,3,4,5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376s)被用于被用于免疫印迹在小鼠样本上 (图 2,3,4,5). Cell Res (2015) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 小鼠; 1:3000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4696S)被用于被用于免疫印迹在小鼠样本上浓度为1:3000. Neuroscience (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 137F5)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling Technology, 9106S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Commun (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:3000; 图 s3.a,b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 s3.a,b). Nat Commun (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695P)被用于被用于免疫印迹在人类样本上. Clin Transl Gastroenterol (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在小鼠样本上 (图 6). elife (2015) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 大鼠; 图 6e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 3A7)被用于被用于免疫印迹在大鼠样本上 (图 6e). J Immunol (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6a, 6b
  • 免疫印迹; 人类; 图 3a, 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6a, 6b) 和 被用于免疫印迹在人类样本上 (图 3a, 4a). Oncotarget (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上. Neoplasia (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 2.e
赛信通(上海)生物试剂有限公司 ERK2抗体(CellSignaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2.e). Nat Cell Biol (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在小鼠样本上. Am J Physiol Lung Cell Mol Physiol (2015) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在人类样本上 (图 1a). PLoS ONE (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling Technologies, 9106)被用于被用于免疫印迹在小鼠样本上. Cardiovasc Res (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 2). J Biomed Sci (2015) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Dev Biol (2016) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:500; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9106)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 5). Mol Cell Biol (2015) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9107)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Nat Med (2015) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Cell Physiol (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Cell Physiol (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 6). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:2000; 图 3c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling technology, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3c). Dis Model Mech (2015) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106)被用于被用于免疫印迹在人类样本上 (图 5b). Oncotarget (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 s2). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4696)被用于被用于免疫印迹在小鼠样本上 (图 s1). Stem Cell Res (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上 (图 s1). Mol Cancer Res (2015) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在人类样本上 (图 3). Mol Cancer Res (2015) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4696)被用于被用于免疫印迹在人类样本上 (图 3). MAbs (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在大鼠样本上. Eur J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9102)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Eur J Neurosci (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). elife (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 4374)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncotarget (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Br J Pharmacol (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4377)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 家羊; 1:2500
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在家羊样本上浓度为1:2500. Mol Cell Endocrinol (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4377)被用于被用于免疫印迹在小鼠样本上 (图 1). J Immunol (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 1). J Immunol (2015) ncbi
小鼠 单克隆(E10)
  • 流式细胞仪; 人类; 1:2000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106S)被用于被用于流式细胞仪在人类样本上浓度为1:2000. Mol Biol Cell (2015) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, #4696)被用于被用于免疫印迹在人类样本上. BMC Cancer (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Tech, 4695)被用于被用于免疫印迹在人类样本上 (图 1). Int J Mol Med (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9106)被用于被用于免疫印迹在人类样本上. Cell Signal (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 4695)被用于被用于免疫印迹在人类样本上. Cell Signal (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 9106)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Nat Commun (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologies, 4377)被用于被用于免疫印迹在人类样本上. PLoS Pathog (2015) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). Oncogene (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 大鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 4376)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Toxicology (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 4695)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Toxicology (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Cancer Cell Int (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 197G2)被用于被用于免疫印迹在小鼠样本上 (图 6). Mol Biol Cell (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 犬
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, E10)被用于被用于免疫印迹在犬样本上. Int J Oncol (2015) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 犬
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 20G11)被用于被用于免疫组化-石蜡切片在犬样本上. Int J Oncol (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106)被用于被用于免疫印迹在人类样本上 (图 6b). Int J Mol Med (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106)被用于被用于免疫印迹在小鼠样本上 (图 1). Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Cancer Sci (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4377)被用于被用于免疫印迹在小鼠样本上 (图 1). FASEB J (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695S)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 1:1000; 图 s3c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologies,, 4377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3c). Nat Commun (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Tech, 9106)被用于被用于免疫印迹在大鼠样本上 (图 5). J Immunol (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上浓度为1:500. Cell Signal (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 小鼠; 1:2000; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9107S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3). Nature (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 137F5)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在小鼠样本上 (图 6c). Int J Mol Med (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 f5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 f5). Oncotarget (2015) ncbi
小鼠 单克隆(3A7)
  • 免疫细胞化学; 人类; 1:250
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 3A7)被用于被用于免疫细胞化学在人类样本上浓度为1:250. Gastroenterology (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 1:1500; 图 st8
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 197G2)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 st8). Gastroenterology (2015) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 20G11)被用于被用于免疫印迹在人类样本上. Acta Neuropathol (2015) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 人类; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling TECHNOLOGY, 4696)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Sci Signal (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 9
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 9). Mol Med Rep (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:500; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). J Physiol (2015) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 人类; 图 s9
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, L34512)被用于被用于免疫印迹在人类样本上 (图 s9). J Clin Invest (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 7f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在人类样本上 (图 7f). EMBO Mol Med (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上. Biomaterials (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9106)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在人类样本上 (图 7). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上. Cancer Res (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 1:500; 表 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上浓度为1:500 (表 3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). Development (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 s7a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 s7a). Nat Immunol (2015) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 图 s7a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4376)被用于被用于免疫印迹在小鼠样本上 (图 s7a). Nat Immunol (2015) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling Technology, 4376)被用于被用于免疫组化-石蜡切片在人类样本上. Cancer Genet (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 197G2)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. FASEB J (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 1:2000; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 137F5)被用于被用于免疫印迹在小鼠样本上. Infect Immun (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 1:500
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling Technology, 4695)被用于被用于免疫印迹在大鼠样本上浓度为1:500. J Bioenerg Biomembr (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 流式细胞仪; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 137F5)被用于被用于流式细胞仪在小鼠样本上 (图 4). Am J Physiol Lung Cell Mol Physiol (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, E10)被用于被用于免疫印迹在人类样本上 (图 6a). Sci Rep (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 197G2)被用于被用于免疫印迹在人类样本上. J Cell Mol Med (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上. J Invest Dermatol (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 10B
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 10B). J Immunol (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上 (图 6f). J Exp Med (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9106)被用于被用于免疫印迹在人类样本上 (图 2). Pigment Cell Melanoma Res (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 1a
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 1a) 和 被用于免疫印迹在人类样本上 (图 1a). Mol Carcinog (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 1a
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377S)被用于被用于免疫印迹在人类样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 1a). Mol Carcinog (2016) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图  3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling Technology, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图  3). Cell Signal (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 137F5)被用于被用于免疫印迹在人类样本上. Cancer Lett (2015) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹在人类样本上. Cell Signal (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Autophagy (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 9106)被用于被用于免疫印迹在人类样本上浓度为1:2000. Cell Signal (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Biochem J (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, E10)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Immunol (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 137F5)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 197G2)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 137F5)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 斑马鱼; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在斑马鱼样本上 (图 4a). FASEB J (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 137F5)被用于被用于免疫印迹在人类样本上 (图 4). Am J Hum Genet (2015) ncbi
domestic rabbit 单克隆(D13.14.4E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, D13.14.4E)被用于被用于免疫印迹在人类样本上 (图 4). Am J Hum Genet (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 ERK2抗体(cell Signaling Tech, 9106)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). Nat Commun (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, E10)被用于被用于免疫印迹在小鼠样本上. Neoplasia (2015) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 小鼠; 1:4000; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4696)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 4). Nat Neurosci (2015) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Mol Cell Biol (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9106)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Int J Mol Sci (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上. J Diabetes (2016) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 大鼠; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2d). Eur J Pharmacol (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 大鼠; 1:2000; 图 2d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 2d). Eur J Pharmacol (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 1). Breast Cancer Res (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:1000; 图 s6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4377)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6). Development (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 大鼠; 1:500
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106)被用于被用于免疫印迹在大鼠样本上浓度为1:500. World J Gastroenterol (2014) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 2). Cell (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Genes Dev (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695S)被用于被用于免疫印迹在大鼠样本上. Apoptosis (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 8
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377S)被用于被用于免疫印迹在小鼠样本上 (图 8). Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377S)被用于被用于免疫印迹在人类样本上浓度为1:1000. Am J Physiol Renal Physiol (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在人类样本上浓度为1:1000. Am J Physiol Renal Physiol (2015) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 小鼠; 1:25
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:25. PLoS Genet (2014) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 20G11)被用于被用于免疫组化在人类样本上. Cancer Cell (2015) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 图 2g
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9107)被用于被用于免疫印迹在人类样本上 (图 2g) 和 被用于免疫印迹在小鼠样本上 (图 3d). Nat Med (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 3d
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 3d) 和 被用于免疫印迹在人类样本上 (图 2g). Nat Med (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377S)被用于被用于免疫印迹在小鼠样本上 (图 8a). Free Radic Biol Med (2015) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106S)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在小鼠样本上 (图 2). Nature (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在大鼠样本上. In Vitro Cell Dev Biol Anim (2015) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 小鼠; 图 s4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4). Nat Commun (2014) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在小鼠样本上. Am J Clin Exp Urol (2014) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上 (图 3). Proteomics (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 图 9e
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在大鼠样本上 (图 9e). Int J Mol Med (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologies, 4695)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695S)被用于被用于免疫印迹在人类样本上 (图 4). Proc Natl Acad Sci U S A (2014) ncbi
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling Technology, 8201S)被用于. BMC Neurosci (2014) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106S)被用于被用于免疫印迹在人类样本上 (图 5d). FASEB J (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上. J Mol Endocrinol (2014) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2014) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2014) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 137F5)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 137F5)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 20G11)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologies, 9106)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695S)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2014) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376S)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Neoplasia (2014) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 3A7)被用于被用于免疫印迹在小鼠样本上 (图 5d). Clin Immunol (2014) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, E10)被用于被用于免疫印迹在小鼠样本上 (图 5d). Clin Immunol (2014) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2014) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 137F5)被用于被用于免疫印迹在小鼠样本上 (图 1b). Mucosal Immunol (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 1:1000
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在人类样本上浓度为1:1000 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Int Immunopharmacol (2014) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在小鼠样本上. Am J Pathol (2014) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4696)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling Technology, 4377S)被用于被用于免疫印迹在人类样本上 (图 1). Cell Prolif (2014) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9107S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci (2014) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 表 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 4). Methods Mol Biol (2014) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Endocrinology (2014) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 4695)被用于被用于免疫印迹在小鼠样本上 (图 6). Nat Commun (2014) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4696)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Med (2014) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 4696)被用于被用于免疫印迹在人类样本上 (图 6b). Oncotarget (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; pigs ; 1:500
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在pigs 样本上浓度为1:500. Amino Acids (2014) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; pigs ; 1:500
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在pigs 样本上浓度为1:500. Amino Acids (2014) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹在小鼠样本上. Arthritis Rheumatol (2014) ncbi
domestic rabbit 单克隆(34B2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 34B2)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Skelet Muscle (2014) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; pigs
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106)被用于被用于免疫印迹在pigs 样本上. FASEB J (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在人类样本上. Eur J Cancer (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Free Radic Biol Med (2014) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:200
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106S)被用于被用于免疫印迹在人类样本上浓度为1:200. Biomed Res Int (2014) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling technology, 4376)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695s)被用于被用于免疫细胞化学在小鼠样本上. Cancer Res (2014) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Hum Mol Genet (2014) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 9106)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫组化; 鸡; 1:200
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologies, 137F5)被用于被用于免疫组化在鸡样本上浓度为1:200. Glia (2014) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 大鼠; 1:2000; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 3). J Biol Chem (2014) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上 (图 4a). Anticancer Agents Med Chem (2015) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在人类样本上 (图 4a). Anticancer Agents Med Chem (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; African green monkey
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695S)被用于被用于免疫印迹在African green monkey样本上. J Cell Physiol (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signaling, 4695S)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 197G2)被用于被用于免疫印迹在小鼠样本上 (图 s1). Nat Immunol (2014) ncbi
小鼠 单克隆(E10)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9106S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4). Hippocampus (2014) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9106)被用于被用于免疫印迹在大鼠样本上. Int J Cardiol (2014) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling, 9106)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Mol Med (2014) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在大鼠样本上. Int J Mol Med (2014) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 2a). Sci Rep (2014) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2014) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling Technology:, 4695S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 大鼠; 1:200
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106S)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Physiol Behav (2014) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9107S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Physiol Behav (2014) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Nat Med (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样本上. J Immunol (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377S)被用于被用于免疫印迹在大鼠样本上. Brain Res (2014) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, E10)被用于被用于免疫印迹在小鼠样本上. J Exp Med (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:2500
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样本上浓度为1:2500. Brain Behav (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上. Breast Cancer Res (2014) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上. Breast Cancer Res (2014) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 3A7)被用于被用于免疫印迹在人类样本上浓度为1:1000. Br J Dermatol (2014) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, E10)被用于被用于免疫印迹在人类样本上浓度为1:1000. Br J Dermatol (2014) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 4a, b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上 (图 4a, b). Mol Cancer Ther (2014) ncbi
domestic rabbit 单克隆(34B2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 2325)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹在人类样本上浓度为1:1000. Int J Radiat Oncol Biol Phys (2014) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-冰冻切片; 大鼠; 1:200
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 和 被用于免疫印迹在大鼠样本上浓度为1:1000. BMC Complement Altern Med (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 流式细胞仪; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 197G2)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 小鼠; 1:75; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:75 (图 2). Genes Dev (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377S)被用于被用于免疫印迹在人类样本上. Neuro Oncol (2014) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 137F5)被用于被用于免疫印迹在人类样本上. Carcinogenesis (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; least shrew
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9107)被用于被用于免疫印迹在least shrew样本上. Eur J Pharmacol (2014) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 137F5)被用于被用于免疫印迹在小鼠样本上 (图 6a). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(34B2)
  • 染色质免疫沉淀 ; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 2325)被用于被用于染色质免疫沉淀 在人类样本上. Mol Cancer Res (2014) ncbi
小鼠 单克隆(D1H6G)
  • 免疫组化; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell signaling Technology, 5726)被用于被用于免疫组化在小鼠样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106)被用于被用于免疫印迹在小鼠样本上. Int J Dev Neurosci (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologies, 4377)被用于被用于免疫印迹在小鼠样本上. Am J Respir Cell Mol Biol (2014) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Nat Commun (2014) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化; pigs ; 1:50
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signalling, 4376)被用于被用于免疫组化在pigs 样本上浓度为1:50. Dev Biol (2014) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, L34F12)被用于被用于免疫印迹在人类样本上. J Invest Dermatol (2014) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 图 5, 7
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在小鼠样本上 (图 5, 7). J Cell Sci (2014) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106)被用于被用于免疫印迹在人类样本上 (图 2). Infect Immun (2014) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 大鼠; 1:500
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4696)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Ophthalmic Res (2014) ncbi
小鼠 单克隆(L34F12)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, #4696S)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Mol Histol (2014) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 1A; 1C
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上 (图 1A; 1C). Prostate (2014) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106)被用于被用于免疫印迹在人类样本上. Autophagy (2014) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 大鼠; 1:500; 图 3
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3). J Bioenerg Biomembr (2014) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Genes Dev (2013) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上. Pigment Cell Melanoma Res (2014) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106)被用于被用于免疫印迹在小鼠样本上 (图 6). Biochemistry (2013) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫组化在人类样本上. Mol Cancer Ther (2014) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 1:10,000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. Diabetes (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Med (2013) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106)被用于被用于免疫印迹在人类样本上. J Dermatol Sci (2014) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. PLoS ONE (2013) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上. Respir Res (2013) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Gastroenterology (2013) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2013) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologies, 4377)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 人类; 1:400
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologies, 4376)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 和 被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Nat Med (2013) ncbi
小鼠 单克隆(E10)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106)被用于被用于免疫组化-石蜡切片在小鼠样本上. J Am Soc Nephrol (2013) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 ERK2抗体(cell signalling, 9106)被用于被用于免疫印迹在人类样本上 (图 4b). Int J Cancer (2014) ncbi
domestic rabbit 单克隆(34B2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 2325)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologies, 4376)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上浓度为1:1000. Oncotarget (2013) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9107)被用于被用于免疫印迹在小鼠样本上 (图 5). Cell Res (2013) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologies, 137F5)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cell Death Differ (2013) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technologie, 4377)被用于被用于免疫印迹在人类样本上. Oncogenesis (2013) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在人类样本上浓度为1:1000. Head Neck (2014) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上. Am J Physiol Renal Physiol (2013) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Brain Res (2013) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 3A7)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106)被用于被用于免疫印迹在人类样本上. Leukemia (2013) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106)被用于被用于免疫印迹在大鼠样本上. Int J Mol Sci (2013) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上. Cancer Cell Int (2013) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫组化在小鼠样本上 和 被用于免疫印迹在小鼠样本上 (图 2b). FASEB J (2013) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 137F5)被用于被用于免疫印迹在人类样本上 (图 1f). J Transl Med (2012) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, E10)被用于被用于免疫印迹在人类样本上. J Transl Med (2012) ncbi
小鼠 单克隆(3A7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9107S)被用于被用于免疫印迹在人类样本上. Biotechnol Bioeng (2013) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106S)被用于被用于免疫印迹在人类样本上. Biotechnol Bioeng (2013) ncbi
小鼠 单克隆(E10)
  • 免疫细胞化学; 小鼠; 图 4
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫细胞化学在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上. Stem Cells (2012) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫细胞化学; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4377)被用于被用于免疫细胞化学在小鼠样本上 (图 4). Stem Cells (2012) ncbi
domestic rabbit 单克隆(137F5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4695)被用于被用于免疫印迹在人类样本上. J Appl Physiol (1985) (2012) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样本上. J Appl Physiol (1985) (2012) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ERK2抗体(CST, 9106)被用于被用于免疫印迹在小鼠样本上. Immunity (2012) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2012) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上 (图 2). BMC Immunol (2009) ncbi
小鼠 单克隆(E10)
  • 免疫组化-自由浮动切片; 大鼠; 1:500
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 9106)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500. J Comp Neurol (2008) ncbi
小鼠 单克隆(E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling, 9106)被用于被用于免疫印迹在人类样本上. J Neurochem (2008) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ERK2抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000. Development (2007) ncbi
Bioworld
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
Bioworld ERK2抗体(Bioworld Technology, BS3627)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncol Lett (2016) ncbi
西格玛奥德里奇
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 1:4000; 图 3a
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 3a). EMBO Mol Med (2022) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 6d
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上 (图 6d). Cell Rep (2022) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 1:3000; 图 4b
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 4b). Life Sci Alliance (2022) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:1500; 图 2c
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 2c). Nat Commun (2021) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 图 4b
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在小鼠样本上 (图 4b). Int J Mol Sci (2021) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化; Ciona; 1:500; 图 2d
西格玛奥德里奇 ERK2抗体(Sigma, M9692)被用于被用于免疫组化在Ciona样本上浓度为1:500 (图 2d). Front Cell Dev Biol (2020) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 2e
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在人类样本上 (图 2e). Theranostics (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6i
西格玛奥德里奇 ERK2抗体(Sigma Aldrich, M5670)被用于被用于免疫印迹在人类样本上 (图 6i). elife (2020) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 6i
西格玛奥德里奇 ERK2抗体(Sigma Aldrich, M8159)被用于被用于免疫印迹在人类样本上 (图 6i). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 s1b
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M5670)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s1b). Nat Commun (2020) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:10,000; 图 s1c
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s1c). Nat Commun (2020) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 3b
西格玛奥德里奇 ERK2抗体(Sigma, M9692)被用于被用于免疫印迹在人类样本上 (图 3b). Cancer Cell (2019) ncbi
小鼠 单克隆(ERK-PT115)
  • 免疫印迹; 人类; 1:1000; 图 7a
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M7802)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). elife (2019) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). EMBO J (2019) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 大鼠; 图 5a
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在大鼠样本上 (图 5a). Cell Death Dis (2018) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 2c
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在人类样本上 (图 2c). Breast Cancer Res Treat (2018) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化; 小鼠; 图 s5d
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫组化在小鼠样本上 (图 s5d). Science (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:500; 图 4b
西格玛奥德里奇 ERK2抗体(Sigma Aldrich, M8159)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4b). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 4b
西格玛奥德里奇 ERK2抗体(Sigma Aldrich, M5670)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4b). Nat Commun (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:1000; 图 4d
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Mol Cell Biochem (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化; 斑马鱼; 1:500; 图 5I''
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M8159)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 5I''). elife (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫细胞化学; 小鼠; 图 1a
  • 免疫印迹; 小鼠; 图 1c
西格玛奥德里奇 ERK2抗体(sigma, M9692)被用于被用于免疫细胞化学在小鼠样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 1c). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 表 4
西格玛奥德里奇 ERK2抗体(Sigma, M5670)被用于被用于免疫印迹在人类样本上 (表 4). Transl Psychiatry (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 表 4
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上 (表 4). Transl Psychiatry (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; fruit fly ; 1:2000; 图 s8a
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在fruit fly 样本上浓度为1:2000 (图 s8a). Nat Commun (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 3c
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在人类样本上 (图 3c). J Biol Chem (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; pigs ; 图 1b
西格玛奥德里奇 ERK2抗体(Sigma, M9692)被用于被用于免疫印迹在pigs 样本上 (图 1b). Arthritis Rheumatol (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 4b
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 非洲爪蛙; 1:5000; 图 2f
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:5000 (图 2f). Open Biol (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 7e
西格玛奥德里奇 ERK2抗体(Sigma, MAPK-YT)被用于被用于免疫印迹在人类样本上 (图 7e). J Biol Chem (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:10,000; 图 2a
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2a). Dig Dis Sci (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 图 7
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在小鼠样本上 (图 7). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 5
西格玛奥德里奇 ERK2抗体(Sigma, M5670)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
西格玛奥德里奇 ERK2抗体(Sigma, M5670)被用于被用于免疫印迹在人类样本上 (图 3b). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:1000; 图 5
西格玛奥德里奇 ERK2抗体(Sigma, M 8159)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 5
西格玛奥德里奇 ERK2抗体(Sigma, M 5670)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:40,000; 图 s2a
西格玛奥德里奇 ERK2抗体(Sigma, M5670)被用于被用于免疫印迹在大鼠样本上浓度为1:40,000 (图 s2a). Metallomics (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M5670)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 犬; 图 1d
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在犬样本上 (图 1d). BMC Genomics (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 ERK2抗体(Sigma, M5670)被用于. BMC Genomics (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫细胞化学; 小鼠; 1:500; 图 1
  • 免疫印迹; 小鼠; 1:2000; 图 2
西格玛奥德里奇 ERK2抗体(Sigma, M9692)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 ERK2抗体(Sigma Chemical Co, M5670)被用于. J Biol Chem (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; fruit fly ; 1:500
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在fruit fly 样本上浓度为1:500. Development (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化-石蜡切片; fruit fly ; 1:200; 图 2
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫组化-石蜡切片在fruit fly 样本上浓度为1:200 (图 2). Nat Cell Biol (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化-冰冻切片; 斑马鱼; 1:50; 图 s5
西格玛奥德里奇 ERK2抗体(Sigma, M9692)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:50 (图 s5). PLoS ONE (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 s5
西格玛奥德里奇 ERK2抗体(Sigma, M9692)被用于被用于免疫印迹在人类样本上 (图 s5). Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 ERK2抗体(Sigma, M5670)被用于. Int J Mol Med (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 ERK2抗体(Sigma, M-5670)被用于. Oncotarget (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 8
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上 (图 8). Oncotarget (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 ERK2抗体(Sigma, 8159)被用于被用于免疫印迹在人类样本上 (图 5). Cancer Cell (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在小鼠样本上 (图 4). Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 ERK2抗体(Sigma, M 5670)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(ERK-PT115)
  • 免疫印迹; 人类; 1:500; 图 6
西格玛奥德里奇 ERK2抗体(Sigma, M 7802)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). Nat Commun (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类
西格玛奥德里奇 ERK2抗体(Sigma, M-9692)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 s4
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上 (图 s4). J Cell Sci (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化; fruit fly ; 1:200
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫组化在fruit fly 样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在小鼠样本上 (图 2). EMBO J (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 大鼠; 1:5000
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 和 被用于免疫印迹在小鼠样本上浓度为1:5000. J Biol Chem (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上浓度为1:1000. Exp Neurol (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 1:500
西格玛奥德里奇 ERK2抗体(Sigma Aldrich, M9692)被用于被用于免疫印迹在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). J Biol Chem (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫细胞化学; 人类; 图 5
西格玛奥德里奇 ERK2抗体(Sigma, # M 8159)被用于被用于免疫细胞化学在人类样本上 (图 5). Toxicol In Vitro (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫细胞化学; 大鼠; 1:250; 图 3
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M9692)被用于被用于免疫细胞化学在大鼠样本上浓度为1:250 (图 3). J Biol Chem (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M9692)被用于被用于免疫印迹在人类样本上. Mol Biol Cell (2014) ncbi
小鼠 单克隆(ERK-PT115)
  • 免疫细胞化学; 人类
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M7802)被用于被用于免疫细胞化学在人类样本上. Mol Biol Cell (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类
西格玛奥德里奇 ERK2抗体(SIGMA, M8159)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • reverse phase protein lysate microarray; 人类; 1:500
西格玛奥德里奇 ERK2抗体(Sigma, M-9692)被用于被用于reverse phase protein lysate microarray在人类样本上浓度为1:500. Pulm Pharmacol Ther (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 牛; 图 5, 6
西格玛奥德里奇 ERK2抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在牛样本上 (图 5, 6). Endocrinology (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类
西格玛奥德里奇 ERK2抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
碧迪BD
小鼠 单克隆(33/ERK2)
  • 免疫印迹; 人类; 图 s6
碧迪BD ERK2抗体(BD Biosciences, 610103)被用于被用于免疫印迹在人类样本上 (图 s6). Sci Rep (2016) ncbi
小鼠 单克隆(33/ERK2)
  • 免疫印迹; 人类
碧迪BD ERK2抗体(BD Biosciences, 610104)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(G263-7)
  • 免疫印迹; 人类
碧迪BD ERK2抗体(BD Biosciences, 558530)被用于被用于免疫印迹在人类样本上. J Ethnopharmacol (2011) ncbi
徕卡显微系统(上海)贸易有限公司
单克隆
  • 免疫印迹; 人类; 1:500; 图 3
徕卡显微系统(上海)贸易有限公司 ERK2抗体(Leica Biosystems, NCL-L-AK2)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Nat Commun (2016) ncbi
单克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 7
徕卡显微系统(上海)贸易有限公司 ERK2抗体(Novocastra, NCL-L-AK2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 7). Nat Commun (2014) ncbi
文章列表
  1. Mukherjee B, Tiwari A, Palo A, Pattnaik N, Samantara S, Dixit M. Reduced expression of FRG1 facilitates breast cancer progression via GM-CSF/MEK-ERK axis by abating FRG1 mediated transcriptional repression of GM-CSF. Cell Death Discov. 2022;8:442 pubmed 出版商
  2. Pan R, Yu Y, Zhu H, Zhang W, Qin Y, Ye L, et al. RSPO2 promotes progression of ovarian cancer through dual receptor-mediated FAK/Src signaling activation. iScience. 2022;25:105184 pubmed 出版商
  3. Kuo A, Checa A, Niaudet C, Jung B, Fu Z, Wheelock C, et al. Murine endothelial serine palmitoyltransferase 1 (SPTLC1) is required for vascular development and systemic sphingolipid homeostasis. elife. 2022;11: pubmed 出版商
  4. Park J, Li J, Mayer J, Ball K, Wu J, Hall C, et al. Activation of the insulin receptor by an insulin mimetic peptide. Nat Commun. 2022;13:5594 pubmed 出版商
  5. Liu J, Lai X, Yu R, Ding H, Bai H, Yang Z, et al. Progranulin aggravates lethal Candida albicans sepsis by regulating inflammatory response and antifungal immunity. PLoS Pathog. 2022;18:e1010873 pubmed 出版商
  6. Dufour C, Xia H, B chir W, Perry M, Kuzmanov U, Gainullina A, et al. Integrated multi-omics analysis of adverse cardiac remodeling and metabolic inflexibility upon ErbB2 and ERRα deficiency. Commun Biol. 2022;5:955 pubmed 出版商
  7. Sun Q, Wang Y, Ji H, Sun X, Xie S, Chen L, et al. Lenvatinib for effectively treating antiangiogenic drug-resistant nasopharyngeal carcinoma. Cell Death Dis. 2022;13:724 pubmed 出版商
  8. L xf3 pez Mej xed a J, Tallabs Utrilla L, Salazar Sojo P, Mantilla Ollarves J, S xe1 nchez Carballido M, Rocha Zavaleta L. c-Kit Induces Migration of Triple-Negative Breast Cancer Cells and Is a Promising Target for Tyrosine Kinase Inhibitor Treatment. Int J Mol Sci. 2022;23: pubmed 出版商
  9. Chang M, Hsu S, Ma L, Chou L, Hung C, Tian Y, et al. Effects of Suramin on Polycystic Kidney Disease in a Mouse Model of Polycystin-1 Deficiency. Int J Mol Sci. 2022;23: pubmed 出版商
  10. Zhou S, Hassan A, Kungyal T, Tabari xe8 s S, Luna J, Siegel P, et al. CD109 Is a Critical Determinant of EGFR Expression and Signaling, and Tumorigenicity in Squamous Cell Carcinoma Cells. Cancers (Basel). 2022;14: pubmed 出版商
  11. Chakrabarti M, Bhattacharya A, Gebere M, Johnson J, Ayub Z, Chatzistamou I, et al. Increased TGFβ1 and SMAD3 Contribute to Age-Related Aortic Valve Calcification. Front Cardiovasc Med. 2022;9:770065 pubmed 出版商
  12. Mu R, Chen B, Bi B, Yu H, Liu J, Li J, et al. LIM Mineralization Protein-1 Enhances the Committed Differentiation of Dental Pulp Stem Cells through the ERK1/2 and p38 MAPK Pathways and BMP Signaling. Int J Med Sci. 2022;19:1307-1319 pubmed 出版商
  13. Que W, Ma K, Hu X, Guo W, Li X. Combinations of anti-GITR antibody and CD28 superagonist induce permanent allograft acceptance by generating type 1 regulatory T cells. Sci Adv. 2022;8:eabo4413 pubmed 出版商
  14. Chen S, Vedula R, Cuevas Navarro A, Lu B, Hogg S, Wang E, et al. Impaired Proteolysis of Noncanonical RAS Proteins Drives Clonal Hematopoietic Transformation. Cancer Discov. 2022;12:2434-2453 pubmed 出版商
  15. Ye G, Xu M, Shu Y, Sun X, Mai Y, Hong Y, et al. A Quassinoid Diterpenoid Eurycomanone from Eurycoma longifolia Jack Exerts Anti-Cancer Effect through Autophagy Inhibition. Molecules. 2022;27: pubmed 出版商
  16. Gao H, Sun H, Yan N, Zhao P, Xu H, Zheng W, et al. ATP13A2 Declines Zinc-Induced Accumulation of α-Synuclein in a Parkinson's Disease Model. Int J Mol Sci. 2022;23: pubmed 出版商
  17. Banerjee S, Mishra S, Xu W, Thompson W, Chowdhury I. Neuregulin-1 signaling regulates cytokines and chemokines expression and secretion in granulosa cell. J Ovarian Res. 2022;15:86 pubmed 出版商
  18. Yong L, Yu Y, Li B, Ge H, Zhen Q, Mao Y, et al. Calcium/calmodulin-dependent protein kinase IV promotes imiquimod-induced psoriatic inflammation via macrophages and keratinocytes in mice. Nat Commun. 2022;13:4255 pubmed 出版商
  19. Werder R, Liu T, Abo K, Lindstrom Vautrin J, Villacorta Martin C, Huang J, et al. CRISPR interference interrogation of COPD GWAS genes reveals the functional significance of desmoplakin in iPSC-derived alveolar epithelial cells. Sci Adv. 2022;8:eabo6566 pubmed 出版商
  20. Wang Q, Xu C, Cai R, An W, Yuan H, Xu M. Fbxo45-mediated NP-STEP46 degradation via K6-linked ubiquitination sustains ERK activity in lung cancer. Mol Oncol. 2022;16:3017-3033 pubmed 出版商
  21. Liu C, Zheng S, Wang Z, Wang S, Wang X, Yang L, et al. KRAS-G12D mutation drives immune suppression and the primary resistance of anti-PD-1/PD-L1 immunotherapy in non-small cell lung cancer. Cancer Commun (Lond). 2022;42:828-847 pubmed 出版商
  22. Paldor M, Levkovitch Siany O, Eidelshtein D, Adar R, Enk C, Marmary Y, et al. Single-cell transcriptomics reveals a senescence-associated IL-6/CCR6 axis driving radiodermatitis. EMBO Mol Med. 2022;14:e15653 pubmed 出版商
  23. Shu W, Zhu X, Wang K, Cherepanoff S, Conway R, Madigan M, et al. The multi-kinase inhibitor afatinib serves as a novel candidate for the treatment of human uveal melanoma. Cell Oncol (Dordr). 2022;45:601-619 pubmed 出版商
  24. Liu H, He J, Bagheri Yarmand R, Li Z, Liu R, Wang Z, et al. Osteocyte CIITA aggravates osteolytic bone lesions in myeloma. Nat Commun. 2022;13:3684 pubmed 出版商
  25. Huang J, Wang X, Li B, Shen S, Wang R, Tao H, et al. L-5-hydroxytryptophan promotes antitumor immunity by inhibiting PD-L1 inducible expression. J Immunother Cancer. 2022;10: pubmed 出版商
  26. Shi H, Wu D, Chen R, Li N, Zhu L. Requirement of hippocampal DG nNOS-CAPON dissociation for the anxiolytic and antidepressant effects of fluoxetine. Theranostics. 2022;12:3656-3675 pubmed 出版商
  27. Kumar D, Das M, Oberg A, Sahoo D, Wu P, Sauceda C, et al. Hepatocyte Deletion of IGF2 Prevents DNA Damage and Tumor Formation in Hepatocellular Carcinoma. Adv Sci (Weinh). 2022;9:e2105120 pubmed 出版商
  28. Qin L, Wang L, Zhang J, Zhou H, Yang Z, Wang Y, et al. Therapeutic strategies targeting uPAR potentiate anti-PD-1 efficacy in diffuse-type gastric cancer. Sci Adv. 2022;8:eabn3774 pubmed 出版商
  29. Lan T, Wu Y, Zhang Y, Li S, Zhu Z, Wang L, et al. Agomelatine rescues lipopolysaccharide-induced neural injury and depression-like behaviors via suppression of the Gαi-2-PKA-ASK1 signaling pathway. J Neuroinflammation. 2022;19:117 pubmed 出版商
  30. Chen Y, Xu J, Pan W, Xu X, Ma X, Chu Y, et al. Galectin-3 enhances trastuzumab resistance by regulating cancer malignancy and stemness in HER2-positive breast cancer cells. Thorac Cancer. 2022;13:1961-1973 pubmed 出版商
  31. Kohlmeyer J, Kaemmer C, Lingo J, Voigt E, Leidinger M, McGivney G, et al. Oncogenic RABL6A promotes NF1-associated MPNST progression in vivo. Neurooncol Adv. 2022;4:vdac047 pubmed 出版商
  32. Mancinelli R, Ceci L, Kennedy L, Francis H, Meadows V, Chen L, et al. The Effects of Taurocholic Acid on Biliary Damage and Liver Fibrosis Are Mediated by Calcitonin-Gene-Related Peptide Signaling. Cells. 2022;11: pubmed 出版商
  33. Sun H, Zheng J, Xiao J, Yue J, Shi Z, Xuan Z, et al. TOPK/PBK is phosphorylated by ERK2 at serine 32, promotes tumorigenesis and is involved in sorafenib resistance in RCC. Cell Death Dis. 2022;13:450 pubmed 出版商
  34. Shiwaku H, Katayama S, Kondo K, Nakano Y, Tanaka H, Yoshioka Y, et al. Autoantibodies against NCAM1 from patients with schizophrenia cause schizophrenia-related behavior and changes in synapses in mice. Cell Rep Med. 2022;3:100597 pubmed 出版商
  35. Fernandes H, Zonnari A, Abreu R, Aday S, Bar xe3 o M, Albino I, et al. Extracellular vesicles enriched with an endothelial cell pro-survival microRNA affects skin tissue regeneration. Mol Ther Nucleic Acids. 2022;28:307-327 pubmed 出版商
  36. Cortes J, Filip I, Albero R, Patiño Galindo J, Quinn S, Lin W, et al. Oncogenic Vav1-Myo1f induces therapeutically targetable macrophage-rich tumor microenvironment in peripheral T cell lymphoma. Cell Rep. 2022;39:110695 pubmed 出版商
  37. Bassi G, Mishra S. Prohibitin-1 plays a regulatory role in Leydig cell steroidogenesis. iScience. 2022;25:104165 pubmed 出版商
  38. Nickel L, S xfc nderhauf A, Rawish E, St xf6 lting I, Derer S, Thorns C, et al. The AT1 Receptor Blocker Telmisartan Reduces Intestinal Mucus Thickness in Obese Mice. Front Pharmacol. 2022;13:815353 pubmed 出版商
  39. Kidger A, Saville M, Rushworth L, Davidson J, Stellzig J, Ono M, et al. Suppression of mutant Kirsten-RAS (KRASG12D)-driven pancreatic carcinogenesis by dual-specificity MAP kinase phosphatases 5 and 6. Oncogene. 2022;41:2811-2823 pubmed 出版商
  40. An W, Lin H, Ma L, Zhang C, Zheng Y, Cheng Q, et al. Progesterone activates GPR126 to promote breast cancer development via the Gi pathway. Proc Natl Acad Sci U S A. 2022;119:e2117004119 pubmed 出版商
  41. Wang X, Wang Y, Chen J, Li J, Liu Y, Chen W. Aerobic exercise improves motor function and striatal MSNs-Erk/MAPK signaling in mice with 6-OHDA-induced Parkinson's disease. Exp Brain Res. 2022;240:1713-1725 pubmed 出版商
  42. Zhang Y, Huo F, Cao Q, Jia R, Huang Q, Wang Z, et al. FimH confers mannose-targeting ability to Bacillus Calmette-Guerin for improved immunotherapy in bladder cancer. J Immunother Cancer. 2022;10: pubmed 出版商
  43. Ye C, Lian G, Wang T, Chen A, Chen W, Gong J, et al. The zinc transporter ZIP12 regulates monocrotaline-induced proliferation and migration of pulmonary arterial smooth muscle cells via the AKT/ERK signaling pathways. BMC Pulm Med. 2022;22:111 pubmed 出版商
  44. Arendt K, Ntaliarda G, Armenis V, Kati D, Henning C, Giotopoulou G, et al. An In Vivo Inflammatory Loop Potentiates KRAS Blockade. Biomedicines. 2022;10: pubmed 出版商
  45. Jin R, Gao Q, Yin C, Zou M, Lu K, Liu W, et al. The CD146-HIF-1α axis regulates epithelial cell migration and alveolar maturation in a mouse model of bronchopulmonary dysplasia. Lab Invest. 2022;102:794-804 pubmed 出版商
  46. Günes Günsel G, Conlon T, Jeridi A, Kim R, Ertuz Z, Lang N, et al. The arginine methyltransferase PRMT7 promotes extravasation of monocytes resulting in tissue injury in COPD. Nat Commun. 2022;13:1303 pubmed 出版商
  47. Peng Y, Zhu X, Gao L, Wang J, Liu H, Zhu T, et al. Mycobacterium tuberculosis Rv0309 Dampens the Inflammatory Response and Enhances Mycobacterial Survival. Front Immunol. 2022;13:829410 pubmed 出版商
  48. Shen L, Yu Y, Zhou Y, Pruett Miller S, Zhang G, Karner C. SLC38A2 provides proline to fulfill unique synthetic demands arising during osteoblast differentiation and bone formation. elife. 2022;11: pubmed 出版商
  49. Cornille M, Moriceau S, Khonsari R, Heuz xe9 Y, Loisay L, Boitez V, et al. FGFR3 overactivation in the brain is responsible for memory impairments in Crouzon syndrome mouse model. J Exp Med. 2022;219: pubmed 出版商
  50. Xie H, Heier C, Meng X, Bakiri L, Pototschnig I, Tang Z, et al. An immune-sympathetic neuron communication axis guides adipose tissue browning in cancer-associated cachexia. Proc Natl Acad Sci U S A. 2022;119: pubmed 出版商
  51. Nataraj N, Noronha A, Lee J, Ghosh S, Mohan Raju H, Sekar A, et al. Nucleoporin-93 reveals a common feature of aggressive breast cancers: robust nucleocytoplasmic transport of transcription factors. Cell Rep. 2022;38:110418 pubmed 出版商
  52. Fan Y, Hou T, Dan W, Zhu Y, Liu B, Wei Y, et al. ERK1/2 inhibits Cullin 3/SPOP-mediated PrLZ ubiquitination and degradation to modulate prostate cancer progression. Cell Death Differ. 2022;: pubmed 出版商
  53. Wang M, Zhang C, Zheng Q, Ma Z, Qi M, Di G, et al. RhoJ facilitates angiogenesis in glioblastoma via JNK/VEGFR2 mediated activation of PAK and ERK signaling pathways. Int J Biol Sci. 2022;18:942-955 pubmed 出版商
  54. Almacellas Barbanoj A, Albini M, Satapathy A, Jaudon F, Michetti C, Krawczun Rygmaczewska A, et al. Kidins220/ARMS modulates brain morphology and anxiety-like traits in adult mice. Cell Death Discov. 2022;8:58 pubmed 出版商
  55. D Addio F, Maestroni A, Assi E, Ben Nasr M, Amabile G, Usuelli V, et al. The IGFBP3/TMEM219 pathway regulates beta cell homeostasis. Nat Commun. 2022;13:684 pubmed 出版商
  56. Song Y, Chen W, Zhu B, Ge W. Disruption of Epidermal Growth Factor Receptor but Not EGF Blocks Follicle Activation in Zebrafish Ovary. Front Cell Dev Biol. 2021;9:750888 pubmed 出版商
  57. Hsiao Y, Chi J, Li C, Chen L, Chen Y, Liang H, et al. Disruption of the pentraxin 3/CD44 interaction as an efficient therapy for triple-negative breast cancers. Clin Transl Med. 2022;12:e724 pubmed 出版商
  58. Grinat J, Kosel F, Goveas N, Kranz A, Alexopoulou D, Rajewsky K, et al. Epigenetic modifier balances Mapk and Wnt signalling in differentiation of goblet and Paneth cells. Life Sci Alliance. 2022;5: pubmed 出版商
  59. Kono M, Komatsuda H, Yamaki H, Kumai T, Hayashi R, Wakisaka R, et al. Immunomodulation via FGFR inhibition augments FGFR1 targeting T-cell based antitumor immunotherapy for head and neck squamous cell carcinoma. Oncoimmunology. 2022;11:2021619 pubmed 出版商
  60. Zhang Q, Hresko M, Picton L, Su L, Hollander M, Nunez Cruz S, et al. A human orthogonal IL-2 and IL-2Rβ system enhances CAR T cell expansion and antitumor activity in a murine model of leukemia. Sci Transl Med. 2021;13:eabg6986 pubmed 出版商
  61. Yoshida J, Ohishi T, Abe H, Ohba S, Inoue H, Usami I, et al. Mitochondrial complex I inhibitors suppress tumor growth through concomitant acidification of the intra- and extracellular environment. iScience. 2021;24:103497 pubmed 出版商
  62. Humeres C, Shinde A, Hanna A, Alex L, Hern xe1 ndez S, Li R, et al. Smad7 effects on TGF-β and ErbB2 restrain myofibroblast activation and protect from postinfarction heart failure. J Clin Invest. 2022;132: pubmed 出版商
  63. Lu Y, Xin D, Guan L, Xu M, Yang Y, Chen Y, et al. Metformin Downregulates PD-L1 Expression in Esophageal Squamous Cell Catrcinoma by Inhibiting IL-6 Signaling Pathway. Front Oncol. 2021;11:762523 pubmed 出版商
  64. Komleva Y, Potapenko I, Lopatina O, Gorina Y, Chernykh A, Khilazheva E, et al. NLRP3 Inflammasome Blocking as a Potential Treatment of Central Insulin Resistance in Early-Stage Alzheimer's Disease. Int J Mol Sci. 2021;22: pubmed 出版商
  65. Xu Y, Chen X, Pan S, Wang Z, Zhu X. TM7SF2 regulates cell proliferation and apoptosis by activation of C-Raf/ERK pathway in cervical cancer. Cell Death Discov. 2021;7:299 pubmed 出版商
  66. Hua X, Ge S, Zhang M, Mo F, Zhang L, Zhang J, et al. Pathogenic Roles of CXCL10 in Experimental Autoimmune Prostatitis by Modulating Macrophage Chemotaxis and Cytokine Secretion. Front Immunol. 2021;12:706027 pubmed 出版商
  67. Wang Y, Han J, Zhu J, Zhang M, Ju M, Du Y, et al. GluN2A/ERK/CREB Signaling Pathway Involved in Electroacupuncture Regulating Hypothalamic-Pituitary-Adrenal Axis Hyperactivity. Front Neurosci. 2021;15:703044 pubmed 出版商
  68. Paštar V, Lozić M, Kelam N, Filipović N, Bernard B, Katsuyama Y, et al. Connexin Expression Is Altered in Liver Development of Yotari (dab1 -/-) Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  69. Correia de Sousa M, Calo N, Sobolewski C, Gjorgjieva M, Clement S, Maeder C, et al. Mir-21 Suppression Promotes Mouse Hepatocarcinogenesis. Cancers (Basel). 2021;13: pubmed 出版商
  70. Passman A, Strauss R, McSpadden S, Finch Edmondson M, Andrewartha N, Woo K, et al. Maraviroc Prevents HCC Development by Suppressing Macrophages and the Liver Progenitor Cell Response in a Murine Chronic Liver Disease Model. Cancers (Basel). 2021;13: pubmed 出版商
  71. Schünke H, Göbel U, Dikic I, Pasparakis M. OTULIN inhibits RIPK1-mediated keratinocyte necroptosis to prevent skin inflammation in mice. Nat Commun. 2021;12:5912 pubmed 出版商
  72. Li K, Wu R, Zhou M, Tong H, Luo K. Desmosomal proteins of DSC2 and PKP1 promote cancer cells survival and metastasis by increasing cluster formation in circulatory system. Sci Adv. 2021;7:eabg7265 pubmed 出版商
  73. Hsu H, Chen H, Tsai C, Liao P, Chan Y, Lee Y, et al. Aryl Hydrocarbon Receptor Defect Attenuates Mitogen-Activated Signaling through Leucine-Rich Repeats and Immunoglobulin-like Domains 1 (LRIG1)-Dependent EGFR Degradation. Int J Mol Sci. 2021;22: pubmed 出版商
  74. Wu J, Xue X, Fan G, Gu Y, Zhou F, Zheng Q, et al. Ferulic Acid Ameliorates Hepatic Inflammation and Fibrotic Liver Injury by Inhibiting PTP1B Activity and Subsequent Promoting AMPK Phosphorylation. Front Pharmacol. 2021;12:754976 pubmed 出版商
  75. Gyamfi J, Yeo J, Kwon D, Min B, Cha Y, Koo J, et al. Interaction between CD36 and FABP4 modulates adipocyte-induced fatty acid import and metabolism in breast cancer. NPJ Breast Cancer. 2021;7:129 pubmed 出版商
  76. Rock S, Jiang K, Wu Y, Liu Y, Li J, Weiss H, et al. Neurotensin Regulates Proliferation and Stem Cell Function in the Small Intestine in a Nutrient-Dependent Manner. Cell Mol Gastroenterol Hepatol. 2022;13:501-516 pubmed 出版商
  77. Liu Y, Li Y, Huang S, Li Y, Xia J, Jia J, et al. Liver-specific over-expression of Cripto-1 in transgenic mice promotes hepatocyte proliferation and deregulated expression of hepatocarcinogenesis-related genes and signaling pathways. Aging (Albany NY). 2021;13:21155-21190 pubmed 出版商
  78. Wang Q, Qin F, Wang H, Yang H, Liu Q, Li Z, et al. Effect of Electro-Acupuncture at ST36 and SP6 on the cAMP -CREB Pathway and mRNA Expression Profile in the Brainstem of Morphine Tolerant Mice. Front Neurosci. 2021;15:698967 pubmed 出版商
  79. Shi Y, Hu Y, Wang Y, Ma X, Tang L, Tao M, et al. Blockade of Autophagy Prevents the Development and Progression of Peritoneal Fibrosis. Front Pharmacol. 2021;12:724141 pubmed 出版商
  80. Wang Z, He L, Li W, Xu C, Zhang J, Wang D, et al. GDF15 induces immunosuppression via CD48 on regulatory T cells in hepatocellular carcinoma. J Immunother Cancer. 2021;9: pubmed 出版商
  81. Lim D, Kim M, Yoon M, Lee J, Lee C, Um M. 1,3-Dicaffeoylquinic Acid as an Active Compound of Arctium lappa Root Extract Ameliorates Depressive-Like Behavior by Regulating Hippocampal Nitric Oxide Synthesis in Ovariectomized Mice. Antioxidants (Basel). 2021;10: pubmed 出版商
  82. De Velasco M, Kura Y, Ando N, Sako N, Banno E, Fujita K, et al. Context-Specific Efficacy of Apalutamide Therapy in Preclinical Models of Pten-Deficient Prostate Cancer. Cancers (Basel). 2021;13: pubmed 出版商
  83. Dong J, Viswanathan S, Adami E, Schafer S, Kuthubudeen F, Widjaja A, et al. The pro-regenerative effects of hyperIL6 in drug-induced liver injury are unexpectedly due to competitive inhibition of IL11 signaling. elife. 2021;10: pubmed 出版商
  84. Tang X, Li G, Shi L, Su F, Qian M, Liu Z, et al. Combined intermittent fasting and ERK inhibition enhance the anti-tumor effects of chemotherapy via the GSK3β-SIRT7 axis. Nat Commun. 2021;12:5058 pubmed 出版商
  85. Cheng J, Dong Y, Ma J, Pan R, Liao Y, Kong X, et al. Microglial Calhm2 regulates neuroinflammation and contributes to Alzheimer's disease pathology. Sci Adv. 2021;7: pubmed 出版商
  86. Escasany E, Lanzón B, García Carrasco A, Izquierdo Lahuerta A, Torres L, Corrales P, et al. Transforming growth factor β3 deficiency promotes defective lipid metabolism and fibrosis in murine kidney. Dis Model Mech. 2021;14: pubmed 出版商
  87. Liu Y, Lin J, Chen Y, Li Z, Zhou J, Lu X, et al. Omega‑3 polyunsaturated fatty acids inhibit IL‑11/STAT3 signaling in hepatocytes during acetaminophen hepatotoxicity. Int J Mol Med. 2021;48: pubmed 出版商
  88. Kareddula A, Medina D, Petrosky W, Dolfi S, Tereshchenko I, Walton K, et al. The role of chromodomain helicase DNA binding protein 1 (CHD1) in promoting an invasive prostate cancer phenotype. Ther Adv Urol. 2021;13:17562872211022462 pubmed 出版商
  89. Moon S, Lee H, Kim S, Hong J, Chun S, Lee H, et al. Inhibition of STAT3 enhances sensitivity to tamoxifen in tamoxifen-resistant breast cancer cells. BMC Cancer. 2021;21:931 pubmed 出版商
  90. Ma S, Mangala L, Hu W, Bayaktar E, Yokoi A, Hu W, et al. CD63-mediated cloaking of VEGF in small extracellular vesicles contributes to anti-VEGF therapy resistance. Cell Rep. 2021;36:109549 pubmed 出版商
  91. Sánchez Fdez A, Re Louhau M, Rodríguez Núñez P, Ludeña D, Matilla Almazán S, Pandiella A, et al. Clinical, genetic and pharmacological data support targeting the MEK5/ERK5 module in lung cancer. NPJ Precis Oncol. 2021;5:78 pubmed 出版商
  92. Berger C, Heyne H, Heiland T, Dommel S, Höfling C, Guiu Jurado E, et al. A novel compound heterozygous leptin receptor mutation causes more severe obesity than in Leprdb/db mice. J Lipid Res. 2021;62:100105 pubmed 出版商
  93. Vichas A, Riley A, Nkinsi N, Kamlapurkar S, Parrish P, Lo A, et al. Integrative oncogene-dependency mapping identifies RIT1 vulnerabilities and synergies in lung cancer. Nat Commun. 2021;12:4789 pubmed 出版商
  94. Guo Y, Lu Y, Lu X, He S, Li S, Shao S, et al. Krüppel-Like Factor 15/Interleukin 11 Axis-Mediated Adventitial Remodeling Depends on Extracellular Signal-Regulated Kinases 1 and 2 Activation in Angiotensin II-Induced Hypertension. J Am Heart Assoc. 2021;10:e020554 pubmed 出版商
  95. Ye Z, Xu S, Shi Y, Bacolla A, Syed A, Moiani D, et al. GRB2 enforces homology-directed repair initiation by MRE11. Sci Adv. 2021;7: pubmed 出版商
  96. Chen H, Teng Y, Chen X, Liu Z, Geng F, Liu Y, et al. Platelet-derived growth factor (PDGF)-BB protects dopaminergic neurons via activation of Akt/ERK/CREB pathways to upregulate tyrosine hydroxylase. CNS Neurosci Ther. 2021;27:1300-1312 pubmed 出版商
  97. Chen X, Miao M, Zhou M, Chen J, Li D, Zhang L, et al. Poly-L-arginine promotes asthma angiogenesis through induction of FGFBP1 in airway epithelial cells via activation of the mTORC1-STAT3 pathway. Cell Death Dis. 2021;12:761 pubmed 出版商
  98. Clark A, Kugathasan U, Baskozos G, Priestman D, Fugger N, Lone M, et al. An iPSC model of hereditary sensory neuropathy-1 reveals L-serine-responsive deficits in neuronal ganglioside composition and axoglial interactions. Cell Rep Med. 2021;2:100345 pubmed 出版商
  99. Laliotis G, Chavdoula E, Paraskevopoulou M, Kaba A, La Ferlita A, Singh S, et al. AKT3-mediated IWS1 phosphorylation promotes the proliferation of EGFR-mutant lung adenocarcinomas through cell cycle-regulated U2AF2 RNA splicing. Nat Commun. 2021;12:4624 pubmed 出版商
  100. Coudert L, Osseni A, Gangloff Y, Schaeffer L, Leblanc P. The ESCRT-0 subcomplex component Hrs/Hgs is a master regulator of myogenesis via modulation of signaling and degradation pathways. BMC Biol. 2021;19:153 pubmed 出版商
  101. Li P, Cao S, Huang Y, Zhang Y, Liu J, Cai X, et al. A novel chemical inhibitor suppresses breast cancer cell growth and metastasis through inhibiting HPIP oncoprotein. Cell Death Discov. 2021;7:198 pubmed 出版商
  102. Jeong A, Cheng S, Zhong R, Bennett D, Bergo M, Li L. Protein farnesylation is upregulated in Alzheimer's human brains and neuron-specific suppression of farnesyltransferase mitigates pathogenic processes in Alzheimer's model mice. Acta Neuropathol Commun. 2021;9:129 pubmed 出版商
  103. Arnold F, Mahaddalkar P, Kraus J, Zhong X, Bergmann W, Srinivasan D, et al. Functional Genomic Screening During Somatic Cell Reprogramming Identifies DKK3 as a Roadblock of Organ Regeneration. Adv Sci (Weinh). 2021;8:2100626 pubmed 出版商
  104. Lassiter R, Merchen T, Fang X, Wang Y. Protective Role of Kynurenine 3-Monooxygenase in Allograft Rejection and Tubular Injury in Kidney Transplantation. Front Immunol. 2021;12:671025 pubmed 出版商
  105. Guo J, Cheng J, Zheng N, Zhang X, Dai X, Zhang L, et al. Copper Promotes Tumorigenesis by Activating the PDK1-AKT Oncogenic Pathway in a Copper Transporter 1 Dependent Manner. Adv Sci (Weinh). 2021;8:e2004303 pubmed 出版商
  106. Yang S, Qu Y, Chen J, Chen S, Sun L, Zhou Y, et al. Bee Pollen Polysaccharide From Rosa rugosa Thunb. (Rosaceae) Promotes Pancreatic β-Cell Proliferation and Insulin Secretion. Front Pharmacol. 2021;12:688073 pubmed 出版商
  107. Lin H, Guan L, Meng L, Uzui H, Guo H. SGLT1 Knockdown Attenuates Cardiac Fibroblast Activation in Diabetic Cardiac Fibrosis. Front Pharmacol. 2021;12:700366 pubmed 出版商
  108. Wang W, Lu G, Liu H, Xiong Z, Leung H, Cao R, et al. Pten Regulates Cardiomyocyte Differentiation by Modulating Non-CG Methylation via Dnmt3. Adv Sci (Weinh). 2021;:e2100849 pubmed 出版商
  109. Shang P, Stepicheva N, Teel K, McCauley A, Fitting C, Hose S, et al. βA3/A1-crystallin regulates apical polarity and EGFR endocytosis in retinal pigmented epithelial cells. Commun Biol. 2021;4:850 pubmed 出版商
  110. Li H, Yang Q, Wang W, Tian X, Feng F, Zhang S, et al. Red nucleus IL-33 facilitates the early development of mononeuropathic pain in male rats by inducing TNF-α through activating ERK, p38 MAPK, and JAK2/STAT3. J Neuroinflammation. 2021;18:150 pubmed 出版商
  111. Fan H, Wang S, Wang H, Sun M, Wu S, Bao W. Melatonin Ameliorates the Toxicity Induced by Deoxynivalenol in Murine Ovary Granulosa Cells by Antioxidative and Anti-Inflammatory Effects. Antioxidants (Basel). 2021;10: pubmed 出版商
  112. Lee S, Jung J, Lee Y, Kim S, Kim J, Kim B, et al. Targeting HSF1 as a Therapeutic Strategy for Multiple Mechanisms of EGFR Inhibitor Resistance in EGFR Mutant Non-Small-Cell Lung Cancer. Cancers (Basel). 2021;13: pubmed 出版商
  113. Hering L, Katkeviciute E, Schwarzfischer M, Niechcial A, Riggs J, Wawrzyniak M, et al. Macrophages Compensate for Loss of Protein Tyrosine Phosphatase N2 in Dendritic Cells to Protect from Elevated Colitis. Int J Mol Sci. 2021;22: pubmed 出版商
  114. Mergener S, Siveke J, Peña Llopis S. Monosomy 3 Is Linked to Resistance to MEK Inhibitors in Uveal Melanoma. Int J Mol Sci. 2021;22: pubmed 出版商
  115. Ibarra B, Machen C, ATIT R. Wnt-Dependent Activation of ERK Mediates Repression of Chondrocyte Fate during Calvarial Development. J Dev Biol. 2021;9: pubmed 出版商
  116. Abu Odeh M, Zhang Y, Reilly S, Ebadat N, Keinan O, Valentine J, et al. FGF21 promotes thermogenic gene expression as an autocrine factor in adipocytes. Cell Rep. 2021;35:109331 pubmed 出版商
  117. Watson A, Grant A, Parker S, Hill S, Whalen M, Chakrabarti J, et al. Breast tumor stiffness instructs bone metastasis via maintenance of mechanical conditioning. Cell Rep. 2021;35:109293 pubmed 出版商
  118. Emre C, Do K, Jun B, Hjorth E, Alcalde S, Kautzmann M, et al. Age-related changes in brain phospholipids and bioactive lipids in the APP knock-in mouse model of Alzheimer's disease. Acta Neuropathol Commun. 2021;9:116 pubmed 出版商
  119. Sakai H, Kawakami H, Teramura T, Onodera Y, Somers E, Furuuchi K, et al. Folate receptor α increases chemotherapy resistance through stabilizing MDM2 in cooperation with PHB2 that is overcome by MORAb-202 in gastric cancer. Clin Transl Med. 2021;11:e454 pubmed 出版商
  120. Pham Q, Taniyama D, Sekino Y, Akabane S, Babasaki T, Kobayashi G, et al. Clinicopathologic features of TDO2 overexpression in renal cell carcinoma. BMC Cancer. 2021;21:737 pubmed 出版商
  121. Jiang T, Xu S, Shen Y, Xu Y, Li Y. Genistein Attenuates Isoflurane-Induced Neuroinflammation by Inhibiting TLR4-Mediated Microglial-Polarization in vivo and in vitro. J Inflamm Res. 2021;14:2587-2600 pubmed 出版商
  122. Jiang Y, Guo Y, Hao J, Guenter R, Lathia J, Beck A, et al. Development of an arteriolar niche and self-renewal of breast cancer stem cells by lysophosphatidic acid/protein kinase D signaling. Commun Biol. 2021;4:780 pubmed 出版商
  123. Shelton W, Thomas S, Alexander H, Thomes C, Conway D, Dubash A. Desmoglein-2 harnesses a PDZ-GEF2/Rap1 signaling axis to control cell spreading and focal adhesions independent of cell-cell adhesion. Sci Rep. 2021;11:13295 pubmed 出版商
  124. Liu L, Xu X, Qu Z, Zhao L, Zhang C, Li Z, et al. Determining 5HT7R's Involvement in Modifying the Antihyperalgesic Effects of Electroacupuncture on Rats With Recurrent Migraine. Front Neurosci. 2021;15:668616 pubmed 出版商
  125. Cheng X, Wang J, Liu C, Jiang T, Yang N, Liu D, et al. Zinc transporter SLC39A13/ZIP13 facilitates the metastasis of human ovarian cancer cells via activating Src/FAK signaling pathway. J Exp Clin Cancer Res. 2021;40:199 pubmed 出版商
  126. Zhang B, Lapenta K, Wang Q, Nam J, Chung D, Robert M, et al. Trefoil factor 2 secreted from damaged hepatocytes activates hepatic stellate cells to induce fibrogenesis. J Biol Chem. 2021;297:100887 pubmed 出版商
  127. Bayoumi A, Elsayed A, Han S, Petta S, Adams L, Aller R, et al. Mistranslation Drives Alterations in Protein Levels and the Effects of a Synonymous Variant at the Fibroblast Growth Factor 21 Locus. Adv Sci (Weinh). 2021;8:2004168 pubmed 出版商
  128. Kimura H, Sada R, Takada N, Harada A, Doki Y, Eguchi H, et al. The Dickkopf1 and FOXM1 positive feedback loop promotes tumor growth in pancreatic and esophageal cancers. Oncogene. 2021;40:4486-4502 pubmed 出版商
  129. Zhu J, Cai T, Zhou J, Du W, Zeng Y, Liu T, et al. CD151 drives cancer progression depending on integrin α3β1 through EGFR signaling in non-small cell lung cancer. J Exp Clin Cancer Res. 2021;40:192 pubmed 出版商
  130. Lai W, Zhu W, Xiao C, Li X, Wang Y, Han Y, et al. HJURP promotes proliferation in prostate cancer cells through increasing CDKN1A degradation via the GSK3β/JNK signaling pathway. Cell Death Dis. 2021;12:583 pubmed 出版商
  131. Zhang Y, Da Q, Cao S, Yan K, Shi Z, Miao Q, et al. HINT1 (Histidine Triad Nucleotide-Binding Protein 1) Attenuates Cardiac Hypertrophy Via Suppressing HOXA5 (Homeobox A5) Expression. Circulation. 2021;144:638-654 pubmed 出版商
  132. Jiang D, Zhang J, Lin S, Wang Y, Chen Y, Fan J. Prolyl Endopeptidase Gene Disruption Improves Gut Dysbiosis and Non-alcoholic Fatty Liver Disease in Mice Induced by a High-Fat Diet. Front Cell Dev Biol. 2021;9:628143 pubmed 出版商
  133. Qin X, Li J, Wang S, Lv J, Luan F, Liu Y, et al. Serotonin/HTR1E signaling blocks chronic stress-promoted progression of ovarian cancer. Theranostics. 2021;11:6950-6965 pubmed 出版商
  134. Yan C, Saleh N, Yang J, Nebhan C, Vilgelm A, Reddy E, et al. Novel induction of CD40 expression by tumor cells with RAS/RAF/PI3K pathway inhibition augments response to checkpoint blockade. Mol Cancer. 2021;20:85 pubmed 出版商
  135. Hsieh Y, Lee K, Lei H, Lan K, Huo T, Lin Y, et al. (Pro)renin Receptor Knockdown Attenuates Liver Fibrosis Through Inactivation of ERK/TGF-β1/SMAD3 Pathway. Cell Mol Gastroenterol Hepatol. 2021;12:813-838 pubmed 出版商
  136. Parodi B, Sanna A, Cedola A, Uccelli A, Kerlero de Rosbo N. Hydroxycarboxylic Acid Receptor 2, a Pleiotropically Linked Receptor for the Multiple Sclerosis Drug, Monomethyl Fumarate. Possible Implications for the Inflammatory Response. Front Immunol. 2021;12:655212 pubmed 出版商
  137. Strazza M, Azoulay Alfaguter I, Peled M, Adam K, Mor A. Transmembrane adaptor protein PAG is a mediator of PD-1 inhibitory signaling in human T cells. Commun Biol. 2021;4:672 pubmed 出版商
  138. López Gambero A, Rosell Valle C, Medina Vera D, Navarro J, Vargas A, Rivera P, et al. A Negative Energy Balance Is Associated with Metabolic Dysfunctions in the Hypothalamus of a Humanized Preclinical Model of Alzheimer's Disease, the 5XFAD Mouse. Int J Mol Sci. 2021;22: pubmed 出版商
  139. Mou S, Zhou Z, Feng H, Zhang N, Lin Z, Aiyasiding X, et al. Liquiritin Attenuates Lipopolysaccharides-Induced Cardiomyocyte Injury via an AMP-Activated Protein Kinase-Dependent Signaling Pathway. Front Pharmacol. 2021;12:648688 pubmed 出版商
  140. Kulkarni N, O Neill A, Dokoshi T, Luo E, Wong G, Gallo R. Sequence determinants in the cathelicidin LL-37 that promote inflammation via presentation of RNA to scavenger receptors. J Biol Chem. 2021;297:100828 pubmed 出版商
  141. Kim C, Park S, Lee S, Kim Y, Jang S, Woo S, et al. NSrp70 is a lymphocyte-essential splicing factor that controls thymocyte development. Nucleic Acids Res. 2021;49:5760-5778 pubmed 出版商
  142. Lee J, Hsu Y, Li Y, Cheng S. Galectin-3 Inhibitors Suppress Anoikis Resistance and Invasive Capacity in Thyroid Cancer Cells. Int J Endocrinol. 2021;2021:5583491 pubmed 出版商
  143. Xu L, Humphries F, Delagic N, Wang B, Holland A, Edgar K, et al. ECSIT is a critical limiting factor for cardiac function. JCI Insight. 2021;6: pubmed 出版商
  144. Lin C, Tsai M, Chen Y, Liu W, Lin C, Hsu K, et al. Platelet-Derived Growth Factor Receptor-α Subunit Targeting Suppresses Metastasis in Advanced Thyroid Cancer In Vitro and In Vivo. Biomol Ther (Seoul). 2021;29:551-561 pubmed 出版商
  145. Chang B, Guan H, Wang X, Chen Z, Zhu W, Wei X, et al. Cox4i2 Triggers an Increase in Reactive Oxygen Species, Leading to Ferroptosis and Apoptosis in HHV7 Infected Schwann Cells. Front Mol Biosci. 2021;8:660072 pubmed 出版商
  146. Renko J, Mahato A, Visnapuu T, Valkonen K, Karelson M, Voutilainen M, et al. Neuroprotective Potential of a Small Molecule RET Agonist in Cultured Dopamine Neurons and Hemiparkinsonian Rats. J Parkinsons Dis. 2021;11:1023-1046 pubmed 出版商
  147. Prokakis E, Dyas A, Grün R, Fritzsche S, Bedi U, Kazerouni Z, et al. USP22 promotes HER2-driven mammary carcinoma aggressiveness by suppressing the unfolded protein response. Oncogene. 2021;40:4004-4018 pubmed 出版商
  148. Zong X, Xiao X, Shen B, Jiang Q, Wang H, Lu Z, et al. The N6-methyladenosine RNA-binding protein YTHDF1 modulates the translation of TRAF6 to mediate the intestinal immune response. Nucleic Acids Res. 2021;49:5537-5552 pubmed 出版商
  149. Bi Y, Chen X, Wei B, Wang L, Gong L, Li H, et al. DEPTOR stabilizes ErbB2 to promote the proliferation and survival of ErbB2-positive breast cancer cells. Theranostics. 2021;11:6355-6369 pubmed 出版商
  150. Cao C, Zhang Y, Cheng J, Wu F, Niu X, Hu X, et al. β-Arrestin2 Inhibits the Apoptosis and Facilitates the Proliferation of Fibroblast-like Synoviocytes in Diffuse-type Tenosynovial Giant Cell Tumor. Cancer Genomics Proteomics. 2021;18:461-470 pubmed 出版商
  151. Li Q, Liu M, Sun Y, Jin T, Zhu P, Wan X, et al. SLC6A8-mediated intracellular creatine accumulation enhances hypoxic breast cancer cell survival via ameliorating oxidative stress. J Exp Clin Cancer Res. 2021;40:168 pubmed 出版商
  152. Yan C, Zeng T, Lee K, Nobis M, Loh K, Gou L, et al. Peripheral-specific Y1 receptor antagonism increases thermogenesis and protects against diet-induced obesity. Nat Commun. 2021;12:2622 pubmed 出版商
  153. Tien J, Chugh S, Goodrum A, Cheng Y, Mannan R, Zhang Y, et al. AGO2 promotes tumor progression in KRAS-driven mouse models of non-small cell lung cancer. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  154. Huang W, Liu H, Pan Y, Yang H, Lin J, Zhang H. Mechanical stretching of the pulmonary vein mediates pulmonary hypertension due to left heart disease by regulating SAC/MAPK pathway and the expression of IL-6 and TNF-α. J Cardiothorac Surg. 2021;16:127 pubmed 出版商
  155. Wang Y, Lee Y, Hsu Y, Chiu I, Huang C, Huang C, et al. The Kidney-Related Effects of Polystyrene Microplastics on Human Kidney Proximal Tubular Epithelial Cells HK-2 and Male C57BL/6 Mice. Environ Health Perspect. 2021;129:57003 pubmed 出版商
  156. Feng W, Wang J, Yan X, Zhang Q, Chai L, Wang Q, et al. ERK/Drp1-dependent mitochondrial fission contributes to HMGB1-induced autophagy in pulmonary arterial hypertension. Cell Prolif. 2021;54:e13048 pubmed 出版商
  157. Zheng H, Zhang Y, He J, Yang Z, Zhang R, Li L, et al. Hydroxychloroquine Inhibits Macrophage Activation and Attenuates Renal Fibrosis After Ischemia-Reperfusion Injury. Front Immunol. 2021;12:645100 pubmed 出版商
  158. Chen X, Ma W, Yao Y, Zhang Q, Li J, Wu X, et al. Serum deprivation-response protein induces apoptosis in hepatocellular carcinoma through ASK1-JNK/p38 MAPK pathways. Cell Death Dis. 2021;12:425 pubmed 出版商
  159. He Y, Gan M, Wang Y, Huang T, Wang J, Han T, et al. EGFR-ERK induced activation of GRHL1 promotes cell cycle progression by up-regulating cell cycle related genes in lung cancer. Cell Death Dis. 2021;12:430 pubmed 出版商
  160. Catalano A, Adlesic M, Kaltenbacher T, Klar R, Albers J, Seidel P, et al. Sensitivity and Resistance of Oncogenic RAS-Driven Tumors to Dual MEK and ERK Inhibition. Cancers (Basel). 2021;13: pubmed 出版商
  161. Loureiro J, Raimundo L, Calheiros J, Carvalho C, Barcherini V, Lima N, et al. Targeting p53 for Melanoma Treatment: Counteracting Tumour Proliferation, Dissemination and Therapeutic Resistance. Cancers (Basel). 2021;13: pubmed 出版商
  162. Li X, Huang K, Liu X, Ruan H, Ma L, Liang J, et al. Ellagic Acid Attenuates BLM-Induced Pulmonary Fibrosis via Inhibiting Wnt Signaling Pathway. Front Pharmacol. 2021;12:639574 pubmed 出版商
  163. Jamadagni P, Breuer M, Schmeisser K, Cardinal T, Kassa B, Parker J, et al. Chromatin remodeller CHD7 is required for GABAergic neuron development by promoting PAQR3 expression. EMBO Rep. 2021;22:e50958 pubmed 出版商
  164. Luckett K, Cracchiolo J, Krishnamoorthy G, Leandro García L, Nagarajah J, Saqcena M, et al. Co-inhibition of SMAD and MAPK signaling enhances 124I uptake in BRAF-mutant thyroid cancers. Endocr Relat Cancer. 2021;28:391-402 pubmed 出版商
  165. Fang W, Sofia Acevedo D, Smart C, Zinda B, Alissa N, Warren K, et al. Expression of CCL2/CCR2 signaling proteins in breast carcinoma cells is associated with invasive progression. Sci Rep. 2021;11:8708 pubmed 出版商
  166. Wang Z, Goto Y, Allevato M, Wu V, Saddawi Konefka R, Gilardi M, et al. Disruption of the HER3-PI3K-mTOR oncogenic signaling axis and PD-1 blockade as a multimodal precision immunotherapy in head and neck cancer. Nat Commun. 2021;12:2383 pubmed 出版商
  167. Maruyama K, Naemura K, Arima Y, Uchijima Y, Nagao H, Yoshihara K, et al. Semaphorin3E-PlexinD1 signaling in coronary artery and lymphatic vessel development with clinical implications in myocardial recovery. iScience. 2021;24:102305 pubmed 出版商
  168. He S, Lu Y, Guo Y, Li S, Lu X, Shao S, et al. Krüppel-Like Factor 15 Modulates CXCL1/CXCR2 Signaling-Mediated Inflammatory Response Contributing to Angiotensin II-Induced Cardiac Remodeling. Front Cell Dev Biol. 2021;9:644954 pubmed 出版商
  169. Low H, Wong Z, Wu B, Kong L, Png C, Cho Y, et al. DUSP16 promotes cancer chemoresistance through regulation of mitochondria-mediated cell death. Nat Commun. 2021;12:2284 pubmed 出版商
  170. Nishina T, Deguchi Y, Ohshima D, Takeda W, Ohtsuka M, Shichino S, et al. Interleukin-11-expressing fibroblasts have a unique gene signature correlated with poor prognosis of colorectal cancer. Nat Commun. 2021;12:2281 pubmed 出版商
  171. Liu J, You Y, Tian Z, Xiao M, Zheng J, Wang Y, et al. Increased nuclear translation of YAP might act as a potential therapeutic target for NF1-related plexiform neurofibroma. Int J Med Sci. 2021;18:2008-2016 pubmed 出版商
  172. Zheng W, Song H, Luo Z, Wu H, Chen L, Wang Y, et al. Acetylcholine ameliorates colitis by promoting IL-10 secretion of monocytic myeloid-derived suppressor cells through the nAChR/ERK pathway. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  173. Zewdu R, Mehrabad E, Ingram K, Fang P, Gillis K, Camolotto S, et al. An NKX2-1/ERK/WNT feedback loop modulates gastric identity and response to targeted therapy in lung adenocarcinoma. elife. 2021;10: pubmed 出版商
  174. Chang N, Yeh C, Lin Y, Kuo K, Fong I, Kounis N, et al. Garcinol Attenuates Lipoprotein(a)-Induced Oxidative Stress and Inflammatory Cytokine Production in Ventricular Cardiomyocyte through α7-Nicotinic Acetylcholine Receptor-Mediated Inhibition of the p38 MAPK and NF-κB Signaling Pathways. Antioxidants (Basel). 2021;10: pubmed 出版商
  175. Moore K, Fulmer D, Guo L, Koren N, Glover J, Moore R, et al. PDGFRα: Expression and Function during Mitral Valve Morphogenesis. J Cardiovasc Dev Dis. 2021;8: pubmed 出版商
  176. Tirronen A, Downes N, Huusko J, Laakkonen J, Tuomainen T, Tavi P, et al. The Ablation of VEGFR-1 Signaling Promotes Pressure Overload-Induced Cardiac Dysfunction and Sudden Death. Biomolecules. 2021;11: pubmed 出版商
  177. Gualtieri A, Kyprianou N, Gregory L, Vignola M, Nicholson J, Tan R, et al. Activating mutations in BRAF disrupt the hypothalamo-pituitary axis leading to hypopituitarism in mice and humans. Nat Commun. 2021;12:2028 pubmed 出版商
  178. Ngamsri K, Gamper Tsigaras J, Reutershan J, Konrad F. Fractalkine Is Linked to the Necrosome Pathway in Acute Pulmonary Inflammation. Front Med (Lausanne). 2021;8:591790 pubmed 出版商
  179. Xia X, Li R, Zhou P, Xing Z, Lu C, Long Z, et al. Decreased NSG3 enhances PD-L1 expression by Erk1/2 pathway to promote pancreatic cancer progress. Am J Cancer Res. 2021;11:916-929 pubmed
  180. Brea R, Valdecantos P, Rada P, Alen R, García Monzón C, Bosca L, et al. Chronic treatment with acetaminophen protects against liver aging by targeting inflammation and oxidative stress. Aging (Albany NY). 2021;13:7800-7827 pubmed 出版商
  181. Malvi P, Janostiak R, Nagarajan A, Zhang X, Wajapeyee N. N-acylsphingosine amidohydrolase 1 promotes melanoma growth and metastasis by suppressing peroxisome biogenesis-induced ROS production. Mol Metab. 2021;48:101217 pubmed 出版商
  182. Sadeghi M, Hemmati S, Mohammadi S, Yousefi Manesh H, Vafaei A, Zare M, et al. Chronically altered NMDAR signaling in epilepsy mediates comorbid depression. Acta Neuropathol Commun. 2021;9:53 pubmed 出版商
  183. Ruan L, Yao X, Li W, Zhang L, Yang H, Sun J, et al. Effect of galectin-3 in the pathogenesis of arteriovenous fistula stenosis formation. Ren Fail. 2021;43:566-576 pubmed 出版商
  184. Wang J, Zhao H, Zheng L, Zhou Y, Wu L, Xu Y, et al. FGF19/SOCE/NFATc2 signaling circuit facilitates the self-renewal of liver cancer stem cells. Theranostics. 2021;11:5045-5060 pubmed 出版商
  185. Ryu Y, Lee D, Shim J, Park J, Kim Y, Choi S, et al. KY19382, a novel activator of Wnt/β-catenin signalling, promotes hair regrowth and hair follicle neogenesis. Br J Pharmacol. 2021;178:2533-2546 pubmed 出版商
  186. Xue T, Liu X, Zhang M, E Q, Liu S, Zou M, et al. PADI2-Catalyzed MEK1 Citrullination Activates ERK1/2 and Promotes IGF2BP1-Mediated SOX2 mRNA Stability in Endometrial Cancer. Adv Sci (Weinh). 2021;8:2002831 pubmed 出版商
  187. Yi M, Liu Y, Umpierre A, Chen T, Ying Y, Zheng J, et al. Optogenetic activation of spinal microglia triggers chronic pain in mice. PLoS Biol. 2021;19:e3001154 pubmed 出版商
  188. Egli Spichtig D, Zhang M, Li A, Pastor Arroyo E, Hernando N, Wagner C, et al. Renal Dnase1 expression is regulated by FGF23 but loss of Dnase1 does not alter renal phosphate handling. Sci Rep. 2021;11:6175 pubmed 出版商
  189. Rippe C, Morén B, Liu L, Stenkula K, Mustaniemi J, Wennström M, et al. NG2/CSPG4, CD146/MCAM and VAP1/AOC3 are regulated by myocardin-related transcription factors in smooth muscle cells. Sci Rep. 2021;11:5955 pubmed 出版商
  190. Jacques S, Arjomand A, Per xe9 e H, Collins P, Mayer A, Lavergne A, et al. Dual-specificity phosphatase 3 deletion promotes obesity, non-alcoholic steatohepatitis and hepatocellular carcinoma. Sci Rep. 2021;11:5817 pubmed 出版商
  191. Fang Y, Jiang Q, Li S, Zhu H, Xu R, Song N, et al. Opposing functions of β-arrestin 1 and 2 in Parkinson's disease via microglia inflammation and Nprl3. Cell Death Differ. 2021;28:1822-1836 pubmed 出版商
  192. Sripada A, Sirohi K, Michalec L, Guo L, McKay J, Yadav S, et al. Sprouty2 positively regulates T cell function and airway inflammation through regulation of CSK and LCK kinases. PLoS Biol. 2021;19:e3001063 pubmed 出版商
  193. Romeo R, Boden El Mourabit D, Scheller A, Mark M, Faissner A. Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) as a Novel Regulator of Early Astroglial Differentiation. Front Cell Neurosci. 2021;15:642521 pubmed 出版商
  194. Nagamura Y, Miyazaki M, Nagano Y, Yuki M, Fukami K, Yanagihara K, et al. PLEKHA5 regulates the survival and peritoneal dissemination of diffuse-type gastric carcinoma cells with Met gene amplification. Oncogenesis. 2021;10:25 pubmed 出版商
  195. Mao F, Lv Y, Hao C, Teng Y, Liu Y, Cheng P, et al. Helicobacter pylori-Induced Rev-erbα Fosters Gastric Bacteria Colonization by Impairing Host Innate and Adaptive Defense. Cell Mol Gastroenterol Hepatol. 2021;12:395-425 pubmed 出版商
  196. Ischenko I, D Amico S, Rao M, Li J, Hayman M, Powers S, et al. KRAS drives immune evasion in a genetic model of pancreatic cancer. Nat Commun. 2021;12:1482 pubmed 出版商
  197. Varshney R, Ranjit R, Chiao Y, Kinter M, Ahn B. Myocardial Hypertrophy and Compensatory Increase in Systolic Function in a Mouse Model of Oxidative Stress. Int J Mol Sci. 2021;22: pubmed 出版商
  198. Bakker W, Dingenouts C, Lodder K, Wiesmeijer K, de Jong A, Kurakula K, et al. BMP Receptor Inhibition Enhances Tissue Repair in Endoglin Heterozygous Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  199. xd6 zt xfc rk M, Ingenwerth M, Sager M, Von Gall C, Ali A. Does a Red House Affect Rhythms in Mice with a Corrupted Circadian System?. Int J Mol Sci. 2021;22: pubmed 出版商
  200. Antonuccio P, Marini H, Micali A, Romeo C, Granese R, Retto A, et al. The Nutraceutical N-Palmitoylethanolamide (PEA) Reveals Widespread Molecular Effects Unmasking New Therapeutic Targets in Murine Varicocele. Nutrients. 2021;13: pubmed 出版商
  201. Shao G, Fan X, Zhang P, Liu X, Huang L, Ji S. Methylation-dependent MCM6 repression induced by LINC00472 inhibits triple-negative breast cancer metastasis by disturbing the MEK/ERK signaling pathway. Aging (Albany NY). 2021;13:4962-4975 pubmed 出版商
  202. Chu C, Lee Y, Hsieh C, Yeh C, Chao T, Chen P, et al. Genome-wide CRISPR/Cas9 knockout screening uncovers a novel inflammatory pathway critical for resistance to arginine-deprivation therapy. Theranostics. 2021;11:3624-3641 pubmed 出版商
  203. Frison M, Faccenda D, Abeti R, Rigon M, Strobbe D, England Rendon B, et al. The translocator protein (TSPO) is prodromal to mitophagy loss in neurotoxicity. Mol Psychiatry. 2021;: pubmed 出版商
  204. Kitamura Y, Kanaya N, Moleirinho S, Du W, Reinshagen C, Attia N, et al. Anti-EGFR VHH-armed death receptor ligand-engineered allogeneic stem cells have therapeutic efficacy in diverse brain metastatic breast cancers. Sci Adv. 2021;7: pubmed 出版商
  205. Yin H, Zhang X, Yang P, Zhang X, Peng Y, Li D, et al. RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nat Commun. 2021;12:1394 pubmed 出版商
  206. Baek S, Lee S, Kim T, Choi S, Yun S, Lee W, et al. Senescence Marker Protein 30 (SMP30): A Novel Pan-Species Diagnostic Marker for the Histopathological Diagnosis of Breast Cancer in Humans and Animals. Int J Mol Sci. 2021;22: pubmed 出版商
  207. Wu M, Ma Y, Chen X, Liang N, Qu S, Chen H. Hyperuricemia causes kidney damage by promoting autophagy and NLRP3-mediated inflammation in rats with urate oxidase deficiency. Dis Model Mech. 2021;14: pubmed 出版商
  208. Yu Z, Li X, Yang M, Huang J, Fang Q, Jia J, et al. TRIM41 is required to innate antiviral response by polyubiquitinating BCL10 and recruiting NEMO. Signal Transduct Target Ther. 2021;6:90 pubmed 出版商
  209. Wang X, Zhao Y, Zhou D, Tian Y, Feng G, Lu Z. Gab2 deficiency suppresses high-fat diet-induced obesity by reducing adipose tissue inflammation and increasing brown adipose function in mice. Cell Death Dis. 2021;12:212 pubmed 出版商
  210. Matsuzawa F, Kamachi H, Mizukami T, Einama T, Kawamata F, Fujii Y, et al. Mesothelin blockage by Amatuximab suppresses cell invasiveness, enhances gemcitabine sensitivity and regulates cancer cell stemness in mesothelin-positive pancreatic cancer cells. BMC Cancer. 2021;21:200 pubmed 出版商
  211. Cao Y, Li L, Liu Y, Chen G, Tao Z, Wang R, et al. I-κB Kinase-ε Deficiency Attenuates the Development of Angiotensin II-Induced Myocardial Hypertrophy in Mice. Oxid Med Cell Longev. 2021;2021:6429197 pubmed 出版商
  212. Guo M, Cui C, Song X, Jia L, Li D, Wang X, et al. Deletion of FGF9 in GABAergic neurons causes epilepsy. Cell Death Dis. 2021;12:196 pubmed 出版商
  213. Shen X, Wang H, Weng C, Jiang H, Chen J. Caspase 3/GSDME-dependent pyroptosis contributes to chemotherapy drug-induced nephrotoxicity. Cell Death Dis. 2021;12:186 pubmed 出版商
  214. Yoo H, Yang S, Kim J, Yang E, Park H, Lee S, et al. Down-regulation of habenular calcium-dependent secretion activator 2 induces despair-like behavior. Sci Rep. 2021;11:3700 pubmed 出版商
  215. Dufeys C, Daskalopoulos E, Castanares Zapatero D, Conway S, Ginion A, Bouzin C, et al. AMPKα1 deletion in myofibroblasts exacerbates post-myocardial infarction fibrosis by a connexin 43 mechanism. Basic Res Cardiol. 2021;116:10 pubmed 出版商
  216. Wu Y, Cao Y, Xu K, Zhu Y, Qiao Y, Wu Y, et al. Dynamically remodeled hepatic extracellular matrix predicts prognosis of early-stage cirrhosis. Cell Death Dis. 2021;12:163 pubmed 出版商
  217. Liu S, Flores J, Li B, Deng S, Zuo G, Peng J, et al. IL-20R Activation via rIL-19 Enhances Hematoma Resolution through the IL-20R1/ERK/Nrf2 Pathway in an Experimental GMH Rat Pup Model. Oxid Med Cell Longev. 2021;2021:5913424 pubmed 出版商
  218. Isomura H, Taguchi A, Kajino T, Asai N, Nakatochi M, Kato S, et al. Conditional Ror1 knockout reveals crucial involvement in lung adenocarcinoma development and identifies novel HIF-1α regulator. Cancer Sci. 2021;: pubmed 出版商
  219. Brunal A, Clark K, Ma M, Woods I, Pan Y. Effects of Constitutive and Acute Connexin 36 Deficiency on Brain-Wide Susceptibility to PTZ-Induced Neuronal Hyperactivity. Front Mol Neurosci. 2020;13:587978 pubmed 出版商
  220. Takakura M, Nakagawa R, Ota T, Kimura Y, Ng M, Alia A, et al. Rpd3/CoRest-mediated activity-dependent transcription regulates the flexibility in memory updating in Drosophila. Nat Commun. 2021;12:628 pubmed 出版商
  221. Zhang S, Sousa A, Lin M, Iwano A, Jain R, Ma B, et al. Role of Chitinase 3-Like 1 Protein in the Pathogenesis of Hepatic Insulin Resistance in Nonalcoholic Fatty Liver Disease. Cells. 2021;10: pubmed 出版商
  222. Kitazawa K, Nadanaka S, Kadomatsu K, Kitagawa H. Chondroitin 6-sulfate represses keratinocyte proliferation in mouse skin, which is associated with psoriasis. Commun Biol. 2021;4:114 pubmed 出版商
  223. Sankoda N, Tanabe W, Tanaka A, Shibata H, Woltjen K, Chiba T, et al. Epithelial expression of Gata4 and Sox2 regulates specification of the squamous-columnar junction via MAPK/ERK signaling in mice. Nat Commun. 2021;12:560 pubmed 出版商
  224. Huang S, You S, Qian J, Dai C, Shen S, Wang J, et al. Myeloid differentiation 2 deficiency attenuates AngII-induced arterial vascular oxidative stress, inflammation, and remodeling. Aging (Albany NY). 2021;13:4409-4427 pubmed 出版商
  225. Guo X, Liu L, Zhang Q, Yang W, Zhang Y. E2F7 Transcriptionally Inhibits MicroRNA-199b Expression to Promote USP47, Thereby Enhancing Colon Cancer Tumor Stem Cell Activity and Promoting the Occurrence of Colon Cancer. Front Oncol. 2020;10:565449 pubmed 出版商
  226. Wang F, Zhang Y, Shen J, Yang B, Dai W, Yan J, et al. The Ubiquitin E3 Ligase TRIM21 Promotes Hepatocarcinogenesis by Suppressing the p62-Keap1-Nrf2 Antioxidant Pathway. Cell Mol Gastroenterol Hepatol. 2021;11:1369-1385 pubmed 出版商
  227. Fell S, Wang Z, Blanchard A, Nanthakumar C, Griffin M. Transglutaminase 2: a novel therapeutic target for idiopathic pulmonary fibrosis using selective small molecule inhibitors. Amino Acids. 2021;53:205-217 pubmed 出版商
  228. Tyagi A, Sharma S, Wu K, Wu S, Xing F, Liu Y, et al. Nicotine promotes breast cancer metastasis by stimulating N2 neutrophils and generating pre-metastatic niche in lung. Nat Commun. 2021;12:474 pubmed 出版商
  229. Jing C, Duan Y, Zhou M, Yue K, Zhuo S, Li X, et al. Blockade of deubiquitinating enzyme PSMD14 overcomes chemoresistance in head and neck squamous cell carcinoma by antagonizing E2F1/Akt/SOX2-mediated stemness. Theranostics. 2021;11:2655-2669 pubmed 出版商
  230. Okawa E, Gupta M, Kahraman S, Goli P, Sakaguchi M, Hu J, et al. Essential roles of insulin and IGF-1 receptors during embryonic lineage development. Mol Metab. 2021;47:101164 pubmed 出版商
  231. Hu X, Villodre E, Larson R, Rahal O, Wang X, Gong Y, et al. Decorin-mediated suppression of tumorigenesis, invasion, and metastasis in inflammatory breast cancer. Commun Biol. 2021;4:72 pubmed 出版商
  232. Wang Y, Mohseni M, Grauel A, Diez J, Guan W, Liang S, et al. SHP2 blockade enhances anti-tumor immunity via tumor cell intrinsic and extrinsic mechanisms. Sci Rep. 2021;11:1399 pubmed 出版商
  233. Li S, Zhu Z, Xue M, Pan X, Tong G, Yi X, et al. The protective effects of fibroblast growth factor 10 against hepatic ischemia-reperfusion injury in mice. Redox Biol. 2021;40:101859 pubmed 出版商
  234. Kusakabe J, Hata K, Miyauchi H, Tajima T, Wang Y, Tamaki I, et al. Complement-5 Inhibition Deters Progression of Fulminant Hepatitis to Acute Liver Failure in Murine Models. Cell Mol Gastroenterol Hepatol. 2021;11:1351-1367 pubmed 出版商
  235. Dilshat R, Fock V, Kenny C, Gerritsen I, Lasseur R, Travnickova J, et al. MITF reprograms the extracellular matrix and focal adhesion in melanoma. elife. 2021;10: pubmed 出版商
  236. Yang J, Kitami M, Pan H, Nakamura M, Zhang H, Liu F, et al. Augmented BMP signaling commits cranial neural crest cells to a chondrogenic fate by suppressing autophagic β-catenin degradation. Sci Signal. 2021;14: pubmed 出版商
  237. Hou P, Jia P, Yang K, Li Z, Tian T, Lin Y, et al. An unconventional role of an ASB family protein in NF-κB activation and inflammatory response during microbial infection and colitis. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  238. Wanschel A, Guizoni D, Lorza Gil E, Salerno A, Paiva A, Dorighello G, et al. The Presence of Cholesteryl Ester Transfer Protein (CETP) in Endothelial Cells Generates Vascular Oxidative Stress and Endothelial Dysfunction. Biomolecules. 2021;11: pubmed 出版商
  239. Bae M, Roh J, Kim Y, Kim S, Han H, Yang E, et al. SLC6A20 transporter: a novel regulator of brain glycine homeostasis and NMDAR function. EMBO Mol Med. 2021;13:e12632 pubmed 出版商
  240. Pan S, Zhao X, Shao C, Fu B, Huang Y, Zhang N, et al. STIM1 promotes angiogenesis by reducing exosomal miR-145 in breast cancer MDA-MB-231 cells. Cell Death Dis. 2021;12:38 pubmed 出版商
  241. Xiao L, Sharma V, Toulabi L, Yang X, Lee C, Abebe D, et al. Neurotrophic factor-α1, a novel tropin is critical for the prevention of stress-induced hippocampal CA3 cell death and cognitive dysfunction in mice: comparison to BDNF. Transl Psychiatry. 2021;11:24 pubmed 出版商
  242. Miller K, Pniewski K, Perry C, Papp S, Shaffer J, Velasco Silva J, et al. Targeting ACSS2 with a Transition-State Mimetic Inhibits Triple-Negative Breast Cancer Growth. Cancer Res. 2021;81:1252-1264 pubmed 出版商
  243. Lei H, Xu H, Shan H, Liu M, Lu Y, Fang Z, et al. Targeting USP47 overcomes tyrosine kinase inhibitor resistance and eradicates leukemia stem/progenitor cells in chronic myelogenous leukemia. Nat Commun. 2021;12:51 pubmed 出版商
  244. Dong J, Viswanathan S, Adami E, Singh B, Chothani S, Ng B, et al. Hepatocyte-specific IL11 cis-signaling drives lipotoxicity and underlies the transition from NAFLD to NASH. Nat Commun. 2021;12:66 pubmed 出版商
  245. Royer Pokora B, Busch M, Tenbusch S, Schmidt M, Beier M, Woods A, et al. Comprehensive Biology and Genetics Compendium of Wilms Tumor Cell Lines with Different WT1 Mutations. Cancers (Basel). 2020;13: pubmed 出版商
  246. Li X, Zhang M, Huang X, Liang W, Li G, Lu X, et al. Ubiquitination of RIPK1 regulates its activation mediated by TNFR1 and TLRs signaling in distinct manners. Nat Commun. 2020;11:6364 pubmed 出版商
  247. Kushioka J, Kaito T, Okada R, Ishiguro H, Bal Z, Kodama J, et al. A novel negative regulatory mechanism of Smurf2 in BMP/Smad signaling in bone. Bone Res. 2020;8:41 pubmed 出版商
  248. Zhang X, Gou Y, Zhang Y, Li J, Han K, Xu Y, et al. Hepcidin overexpression in astrocytes alters brain iron metabolism and protects against amyloid-β induced brain damage in mice. Cell Death Discov. 2020;6:113 pubmed 出版商
  249. Jiang S, Sweat S, Dahlke S, Loane K, Drossel G, Xu W, et al. Cocaine-Dependent Acquisition of Locomotor Sensitization and Conditioned Place Preference Requires D1 Dopaminergic Signaling through a Cyclic AMP, NCS-Rapgef2, ERK, and Egr-1/Zif268 Pathway. J Neurosci. 2021;41:711-725 pubmed 出版商
  250. Zhang G, Jiao Q, Shen C, Song H, Zhang H, Qiu Z, et al. Interleukin 6 regulates the expression of programmed cell death ligand 1 in thyroid cancer. Cancer Sci. 2021;112:997-1010 pubmed 出版商
  251. Lu L, Wei R, Prats Ejarque G, Goetz M, Wang G, Torrent M, et al. Human RNase3 immune modulation by catalytic-dependent and independent modes in a macrophage-cell line infection model. Cell Mol Life Sci. 2020;: pubmed 出版商
  252. Sanders S, Hernandez L, Soh H, Karnam S, Walikonis R, Tzingounis A, et al. The palmitoyl acyltransferase ZDHHC14 controls Kv1-family potassium channel clustering at the axon initial segment. elife. 2020;9: pubmed 出版商
  253. Alijaj N, Moutel S, Gouveia Z, Gray M, Roveri M, Dzhumashev D, et al. Novel FGFR4-Targeting Single-Domain Antibodies for Multiple Targeted Therapies against Rhabdomyosarcoma. Cancers (Basel). 2020;12: pubmed 出版商
  254. Xiao L, Zhong M, Huang Y, Zhu J, Tang W, Li D, et al. Puerarin alleviates osteoporosis in the ovariectomy-induced mice by suppressing osteoclastogenesis via inhibition of TRAF6/ROS-dependent MAPK/NF-κB signaling pathways. Aging (Albany NY). 2020;12:21706-21729 pubmed 出版商
  255. Myers D, Abram C, Wildes D, Belwafa A, Welsh A, Schulze C, et al. Shp1 Loss Enhances Macrophage Effector Function and Promotes Anti-Tumor Immunity. Front Immunol. 2020;11:576310 pubmed 出版商
  256. Mo J, Anastasaki C, Chen Z, Shipman T, Papke J, Yin K, et al. Humanized neurofibroma model from induced pluripotent stem cells delineates tumor pathogenesis and developmental origins. J Clin Invest. 2020;: pubmed 出版商
  257. Kumar V, Ali Shariati M, Mesentier Louro L, Jinsook Oh A, Russano K, Goldberg J, et al. Dual Specific Phosphatase 14 Deletion Rescues Retinal Ganglion Cells and Optic Nerve Axons after Experimental Anterior Ischemic Optic Neuropathy. Curr Eye Res. 2021;46:710-718 pubmed 出版商
  258. Chen K, Yoshimura T, Yao X, Gong W, Huang J, Dzutsev A, et al. Distinct contributions of cathelin-related antimicrobial peptide (CRAMP) derived from epithelial cells and macrophages to colon mucosal homeostasis. J Pathol. 2021;253:339-350 pubmed 出版商
  259. Sünderhauf A, Raschdorf A, Hicken M, Schlichting H, Fetzer F, Brethack A, et al. GC1qR Cleavage by Caspase-1 Drives Aerobic Glycolysis in Tumor Cells. Front Oncol. 2020;10:575854 pubmed 出版商
  260. Kasuga A, Semba T, Sato R, Nobusue H, Sugihara E, Takaishi H, et al. Oncogenic KRAS-expressing organoids with biliary epithelial stem cell properties give rise to biliary tract cancer in mice. Cancer Sci. 2021;112:1822-1838 pubmed 出版商
  261. Yan J, Bengtson C, Buchthal B, Hagenston A, Bading H. Coupling of NMDA receptors and TRPM4 guides discovery of unconventional neuroprotectants. Science. 2020;370: pubmed 出版商
  262. Huang Y, Liang C, Ritz D, Coelho R, Septiadi D, Estermann M, et al. Collagen-rich omentum is a premetastatic niche for integrin α2-mediated peritoneal metastasis. elife. 2020;9: pubmed 出版商
  263. Li M, Xie Z, Li J, Lin J, Zheng G, Liu W, et al. GAS5 protects against osteoporosis by targeting UPF1/SMAD7 axis in osteoblast differentiation. elife. 2020;9: pubmed 出版商
  264. Cheng C, Wooten J, Gibbs Z, McGlynn K, Mishra P, Whitehurst A. Sperm-specific COX6B2 enhances oxidative phosphorylation, proliferation, and survival in human lung adenocarcinoma. elife. 2020;9: pubmed 出版商
  265. Zhu W, Liu C, Lu T, Zhang Y, Zhang S, Chen Q, et al. Knockout of EGFL6 by CRISPR/Cas9 Mediated Inhibition of Tumor Angiogenesis in Ovarian Cancer. Front Oncol. 2020;10:1451 pubmed 出版商
  266. Wang B, Li Q, Wang J, Zhao S, Nashun B, Qin L, et al. Plasmodium infection inhibits tumor angiogenesis through effects on tumor-associated macrophages in a murine implanted hepatoma model. Cell Commun Signal. 2020;18:157 pubmed 出版商
  267. Chen Y, Li J, Ma B, Li N, Wang S, Sun Z, et al. MSC-derived exosomes promote recovery from traumatic brain injury via microglia/macrophages in rat. Aging (Albany NY). 2020;12:18274-18296 pubmed 出版商
  268. Shaaya M, Fauser J, Zhurikhina A, Conage Pough J, Huyot V, Brennan M, et al. Light-regulated allosteric switch enables temporal and subcellular control of enzyme activity. elife. 2020;9: pubmed 出版商
  269. Leinonen H, Pham N, Boyd T, Santoso J, Palczewski K, Vinberg F. Homeostatic plasticity in the retina is associated with maintenance of night vision during retinal degenerative disease. elife. 2020;9: pubmed 出版商
  270. Pati S, Saba K, Salvi S, Tiwari P, Chaudhari P, Verma V, et al. Chronic postnatal chemogenetic activation of forebrain excitatory neurons evokes persistent changes in mood behavior. elife. 2020;9: pubmed 出版商
  271. Kumar A, Xie L, Ta C, Hinton A, Gunasekar S, Minerath R, et al. SWELL1 regulates skeletal muscle cell size, intracellular signaling, adiposity and glucose metabolism. elife. 2020;9: pubmed 出版商
  272. Rogerson C, Ogden S, Britton E, Ang Y, Sharrocks A. Repurposing of KLF5 activates a cell cycle signature during the progression from a precursor state to oesophageal adenocarcinoma. elife. 2020;9: pubmed 出版商
  273. Dai C, Li Q, May H, Li C, Zhang G, Sharma G, et al. Lactate Dehydrogenase A Governs Cardiac Hypertrophic Growth in Response to Hemodynamic Stress. Cell Rep. 2020;32:108087 pubmed 出版商
  274. Wakashin H, Heymann J, Roshanravan H, Daneshpajouhnejad P, Rosenberg A, Shin M, et al. APOL1 renal risk variants exacerbate podocyte injury by increasing inflammatory stress. BMC Nephrol. 2020;21:371 pubmed 出版商
  275. Lee T, Yeh C, Lee Y, Shih Y, Chen Y, Hung C, et al. Fibroblast-enriched endoplasmic reticulum protein TXNDC5 promotes pulmonary fibrosis by augmenting TGFβ signaling through TGFBR1 stabilization. Nat Commun. 2020;11:4254 pubmed 出版商
  276. Sun R, Hedl M, Abraham C. TNFSF15 Promotes Antimicrobial Pathways in Human Macrophages and These Are Modulated by TNFSF15 Disease-Risk Variants. Cell Mol Gastroenterol Hepatol. 2021;11:249-272 pubmed 出版商
  277. Teramura Y, Tanaka M, Yamazaki Y, Yamashita K, Takazawa Y, Ae K, et al. Identification of Novel Fusion Genes in Bone and Soft Tissue Sarcoma and Their Implication in the Generation of a Mouse Model. Cancers (Basel). 2020;12: pubmed 出版商
  278. Jing J, Ding N, Wang D, Ge X, Ma J, Ma R, et al. Oxidized-LDL inhibits testosterone biosynthesis by affecting mitochondrial function and the p38 MAPK/COX-2 signaling pathway in Leydig cells. Cell Death Dis. 2020;11:626 pubmed 出版商
  279. Sun Z, Ji N, Ma Q, Zhu R, Chen Z, Wang Z, et al. Epithelial-Mesenchymal Transition in Asthma Airway Remodeling Is Regulated by the IL-33/CD146 Axis. Front Immunol. 2020;11:1598 pubmed 出版商
  280. Banik S, Pedram K, Wisnovsky S, Ahn G, Riley N, Bertozzi C. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature. 2020;584:291-297 pubmed 出版商
  281. Bhaskar A, Kumar S, Khan M, Singh A, Dwivedi V, Nandicoori V. Host sirtuin 2 as an immunotherapeutic target against tuberculosis. elife. 2020;9: pubmed 出版商
  282. Eyler C, Matsunaga H, Hovestadt V, Vantine S, van Galen P, Bernstein B. Single-cell lineage analysis reveals genetic and epigenetic interplay in glioblastoma drug resistance. Genome Biol. 2020;21:174 pubmed 出版商
  283. Au C, Furness J, Britt K, Oshchepkova S, Ladumor H, Soo K, et al. Three-dimensional growth of breast cancer cells potentiates the anti-tumor effects of unacylated ghrelin and AZP-531. elife. 2020;9: pubmed 出版商
  284. Ozcan G, Lim S, Leighton P, Allison W, Rihel J. Sleep is bi-directionally modified by amyloid beta oligomers. elife. 2020;9: pubmed 出版商
  285. Kim K, Gibboney S, Razy Krajka F, Lowe E, Wang W, Stolfi A. Regulation of Neurogenesis by FGF Signaling and Neurogenin in the Invertebrate Chordate Ciona. Front Cell Dev Biol. 2020;8:477 pubmed 出版商
  286. Yu W, Hua Y, Qiu H, Hao J, Zou K, Li Z, et al. PD-L1 promotes tumor growth and progression by activating WIP and β-catenin signaling pathways and predicts poor prognosis in lung cancer. Cell Death Dis. 2020;11:506 pubmed 出版商
  287. Chabloz A, Schaefer J, Kozieradzki I, Cronin S, Strebinger D, Macaluso F, et al. Salmonella-based platform for efficient delivery of functional binding proteins to the cytosol. Commun Biol. 2020;3:342 pubmed 出版商
  288. Sato T, Verma S, Andrade C, Omeara M, Campbell N, Wang J, et al. A FAK/HDAC5 signaling axis controls osteocyte mechanotransduction. Nat Commun. 2020;11:3282 pubmed 出版商
  289. Sato K, Hikita H, Myojin Y, Fukumoto K, Murai K, Sakane S, et al. Hyperglycemia enhances pancreatic cancer progression accompanied by elevations in phosphorylated STAT3 and MYC levels. PLoS ONE. 2020;15:e0235573 pubmed 出版商
  290. Ta H, Dworak N, Ivey M, Roller D, Gioeli D. AR phosphorylation and CHK2 kinase activity regulates IR-stabilized AR-CHK2 interaction and prostate cancer survival. elife. 2020;9: pubmed 出版商
  291. Koundouros N, Karali E, Tripp A, Valle A, Inglese P, Perry N, et al. Metabolic Fingerprinting Links Oncogenic PIK3CA with Enhanced Arachidonic Acid-Derived Eicosanoids. Cell. 2020;181:1596-1611.e27 pubmed 出版商
  292. Saoud R, Jaffa M, Habib A, Zhao J, Al Hariri M, Zhu R, et al. Modulation of proteomic and inflammatory signals by Bradykinin in podocytes. J Adv Res. 2020;24:409-422 pubmed 出版商
  293. Wang T, Cao Z, Shen Z, Yang J, Chen X, Yang Z, et al. Existence and functions of a kisspeptin neuropeptide signaling system in a non-chordate deuterostome species. elife. 2020;9: pubmed 出版商
  294. Lechertier T, Reynolds L, Kim H, Pedrosa A, Gómez Escudero J, Muñoz Félix J, et al. Pericyte FAK negatively regulates Gas6/Axl signalling to suppress tumour angiogenesis and tumour growth. Nat Commun. 2020;11:2810 pubmed 出版商
  295. Bi H, Zhang X, Zhang Y, Xie X, Xia Y, Du J, et al. The deubiquitinase UCHL1 regulates cardiac hypertrophy by stabilizing epidermal growth factor receptor. Sci Adv. 2020;6:eaax4826 pubmed 出版商
  296. Liao T, Lin C, Jiang J, Yang S, Teng H, Yang M. Harnessing stemness and PD-L1 expression by AT-rich interaction domain-containing protein 3B in colorectal cancer. Theranostics. 2020;10:6095-6112 pubmed 出版商
  297. Valbuena Perez J, Linnenberger R, Dembek A, Bruscoli S, Riccardi C, Schulz M, et al. Altered glucocorticoid metabolism represents a feature of macroph-aging. Aging Cell. 2020;19:e13156 pubmed 出版商
  298. Chakrabarti M, Al Sammarraie N, Gebere M, Bhattacharya A, Chopra S, Johnson J, et al. Transforming Growth Factor Beta3 is Required for Cardiovascular Development. J Cardiovasc Dev Dis. 2020;7: pubmed 出版商
  299. Izumi H, Wang Z, Goto Y, Ando T, Wu X, Zhang X, et al. Pathway-Specific Genome Editing of PI3K/mTOR Tumor Suppressor Genes Reveals that PTEN Loss Contributes to Cetuximab Resistance in Head and Neck Cancer. Mol Cancer Ther. 2020;19:1562-1571 pubmed 出版商
  300. Feng Y, Mischler W, Gurung A, Kavanagh T, Androsov G, Sadow P, et al. Therapeutic Targeting of the Secreted Lysophospholipase D Autotaxin Suppresses Tuberous Sclerosis Complex-Associated Tumorigenesis. Cancer Res. 2020;80:2751-2763 pubmed 出版商
  301. Cooper H, Cicalese S, Preston K, Kawai T, Okuno K, Choi E, et al. Targeting mitochondrial fission as a potential therapeutic for abdominal aortic aneurysm. Cardiovasc Res. 2021;117:971-982 pubmed 出版商
  302. Du T, Yan Z, Zhu S, Chen G, Wang L, Ye Z, et al. QKI deficiency leads to osteoporosis by promoting RANKL-induced osteoclastogenesis and disrupting bone metabolism. Cell Death Dis. 2020;11:330 pubmed 出版商
  303. Kong Y, Xu S. Juglanin administration protects skin against UVB‑induced injury by reducing Nrf2‑dependent ROS generation. Int J Mol Med. 2020;46:67-82 pubmed 出版商
  304. Simula L, Corrado M, Accordi B, Di Rita A, Nazio F, Antonucci Y, et al. JNK1 and ERK1/2 modulate lymphocyte homeostasis via BIM and DRP1 upon AICD induction. Cell Death Differ. 2020;: pubmed 出版商
  305. Chen S, Zhang H, Li J, Shi J, Tang H, Zhang Y, et al. Tripartite Motif-Containing 27 Attenuates Liver Ischemia/Reperfusion Injury by Suppressing Transforming Growth Factor β-Activated Kinase 1 (TAK1) by TAK1 Binding Protein 2/3 Degradation. Hepatology. 2021;73:738-758 pubmed 出版商
  306. Fulgenzi G, Hong Z, Tomassoni Ardori F, Barella L, Becker J, Barrick C, et al. Novel metabolic role for BDNF in pancreatic β-cell insulin secretion. Nat Commun. 2020;11:1950 pubmed 出版商
  307. Bozic M, Caus M, Rodrigues Díez R, Pedraza N, Ruiz Ortega M, Garí E, et al. Protective role of renal proximal tubular alpha-synuclein in the pathogenesis of kidney fibrosis. Nat Commun. 2020;11:1943 pubmed 出版商
  308. Bogucka K, Pompaiah M, Marini F, Binder H, Harms G, Kaulich M, et al. ERK3/MAPK6 controls IL-8 production and chemotaxis. elife. 2020;9: pubmed 出版商
  309. Gao Q, Ouyang W, Kang B, Han X, Xiong Y, Ding R, et al. Selective targeting of the oncogenic KRAS G12S mutant allele by CRISPR/Cas9 induces efficient tumor regression. Theranostics. 2020;10:5137-5153 pubmed 出版商
  310. Wu P, Hong S, Starenki D, Oshima K, Shao H, Gestwicki J, et al. Mortalin/HSPA9 targeting selectively induces KRAS tumor cell death by perturbing mitochondrial membrane permeability. Oncogene. 2020;39:4257-4270 pubmed 出版商
  311. Du T, Zhu G, Chen Y, Shi L, Liu D, Liu Y, et al. Anterior thalamic nucleus stimulation protects hippocampal neurons by activating autophagy in epileptic monkeys. Aging (Albany NY). 2020;12:6324-6339 pubmed 出版商
  312. Alajati A, D Ambrosio M, Troiani M, Mosole S, Pellegrini L, Chen J, et al. CDCP1 overexpression drives prostate cancer progression and can be targeted in vivo. J Clin Invest. 2020;130:2435-2450 pubmed 出版商
  313. Tian Q, Yuan P, Quan C, Li M, Xiao J, Zhang L, et al. Phosphorylation of BCKDK of BCAA catabolism at Y246 by Src promotes metastasis of colorectal cancer. Oncogene. 2020;39:3980-3996 pubmed 出版商
  314. Huang C, Lu S, Huang T, Huang B, Sun H, Yang S, et al. FGF9 induces functional differentiation to Schwann cells from human adipose derived stem cells. Theranostics. 2020;10:2817-2831 pubmed 出版商
  315. Inoue S, Tsunoda T, Riku M, Ito H, Inoko A, Murakami H, et al. Diffuse mesothelin expression leads to worse prognosis through enhanced cellular proliferation in colorectal cancer. Oncol Lett. 2020;19:1741-1750 pubmed 出版商
  316. Yeom J, Ma S, Lim Y. Oxyresveratrol Induces Autophagy via the ER Stress Signaling Pathway, and Oxyresveratrol-Induced Autophagy Stimulates MUC2 Synthesis in Human Goblet Cells. Antioxidants (Basel). 2020;9: pubmed 出版商
  317. Alshehri B, Pagnin M, Lee J, Petratos S, Richardson S. The Role of Transthyretin in Oligodendrocyte Development. Sci Rep. 2020;10:4189 pubmed 出版商
  318. Chen Q, Zhou Y, Zhou L, Fu Z, Yang C, Zhao L, et al. TRPC6-dependent Ca2+ signaling mediates airway inflammation in response to oxidative stress via ERK pathway. Cell Death Dis. 2020;11:170 pubmed 出版商
  319. Gallo S, Spilinga M, Albano R, Ferrauto G, Di Gregorio E, Casanova E, et al. Activation of the MET receptor attenuates doxorubicin-induced cardiotoxicity in vivo and in vitro. Br J Pharmacol. 2020;177:3107-3122 pubmed 出版商
  320. Fu Y, Ding Y, Wang Q, Zhu F, Tan Y, Lu X, et al. Blood-stage malaria parasites manipulate host innate immune responses through the induction of sFGL2. Sci Adv. 2020;6:eaay9269 pubmed 出版商
  321. Chen F, Jiang G, Liu H, Li Z, Pei Y, Wang H, et al. Melatonin alleviates intervertebral disc degeneration by disrupting the IL-1β/NF-κB-NLRP3 inflammasome positive feedback loop. Bone Res. 2020;8:10 pubmed 出版商
  322. Howell M, Green R, Khalil R, Foran E, Quarni W, Nair R, et al. Lung cancer cells survive epidermal growth factor receptor tyrosine kinase inhibitor exposure through upregulation of cholesterol synthesis. FASEB Bioadv. 2020;2:90-105 pubmed 出版商
  323. Schiffner R, Bischoff S, Lehmann T, Irintchev A, Nistor M, Lemke C, et al. Altered Cerebral Blood Flow and Potential Neuroprotective Effect of Human Relaxin-2 (Serelaxin) During Hypoxia or Severe Hypovolemia in a Sheep Model. Int J Mol Sci. 2020;21: pubmed 出版商
  324. Vigouroux R, Cesar Q, Chedotal A, Nguyen Ba Charvet K. Revisiting the role of Dcc in visual system development with a novel eye clearing method. elife. 2020;9: pubmed 出版商
  325. Xu H, Du X, Xu J, Zhang Y, Tian Y, Liu G, et al. Pancreatic β cell microRNA-26a alleviates type 2 diabetes by improving peripheral insulin sensitivity and preserving β cell function. PLoS Biol. 2020;18:e3000603 pubmed 出版商
  326. Duplaquet L, Leroy C, Vinchent A, Paget S, Lefebvre J, Vanden Abeele F, et al. Control of cell death/survival balance by the MET dependence receptor. elife. 2020;9: pubmed 出版商
  327. Ailiken G, Kitamura K, Hoshino T, Satoh M, Tanaka N, Minamoto T, et al. Post-transcriptional regulation of BRG1 by FIRΔexon2 in gastric cancer. Oncogenesis. 2020;9:26 pubmed 出版商
  328. Lu G, Li L, Wang B, Kuang L. LINC00623/miR-101/HRAS axis modulates IL-1β-mediated ECM degradation, apoptosis and senescence of osteoarthritis chondrocytes. Aging (Albany NY). 2020;12:3218-3237 pubmed 出版商
  329. Haag A, Walser M, Henggeler A, Hajnal A. The CHORD protein CHP-1 regulates EGF receptor trafficking and signaling in C. elegans and in human cells. elife. 2020;9: pubmed 出版商
  330. Shibahara T, Ago T, Nakamura K, Tachibana M, Yoshikawa Y, Komori M, et al. Pericyte-Mediated Tissue Repair through PDGFRβ Promotes Peri-Infarct Astrogliosis, Oligodendrogenesis, and Functional Recovery after Acute Ischemic Stroke. Eneuro. 2020;7: pubmed 出版商
  331. Guo X, Kolpakov M, Hooshdaran B, Schappell W, Wang T, Eguchi S, et al. Cardiac Expression of Factor X Mediates Cardiac Hypertrophy and Fibrosis in Pressure Overload. JACC Basic Transl Sci. 2020;5:69-83 pubmed 出版商
  332. Zheng J, Qu D, Wang C, Ding L, Zhou W. Involvement of CXCL12/CXCR4 in the motility of human first-trimester endometrial epithelial cells through an autocrine mechanism by activating PI3K/AKT signaling. BMC Pregnancy Childbirth. 2020;20:87 pubmed 出版商
  333. Lu C, Wei Y, Wang X, Zhang Z, Yin J, Li W, et al. DNA-methylation-mediated activating of lncRNA SNHG12 promotes temozolomide resistance in glioblastoma. Mol Cancer. 2020;19:28 pubmed 出版商
  334. Gu Y, Zhu Z, Pei H, Xu D, Jiang Y, Zhang L, et al. Long non-coding RNA NNT-AS1 promotes cholangiocarcinoma cells proliferation and epithelial-to-mesenchymal transition through down-regulating miR-203. Aging (Albany NY). 2020;12:2333-2346 pubmed 出版商
  335. Mukherjee A, Singh R, Udayan S, Biswas S, Reddy P, Manmadhan S, et al. A Fyn biosensor reveals pulsatile, spatially localized kinase activity and signaling crosstalk in live mammalian cells. elife. 2020;9: pubmed 出版商
  336. Xu F, Liu Z, Liu R, Lu C, Wang L, Mao W, et al. Epigenetic induction of tumor stemness via the lipopolysaccharide-TET3-HOXB2 signaling axis in esophageal squamous cell carcinoma. Cell Commun Signal. 2020;18:17 pubmed 出版商
  337. Wu Q, Li G, Wen C, Zeng T, Fan Y, Liu C, et al. Monoubiquitination of p120-catenin is essential for TGFβ-induced epithelial-mesenchymal transition and tumor metastasis. Sci Adv. 2020;6:eaay9819 pubmed 出版商
  338. Xhima K, Markham Coultes K, Nedev H, Heinen S, Saragovi H, Hynynen K, et al. Focused ultrasound delivery of a selective TrkA agonist rescues cholinergic function in a mouse model of Alzheimer's disease. Sci Adv. 2020;6:eaax6646 pubmed 出版商
  339. Lin L, Li Y, Liu M, Li Q, Liu Q, Li R. The Interleukin-33/ST2 axis promotes glioma mesenchymal transition, stemness and TMZ resistance via JNK activation. Aging (Albany NY). 2020;12:1685-1703 pubmed 出版商
  340. Laboute T, Gandia J, Pellissier L, Corde Y, Rebeillard F, Gallo M, et al. The orphan receptor GPR88 blunts the signaling of opioid receptors and multiple striatal GPCRs. elife. 2020;9: pubmed 出版商
  341. Vetuschi A, Pompili S, Di Marco G, Calvaruso F, Iacomino E, Angelosante L, et al. Can the AGE/RAGE/ERK signalling pathway and the epithelial-to-mesenchymal transition interact in the pathogenesis of chronic rhinosinusitis with nasal polyps?. Eur J Histochem. 2020;64: pubmed 出版商
  342. Ricci B, Millner T, Pomella N, Zhang X, Guglielmi L, Badodi S, et al. Polycomb-mediated repression of EphrinA5 promotes growth and invasion of glioblastoma. Oncogene. 2020;39:2523-2538 pubmed 出版商
  343. Veith C, Neghabian D, Luitel H, Wilhelm J, Egemnazarov B, Muntanjohl C, et al. FHL-1 is not involved in pressure overload-induced maladaptive right ventricular remodeling and dysfunction. Basic Res Cardiol. 2020;115:17 pubmed 出版商
  344. Kennedy S, Jarboui M, Srihari S, Raso C, Bryan K, Dernayka L, et al. Extensive rewiring of the EGFR network in colorectal cancer cells expressing transforming levels of KRASG13D. Nat Commun. 2020;11:499 pubmed 出版商
  345. Yang Y, Luo M, Zhang K, Zhang J, Gao T, Connell D, et al. Nedd4 ubiquitylates VDAC2/3 to suppress erastin-induced ferroptosis in melanoma. Nat Commun. 2020;11:433 pubmed 出版商
  346. Yue D, Zhao J, Chen H, Guo M, Chen C, Zhou Y, et al. MicroRNA-7, synergizes with RORα, negatively controls the pathology of brain tissue inflammation. J Neuroinflammation. 2020;17:28 pubmed 出版商
  347. Goswami D, Chen D, Yang Y, Gudla P, Columbus J, Worthy K, et al. Membrane interactions of the globular domain and the hypervariable region of KRAS4b define its unique diffusion behavior. elife. 2020;9: pubmed 出版商
  348. Inda M, Joshi S, Wang T, Bolaender A, Gandu S, Koren Iii J, et al. The epichaperome is a mediator of toxic hippocampal stress and leads to protein connectivity-based dysfunction. Nat Commun. 2020;11:319 pubmed 出版商
  349. Buhl E, Djudjaj S, Klinkhammer B, Ermert K, Puelles V, Lindenmeyer M, et al. Dysregulated mesenchymal PDGFR-β drives kidney fibrosis. EMBO Mol Med. 2020;12:e11021 pubmed 出版商
  350. Mus L, Lambertz I, Claeys S, Kumps C, Van Loocke W, Van Neste C, et al. The ETS transcription factor ETV5 is a target of activated ALK in neuroblastoma contributing to increased tumour aggressiveness. Sci Rep. 2020;10:218 pubmed 出版商
  351. Han C, Liu Y, Sui Y, Chen N, Du T, Jiang Y, et al. Integrated transcriptome expression profiling reveals a novel lncRNA associated with L-DOPA-induced dyskinesia in a rat model of Parkinson's disease. Aging (Albany NY). 2020;12:718-739 pubmed 出版商
  352. Cai H, Han B, Hu Y, Zhao X, He Z, Chen X, et al. Metformin attenuates the D‑galactose‑induced aging process via the UPR through the AMPK/ERK1/2 signaling pathways. Int J Mol Med. 2020;45:715-730 pubmed 出版商
  353. Mlyczynska E, Kurowska P, Drwal E, Opydo Chanek M, Tworzydło W, Kotula Balak M, et al. Apelin and apelin receptor in human placenta: Expression, signalling pathway and regulation of trophoblast JEG‑3 and BeWo cells proliferation and cell cycle. Int J Mol Med. 2020;45:691-702 pubmed 出版商
  354. Hong Z, Wang Z, Zhou B, Wang J, Tong H, Liao Y, et al. Effects of evodiamine on PI3K/Akt and MAPK/ERK signaling pathways in pancreatic cancer cells. Int J Oncol. 2020;56:783-793 pubmed 出版商
  355. Chen M, Zhao Z, Meng Q, Liang P, Su Z, Wu Y, et al. TRIM14 Promotes Noncanonical NF-κB Activation by Modulating p100/p52 Stability via Selective Autophagy. Adv Sci (Weinh). 2020;7:1901261 pubmed 出版商
  356. Liu T, Han S, Dai Q, Zheng J, Liu C, Li S, et al. IL-17A-Mediated Excessive Autophagy Aggravated Neuronal Ischemic Injuries via Src-PP2B-mTOR Pathway. Front Immunol. 2019;10:2952 pubmed 出版商
  357. Li Y, Xu S, Xu Q, Chen Y. Clostridium difficile toxin B induces colonic inflammation through the TRIM46/DUSP1/MAPKs and NF-κB signalling pathway. Artif Cells Nanomed Biotechnol. 2020;48:452-462 pubmed 出版商
  358. Xue J, Zhao Y, Aronowitz J, Mai T, Vides A, Qeriqi B, et al. Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition. Nature. 2020;577:421-425 pubmed 出版商
  359. Zhang C, Lin X, Zhao Q, Wang Y, Jiang F, Ji C, et al. YARS as an oncogenic protein that promotes gastric cancer progression through activating PI3K-Akt signaling. J Cancer Res Clin Oncol. 2020;146:329-342 pubmed 出版商
  360. Zhou Z, Zhou Q, Wu X, Xu S, Hu X, Tao X, et al. VCAM-1 secreted from cancer-associated fibroblasts enhances the growth and invasion of lung cancer cells through AKT and MAPK signaling. Cancer Lett. 2020;473:62-73 pubmed 出版商
  361. Kim K, Kim J, Kim I, Seong S, Kim N. Rev-erbα Negatively Regulates Osteoclast and Osteoblast Differentiation through p38 MAPK Signaling Pathway. Mol Cells. 2020;43:34-47 pubmed 出版商
  362. Weisell J, Ohukainen P, Näpänkangas J, Ohlmeier S, Bergmann U, Peltonen T, et al. Heat shock protein 90 is downregulated in calcific aortic valve disease. BMC Cardiovasc Disord. 2019;19:306 pubmed 出版商
  363. Huang X, Ni B, Xi Y, Chu X, Zhang R, You H. Protease-activated receptor 2 (PAR-2) antagonist AZ3451 as a novel therapeutic agent for osteoarthritis. Aging (Albany NY). 2019;11:12532-12545 pubmed 出版商
  364. Amendola C, Mahaffey J, Parker S, Ahearn I, Chen W, Zhou M, et al. KRAS4A directly regulates hexokinase 1. Nature. 2019;576:482-486 pubmed 出版商
  365. Zewinger S, Reiser J, Jankowski V, Alansary D, Hahm E, Triem S, et al. Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation. Nat Immunol. 2020;21:30-41 pubmed 出版商
  366. Wu Y, Chen K, Xing G, Li L, Ma B, Hu Z, et al. Phospholipid remodeling is critical for stem cell pluripotency by facilitating mesenchymal-to-epithelial transition. Sci Adv. 2019;5:eaax7525 pubmed 出版商
  367. Lee Y, Ho S, Graves J, Xiao Y, Huang S, Lin W. CGRRF1, a growth suppressor, regulates EGFR ubiquitination in breast cancer. Breast Cancer Res. 2019;21:134 pubmed 出版商
  368. Yuan M, Xie F, Xia X, Zhong K, Lian L, Zhang S, et al. UNC5C‑knockdown enhances the growth and metastasis of breast cancer cells by potentiating the integrin α6/β4 signaling pathway. Int J Oncol. 2019;: pubmed 出版商
  369. Yoon I, Nam M, Kim H, Moon H, Kim S, Jang J, et al. Glucose-dependent control of leucine metabolism by leucyl-tRNA synthetase 1. Science. 2019;: pubmed 出版商
  370. Yu H, Rimbert A, Palmer A, Toyohara T, Xia Y, Xia F, et al. GPR146 Deficiency Protects against Hypercholesterolemia and Atherosclerosis. Cell. 2019;179:1276-1288.e14 pubmed 出版商
  371. Yang X, Jiang J, Zhang C, Li Y. Baicalein restrains proliferation, migration, and invasion of human malignant melanoma cells by down-regulating colon cancer associated transcript-1. Braz J Med Biol Res. 2019;52:e8934 pubmed 出版商
  372. Moya I, Castaldo S, Van den Mooter L, Soheily S, Sansores Garcia L, Jacobs J, et al. Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science. 2019;366:1029-1034 pubmed 出版商
  373. Kim D, Choi J, Jo I, Kim M, Lee H, Hong S, et al. Berberine ameliorates lipopolysaccharide‑induced inflammatory responses in mouse inner medullary collecting duct‑3 cells by downregulation of NF‑κB pathway. Mol Med Rep. 2020;21:258-266 pubmed 出版商
  374. Zeng H, Castillo Cabrera J, Manser M, Lu B, Yang Z, Strande V, et al. Genome-wide CRISPR screening reveals genetic modifiers of mutant EGFR dependence in human NSCLC. elife. 2019;8: pubmed 出版商
  375. Sarek G, Kotsantis P, Ruis P, Van Ly D, Margalef P, Borel V, et al. CDK phosphorylation of TRF2 controls t-loop dynamics during the cell cycle. Nature. 2019;: pubmed 出版商
  376. Ahlers L, Trammell C, Carrell G, Mackinnon S, Torrevillas B, Chow C, et al. Insulin Potentiates JAK/STAT Signaling to Broadly Inhibit Flavivirus Replication in Insect Vectors. Cell Rep. 2019;29:1946-1960.e5 pubmed 出版商
  377. Thirugnanam K, Cossette S, Lu Q, Chowdhury S, Harmann L, Gupta A, et al. Cardiomyocyte-Specific Snrk Prevents Inflammation in the Heart. J Am Heart Assoc. 2019;8:e012792 pubmed 出版商
  378. Hellinger J, Hüchel S, Goetz L, Bauerschmitz G, Emons G, Gründker C. Inhibition of CYR61-S100A4 Axis Limits Breast Cancer Invasion. Front Oncol. 2019;9:1074 pubmed 出版商
  379. Tracey N, Creedon H, Kemp A, Culley J, Muir M, Klinowska T, et al. HO-1 drives autophagy as a mechanism of resistance against HER2-targeted therapies. Breast Cancer Res Treat. 2020;179:543-555 pubmed 出版商
  380. VASAN N, Razavi P, Johnson J, Shao H, Shah H, Antoine A, et al. Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3Kα inhibitors. Science. 2019;366:714-723 pubmed 出版商
  381. Hamilton W, Mosesson Y, Monteiro R, Emdal K, Knudsen T, Francavilla C, et al. Dynamic lineage priming is driven via direct enhancer regulation by ERK. Nature. 2019;: pubmed 出版商
  382. Liu P, Tee A, Milazzo G, Hannan K, Maag J, Mondal S, et al. The long noncoding RNA lncNB1 promotes tumorigenesis by interacting with ribosomal protein RPL35. Nat Commun. 2019;10:5026 pubmed 出版商
  383. Canon J, Rex K, Saiki A, Mohr C, Cooke K, Bagal D, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575:217-223 pubmed 出版商
  384. Yan D, Wang J, Sun H, Zamani A, Zhang H, Chen W, et al. TIPE2 specifies the functional polarization of myeloid-derived suppressor cells during tumorigenesis. J Exp Med. 2020;217: pubmed 出版商
  385. Jiao W, Ji J, Xu W, Bu W, Zheng Y, Ma A, et al. Distinct downstream signaling and the roles of VEGF and PlGF in high glucose-mediated injuries of human retinal endothelial cells in culture. Sci Rep. 2019;9:15339 pubmed 出版商
  386. Lin F, Meng X, Guo Y, Cao W, Liu W, Xia Q, et al. Epigenetic initiation of the TH17 differentiation program is promoted by Cxxc finger protein 1. Sci Adv. 2019;5:eaax1608 pubmed 出版商
  387. Wu W, Piao H, Wu F, Han Y, An D, Wu Y, et al. Yu Jin Pulvis inhibits carbon tetrachloride-induced liver fibrosis by blocking the MAPK and PI3K/Akt signaling pathways. Am J Transl Res. 2019;11:5998-6006 pubmed
  388. Kondo Y, Ognjenovic J, Banerjee S, Karandur D, Merk A, Kulhanek K, et al. Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases. Science. 2019;366:109-115 pubmed 出版商
  389. Veschi V, Mangiapane L, Nicotra A, Di Franco S, Scavo E, Apuzzo T, et al. Targeting chemoresistant colorectal cancer via systemic administration of a BMP7 variant. Oncogene. 2020;39:987-1003 pubmed 出版商
  390. Lundby A, Franciosa G, Emdal K, Refsgaard J, Gnosa S, Bekker Jensen D, et al. Oncogenic Mutations Rewire Signaling Pathways by Switching Protein Recruitment to Phosphotyrosine Sites. Cell. 2019;179:543-560.e26 pubmed 出版商
  391. Zhang L, Zheng C, Sun Z, Wang H, Wang F. Long non-coding RNA urothelial cancer associated 1 can regulate the migration and invasion of colorectal cancer cells (SW480) via myocardin-related transcription factor-A. Oncol Lett. 2019;18:4185-4193 pubmed 出版商
  392. Gomes A, Ilter D, Low V, Rosenzweig A, Shen Z, Schild T, et al. Dynamic Incorporation of Histone H3 Variants into Chromatin Is Essential for Acquisition of Aggressive Traits and Metastatic Colonization. Cancer Cell. 2019;36:402-417.e13 pubmed 出版商
  393. Wang H, Wei Y, Pu Y, Jiang D, Jiang X, Zhang Y, et al. Brain-derived neurotrophic factor stimulation of T-type Ca2+ channels in sensory neurons contributes to increased peripheral pain sensitivity. Sci Signal. 2019;12: pubmed 出版商
  394. Wang Q, Yang Q, Zhang A, Kang Z, Wang Y, Zhang Z. Silencing of SPARC represses heterotopic ossification via inhibition of the MAPK signaling pathway. Biosci Rep. 2019;39: pubmed 出版商
  395. Majer O, Liu B, Kreuk L, Krogan N, Barton G. UNC93B1 recruits syntenin-1 to dampen TLR7 signalling and prevent autoimmunity. Nature. 2019;575:366-370 pubmed 出版商
  396. Linnebacher A, Mayer P, Marnet N, Bergmann F, Herpel E, Revia S, et al. Interleukin 21 Receptor/Ligand Interaction Is Linked to Disease Progression in Pancreatic Cancer. Cells. 2019;8: pubmed 出版商
  397. Li J, Shang G, Chen Y, Brautigam C, Liou J, Zhang X, et al. Cryo-EM analyses reveal the common mechanism and diversification in the activation of RET by different ligands. elife. 2019;8: pubmed 出版商
  398. Zhong B, Shi D, Wu F, Wang S, Hu H, Cheng C, et al. Dynasore suppresses cell proliferation, migration, and invasion and enhances the antitumor capacity of cisplatin via STAT3 pathway in osteosarcoma. Cell Death Dis. 2019;10:687 pubmed 出版商
  399. Lai T, Wen X, Wu D, Su G, Gao Y, Chen C, et al. SIRT1 protects against urban particulate matter-induced airway inflammation. Int J Chron Obstruct Pulmon Dis. 2019;14:1741-1752 pubmed 出版商
  400. Deng Q, Li P, Che M, Liu J, Biswas S, Ma G, et al. Activation of hedgehog signaling in mesenchymal stem cells induces cartilage and bone tumor formation via Wnt/β-Catenin. elife. 2019;8: pubmed 出版商
  401. Xu B, Lang L, Li S, Guo J, Wang J, Yang H, et al. Microglia Activated by Excess Cortisol Induce HMGB1 Acetylation and Neuroinflammation in the Hippocampal DG Region of Mice Following Cold Exposure. Biomolecules. 2019;9: pubmed 出版商
  402. Tomassoni Ardori F, Fulgenzi G, Becker J, Barrick C, Palko M, Kuhn S, et al. Rbfox1 up-regulation impairs BDNF-dependent hippocampal LTP by dysregulating TrkB isoform expression levels. elife. 2019;8: pubmed 出版商
  403. Park M, Kim A, Manandhar S, Oh S, Jang G, Kang L, et al. CCN1 interlinks integrin and hippo pathway to autoregulate tip cell activity. elife. 2019;8: pubmed 出版商
  404. Nagpal A, Redvers R, Ling X, Ayton S, Fuentes M, Tavancheh E, et al. Neoadjuvant neratinib promotes ferroptosis and inhibits brain metastasis in a novel syngeneic model of spontaneous HER2+ve breast cancer metastasis. Breast Cancer Res. 2019;21:94 pubmed 出版商
  405. Sang D, Pinglay S, Wiewiora R, Selvan M, Lou H, Chodera J, et al. Ancestral reconstruction reveals mechanisms of ERK regulatory evolution. elife. 2019;8: pubmed 出版商
  406. Zhao J, Peng W, Ran Y, Ge H, Zhang C, Zou H, et al. Dysregulated expression of ACTN4 contributes to endothelial cell injury via the activation of the p38-MAPK/p53 apoptosis pathway in preeclampsia. J Physiol Biochem. 2019;: pubmed 出版商
  407. Sanghvi V, Leibold J, Mina M, Mohan P, Berishaj M, Li Z, et al. The Oncogenic Action of NRF2 Depends on De-glycation by Fructosamine-3-Kinase. Cell. 2019;178:807-819.e21 pubmed 出版商
  408. Eftekharzadeh B, Banduseela V, Chiesa G, Martínez Cristóbal P, Rauch J, Nath S, et al. Hsp70 and Hsp40 inhibit an inter-domain interaction necessary for transcriptional activity in the androgen receptor. Nat Commun. 2019;10:3562 pubmed 出版商
  409. Debruyne D, Dries R, Sengupta S, Seruggia D, Gao Y, Sharma B, et al. BORIS promotes chromatin regulatory interactions in treatment-resistant cancer cells. Nature. 2019;572:676-680 pubmed 出版商
  410. Menon V, Thomas R, Elgueta C, Horl M, Osborn T, Hallett P, et al. Comprehensive Cell Surface Antigen Analysis Identifies Transferrin Receptor Protein-1 (CD71) as a Negative Selection Marker for Human Neuronal Cells. Stem Cells. 2019;37:1293-1306 pubmed 出版商
  411. Wang N, Fan Y, Yuan C, Song J, Yao Y, Liu W, et al. Selective ERK1/2 agonists isolated from Melia azedarach with potent anti-leukemic activity. BMC Cancer. 2019;19:764 pubmed 出版商
  412. Gao C, Chen G, Zhang D, Zhang J, Kuan S, Hu W, et al. PYK2 Is Involved in Premalignant Acinar Cell Reprogramming and Pancreatic Ductal Adenocarcinoma Maintenance by Phosphorylating β-CateninY654. Cell Mol Gastroenterol Hepatol. 2019;8:561-578 pubmed 出版商
  413. Birtley J, Alomary M, Zanini E, Antony J, Maben Z, Weaver G, et al. Inactivating mutations and X-ray crystal structure of the tumor suppressor OPCML reveal cancer-associated functions. Nat Commun. 2019;10:3134 pubmed 出版商
  414. Reisländer T, Lombardi E, Groelly F, Miar A, Porru M, Di Vito S, et al. BRCA2 abrogation triggers innate immune responses potentiated by treatment with PARP inhibitors. Nat Commun. 2019;10:3143 pubmed 出版商
  415. Bi J, Ichu T, Zanca C, Yang H, Zhang W, Gu Y, et al. Oncogene Amplification in Growth Factor Signaling Pathways Renders Cancers Dependent on Membrane Lipid Remodeling. Cell Metab. 2019;30:525-538.e8 pubmed 出版商
  416. Colomer C, Margalef P, Villanueva A, Vert A, Pecharroman I, Sole L, et al. IKKα Kinase Regulates the DNA Damage Response and Drives Chemo-resistance in Cancer. Mol Cell. 2019;75:669-682.e5 pubmed 出版商
  417. Du F, Qiao C, Li X, Chen Z, Liu H, Wu S, et al. Forkhead box K2 promotes human colorectal cancer metastasis by upregulating ZEB1 and EGFR. Theranostics. 2019;9:3879-3902 pubmed 出版商
  418. Masson N, Keeley T, Giuntoli B, White M, Puerta M, Perata P, et al. Conserved N-terminal cysteine dioxygenases transduce responses to hypoxia in animals and plants. Science. 2019;365:65-69 pubmed 出版商
  419. Ji G, Song X, Wang L, Li Z, Wu H, Dong H. Golgi apparatus fragmentation participates in oxidized low-density lipoprotein-induced endothelial cell injury. J Cell Biochem. 2019;: pubmed 出版商
  420. Suo L, Chang X, Xu N, Ji H. The Anti-proliferative Activity of GnRH Through Downregulation of the Akt/ERK Pathways in Pancreatic Cancer. Front Endocrinol (Lausanne). 2019;10:370 pubmed 出版商
  421. Petersen C, Mahmood B, Badsted C, Dahlby T, Rasmussen H, Hansen M, et al. Possible predisposition for colorectal carcinogenesis due to altered gene expressions in normal appearing mucosa from patients with colorectal neoplasia. BMC Cancer. 2019;19:643 pubmed 出版商
  422. Bando H, Pradipta A, Iwanaga S, Okamoto T, Okuzaki D, Tanaka S, et al. CXCR4 regulates Plasmodium development in mouse and human hepatocytes. J Exp Med. 2019;: pubmed 出版商
  423. Gu C, Wang L, Zurawski S, Oh S. Signaling Cascade through DC-ASGPR Induces Transcriptionally Active CREB for IL-10 Induction and Immune Regulation. J Immunol. 2019;: pubmed 出版商
  424. Wang L, Shi H, Liu Y, Zhang W, Duan X, Li M, et al. Cystathionine‑γ‑lyase promotes the metastasis of breast cancer via the VEGF signaling pathway. Int J Oncol. 2019;55:473-487 pubmed 出版商
  425. Zhu B, Cao A, Li J, Young J, Wong J, Ashraf S, et al. Disruption of MAGI2-RapGEF2-Rap1 signaling contributes to podocyte dysfunction in congenital nephrotic syndrome caused by mutations in MAGI2. Kidney Int. 2019;: pubmed 出版商
  426. Ligorio M, Sil S, Malagon Lopez J, Nieman L, Misale S, Di Pilato M, et al. Stromal Microenvironment Shapes the Intratumoral Architecture of Pancreatic Cancer. Cell. 2019;: pubmed 出版商
  427. Genet G, Boyé K, Mathivet T, Ola R, Zhang F, Dubrac A, et al. Endophilin-A2 dependent VEGFR2 endocytosis promotes sprouting angiogenesis. Nat Commun. 2019;10:2350 pubmed 出版商
  428. Pietila M, Sahgal P, Peuhu E, Jäntti N, Paatero I, Närvä E, et al. SORLA regulates endosomal trafficking and oncogenic fitness of HER2. Nat Commun. 2019;10:2340 pubmed 出版商
  429. Rosenbaum M, Gewies A, Pechloff K, Heuser C, Engleitner T, Gehring T, et al. Bcl10-controlled Malt1 paracaspase activity is key for the immune suppressive function of regulatory T cells. Nat Commun. 2019;10:2352 pubmed 出版商
  430. Frischknecht L, Britschgi C, Galliker P, Christinat Y, Vichalkovski A, Gstaiger M, et al. BRAF inhibition sensitizes melanoma cells to α-amanitin via decreased RNA polymerase II assembly. Sci Rep. 2019;9:7779 pubmed 出版商
  431. Fazi B, Proserpio C, Galardi S, Annesi F, Cola M, Mangiola A, et al. The Expression of the Chemokine CXCL14 Correlates with Several Aggressive Aspects of Glioblastoma and Promotes Key Properties of Glioblastoma Cells. Int J Mol Sci. 2019;20: pubmed 出版商
  432. Jewell J, Fu V, Hong A, Yu F, Meng D, Melick C, et al. GPCR signaling inhibits mTORC1 via PKA phosphorylation of Raptor. elife. 2019;8: pubmed 出版商
  433. Xie X, Bi H, Lai S, Zhang Y, Li N, Cao H, et al. The immunoproteasome catalytic β5i subunit regulates cardiac hypertrophy by targeting the autophagy protein ATG5 for degradation. Sci Adv. 2019;5:eaau0495 pubmed 出版商
  434. Wang Q, Lepus C, Raghu H, Reber L, Tsai M, Wong H, et al. IgE-mediated mast cell activation promotes inflammation and cartilage destruction in osteoarthritis. elife. 2019;8: pubmed 出版商
  435. Pan C, Jin L, Wang X, Li Y, Chun J, Boese A, et al. Inositol-triphosphate 3-kinase B confers cisplatin resistance by regulating NOX4-dependent redox balance. J Clin Invest. 2019;129:2431-2445 pubmed 出版商
  436. Zhao J, Sun H, Zhang J, Wang M, Du X, Zhang J. Long non-coding RNA ANRIL down-regulates microRNA-7 to protect human trabecular meshwork cells in an experimental model for glaucoma. Eur Rev Med Pharmacol Sci. 2019;23:3173-3182 pubmed 出版商
  437. Jia Y, Li H, Wang J, Wang Y, Zhang P, Ma N, et al. Phosphorylation of 14-3-3ζ links YAP transcriptional activation to hypoxic glycolysis for tumorigenesis. Oncogenesis. 2019;8:31 pubmed 出版商
  438. Wang J, Liu Y, Liu Y, Zheng S, Wang X, Zhao J, et al. Time-resolved protein activation by proximal decaging in living systems. Nature. 2019;569:509-513 pubmed 出版商
  439. Liu Y, Li R, Chen X, Zhi Y, Deng R, Zhou E, et al. Nonmuscle Myosin Heavy Chain IIA Recognizes Sialic Acids on Sialylated RNA Viruses To Suppress Proinflammatory Responses via the DAP12-Syk Pathway. MBio. 2019;10: pubmed 出版商
  440. Carretero Ortega J, Chhangawala Z, Hunt S, Narvaez C, Menéndez González J, Gay C, et al. GIPC proteins negatively modulate Plexind1 signaling during vascular development. elife. 2019;8: pubmed 出版商
  441. Chung H, Zou X, Bajar B, Brand V, Huo Y, Alcudia J, et al. A compact synthetic pathway rewires cancer signaling to therapeutic effector release. Science. 2019;364: pubmed 出版商
  442. Fletcher Jones A, Hildick K, Evans A, Nakamura Y, Wilkinson K, Henley J. The C-terminal helix 9 motif in rat cannabinoid receptor type 1 regulates axonal trafficking and surface expression. elife. 2019;8: pubmed 出版商
  443. Xu D, Li X, Shao F, Lv G, Lv H, Lee J, et al. The protein kinase activity of fructokinase A specifies the antioxidant responses of tumor cells by phosphorylating p62. Sci Adv. 2019;5:eaav4570 pubmed 出版商
  444. Li Y, Liang R, Zhang X, Wang J, Shan C, Liu S, et al. Copper Chaperone for Superoxide Dismutase Promotes Breast Cancer Cell Proliferation and Migration via ROS-Mediated MAPK/ERK Signaling. Front Pharmacol. 2019;10:356 pubmed 出版商
  445. Lotta L, Mokrosinski J, Mendes de Oliveira E, Li C, Sharp S, Luan J, et al. Human Gain-of-Function MC4R Variants Show Signaling Bias and Protect against Obesity. Cell. 2019;177:597-607.e9 pubmed 出版商
  446. He M, Chaurushiya M, Webster J, Kummerfeld S, Reja R, Chaudhuri S, et al. Intrinsic apoptosis shapes the tumor spectrum linked to inactivation of the deubiquitinase BAP1. Science. 2019;364:283-285 pubmed 出版商
  447. Shi Y, Gao W, Lytle N, Huang P, Yuan X, Dann A, et al. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature. 2019;569:131-135 pubmed 出版商
  448. Udden S, Kwak Y, Godfrey V, Khan M, Khan S, Loof N, et al. NLRP12 suppresses hepatocellular carcinoma via downregulation of cJun N-terminal kinase activation in the hepatocyte. elife. 2019;8: pubmed 出版商
  449. Nakanishi M, Mitchell R, Benoit Y, Orlando L, Reid J, Shimada K, et al. Human Pluripotency Is Initiated and Preserved by a Unique Subset of Founder Cells. Cell. 2019;177:910-924.e22 pubmed 出版商
  450. Stock K, Borrink R, Mikesch J, Hansmeier A, Rehkämper J, Trautmann M, et al. Overexpression and Tyr421-phosphorylation of cortactin is induced by three-dimensional spheroid culturing and contributes to migration and invasion of pancreatic ductal adenocarcinoma (PDAC) cells. Cancer Cell Int. 2019;19:77 pubmed 出版商
  451. Gao L, Hu Y, Tian Y, Fan Z, Wang K, Li H, et al. Lung cancer deficient in the tumor suppressor GATA4 is sensitive to TGFBR1 inhibition. Nat Commun. 2019;10:1665 pubmed 出版商
  452. Hancock M, Meyer R, Mistry M, Khetani R, Wagschal A, Shin T, et al. Insulin Receptor Associates with Promoters Genome-wide and Regulates Gene Expression. Cell. 2019;177:722-736.e22 pubmed 出版商
  453. Wang E, Dai Z, Ferrante A, Drake C, Christiano A. A Subset of TREM2+ Dermal Macrophages Secretes Oncostatin M to Maintain Hair Follicle Stem Cell Quiescence and Inhibit Hair Growth. Cell Stem Cell. 2019;: pubmed 出版商
  454. Yao W, Rose J, Wang W, Seth S, Jiang H, Taguchi A, et al. Syndecan 1 is a critical mediator of macropinocytosis in pancreatic cancer. Nature. 2019;: pubmed 出版商
  455. Wu Y, Tan X, Liu P, Yang Y, Huang Y, Liu X, et al. ITGA6 and RPSA synergistically promote pancreatic cancer invasion and metastasis via PI3K and MAPK signaling pathways. Exp Cell Res. 2019;379:30-47 pubmed 出版商
  456. Wang S, Ni H, Chao X, Wang H, Bridges B, Kumer S, et al. Impaired TFEB-mediated lysosomal biogenesis promotes the development of pancreatitis in mice and is associated with human pancreatitis. Autophagy. 2019;15:1954-1969 pubmed 出版商
  457. Castel P, Cheng A, Cuevas Navarro A, Everman D, Papageorge A, Simanshu D, et al. RIT1 oncoproteins escape LZTR1-mediated proteolysis. Science. 2019;363:1226-1230 pubmed 出版商
  458. Diamond E, Durham B, Ulaner G, Drill E, Buthorn J, Ki M, et al. Efficacy of MEK inhibition in patients with histiocytic neoplasms. Nature. 2019;567:521-524 pubmed 出版商
  459. Mammone T, Chidlow G, Casson R, Wood J. Improved immunohistochemical detection of phosphorylated mitogen-activated protein kinases in the injured rat optic nerve head. Histochem Cell Biol. 2019;151:435-456 pubmed 出版商
  460. Tan Y, Kagan J. Innate Immune Signaling Organelles Display Natural and Programmable Signaling Flexibility. Cell. 2019;: pubmed 出版商
  461. Mentrup T, Theodorou K, Cabrera Cabrera F, Helbig A, Happ K, Gijbels M, et al. Atherogenic LOX-1 signaling is controlled by SPPL2-mediated intramembrane proteolysis. J Exp Med. 2019;: pubmed 出版商
  462. Liu Y, Wang X, Deng L, Ping L, Shi Y, Zheng W, et al. ITK inhibition induced in vitro and in vivo anti-tumor activity through downregulating TCR signaling pathway in malignant T cell lymphoma. Cancer Cell Int. 2019;19:32 pubmed 出版商
  463. Elia I, Rossi M, Stegen S, Broekaert D, Doglioni G, Van Gorsel M, et al. Breast cancer cells rely on environmental pyruvate to shape the metastatic niche. Nature. 2019;568:117-121 pubmed 出版商
  464. Yambire K, Fernández Mosquera L, Steinfeld R, Mühle C, Ikonen E, Milosevic I, et al. Mitochondrial biogenesis is transcriptionally repressed in lysosomal lipid storage diseases. elife. 2019;8: pubmed 出版商
  465. Liu Z, Wu C, Pan Y, Liu H, Wang X, Yang Y, et al. NDR2 promotes the antiviral immune response via facilitating TRIM25-mediated RIG-I activation in macrophages. Sci Adv. 2019;5:eaav0163 pubmed 出版商
  466. Vrijens P, Noppen S, Boogaerts T, Vanstreels E, Ronca R, Chiodelli P, et al. Influenza virus entry via the GM3 ganglioside-mediated platelet-derived growth factor receptor β signalling pathway. J Gen Virol. 2019;100:583-601 pubmed 出版商
  467. Li J, Liu X, Chen H, Sun Z, Chen H, Wang L, et al. Multi-targeting chemoprevention of Chinese herb formula Yanghe Huayan decoction on experimentally induced mammary tumorigenesis. BMC Complement Altern Med. 2019;19:48 pubmed 出版商
  468. Liu J, Zhu G, Jia N, Wang W, Wang Y, Yin M, et al. CD9 regulates keratinocyte migration by negatively modulating the sheddase activity of ADAM17. Int J Biol Sci. 2019;15:493-506 pubmed 出版商
  469. Zhu Y, Shi C, Bruins L, Wang X, Riggs D, Porter B, et al. Identification of lenalidomide resistance pathways in myeloma and targeted resensitization using cereblon replacement, inhibition of STAT3 or targeting of IRF4. Blood Cancer J. 2019;9:19 pubmed 出版商
  470. Nava M, Dutta P, Zemke N, Farias Eisner R, Vadgama J, Wu Y. Transcriptomic and ChIP-sequence interrogation of EGFR signaling in HER2+ breast cancer cells reveals a dynamic chromatin landscape and S100 genes as targets. BMC Med Genomics. 2019;12:32 pubmed 出版商
  471. Hayashi H, Mamun A, Takeyama M, Yamamura A, Zako M, Yagasaki R, et al. Activator of G-protein signaling 8 is involved in VEGF-induced choroidal neovascularization. Sci Rep. 2019;9:1560 pubmed 出版商
  472. Stivala S, Codilupi T, Brkic S, Baerenwaldt A, Ghosh N, Hao Shen H, et al. Targeting compensatory MEK/ERK activation increases JAK inhibitor efficacy in myeloproliferative neoplasms. J Clin Invest. 2019;130:1596-1611 pubmed 出版商
  473. Sakahara M, Okamoto T, Oyanagi J, Takano H, Natsume Y, Yamanaka H, et al. IFN/STAT signaling controls tumorigenesis and the drug response in colorectal cancer. Cancer Sci. 2019;110:1293-1305 pubmed 出版商
  474. Yin C, Zhu B, Zhang T, Liu T, Chen S, Liu Y, et al. Pharmacological Targeting of STK19 Inhibits Oncogenic NRAS-Driven Melanomagenesis. Cell. 2019;176:1113-1127.e16 pubmed 出版商
  475. Liu P, Shah R, Li Y, Arora A, Ung P, Raman R, et al. An IRAK1-PIN1 signalling axis drives intrinsic tumour resistance to radiation therapy. Nat Cell Biol. 2019;21:203-213 pubmed 出版商
  476. Dai L, Hu W, Yang Z, Chen D, He B, Chen Y, et al. Upregulated expression of HOXB7 in intrahepatic cholangiocarcinoma is associated with tumor cell metastasis and poor prognosis. Lab Invest. 2019;99:736-748 pubmed 出版商
  477. Jeong W, Park J, Kim W, Ro E, Jeon S, Lee S, et al. WDR76 is a RAS binding protein that functions as a tumor suppressor via RAS degradation. Nat Commun. 2019;10:295 pubmed 出版商
  478. Nerurkar N, Lee C, Mahadevan L, Tabin C. Molecular control of macroscopic forces drives formation of the vertebrate hindgut. Nature. 2019;565:480-484 pubmed 出版商
  479. Duan S, Koziol White C, Jester W, Nycholat C, Macauley M, Panettieri R, et al. CD33 recruitment inhibits IgE-mediated anaphylaxis and desensitizes mast cells to allergen. J Clin Invest. 2019;129:1387-1401 pubmed 出版商
  480. Jia Y, Qi Y, Wang Y, Ma X, Xu Y, Wang J, et al. Overexpression of CD59 inhibits apoptosis of T-acute lymphoblastic leukemia via AKT/Notch1 signaling pathway. Cancer Cell Int. 2019;19:9 pubmed 出版商
  481. Smith B, Wang S, Jaime Figueroa S, Harbin A, Wang J, Hamman B, et al. Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nat Commun. 2019;10:131 pubmed 出版商
  482. Choi Y, Park S, Sun Y, Yoo J, Pudupakam R, Foo S, et al. Severe fever with thrombocytopenia syndrome phlebovirus non-structural protein activates TPL2 signalling pathway for viral immunopathogenesis. Nat Microbiol. 2019;4:429-437 pubmed 出版商
  483. MacFarlane E, Parker S, Shin J, Kang B, Ziegler S, Creamer T, et al. Lineage-specific events underlie aortic root aneurysm pathogenesis in Loeys-Dietz syndrome. J Clin Invest. 2019;129:659-675 pubmed 出版商
  484. Laurenzana A, Margheri F, Biagioni A, Chillà A, Pimpinelli N, Ruzzolini J, et al. EGFR/uPAR interaction as druggable target to overcome vemurafenib acquired resistance in melanoma cells. EBioMedicine. 2019;39:194-206 pubmed 出版商
  485. Ye P, Liu J, Xu W, Liu D, Ding X, Le S, et al. Dual-Specificity Phosphatase 26 Protects Against Nonalcoholic Fatty Liver Disease in Mice Through Transforming Growth Factor Beta-Activated Kinase 1 Suppression. Hepatology. 2019;69:1946-1964 pubmed 出版商
  486. Ruscetti M, Leibold J, Bott M, Fennell M, Kulick A, Salgado N, et al. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science. 2018;362:1416-1422 pubmed 出版商
  487. Zhang Z, Chen J, Huang W, Ning D, Liu Q, Wang C, et al. FAM134B induces tumorigenesis and epithelial-to-mesenchymal transition via Akt signaling in hepatocellular carcinoma. Mol Oncol. 2019;13:792-810 pubmed 出版商
  488. Simula L, Pacella I, Colamatteo A, Procaccini C, Cancila V, Bordi M, et al. Drp1 Controls Effective T Cell Immune-Surveillance by Regulating T Cell Migration, Proliferation, and cMyc-Dependent Metabolic Reprogramming. Cell Rep. 2018;25:3059-3073.e10 pubmed 出版商
  489. Turowec J, Lau E, Wang X, Brown K, Fellouse F, Jawanda K, et al. Functional genomic characterization of a synthetic anti-HER3 antibody reveals a role for ubiquitination by RNF41 in the anti-proliferative response. J Biol Chem. 2019;294:1396-1409 pubmed 出版商
  490. Liang N, Kitts D. Chlorogenic Acid (CGA) Isomers Alleviate Interleukin 8 (IL-8) Production in Caco-2 Cells by Decreasing Phosphorylation of p38 and Increasing Cell Integrity. Int J Mol Sci. 2018;19: pubmed 出版商
  491. Unni A, Harbourne B, Oh M, Wild S, Ferrarone J, Lockwood W, et al. Hyperactivation of ERK by multiple mechanisms is toxic to RTK-RAS mutation-driven lung adenocarcinoma cells. elife. 2018;7: pubmed 出版商
  492. Zhao H, Martin E, Matalkah F, Shah N, Ivanov A, Ruppert J, et al. Conditional knockout of SHP2 in ErbB2 transgenic mice or inhibition in HER2-amplified breast cancer cell lines blocks oncogene expression and tumorigenesis. Oncogene. 2019;38:2275-2290 pubmed 出版商
  493. Lee S, Cho Y, Cha P, Yoon J, Ro E, Jeong W, et al. A small molecule approach to degrade RAS with EGFR repression is a potential therapy for KRAS mutation-driven colorectal cancer resistance to cetuximab. Exp Mol Med. 2018;50:153 pubmed 出版商
  494. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  495. Chen X, Chanda A, Ikeuchi Y, Zhang X, Goodman J, Reddy N, et al. The Transcriptional Regulator SnoN Promotes the Proliferation of Cerebellar Granule Neuron Precursors in the Postnatal Mouse Brain. J Neurosci. 2019;39:44-62 pubmed 出版商
  496. Lian S, Xu B, Wang D, Wang L, Li W, Yao R, et al. Possible mechanisms of prenatal cold stress induced-anxiety-like behavior depression in offspring rats. Behav Brain Res. 2019;359:304-311 pubmed 出版商
  497. Baghdadi M, Firmino J, Soni K, Evano B, Di Girolamo D, Mourikis P, et al. Notch-Induced miR-708 Antagonizes Satellite Cell Migration and Maintains Quiescence. Cell Stem Cell. 2018;23:859-868.e5 pubmed 出版商
  498. Chen C, Zou L, Lin Q, Yan X, Bi H, Xie X, et al. Resveratrol as a new inhibitor of immunoproteasome prevents PTEN degradation and attenuates cardiac hypertrophy after pressure overload. Redox Biol. 2019;20:390-401 pubmed 出版商
  499. Fossati G, Pozzi D, Canzi A, Mirabella F, Valentino S, Morini R, et al. Pentraxin 3 regulates synaptic function by inducing AMPA receptor clustering via ECM remodeling and β1-integrin. EMBO J. 2019;38: pubmed 出版商
  500. Karchugina S, Chernoff J. Detection of Heterodimerization of Protein Isoforms Using an in Situ Proximity Ligation Assay. J Vis Exp. 2018;: pubmed 出版商
  501. Ablain J, Xu M, Rothschild H, JORDAN R, Mito J, Daniels B, et al. Human tumor genomics and zebrafish modeling identify SPRED1 loss as a driver of mucosal melanoma. Science. 2018;362:1055-1060 pubmed 出版商
  502. Mu L, Tu Z, Miao L, Ruan H, Kang N, Hei Y, et al. A phosphatidylinositol 4,5-bisphosphate redistribution-based sensing mechanism initiates a phagocytosis programing. Nat Commun. 2018;9:4259 pubmed 出版商
  503. Xu P, Chen A, Ganaie S, Cheng F, Shen W, Wang X, et al. The 11-Kilodalton Nonstructural Protein of Human Parvovirus B19 Facilitates Viral DNA Replication by Interacting with Grb2 through Its Proline-Rich Motifs. J Virol. 2019;93: pubmed 出版商
  504. Gerber T, Murawala P, Knapp D, Masselink W, Schuez M, Hermann S, et al. Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science. 2018;362: pubmed 出版商
  505. Albrengues J, Shields M, Ng D, Park C, Ambrico A, Poindexter M, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018;361: pubmed 出版商
  506. McCloskey A, Ibarra A, Hetzer M. Tpr regulates the total number of nuclear pore complexes per cell nucleus. Genes Dev. 2018;32:1321-1331 pubmed 出版商
  507. Chen S, Yun F, Yao Y, Cao M, Zhang Y, Wang J, et al. USP38 critically promotes asthmatic pathogenesis by stabilizing JunB protein. J Exp Med. 2018;215:2850-2867 pubmed 出版商
  508. Bai Y, Shen W, Zhu M, Zhang L, Wei Y, Tang H, et al. Combined detection of estrogen and tumor markers is an important reference factor in the diagnosis and prognosis of lung cancer. J Cell Biochem. 2019;120:105-114 pubmed 出版商
  509. Cao Y, Xu Y, Auchoybur M, Chen W, He S, Qin W, et al. Regulatory role of IKKɑ in myocardial ischemia/reperfusion injury by the determination of M1 versus M2 polarization of macrophages. J Mol Cell Cardiol. 2018;123:1-12 pubmed 出版商
  510. Rasheed K, Abdulsalam I, Fismen S, Grimstad Ø, Sveinbjørnsson B, Moens U. CCL17/TARC and CCR4 expression in Merkel cell carcinoma. Oncotarget. 2018;9:31432-31447 pubmed 出版商
  511. Song K, Kim J, Lee Y, Bae H, Lee H, Woo S, et al. Mitochondrial reprogramming via ATP5H loss promotes multimodal cancer therapy resistance. J Clin Invest. 2018;128:4098-4114 pubmed 出版商
  512. Cai J, Huang X, Yin M, Pan C, Song L, Zhan Z, et al. A novel fusion gene PLEKHA6-NTRK3 in langerhans cell histiocytosis. Int J Cancer. 2019;144:117-124 pubmed 出版商
  513. Tiebe M, Lutz M, Levy D, Teleman A. Phenotypic characterization of SETD3 knockout Drosophila. PLoS ONE. 2018;13:e0201609 pubmed 出版商
  514. Stathopoulou C, Gangaplara A, Mallett G, Flomerfelt F, Liniany L, Knight D, et al. PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells. Immunity. 2018;49:247-263.e7 pubmed 出版商
  515. Cuchet Lourenço D, Eletto D, Wu C, Plagnol V, Papapietro O, CURTIS J, et al. Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation. Science. 2018;361:810-813 pubmed 出版商
  516. Liu Z, Qin Q, Wu C, Li H, Shou J, Yang Y, et al. Downregulated NDR1 protein kinase inhibits innate immune response by initiating an miR146a-STAT1 feedback loop. Nat Commun. 2018;9:2789 pubmed 出版商
  517. Wang J, Zhao W, Guo H, Fang Y, Stockman S, Bai S, et al. AKT isoform-specific expression and activation across cancer lineages. BMC Cancer. 2018;18:742 pubmed 出版商
  518. Imbrechts M, De Samblancx K, Fierens K, Brisse E, Vandenhaute J, Mitera T, et al. IFN-γ stimulates CpG-induced IL-10 production in B cells via p38 and JNK signalling pathways. Eur J Immunol. 2018;48:1506-1521 pubmed 出版商
  519. Xiao N, Li H, Yu W, Gu C, Fang H, Peng Y, et al. SUMO-specific protease 2 (SENP2) suppresses keratinocyte migration by targeting NDR1 for de-SUMOylation. FASEB J. 2019;33:163-174 pubmed 出版商
  520. Jung I, Kim Y, Yu H, Lee M, Kim S, Lee J. CRISPR/Cas9-Mediated Knockout of DGK Improves Antitumor Activities of Human T Cells. Cancer Res. 2018;78:4692-4703 pubmed 出版商
  521. Rapino F, Delaunay S, Rambow F, Zhou Z, Tharun L, de Tullio P, et al. Codon-specific translation reprogramming promotes resistance to targeted therapy. Nature. 2018;558:605-609 pubmed 出版商
  522. Weiss J, Davies L, Karwan M, Ileva L, Ozaki M, Cheng R, et al. Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors. J Clin Invest. 2018;128:3794-3805 pubmed 出版商
  523. Li F, Li Y, Liang H, Xu T, Kong Y, Huang M, et al. HECTD3 mediates TRAF3 polyubiquitination and type I interferon induction during bacterial infection. J Clin Invest. 2018;128:4148-4162 pubmed 出版商
  524. Kim S, Knight D, Jones L, Vervoort S, Ng A, Seymour J, et al. JAK2 is dispensable for maintenance of JAK2 mutant B-cell acute lymphoblastic leukemias. Genes Dev. 2018;32:849-864 pubmed 出版商
  525. Li R, Sahu S, Schachner M. Phenelzine, a small organic compound mimicking the functions of cell adhesion molecule L1, promotes functional recovery after mouse spinal cord injury. Restor Neurol Neurosci. 2018;36:469-483 pubmed 出版商
  526. Lei F, Jin L, Liu X, Lai F, Yan X, Farrelly M, et al. RIP1 protects melanoma cells from apoptosis induced by BRAF/MEK inhibitors. Cell Death Dis. 2018;9:679 pubmed 出版商
  527. Fan P, Narzisi G, Jayaprakash A, Venturini E, Robine N, Smibert P, et al. YES1 amplification is a mechanism of acquired resistance to EGFR inhibitors identified by transposon mutagenesis and clinical genomics. Proc Natl Acad Sci U S A. 2018;115:E6030-E6038 pubmed 出版商
  528. Yang M, Li C, Zhu S, Cao L, Kroemer G, Zeh H, et al. TFAM is a novel mediator of immunogenic cancer cell death. Oncoimmunology. 2018;7:e1431086 pubmed 出版商
  529. Hemming M, Lawlor M, Zeid R, Lesluyes T, Fletcher J, Raut C, et al. Gastrointestinal stromal tumor enhancers support a transcription factor network predictive of clinical outcome. Proc Natl Acad Sci U S A. 2018;115:E5746-E5755 pubmed 出版商
  530. Ruess D, Heynen G, Ciecielski K, Ai J, Berninger A, Kabacaoglu D, et al. Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat Med. 2018;24:954-960 pubmed 出版商
  531. Baumgartner C, Toifl S, Farlik M, Halbritter F, Scheicher R, Fischer I, et al. An ERK-Dependent Feedback Mechanism Prevents Hematopoietic Stem Cell Exhaustion. Cell Stem Cell. 2018;22:879-892.e6 pubmed 出版商
  532. Lautz J, Brown E, Williams VanSchoiack A, Smith S. Synaptic activity induces input-specific rearrangements in a targeted synaptic protein interaction network. J Neurochem. 2018;146:540-559 pubmed 出版商
  533. Xue Z, Vis D, Bruna A, Sustic T, van Wageningen S, Batra A, et al. MAP3K1 and MAP2K4 mutations are associated with sensitivity to MEK inhibitors in multiple cancer models. Cell Res. 2018;28:719-729 pubmed 出版商
  534. Wang X, Du C, He X, Deng X, He Y, Zhou X. MiR-4463 inhibits the migration of human aortic smooth muscle cells by AMOT. Biosci Rep. 2018;38: pubmed 出版商
  535. Shi X, Kitano A, Jiang Y, Luu V, Hoegenauer K, Nakada D. Clonal expansion and myeloid leukemia progression modeled by multiplex gene editing of murine hematopoietic progenitor cells. Exp Hematol. 2018;64:33-44.e5 pubmed 出版商
  536. Dai L, Del Valle L, Miley W, Whitby D, Ochoa A, Flemington E, et al. Transactivation of human endogenous retrovirus K (HERV-K) by KSHV promotes Kaposi's sarcoma development. Oncogene. 2018;37:4534-4545 pubmed 出版商
  537. Huang M, Qi W, Fang S, Jiang P, Yang C, Mo Y, et al. Pigment Epithelium-Derived Factor Plays a Role in Alzheimer's Disease by Negatively Regulating Aβ42. Neurotherapeutics. 2018;15:728-741 pubmed 出版商
  538. Ahmad F, Salahuddin M, Alsamman K, Herzallah H, Al Otaibi S. Neonatal maternal deprivation impairs localized de novo activity-induced protein translation at the synapse in the rat hippocampus. Biosci Rep. 2018;38: pubmed 出版商
  539. Salomè M, Magee A, Yalla K, Chaudhury S, Sarrou E, Carmody R, et al. A Trib2-p38 axis controls myeloid leukaemia cell cycle and stress response signalling. Cell Death Dis. 2018;9:443 pubmed 出版商
  540. Lu J, Liu L, Zheng M, Li X, Wu A, Wu Q, et al. MEKK2 and MEKK3 suppress Hedgehog pathway-dependent medulloblastoma by inhibiting GLI1 function. Oncogene. 2018;37:3864-3878 pubmed 出版商
  541. Muhar M, Ebert A, Neumann T, Umkehrer C, Jude J, Wieshofer C, et al. SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis. Science. 2018;360:800-805 pubmed 出版商
  542. Han Y, Liu Q, Hou J, Gu Y, Zhang Y, Chen Z, et al. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression. Cell. 2018;173:634-648.e12 pubmed 出版商
  543. Qiang L, Wang J, Zhang Y, Ge P, Chai Q, Li B, et al. Mycobacterium tuberculosis Mce2E suppresses the macrophage innate immune response and promotes epithelial cell proliferation. Cell Mol Immunol. 2018;: pubmed 出版商
  544. Durai V, Bagadia P, Briseño C, Theisen D, Iwata A, Davidson J, et al. Altered compensatory cytokine signaling underlies the discrepancy between Flt3-/- and Flt3l-/- mice. J Exp Med. 2018;215:1417-1435 pubmed 出版商
  545. Lee C, Moon S, Jeong J, Lee S, Lee M, Yoo S, et al. Kaempferol targeting on the fibroblast growth factor receptor 3-ribosomal S6 kinase 2 signaling axis prevents the development of rheumatoid arthritis. Cell Death Dis. 2018;9:401 pubmed 出版商
  546. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  547. Lino Cardenas C, Kessinger C, Cheng Y, MacDonald C, Macgillivray T, Ghoshhajra B, et al. An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun. 2018;9:1009 pubmed 出版商
  548. Pilling A, Kim J, Estrada Bernal A, Zhou Q, Le A, Singleton K, et al. ALK is a critical regulator of the MYC-signaling axis in ALK positive lung cancer. Oncotarget. 2018;9:8823-8835 pubmed 出版商
  549. Giurisato E, Xu Q, Lonardi S, Telfer B, Russo I, Pearson A, et al. Myeloid ERK5 deficiency suppresses tumor growth by blocking protumor macrophage polarization via STAT3 inhibition. Proc Natl Acad Sci U S A. 2018;115:E2801-E2810 pubmed 出版商
  550. zur Nedden S, Eith R, Schwarzer C, Zanetti L, Seitter H, Fresser F, et al. Protein kinase N1 critically regulates cerebellar development and long-term function. J Clin Invest. 2018;128:2076-2088 pubmed 出版商
  551. Summers M, Vasiljevski E, Mikulec K, Peacock L, Little D, Schindeler A. Developmental dosing with a MEK inhibitor (PD0325901) rescues myopathic features of the muscle-specific but not limb-specific Nf1 knockout mouse. Mol Genet Metab. 2018;123:518-525 pubmed 出版商
  552. Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández Mateos J, Khan K, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359:920-926 pubmed 出版商
  553. Qi Z, Xu H, Zhang S, Xu J, Li S, Gao H, et al. RIPK4/PEBP1 axis promotes pancreatic cancer cell migration and invasion by activating RAF1/MEK/ERK signaling. Int J Oncol. 2018;52:1105-1116 pubmed 出版商
  554. Kou W, Xu X, Ji S, Chen M, Liu D, Wang K, et al. The inhibition of the effect and mechanism of vascular intimal hyperplasia in Tiam1 knockout mice. Biochem Biophys Res Commun. 2018;497:248-255 pubmed 出版商
  555. Zhao P, Wong K, Sun X, Reilly S, Uhm M, Liao Z, et al. TBK1 at the Crossroads of Inflammation and Energy Homeostasis in Adipose Tissue. Cell. 2018;172:731-743.e12 pubmed 出版商
  556. Janes M, Zhang J, Li L, Hansen R, Peters U, Guo X, et al. Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor. Cell. 2018;172:578-589.e17 pubmed 出版商
  557. Kostas M, Haugsten E, Zhen Y, Sørensen V, Szybowska P, Fiorito E, et al. Protein Tyrosine Phosphatase Receptor Type G (PTPRG) Controls Fibroblast Growth Factor Receptor (FGFR) 1 Activity and Influences Sensitivity to FGFR Kinase Inhibitors. Mol Cell Proteomics. 2018;17:850-870 pubmed 出版商
  558. Shen Q, Zhang Q, Shi Y, Shi Q, Jiang Y, Gu Y, et al. Tet2 promotes pathogen infection-induced myelopoiesis through mRNA oxidation. Nature. 2018;554:123-127 pubmed 出版商
  559. Lu Y, Kim N, Jiang Y, Zhang H, Zheng D, Zhu F, et al. Cambogin suppresses dextran sulphate sodium-induced colitis by enhancing Treg cell stability and function. Br J Pharmacol. 2018;175:1085-1099 pubmed 出版商
  560. De Pasquale V, Pezone A, Sarogni P, Tramontano A, Schiattarella G, Avvedimento V, et al. EGFR activation triggers cellular hypertrophy and lysosomal disease in NAGLU-depleted cardiomyoblasts, mimicking the hallmarks of mucopolysaccharidosis IIIB. Cell Death Dis. 2018;9:40 pubmed 出版商
  561. Velázquez Villegas L, Perino A, Lemos V, Zietak M, Nomura M, Pols T, et al. TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue. Nat Commun. 2018;9:245 pubmed 出版商
  562. Ambrogio C, Köhler J, Zhou Z, Wang H, Paranal R, Li J, et al. KRAS Dimerization Impacts MEK Inhibitor Sensitivity and Oncogenic Activity of Mutant KRAS. Cell. 2018;172:857-868.e15 pubmed 出版商
  563. Zhang G, Cheng Y, Zhang Q, Li X, Zhou J, Wang J, et al. ATX?LPA axis facilitates estrogen?induced endometrial cancer cell proliferation via MAPK/ERK signaling pathway. Mol Med Rep. 2018;17:4245-4252 pubmed 出版商
  564. Frattini V, Pagnotta S, Tala -, Fan J, Russo M, Lee S, et al. A metabolic function of FGFR3-TACC3 gene fusions in cancer. Nature. 2018;553:222-227 pubmed 出版商
  565. Park G, Kim D. Cigarette smoke-induced EGFR activation promotes epithelial mesenchymal migration of human retinal pigment epithelial cells through regulation of the FAK-mediated Syk/Src pathway. Mol Med Rep. 2018;17:3563-3574 pubmed 出版商
  566. Arrizabalaga O, Moreno Cugnon L, Auzmendi Iriarte J, Aldaz P, Ibanez de Caceres I, Garros Regulez L, et al. High expression of MKP1/DUSP1 counteracts glioma stem cell activity and mediates HDAC inhibitor response. Oncogenesis. 2017;6:401 pubmed 出版商
  567. Kunimoto H, Meydan C, Nazir A, Whitfield J, Shank K, Rapaport F, et al. Cooperative Epigenetic Remodeling by TET2 Loss and NRAS Mutation Drives Myeloid Transformation and MEK Inhibitor Sensitivity. Cancer Cell. 2018;33:44-59.e8 pubmed 出版商
  568. Barrow A, Edeling M, Trifonov V, Luo J, Goyal P, Bohl B, et al. Natural Killer Cells Control Tumor Growth by Sensing a Growth Factor. Cell. 2018;172:534-548.e19 pubmed 出版商
  569. Wu J, Xiang S, Zhang M, Fang B, Huang H, Kwon O, et al. Histone deacetylase 6 (HDAC6) deacetylates extracellular signal-regulated kinase 1 (ERK1) and thereby stimulates ERK1 activity. J Biol Chem. 2018;293:1976-1993 pubmed 出版商
  570. Qian Z, Ryu B, Kang K, Heo S, Kang D, Bae S, et al. Cellular properties of the fermented microalgae Pavlova lutheri and its isolated active peptide in osteoblastic differentiation of MG?63 cells. Mol Med Rep. 2018;17:2044-2050 pubmed 出版商
  571. Coelho M, de Carné Trécesson S, Rana S, Zecchin D, Moore C, Molina Arcas M, et al. Oncogenic RAS Signaling Promotes Tumor Immunoresistance by Stabilizing PD-L1 mRNA. Immunity. 2017;47:1083-1099.e6 pubmed 出版商
  572. Macdonald R, Shrimp J, Jiang H, Zhang L, Lin H, Yen A. Probing the requirement for CD38 in retinoic acid-induced HL-60 cell differentiation with a small molecule dimerizer and genetic knockout. Sci Rep. 2017;7:17406 pubmed 出版商
  573. Sutavani R, Phair I, Barker R, McFarlane A, Shpiro N, Lang S, et al. Differential control of Toll-like receptor 4-induced interleukin-10 induction in macrophages and B cells reveals a role for p90 ribosomal S6 kinases. J Biol Chem. 2018;293:2302-2317 pubmed 出版商
  574. Yu R, Longo J, van Leeuwen J, Mullen P, Ba Alawi W, Haibe Kains B, et al. Statin-Induced Cancer Cell Death Can Be Mechanistically Uncoupled from Prenylation of RAS Family Proteins. Cancer Res. 2018;78:1347-1357 pubmed 出版商
  575. Cho M, Lee J, Shin M, Kim H, Choi Y, Rho S, et al. TSC-22 inhibits CSF-1R function and induces apoptosis in cervical cancer. Oncotarget. 2017;8:97990-98003 pubmed 出版商
  576. Wang C, Edilova M, Wagar L, Mujib S, Singer M, Bernard N, et al. Effect of IL-7 Therapy on Phospho-Ribosomal Protein S6 and TRAF1 Expression in HIV-Specific CD8 T Cells in Patients Receiving Antiretroviral Therapy. J Immunol. 2018;200:558-564 pubmed 出版商
  577. Muro R, Nitta T, Nakano K, Okamura T, Takayanagi H, Suzuki H. γδTCR recruits the Syk/PI3K axis to drive proinflammatory differentiation program. J Clin Invest. 2018;128:415-426 pubmed 出版商
  578. Schafer S, Viswanathan S, Widjaja A, Lim W, Moreno Moral A, Delaughter D, et al. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature. 2017;552:110-115 pubmed 出版商
  579. Schwartz J, Ma J, Lamprecht T, Walsh M, Wang S, Bryant V, et al. The genomic landscape of pediatric myelodysplastic syndromes. Nat Commun. 2017;8:1557 pubmed 出版商
  580. Balan I, Warnock K, Puche A, GONDRE LEWIS M, Aurelian L. Innately activated TLR4 signal in the nucleus accumbens is sustained by CRF amplification loop and regulates impulsivity. Brain Behav Immun. 2018;69:139-153 pubmed 出版商
  581. Urbanska M, Gozdz A, Macias M, Cymerman I, Liszewska E, Kondratiuk I, et al. GSK3β Controls mTOR and Prosurvival Signaling in Neurons. Mol Neurobiol. 2018;55:6050-6062 pubmed 出版商
  582. Shuang W, Hou L, Zhu Y, Li Q, Hu W. Mcl-1 stabilization confers resistance to taxol in human gastric cancer. Oncotarget. 2017;8:82981-82990 pubmed 出版商
  583. Bostner J, Alayev A, Berman A, Fornander T, Nordenskjold B, Holz M, et al. Raptor localization predicts prognosis and tamoxifen response in estrogen receptor-positive breast cancer. Breast Cancer Res Treat. 2018;168:17-27 pubmed 出版商
  584. Gasparotto J, Girardi C, Somensi N, Ribeiro C, Moreira J, Michels M, et al. Receptor for advanced glycation end products mediates sepsis-triggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment. J Biol Chem. 2018;293:226-244 pubmed 出版商
  585. Ameen G, Mora S. Cbl downregulation increases RBP4 expression in adipocytes of female mice. J Endocrinol. 2018;236:29-41 pubmed 出版商
  586. Escamilla C, Filonova I, Walker A, Xuan Z, Holehonnur R, Espinosa F, et al. Kctd13 deletion reduces synaptic transmission via increased RhoA. Nature. 2017;551:227-231 pubmed 出版商
  587. Zhang R, Li J, Yan X, Jin K, Li W, Xu J, et al. SODD promotes glucose uptake of colorectal cancer cells via AKT pathway. Cell Biol Int. 2017;: pubmed 出版商
  588. Xue X, Bredell B, Anderson E, Martin A, Mays C, Nagao Kitamoto H, et al. Quantitative proteomics identifies STEAP4 as a critical regulator of mitochondrial dysfunction linking inflammation and colon cancer. Proc Natl Acad Sci U S A. 2017;114:E9608-E9617 pubmed 出版商
  589. Thaler S, Schmidt M, Roβwag S, Thiede G, Schad A, Sleeman J. Proteasome inhibitors prevent bi-directional HER2/estrogen-receptor cross-talk leading to cell death in endocrine and lapatinib-resistant HER2+/ER+ breast cancer cells. Oncotarget. 2017;8:72281-72301 pubmed 出版商
  590. Liang Z, Yang Y, He Y, Yang P, Wang X, He G, et al. SUMOylation of IQGAP1 promotes the development of colorectal cancer. Cancer Lett. 2017;411:90-99 pubmed 出版商
  591. Zhao Z, Jia Q, Wu M, Xie X, Wang Y, Song G, et al. Degalactotigonin, a Natural Compound from Solanum nigrum L., Inhibits Growth and Metastasis of Osteosarcoma through GSK3β Inactivation-Mediated Repression of the Hedgehog/Gli1 Pathway. Clin Cancer Res. 2018;24:130-144 pubmed 出版商
  592. Kim J, Park D, Bae H, Park D, Kim D, Lee C, et al. Impaired angiopoietin/Tie2 signaling compromises Schlemm's canal integrity and induces glaucoma. J Clin Invest. 2017;127:3877-3896 pubmed 出版商
  593. Tsutsumi R, Harizanova J, Stockert R, Schröder K, Bastiaens P, Neel B. Assay to visualize specific protein oxidation reveals spatio-temporal regulation of SHP2. Nat Commun. 2017;8:466 pubmed 出版商
  594. Urbschat A, Baer P, Zacharowski K, Sprunck V, Scheller B, Raimann F, et al. Systemic TLR2 Antibody Application in Renal Ischaemia and Reperfusion Injury Decreases AKT Phosphorylation and Increases Apoptosis in the Mouse Kidney. Basic Clin Pharmacol Toxicol. 2018;122:223-232 pubmed 出版商
  595. Schwartz S, Cleyrat C, Olah M, Relich P, Phillips G, Hlavacek W, et al. Differential mast cell outcomes are sensitive to FcεRI-Syk binding kinetics. Mol Biol Cell. 2017;28:3397-3414 pubmed 出版商
  596. Jiang X, Bao Y, Liu H, Kou X, Zhang Z, Sun F, et al. VPS34 stimulation of p62 phosphorylation for cancer progression. Oncogene. 2017;36:6850-6862 pubmed 出版商
  597. Chong I, Aronson L, Bryant H, Gulati A, Campbell J, Elliott R, et al. Mapping genetic vulnerabilities reveals BTK as a novel therapeutic target in oesophageal cancer. Gut. 2018;67:1780-1792 pubmed 出版商
  598. Romero Pozuelo J, Demetriades C, Schroeder P, Teleman A. CycD/Cdk4 and Discontinuities in Dpp Signaling Activate TORC1 in the Drosophila Wing Disc. Dev Cell. 2017;42:376-387.e5 pubmed 出版商
  599. Zhao F, Franco H, Rodriguez K, Brown P, Tsai M, Tsai S, et al. Elimination of the male reproductive tract in the female embryo is promoted by COUP-TFII in mice. Science. 2017;357:717-720 pubmed 出版商
  600. Kim J, Kim Y, Kim J, Park D, Bae H, Lee D, et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest. 2017;127:3441-3461 pubmed 出版商
  601. Quadri H, Aiken T, Allgaeuer M, Moravec R, Altekruse S, Hussain S, et al. Expression of the scaffold connector enhancer of kinase suppressor of Ras 1 (CNKSR1) is correlated with clinical outcome in pancreatic cancer. BMC Cancer. 2017;17:495 pubmed 出版商
  602. Courtial L, Picco V, Pagès G, Ferrier Pagès C. Validation of commercial ERK antibodies against the ERK orthologue of the scleractinian coral Stylophora pistillata. F1000Res. 2017;6:577 pubmed 出版商
  603. Olivares O, Mayers J, Gouirand V, Torrence M, Gicquel T, Borge L, et al. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat Commun. 2017;8:16031 pubmed 出版商
  604. Walter K, Goodman M, Singhal H, Hall J, Li T, Holloran S, et al. Interferon-Stimulated Genes Are Transcriptionally Repressed by PR in Breast Cancer. Mol Cancer Res. 2017;15:1331-1340 pubmed 出版商
  605. Mamo T, Wittern A, Kleppa M, Bohnenpoll T, Weiss A, Kispert A. BMP4 uses several different effector pathways to regulate proliferation and differentiation in the epithelial and mesenchymal tissue compartments of the developing mouse ureter. Hum Mol Genet. 2017;26:3553-3563 pubmed 出版商
  606. Wilkinson E, Sidaway J, Cross M. Statin regulated ERK5 stimulates tight junction formation and reduces permeability in human cardiac endothelial cells. J Cell Physiol. 2018;233:186-200 pubmed 出版商
  607. Zhang C, Mao H, Cao Y. Nuclear accumulation of symplekin promotes cellular proliferation and dedifferentiation in an ERK1/2-dependent manner. Sci Rep. 2017;7:3769 pubmed 出版商
  608. Wang R, Cao X, Kulej K, Liu W, Ma T, MacDonald M, et al. Uncovering BRD4 hyperphosphorylation associated with cellular transformation in NUT midline carcinoma. Proc Natl Acad Sci U S A. 2017;114:E5352-E5361 pubmed 出版商
  609. Al Khalaf H, Amir M, Al Mohanna F, Tulbah A, Al Sayed A, Aboussekhra A. Obesity and p16INK4A Downregulation Activate Breast Adipocytes and Promote Their Protumorigenicity. Mol Cell Biol. 2017;37: pubmed 出版商
  610. Li M, Cheng W, Luo J, Hu X, Nie T, Lai H, et al. Loss of selenocysteine insertion sequence binding protein 2 suppresses the proliferation, migration/invasion and hormone secretion of human trophoblast cells via the PI3K/Akt and ERK signaling pathway. Placenta. 2017;55:81-89 pubmed 出版商
  611. Akiel M, Guo C, Li X, Rajasekaran D, Mendoza R, Robertson C, et al. IGFBP7 Deletion Promotes Hepatocellular Carcinoma. Cancer Res. 2017;77:4014-4025 pubmed 出版商
  612. Oblinger J, Burns S, Huang J, Pan L, Ren Y, Shen R, et al. Overexpression of eIF4F components in meningiomas and suppression of meningioma cell growth by inhibiting translation initiation. Exp Neurol. 2018;299:299-307 pubmed 出版商
  613. Kamerkar S, LeBleu V, Sugimoto H, Yang S, Ruivo C, Melo S, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 2017;546:498-503 pubmed 出版商
  614. Zhang K, Myllymäki S, Gao P, Devarajan R, Kytölä V, Nykter M, et al. Oncogenic K-Ras upregulates ITGA6 expression via FOSL1 to induce anoikis resistance and synergizes with αV-Class integrins to promote EMT. Oncogene. 2017;36:5681-5694 pubmed 出版商
  615. Matsumoto Y, La Rose J, Lim M, Adissu H, Law N, Mao X, et al. Ubiquitin ligase RNF146 coordinates bone dynamics and energy metabolism. J Clin Invest. 2017;127:2612-2625 pubmed 出版商
  616. Szoka L, Karna E, Hlebowicz Sarat K, Karaszewski J, Palka J. Exogenous proline stimulates type I collagen and HIF-1? expression and the process is attenuated by glutamine in human skin fibroblasts. Mol Cell Biochem. 2017;435:197-206 pubmed 出版商
  617. Read M, Fong J, Modasia B, Fletcher A, Imruetaicharoenchoke W, Thompson R, et al. Elevated PTTG and PBF predicts poor patient outcome and modulates DNA damage response genes in thyroid cancer. Oncogene. 2017;36:5296-5308 pubmed 出版商
  618. Sangodkar J, Perl A, Tohme R, Kiselar J, Kastrinsky D, Zaware N, et al. Activation of tumor suppressor protein PP2A inhibits KRAS-driven tumor growth. J Clin Invest. 2017;127:2081-2090 pubmed 出版商
  619. Nishimura S, Mishra Gorur K, Park J, Surovtseva Y, Sebti S, Levchenko A, et al. Combined HMG-COA reductase and prenylation inhibition in treatment of CCM. Proc Natl Acad Sci U S A. 2017;114:5503-5508 pubmed 出版商
  620. Schwartz J, Wang S, Ma J, Lamprecht T, Walsh M, Song G, et al. Germline SAMD9 mutation in siblings with monosomy 7 and myelodysplastic syndrome. Leukemia. 2017;31:1827-1830 pubmed 出版商
  621. Ventura E, Weller M, Burghardt I. Cutting Edge: ERK1 Mediates the Autocrine Positive Feedback Loop of TGF-? and Furin in Glioma-Initiating Cells. J Immunol. 2017;198:4569-4574 pubmed 出版商
  622. Zhong J, Wang H, Chen W, Sun Z, Chen J, Xu Y, et al. Ubiquitylation of MFHAS1 by the ubiquitin ligase praja2 promotes M1 macrophage polarization by activating JNK and p38 pathways. Cell Death Dis. 2017;8:e2763 pubmed 出版商
  623. Hu L, Liang S, Chen H, Lv T, Wu J, Chen D, et al. ΔNp63α is a common inhibitory target in oncogenic PI3K/Ras/Her2-induced cell motility and tumor metastasis. Proc Natl Acad Sci U S A. 2017;114:E3964-E3973 pubmed 出版商
  624. Cabezas R, Vega Vela N, González Sanmiguel J, Gonzalez J, Esquinas P, Echeverria V, et al. PDGF-BB Preserves Mitochondrial Morphology, Attenuates ROS Production, and Upregulates Neuroglobin in an Astrocytic Model Under Rotenone Insult. Mol Neurobiol. 2018;55:3085-3095 pubmed 出版商
  625. Kapil S, Sharma B, Patil M, Elattar S, Yuan J, Hou S, et al. The cell polarity protein Scrib functions as a tumor suppressor in liver cancer. Oncotarget. 2017;8:26515-26531 pubmed 出版商
  626. Tian H, Ketova T, Hardy D, Xu X, Gao X, Zijlstra A, et al. Endoglin Mediates Vascular Maturation by Promoting Vascular Smooth Muscle Cell Migration and Spreading. Arterioscler Thromb Vasc Biol. 2017;37:1115-1126 pubmed 出版商
  627. Tomić T, Olausson J, Wilzén A, Sabel M, Truvé K, Sjögren H, et al. A new GTF2I-BRAF fusion mediating MAPK pathway activation in pilocytic astrocytoma. PLoS ONE. 2017;12:e0175638 pubmed 出版商
  628. Zhou X, Packialakshmi B, Xiao Y, Nurmukhambetova S, Lees J. Progression of experimental autoimmune encephalomyelitis is associated with up-regulation of major sodium transporters in the mouse kidney cortex under a normal salt diet. Cell Immunol. 2017;317:18-25 pubmed 出版商
  629. Vaishnavi A, Schubert L, Rix U, Marek L, Le A, Keysar S, et al. EGFR Mediates Responses to Small-Molecule Drugs Targeting Oncogenic Fusion Kinases. Cancer Res. 2017;77:3551-3563 pubmed 出版商
  630. Ma S, Wan X, Deng Z, Shi L, Hao C, Zhou Z, et al. Epigenetic regulator CXXC5 recruits DNA demethylase Tet2 to regulate TLR7/9-elicited IFN response in pDCs. J Exp Med. 2017;214:1471-1491 pubmed 出版商
  631. Kim D, Ko H, Park G, Hur D, Kim Y, Yang J. Vandetanib and ADAM inhibitors synergistically attenuate the pathological migration of EBV-infected retinal pigment epithelial cells by regulating the VEGF-mediated MAPK pathway. Exp Ther Med. 2017;13:1415-1425 pubmed 出版商
  632. Chen M, Dai L, Fei A, Pan S, Wang H. Isoquercetin activates the ERK1/2-Nrf2 pathway and protects against cerebral ischemia-reperfusion injury in vivo and in vitro. Exp Ther Med. 2017;13:1353-1359 pubmed 出版商
  633. He L, Zhang L, Wang M, Wang W. miR-9 functions as a tumor inhibitor of cell proliferation in epithelial ovarian cancer through targeting the SDF-1/CXCR4 pathway. Exp Ther Med. 2017;13:1203-1208 pubmed 出版商
  634. Iglesia R, Prado M, Cruz L, Martins V, Santos T, Lopes M. Engagement of cellular prion protein with the co-chaperone Hsp70/90 organizing protein regulates the proliferation of glioblastoma stem-like cells. Stem Cell Res Ther. 2017;8:76 pubmed 出版商
  635. Yang X, Qi L, Lin F, Ou Z. The role of the chemokine receptor XCR1 in breast cancer cells. Breast Cancer (Dove Med Press). 2017;9:227-236 pubmed 出版商
  636. Du M, Martin A, HAYS F, Johnson J, FARJO R, Farjo K. Serum retinol-binding protein-induced endothelial inflammation is mediated through the activation of toll-like receptor 4. Mol Vis. 2017;23:185-197 pubmed
  637. Gaggianesi M, Turdo A, Chinnici A, Lipari E, Apuzzo T, Benfante A, et al. IL4 Primes the Dynamics of Breast Cancer Progression via DUSP4 Inhibition. Cancer Res. 2017;77:3268-3279 pubmed 出版商
  638. Honjoh C, Chihara K, Yoshiki H, Yamauchi S, Takeuchi K, Kato Y, et al. Association of C-Type Lectin Mincle with FcεRIβγ Subunits Leads to Functional Activation of RBL-2H3 Cells through Syk. Sci Rep. 2017;7:46064 pubmed 出版商
  639. El Gamal H, Eid A, Munusamy S. Renoprotective Effects of Aldose Reductase Inhibitor Epalrestat against High Glucose-Induced Cellular Injury. Biomed Res Int. 2017;2017:5903105 pubmed 出版商
  640. Yan X, Zhu Z, Xu S, Yang L, Liao X, Zheng M, et al. MicroRNA-140-5p inhibits hepatocellular carcinoma by directly targeting the unique isomerase Pin1 to block multiple cancer-driving pathways. Sci Rep. 2017;7:45915 pubmed 出版商
  641. Wassermann Dozorets R, Rubinstein M. C/EBPβ LIP augments cell death by inducing osteoglycin. Cell Death Dis. 2017;8:e2733 pubmed 出版商
  642. Cong Q, Jia H, Li P, Qiu S, Yeh J, Wang Y, et al. p38α MAPK regulates proliferation and differentiation of osteoclast progenitors and bone remodeling in an aging-dependent manner. Sci Rep. 2017;7:45964 pubmed 出版商
  643. Chen S, Sun J, Zhao G, Guo A, Chen Y, Fu R, et al. Liraglutide Improves Water Maze Learning and Memory Performance While Reduces Hyperphosphorylation of Tau and Neurofilaments in APP/PS1/Tau Triple Transgenic Mice. Neurochem Res. 2017;42:2326-2335 pubmed 出版商
  644. Földi I, Anthoney N, Harrison N, Gangloff M, Verstak B, Nallasivan M, et al. Three-tier regulation of cell number plasticity by neurotrophins and Tolls in Drosophila. J Cell Biol. 2017;216:1421-1438 pubmed 出版商
  645. Bai X, Hong W, Cai P, Chen Y, Xu C, Cao D, et al. Valproate induced hepatic steatosis by enhanced fatty acid uptake and triglyceride synthesis. Toxicol Appl Pharmacol. 2017;324:12-25 pubmed 出版商
  646. Deng H, Fung G, Qiu Y, Wang C, Zhang J, Jin Z, et al. Cleavage of Grb2-Associated Binding Protein 2 by Viral Proteinase 2A during Coxsackievirus Infection. Front Cell Infect Microbiol. 2017;7:85 pubmed 出版商
  647. Mon N, Senga T, Ito S. Interleukin-1? activates focal adhesion kinase and Src to induce matrix metalloproteinase-9 production and invasion of MCF-7 breast cancer cells. Oncol Lett. 2017;13:955-960 pubmed 出版商
  648. Schweighoffer E, Nys J, Vanes L, Smithers N, Tybulewicz V. TLR4 signals in B lymphocytes are transduced via the B cell antigen receptor and SYK. J Exp Med. 2017;214:1269-1280 pubmed 出版商
  649. Fischer A, Harrison K, Ramirez Y, Auer D, Chowdhury S, Prusty B, et al. Chlamydia trachomatis-containing vacuole serves as deubiquitination platform to stabilize Mcl-1 and to interfere with host defense. elife. 2017;6: pubmed 出版商
  650. Cai W, Sakaguchi M, Kleinridders A, Gonzalez Del Pino G, Dreyfuss J, O Neill B, et al. Domain-dependent effects of insulin and IGF-1 receptors on signalling and gene expression. Nat Commun. 2017;8:14892 pubmed 出版商
  651. Bittner S, Knoll G, Ehrenschwender M. Death receptor 3 signaling enhances proliferation of human regulatory T cells. FEBS Lett. 2017;591:1187-1195 pubmed 出版商
  652. González Pérez G, Lamousé Smith E. Gastrointestinal Microbiome Dysbiosis in Infant Mice Alters Peripheral CD8+ T Cell Receptor Signaling. Front Immunol. 2017;8:265 pubmed 出版商
  653. Chen G, Nie S, Han C, Ma K, Xu Y, Zhang Z, et al. Antidyskinetic Effects of MEK Inhibitor Are Associated with Multiple Neurochemical Alterations in the Striatum of Hemiparkinsonian Rats. Front Neurosci. 2017;11:112 pubmed 出版商
  654. Sinkala E, Sollier Christen E, Renier C, Rosàs Canyelles E, Che J, Heirich K, et al. Profiling protein expression in circulating tumour cells using microfluidic western blotting. Nat Commun. 2017;8:14622 pubmed 出版商
  655. Juhasz A, Markel S, Gaur S, Liu H, Lu J, Jiang G, et al. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. J Biol Chem. 2017;292:7866-7887 pubmed 出版商
  656. Lei L, Chen C, Zhao J, Wang H, Guo M, Zhou Y, et al. Targeted Expression of miR-7 Operated by TTF-1 Promoter Inhibited the Growth of Human Lung Cancer through the NDUFA4 Pathway. Mol Ther Nucleic Acids. 2017;6:183-197 pubmed 出版商
  657. Lee H, Kim M, Baek M, Morales L, Jang I, Slaga T, et al. Targeted disruption of TC-PTP in the proliferative compartment augments STAT3 and AKT signaling and skin tumor development. Sci Rep. 2017;7:45077 pubmed 出版商
  658. Laporte M, Chatellard C, Vauchez V, Hemming F, Deloulme J, Vossier F, et al. Alix is required during development for normal growth of the mouse brain. Sci Rep. 2017;7:44767 pubmed 出版商
  659. Chambers T, Santiesteban L, Gomez D, Chambers J. Sab mediates mitochondrial dysfunction involved in imatinib mesylate-induced cardiotoxicity. Toxicology. 2017;382:24-35 pubmed 出版商
  660. Gupta A, Anjomani Virmouni S, Koundouros N, Dimitriadi M, Choo Wing R, Valle A, et al. PARK2 Depletion Connects Energy and Oxidative Stress to PI3K/Akt Activation via PTEN S-Nitrosylation. Mol Cell. 2017;65:999-1013.e7 pubmed 出版商
  661. Yang K, Chen Y, To K, Wang F, Li D, Chen L, et al. Alectinib (CH5424802) antagonizes ABCB1- and ABCG2-mediated multidrug resistance in vitro, in vivo and ex vivo. Exp Mol Med. 2017;49:e303 pubmed 出版商
  662. Sahu U, Choudhury A, Parvez S, Biswas S, Kar S. Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell Death Dis. 2017;8:e2667 pubmed 出版商
  663. Balmer D, Bapst Wicht L, Pyakurel A, Emery M, Nanchen N, Bochet C, et al. Bis-Retinoid A2E Induces an Increase of Basic Fibroblast Growth Factor via Inhibition of Extracellular Signal-Regulated Kinases 1/2 Pathway in Retinal Pigment Epithelium Cells and Facilitates Phagocytosis. Front Aging Neurosci. 2017;9:43 pubmed 出版商
  664. CAROMILE L, Dortche K, Rahman M, Grant C, Stoddard C, Ferrer F, et al. PSMA redirects cell survival signaling from the MAPK to the PI3K-AKT pathways to promote the progression of prostate cancer. Sci Signal. 2017;10: pubmed 出版商
  665. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  666. Su S, Liao J, Liu J, Huang D, He C, Chen F, et al. Blocking the recruitment of naive CD4+ T cells reverses immunosuppression in breast cancer. Cell Res. 2017;27:461-482 pubmed 出版商
  667. Reynolds L, D Amico G, Lechertier T, Papachristodoulou A, Muñoz Félix J, De Arcangelis A, et al. Dual role of pericyte ?6?1-integrin in tumour blood vessels. J Cell Sci. 2017;130:1583-1595 pubmed 出版商
  668. Koyama Y, Wang P, Liang S, Iwaisako K, Liu X, Xu J, et al. Mesothelin/mucin 16 signaling in activated portal fibroblasts regulates cholestatic liver fibrosis. J Clin Invest. 2017;127:1254-1270 pubmed 出版商
  669. Loo L, Bougen Zhukov N, Tan W. Early spatiotemporal-specific changes in intermediate signals are predictive of cytotoxic sensitivity to TNFα and co-treatments. Sci Rep. 2017;7:43541 pubmed 出版商
  670. Hammers D, Merscham Banda M, Hsiao J, ENGST S, Hartman J, Sweeney H. Supraphysiological levels of GDF11 induce striated muscle atrophy. EMBO Mol Med. 2017;9:531-544 pubmed 出版商
  671. Shizu R, Osabe M, Perera L, Moore R, Sueyoshi T, Negishi M. Phosphorylated Nuclear Receptor CAR Forms a Homodimer To Repress Its Constitutive Activity for Ligand Activation. Mol Cell Biol. 2017;37: pubmed 出版商
  672. Li L, Baxter S, Gu N, Ji M, Zhan X. Missing-in-metastasis protein downregulates CXCR4 by promoting ubiquitylation and interaction with small Rab GTPases. J Cell Sci. 2017;130:1475-1485 pubmed 出版商
  673. Li K, Mo C, Gong D, Chen Y, Huang Z, Li Y, et al. DDX17 nucleocytoplasmic shuttling promotes acquired gefitinib resistance in non-small cell lung cancer cells via activation of β-catenin. Cancer Lett. 2017;400:194-202 pubmed 出版商
  674. Obeid S, Wankell M, Charrez B, Sternberg J, Kreuter R, Esmaili S, et al. Adiponectin confers protection from acute colitis and restricts a B cell immune response. J Biol Chem. 2017;292:6569-6582 pubmed 出版商
  675. Lafont E, Kantari Mimoun C, Dráber P, De Miguel D, Hartwig T, Reichert M, et al. The linear ubiquitin chain assembly complex regulates TRAIL-induced gene activation and cell death. EMBO J. 2017;36:1147-1166 pubmed 出版商
  676. Chung C, Chang C, Hsu C, Lin K, Peng H, Huang T. Aggretin Venom Polypeptide as a Novel Anti-angiogenesis Agent by Targeting Integrin alpha2beta1. Sci Rep. 2017;7:43612 pubmed 出版商
  677. Carmona Fontaine C, Deforet M, Akkari L, Thompson C, Joyce J, Xavier J. Metabolic origins of spatial organization in the tumor microenvironment. Proc Natl Acad Sci U S A. 2017;114:2934-2939 pubmed 出版商
  678. de Oliveira R, de Campos Castilho G, da Cunha A, Miyajima F, de Oliveira Martins D. Dilodendron bipinnatum Radlk. inhibits pro-inflammatory mediators through the induction of MKP-1 and the down-regulation of MAPKp38/JNK/NF-?B pathways and COX-2 in LPS-activated RAW 264.7 cells. J Ethnopharmacol. 2017;202:127-137 pubmed 出版商
  679. Hwang I, Park C, Harrison K, Kehrl J. Normal Thymocyte Egress, T Cell Trafficking, and CD4+ T Cell Homeostasis Require Interactions between RGS Proteins and Gαi2. J Immunol. 2017;198:2721-2734 pubmed 出版商
  680. Pan X, Wang Y, Lübke T, Hinek A, Pshezhetsky A. Mice, double deficient in lysosomal serine carboxypeptidases Scpep1 and Cathepsin A develop the hyperproliferative vesicular corneal dystrophy and hypertrophic skin thickenings. PLoS ONE. 2017;12:e0172854 pubmed 出版商
  681. Kumari P, Srivastava A, Ghosh E, Ranjan R, Dogra S, Yadav P, et al. Core engagement with ?-arrestin is dispensable for agonist-induced vasopressin receptor endocytosis and ERK activation. Mol Biol Cell. 2017;28:1003-1010 pubmed 出版商
  682. Wang H, Shan X, Qiao Y. PDK2 promotes chondrogenic differentiation of mesenchymal stem cells by upregulation of Sox6 and activation of JNK/MAPK/ERK pathway. Braz J Med Biol Res. 2017;50:e5988 pubmed 出版商
  683. Basu R, Wu S, Kopchick J. Targeting growth hormone receptor in human melanoma cells attenuates tumor progression and epithelial mesenchymal transition via suppression of multiple oncogenic pathways. Oncotarget. 2017;8:21579-21598 pubmed 出版商
  684. Mandl M, Zhang S, Ulrich M, Schmoeckel E, Mayr D, Vollmar A, et al. Inhibition of Cdk5 induces cell death of tumor-initiating cells. Br J Cancer. 2017;116:912-922 pubmed 出版商
  685. Vallejo A, Perurena N, Guruceaga E, Mazur P, Martínez Canarias S, Zandueta C, et al. An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer. Nat Commun. 2017;8:14294 pubmed 出版商
  686. Ma C, Lin W, Liu Z, Tang W, Gautam R, Li H, et al. NDR1 protein kinase promotes IL-17- and TNF-α-mediated inflammation by competitively binding TRAF3. EMBO Rep. 2017;18:586-602 pubmed 出版商
  687. Sethna F, Feng W, Ding Q, ROBISON A, Feng Y, Wang H. Enhanced expression of ADCY1 underlies aberrant neuronal signalling and behaviour in a syndromic autism model. Nat Commun. 2017;8:14359 pubmed 出版商
  688. Chowdhury A, Hasselbach L, Echtermeyer F, Jyotsana N, Theilmeier G, Herzog C. Fibulin-6 regulates pro-fibrotic TGF-β responses in neonatal mouse ventricular cardiac fibroblasts. Sci Rep. 2017;7:42725 pubmed 出版商
  689. Boswell B, Korol A, West Mays J, Musil L. Dual function of TGF? in lens epithelial cell fate: implications for secondary cataract. Mol Biol Cell. 2017;28:907-921 pubmed 出版商
  690. Dong Q, Li J, Wu Q, Zhao N, Qian C, Ding D, et al. Blockage of transient receptor potential vanilloid 4 alleviates myocardial ischemia/reperfusion injury in mice. Sci Rep. 2017;7:42678 pubmed 出版商
  691. Wang N, Yao F, Li K, Zhang L, Yin G, Du M, et al. Fisetin regulates astrocyte migration and proliferation in vitro. Int J Mol Med. 2017;39:783-790 pubmed 出版商
  692. Steinberg S, Shabaneh T, Zhang P, Martyanov V, Li Z, Malik B, et al. Myeloid Cells That Impair Immunotherapy Are Restored in Melanomas with Acquired Resistance to BRAF Inhibitors. Cancer Res. 2017;77:1599-1610 pubmed 出版商
  693. Radder J, Zhang Y, Gregory A, Yu S, Kelly N, Leader J, et al. Extreme Trait Whole-Genome Sequencing Identifies PTPRO as a Novel Candidate Gene in Emphysema with Severe Airflow Obstruction. Am J Respir Crit Care Med. 2017;196:159-171 pubmed 出版商
  694. Qian Q, Liu Q, Zhou D, Pan H, Liu Z, He F, et al. Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway. FASEB J. 2017;31:2104-2113 pubmed 出版商
  695. Piper A, Ross S, Redpath G, Lemckert F, Woolger N, Bournazos A, et al. Enzymatic cleavage of myoferlin releases a dual C2-domain module linked to ERK signalling. Cell Signal. 2017;33:30-40 pubmed 出版商
  696. Cui Y, Ding Y, Chen L, Li Y, Li Y, Nie H. Dexmedetomidine enhances human lung fluid clearance through improving alveolar sodium transport. Fundam Clin Pharmacol. 2017;31:429-437 pubmed 出版商
  697. Tao C, Hsu W, Ma Y, Cheng S, Lee E. Epigenetic regulation of HDAC1 SUMOylation as an endogenous neuroprotection against Aβ toxicity in a mouse model of Alzheimer's disease. Cell Death Differ. 2017;24:597-614 pubmed 出版商
  698. He Y, Wang X, Zhang J, Liu Z, Pan W, Shen Y, et al. Association of Serum HMGB2 Levels With In-Stent Restenosis: HMGB2 Promotes Neointimal Hyperplasia in Mice With Femoral Artery Injury and Proliferation and Migration of VSMCs. Arterioscler Thromb Vasc Biol. 2017;37:717-729 pubmed 出版商
  699. Duclos C, Champagne A, Carrier J, Saucier C, Lavoie C, Denault J. Caspase-mediated proteolysis of the sorting nexin 2 disrupts retromer assembly and potentiates Met/hepatocyte growth factor receptor signaling. Cell Death Discov. 2017;3:16100 pubmed 出版商
  700. Dong Q, Fu L, Zhao Y, Tan S, Wang E. Derlin-1 overexpression confers poor prognosis in muscle invasive bladder cancer and contributes to chemoresistance and invasion through PI3K/AKT and ERK/MMP signaling. Oncotarget. 2017;8:17059-17069 pubmed 出版商
  701. Umstead M, Xiong J, Qi Q, Du Y, Fu H. Aurora kinase A interacts with H-Ras and potentiates Ras-MAPK signaling. Oncotarget. 2017;8:28359-28372 pubmed 出版商
  702. Gautam J, Nirwane A, Yao Y. Laminin differentially regulates the stemness of type I and type II pericytes. Stem Cell Res Ther. 2017;8:28 pubmed 出版商
  703. Ni Y, Teng T, Li R, Simonyi A, Sun G, Lee J. TNFα alters occludin and cerebral endothelial permeability: Role of p38MAPK. PLoS ONE. 2017;12:e0170346 pubmed 出版商
  704. Roy D, Mondal S, Khurana A, Jung D, Hoffmann R, He X, et al. Loss of HSulf-1: The Missing Link between Autophagy and Lipid Droplets in Ovarian Cancer. Sci Rep. 2017;7:41977 pubmed 出版商
  705. Zhang H, Qi Y, Yuan Y, Cai L, Xu H, Zhang L, et al. Paeoniflorin Ameliorates Experimental Autoimmune Encephalomyelitis via Inhibition of Dendritic Cell Function and Th17 Cell Differentiation. Sci Rep. 2017;7:41887 pubmed 出版商
  706. Xiong X, Liu Y, Mei Y, Peng J, Wang Z, Kong B, et al. Novel Protective Role of Myeloid Differentiation 1 in Pathological Cardiac Remodelling. Sci Rep. 2017;7:41857 pubmed 出版商
  707. Lee J, Hsu C, Michael M, Nanda A, Liu L, McMillan J, et al. Large Intragenic Deletion in DSTYK Underlies Autosomal-Recessive Complicated Spastic Paraparesis, SPG23. Am J Hum Genet. 2017;100:364-370 pubmed 出版商
  708. Weinberg Z, Zajac A, Phan T, Shiwarski D, Puthenveedu M. Sequence-Specific Regulation of Endocytic Lifetimes Modulates Arrestin-Mediated Signaling at the µ Opioid Receptor. Mol Pharmacol. 2017;91:416-427 pubmed 出版商
  709. Gonzalez M, Martin E, Anwar T, Arellano Garcia C, Medhora N, Lama A, et al. Mesenchymal Stem Cell-Induced DDR2 Mediates Stromal-Breast Cancer Interactions and Metastasis Growth. Cell Rep. 2017;18:1215-1228 pubmed 出版商
  710. Lim E, Nakanishi S, Hoghooghi V, Eaton S, Palmer A, Frederick A, et al. AlphaB-crystallin regulates remyelination after peripheral nerve injury. Proc Natl Acad Sci U S A. 2017;114:E1707-E1716 pubmed 出版商
  711. Pergola C, Schubert K, Pace S, Ziereisen J, Nikels F, Scherer O, et al. Modulation of actin dynamics as potential macrophage subtype-targeting anti-tumour strategy. Sci Rep. 2017;7:41434 pubmed 出版商
  712. Godfrey M, Touati S, Kataria M, Jones A, Snijders A, Uhlmann F. PP2ACdc55 Phosphatase Imposes Ordered Cell-Cycle Phosphorylation by Opposing Threonine Phosphorylation. Mol Cell. 2017;65:393-402.e3 pubmed 出版商
  713. Carpi S, Fogli S, Polini B, Montagnani V, Podestà A, Breschi M, et al. Tumor-promoting effects of cannabinoid receptor type 1 in human melanoma cells. Toxicol In Vitro. 2017;40:272-279 pubmed 出版商
  714. Difranco K, Mulligan J, Sumal A, Diamond G. Induction of CFTR gene expression by 1,25(OH)2 vitamin D3, 25OH vitamin D3, and vitamin D3 in cultured human airway epithelial cells and in mouse airways. J Steroid Biochem Mol Biol. 2017;173:323-332 pubmed 出版商
  715. Kissing S, Rudnik S, Damme M, Lüllmann Rauch R, Ichihara A, Kornak U, et al. Disruption of the vacuolar-type H+-ATPase complex in liver causes MTORC1-independent accumulation of autophagic vacuoles and lysosomes. Autophagy. 2017;13:670-685 pubmed 出版商
  716. Liu J, Wang H, Gu J, Deng T, Yuan Z, Hu B, et al. BECN1-dependent CASP2 incomplete autophagy induction by binding to rabies virus phosphoprotein. Autophagy. 2017;13:739-753 pubmed 出版商
  717. Li M, Yuan Y, Hu B, Wu L. Study on Lentivirus-Mediated ABCA7 Improves Neurocognitive Function and Related Mechanisms in the C57BL/6 Mouse Model of Alzheimer's Disease. J Mol Neurosci. 2017;61:489-497 pubmed 出版商
  718. Lisse T, Rieger S. IKKα regulates human keratinocyte migration through surveillance of the redox environment. J Cell Sci. 2017;130:975-988 pubmed 出版商
  719. Xu J, Zhang X, Wang H, Ge S, Gao T, Song L, et al. HCRP1 downregulation promotes hepatocellular carcinoma cell migration and invasion through the induction of EGFR activation and epithelial-mesenchymal transition. Biomed Pharmacother. 2017;88:421-429 pubmed 出版商
  720. Guo A, Lu P, Lee J, Zhen C, Chiosis G, Wang Y. HSP90 stabilizes B-cell receptor kinases in a multi-client interactome: PU-H71 induces CLL apoptosis in a cytoprotective microenvironment. Oncogene. 2017;36:3441-3449 pubmed 出版商
  721. Lin Y, Lin Y, Huang M, Kuo P, Wu C, Lee M, et al. Tumor necrosis factor-alpha inhibitors suppress CCL2 chemokine in monocytes via epigenetic modification. Mol Immunol. 2017;83:82-91 pubmed 出版商
  722. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed 出版商
  723. Schober T, Magg T, Laschinger M, Rohlfs M, Linhares N, Puchalka J, et al. A human immunodeficiency syndrome caused by mutations in CARMIL2. Nat Commun. 2017;8:14209 pubmed 出版商
  724. Huang Y, Zhou B, Wernig M, Sudhof T. ApoE2, ApoE3, and ApoE4 Differentially Stimulate APP Transcription and A? Secretion. Cell. 2017;168:427-441.e21 pubmed 出版商
  725. Feng L, Xue D, Chen E, Zhang W, Gao X, Yu J, et al. HMGB1 promotes the secretion of multiple cytokines and potentiates the osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Exp Ther Med. 2016;12:3941-3947 pubmed 出版商
  726. Barcus C, O Leary K, Brockman J, Rugowski D, Liu Y, Garcia N, et al. Elevated collagen-I augments tumor progressive signals, intravasation and metastasis of prolactin-induced estrogen receptor alpha positive mammary tumor cells. Breast Cancer Res. 2017;19:9 pubmed 出版商
  727. Nascimbeni A, Fanin M, Angelini C, Sandri M. Autophagy dysregulation in Danon disease. Cell Death Dis. 2017;8:e2565 pubmed 出版商
  728. Ertsås H, Nolan G, Labarge M, Lorens J. Microsphere cytometry to interrogate microenvironment-dependent cell signaling. Integr Biol (Camb). 2017;9:123-134 pubmed 出版商
  729. Dieris M, Ahuja G, Krishna V, Korsching S. A single identified glomerulus in the zebrafish olfactory bulb carries the high-affinity response to death-associated odor cadaverine. Sci Rep. 2017;7:40892 pubmed 出版商
  730. Wu M, Chen W, Lu Y, Zhu G, Hao L, Li Y. Gα13 negatively controls osteoclastogenesis through inhibition of the Akt-GSK3β-NFATc1 signalling pathway. Nat Commun. 2017;8:13700 pubmed 出版商
  731. Xia L, Plachynta M, Liu T, Xiao X, Song J, Li X, et al. Pro-inflammatory effect of a traditional Chinese medicine formula with potent anti-cancer activity in vitro impedes tumor inhibitory potential in vivo. Mol Clin Oncol. 2016;5:717-723 pubmed 出版商
  732. Peng Y, Shi X, Li Z, He X, Sun Y. Particularly interesting Cys-His-rich protein is highly expressed in human intracranial aneurysms and resists aneurysmal rupture. Exp Ther Med. 2016;12:3905-3912 pubmed 出版商
  733. Yoo S, Latifkar A, Cerione R, Antonyak M. Cool-associated Tyrosine-phosphorylated Protein 1 Is Required for the Anchorage-independent Growth of Cervical Carcinoma Cells by Binding Paxillin and Promoting AKT Activation. J Biol Chem. 2017;292:3947-3957 pubmed 出版商
  734. Asensio Juan E, Fueyo R, PAPPA S, Iacobucci S, Badosa C, Lois S, et al. The histone demethylase PHF8 is a molecular safeguard of the IFNγ response. Nucleic Acids Res. 2017;45:3800-3811 pubmed 出版商
  735. Gross S, Rotwein P. Quantification of growth factor signaling and pathway cross talk by live-cell imaging. Am J Physiol Cell Physiol. 2017;312:C328-C340 pubmed 出版商
  736. Lee H, Diaz M, Price K, Ozuna J, Zhang S, Sevick Muraca E, et al. Fluid shear stress activates YAP1 to promote cancer cell motility. Nat Commun. 2017;8:14122 pubmed 出版商
  737. Cao H, Yu S, Chen D, Jing C, Wang Z, Ma R, et al. Liver X receptor agonist T0901317 reverses resistance of A549 human lung cancer cells to EGFR-TKI treatment. FEBS Open Bio. 2017;7:35-43 pubmed 出版商
  738. Kechele D, Blue R, Zwarycz B, Espenschied S, Mah A, Siegel M, et al. Orphan Gpr182 suppresses ERK-mediated intestinal proliferation during regeneration and adenoma formation. J Clin Invest. 2017;127:593-607 pubmed 出版商
  739. Chen G, Chen J, Yan Z, Li Z, Yu M, Guo W, et al. Maternal diabetes modulates dental epithelial stem cells proliferation and self-renewal in offspring through apurinic/apyrimidinicendonuclease 1-mediated DNA methylation. Sci Rep. 2017;7:40762 pubmed 出版商
  740. Xu X, Fan Z, Liang C, Li L, Wang L, Liang Y, et al. A signature motif in LIM proteins mediates binding to checkpoint proteins and increases tumour radiosensitivity. Nat Commun. 2017;8:14059 pubmed 出版商
  741. Halbrook C, Wen H, Ruggeri J, Takeuchi K, Zhang Y, di Magliano M, et al. Mitogen-activated Protein Kinase Kinase Activity Maintains Acinar-to-Ductal Metaplasia and Is Required for Organ Regeneration in Pancreatitis. Cell Mol Gastroenterol Hepatol. 2017;3:99-118 pubmed 出版商
  742. Pandini G, Satriano C, Pietropaolo A, Gianì F, Travaglia A, La Mendola D, et al. The Inorganic Side of NGF: Copper(II) and Zinc(II) Affect the NGF Mimicking Signaling of the N-Terminus Peptides Encompassing the Recognition Domain of TrkA Receptor. Front Neurosci. 2016;10:569 pubmed 出版商
  743. Kozlovskaja GumbrienÄ— A, Yi R, Alexander R, Aman A, Jiskra R, Nagelberg D, et al. Proliferation-independent regulation of organ size by Fgf/Notch signaling. elife. 2017;6: pubmed 出版商
  744. Decourtye L, Mire E, Clemessy M, Heurtier V, Ledent T, Robinson I, et al. IGF-1 Induces GHRH Neuronal Axon Elongation during Early Postnatal Life in Mice. PLoS ONE. 2017;12:e0170083 pubmed 出版商
  745. Rahman A, Haugh J. Kinetic Modeling and Analysis of the Akt/Mechanistic Target of Rapamycin Complex 1 (mTORC1) Signaling Axis Reveals Cooperative, Feedforward Regulation. J Biol Chem. 2017;292:2866-2872 pubmed 出版商
  746. Hirai M, Arita Y, McGlade C, Lee K, Chen J, Evans S. Adaptor proteins NUMB and NUMBL promote cell cycle withdrawal by targeting ERBB2 for degradation. J Clin Invest. 2017;127:569-582 pubmed 出版商
  747. Chen C, Huang J, Wang C, Tahara S, Zhou L, Kondo Y, et al. Hepatitis C virus has a genetically determined lymphotropism through co-receptor B7.2. Nat Commun. 2017;8:13882 pubmed 出版商
  748. Clotet S, Soler M, Riera M, Pascual J, Fang F, Zhou J, et al. Stable Isotope Labeling with Amino Acids (SILAC)-Based Proteomics of Primary Human Kidney Cells Reveals a Novel Link between Male Sex Hormones and Impaired Energy Metabolism in Diabetic Kidney Disease. Mol Cell Proteomics. 2017;16:368-385 pubmed 出版商
  749. Cheng L, Li K, Yi N, Li X, Wang F, Xue B, et al. miRNA-141 attenuates UV-induced oxidative stress via activating Keap1-Nrf2 signaling in human retinal pigment epithelium cells and retinal ganglion cells. Oncotarget. 2017;8:13186-13194 pubmed 出版商
  750. Hichino A, Okamoto M, Taga S, Akizuki R, Endo S, Matsunaga T, et al. Down-regulation of Claudin-2 Expression and Proliferation by Epigenetic Inhibitors in Human Lung Adenocarcinoma A549 Cells. J Biol Chem. 2017;292:2411-2421 pubmed 出版商
  751. Kidger A, Rushworth L, Stellzig J, Davidson J, Bryant C, Bayley C, et al. Dual-specificity phosphatase 5 controls the localized inhibition, propagation, and transforming potential of ERK signaling. Proc Natl Acad Sci U S A. 2017;114:E317-E326 pubmed 出版商
  752. Babagana M, Johnson S, Slabodkin H, Bshara W, Morrison C, Kandel E. P21-activated kinase 1 regulates resistance to BRAF inhibition in human cancer cells. Mol Carcinog. 2017;56:1515-1525 pubmed 出版商
  753. Kozlova N, Wottawa M, Katschinski D, Kristiansen G, Kietzmann T. Hypoxia-inducible factor prolyl hydroxylase 2 (PHD2) is a direct regulator of epidermal growth factor receptor (EGFR) signaling in breast cancer. Oncotarget. 2017;8:9885-9898 pubmed 出版商
  754. Matsumoto A, Pasut A, Matsumoto M, Yamashita R, Fung J, Monteleone E, et al. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature. 2017;541:228-232 pubmed 出版商
  755. Grossi M, Bhattachariya A, Nordström I, Turczynska K, Svensson D, Albinsson S, et al. Pyk2 inhibition promotes contractile differentiation in arterial smooth muscle. J Cell Physiol. 2017;232:3088-3102 pubmed 出版商
  756. Hammers D, Sleeper M, Forbes S, Coker C, Jirousek M, Zimmer M, et al. Disease-modifying effects of orally bioavailable NF-κB inhibitors in dystrophin-deficient muscle. JCI Insight. 2016;1:e90341 pubmed 出版商
  757. Ye Y, Zhao Z, Xu H, Zhang X, Su X, Yang Y, et al. Activation of Sphingosine 1-Phosphate Receptor 1 Enhances Hippocampus Neurogenesis in a Rat Model of Traumatic Brain Injury: An Involvement of MEK/Erk Signaling Pathway. Neural Plast. 2016;2016:8072156 pubmed 出版商
  758. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  759. Hayakawa M, Hayakawa H, Petrova T, Ritprajak P, Sutavani R, Jiménez Andrade G, et al. Loss of Functionally Redundant p38 Isoforms in T Cells Enhances Regulatory T Cell Induction. J Biol Chem. 2017;292:1762-1772 pubmed 出版商
  760. Su C, Gao X, Yang W, Zhao Y, Fu X, Cui X, et al. Phosphorylation of Tudor-SN, a novel substrate of JNK, is involved in the efficient recruitment of Tudor-SN into stress granules. Biochim Biophys Acta Mol Cell Res. 2017;1864:562-571 pubmed 出版商
  761. Ohtsuka T, Sakaguchi M, Yamamoto H, Tomida S, Takata K, Shien K, et al. Interaction of cytokeratin 19 head domain and HER2 in the cytoplasm leads to activation of HER2-Erk pathway. Sci Rep. 2016;6:39557 pubmed 出版商
  762. Chao M, Guo J, Cheng W, Zhu X, She Z, Huang Z, et al. Loss of Caspase-Activated DNase Protects Against Atherosclerosis in Apolipoprotein E-Deficient Mice. J Am Heart Assoc. 2016;5: pubmed 出版商
  763. Long M, Eddy W, Gong K, Lovelace Macon L, McMahan R, Charron J, et al. MEK1/2 Inhibition Promotes Macrophage Reparative Properties. J Immunol. 2017;198:862-872 pubmed 出版商
  764. Takahashi M, Li Y, Dillon T, Stork P. Phosphorylation of Rap1 by cAMP-dependent Protein Kinase (PKA) Creates a Binding Site for KSR to Sustain ERK Activation by cAMP. J Biol Chem. 2017;292:1449-1461 pubmed 出版商
  765. Fourneaux B, Chaire V, Lucchesi C, Karanian M, Pineau R, Laroche Clary A, et al. Dual inhibition of the PI3K/AKT/mTOR pathway suppresses the growth of leiomyosarcomas but leads to ERK activation through mTORC2: biological and clinical implications. Oncotarget. 2017;8:7878-7890 pubmed 出版商
  766. Jerić I, Maurer G, Cavallo A, Raguz J, Desideri E, Tarkowski B, et al. A cell-autonomous tumour suppressor role of RAF1 in hepatocarcinogenesis. Nat Commun. 2016;7:13781 pubmed 出版商
  767. Vakana E, Pratt S, Blosser W, Dowless M, Simpson N, Yuan X, et al. LY3009120, a panRAF inhibitor, has significant anti-tumor activity in BRAF and KRAS mutant preclinical models of colorectal cancer. Oncotarget. 2017;8:9251-9266 pubmed 出版商
  768. Wang S, Cheng Y, Zheng Y, He Z, Chen W, Zhou W, et al. PRKAR1A is a functional tumor suppressor inhibiting ERK/Snail/E-cadherin pathway in lung adenocarcinoma. Sci Rep. 2016;6:39630 pubmed 出版商
  769. Wymant J, Hiscox S, Westwell A, Urbé S, Clague M, Jones A. The Role of BCA2 in the Endocytic Trafficking of EGFR and Significance as a Prognostic Biomarker in Cancer. J Cancer. 2016;7:2388-2407 pubmed
  770. Lee S, Rho S, Park H, Park J, Kim J, Lee I, et al. Carbohydrate-binding protein CLEC14A regulates VEGFR-2- and VEGFR-3-dependent signals during angiogenesis and lymphangiogenesis. J Clin Invest. 2017;127:457-471 pubmed 出版商
  771. Yu Z, Mouillesseaux K, Kushner E, Bautch V. Tumor-Derived Factors and Reduced p53 Promote Endothelial Cell Centrosome Over-Duplication. PLoS ONE. 2016;11:e0168334 pubmed 出版商
  772. Ganta V, Choi M, Kutateladze A, Annex B. VEGF165b Modulates Endothelial VEGFR1-STAT3 Signaling Pathway and Angiogenesis in Human and Experimental Peripheral Arterial Disease. Circ Res. 2017;120:282-295 pubmed 出版商
  773. Lopes M, Leal R, Guarnieri R, Schwarzbold M, Hoeller A, Diaz A, et al. A single high dose of dexamethasone affects the phosphorylation state of glutamate AMPA receptors in the human limbic system. Transl Psychiatry. 2016;6:e986 pubmed 出版商
  774. Yi J, Huang Y, Kwaczala A, Kuo I, Ehrlich B, Campbell S, et al. Low-dose dasatinib rescues cardiac function in Noonan syndrome. JCI Insight. 2016;1:e90220 pubmed 出版商
  775. Jung J, Jung H, Neupane S, Kim K, Kim J, Yamamoto H, et al. Involvement of PI3K and PKA pathways in mouse tongue epithelial differentiation. Acta Histochem. 2017;119:92-98 pubmed 出版商
  776. Mayrhofer M, Gourain V, Reischl M, Affaticati P, Jenett A, Joly J, et al. A novel brain tumour model in zebrafish reveals the role of YAP activation in MAPK- and PI3K-induced malignant growth. Dis Model Mech. 2017;10:15-28 pubmed 出版商
  777. Nagahara Y, Shimazawa M, Ohuchi K, Ito J, Takahashi H, Tsuruma K, et al. GPNMB ameliorates mutant TDP-43-induced motor neuron cell death. J Neurosci Res. 2017;95:1647-1665 pubmed 出版商
  778. Santo Domingo J, Chareyron I, Dayon L, Núñez Galindo A, Cominetti O, Pilar Giner Giménez M, et al. Coordinated activation of mitochondrial respiration and exocytosis mediated by PKC signaling in pancreatic ? cells. FASEB J. 2017;31:1028-1045 pubmed 出版商
  779. Lee H, Khan S, Khaliqdina S, Altintas M, Grahammer F, Zhao J, et al. Absence of miR-146a in Podocytes Increases Risk of Diabetic Glomerulopathy via Up-regulation of ErbB4 and Notch-1. J Biol Chem. 2017;292:732-747 pubmed 出版商
  780. Weyandt J, Carney J, Pavlisko E, Xu M, Counter C. Isoform-Specific Effects of Wild-Type Ras Genes on Carcinogen-Induced Lung Tumorigenesis in Mice. PLoS ONE. 2016;11:e0167205 pubmed 出版商
  781. Tsai C, Lin Y, Huang C, Shih C, Tsai Y, Tsao N, et al. Thrombomodulin regulates monocye differentiation via PKC? and ERK1/2 pathway in vitro and in atherosclerotic artery. Sci Rep. 2016;6:38421 pubmed 出版商
  782. Farsam V, Basu A, Gatzka M, Treiber N, Schneider L, Mulaw M, et al. Senescent fibroblast-derived Chemerin promotes squamous cell carcinoma migration. Oncotarget. 2016;7:83554-83569 pubmed 出版商
  783. Battram A, Durrant T, Agbani E, Heesom K, Paul D, Piatt R, et al. The Phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) Binder Rasa3 Regulates Phosphoinositide 3-kinase (PI3K)-dependent Integrin αIIbβ3 Outside-in Signaling. J Biol Chem. 2017;292:1691-1704 pubmed 出版商
  784. Shahani N, Swarnkar S, Giovinazzo V, Morgenweck J, Bohn L, Scharager Tapia C, et al. RasGRP1 promotes amphetamine-induced motor behavior through a Rhes interaction network ("Rhesactome") in the striatum. Sci Signal. 2016;9:ra111 pubmed
  785. Bangi E, Murgia C, Teague A, Sansom O, Cagan R. Functional exploration of colorectal cancer genomes using Drosophila. Nat Commun. 2016;7:13615 pubmed 出版商
  786. Mueller A, van Velthoven C, Fukumoto K, Cheung T, Rando T. Intronic polyadenylation of PDGFR? in resident stem cells attenuates muscle fibrosis. Nature. 2016;540:276-279 pubmed 出版商
  787. Torgersen M, Klokk T, Kavaliauskiene S, Klose C, Simons K, Skotland T, et al. The anti-tumor drug 2-hydroxyoleic acid (Minerval) stimulates signaling and retrograde transport. Oncotarget. 2016;7:86871-86888 pubmed 出版商
  788. Ferland D, Darios E, Neubig R, Sjögren B, Truong N, Torres R, et al. Chemerin-induced arterial contraction is Gi- and calcium-dependent. Vascul Pharmacol. 2017;88:30-41 pubmed 出版商
  789. Kim H, Kim M, Park Y, Park I, Kim T, Yang S, et al. Prostaglandin E2 Activates YAP and a Positive-Signaling Loop to Promote Colon Regeneration After Colitis but Also Carcinogenesis in Mice. Gastroenterology. 2017;152:616-630 pubmed 出版商
  790. Bullock M, Lim G, Li C, Choi I, Kochhar S, Liddle C, et al. Thyroid transcription factor FOXE1 interacts with ETS factor ELK1 to co-regulate TERT. Oncotarget. 2016;7:85948-85962 pubmed 出版商
  791. Park J, Kim S, Yoo J, Jang J, Lee A, Oh J, et al. Novel Neuroprotective Effects of Melanin-Concentrating Hormone in Parkinson's Disease. Mol Neurobiol. 2017;54:7706-7721 pubmed 出版商
  792. Chou H, Fong Y, Lin H, Tsai E, Chen J, Chang W, et al. An Acetamide Derivative as a Camptothecin Sensitizer for Human Non-Small-Cell Lung Cancer Cells through Increased Oxidative Stress and JNK Activation. Oxid Med Cell Longev. 2016;2016:9128102 pubmed
  793. Moyle L, Blanc E, Jaka O, Prueller J, Banerji C, Tedesco F, et al. Ret function in muscle stem cells points to tyrosine kinase inhibitor therapy for facioscapulohumeral muscular dystrophy. elife. 2016;5: pubmed 出版商
  794. Roversi F, Pericole F, Machado Neto J, da Silva Santos Duarte A, Longhini A, Corrocher F, et al. Hematopoietic cell kinase (HCK) is a potential therapeutic target for dysplastic and leukemic cells due to integration of erythropoietin/PI3K pathway and regulation of erythropoiesis: HCK in erythropoietin/PI3K pathway. Biochim Biophys Acta Mol Basis Dis. 2017;1863:450-461 pubmed 出版商
  795. Wang Y, Chiang H, Huang Y, Hsu C, Yang P, Juan H, et al. A link between adipogenesis and innate immunity: RNase-L promotes 3T3-L1 adipogenesis by destabilizing Pref-1 mRNA. Cell Death Dis. 2016;7:e2458 pubmed 出版商
  796. Park J, Lee C, Kim H, Kim D, Son J, Ko E, et al. Suppression of the metastatic spread of breast cancer by DN10764 (AZD7762)-mediated inhibition of AXL signaling. Oncotarget. 2016;7:83308-83318 pubmed 出版商
  797. Milara J, Cervera A, de Diego A, Sanz C, Juan G, Gavaldá A, et al. Non-neuronal cholinergic system contributes to corticosteroid resistance in chronic obstructive pulmonary disease patients. Respir Res. 2016;17:145 pubmed
  798. Flütsch A, Henry K, Mantuano E, Lam M, Shibayama M, Takahashi K, et al. Evidence that LDL receptor-related protein 1 acts as an early injury detection receptor and activates c-Jun in Schwann cells. Neuroreport. 2016;27:1305-1311 pubmed
  799. Spencer Smith R, Koide A, Zhou Y, Eguchi R, Sha F, Gajwani P, et al. Inhibition of RAS function through targeting an allosteric regulatory site. Nat Chem Biol. 2017;13:62-68 pubmed 出版商
  800. Marichal T, Gaudenzio N, El Abbas S, Sibilano R, Zurek O, Starkl P, et al. Guanine nucleotide exchange factor RABGEF1 regulates keratinocyte-intrinsic signaling to maintain skin homeostasis. J Clin Invest. 2016;126:4497-4515 pubmed 出版商
  801. Newton K, Wickliffe K, Maltzman A, Dugger D, Strasser A, Pham V, et al. RIPK1 inhibits ZBP1-driven necroptosis during development. Nature. 2016;540:129-133 pubmed 出版商
  802. Hegedüs L, Garay T, Molnar E, Varga K, Bilecz A, Torok S, et al. The plasma membrane Ca2+ pump PMCA4b inhibits the migratory and metastatic activity of BRAF mutant melanoma cells. Int J Cancer. 2017;140:2758-2770 pubmed 出版商
  803. Hu Y, Kim J, He K, Wan Q, Kim J, Flach M, et al. Scramblase TMEM16F terminates T cell receptor signaling to restrict T cell exhaustion. J Exp Med. 2016;213:2759-2772 pubmed
  804. Chu Q, Huang H, Huang T, Cao L, Peng L, Shi S, et al. Extracellular serglycin upregulates the CD44 receptor in an autocrine manner to maintain self-renewal in nasopharyngeal carcinoma cells by reciprocally activating the MAPK/β-catenin axis. Cell Death Dis. 2016;7:e2456 pubmed 出版商
  805. Cardoso R, Burns A, Moeller J, Skinner D, Padmanabhan V. Developmental Programming: Insulin Sensitizer Prevents the GnRH-Stimulated LH Hypersecretion in a Sheep Model of PCOS. Endocrinology. 2016;157:4641-4653 pubmed
  806. Alekhina O, Marchese A. ?-Arrestin1 and Signal-transducing Adaptor Molecule 1 (STAM1) Cooperate to Promote Focal Adhesion Kinase Autophosphorylation and Chemotaxis via the Chemokine Receptor CXCR4. J Biol Chem. 2016;291:26083-26097 pubmed
  807. Grugan K, Dorn K, Jarantow S, Bushey B, Pardinas J, Laquerre S, et al. Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells. MAbs. 2017;9:114-126 pubmed 出版商
  808. Ulland T, Jain N, Hornick E, Elliott E, Clay G, Sadler J, et al. Nlrp12 mutation causes C57BL/6J strain-specific defect in neutrophil recruitment. Nat Commun. 2016;7:13180 pubmed 出版商
  809. Zhao J, Chen C, Guo M, Tao Y, Cui P, Zhou Y, et al. MicroRNA-7 Deficiency Ameliorates the Pathologies of Acute Lung Injury through Elevating KLF4. Front Immunol. 2016;7:389 pubmed
  810. Kunzler A, Zeidán Chuliá F, Gasparotto J, Girardi C, Klafke K, Petiz L, et al. Changes in Cell Cycle and Up-Regulation of Neuronal Markers During SH-SY5Y Neurodifferentiation by Retinoic Acid are Mediated by Reactive Species Production and Oxidative Stress. Mol Neurobiol. 2017;54:6903-6916 pubmed 出版商
  811. Ismail H, Didangelos A, Vincent T, Saklatvala J. Rapid Activation of Transforming Growth Factor ?-Activated Kinase 1 in Chondrocytes by Phosphorylation and K63 -Linked Polyubiquitination Upon Injury to Animal Articular Cartilage. Arthritis Rheumatol. 2017;69:565-575 pubmed 出版商
  812. Zhang Q, Zhang Y, Parsels J, Lohse I, Lawrence T, Pasca di Magliano M, et al. Fbxw7 Deletion Accelerates KrasG12D-Driven Pancreatic Tumorigenesis via Yap Accumulation. Neoplasia. 2016;18:666-673 pubmed 出版商
  813. Bulldan A, Shihan M, Goericke Pesch S, Scheiner Bobis G. Signaling events associated with gonadotropin releasing hormone-agonist-induced hormonal castration and its reversal in canines. Mol Reprod Dev. 2016;83:1092-1101 pubmed 出版商
  814. Ulbrich F, Kaufmann K, Meske A, Lagrèze W, Augustynik M, Buerkle H, et al. The CORM ALF-186 Mediates Anti-Apoptotic Signaling via an Activation of the p38 MAPK after Ischemia and Reperfusion Injury in Retinal Ganglion Cells. PLoS ONE. 2016;11:e0165182 pubmed 出版商
  815. Richter E, Harms M, Ventz K, Nölker R, Fraunholz M, Mostertz J, et al. Quantitative Proteomics Reveals the Dynamics of Protein Phosphorylation in Human Bronchial Epithelial Cells during Internalization, Phagosomal Escape, and Intracellular Replication of Staphylococcus aureus. J Proteome Res. 2016;15:4369-4386 pubmed
  816. Cui Y, Li H, Wu S, Zhao R, Du D, Ding Y, et al. Formaldehyde impairs transepithelial sodium transport. Sci Rep. 2016;6:35857 pubmed 出版商
  817. Zimmermann M, Arachchige Don A, Donaldson M, Patriarchi T, Horne M. Cyclin G2 promotes cell cycle arrest in breast cancer cells responding to fulvestrant and metformin and correlates with patient survival. Cell Cycle. 2016;15:3278-3295 pubmed
  818. Che D, Zhou T, Lan Y, Xie J, Gong H, Li C, et al. High glucose-induced epithelial-mesenchymal transition contributes to the upregulation of fibrogenic factors in retinal pigment epithelial cells. Int J Mol Med. 2016;38:1815-1822 pubmed 出版商
  819. Yang P, Schmit B, Fu C, Desart K, Oh S, Berceli S, et al. Smooth muscle cell-specific Tgfbr1 deficiency promotes aortic aneurysm formation by stimulating multiple signaling events. Sci Rep. 2016;6:35444 pubmed 出版商
  820. Li S, Yang B, Teguh D, Zhou L, Xu J, Rong L. Amyloid ? Peptide Enhances RANKL-Induced Osteoclast Activation through NF-?B, ERK, and Calcium Oscillation Signaling. Int J Mol Sci. 2016;17: pubmed
  821. Yue G, Xie S, Lee J, Kwok H, Gao S, Nian Y, et al. New potential beneficial effects of actein, a triterpene glycoside isolated from Cimicifuga species, in breast cancer treatment. Sci Rep. 2016;6:35263 pubmed 出版商
  822. Tseng H, Vong C, Kwan Y, Lee S, Hoi M. TRPM2 regulates TXNIP-mediated NLRP3 inflammasome activation via interaction with p47 phox under high glucose in human monocytic cells. Sci Rep. 2016;6:35016 pubmed 出版商
  823. Kotsantis P, Silva L, Irmscher S, Jones R, Folkes L, Gromak N, et al. Increased global transcription activity as a mechanism of replication stress in cancer. Nat Commun. 2016;7:13087 pubmed 出版商
  824. Visuttijai K, Pettersson J, Mehrbani Azar Y, van den Bout I, Orndal C, Marcickiewicz J, et al. Lowered Expression of Tumor Suppressor Candidate MYO1C Stimulates Cell Proliferation, Suppresses Cell Adhesion and Activates AKT. PLoS ONE. 2016;11:e0164063 pubmed 出版商
  825. De Henau O, Degroot G, Imbault V, Robert V, de Poorter C, Mcheik S, et al. Signaling Properties of Chemerin Receptors CMKLR1, GPR1 and CCRL2. PLoS ONE. 2016;11:e0164179 pubmed 出版商
  826. Zhao Y, Fan D, Ru B, Cheng K, Hu S, Zhang J, et al. 6-C-(E-phenylethenyl)naringenin induces cell growth inhibition and cytoprotective autophagy in colon cancer cells. Eur J Cancer. 2016;68:38-50 pubmed 出版商
  827. Yi J, Manna A, Barr V, Hong J, Neuman K, Samelson L. madSTORM: a superresolution technique for large-scale multiplexing at single-molecule accuracy. Mol Biol Cell. 2016;27:3591-3600 pubmed
  828. Brzezinski J, Felkner R, Modi A, Liu M, Roth M. Phosphorylation Requirement of Murine Leukemia Virus p12. J Virol. 2016;90:11208-11219 pubmed
  829. Rodina A, Wang T, Yan P, Gomes E, Dunphy M, Pillarsetty N, et al. The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature. 2016;538:397-401 pubmed 出版商
  830. Yong K, Li A, Ou W, Hong C, Zhao W, Wang F, et al. Targeting SALL4 by entinostat in lung cancer. Oncotarget. 2016;7:75425-75440 pubmed 出版商
  831. Belliard A, Gulati G, Duan Q, Alves R, Brewer S, Madan N, et al. Ischemia/reperfusion-induced alterations of enzymatic and signaling functions of the rat cardiac Na+/K+-ATPase: protection by ouabain preconditioning. Physiol Rep. 2016;4: pubmed
  832. Zhong W, Wang X, Pan B, Li F, Kuang L, Su Z. Eupatilin induces human renal cancer cell apoptosis via ROS-mediated MAPK and PI3K/AKT signaling pathways. Oncol Lett. 2016;12:2894-2899 pubmed
  833. Huai W, Song H, Yu Z, Wang W, Han L, Sakamoto T, et al. Mint3 potentiates TLR3/4- and RIG-I-induced IFN-? expression and antiviral immune responses. Proc Natl Acad Sci U S A. 2016;113:11925-11930 pubmed
  834. Lu W, Shi J, Zhang J, Lv Z, Guo F, Huang H, et al. CXCL12/CXCR4 Axis Regulates Aggrecanase Activation and Cartilage Degradation in a Post-Traumatic Osteoarthritis Rat Model. Int J Mol Sci. 2016;17: pubmed
  835. Jin Q, Ren Y, Wang M, Suraneni P, Li D, Crispino J, et al. Novel function of FAXDC2 in megakaryopoiesis. Blood Cancer J. 2016;6:e478 pubmed 出版商
  836. Schubert C, Raparelli V, Westphal C, Dworatzek E, Petrov G, Kararigas G, et al. Reduction of apoptosis and preservation of mitochondrial integrity under ischemia/reperfusion injury is mediated by estrogen receptor ?. Biol Sex Differ. 2016;7:53 pubmed 出版商
  837. Wu J, Sun Y, Zhang P, Qian M, Zhang H, Chen X, et al. The Fra-1-miR-134-SDS22 feedback loop amplifies ERK/JNK signaling and reduces chemosensitivity in ovarian cancer cells. Cell Death Dis. 2016;7:e2384 pubmed 出版商
  838. Wang C, Zhang F, Cao Y, Zhang M, Wang A, Xu M, et al. Etoposide Induces Apoptosis in Activated Human Hepatic Stellate Cells via ER Stress. Sci Rep. 2016;6:34330 pubmed 出版商
  839. Ishikawa E, Kosako H, Yasuda T, Ohmuraya M, Araki K, Kurosaki T, et al. Protein kinase D regulates positive selection of CD4+ thymocytes through phosphorylation of SHP-1. Nat Commun. 2016;7:12756 pubmed 出版商
  840. King B, Boccalatte F, Moran Crusio K, Wolf E, Wang J, Kayembe C, et al. The ubiquitin ligase Huwe1 regulates the maintenance and lymphoid commitment of hematopoietic stem cells. Nat Immunol. 2016;17:1312-1321 pubmed 出版商
  841. Ang Z, Er J, Tan N, Lu J, Liou Y, Grosse J, et al. Human and mouse monocytes display distinct signalling and cytokine profiles upon stimulation with FFAR2/FFAR3 short-chain fatty acid receptor agonists. Sci Rep. 2016;6:34145 pubmed 出版商
  842. Boo H, Min H, Jang H, Yun H, Smith J, Jin Q, et al. The tobacco-specific carcinogen-operated calcium channel promotes lung tumorigenesis via IGF2 exocytosis in lung epithelial cells. Nat Commun. 2016;7:12961 pubmed 出版商
  843. Chen B, Zeng X, He Y, Wang X, Liang Z, Liu J, et al. STC2 promotes the epithelial-mesenchymal transition of colorectal cancer cells through AKT-ERK signaling pathways. Oncotarget. 2016;7:71400-71416 pubmed 出版商
  844. Cao R, Meng Z, Liu T, Wang G, Qian G, Cao T, et al. Decreased TRPM7 inhibits activities and induces apoptosis of bladder cancer cells via ERK1/2 pathway. Oncotarget. 2016;7:72941-72960 pubmed 出版商
  845. Xin H, ZHONG C, Nudleman E, Ferrara N. Evidence for Pro-angiogenic Functions of VEGF-Ax. Cell. 2016;167:275-284.e6 pubmed 出版商
  846. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  847. Shamblott M, O Driscoll M, Gomez D, McGuire D. Neurogenin 3 is regulated by neurotrophic tyrosine kinase receptor type 2 (TRKB) signaling in the adult human exocrine pancreas. Cell Commun Signal. 2016;14:23 pubmed
  848. Horn T, Ferretti S, Ebel N, Tam A, Ho S, Harbinski F, et al. High-Order Drug Combinations Are Required to Effectively Kill Colorectal Cancer Cells. Cancer Res. 2016;76:6950-6963 pubmed
  849. Krepler C, Xiao M, Samanta M, Vultur A, Chen H, Brafford P, et al. Targeting Notch enhances the efficacy of ERK inhibitors in BRAF-V600E melanoma. Oncotarget. 2016;7:71211-71222 pubmed 出版商
  850. Jansson D, Scotter E, Rustenhoven J, Coppieters N, Smyth L, Oldfield R, et al. Interferon-? blocks signalling through PDGFR? in human brain pericytes. J Neuroinflammation. 2016;13:249 pubmed
  851. Roncagalli R, Cucchetti M, Jarmuzynski N, Gregoire C, Bergot E, Audebert S, et al. The scaffolding function of the RLTPR protein explains its essential role for CD28 co-stimulation in mouse and human T cells. J Exp Med. 2016;213:2437-2457 pubmed
  852. Johnson R, Finger E, Olcina M, Vilalta M, Aguilera T, Miao Y, et al. Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nat Cell Biol. 2016;18:1078-1089 pubmed 出版商
  853. Egholm C, Khammy M, Dalsgaard T, Mazur A, Tritsaris K, Hansen A, et al. GLP-1 inhibits VEGFA-mediated signaling in isolated human endothelial cells and VEGFA-induced dilation of rat mesenteric arteries. Am J Physiol Heart Circ Physiol. 2016;311:H1214-H1224 pubmed 出版商
  854. Torres A, Vargas Y, Uribe D, Jaramillo C, Gleisner A, Salazar Onfray F, et al. Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells. Oncotarget. 2016;7:67373-67386 pubmed 出版商
  855. Zhong Y, Zou L, Wang Z, Pan Y, Dai Z, Liu X, et al. Lrrc75b is a novel negative regulator of C2C12 myogenic differentiation. Int J Mol Med. 2016;38:1411-1418 pubmed 出版商
  856. Yadav V, Hong K, Zeldin D, Nayeem M. Vascular endothelial over-expression of soluble epoxide hydrolase (Tie2-sEH) enhances adenosine A1 receptor-dependent contraction in mouse mesenteric arteries: role of ATP-sensitive K+ channels. Mol Cell Biochem. 2016;422:197-206 pubmed
  857. Gross S, Devraj K, Feng Y, Macas J, Liebner S, Wieland T. Nucleoside diphosphate kinase B regulates angiogenic responses in the endothelium via caveolae formation and c-Src-mediated caveolin-1 phosphorylation. J Cereb Blood Flow Metab. 2017;37:2471-2484 pubmed 出版商
  858. Wu Y, Ren D, Chen G. Siglec-E Negatively Regulates the Activation of TLR4 by Controlling Its Endocytosis. J Immunol. 2016;197:3336-3347 pubmed
  859. Janowski A, Colegio O, Hornick E, McNiff J, Martin M, Badovinac V, et al. NLRC4 suppresses melanoma tumor progression independently of inflammasome activation. J Clin Invest. 2016;126:3917-3928 pubmed 出版商
  860. Queisser A, Hagedorn S, Wang H, Schaefer T, Konantz M, Alavi S, et al. Ecotropic viral integration site 1, a novel oncogene in prostate cancer. Oncogene. 2017;36:1573-1584 pubmed 出版商
  861. Wang H, Han X, Bretz C, Becker S, Gambhir D, Smith G, et al. Retinal pigment epithelial cell expression of active Rap 1a by scAAV2 inhibits choroidal neovascularization. Mol Ther Methods Clin Dev. 2016;3:16056 pubmed 出版商
  862. Olianas M, Dedoni S, Onali P. LPA1 Mediates Antidepressant-Induced ERK1/2 Signaling and Protection from Oxidative Stress in Glial Cells. J Pharmacol Exp Ther. 2016;359:340-353 pubmed
  863. Thamodaran V, Bruce A. p38 (Mapk14/11) occupies a regulatory node governing entry into primitive endoderm differentiation during preimplantation mouse embryo development. Open Biol. 2016;6: pubmed 出版商
  864. García Carpizo V, Sarmentero J, Han B, Grana O, Ruiz Llorente S, Pisano D, et al. NSD2 contributes to oncogenic RAS-driven transcription in lung cancer cells through long-range epigenetic activation. Sci Rep. 2016;6:32952 pubmed 出版商
  865. Makita N, Sato T, Yajima Shoji Y, Sato J, Manaka K, Eda Hashimoto M, et al. Analysis of the V2 Vasopressin Receptor (V2R) Mutations Causing Partial Nephrogenic Diabetes Insipidus Highlights a Sustainable Signaling by a Non-peptide V2R Agonist. J Biol Chem. 2016;291:22460-22471 pubmed
  866. Ando Y, Oku T, Tsuji T. Platelet Supernatant Suppresses LPS-Induced Nitric Oxide Production from Macrophages Accompanied by Inhibition of NF-?B Signaling and Increased Arginase-1 Expression. PLoS ONE. 2016;11:e0162208 pubmed 出版商
  867. Wang Y, Han G, Guo B, Huang J. Hyaluronan oligosaccharides promote diabetic wound healing by increasing angiogenesis. Pharmacol Rep. 2016;68:1126-1132 pubmed 出版商
  868. Ji M, Lu Y, Zhao C, Gao W, He F, Zhang J, et al. C5a Induces the Synthesis of IL-6 and TNF-? in Rat Glomerular Mesangial Cells through MAPK Signaling Pathways. PLoS ONE. 2016;11:e0161867 pubmed 出版商
  869. Cheng G, Gao F, Sun X, Bi H, Zhu Y. Paris saponin VII suppresses osteosarcoma cell migration and invasion by inhibiting MMP?2/9 production via the p38 MAPK signaling pathway. Mol Med Rep. 2016;14:3199-205 pubmed 出版商
  870. Caporali S, Alvino E, Lacal P, Levati L, Giurato G, Memoli D, et al. Targeting the PI3K/AKT/mTOR pathway overcomes the stimulating effect of dabrafenib on the invasive behavior of melanoma cells with acquired resistance to the BRAF inhibitor. Int J Oncol. 2016;49:1164-74 pubmed 出版商
  871. Nettersheim D, Jostes S, Fabry M, Honecker F, Schumacher V, Kirfel J, et al. A signaling cascade including ARID1A, GADD45B and DUSP1 induces apoptosis and affects the cell cycle of germ cell cancers after romidepsin treatment. Oncotarget. 2016;7:74931-74946 pubmed 出版商
  872. Shang W, Zhao L, Dong X, Zhao Z, Li J, Zhang B, et al. Curcumin inhibits osteoclastogenic potential in PBMCs from rheumatoid arthritis patients via the suppression of MAPK/RANK/c-Fos/NFATc1 signaling pathways. Mol Med Rep. 2016;14:3620-6 pubmed 出版商
  873. Josowitz R, Mulero Navarro S, Rodriguez N, Falce C, Cohen N, Ullian E, et al. Autonomous and Non-autonomous Defects Underlie Hypertrophic Cardiomyopathy in BRAF-Mutant hiPSC-Derived Cardiomyocytes. Stem Cell Reports. 2016;7:355-369 pubmed 出版商
  874. Padhan N, Nordling T, Sundstrom M, Akerud P, Birgisson H, Nygren P, et al. High sensitivity isoelectric focusing to establish a signaling biomarker for the diagnosis of human colorectal cancer. BMC Cancer. 2016;16:683 pubmed 出版商
  875. Gao Y, Li J, Qiao N, Meng Q, Zhang M, Wang X, et al. Adrenomedullin blockade suppresses sunitinib-resistant renal cell carcinoma growth by targeting the ERK/MAPK pathway. Oncotarget. 2016;7:63374-63387 pubmed 出版商
  876. Zeng Y, Yao X, Chen L, Yan Z, Liu J, Zhang Y, et al. Sphingosine-1-phosphate induced epithelial-mesenchymal transition of hepatocellular carcinoma via an MMP-7/ syndecan-1/TGF-β autocrine loop. Oncotarget. 2016;7:63324-63337 pubmed 出版商
  877. Wu J, Wu H, Tsai D, Chiang M, Chen Y, Gao S, et al. Temporal regulation of Lsp1 O-GlcNAcylation and phosphorylation during apoptosis of activated B cells. Nat Commun. 2016;7:12526 pubmed 出版商
  878. Nakazawa S, Oikawa D, Ishii R, Ayaki T, Takahashi H, Takeda H, et al. Linear ubiquitination is involved in the pathogenesis of optineurin-associated amyotrophic lateral sclerosis. Nat Commun. 2016;7:12547 pubmed 出版商
  879. Hong J, Shin M, Douglas I, Chung K, Kim E, Jung J, et al. Inhibition of EphA2/EphrinA1 signal attenuates lipopolysaccharide-induced lung injury. Clin Sci (Lond). 2016;130:1993-2003 pubmed
  880. Kagoya Y, Nakatsugawa M, Yamashita Y, Ochi T, Guo T, Anczurowski M, et al. BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. J Clin Invest. 2016;126:3479-94 pubmed 出版商
  881. Kupka S, De Miguel D, Dráber P, Martino L, Surinova S, Rittinger K, et al. SPATA2-Mediated Binding of CYLD to HOIP Enables CYLD Recruitment to Signaling Complexes. Cell Rep. 2016;16:2271-80 pubmed 出版商
  882. Greenwood E, Maisel S, Ebertz D, Russ A, Pandey R, SCHROEDER J. Llgl1 prevents metaplastic survival driven by epidermal growth factor dependent migration. Oncotarget. 2016;7:60776-60792 pubmed 出版商
  883. Pourcelot M, Zemirli N, Silva da Costa L, Loyant R, Garcin D, Vitour D, et al. The Golgi apparatus acts as a platform for TBK1 activation after viral RNA sensing. BMC Biol. 2016;14:69 pubmed 出版商
  884. Liu M, Li Y, Liu A, Li R, Su Y, Du J, et al. The exon junction complex regulates the splicing of cell polarity gene dlg1 to control Wingless signaling in development. elife. 2016;5: pubmed 出版商
  885. Nehra S, Bhardwaj V, Bansal A, Saraswat D. Nanocurcumin accords protection against acute hypobaric hypoxia induced lung injury in rats. J Physiol Biochem. 2016;72:763-779 pubmed
  886. Gómez Puerto M, Verhagen L, Braat A, Lam E, Coffer P, Lorenowicz M. Activation of autophagy by FOXO3 regulates redox homeostasis during osteogenic differentiation. Autophagy. 2016;12:1804-1816 pubmed
  887. Gusscott S, Jenkins C, Lam S, Giambra V, Pollak M, Weng A. IGF1R Derived PI3K/AKT Signaling Maintains Growth in a Subset of Human T-Cell Acute Lymphoblastic Leukemias. PLoS ONE. 2016;11:e0161158 pubmed 出版商
  888. Li Y, Dillon T, Takahashi M, Earley K, Stork P. Protein Kinase A-independent Ras Protein Activation Cooperates with Rap1 Protein to Mediate Activation of the Extracellular Signal-regulated Kinases (ERK) by cAMP. J Biol Chem. 2016;291:21584-21595 pubmed
  889. Luessen D, Hinshaw T, Sun H, Howlett A, MARRS G, McCool B, et al. RGS2 modulates the activity and internalization of dopamine D2 receptors in neuroblastoma N2A cells. Neuropharmacology. 2016;110:297-307 pubmed 出版商
  890. Ruess D, Probst M, Marjanovic G, Wittel U, Hopt U, Keck T, et al. HDACi Valproic Acid (VPA) and Suberoylanilide Hydroxamic Acid (SAHA) Delay but Fail to Protect against Warm Hepatic Ischemia-Reperfusion Injury. PLoS ONE. 2016;11:e0161233 pubmed 出版商
  891. Nadeau Vallée M, Boudreault A, Leimert K, Hou X, Obari D, Madaan A, et al. Uterotonic Neuromedin U Receptor 2 and Its Ligands Are Upregulated by Inflammation in Mice and Humans, and Elicit Preterm Birth. Biol Reprod. 2016;95:72 pubmed
  892. Hammers D, Sleeper M, Forbes S, Shima A, Walter G, Sweeney H. Tadalafil Treatment Delays the Onset of Cardiomyopathy in Dystrophin-Deficient Hearts. J Am Heart Assoc. 2016;5: pubmed 出版商
  893. Siljamäki E, Abankwa D. SPRED1 Interferes with K-ras but Not H-ras Membrane Anchorage and Signaling. Mol Cell Biol. 2016;36:2612-25 pubmed 出版商
  894. Ogasawara R, Fujita S, Hornberger T, Kitaoka Y, Makanae Y, Nakazato K, et al. The role of mTOR signalling in the regulation of skeletal muscle mass in a rodent model of resistance exercise. Sci Rep. 2016;6:31142 pubmed 出版商
  895. Stucky A, Bakshi K, Friedman E, Wang H. Prenatal Cocaine Exposure Upregulates BDNF-TrkB Signaling. PLoS ONE. 2016;11:e0160585 pubmed 出版商
  896. Radke D, Ungefroren H, Helm O, Voigt S, Alp G, Braun H, et al. Negative control of TRAIL-R1 signaling by transforming growth factor ?1 in pancreatic tumor cells involves Smad-dependent down regulation of TRAIL-R1. Cell Signal. 2016;28:1652-62 pubmed 出版商
  897. Harrington K, Clevenger C. Identification of NEK3 Kinase Threonine 165 as a Novel Regulatory Phosphorylation Site That Modulates Focal Adhesion Remodeling Necessary for Breast Cancer Cell Migration. J Biol Chem. 2016;291:21388-21406 pubmed
  898. Tadjuidje E, Kofron M, Mir A, Wylie C, Heasman J, Cha S. Nodal signalling in Xenopus: the role of Xnr5 in left/right asymmetry and heart development. Open Biol. 2016;6: pubmed 出版商
  899. Lagares Tena L, García Monclús S, López Alemany R, Almacellas Rabaiget O, Huertas Martínez J, Sáinz Jaspeado M, et al. Caveolin-1 promotes Ewing sarcoma metastasis regulating MMP-9 expression through MAPK/ERK pathway. Oncotarget. 2016;7:56889-56903 pubmed 出版商
  900. Jiang Q, Chen S, Hu C, Huang P, Shen H, Zhao W. Neuregulin-1 (Nrg1) signaling has a preventive role and is altered in the frontal cortex under the pathological conditions of Alzheimer's disease. Mol Med Rep. 2016;14:2614-24 pubmed 出版商
  901. Salta E, Sierksma A, Vanden Eynden E, De Strooper B. miR-132 loss de-represses ITPKB and aggravates amyloid and TAU pathology in Alzheimer's brain. EMBO Mol Med. 2016;8:1005-18 pubmed 出版商
  902. Hernandez Rapp J, Rainone S, Goupil C, Dorval V, Smith P, Saint Pierre M, et al. microRNA-132/212 deficiency enhances Aβ production and senile plaque deposition in Alzheimer's disease triple transgenic mice. Sci Rep. 2016;6:30953 pubmed 出版商
  903. Kim J, Weeratunga P, Kim M, Nikapitiya C, Lee B, Uddin M, et al. Inhibitory effects of an aqueous extract from Cortex Phellodendri on the growth and replication of broad-spectrum of viruses in vitro and in vivo. BMC Complement Altern Med. 2016;16:265 pubmed 出版商
  904. Lie E, Ko J, Choi S, Roh J, Cho Y, Noh R, et al. SALM4 suppresses excitatory synapse development by cis-inhibiting trans-synaptic SALM3-LAR adhesion. Nat Commun. 2016;7:12328 pubmed 出版商
  905. Fiedor E, Gregoraszczuk E. The molecular mechanism of action of superactive human leptin antagonist (SHLA) and quadruple leptin mutein Lan-2 on human ovarian epithelial cell lines. Cancer Chemother Pharmacol. 2016;78:611-22 pubmed 出版商
  906. Di Siena S, Gimmelli R, Nori S, Barbagallo F, Campolo F, Dolci S, et al. Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury. Cell Death Dis. 2016;7:e2317 pubmed 出版商
  907. Anta B, Pérez Rodríguez A, Castro J, García Domínguez C, Ibiza S, Martínez N, et al. PGA1-induced apoptosis involves specific activation of H-Ras and N-Ras in cellular endomembranes. Cell Death Dis. 2016;7:e2311 pubmed 出版商
  908. Ho J, Hsu R, Wu C, Liao G, Gao H, Wang T, et al. Reduced miR-550a-3p leads to breast cancer initiation, growth, and metastasis by increasing levels of ERK1 and 2. Oncotarget. 2016;7:53853-53868 pubmed 出版商
  909. Wang J, Zhou J, Kho D, Reiners J, Wu G. Role for DUSP1 (dual-specificity protein phosphatase 1) in the regulation of autophagy. Autophagy. 2016;12:1791-1803 pubmed
  910. Zhao Y, Zhang B, Lei Y, Sun J, Zhang Y, Yang S, et al. Knockdown of USP39 induces cell cycle arrest and apoptosis in melanoma. Tumour Biol. 2016;37:13167-13176 pubmed
  911. Ciaraldi T, Ryan A, Mudaliar S, Henry R. Altered Myokine Secretion Is an Intrinsic Property of Skeletal Muscle in Type 2 Diabetes. PLoS ONE. 2016;11:e0158209 pubmed 出版商
  912. Jiao K, Zeng G, Niu L, Yang H, Ren G, Xu X, et al. Activation of ?2A-adrenergic signal transduction in chondrocytes promotes degenerative remodelling of temporomandibular joint. Sci Rep. 2016;6:30085 pubmed 出版商
  913. Merry C, McMahon S, Forrest M, Bartels C, Saiakhova A, Bartel C, et al. Transcriptome-wide identification of mRNAs and lincRNAs associated with trastuzumab-resistance in HER2-positive breast cancer. Oncotarget. 2016;7:53230-53244 pubmed 出版商
  914. Fecková B, Kimáková P, Ilkovičová L, Szentpéteriová E, Debeljak N, Solárová Z, et al. Far-western blotting as a solution to the non-specificity of the anti-erythropoietin receptor antibody. Oncol Lett. 2016;12:1575-1580 pubmed
  915. Shi K, Qian J, Qi L, Mao D, Chen Y, Zhu Y, et al. Atorvastatin antagonizes the visfatin-induced expression of inflammatory mediators via the upregulation of NF-?B activation in HCAECs. Oncol Lett. 2016;12:1438-1444 pubmed
  916. Dai H, Chen H, Liu W, You Y, Tan J, Yang A, et al. Effects of Raf kinase inhibitor protein expression on pancreatic cancer cell growth and motility: an in vivo and in vitro study. J Cancer Res Clin Oncol. 2016;142:2107-17 pubmed 出版商
  917. Fujiwara T, Zhou J, Ye S, Zhao H. RNA-binding protein Musashi2 induced by RANKL is critical for osteoclast survival. Cell Death Dis. 2016;7:e2300 pubmed 出版商
  918. Nettersheim D, Arndt I, Sharma R, Riesenberg S, Jostes S, Schneider S, et al. The cancer/testis-antigen PRAME supports the pluripotency network and represses somatic and germ cell differentiation programs in seminomas. Br J Cancer. 2016;115:454-64 pubmed 出版商
  919. Kreger B, Dougherty A, Greene K, Cerione R, Antonyak M. Microvesicle Cargo and Function Changes upon Induction of Cellular Transformation. J Biol Chem. 2016;291:19774-85 pubmed 出版商
  920. Kang J, Park S, Jeong S, Han M, Lee C, Lee K, et al. Epigenetic regulation of Kcna3-encoding Kv1.3 potassium channel by cereblon contributes to regulation of CD4+ T-cell activation. Proc Natl Acad Sci U S A. 2016;113:8771-6 pubmed 出版商
  921. Kojima Y, Volkmer J, McKenna K, Civelek M, Lusis A, Miller C, et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature. 2016;536:86-90 pubmed
  922. Raguz J, Jerić I, Niault T, Nowacka J, Kuzet S, Rupp C, et al. Epidermal RAF prevents allergic skin disease. elife. 2016;5: pubmed 出版商
  923. Rackov G, Hernandez Jimenez E, Shokri R, Carmona Rodríguez L, Manes S, Alvarez Mon M, et al. p21 mediates macrophage reprogramming through regulation of p50-p50 NF-?B and IFN-?. J Clin Invest. 2016;126:3089-103 pubmed 出版商
  924. Babica P, Zurabian R, Kumar E, Chopra R, Mianecki M, Park J, et al. Methoxychlor and Vinclozolin Induce Rapid Changes in Intercellular and Intracellular Signaling in Liver Progenitor Cells. Toxicol Sci. 2016;153:174-85 pubmed 出版商
  925. Im J, Yoon S, Kim B, Ban H, Won K, Chung K, et al. DNA damage induced apoptosis suppressor (DDIAS) is upregulated via ERK5/MEF2B signaling and promotes ?-catenin-mediated invasion. Biochim Biophys Acta. 2016;1859:1449-1458 pubmed 出版商
  926. Carino A, Graziosi L, D Amore C, Cipriani S, Marchianò S, Marino E, et al. The bile acid receptor GPBAR1 (TGR5) is expressed in human gastric cancers and promotes epithelial-mesenchymal transition in gastric cancer cell lines. Oncotarget. 2016;7:61021-61035 pubmed 出版商
  927. Warner M, Bridge K, Hewitson J, Hodgkinson M, Heyam A, Massa B, et al. S6K2-mediated regulation of TRBP as a determinant of miRNA expression in human primary lymphatic endothelial cells. Nucleic Acids Res. 2016;44:9942-9955 pubmed
  928. Hogg S, Newbold A, Vervoort S, Cluse L, Martin B, Gregory G, et al. BET Inhibition Induces Apoptosis in Aggressive B-Cell Lymphoma via Epigenetic Regulation of BCL-2 Family Members. Mol Cancer Ther. 2016;15:2030-41 pubmed 出版商
  929. Inda C, Dos Santos Claro P, Bonfiglio J, Senin S, Maccarrone G, Turck C, et al. Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling. J Cell Biol. 2016;214:181-95 pubmed 出版商
  930. Fresco V, Kern C, Mohammadi M, Twal W. Fibulin-1 Binds to Fibroblast Growth Factor 8 with High Affinity: EFFECTS ON EMBRYO SURVIVAL. J Biol Chem. 2016;291:18730-9 pubmed 出版商
  931. Zhang Y, Velez Delgado A, Mathew E, Li D, Mendez F, Flannagan K, et al. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut. 2017;66:124-136 pubmed 出版商
  932. Deblois G, Smith H, Tam I, Gravel S, Caron M, Savage P, et al. ERR? mediates metabolic adaptations driving lapatinib resistance in breast cancer. Nat Commun. 2016;7:12156 pubmed 出版商
  933. Köchl R, Thelen F, Vanes L, Brazão T, Fountain K, Xie J, et al. WNK1 kinase balances T cell adhesion versus migration in vivo. Nat Immunol. 2016;17:1075-83 pubmed 出版商
  934. Wang C, Guo S, Wang J, Yan X, Farrelly M, Zhang Y, et al. Reactivation of ERK and Akt confers resistance of mutant BRAF colon cancer cells to the HSP90 inhibitor AUY922. Oncotarget. 2016;7:49597-49610 pubmed 出版商
  935. Huang C, Lee C, Lin H, Chang J. Cathepsin S attenuates endosomal EGFR signalling: A mechanical rationale for the combination of cathepsin S and EGFR tyrosine kinase inhibitors. Sci Rep. 2016;6:29256 pubmed 出版商
  936. Shen P, Chen M, He M, Chen L, Song Y, Xiao P, et al. Inhibition of ER?/ERK/P62 cascades induces "autophagic switch" in the estrogen receptor-positive breast cancer cells exposed to gemcitabine. Oncotarget. 2016;7:48501-48516 pubmed 出版商
  937. Elzi D, Song M, Blackman B, Weintraub S, Lopez Terrada D, Chen Y, et al. FGF19 functions as autocrine growth factor for hepatoblastoma. Genes Cancer. 2016;7:125-35 pubmed 出版商
  938. Lukjanenko L, Jung M, Hegde N, Perruisseau Carrier C, Migliavacca E, Rozo M, et al. Loss of fibronectin from the aged stem cell niche affects the regenerative capacity of skeletal muscle in mice. Nat Med. 2016;22:897-905 pubmed 出版商
  939. Rozo M, Li L, Fan C. Targeting ?1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice. Nat Med. 2016;22:889-96 pubmed 出版商
  940. Tsai S, Huang P, Hsu Y, Peng Y, Lee C, Wang J, et al. Inhibition of hypoxia inducible factor-1α attenuates abdominal aortic aneurysm progression through the down-regulation of matrix metalloproteinases. Sci Rep. 2016;6:28612 pubmed 出版商
  941. Xiang N, Liu J, Liao Y, Huang Y, Wu Z, Bai Z, et al. Abrogating ClC-3 Inhibits LPS-induced Inflammation via Blocking the TLR4/NF-κB Pathway. Sci Rep. 2016;6:27583 pubmed 出版商
  942. Petrova L, Gran C, Bjoras M, Doetsch P. Efficient and Reliable Production of Vectors for the Study of the Repair, Mutagenesis, and Phenotypic Consequences of Defined DNA Damage Lesions in Mammalian Cells. PLoS ONE. 2016;11:e0158581 pubmed 出版商
  943. Chen Y, LaMarche M, Chan H, Fekkes P, García Fortanet J, Acker M, et al. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature. 2016;535:148-52 pubmed
  944. Subramaniam S, Ozdener M, Abdoul Azize S, Saito K, Malik B, Maquart G, et al. ERK1/2 activation in human taste bud cells regulates fatty acid signaling and gustatory perception of fat in mice and humans. FASEB J. 2016;30:3489-3500 pubmed
  945. Madureira P, Bharadwaj A, Bydoun M, Garant K, O Connell P, Lee P, et al. Cell surface protease activation during RAS transformation: Critical role of the plasminogen receptor, S100A10. Oncotarget. 2016;7:47720-47737 pubmed 出版商
  946. Barcus C, Keely P, Eliceiri K, Schuler L. Prolactin signaling through focal adhesion complexes is amplified by stiff extracellular matrices in breast cancer cells. Oncotarget. 2016;7:48093-48106 pubmed 出版商
  947. Zhao Y, Li Y, Luo P, Gao Y, Yang J, Lao K, et al. XBP1 splicing triggers miR-150 transfer from smooth muscle cells to endothelial cells via extracellular vesicles. Sci Rep. 2016;6:28627 pubmed 出版商
  948. Chakedis J, French R, Babicky M, Jaquish D, Mose E, Cheng P, et al. Characterization of RON protein isoforms in pancreatic cancer: implications for biology and therapeutics. Oncotarget. 2016;7:45959-45975 pubmed 出版商
  949. Aguilera O, Muñoz Sagastibelza M, Torrejón B, Borrero Palacios A, del Puerto Nevado L, Martínez Useros J, et al. Vitamin C uncouples the Warburg metabolic switch in KRAS mutant colon cancer. Oncotarget. 2016;7:47954-47965 pubmed 出版商
  950. Barnett C, Nataren N, Klingler Hoffmann M, Schwarz Q, Chong C, Lee Y, et al. Ectrodactyly and Lethal Pulmonary Acinar Dysplasia Associated with Homozygous FGFR2 Mutations Identified by Exome Sequencing. Hum Mutat. 2016;37:955-63 pubmed 出版商
  951. Gautheron J, Vucur M, Schneider A, Severi I, Roderburg C, Roy S, et al. The necroptosis-inducing kinase RIPK3 dampens adipose tissue inflammation and glucose intolerance. Nat Commun. 2016;7:11869 pubmed 出版商
  952. Khan S, Sikander M, Ebeling M, Ganju A, Kumari S, Yallapu M, et al. MUC13 interaction with receptor tyrosine kinase HER2 drives pancreatic ductal adenocarcinoma progression. Oncogene. 2017;36:491-500 pubmed 出版商
  953. Kemper K, Krijgsman O, Kong X, Cornelissen Steijger P, Shahrabi A, Weeber F, et al. BRAF(V600E) Kinase Domain Duplication Identified in Therapy-Refractory Melanoma Patient-Derived Xenografts. Cell Rep. 2016;16:263-277 pubmed 出版商
  954. Burger D, Turner M, Munkonda M, Touyz R. Endothelial Microparticle-Derived Reactive Oxygen Species: Role in Endothelial Signaling and Vascular Function. Oxid Med Cell Longev. 2016;2016:5047954 pubmed 出版商
  955. Zhou X, Wei Y, Qiu S, Xu Y, Zhang T, Zhang S. Propofol Decreases Endoplasmic Reticulum Stress-Mediated Apoptosis in Retinal Pigment Epithelial Cells. PLoS ONE. 2016;11:e0157590 pubmed 出版商
  956. Chan W, Ismail H, Mayaki D, Sanchez V, Tiedemann K, Davis E, et al. Fibulin-5 Regulates Angiopoietin-1/Tie-2 Receptor Signaling in Endothelial Cells. PLoS ONE. 2016;11:e0156994 pubmed 出版商
  957. Tisza M, Zhao W, Fuentes J, Prijic S, Chen X, Levental I, et al. Motility and stem cell properties induced by the epithelial-mesenchymal transition require destabilization of lipid rafts. Oncotarget. 2016;7:51553-51568 pubmed 出版商
  958. Maugeri G, D Amico A, Reitano R, Magro G, Cavallaro S, Salomone S, et al. PACAP and VIP Inhibit the Invasiveness of Glioblastoma Cells Exposed to Hypoxia through the Regulation of HIFs and EGFR Expression. Front Pharmacol. 2016;7:139 pubmed 出版商
  959. Desrochers L, Bordeleau F, Reinhart King C, Cerione R, Antonyak M. Microvesicles provide a mechanism for intercellular communication by embryonic stem cells during embryo implantation. Nat Commun. 2016;7:11958 pubmed 出版商
  960. Fagnocchi L, Cherubini A, Hatsuda H, Fasciani A, Mazzoleni S, Poli V, et al. A Myc-driven self-reinforcing regulatory network maintains mouse embryonic stem cell identity. Nat Commun. 2016;7:11903 pubmed 出版商
  961. Zhai W, Chen D, Shen H, Chen Z, Li H, Yu Z, et al. A1 adenosine receptor attenuates intracerebral hemorrhage-induced secondary brain injury in rats by activating the P38-MAPKAP2-Hsp27 pathway. Mol Brain. 2016;9:66 pubmed 出版商
  962. Hey F, Giblett S, Forrest S, Herbert C, Pritchard C. Phosphorylations of Serines 21/9 in Glycogen Synthase Kinase 3α/β Are Not Required for Cell Lineage Commitment or WNT Signaling in the Normal Mouse Intestine. PLoS ONE. 2016;11:e0156877 pubmed 出版商
  963. Wang J, Farris A, Xu K, Wang P, Zhang X, Duong D, et al. GPRC5A suppresses protein synthesis at the endoplasmic reticulum to prevent radiation-induced lung tumorigenesis. Nat Commun. 2016;7:11795 pubmed 出版商
  964. Han S, Ma X, Zhao Y, Zhao H, Batista A, Zhou S, et al. Identification of Glypican-3 as a potential metastasis suppressor gene in gastric cancer. Oncotarget. 2016;7:44406-44416 pubmed 出版商
  965. Fernandez Monreal M, Sánchez Castillo C, Esteban J. APPL1 gates long-term potentiation through its plekstrin homology domain. J Cell Sci. 2016;129:2793-803 pubmed 出版商
  966. Xi Z, Yao M, Li Y, Xie C, Holst J, Liu T, et al. Guttiferone K impedes cell cycle re-entry of quiescent prostate cancer cells via stabilization of FBXW7 and subsequent c-MYC degradation. Cell Death Dis. 2016;7:e2252 pubmed 出版商
  967. Leonard S, Kinsella G, Benetti E, Findlay J. Regulating the effects of GPR21, a novel target for type 2 diabetes. Sci Rep. 2016;6:27002 pubmed 出版商
  968. Zhou B, Ritt D, Morrison D, Der C, Cox A. Protein Kinase CK2? Maintains Extracellular Signal-regulated Kinase (ERK) Activity in a CK2? Kinase-independent Manner to Promote Resistance to Inhibitors of RAF and MEK but Not ERK in BRAF Mutant Melanoma. J Biol Chem. 2016;291:17804-15 pubmed 出版商
  969. Schütz I, López Hernández T, Gao Q, Puchkov D, Jabs S, Nordmeyer D, et al. Lysosomal Dysfunction Caused by Cellular Accumulation of Silica Nanoparticles. J Biol Chem. 2016;291:14170-84 pubmed 出版商
  970. Chesnokova V, Zonis S, Zhou C, Recouvreux M, Ben Shlomo A, Araki T, et al. Growth hormone is permissive for neoplastic colon growth. Proc Natl Acad Sci U S A. 2016;113:E3250-9 pubmed 出版商
  971. Yu H. Sphingosine-1-Phosphate Receptor 2 Regulates Proinflammatory Cytokine Production and Osteoclastogenesis. PLoS ONE. 2016;11:e0156303 pubmed 出版商
  972. Blee A, Liu S, Wang L, Huang H. BET bromodomain-mediated interaction between ERG and BRD4 promotes prostate cancer cell invasion. Oncotarget. 2016;7:38319-38332 pubmed 出版商
  973. Hanson R, Brown R, Steele M, Grandgenett P, Grunkemeyer J, Hollingsworth M. Identification of FRA-1 as a novel player in pancreatic cancer in cooperation with a MUC1: ERK signaling axis. Oncotarget. 2016;7:39996-40011 pubmed 出版商
  974. Yang Z, Jiang Q, Chen S, Hu C, Shen H, Huang P, et al. Differential changes in Neuregulin-1 signaling in major brain regions in a lipopolysaccharide-induced neuroinflammation mouse model. Mol Med Rep. 2016;14:790-6 pubmed 出版商
  975. Mannhardt I, Breckwoldt K, Letuffe Brenière D, Schaaf S, Schulz H, Neuber C, et al. Human Engineered Heart Tissue: Analysis of Contractile Force. Stem Cell Reports. 2016;7:29-42 pubmed 出版商
  976. Kohler T, Scholz A, Kiachludis D, Hammerschmidt S. Induction of Central Host Signaling Kinases during Pneumococcal Infection of Human THP-1 Cells. Front Cell Infect Microbiol. 2016;6:48 pubmed 出版商
  977. Stein S, Mack E, Rome K, Pajcini K, Ohtani T, Xu L, et al. Trib2 Suppresses Tumor Initiation in Notch-Driven T-ALL. PLoS ONE. 2016;11:e0155408 pubmed 出版商
  978. Zhang C, Li L, Zhao B, Jiao A, Li X, Sun N, et al. Ghrelin Protects against Dexamethasone-Induced INS-1 Cell Apoptosis via ERK and p38MAPK Signaling. Int J Endocrinol. 2016;2016:4513051 pubmed 出版商
  979. Huang D, Zhao C, Ju R, Kumar A, Tian G, Huang L, et al. VEGF-B inhibits hyperglycemia- and Macugen-induced retinal apoptosis. Sci Rep. 2016;6:26059 pubmed 出版商
  980. de Jong P, Taniguchi K, Harris A, Bertin S, Takahashi N, Duong J, et al. ERK5 signalling rescues intestinal epithelial turnover and tumour cell proliferation upon ERK1/2 abrogation. Nat Commun. 2016;7:11551 pubmed 出版商
  981. Ishibashi R, Takemoto M, Akimoto Y, Ishikawa T, He P, Maezawa Y, et al. A novel podocyte gene, semaphorin 3G, protects glomerular podocyte from lipopolysaccharide-induced inflammation. Sci Rep. 2016;6:25955 pubmed 出版商
  982. Hou D, Jin Y, Nie X, Zhang M, Ta N, Zhao L, et al. Derivation of Porcine Embryonic Stem-Like Cells from In Vitro-Produced Blastocyst-Stage Embryos. Sci Rep. 2016;6:25838 pubmed 出版商
  983. Fabbri R, Macciocca M, Vicenti R, Paradisi R, Klinger F, Pasquinelli G, et al. Doxorubicin and cisplatin induce apoptosis in ovarian stromal cells obtained from cryopreserved human ovarian tissue. Future Oncol. 2016;12:1699-711 pubmed 出版商
  984. Kunze M, Benz F, Brauß T, Lampe S, Weigand J, Braun J, et al. sST2 translation is regulated by FGF2 via an hnRNP A1-mediated IRES-dependent mechanism. Biochim Biophys Acta. 2016;1859:848-59 pubmed 出版商
  985. Lee Y, Kim S, Song S, Hong H, Lee Y, Oh B, et al. Crosstalk between CCL7 and CCR3 promotes metastasis of colon cancer cells via ERK-JNK signaling pathways. Oncotarget. 2016;7:36842-36853 pubmed 出版商
  986. Bulldan A, Dietze R, Shihan M, Scheiner Bobis G. Non-classical testosterone signaling mediated through ZIP9 stimulates claudin expression and tight junction formation in Sertoli cells. Cell Signal. 2016;28:1075-85 pubmed 出版商
  987. Hudson C, McArdle C, López Bernal A. Steroid receptor co-activator interacting protein (SIP) mediates EGF-stimulated expression of the prostaglandin synthase COX2 and prostaglandin release in human myometrium. Mol Hum Reprod. 2016;22:512-25 pubmed 出版商
  988. Miyawaki S, Kawamura Y, Oiwa Y, Shimizu A, Hachiya T, Bono H, et al. Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nat Commun. 2016;7:11471 pubmed 出版商
  989. Sommer A, Kordowski F, Büch J, Maretzky T, Evers A, Andrä J, et al. Phosphatidylserine exposure is required for ADAM17 sheddase function. Nat Commun. 2016;7:11523 pubmed 出版商
  990. Tortola L, Nitsch R, Bertrand M, Kogler M, Redouane Y, Kozieradzki I, et al. The Tumor Suppressor Hace1 Is a Critical Regulator of TNFR1-Mediated Cell Fate. Cell Rep. 2016;15:1481-1492 pubmed 出版商
  991. Lock R, Ingraham R, Maertens O, Miller A, Weledji N, Legius E, et al. Cotargeting MNK and MEK kinases induces the regression of NF1-mutant cancers. J Clin Invest. 2016;126:2181-90 pubmed 出版商
  992. Ren W, Yin J, Chen S, Duan J, Liu G, Li T, et al. Proteome analysis for the global proteins in the jejunum tissues of enterotoxigenic Escherichia coli -infected piglets. Sci Rep. 2016;6:25640 pubmed 出版商
  993. Vorvis C, Hatziapostolou M, Mahurkar Joshi S, Koutsioumpa M, Williams J, Donahue T, et al. Transcriptomic and CRISPR/Cas9 technologies reveal FOXA2 as a tumor suppressor gene in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol. 2016;310:G1124-37 pubmed 出版商
  994. Yang Y, Andersson P, Hosaka K, Zhang Y, Cao R, Iwamoto H, et al. The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nat Commun. 2016;7:11385 pubmed 出版商
  995. Illich D, Zhang M, Ursu A, Osorno R, Kim K, Yoon J, et al. Distinct Signaling Requirements for the Establishment of ESC Pluripotency in Late-Stage EpiSCs. Cell Rep. 2016;15:787-800 pubmed 出版商
  996. Xu Z, Mei F, Liu H, Sun C, Zheng Z. C-C Motif Chemokine Receptor 9 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy and Dysfunction. J Am Heart Assoc. 2016;5: pubmed 出版商
  997. Filosa A, Barker A, Dal Maschio M, Baier H. Feeding State Modulates Behavioral Choice and Processing of Prey Stimuli in the Zebrafish Tectum. Neuron. 2016;90:596-608 pubmed 出版商
  998. Francavilla C, Papetti M, Rigbolt K, Pedersen A, Sigurdsson J, Cazzamali G, et al. Multilayered proteomics reveals molecular switches dictating ligand-dependent EGFR trafficking. Nat Struct Mol Biol. 2016;23:608-18 pubmed 出版商
  999. Ishizuka S, Askew E, Ishizuka N, Knudson C, Knudson W. 4-Methylumbelliferone Diminishes Catabolically Activated Articular Chondrocytes and Cartilage Explants via a Mechanism Independent of Hyaluronan Inhibition. J Biol Chem. 2016;291:12087-104 pubmed 出版商
  1000. Wu Y, Lan C, Ren D, Chen G. Induction of Siglec-1 by Endotoxin Tolerance Suppresses the Innate Immune Response by Promoting TGF-?1 Production. J Biol Chem. 2016;291:12370-82 pubmed 出版商
  1001. Jang S, Royston S, Lee G, Wang S, Chung H. Seizure-Induced Regulations of Amyloid-?, STEP61, and STEP61 Substrates Involved in Hippocampal Synaptic Plasticity. Neural Plast. 2016;2016:2123748 pubmed 出版商
  1002. Wang Y, Cao J, Fan Y, Xie Y, Xu Z, Yin Z, et al. Artemisinin inhibits monocyte adhesion to HUVECs through the NF-?B and MAPK pathways in vitro. Int J Mol Med. 2016;37:1567-75 pubmed 出版商
  1003. Choi H, Kim M, Choi Y, Shin Y, Cho S, Ko S. Rhus verniciflua Stokes (RVS) and butein induce apoptosis of paclitaxel-resistant SKOV-3/PAX ovarian cancer cells through inhibition of AKT phosphorylation. BMC Complement Altern Med. 2016;16:122 pubmed 出版商
  1004. Afonina I, Van Nuffel E, Baudelet G, Driege Y, Kreike M, Staal J, et al. The paracaspase MALT1 mediates CARD14-induced signaling in keratinocytes. EMBO Rep. 2016;17:914-27 pubmed 出版商
  1005. Kim S, Choi K, Cho S, Yun S, Jeon J, Koh Y, et al. Fisetin stimulates autophagic degradation of phosphorylated tau via the activation of TFEB and Nrf2 transcription factors. Sci Rep. 2016;6:24933 pubmed 出版商
  1006. Boothe T, Lim G, Cen H, Skovsø S, Piske M, Li S, et al. Inter-domain tagging implicates caveolin-1 in insulin receptor trafficking and Erk signaling bias in pancreatic beta-cells. Mol Metab. 2016;5:366-378 pubmed 出版商
  1007. Cross A, Wilson A, Guerrero M, Thomas K, Bachir A, Kubow K, et al. Breast cancer antiestrogen resistance 3-p130Cas interactions promote adhesion disassembly and invasion in breast cancer cells. Oncogene. 2016;35:5850-5859 pubmed 出版商
  1008. Perez M, Lucena Cacace A, Marín Gómez L, Padillo Ruiz J, Robles Frias M, Saez C, et al. Dasatinib, a Src inhibitor, sensitizes liver metastatic colorectal carcinoma to oxaliplatin in tumors with high levels of phospho-Src. Oncotarget. 2016;7:33111-24 pubmed 出版商
  1009. Thomas J, Chhuy Hy L, Andrykovich K, Moos M. SMOC Binds to Pro-EGF, but Does Not Induce Erk Phosphorylation via the EGFR. PLoS ONE. 2016;11:e0154294 pubmed 出版商
  1010. Thompson A, Stephens J, Bain S, Kanamarlapudi V. Molecular Characterisation of Small Molecule Agonists Effect on the Human Glucagon Like Peptide-1 Receptor Internalisation. PLoS ONE. 2016;11:e0154229 pubmed 出版商
  1011. Papke B, Murarka S, Vogel H, Martín Gago P, Kovacevic M, Truxius D, et al. Identification of pyrazolopyridazinones as PDE? inhibitors. Nat Commun. 2016;7:11360 pubmed 出版商
  1012. Engel B, Bowser J, Broaddus R, Carson D. MUC1 stimulates EGFR expression and function in endometrial cancer. Oncotarget. 2016;7:32796-809 pubmed 出版商
  1013. Wang X, Wang N, Li H, Liu M, Cao F, Yu X, et al. Up-Regulation of PAI-1 and Down-Regulation of uPA Are Involved in Suppression of Invasiveness and Motility of Hepatocellular Carcinoma Cells by a Natural Compound Berberine. Int J Mol Sci. 2016;17:577 pubmed 出版商
  1014. Lim S, Yuzhalin A, Gordon Weeks A, Muschel R. Tumor-infiltrating monocytes/macrophages promote tumor invasion and migration by upregulating S100A8 and S100A9 expression in cancer cells. Oncogene. 2016;35:5735-5745 pubmed 出版商
  1015. Cao Y, Liang H, Zhang F, Luan Z, Zhao S, Wang X, et al. Prohibitin overexpression predicts poor prognosis and promotes cell proliferation and invasion through ERK pathway activation in gallbladder cancer. J Exp Clin Cancer Res. 2016;35:68 pubmed 出版商
  1016. von Mässenhausen A, SANDERS C, Thewes B, Deng M, Queisser A, Vogel W, et al. MERTK as a novel therapeutic target in head and neck cancer. Oncotarget. 2016;7:32678-94 pubmed 出版商
  1017. Mendel I, Yacov N, Shoham A, Ishai E, Breitbart E. Treatment with Oxidized Phospholipids Directly Inhibits Nonalcoholic Steatohepatitis and Liver Fibrosis Without Affecting Steatosis. Dig Dis Sci. 2016;61:2545-53 pubmed 出版商
  1018. Bosma M, Gerling M, Pasto J, Georgiadi A, Graham E, Shilkova O, et al. FNDC4 acts as an anti-inflammatory factor on macrophages and improves colitis in mice. Nat Commun. 2016;7:11314 pubmed 出版商
  1019. Yu Z, Chen T, Li X, Yang M, Tang S, Zhu X, et al. Lys29-linkage of ASK1 by Skp1-Cullin 1-Fbxo21 ubiquitin ligase complex is required for antiviral innate response. elife. 2016;5: pubmed 出版商
  1020. Macritchie N, Volpert G, Al Washih M, Watson D, Futerman A, Kennedy S, et al. Effect of the sphingosine kinase 1 selective inhibitor, PF-543 on arterial and cardiac remodelling in a hypoxic model of pulmonary arterial hypertension. Cell Signal. 2016;28:946-55 pubmed 出版商
  1021. Xing M, Wang X, Chi Y, Zhou D. Gene therapy for colorectal cancer using adenovirus-mediated full-length antibody, cetuximab. Oncotarget. 2016;7:28262-72 pubmed 出版商
  1022. Maselli A, Capoccia S, Pugliese P, Raggi C, Cirulli F, Fabi A, et al. Autoantibodies specific to estrogen receptor alpha act as estrogen agonists and their levels correlate with breast cancer cell proliferation. Oncoimmunology. 2016;5:e1074375 pubmed
  1023. Damle S, Martin R, Cross J, Conrad D. Macrophage migration inhibitory factor deficiency enhances immune response to Nippostrongylus brasiliensis. Mucosal Immunol. 2017;10:205-214 pubmed 出版商
  1024. Shi C, Iura A, Terajima M, Liu F, Lyons K, Pan H, et al. Deletion of BMP receptor type IB decreased bone mass in association with compromised osteoblastic differentiation of bone marrow mesenchymal progenitors. Sci Rep. 2016;6:24256 pubmed 出版商
  1025. Rorsman C, Tsioumpekou M, Heldin C, Lennartsson J. The Ubiquitin Ligases c-Cbl and Cbl-b Negatively Regulate Platelet-derived Growth Factor (PDGF) BB-induced Chemotaxis by Affecting PDGF Receptor β (PDGFRβ) Internalization and Signaling. J Biol Chem. 2016;291:11608-18 pubmed 出版商
  1026. Balasooriya G, Johnson J, Basson M, Rawlins E. An FGFR1-SPRY2 Signaling Axis Limits Basal Cell Proliferation in the Steady-State Airway Epithelium. Dev Cell. 2016;37:85-97 pubmed 出版商
  1027. Rhee M, Lee S, Kim J, Ham D, Park H, Yang H, et al. Preadipocyte factor 1 induces pancreatic ductal cell differentiation into insulin-producing cells. Sci Rep. 2016;6:23960 pubmed 出版商
  1028. Fearnley G, Smith G, Abdul Zani I, Yuldasheva N, Mughal N, Homer Vanniasinkam S, et al. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis. Biol Open. 2016;5:571-83 pubmed 出版商
  1029. Papadakis E, Barker C, Syed H, Reeves T, Schwaiger S, Stuppner H, et al. The Bag-1 inhibitor, Thio-2, reverses an atypical 3D morphology driven by Bag-1L overexpression in a MCF-10A model of ductal carcinoma in situ. Oncogenesis. 2016;5:e215 pubmed 出版商
  1030. Wolczyk D, Zaremba Czogalla M, Hryniewicz Jankowska A, Tabola R, Grabowski K, Sikorski A, et al. TNF-? promotes breast cancer cell migration and enhances the concentration of membrane-associated proteases in lipid rafts. Cell Oncol (Dordr). 2016;39:353-63 pubmed 出版商
  1031. Huang W, Zhao H, Dong H, Wu Y, Yao L, Zou F, et al. High-mobility group box 1 impairs airway epithelial barrier function through the activation of the RAGE/ERK pathway. Int J Mol Med. 2016;37:1189-98 pubmed 出版商
  1032. Alemán O, Mora N, Cortés Vieyra R, Uribe Querol E, Rosales C. Differential Use of Human Neutrophil Fc? Receptors for Inducing Neutrophil Extracellular Trap Formation. J Immunol Res. 2016;2016:2908034 pubmed 出版商
  1033. An X, Zhao Z, Luo Y, Zhang R, Tang X, Hao D, et al. Netrin-1 suppresses the MEK/ERK pathway and ITGB4 in pancreatic cancer. Oncotarget. 2016;7:24719-33 pubmed 出版商
  1034. Elisia I, Nakamura H, Lam V, Hofs E, Cederberg R, Cait J, et al. DMSO Represses Inflammatory Cytokine Production from Human Blood Cells and Reduces Autoimmune Arthritis. PLoS ONE. 2016;11:e0152538 pubmed 出版商
  1035. Prieto J, León M, Ponsoda X, Sendra R, Bort R, Ferrer Lorente R, et al. Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming. Nat Commun. 2016;7:11124 pubmed 出版商
  1036. Iimori M, Watanabe S, Kiyonari S, Matsuoka K, Sakasai R, Saeki H, et al. Phosphorylation of EB2 by Aurora B and CDK1 ensures mitotic progression and genome stability. Nat Commun. 2016;7:11117 pubmed 出版商
  1037. Riggle K, Riehle K, Kenerson H, Turnham R, Homma M, Kazami M, et al. Enhanced cAMP-stimulated protein kinase A activity in human fibrolamellar hepatocellular carcinoma. Pediatr Res. 2016;80:110-8 pubmed 出版商
  1038. Braley A, Kwak T, Jules J, Harja E, Landgraf R, Hudson B. Regulation of Receptor for Advanced Glycation End Products (RAGE) Ectodomain Shedding and Its Role in Cell Function. J Biol Chem. 2016;291:12057-73 pubmed 出版商
  1039. Maugeri G, D Amico A, Rasà D, Reitano R, Saccone S, Federico C, et al. Expression profile of Wilms Tumor 1 (WT1) isoforms in undifferentiated and all-trans retinoic acid differentiated neuroblastoma cells. Genes Cancer. 2016;7:47-58 pubmed
  1040. Woodfield S, Guo R, Liu Y, Major A, Hollingsworth E, Indiviglio S, et al. Neuroblastoma patient outcomes, tumor differentiation, and ERK activation are correlated with expression levels of the ubiquitin ligase UBE4B. Genes Cancer. 2016;7:13-26 pubmed
  1041. Huang J, Yao C, Chuang S, Yeh C, Lee L, Chen R, et al. Honokiol inhibits sphere formation and xenograft growth of oral cancer side population cells accompanied with JAK/STAT signaling pathway suppression and apoptosis induction. BMC Cancer. 2016;16:245 pubmed 出版商
  1042. Margaryan N, Gilgur A, Seftor E, Purnell C, Arva N, Gosain A, et al. Melanocytes Affect Nodal Expression and Signaling in Melanoma Cells: A Lesson from Pediatric Large Congenital Melanocytic Nevi. Int J Mol Sci. 2016;17:418 pubmed 出版商
  1043. Yang Y, Xu J, Chen H, Fei X, Tang Y, Yan Y, et al. MiR-128-2 inhibits common lymphoid progenitors from developing into progenitor B cells. Oncotarget. 2016;7:17520-31 pubmed 出版商
  1044. Wen Y, Li H, Zeng Y, Wen W, Pendleton K, Lui V, et al. MAPK1E322K mutation increases head and neck squamous cell carcinoma sensitivity to erlotinib through enhanced secretion of amphiregulin. Oncotarget. 2016;7:23300-11 pubmed 出版商
  1045. Wu J, Ivanov A, Fisher P, Fu Z. Polo-like kinase 1 induces epithelial-to-mesenchymal transition and promotes epithelial cell motility by activating CRAF/ERK signaling. elife. 2016;5: pubmed 出版商
  1046. Sakakini N, Turchi L, Bergon A, Holota H, Rekima S, Lopez F, et al. A Positive Feed-forward Loop Associating EGR1 and PDGFA Promotes Proliferation and Self-renewal in Glioblastoma Stem Cells. J Biol Chem. 2016;291:10684-99 pubmed 出版商
  1047. Patzke C, Acuna C, Giam L, Wernig M, Südhof T. Conditional deletion of L1CAM in human neurons impairs both axonal and dendritic arborization and action potential generation. J Exp Med. 2016;213:499-515 pubmed 出版商
  1048. Meng Y, Zheng L, Yang Y, Wang H, Dong J, Wang C, et al. A monoclonal antibody targeting ErbB2 domain III inhibits ErbB2 signaling and suppresses the growth of ErbB2-overexpressing breast tumors. Oncogenesis. 2016;5:e211 pubmed 出版商
  1049. Relic B, Charlier E, Deroyer C, Malaise O, Neuville S, Desoroux A, et al. BAY 11-7085 induces glucocorticoid receptor activation and autophagy that collaborate with apoptosis to induce human synovial fibroblast cell death. Oncotarget. 2016;7:23370-82 pubmed 出版商
  1050. Agarwal S, Ghosh R, Chen Z, Lakoma A, Gunaratne P, Kim E, et al. Transmembrane adaptor protein PAG1 is a novel tumor suppressor in neuroblastoma. Oncotarget. 2016;7:24018-26 pubmed 出版商
  1051. Lee J, Kim H, Rho S, Lee S. eIF3f reduces tumor growth by directly interrupting clusterin with anti-apoptotic property in cancer cells. Oncotarget. 2016;7:18541-57 pubmed 出版商
  1052. Kabe Y, Nakane T, Koike I, Yamamoto T, Sugiura Y, Harada E, et al. Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance. Nat Commun. 2016;7:11030 pubmed 出版商
  1053. Obino D, Farina F, Malbec O, Sáez P, Maurin M, Gaillard J, et al. Actin nucleation at the centrosome controls lymphocyte polarity. Nat Commun. 2016;7:10969 pubmed 出版商
  1054. Morena D, Maestro N, Bersani F, Forni P, Lingua M, Foglizzo V, et al. Hepatocyte Growth Factor-mediated satellite cells niche perturbation promotes development of distinct sarcoma subtypes. elife. 2016;5: pubmed 出版商
  1055. Scott D, Tolbert C, Burridge K. Tension on JAM-A activates RhoA via GEF-H1 and p115 RhoGEF. Mol Biol Cell. 2016;27:1420-30 pubmed 出版商
  1056. Kurimoto R, Iwasawa S, Ebata T, Ishiwata T, Sekine I, Tada Y, et al. Drug resistance originating from a TGF-β/FGF-2-driven epithelial-to-mesenchymal transition and its reversion in human lung adenocarcinoma cell lines harboring an EGFR mutation. Int J Oncol. 2016;48:1825-36 pubmed 出版商
  1057. Afsar T, Trembley J, Salomon C, Razak S, Khan M, Ahmed K. Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways. Sci Rep. 2016;6:23077 pubmed 出版商
  1058. German P, Bai S, Liu X, Sun M, Zhou L, Kalra S, et al. Phosphorylation-dependent cleavage regulates von Hippel Lindau proteostasis and function. Oncogene. 2016;35:4973-80 pubmed 出版商
  1059. Nishida Fukuda H, Araki R, Shudou M, Okazaki H, Tomono Y, Nakayama H, et al. Ectodomain Shedding of Lymphatic Vessel Endothelial Hyaluronan Receptor 1 (LYVE-1) Is Induced by Vascular Endothelial Growth Factor A (VEGF-A). J Biol Chem. 2016;291:10490-500 pubmed 出版商
  1060. Acharya M, Sokolovska A, Tam J, Conway K, Stefani C, Raso F, et al. αv Integrins combine with LC3 and atg5 to regulate Toll-like receptor signalling in B cells. Nat Commun. 2016;7:10917 pubmed 出版商
  1061. Koussounadis A, Langdon S, Um I, Kay C, Francis K, Harrison D, et al. Dynamic modulation of phosphoprotein expression in ovarian cancer xenograft models. BMC Cancer. 2016;16:205 pubmed 出版商
  1062. Yang H, Vainshtein A, Maik Rachline G, Peles E. G protein-coupled receptor 37 is a negative regulator of oligodendrocyte differentiation and myelination. Nat Commun. 2016;7:10884 pubmed 出版商
  1063. Atiq R, Hertz R, Eldad S, Smeir E, Bar Tana J. Suppression of B-Raf(V600E) cancers by MAPK hyper-activation. Oncotarget. 2016;7:18694-704 pubmed 出版商
  1064. Thakur A, Nigri J, Lac S, Leca J, Bressy C, Berthezene P, et al. TAp73 loss favors Smad-independent TGF-β signaling that drives EMT in pancreatic ductal adenocarcinoma. Cell Death Differ. 2016;23:1358-70 pubmed 出版商
  1065. Ardini E, Menichincheri M, Banfi P, Bosotti R, De Ponti C, Pulci R, et al. Entrectinib, a Pan-TRK, ROS1, and ALK Inhibitor with Activity in Multiple Molecularly Defined Cancer Indications. Mol Cancer Ther. 2016;15:628-39 pubmed 出版商
  1066. Naik E, Dixit V. Usp9X Is Required for Lymphocyte Activation and Homeostasis through Its Control of ZAP70 Ubiquitination and PKCβ Kinase Activity. J Immunol. 2016;196:3438-51 pubmed 出版商
  1067. Yang W, Yang Y, Yang J, Liang M, Song J. Treatment with bone marrow mesenchymal stem cells combined with plumbagin alleviates spinal cord injury by affecting oxidative stress, inflammation, apoptotis and the activation of the Nrf2 pathway. Int J Mol Med. 2016;37:1075-82 pubmed 出版商
  1068. SaygideÄŸer Kont Y, Minas T, Jones H, Hour S, Çelik H, Temel I, et al. Ezrin Enhances EGFR Signaling and Modulates Erlotinib Sensitivity in Non-Small Cell Lung Cancer Cells. Neoplasia. 2016;18:111-20 pubmed 出版商
  1069. Bigenzahn J, Fauster A, Rebsamen M, Kandasamy R, Scorzoni S, Vladimer G, et al. An Inducible Retroviral Expression System for Tandem Affinity Purification Mass-Spectrometry-Based Proteomics Identifies Mixed Lineage Kinase Domain-like Protein (MLKL) as an Heat Shock Protein 90 (HSP90) Client. Mol Cell Proteomics. 2016;15:1139-50 pubmed
  1070. Cannavo A, Liccardo D, Eguchi A, Elliott K, Traynham C, Ibetti J, et al. Myocardial pathology induced by aldosterone is dependent on non-canonical activities of G protein-coupled receptor kinases. Nat Commun. 2016;7:10877 pubmed 出版商
  1071. Woo J, Srikanth S, Nishi M, Ping P, Takeshima H, Gwack Y. Junctophilin-4, a component of the endoplasmic reticulum-plasma membrane junctions, regulates Ca2+ dynamics in T cells. Proc Natl Acad Sci U S A. 2016;113:2762-7 pubmed 出版商
  1072. Chusri P, Kumthip K, Hong J, Zhu C, Duan X, Jilg N, et al. HCV induces transforming growth factor β1 through activation of endoplasmic reticulum stress and the unfolded protein response. Sci Rep. 2016;6:22487 pubmed 出版商
  1073. Gong Q, Hu Z, Zhang F, Cui A, Chen X, Jiang H, et al. Fibroblast growth factor 21 improves hepatic insulin sensitivity by inhibiting mammalian target of rapamycin complex 1 in mice. Hepatology. 2016;64:425-38 pubmed 出版商
  1074. Woodfield S, Zhang L, Scorsone K, Liu Y, Zage P. Binimetinib inhibits MEK and is effective against neuroblastoma tumor cells with low NF1 expression. BMC Cancer. 2016;16:172 pubmed 出版商
  1075. Li M, Corbelli A, Watanabe S, Armelloni S, Ikehata M, Parazzi V, et al. Three-dimensional podocyte-endothelial cell co-cultures: Assembly, validation, and application to drug testing and intercellular signaling studies. Eur J Pharm Sci. 2016;86:1-12 pubmed 出版商
  1076. Guillot F, Kemppainen S, Lavasseur G, Miettinen P, Laroche S, Tanila H, et al. Brain-Specific Basal and Novelty-Induced Alternations in PI3K-Akt and MAPK/ERK Signaling in a Middle-Aged AβPP/PS1 Mouse Model of Alzheimer's Disease. J Alzheimers Dis. 2016;51:1157-73 pubmed 出版商
  1077. Eichten A, Su J, Adler A, Zhang L, Ioffe E, Parveen A, et al. Resistance to Anti-VEGF Therapy Mediated by Autocrine IL6/STAT3 Signaling and Overcome by IL6 Blockade. Cancer Res. 2016;76:2327-39 pubmed 出版商
  1078. Nakayama R, Zhang Y, Czaplinski J, Anatone A, Sicinska E, Fletcher J, et al. Preclinical activity of selinexor, an inhibitor of XPO1, in sarcoma. Oncotarget. 2016;7:16581-92 pubmed 出版商
  1079. Seip K, Fleten K, Barkovskaya A, Nygaard V, Haugen M, Engesæter B, et al. Fibroblast-induced switching to the mesenchymal-like phenotype and PI3K/mTOR signaling protects melanoma cells from BRAF inhibitors. Oncotarget. 2016;7:19997-20015 pubmed 出版商
  1080. Eriksson J, Le Joncour V, Nummela P, Jahkola T, Virolainen S, Laakkonen P, et al. Gene expression analyses of primary melanomas reveal CTHRC1 as an important player in melanoma progression. Oncotarget. 2016;7:15065-92 pubmed 出版商
  1081. Mason J, Davison Versagli C, Leliaert A, Pape D, McCallister C, Zuo J, et al. Oncogenic Ras differentially regulates metabolism and anoikis in extracellular matrix-detached cells. Cell Death Differ. 2016;23:1271-82 pubmed 出版商
  1082. Abdul Rahman N, Greenwood S, Brett R, Tossell K, Ungless M, Plevin R, et al. Mitogen-Activated Protein Kinase Phosphatase-2 Deletion Impairs Synaptic Plasticity and Hippocampal-Dependent Memory. J Neurosci. 2016;36:2348-54 pubmed 出版商
  1083. Haven B, Heilig E, Donham C, Settles M, Vasilevsky N, Owen K. Registered report: A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. elife. 2016;5: pubmed 出版商
  1084. Yufune S, Satoh Y, Akai R, Yoshinaga Y, Kobayashi Y, Endo S, et al. Suppression of ERK phosphorylation through oxidative stress is involved in the mechanism underlying sevoflurane-induced toxicity in the developing brain. Sci Rep. 2016;6:21859 pubmed 出版商
  1085. Hu H, Wang H, Xiao Y, Jin J, Chang J, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213:399-414 pubmed 出版商
  1086. Hu M, Bai Y, Zhang C, Liu F, Cui Z, Chen J, et al. Liver-Enriched Gene 1, a Glycosylated Secretory Protein, Binds to FGFR and Mediates an Anti-stress Pathway to Protect Liver Development in Zebrafish. PLoS Genet. 2016;12:e1005881 pubmed 出版商
  1087. Sancho Martinez I, Nivet E, Xia Y, Hishida T, Aguirre A, Ocampo A, et al. Establishment of human iPSC-based models for the study and targeting of glioma initiating cells. Nat Commun. 2016;7:10743 pubmed 出版商
  1088. Urnukhsaikhan E, Cho H, Mishig Ochir T, Seo Y, Park J. Pulsed electromagnetic fields promote survival and neuronal differentiation of human BM-MSCs. Life Sci. 2016;151:130-138 pubmed 出版商
  1089. Yang C, Cui X, Dai X, Liao W. Downregulation of Foxc2 enhances apoptosis induced by 5-fluorouracil through activation of MAPK and AKT pathways in colorectal cancer. Oncol Lett. 2016;11:1549-1554 pubmed
  1090. Yu C, Tang L, Liang C, Chen X, Song S, Ding X, et al. Angiotensin-Converting Enzyme 3 (ACE3) Protects Against Pressure Overload-Induced Cardiac Hypertrophy. J Am Heart Assoc. 2016;5: pubmed 出版商
  1091. Huo L, Shi W, Chong L, Wang J, Zhang K, Li Y. Asiatic acid inhibits left ventricular remodeling and improves cardiac function in a rat model of myocardial infarction. Exp Ther Med. 2016;11:57-64 pubmed
  1092. Kline C, van den Heuvel A, Allen J, Prabhu V, Dicker D, El Deiry W. ONC201 kills solid tumor cells by triggering an integrated stress response dependent on ATF4 activation by specific eIF2α kinases. Sci Signal. 2016;9:ra18 pubmed 出版商
  1093. Fu Z, Wang L, Cui H, Peng J, Wang S, Geng J, et al. A novel small-molecule compound targeting CD147 inhibits the motility and invasion of hepatocellular carcinoma cells. Oncotarget. 2016;7:9429-47 pubmed 出版商
  1094. Baietti M, Simíček M, Abbasi Asbagh L, Radaelli E, Lievens S, Crowther J, et al. OTUB1 triggers lung cancer development by inhibiting RAS monoubiquitination. EMBO Mol Med. 2016;8:288-303 pubmed 出版商
  1095. Wang J, Goetsch L, Tucker L, Zhang Q, Gonzalez A, Vaidya K, et al. Anti-c-Met monoclonal antibody ABT-700 breaks oncogene addiction in tumors with MET amplification. BMC Cancer. 2016;16:105 pubmed 出版商
  1096. Cui J, Xia T, Xie D, Gao Y, Jia Z, Wei D, et al. HGF/Met and FOXM1 form a positive feedback loop and render pancreatic cancer cells resistance to Met inhibition and aggressive phenotypes. Oncogene. 2016;35:4708-18 pubmed 出版商
  1097. Krause C, Popp O, Thirunarayanan N, Dittmar G, Lipp M, Müller G. MicroRNA-34a promotes genomic instability by a broad suppression of genome maintenance mechanisms downstream of the oncogene KSHV-vGPCR. Oncotarget. 2016;7:10414-32 pubmed 出版商
  1098. Liu T, Fang Z, Wang G, Shi M, Wang X, Jiang K, et al. Anti-tumor activity of the TRPM8 inhibitor BCTC in prostate cancer DU145 cells. Oncol Lett. 2016;11:182-188 pubmed
  1099. Roy J, Kim B, Hill E, Visconti P, Krapf D, Vinegoni C, et al. Tyrosine kinase-mediated axial motility of basal cells revealed by intravital imaging. Nat Commun. 2016;7:10666 pubmed 出版商
  1100. Chang C, Hale S, Cox C, Blair A, Kronsteiner B, Grabowska R, et al. Junctional Adhesion Molecule-A Is Highly Expressed on Human Hematopoietic Repopulating Cells and Associates with the Key Hematopoietic Chemokine Receptor CXCR4. Stem Cells. 2016;34:1664-78 pubmed 出版商
  1101. Ebbing E, Medema J, Damhofer H, Meijer S, Krishnadath K, van Berge Henegouwen M, et al. ADAM10-mediated release of heregulin confers resistance to trastuzumab by activating HER3. Oncotarget. 2016;7:10243-54 pubmed 出版商
  1102. Hennig A, Markwart R, Wolff K, Schubert K, Cui Y, Prior I, et al. Feedback activation of neurofibromin terminates growth factor-induced Ras activation. Cell Commun Signal. 2016;14:5 pubmed 出版商
  1103. Liu Y, Takahashi Y, Desai N, Zhang J, Serfass J, Shi Y, et al. Bif-1 deficiency impairs lipid homeostasis and causes obesity accompanied by insulin resistance. Sci Rep. 2016;6:20453 pubmed 出版商
  1104. White Y, Bagchi A, Van Ziffle J, Inguva A, Bollag G, Zhang C, et al. KRAS insertion mutations are oncogenic and exhibit distinct functional properties. Nat Commun. 2016;7:10647 pubmed 出版商
  1105. Veluscek G, Li Y, Yang S, Sharrocks A. Jun-Mediated Changes in Cell Adhesion Contribute to Mouse Embryonic Stem Cell Exit from Ground State Pluripotency. Stem Cells. 2016;34:1213-24 pubmed 出版商
  1106. Li J, Pan Q, Rowan P, Trotter T, Peker D, Regal K, et al. Heparanase promotes myeloma progression by inducing mesenchymal features and motility of myeloma cells. Oncotarget. 2016;7:11299-309 pubmed 出版商
  1107. Däbritz J, Judd L, Chalinor H, Menheniott T, Giraud A. Altered gp130 signalling ameliorates experimental colitis via myeloid cell-specific STAT3 activation and myeloid-derived suppressor cells. Sci Rep. 2016;6:20584 pubmed 出版商
  1108. Coke C, Scarlett K, Chetram M, Jones K, Sandifer B, Davis A, et al. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression. J Biol Chem. 2016;291:9991-10005 pubmed 出版商
  1109. Vincent K, Cornea V, Jong Y, Laferriere A, Kumar N, Mickeviciute A, et al. Intracellular mGluR5 plays a critical role in neuropathic pain. Nat Commun. 2016;7:10604 pubmed 出版商
  1110. Martin B, Chadwick W, Janssens J, Premont R, Schmalzigaug R, Becker K, et al. GIT2 Acts as a Systems-Level Coordinator of Neurometabolic Activity and Pathophysiological Aging. Front Endocrinol (Lausanne). 2015;6:191 pubmed 出版商
  1111. Klein C, Zwick A, Kissel S, Forster C, Pfeifer D, Follo M, et al. Ptch2 loss drives myeloproliferation and myeloproliferative neoplasm progression. J Exp Med. 2016;213:273-90 pubmed 出版商
  1112. Liu L, Zhu J, Zhou L, Wan L. RACK1 promotes maintenance of morphine-associated memory via activation of an ERK-CREB dependent pathway in hippocampus. Sci Rep. 2016;6:20183 pubmed 出版商
  1113. Eichel K, Jullié D, von Zastrow M. β-Arrestin drives MAP kinase signalling from clathrin-coated structures after GPCR dissociation. Nat Cell Biol. 2016;18:303-10 pubmed 出版商
  1114. Dorris E, Blackshields G, Sommerville G, Alhashemi M, Dias A, McEneaney V, et al. Pluripotency markers are differentially induced by MEK inhibition in thyroid and melanoma BRAFV600E cell lines. Cancer Biol Ther. 2016;17:526-42 pubmed 出版商
  1115. Regan Anderson T, Ma S, Raj G, Cidlowski J, Helle T, Knutson T, et al. Breast Tumor Kinase (Brk/PTK6) Is Induced by HIF, Glucocorticoid Receptor, and PELP1-Mediated Stress Signaling in Triple-Negative Breast Cancer. Cancer Res. 2016;76:1653-63 pubmed 出版商
  1116. Derangère V, Fumet J, Boidot R, Bengrine L, Limagne E, Chevriaux A, et al. Does bevacizumab impact anti-EGFR therapy efficacy in metastatic colorectal cancer?. Oncotarget. 2016;7:9309-21 pubmed 出版商
  1117. Lin F, Chen Y, Liang H, Tan S. Echistatin prevents posterior capsule opacification in diabetic rabbit model via integrin linked kinase signaling pathway. Int J Clin Exp Pathol. 2015;8:14294-304 pubmed
  1118. Johnson D, Estrada M, Salgado R, Sanchez V, Doxie D, Opalenik S, et al. Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nat Commun. 2016;7:10582 pubmed 出版商
  1119. Wu X, Yang L, Zheng Z, Li Z, Shi J, Li Y, et al. Src promotes cutaneous wound healing by regulating MMP-2 through the ERK pathway. Int J Mol Med. 2016;37:639-48 pubmed 出版商
  1120. Theodosiou M, Widmaier M, Böttcher R, Rognoni E, Veelders M, Bharadwaj M, et al. Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin. elife. 2016;5:e10130 pubmed 出版商
  1121. Stefanovic M, Tutusaus A, Martinez Nieto G, Bárcena C, de Gregorio E, Moutinho C, et al. Targeting glucosylceramide synthase upregulation reverts sorafenib resistance in experimental hepatocellular carcinoma. Oncotarget. 2016;7:8253-67 pubmed 出版商
  1122. Shang V, O Sullivan S, Kendall D, Roberts R. The endogenous cannabinoid anandamide increases human airway epithelial cell permeability through an arachidonic acid metabolite. Pharmacol Res. 2016;105:152-63 pubmed 出版商
  1123. Teng Y, Pi W, Wang Y, Cowell J. WASF3 provides the conduit to facilitate invasion and metastasis in breast cancer cells through HER2/HER3 signaling. Oncogene. 2016;35:4633-40 pubmed 出版商
  1124. Chung S, Moon H, Ju H, Kim D, Cho K, Ribback S, et al. Comparison of liver oncogenic potential among human RAS isoforms. Oncotarget. 2016;7:7354-66 pubmed 出版商
  1125. Peres T, Ong L, Costa A, Eyng H, Venske D, Colle D, et al. Tyrosine hydroxylase regulation in adult rat striatum following short-term neonatal exposure to manganese. Metallomics. 2016;8:597-604 pubmed 出版商
  1126. Yoshida T, Song L, Bai Y, Kinose F, Li J, Ohaegbulam K, et al. ZEB1 Mediates Acquired Resistance to the Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer. PLoS ONE. 2016;11:e0147344 pubmed 出版商
  1127. Chan A, Punwani D, Kadlecek T, Cowan M, Olson J, Mathes E, et al. A novel human autoimmune syndrome caused by combined hypomorphic and activating mutations in ZAP-70. J Exp Med. 2016;213:155-65 pubmed 出版商
  1128. Zheng F, Yue C, Li G, He B, Cheng W, Wang X, et al. Nuclear AURKA acquires kinase-independent transactivating function to enhance breast cancer stem cell phenotype. Nat Commun. 2016;7:10180 pubmed 出版商
  1129. Lv P, Tong X, Peng Q, Liu Y, Jin H, Liu R, et al. Treatment with the herbal medicine, naoxintong improves the protective effect of high-density lipoproteins on endothelial function in patients with type 2 diabetes. Mol Med Rep. 2016;13:2007-16 pubmed 出版商
  1130. Watari K, Shibata T, Nabeshima H, Shinoda A, Fukunaga Y, Kawahara A, et al. Impaired differentiation of macrophage lineage cells attenuates bone remodeling and inflammatory angiogenesis in Ndrg1 deficient mice. Sci Rep. 2016;6:19470 pubmed 出版商
  1131. Chen Y, Zheng Y, You X, Yu M, Fu G, Su X, et al. Kras Is Critical for B Cell Lymphopoiesis. J Immunol. 2016;196:1678-85 pubmed 出版商
  1132. Peng K, Tian X, Qian Y, Skibba M, Zou C, Liu Z, et al. Novel EGFR inhibitors attenuate cardiac hypertrophy induced by angiotensin II. J Cell Mol Med. 2016;20:482-94 pubmed 出版商
  1133. Daniele S, Barresi E, Zappelli E, Marinelli L, Novellino E, Da Settimo F, et al. Long lasting MDM2/Translocator protein modulator: a new strategy for irreversible apoptosis of human glioblastoma cells. Oncotarget. 2016;7:7866-84 pubmed 出版商
  1134. Ito T, Itakura J, Takahashi S, Sato M, Mino M, Fushimi S, et al. Sprouty-Related Ena/Vasodilator-Stimulated Phosphoprotein Homology 1-Domain-Containing Protein-2 Critically Regulates Influenza A Virus-Induced Pneumonia. Crit Care Med. 2016;44:e530-43 pubmed 出版商
  1135. Pivonello C, Negri M, De Martino M, Napolitano M, De Angelis C, Provvisiero D, et al. The dual targeting of insulin and insulin-like growth factor 1 receptor enhances the mTOR inhibitor-mediated antitumor efficacy in hepatocellular carcinoma. Oncotarget. 2016;7:9718-31 pubmed 出版商
  1136. Lin C, Wang C, Hsu S, Liao L, Lin T, Hsueh C. Molecular Mechanisms Responsible for Neuron-Derived Conditioned Medium (NCM)-Mediated Protection of Ischemic Brain. PLoS ONE. 2016;11:e0146692 pubmed 出版商
  1137. Amato K, Wang S, Tan L, Hastings A, Song W, Lovly C, et al. EPHA2 Blockade Overcomes Acquired Resistance to EGFR Kinase Inhibitors in Lung Cancer. Cancer Res. 2016;76:305-18 pubmed 出版商
  1138. Gu K, Zhang Q, Yan Y, Li T, Duan F, Hao J, et al. Pluripotency-associated miR-290/302 family of microRNAs promote the dismantling of naive pluripotency. Cell Res. 2016;26:350-66 pubmed 出版商
  1139. Yang S, Krug S, Heitmann J, Hu L, Reinhold A, Sauer S, et al. Analgesic drug delivery via recombinant tissue plasminogen activator and microRNA-183-triggered opening of the blood-nerve barrier. Biomaterials. 2016;82:20-33 pubmed 出版商
  1140. Jeong J, VanHouten J, Dann P, Kim W, Sullivan C, Yu H, et al. PMCA2 regulates HER2 protein kinase localization and signaling and promotes HER2-mediated breast cancer. Proc Natl Acad Sci U S A. 2016;113:E282-90 pubmed 出版商
  1141. Matalkah F, Martin E, Zhao H, Agazie Y. SHP2 acts both upstream and downstream of multiple receptor tyrosine kinases to promote basal-like and triple-negative breast cancer. Breast Cancer Res. 2016;18:2 pubmed 出版商
  1142. Yamaguchi T, Lu C, Ida L, Yanagisawa K, Usukura J, Cheng J, et al. ROR1 sustains caveolae and survival signalling as a scaffold of cavin-1 and caveolin-1. Nat Commun. 2016;7:10060 pubmed 出版商
  1143. Han X, Zha Z, Yuan H, Feng X, Xia Y, Lei Q, et al. KDM2B/FBXL10 targets c-Fos for ubiquitylation and degradation in response to mitogenic stimulation. Oncogene. 2016;35:4179-90 pubmed 出版商
  1144. Zhang H, Xiong Z, Wang J, Zhang S, Lei L, Yang L, et al. Glucagon-like peptide-1 protects cardiomyocytes from advanced oxidation protein product-induced apoptosis via the PI3K/Akt/Bad signaling pathway. Mol Med Rep. 2016;13:1593-601 pubmed 出版商
  1145. Guan X, Wang N, Cui F, Liu Y, Liu P, Zhao J, et al. Caveolin-1 is essential in the differentiation of human adipose-derived stem cells into hepatocyte-like cells via an MAPK pathway-dependent mechanism. Mol Med Rep. 2016;13:1487-94 pubmed 出版商
  1146. Skieterska K, Rondou P, Lintermans B, Van Craenenbroeck K. KLHL12 Promotes Non-Lysine Ubiquitination of the Dopamine Receptors D4.2 and D4.4, but Not of the ADHD-Associated D4.7 Variant. PLoS ONE. 2015;10:e0145654 pubmed 出版商
  1147. Wang C, Che L, Hu J, Zhang S, Jiang L, Latte G, et al. Activated mutant forms of PIK3CA cooperate with RasV12 or c-Met to induce liver tumour formation in mice via AKT2/mTORC1 cascade. Liver Int. 2016;36:1176-86 pubmed 出版商
  1148. Vivar O, Masi G, Carpier J, Magalhaes J, Galgano D, Pazour G, et al. IFT20 controls LAT recruitment to the immune synapse and T-cell activation in vivo. Proc Natl Acad Sci U S A. 2016;113:386-91 pubmed 出版商
  1149. Chen P, Li J, Huo Y, Lu J, Wan L, Li B, et al. Orphan nuclear receptor NR4A2 inhibits hepatic stellate cell proliferation through MAPK pathway in liver fibrosis. Peerj. 2015;3:e1518 pubmed 出版商
  1150. Hernandez R, Puro A, Manos J, Huitron Resendiz S, Reyes K, Liu K, et al. Transgenic mice with increased astrocyte expression of IL-6 show altered effects of acute ethanol on synaptic function. Neuropharmacology. 2016;103:27-43 pubmed 出版商
  1151. Fan S, Numata Y, Numata M. Endosomal Na+/H+ exchanger NHE5 influences MET recycling and cell migration. Mol Biol Cell. 2016;27:702-15 pubmed 出版商
  1152. He G, Xu W, Li J, Li S, Liu B, Tan X, et al. Huwe1 interacts with Gadd45b under oxygen-glucose deprivation and reperfusion injury in primary Rat cortical neuronal cells. Mol Brain. 2015;8:88 pubmed 出版商
  1153. Shih M, Pan K, Cherng J. Possible Mechanisms of Di(2-ethylhexyl) Phthalate-Induced MMP-2 and MMP-9 Expression in A7r5 Rat Vascular Smooth Muscle Cells. Int J Mol Sci. 2015;16:28800-11 pubmed 出版商
  1154. Su X, Yan H, Huang Y, Yun H, Zeng B, Wang E, et al. Expression of FABP4, adipsin and adiponectin in Paneth cells is modulated by gut Lactobacillus. Sci Rep. 2015;5:18588 pubmed 出版商
  1155. Lei X, Cui K, Liu Q, Zhang H, Li Z, Huang B, et al. Exogenous Estradiol Benzoate Induces Spermatogenesis Disorder through Influencing Apoptosis and Oestrogen Receptor Signalling Pathway. Reprod Domest Anim. 2016;51:75-84 pubmed 出版商
  1156. Zhang Y, Fan J, Ho J, Hu T, Kneeland S, Fan X, et al. Crim1 regulates integrin signaling in murine lens development. Development. 2016;143:356-66 pubmed 出版商
  1157. Sun J, Fu X, Liu Y, Wang Y, Huo B, Guo Y, et al. Hypoglycemic effect and mechanism of honokiol on type 2 diabetic mice. Drug Des Devel Ther. 2015;9:6327-42 pubmed 出版商
  1158. Drilon A, Somwar R, Wagner J, Vellore N, Eide C, Zabriskie M, et al. A Novel Crizotinib-Resistant Solvent-Front Mutation Responsive to Cabozantinib Therapy in a Patient with ROS1-Rearranged Lung Cancer. Clin Cancer Res. 2016;22:2351-8 pubmed 出版商
  1159. Wang X, Li S, Wang G, Ma Z, Chuai M, Cao L, et al. High glucose environment inhibits cranial neural crest survival by activating excessive autophagy in the chick embryo. Sci Rep. 2015;5:18321 pubmed 出版商
  1160. Huguet F, Fernet M, Giocanti N, Favaudon V, Larsen A. Afatinib, an Irreversible EGFR Family Inhibitor, Shows Activity Toward Pancreatic Cancer Cells, Alone and in Combination with Radiotherapy, Independent of KRAS Status. Target Oncol. 2016;11:371-81 pubmed 出版商
  1161. Franco Villanueva A, Wandosell F, Antón I. Neuritic complexity of hippocampal neurons depends on WIP-mediated mTORC1 and Abl family kinases activities. Brain Behav. 2015;5:e00359 pubmed 出版商
  1162. Peng B, Zhu H, Klausen C, Ma L, Wang Y, Leung P. GnRH regulates trophoblast invasion via RUNX2-mediated MMP2/9 expression. Mol Hum Reprod. 2016;22:119-29 pubmed 出版商
  1163. Bean L, Kumar A, Rani A, Guidi M, Rosario A, Cruz P, et al. Re-Opening the Critical Window for Estrogen Therapy. J Neurosci. 2015;35:16077-93 pubmed 出版商
  1164. Patel A, Yamashita N, Ascano M, Bodmer D, Boehm E, Bodkin Clarke C, et al. RCAN1 links impaired neurotrophin trafficking to aberrant development of the sympathetic nervous system in Down syndrome. Nat Commun. 2015;6:10119 pubmed 出版商
  1165. Edmonds M, Boyd K, Moyo T, Mitra R, Duszynski R, Arrate M, et al. MicroRNA-31 initiates lung tumorigenesis and promotes mutant KRAS-driven lung cancer. J Clin Invest. 2016;126:349-64 pubmed 出版商
  1166. Ulrich F, Carretero Ortega J, Menendez J, Narvaez C, Sun B, Lancaster E, et al. Reck enables cerebrovascular development by promoting canonical Wnt signaling. Development. 2016;143:147-59 pubmed 出版商
  1167. Audette D, Anand D, So T, Rubenstein T, Lachke S, Lovicu F, et al. Prox1 and fibroblast growth factor receptors form a novel regulatory loop controlling lens fiber differentiation and gene expression. Development. 2016;143:318-28 pubmed 出版商
  1168. Kiermaier E, Moussion C, Veldkamp C, Gerardy Schahn R, de Vries I, Williams L, et al. Polysialylation controls dendritic cell trafficking by regulating chemokine recognition. Science. 2016;351:186-90 pubmed 出版商
  1169. Ceccon M, Merlo M, Mologni L, Poggio T, Varesio L, Menotti M, et al. Excess of NPM-ALK oncogenic signaling promotes cellular apoptosis and drug dependency. Oncogene. 2016;35:3854-3865 pubmed 出版商
  1170. Huang X, Huang S, Guo F, Xu F, Cheng P, Ye Y, et al. Dose-dependent inhibitory effects of zoledronic acid on osteoblast viability and function in vitro. Mol Med Rep. 2016;13:613-22 pubmed 出版商
  1171. Yamagishi M, Katano H, Hishima T, Shimoyama T, Ota Y, Nakano K, et al. Coordinated loss of microRNA group causes defenseless signaling in malignant lymphoma. Sci Rep. 2015;5:17868 pubmed 出版商
  1172. Trzeciecka A, Klossowski S, Bajor M, Zagozdzon R, Gaj P, Muchowicz A, et al. Dimeric peroxiredoxins are druggable targets in human Burkitt lymphoma. Oncotarget. 2016;7:1717-31 pubmed 出版商
  1173. Daniele S, Zappelli E, Martini C. Trazodone regulates neurotrophic/growth factors, mitogen-activated protein kinases and lactate release in human primary astrocytes. J Neuroinflammation. 2015;12:225 pubmed 出版商
  1174. Duchnowska R, Wysocki P, Korski K, Czartoryska ArÅ‚ukowicz B, NiwiÅ„ska A, Orlikowska M, et al. Immunohistochemical prediction of lapatinib efficacy in advanced HER2-positive breast cancer patients. Oncotarget. 2016;7:550-64 pubmed 出版商
  1175. Bunda S, Burrell K, Heir P, Zeng L, Alamsahebpour A, Kano Y, et al. Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis. Nat Commun. 2015;6:8859 pubmed 出版商
  1176. Debruyne D, Bhatnagar N, Sharma B, Luther W, Moore N, Cheung N, et al. ALK inhibitor resistance in ALK(F1174L)-driven neuroblastoma is associated with AXL activation and induction of EMT. Oncogene. 2016;35:3681-91 pubmed 出版商
  1177. Lim J, Nguyen K, Han J, Jang I, Fabian C, Cho K. Direct Regulation of TLR5 Expression by Caveolin-1. Mol Cells. 2015;38:1111-7 pubmed 出版商
  1178. Giri K, Pabelick C, Mukherjee P, Prakash Y. Hepatoma derived growth factor (HDGF) dynamics in ovarian cancer cells. Apoptosis. 2016;21:329-39 pubmed 出版商
  1179. Chen J, Chen Y, Yen C, Chen W, Huang W. HBx sensitizes hepatocellular carcinoma cells to lapatinib by up-regulating ErbB3. Oncotarget. 2016;7:473-89 pubmed 出版商
  1180. Diersch S, Wirth M, Schneeweis C, Jörs S, Geisler F, Siveke J, et al. Kras(G12D) induces EGFR-MYC cross signaling in murine primary pancreatic ductal epithelial cells. Oncogene. 2016;35:3880-6 pubmed 出版商
  1181. Miyamoto T, Kim D, Knox J, Johnson E, Mucke L. Increasing the Receptor Tyrosine Kinase EphB2 Prevents Amyloid-β-induced Depletion of Cell Surface Glutamate Receptors by a Mechanism That Requires the PDZ-binding Motif of EphB2 and Neuronal Activity. J Biol Chem. 2016;291:1719-34 pubmed 出版商
  1182. Chow C, Ebine K, Knab L, Bentrem D, Kumar K, Munshi H. Cancer Cell Invasion in Three-dimensional Collagen Is Regulated Differentially by Gα13 Protein and Discoidin Domain Receptor 1-Par3 Protein Signaling. J Biol Chem. 2016;291:1605-18 pubmed 出版商
  1183. Awad K, Elinoff J, Wang S, Gairhe S, Ferreyra G, Cai R, et al. Raf/ERK drives the proliferative and invasive phenotype of BMPR2-silenced pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2016;310:L187-201 pubmed 出版商
  1184. Chen C, Zhu C, Huang J, Zhao X, Deng R, Zhang H, et al. SUMOylation of TARBP2 regulates miRNA/siRNA efficiency. Nat Commun. 2015;6:8899 pubmed 出版商
  1185. El Khattouti A, Selimovic D, Hannig M, Taylor E, Abd Elmageed Z, Hassan S, et al. Imiquimod-induced apoptosis of melanoma cells is mediated by ER stress-dependent Noxa induction and enhanced by NF-κB inhibition. J Cell Mol Med. 2016;20:266-86 pubmed 出版商
  1186. Wang Z, Ma B, Li H, Xiao X, Zhou W, Liu F, et al. Protein 4.1N acts as a potential tumor suppressor linking PP1 to JNK-c-Jun pathway regulation in NSCLC. Oncotarget. 2016;7:509-23 pubmed 出版商
  1187. Shukla P, Vogl C, Wallner B, Rigler D, Müller M, Macho Maschler S. High-throughput mRNA and miRNA profiling of epithelial-mesenchymal transition in MDCK cells. BMC Genomics. 2015;16:944 pubmed 出版商
  1188. Ampofo E, Später T, Müller I, Eichler H, Menger M, Laschke M. The Marine-Derived Kinase Inhibitor Fascaplysin Exerts Anti-Thrombotic Activity. Mar Drugs. 2015;13:6774-91 pubmed 出版商
  1189. Clemente Vicario F, Alvarez C, ROWELL J, Roy S, London C, Kisseberth W, et al. Human Genetic Relevance and Potent Antitumor Activity of Heat Shock Protein 90 Inhibition in Canine Lung Adenocarcinoma Cell Lines. PLoS ONE. 2015;10:e0142007 pubmed 出版商
  1190. Chen K, Zeng J, Tang K, Xiao H, Hu J, Huang C, et al. miR-490-5p suppresses tumour growth in renal cell carcinoma through targeting PIK3CA. Biol Cell. 2016;108:41-50 pubmed 出版商
  1191. Oprea T, Sklar L, Agola J, Guo Y, Silberberg M, Roxby J, et al. Novel Activities of Select NSAID R-Enantiomers against Rac1 and Cdc42 GTPases. PLoS ONE. 2015;10:e0142182 pubmed 出版商
  1192. Quintero Barceinas R, García Regalado A, Aréchaga Ocampo E, Villegas Sepúlveda N, González De la Rosa C. All-Trans Retinoic Acid Induces Proliferation, Survival, and Migration in A549 Lung Cancer Cells by Activating the ERK Signaling Pathway through a Transcription-Independent Mechanism. Biomed Res Int. 2015;2015:404368 pubmed 出版商
  1193. Zhang Z, Wu N, Lu Y, Davidson D, Colonna M, Veillette A. DNAM-1 controls NK cell activation via an ITT-like motif. J Exp Med. 2015;212:2165-82 pubmed 出版商
  1194. Ksionda O, Melton A, Bache J, Tenhagen M, Bakker J, Harvey R, et al. RasGRP1 overexpression in T-ALL increases basal nucleotide exchange on Ras rendering the Ras/PI3K/Akt pathway responsive to protumorigenic cytokines. Oncogene. 2016;35:3658-68 pubmed 出版商
  1195. Askoxylakis V, Ferraro G, Kodack D, Badeaux M, Shankaraiah R, Seano G, et al. Preclinical Efficacy of Ado-trastuzumab Emtansine in the Brain Microenvironment. J Natl Cancer Inst. 2016;108: pubmed 出版商
  1196. Yen Y, Hsiao J, Jiang S, Chang J, Wang S, Shen Y, et al. Insulin-like growth factor-independent insulin-like growth factor binding protein 3 promotes cell migration and lymph node metastasis of oral squamous cell carcinoma cells by requirement of integrin β1. Oncotarget. 2015;6:41837-55 pubmed 出版商
  1197. Vernot J, Perdomo Arciniegas A, Pérez Quintero L, Martínez D. Modulating p56Lck in T-Cells by a Chimeric Peptide Comprising Two Functionally Different Motifs of Tip from Herpesvirus saimiri. J Immunol Res. 2015;2015:395371 pubmed 出版商
  1198. Li W, Wei S, Liu C, Song M, Wu H, Yang Y. Regulation of the osteogenic and adipogenic differentiation of bone marrow-derived stromal cells by extracellular uridine triphosphate: The role of P2Y2 receptor and ERK1/2 signaling. Int J Mol Med. 2016;37:63-73 pubmed 出版商
  1199. Pai P, Rachagani S, Lakshmanan I, Macha M, Sheinin Y, Smith L, et al. The canonical Wnt pathway regulates the metastasis-promoting mucin MUC4 in pancreatic ductal adenocarcinoma. Mol Oncol. 2016;10:224-39 pubmed 出版商
  1200. Freedman T, Tan Y, Skrzypczynska K, Manz B, Sjaastad F, Goodridge H, et al. LynA regulates an inflammation-sensitive signaling checkpoint in macrophages. elife. 2015;4: pubmed 出版商
  1201. Sipieter F, Cappe B, Gonzalez Pisfil M, Spriet C, Bodart J, Cailliau Maggio K, et al. Novel Reporter for Faithful Monitoring of ERK2 Dynamics in Living Cells and Model Organisms. PLoS ONE. 2015;10:e0140924 pubmed 出版商
  1202. Ko T, Chin H, Chuah C, Huang J, Ng K, Khaw S, et al. The BIM deletion polymorphism: A paradigm of a permissive interaction between germline and acquired TKI resistance factors in chronic myeloid leukemia. Oncotarget. 2016;7:2721-33 pubmed 出版商
  1203. Dong Z, Chen J, Ruan Y, Zhou T, Chen Y, Chen Y, et al. CFTR-regulated MAPK/NF-κB signaling in pulmonary inflammation in thermal inhalation injury. Sci Rep. 2015;5:15946 pubmed 出版商
  1204. Rizvi F, Mathur A, Krishna S, Siddiqi M, Kakkar P. Suppression in PHLPP2 induction by morin promotes Nrf2-regulated cellular defenses against oxidative injury to primary rat hepatocytes. Redox Biol. 2015;6:587-598 pubmed 出版商
  1205. Kurozumi A, Goto Y, Matsushita R, Fukumoto I, Kato M, Nishikawa R, et al. Tumor-suppressive microRNA-223 inhibits cancer cell migration and invasion by targeting ITGA3/ITGB1 signaling in prostate cancer. Cancer Sci. 2016;107:84-94 pubmed 出版商
  1206. Wu S, Guo Z, Hopkins C, Wei N, Chu E, Wipf P, et al. Bis-cyclopropane analog of disorazole C1 is a microtubule-destabilizing agent active in ABCB1-overexpressing human colon cancer cells. Oncotarget. 2015;6:40866-79 pubmed 出版商
  1207. Quigley H, Pitha I, Welsbie D, Nguyen C, Steinhart M, Nguyen T, et al. Losartan Treatment Protects Retinal Ganglion Cells and Alters Scleral Remodeling in Experimental Glaucoma. PLoS ONE. 2015;10:e0141137 pubmed 出版商
  1208. Dumas A, Lê Bury G, Marie Anaïs F, Herit F, Mazzolini J, Guilbert T, et al. The HIV-1 protein Vpr impairs phagosome maturation by controlling microtubule-dependent trafficking. J Cell Biol. 2015;211:359-72 pubmed 出版商
  1209. Xu D, Wang J, Zhou Z, He Z, Zhao Q. Cannabinoid WIN55, 212-2 induces cell cycle arrest and inhibits the proliferation and migration of human BEL7402 hepatocellular carcinoma cells. Mol Med Rep. 2015;12:7963-70 pubmed 出版商
  1210. Park Y, Kim S, Kwon T, Kim J, Song I, Shin H, et al. Peroxiredoxin II promotes hepatic tumorigenesis through cooperation with Ras/Forkhead box M1 signaling pathway. Oncogene. 2016;35:3503-13 pubmed 出版商
  1211. Ramcharan R, Aleksic T, Kamdoum W, Gao S, Pfister S, Tanner J, et al. IGF-1R inhibition induces schedule-dependent sensitization of human melanoma to temozolomide. Oncotarget. 2015;6:39877-90 pubmed 出版商
  1212. Ma S, Yang L, Niu T, Cheng C, Zhong L, Zheng M, et al. SKLB-677, an FLT3 and Wnt/β-catenin signaling inhibitor, displays potent activity in models of FLT3-driven AML. Sci Rep. 2015;5:15646 pubmed 出版商
  1213. Bauer J, Ozden O, Akagi N, Carroll T, Principe D, Staudacher J, et al. Activin and TGFβ use diverging mitogenic signaling in advanced colon cancer. Mol Cancer. 2015;14:182 pubmed 出版商
  1214. Verbrugge S, Al M, Assaraf Y, Kammerer S, Chandrupatla D, Honeywell R, et al. Multifactorial resistance to aminopeptidase inhibitor prodrug CHR2863 in myeloid leukemia cells: down-regulation of carboxylesterase 1, drug sequestration in lipid droplets and pro-survival activation ERK/Akt/mTOR. Oncotarget. 2016;7:5240-57 pubmed 出版商
  1215. Yang C, Lowther K, Lalioti M, Seli E. Embryonic Poly(A)-Binding Protein (EPAB) Is Required for Granulosa Cell EGF Signaling and Cumulus Expansion in Female Mice. Endocrinology. 2016;157:405-16 pubmed 出版商
  1216. Hruska M, Henderson N, Xia N, Le Marchand S, Dalva M. Anchoring and synaptic stability of PSD-95 is driven by ephrin-B3. Nat Neurosci. 2015;18:1594-605 pubmed 出版商
  1217. Chakedis J, French R, Babicky M, Jaquish D, Howard H, Mose E, et al. A novel protein isoform of the RON tyrosine kinase receptor transforms human pancreatic duct epithelial cells. Oncogene. 2016;35:3249-59 pubmed 出版商
  1218. Smith C, D Mello S. Cell and Context-Dependent Effects of the Heat Shock Protein DNAJB6 on Neuronal Survival. Mol Neurobiol. 2016;53:5628-39 pubmed 出版商
  1219. Lin K, Kao S, Lai C, Chen C, Wu C, Hsu H, et al. Tumor Suppressor Lzap Suppresses Wnt/β-Catenin Signaling to Promote Zebrafish Embryonic Ventral Cell Fates via the Suppression of Inhibitory Phosphorylation of Glycogen Synthase Kinase 3. J Biol Chem. 2015;290:29808-19 pubmed 出版商
  1220. Vajravelu B, Hong K, Al Maqtari T, Cao P, Keith M, Wysoczynski M, et al. C-Kit Promotes Growth and Migration of Human Cardiac Progenitor Cells via the PI3K-AKT and MEK-ERK Pathways. PLoS ONE. 2015;10:e0140798 pubmed 出版商
  1221. Strizzi L, Sandomenico A, Margaryan N, Focà A, Sanguigno L, Bodenstine T, et al. Effects of a novel Nodal-targeting monoclonal antibody in melanoma. Oncotarget. 2015;6:34071-86 pubmed 出版商
  1222. Gruosso T, Garnier C, Abélanet S, Kieffer Y, Lemesre V, Bellanger D, et al. MAP3K8/TPL-2/COT is a potential predictive marker for MEK inhibitor treatment in high-grade serous ovarian carcinomas. Nat Commun. 2015;6:8583 pubmed 出版商
  1223. Barbáchano A, Fernández Barral A, Pereira F, Segura M, Ordóñez Morán P, Carrillo de Santa Pau E, et al. SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150. Oncogene. 2016;35:2991-3003 pubmed 出版商
  1224. Martínez Revollar G, Garay E, Martín Tapia D, Nava P, Huerta M, Lopez Bayghen E, et al. Heterogeneity between triple negative breast cancer cells due to differential activation of Wnt and PI3K/AKT pathways. Exp Cell Res. 2015;339:67-80 pubmed 出版商
  1225. Peckham H, Giuffrida L, Wood R, Gonsalvez D, Ferner A, Kilpatrick T, et al. Fyn is an intermediate kinase that BDNF utilizes to promote oligodendrocyte myelination. Glia. 2016;64:255-69 pubmed 出版商
  1226. Richardson E, Shukla S, Nagy N, Boom W, Beck R, Zhou L, et al. ERK Signaling Is Essential for Macrophage Development. PLoS ONE. 2015;10:e0140064 pubmed 出版商
  1227. Martinez N, Agosto L, Qiu J, Mallory M, Gazzara M, Barash Y, et al. Widespread JNK-dependent alternative splicing induces a positive feedback loop through CELF2-mediated regulation of MKK7 during T-cell activation. Genes Dev. 2015;29:2054-66 pubmed 出版商
  1228. Reinardy J, Corey D, Golzio C, Mueller S, Katsanis N, Kontos C. Phosphorylation of Threonine 794 on Tie1 by Rac1/PAK1 Reveals a Novel Angiogenesis Regulatory Pathway. PLoS ONE. 2015;10:e0139614 pubmed 出版商
  1229. Fan S, Snell C, Turley H, Li J, McCormick R, Perera S, et al. PAT4 levels control amino-acid sensitivity of rapamycin-resistant mTORC1 from the Golgi and affect clinical outcome in colorectal cancer. Oncogene. 2016;35:3004-15 pubmed 出版商
  1230. Salas E, Roy S, Marsh T, Rubin B, Debnath J. Oxidative pentose phosphate pathway inhibition is a key determinant of antimalarial induced cancer cell death. Oncogene. 2016;35:2913-22 pubmed 出版商
  1231. Kim H, Lim J, Kim J, Kim Y, Park S, Sohn J. Panaxydol, a component of Panax ginseng, induces apoptosis in cancer cells through EGFR activation and ER stress and inhibits tumor growth in mouse models. Int J Cancer. 2016;138:1432-41 pubmed 出版商
  1232. Cohen M, Johnson W, Pilat J, Kiselar J, DeFrancesco Lisowitz A, Zigmond R, et al. Nerve Growth Factor Regulates Transient Receptor Potential Vanilloid 2 via Extracellular Signal-Regulated Kinase Signaling To Enhance Neurite Outgrowth in Developing Neurons. Mol Cell Biol. 2015;35:4238-52 pubmed 出版商
  1233. Liu L, Li C, Lu Y, Zong X, Luo C, Sun J, et al. Baclofen mediates neuroprotection on hippocampal CA1 pyramidal cells through the regulation of autophagy under chronic cerebral hypoperfusion. Sci Rep. 2015;5:14474 pubmed 出版商
  1234. Cecchetti S, Bortolomai I, Ferri R, Mercurio L, Canevari S, Podo F, et al. Inhibition of Phosphatidylcholine-Specific Phospholipase C Interferes with Proliferation and Survival of Tumor Initiating Cells in Squamous Cell Carcinoma. PLoS ONE. 2015;10:e0136120 pubmed 出版商
  1235. Beck K, Ehmann N, Andlauer T, Ljaschenko D, Strecker K, Fischer M, et al. Loss of the Coffin-Lowry syndrome-associated gene RSK2 alters ERK activity, synaptic function and axonal transport in Drosophila motoneurons. Dis Model Mech. 2015;8:1389-400 pubmed 出版商
  1236. Sun Y, Ju M, Lin Z, Fredrick T, Evans L, Tian K, et al. SOCS3 in retinal neurons and glial cells suppresses VEGF signaling to prevent pathological neovascular growth. Sci Signal. 2015;8:ra94 pubmed 出版商
  1237. Mazur P, Herner A, Mello S, Wirth M, Hausmann S, Sánchez Rivera F, et al. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat Med. 2015;21:1163-71 pubmed 出版商
  1238. Qiu H, Liu B, Liu W, Liu S. Interleukin-27 enhances TNF-α-mediated activation of human coronary artery endothelial cells. Mol Cell Biochem. 2016;411:1-10 pubmed 出版商
  1239. Pearson H, McGlinn E, Phesse T, Schlüter H, Srikumar A, Gödde N, et al. The polarity protein Scrib mediates epidermal development and exerts a tumor suppressive function during skin carcinogenesis. Mol Cancer. 2015;14:169 pubmed 出版商
  1240. Singh P, Sharma P, Sahakyan K, Davison D, Sert Kuniyoshi F, Romero Corral A, et al. Differential effects of leptin on adiponectin expression with weight gain versus obesity. Int J Obes (Lond). 2016;40:266-74 pubmed 出版商
  1241. Davare M, Vellore N, Wagner J, Eide C, Goodman J, Drilon A, et al. Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors. Proc Natl Acad Sci U S A. 2015;112:E5381-90 pubmed 出版商
  1242. Harmeier A, Obermueller S, Meyer C, Revel F, Buchy D, Chaboz S, et al. Trace amine-associated receptor 1 activation silences GSK3β signaling of TAAR1 and D2R heteromers. Eur Neuropsychopharmacol. 2015;25:2049-61 pubmed 出版商
  1243. Zhu X, Wang K, Zhang K, Tan X, Wu Z, Sun S, et al. Tetramethylpyrazine Protects Retinal Capillary Endothelial Cells (TR-iBRB2) against IL-1β-Induced Nitrative/Oxidative Stress. Int J Mol Sci. 2015;16:21775-90 pubmed 出版商
  1244. Joly A, Deepti A, Seignez A, Goloudina A, Hebrard S, Schmitt E, et al. The HSP90 inhibitor, 17AAG, protects the intestinal stem cell niche and inhibits graft versus host disease development. Oncogene. 2016;35:2842-51 pubmed 出版商
  1245. Xing R, Li L, Chen L, Gao Z, Wang H, Li W, et al. Copy number variations of HLA-I and activation of NKp30 pathway determine the sensitivity of gastric cancer cells to the cytotoxicity of natural killer cells. Oncogene. 2016;35:2584-91 pubmed 出版商
  1246. Vennin C, Spruyt N, Dahmani F, Julien S, Bertucci F, Finetti P, et al. H19 non coding RNA-derived miR-675 enhances tumorigenesis and metastasis of breast cancer cells by downregulating c-Cbl and Cbl-b. Oncotarget. 2015;6:29209-23 pubmed 出版商
  1247. Ashford A, Dunkley T, Cockerill M, Rowlinson R, Baak L, Gallo R, et al. Identification of DYRK1B as a substrate of ERK1/2 and characterisation of the kinase activity of DYRK1B mutants from cancer and metabolic syndrome. Cell Mol Life Sci. 2016;73:883-900 pubmed 出版商
  1248. Ramírez de Arellano A, Lopez Pulido E, Martínez Neri P, Estrada Chávez C, González Lucano R, Fafutis Morris M, et al. STAT3 activation is required for the antiapoptotic effects of prolactin in cervical cancer cells. Cancer Cell Int. 2015;15:83 pubmed 出版商
  1249. Plescher M, Teleman A, Demetriades C. TSC2 mediates hyperosmotic stress-induced inactivation of mTORC1. Sci Rep. 2015;5:13828 pubmed 出版商
  1250. Zhou X, Tao Y, Liang C, Zhang Y, Li H, Chen Q. BMP3 Alone and Together with TGF-β Promote the Differentiation of Human Mesenchymal Stem Cells into a Nucleus Pulposus-Like Phenotype. Int J Mol Sci. 2015;16:20344-59 pubmed 出版商
  1251. Li M, Yang S, Xing B, Ferguson B, Gulchina Y, Li Y, et al. LY395756, an mGluR2 agonist and mGluR3 antagonist, enhances NMDA receptor expression and function in the normal adult rat prefrontal cortex, but fails to improve working memory and reverse MK801-induced working memory impairment. Exp Neurol. 2015;273:190-201 pubmed 出版商
  1252. Higa Nakamine S, Maeda N, Toku S, Yamamoto H. Involvement of Protein Kinase D1 in Signal Transduction from the Protein Kinase C Pathway to the Tyrosine Kinase Pathway in Response to Gonadotropin-releasing Hormone. J Biol Chem. 2015;290:25974-85 pubmed 出版商
  1253. Thijssen R, Ter Burg J, van Bochove G, de Rooij M, Kuil A, Jansen M, et al. The pan phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor SAR245409 (voxtalisib/XL765) blocks survival, adhesion and proliferation of primary chronic lymphocytic leukemia cells. Leukemia. 2016;30:337-45 pubmed 出版商
  1254. Sharma B, Kolhe R, Black S, Keller J, Mivechi N, Satyanarayana A. Inhibitor of differentiation 1 transcription factor promotes metabolic reprogramming in hepatocellular carcinoma cells. FASEB J. 2016;30:262-75 pubmed 出版商
  1255. Georgiannakis A, Burgoyne T, Lueck K, Futter C, Greenwood J, Moss S. Retinal Pigment Epithelial Cells Mitigate the Effects of Complement Attack by Endocytosis of C5b-9. J Immunol. 2015;195:3382-9 pubmed 出版商
  1256. Gong Y, Qiu W, Ning X, Yang X, Liu L, Wang Z, et al. CCDC34 is up-regulated in bladder cancer and regulates bladder cancer cell proliferation, apoptosis and migration. Oncotarget. 2015;6:25856-67 pubmed 出版商
  1257. Yan G, Wang Q, Hu S, Wang D, Qiao Y, Ma G, et al. Digoxin inhibits PDGF-BB-induced VSMC proliferation and migration through an increase in ILK signaling and attenuates neointima formation following carotid injury. Int J Mol Med. 2015;36:1001-11 pubmed 出版商
  1258. Zarpelon A, Rodrigues F, Lopes A, Souza G, Carvalho T, Pinto L, et al. Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain. FASEB J. 2016;30:54-65 pubmed 出版商
  1259. Conde Perez A, Gros G, Longvert C, Pedersen M, Petit V, Aktary Z, et al. A caveolin-dependent and PI3K/AKT-independent role of PTEN in β-catenin transcriptional activity. Nat Commun. 2015;6:8093 pubmed 出版商
  1260. Kumarasamy V, Shin Y, White J, Sun D. Selective repression of RET proto-oncogene in medullary thyroid carcinoma by a natural alkaloid berberine. BMC Cancer. 2015;15:599 pubmed 出版商
  1261. Wong T, Lin S, Leung L. The Flavone Luteolin Suppresses SREBP-2 Expression and Post-Translational Activation in Hepatic Cells. PLoS ONE. 2015;10:e0135637 pubmed 出版商
  1262. Korb E, Herre M, Zucker Scharff I, Darnell R, Allis C. BET protein Brd4 activates transcription in neurons and BET inhibitor Jq1 blocks memory in mice. Nat Neurosci. 2015;18:1464-73 pubmed 出版商
  1263. Nishimoto S, Tanaka H, Okamoto M, Okada K, Murase T, Yoshikawa H. Methylcobalamin promotes the differentiation of Schwann cells and remyelination in lysophosphatidylcholine-induced demyelination of the rat sciatic nerve. Front Cell Neurosci. 2015;9:298 pubmed 出版商
  1264. Zhao C, Su Y, Zhang J, Feng Q, Qu L, Wang L, et al. Fibrinogen-derived fibrinostatin inhibits tumor growth through anti-angiogenesis. Cancer Sci. 2015;106:1596-606 pubmed 出版商
  1265. Wunsch E, Milkiewicz M, Wasik U, Trottier J, KempiÅ„ska Podhorodecka A, Elias E, et al. Expression of hepatic Fibroblast Growth Factor 19 is enhanced in Primary Biliary Cirrhosis and correlates with severity of the disease. Sci Rep. 2015;5:13462 pubmed 出版商
  1266. Zhang Q, Zhao K, Shen Q, Han Y, Gu Y, Li X, et al. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature. 2015;525:389-393 pubmed 出版商
  1267. Park E, Kim N, Ficarro S, Zhang Y, Lee B, Cho A, et al. Structure and mechanism of activity-based inhibition of the EGF receptor by Mig6. Nat Struct Mol Biol. 2015;22:703-711 pubmed 出版商
  1268. Å olman M, Ligabue A, BlaževitÅ¡ O, Jaiswal A, Zhou Y, Liang H, et al. Specific cancer-associated mutations in the switch III region of Ras increase tumorigenicity by nanocluster augmentation. elife. 2015;4:e08905 pubmed 出版商
  1269. Sivaraj K, Li R, Albarrán Juárez J, Wang S, Tischner D, Grimm M, et al. Endothelial Gαq/11 is required for VEGF-induced vascular permeability and angiogenesis. Cardiovasc Res. 2015;108:171-80 pubmed 出版商
  1270. Dubois F, Leroy C, Simon V, Benistant C, Roche S. YES oncogenic activity is specified by its SH4 domain and regulates RAS/MAPK signaling in colon carcinoma cells. Am J Cancer Res. 2015;5:1972-87 pubmed
  1271. Sun D, Buttitta L. Protein phosphatase 2A promotes the transition to G0 during terminal differentiation in Drosophila. Development. 2015;142:3033-45 pubmed 出版商
  1272. Simard E, Söllradl T, Maltais J, Boucher J, D Orléans Juste P, Grandbois M. Receptor for Advanced Glycation End-Products Signaling Interferes with the Vascular Smooth Muscle Cell Contractile Phenotype and Function. PLoS ONE. 2015;10:e0128881 pubmed 出版商
  1273. Kim K, Byeon G, Kim H, Baek S, Shin S, Koo S. Mechanical Antiallodynic Effect of Intrathecal Nefopam in a Rat Neuropathic Pain Model. J Korean Med Sci. 2015;30:1189-96 pubmed 出版商
  1274. Patel P, Dutta D, Edgar B. Niche appropriation by Drosophila intestinal stem cell tumours. Nat Cell Biol. 2015;17:1182-92 pubmed 出版商
  1275. Fisher O, Deng H, Liu D, Zhang Y, Wei R, Deng Y, et al. Structure and vascular function of MEKK3-cerebral cavernous malformations 2 complex. Nat Commun. 2015;6:7937 pubmed 出版商
  1276. Hahn C, Scott D, Xu X, Roda M, Payne G, Wells J, et al. The matrikine N-α-PGP couples extracellular matrix fragmentation to endothelial permeability. Sci Adv. 2015;1: pubmed
  1277. Wu M, Lee W, Hua K, Kuo M, Lin M. Macrophage Infiltration Induces Gastric Cancer Invasiveness by Activating the β-Catenin Pathway. PLoS ONE. 2015;10:e0134122 pubmed 出版商
  1278. Wostradowski T, Gudi V, Pul R, Gingele S, Lindquist J, Stangel M, et al. Effect of interferon-β1b on CXCR4-dependent chemotaxis in T cells from multiple sclerosis patients. Clin Exp Immunol. 2015;182:162-72 pubmed 出版商
  1279. Picot N, Guerrette R, Beauregard A, Jean S, Michaud P, Harquail J, et al. Mammaglobin 1 promotes breast cancer malignancy and confers sensitivity to anticancer drugs. Mol Carcinog. 2016;55:1150-62 pubmed 出版商
  1280. Zhang W, Zheng X, Du L, Sun J, Shen Z, Shi C, et al. High salt primes a specific activation state of macrophages, M(Na). Cell Res. 2015;25:893-910 pubmed 出版商
  1281. Tang Y, Ye M, Du Y, Qiu X, Lv X, Yang W, et al. EGFR signaling upregulates surface expression of the GluN2B-containing NMDA receptor and contributes to long-term potentiation in the hippocampus. Neuroscience. 2015;304:109-21 pubmed 出版商
  1282. Zhu C, Chen C, Huang J, Zhang H, Zhao X, Deng R, et al. SUMOylation at K707 of DGCR8 controls direct function of primary microRNA. Nucleic Acids Res. 2015;43:7945-60 pubmed 出版商
  1283. Zou Q, Jin J, Xiao Y, Hu H, Zhou X, Jie Z, et al. T cell development involves TRAF3IP3-mediated ERK signaling in the Golgi. J Exp Med. 2015;212:1323-36 pubmed 出版商
  1284. Graham D, Becker C, Doan A, Goel G, Villablanca E, Knights D, et al. Functional genomics identifies negative regulatory nodes controlling phagocyte oxidative burst. Nat Commun. 2015;6:7838 pubmed 出版商
  1285. Lee M, Jeong M, Lee H, Han H, Ko A, Hewitt S, et al. PI3K/AKT activation induces PTEN ubiquitination and destabilization accelerating tumourigenesis. Nat Commun. 2015;6:7769 pubmed 出版商
  1286. Zhou J, Joshi B, Duan X, Pant A, Qiu Z, Kuick R, et al. EGFR Overexpressed in Colonic Neoplasia Can be Detected on Wide-Field Endoscopic Imaging. Clin Transl Gastroenterol. 2015;6:e101 pubmed 出版商
  1287. Ito A, Hong C, Rong X, Zhu X, Tarling E, Hedde P, et al. LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. elife. 2015;4:e08009 pubmed 出版商
  1288. García Pérez D, Laorden M, Milanés M. Regulation of Pleiotrophin, Midkine, Receptor Protein Tyrosine Phosphatase β/ζ, and Their Intracellular Signaling Cascades in the Nucleus Accumbens During Opiate Administration. Int J Neuropsychopharmacol. 2015;19: pubmed 出版商
  1289. Pedros C, Gaud G, Bernard I, Kassem S, Chabod M, Lagrange D, et al. An Epistatic Interaction between Themis1 and Vav1 Modulates Regulatory T Cell Function and Inflammatory Bowel Disease Development. J Immunol. 2015;195:1608-16 pubmed 出版商
  1290. Gorojod R, Alaimo A, Porte Alcon S, Pomilio C, Saravia F, Kotler M. The autophagic- lysosomal pathway determines the fate of glial cells under manganese- induced oxidative stress conditions. Free Radic Biol Med. 2015;87:237-51 pubmed 出版商
  1291. Yang S, Lin H, Chang V, Chen C, Liu Y, Wang J, et al. Lovastatin overcomes gefitinib resistance through TNF-α signaling in human cholangiocarcinomas with different LKB1 statuses in vitro and in vivo. Oncotarget. 2015;6:23857-73 pubmed
  1292. Azzi S, Gallerne C, Romei C, Le Coz V, Gangemi R, Khawam K, et al. Human Renal Normal, Tumoral, and Cancer Stem Cells Express Membrane-Bound Interleukin-15 Isoforms Displaying Different Functions. Neoplasia. 2015;17:509-17 pubmed 出版商
  1293. Xiong H, Zhou S, Sun A, He Y, Li J, Yuan X. MicroRNA‑197 reverses the drug resistance of fluorouracil‑induced SGC7901 cells by targeting mitogen‑activated protein kinase 1. Mol Med Rep. 2015;12:5019-25 pubmed 出版商
  1294. Laberge R, Sun Y, Orjalo A, Patil C, Freund A, Zhou L, et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol. 2015;17:1049-61 pubmed 出版商
  1295. Pulvino M, Chen L, Oleksyn D, Li J, Compitello G, Rossi R, et al. Inhibition of COP9-signalosome (CSN) deneddylating activity and tumor growth of diffuse large B-cell lymphomas by doxycycline. Oncotarget. 2015;6:14796-813 pubmed
  1296. McGowan S, McCoy D. Fibroblast growth factor signaling in myofibroblasts differs from lipofibroblasts during alveolar septation in mice. Am J Physiol Lung Cell Mol Physiol. 2015;309:L463-74 pubmed 出版商
  1297. Johlfs M, Gorjala P, Urasaki Y, Le T, Fiscus R. Capillary Isoelectric Focusing Immunoassay for Fat Cell Differentiation Proteomics. PLoS ONE. 2015;10:e0132105 pubmed 出版商
  1298. Andersson L, Scharin Täng M, Lundqvist A, Lindbom M, Mardani I, Fogelstrand P, et al. Rip2 modifies VEGF-induced signalling and vascular permeability in myocardial ischaemia. Cardiovasc Res. 2015;107:478-86 pubmed 出版商
  1299. Seo G, Ho M, Bui N, Kim Y, Koh D, Lim Y, et al. Novel naphthochalcone derivative accelerate dermal wound healing through induction of epithelial-mesenchymal transition of keratinocyte. J Biomed Sci. 2015;22:47 pubmed 出版商
  1300. He L, Zang A, Du M, Ma D, Yuan C, Zhou C, et al. mTOR regulates TLR-induced c-fos and Th1 responses to HBV and HCV vaccines. Virol Sin. 2015;30:174-89 pubmed 出版商
  1301. Noda K, Mishina Y, Komatsu Y. Constitutively active mutation of ACVR1 in oral epithelium causes submucous cleft palate in mice. Dev Biol. 2016;415:306-313 pubmed 出版商
  1302. Roda D, Castillo J, Telechea Fernández M, Gil A, López Rodas G, Franco L, et al. EGF-Induced Acetylation of Heterogeneous Nuclear Ribonucleoproteins Is Dependent on KRAS Mutational Status in Colorectal Cancer Cells. PLoS ONE. 2015;10:e0130543 pubmed 出版商
  1303. Westcot S, Hatzold J, Urban M, Richetti S, Skuster K, Harm R, et al. Protein-Trap Insertional Mutagenesis Uncovers New Genes Involved in Zebrafish Skin Development, Including a Neuregulin 2a-Based ErbB Signaling Pathway Required during Median Fin Fold Morphogenesis. PLoS ONE. 2015;10:e0130688 pubmed 出版商
  1304. Blancafort A, Giró Perafita A, Oliveras G, Palomeras S, Turrado C, Campuzano Ã, et al. Dual fatty acid synthase and HER2 signaling blockade shows marked antitumor activity against breast cancer models resistant to anti-HER2 drugs. PLoS ONE. 2015;10:e0131241 pubmed 出版商
  1305. Pickard A, McDade S, McFarland M, McCluggage W, Wheeler C, McCance D. HPV16 Down-Regulates the Insulin-Like Growth Factor Binding Protein 2 to Promote Epithelial Invasion in Organotypic Cultures. PLoS Pathog. 2015;11:e1004988 pubmed 出版商
  1306. Choi J, Kim J, Kim T, Park J, Lee J, Kim H, et al. TRH and TRH receptor system in the basolateral amygdala mediate stress-induced depression-like behaviors. Neuropharmacology. 2015;97:346-56 pubmed 出版商
  1307. Meyer K, Albaugh B, Schoenike B, Roopra A. Type 1 Insulin-Like Growth Factor Receptor/Insulin Receptor Substrate 1 Signaling Confers Pathogenic Activity on Breast Tumor Cells Lacking REST. Mol Cell Biol. 2015;35:2991-3004 pubmed 出版商
  1308. Wang J, Sun C, Gerdes N, Liu C, Liao M, Liu J, et al. Interleukin 18 function in atherosclerosis is mediated by the interleukin 18 receptor and the Na-Cl co-transporter. Nat Med. 2015;21:820-6 pubmed 出版商
  1309. Carthy J, Sundqvist A, Heldin A, van Dam H, Kletsas D, Heldin C, et al. Tamoxifen Inhibits TGF-β-Mediated Activation of Myofibroblasts by Blocking Non-Smad Signaling Through ERK1/2. J Cell Physiol. 2015;230:3084-92 pubmed 出版商
  1310. Seto D, Kandarian S, Jackman R. A Key Role for Leukemia Inhibitory Factor in C26 Cancer Cachexia. J Biol Chem. 2015;290:19976-86 pubmed 出版商
  1311. Szlachcic W, Switonski P, Krzyzosiak W, Figlerowicz M, Figiel M. Huntington disease iPSCs show early molecular changes in intracellular signaling, the expression of oxidative stress proteins and the p53 pathway. Dis Model Mech. 2015;8:1047-57 pubmed 出版商
  1312. Chen M, Yen C, Cheng C, Wu R, Huang S, Yu C, et al. Identification of SPHK1 as a therapeutic target and marker of poor prognosis in cholangiocarcinoma. Oncotarget. 2015;6:23594-608 pubmed
  1313. Wu P, Yen J, Kou M, Wu M. Luteolin and Apigenin Attenuate 4-Hydroxy-2-Nonenal-Mediated Cell Death through Modulation of UPR, Nrf2-ARE and MAPK Pathways in PC12 Cells. PLoS ONE. 2015;10:e0130599 pubmed 出版商
  1314. Faggi F, Codenotti S, Poliani P, Cominelli M, Chiarelli N, Colombi M, et al. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line. PLoS ONE. 2015;10:e0130287 pubmed 出版商
  1315. Condelli V, Maddalena F, Sisinni L, Lettini G, Matassa D, Piscazzi A, et al. Targeting TRAP1 as a downstream effector of BRAF cytoprotective pathway: a novel strategy for human BRAF-driven colorectal carcinoma. Oncotarget. 2015;6:22298-309 pubmed
  1316. Gopinathan G, Milagre C, Pearce O, Reynolds L, Hodivala Dilke K, Leinster D, et al. Interleukin-6 Stimulates Defective Angiogenesis. Cancer Res. 2015;75:3098-107 pubmed 出版商
  1317. Nan X, Tamgüney T, Collisson E, Lin L, Pitt C, Galeas J, et al. Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway. Proc Natl Acad Sci U S A. 2015;112:7996-8001 pubmed 出版商
  1318. Gierut J, Lyons J, Shah M, Genetti C, Breault D, Haigis K. Oncogenic K-Ras promotes proliferation in quiescent intestinal stem cells. Stem Cell Res. 2015;15:165-71 pubmed 出版商
  1319. Hensel J, Duex J, Owens C, Dancik G, Edwards M, Frierson H, et al. Patient Mutation Directed shRNA Screen Uncovers Novel Bladder Tumor Growth Suppressors. Mol Cancer Res. 2015;13:1306-15 pubmed 出版商
  1320. Shen Y, Zeng L, Novosyadlyy R, Forest A, Zhu A, Korytko A, et al. A bi-functional antibody-receptor domain fusion protein simultaneously targeting IGF-IR and VEGF for degradation. MAbs. 2015;7:931-45 pubmed 出版商
  1321. Lee W, Shen S, Shih Y, Chou C, Tseng J, Chin S, et al. Early decline in serum phospho-CSE1L levels in vemurafenib/sunitinib-treated melanoma and sorafenib/lapatinib-treated colorectal tumor xenografts. J Transl Med. 2015;13:191 pubmed 出版商
  1322. Ronchi G, Haastert Talini K, Fornasari B, Perroteau I, Geuna S, Gambarotta G. The Neuregulin1/ErbB system is selectively regulated during peripheral nerve degeneration and regeneration. Eur J Neurosci. 2016;43:351-64 pubmed 出版商
  1323. Unni A, Lockwood W, Zejnullahu K, Lee Lin S, Varmus H. Evidence that synthetic lethality underlies the mutual exclusivity of oncogenic KRAS and EGFR mutations in lung adenocarcinoma. elife. 2015;4:e06907 pubmed 出版商
  1324. Wightman S, Uppal A, Pitroda S, Ganai S, Burnette B, Stack M, et al. Oncogenic CXCL10 signalling drives metastasis development and poor clinical outcome. Br J Cancer. 2015;113:327-35 pubmed 出版商
  1325. Jäger W, Xue H, Hayashi T, Janssen C, Awrey S, Wyatt A, et al. Patient-derived bladder cancer xenografts in the preclinical development of novel targeted therapies. Oncotarget. 2015;6:21522-32 pubmed
  1326. Krokowski D, Jobava R, Guan B, Farabaugh K, Wu J, Majumder M, et al. Coordinated Regulation of the Neutral Amino Acid Transporter SNAT2 and the Protein Phosphatase Subunit GADD34 Promotes Adaptation to Increased Extracellular Osmolarity. J Biol Chem. 2015;290:17822-37 pubmed 出版商
  1327. Zeng X, Wang H, Bai F, Zhou X, Li S, Ren L, et al. Identification of matrine as a promising novel drug for hepatic steatosis and glucose intolerance with HSP72 as an upstream target. Br J Pharmacol. 2015;172:4303-18 pubmed 出版商
  1328. García Cano J, Ambroise G, Pascual Serra R, Carrión M, Serrano Oviedo L, Ortega Muelas M, et al. Exploiting the potential of autophagy in cisplatin therapy: A new strategy to overcome resistance. Oncotarget. 2015;6:15551-65 pubmed
  1329. Boeldt D, Grummer M, YI F, Magness R, Bird I. Phosphorylation of Ser-279/282 and Tyr-265 positions on Cx43 as possible mediators of VEGF-165 inhibition of pregnancy-adapted Ca2+ burst function in ovine uterine artery endothelial cells. Mol Cell Endocrinol. 2015;412:73-84 pubmed 出版商
  1330. Tampella G, Kerns H, Niu D, Singh S, Khim S, Bosch K, et al. The Tec Kinase-Regulated Phosphoproteome Reveals a Mechanism for the Regulation of Inhibitory Signals in Murine Macrophages. J Immunol. 2015;195:246-56 pubmed 出版商
  1331. Li T, Lu H, Mukherjee D, Lahiri S, Shen C, Yu L, et al. Identification of epidermal growth factor receptor and its inhibitory microRNA141 as novel targets of Krüppel-like factor 8 in breast cancer. Oncotarget. 2015;6:21428-42 pubmed
  1332. Hellesøy M, Lorens J. Cellular context-mediated Akt dynamics regulates MAP kinase signaling thresholds during angiogenesis. Mol Biol Cell. 2015;26:2698-711 pubmed 出版商
  1333. Luan Q, Jin L, Jiang C, Tay K, Lai F, Liu X, et al. RIPK1 regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy. Autophagy. 2015;11:975-94 pubmed 出版商
  1334. Yen C, Chiang W, Liu S, Lin C, Liao K, Lin C, et al. Impacts of autophagy-inducing ingredient of areca nut on tumor cells. PLoS ONE. 2015;10:e0128011 pubmed 出版商
  1335. Korotkevych N, Labyntsev A, Kolybo D, Komisarenko S. The Soluble Heparin-Binding EGF-Like Growth Factor Stimulates EGF Receptor Trafficking to the Nucleus. PLoS ONE. 2015;10:e0127887 pubmed 出版商
  1336. Ramirez U, Nikonova A, Liu H, Pecherskaya A, Lawrence S, Serebriiskii I, et al. Compounds identified by virtual docking to a tetrameric EGFR extracellular domain can modulate Grb2 internalization. BMC Cancer. 2015;15:436 pubmed 出版商
  1337. Dugina V, Khromova N, Rybko V, Blizniukov O, Shagieva G, Chaponnier C, et al. Tumor promotion by γ and suppression by β non-muscle actin isoforms. Oncotarget. 2015;6:14556-71 pubmed
  1338. Li L, Qi L, Liang Z, Song W, Liu Y, Wang Y, et al. Transforming growth factor-β1 induces EMT by the transactivation of epidermal growth factor signaling through HA/CD44 in lung and breast cancer cells. Int J Mol Med. 2015;36:113-22 pubmed 出版商
  1339. Reigada D, Nieto Díaz M, Navarro Ruiz R, Caballero López M, Del Águila A, Muñoz Galdeano T, et al. Acute administration of ucf-101 ameliorates the locomotor impairments induced by a traumatic spinal cord injury. Neuroscience. 2015;300:404-17 pubmed 出版商
  1340. Tang X, Chen X, Xu Y, Qiao Y, Zhang X, Wang Y, et al. CD166 positively regulates MCAM via inhibition to ubiquitin E3 ligases Smurf1 and βTrCP through PI3K/AKT and c-Raf/MEK/ERK signaling in Bel-7402 hepatocellular carcinoma cells. Cell Signal. 2015;27:1694-702 pubmed 出版商
  1341. Yu J, Ramasamy T, Murphy N, Holt M, Czapiewski R, Wei S, et al. PI3K/mTORC2 regulates TGF-β/Activin signalling by modulating Smad2/3 activity via linker phosphorylation. Nat Commun. 2015;6:7212 pubmed 出版商
  1342. Bargut T, Mandarim de Lacerda C, Aguila M. A high-fish-oil diet prevents adiposity and modulates white adipose tissue inflammation pathways in mice. J Nutr Biochem. 2015;26:960-9 pubmed 出版商
  1343. Greenfeld H, Takasaki K, Walsh M, Ersing I, Bernhardt K, Ma Y, et al. TRAF1 Coordinates Polyubiquitin Signaling to Enhance Epstein-Barr Virus LMP1-Mediated Growth and Survival Pathway Activation. PLoS Pathog. 2015;11:e1004890 pubmed 出版商
  1344. Li P, Sheu M, Ma W, Pan C, Sheu J, Wu C. Anti-Restenotic Roles of Dihydroaustrasulfone Alcohol Involved in Inhibiting PDGF-BB-Stimulated Proliferation and Migration of Vascular Smooth Muscle Cells. Mar Drugs. 2015;13:3046-60 pubmed 出版商
  1345. Pan D, Jiang C, Ma Z, Blonska M, You M, Lin X. MALT1 is required for EGFR-induced NF-?B activation and contributes to EGFR-driven lung cancer progression. Oncogene. 2016;35:919-28 pubmed 出版商
  1346. Ji X, Li Z, Chen H, Li J, Tian H, Li Z, et al. Cytotoxic mechanism related to dihydrolipoamide dehydrogenase in Leydig cells exposed to heavy metals. Toxicology. 2015;334:22-32 pubmed 出版商
  1347. Wong T, Lin S, Leung L. The flavone apigenin blocks nuclear translocation of sterol regulatory element-binding protein-2 in the hepatic cells WRL-68. Br J Nutr. 2015;113:1844-52 pubmed 出版商
  1348. Wang Z, Ma B, Ji X, Deng Y, Zhang T, Zhang X, et al. MicroRNA-378-5p suppresses cell proliferation and induces apoptosis in colorectal cancer cells by targeting BRAF. Cancer Cell Int. 2015;15:40 pubmed 出版商
  1349. Ketema M, Secades P, Kreft M, Nahidiazar L, Janssen H, Jalink K, et al. The rod domain is not essential for the function of plectin in maintaining tissue integrity. Mol Biol Cell. 2015;26:2402-17 pubmed 出版商
  1350. Andersen N, Boguslawski E, Kuk C, Chambers C, Duesbery N. Combined inhibition of MEK and mTOR has a synergic effect on angiosarcoma tumorgrafts. Int J Oncol. 2015;47:71-80 pubmed 出版商
  1351. Park H, Lee D, Yim M, Choi Y, Park S, Seo S, et al. 3,3'-Diindolylmethane inhibits VEGF expression through the HIF-1α and NF-κB pathways in human retinal pigment epithelial cells under chemical hypoxic conditions. Int J Mol Med. 2015;36:301-8 pubmed 出版商
  1352. Cong X, Zhang Y, Li J, Mei M, Ding C, Xiang R, et al. Claudin-4 is required for modulation of paracellular permeability by muscarinic acetylcholine receptor in epithelial cells. J Cell Sci. 2015;128:2271-86 pubmed 出版商
  1353. Rios Doria J, Sabol D, Chesebrough J, Stewart D, Xu L, Tammali R, et al. A Monoclonal Antibody to ADAM17 Inhibits Tumor Growth by Inhibiting EGFR and Non-EGFR-Mediated Pathways. Mol Cancer Ther. 2015;14:1637-49 pubmed 出版商
  1354. Boswell B, Musil L. Synergistic interaction between the fibroblast growth factor and bone morphogenetic protein signaling pathways in lens cells. Mol Biol Cell. 2015;26:2561-72 pubmed 出版商
  1355. Yu Y, Koehn C, Yue Y, Li S, Thiele G, Hearth Holmes M, et al. Celastrol inhibits inflammatory stimuli-induced neutrophil extracellular trap formation. Curr Mol Med. 2015;15:401-10 pubmed
  1356. Liu X, Wang J, Li S, Li L, Huang M, Zhang Y, et al. Histone deacetylase 3 expression correlates with vasculogenic mimicry through the phosphoinositide3-kinase / ERK-MMP-laminin5γ2 signaling pathway. Cancer Sci. 2015;106:857-66 pubmed 出版商
  1357. Lee E, Park E, Mun H, Chang E, Ko J, Kim D, et al. Soluble receptor for advanced glycation end products inhibits disease progression in autosomal dominant polycystic kidney disease by down-regulating cell proliferation. FASEB J. 2015;29:3506-14 pubmed 出版商
  1358. Bhang S, Han J, Jang H, Noh M, La W, Yi M, et al. pH-triggered release of manganese from MnAu nanoparticles that enables cellular neuronal differentiation without cellular toxicity. Biomaterials. 2015;55:33-43 pubmed 出版商
  1359. Tate C, Mc Entire J, Pallini R, Vakana E, Wyss L, Blosser W, et al. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology. PLoS ONE. 2015;10:e0125697 pubmed 出版商
  1360. SCANLON C, Banerjee R, Inglehart R, Liu M, Russo N, Hariharan A, et al. Galanin modulates the neural niche to favour perineural invasion in head and neck cancer. Nat Commun. 2015;6:6885 pubmed 出版商
  1361. Bhushan S, Tchatalbachev S, Lu Y, Fröhlich S, Fijak M, Vijayan V, et al. Differential activation of inflammatory pathways in testicular macrophages provides a rationale for their subdued inflammatory capacity. J Immunol. 2015;194:5455-64 pubmed 出版商
  1362. Pasqualon T, Pruessmeyer J, Weidenfeld S, Babendreyer A, Groth E, Schumacher J, et al. A transmembrane C-terminal fragment of syndecan-1 is generated by the metalloproteinase ADAM17 and promotes lung epithelial tumor cell migration and lung metastasis formation. Cell Mol Life Sci. 2015;72:3783-801 pubmed 出版商
  1363. Daniele S, Da Pozzo E, Zappelli E, Martini C. Trazodone treatment protects neuronal-like cells from inflammatory insult by inhibiting NF-?B, p38 and JNK. Cell Signal. 2015;27:1609-29 pubmed 出版商
  1364. Chan S, Selth L, Li Y, Nyquist M, Miao L, Bradner J, et al. Targeting chromatin binding regulation of constitutively active AR variants to overcome prostate cancer resistance to endocrine-based therapies. Nucleic Acids Res. 2015;43:5880-97 pubmed 出版商
  1365. Huang L, Counter C. Reduced HRAS G12V-Driven Tumorigenesis of Cell Lines Expressing KRAS C118S. PLoS ONE. 2015;10:e0123918 pubmed 出版商
  1366. Bugaj L, Spelke D, Mesuda C, Varedi M, Kane R, Schaffer D. Regulation of endogenous transmembrane receptors through optogenetic Cry2 clustering. Nat Commun. 2015;6:6898 pubmed 出版商
  1367. Najm F, Madhavan M, Zaremba A, Shick E, Karl R, Factor D, et al. Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo. Nature. 2015;522:216-20 pubmed 出版商
  1368. Yang Z, Zheng B, Zhang Y, He M, Zhang X, Ma D, et al. miR-155-dependent regulation of mammalian sterile 20-like kinase 2 (MST2) coordinates inflammation, oxidative stress and proliferation in vascular smooth muscle cells. Biochim Biophys Acta. 2015;1852:1477-89 pubmed 出版商
  1369. Selvaraj N, Kedage V, Hollenhorst P. Comparison of MAPK specificity across the ETS transcription factor family identifies a high-affinity ERK interaction required for ERG function in prostate cells. Cell Commun Signal. 2015;13:12 pubmed 出版商
  1370. Tavares R, Pathak S. Helicobacter pylori protein JHP0290 exhibits proliferative and anti-apoptotic effects in gastric epithelial cells. PLoS ONE. 2015;10:e0124407 pubmed 出版商
  1371. Li L, Dong Q, Wang Y, Feng Q, Zhou P, Ou X, et al. Hedgehog signaling is involved in the BMP9-induced osteogenic differentiation of mesenchymal stem cells. Int J Mol Med. 2015;35:1641-50 pubmed 出版商
  1372. Zhang X, Liang D, Chi Z, Chu Q, Zhao C, Ma R, et al. Effect of zinc on high glucose-induced epithelial-to-mesenchymal transition in renal tubular epithelial cells. Int J Mol Med. 2015;35:1747-54 pubmed 出版商
  1373. Ip L, Poulogiannis G, Viciano F, Sasaki J, Kofuji S, Spanswick V, et al. Loss of INPP4B causes a DNA repair defect through loss of BRCA1, ATM and ATR and can be targeted with PARP inhibitor treatment. Oncotarget. 2015;6:10548-62 pubmed
  1374. Hayashi Y, Bardsley M, Toyomasu Y, Milosavljevic S, Gajdos G, Choi K, et al. Platelet-Derived Growth Factor Receptor-α Regulates Proliferation of Gastrointestinal Stromal Tumor Cells With Mutations in KIT by Stabilizing ETV1. Gastroenterology. 2015;149:420-32.e16 pubmed 出版商
  1375. Navis A, van Lith S, van Duijnhoven S, de Pooter M, Yetkin Arik B, Wesseling P, et al. Identification of a novel MET mutation in high-grade glioma resulting in an auto-active intracellular protein. Acta Neuropathol. 2015;130:131-44 pubmed 出版商
  1376. Witkiewicz A, McMillan E, Balaji U, Baek G, Lin W, Mansour J, et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun. 2015;6:6744 pubmed 出版商
  1377. Janes K. An analysis of critical factors for quantitative immunoblotting. Sci Signal. 2015;8:rs2 pubmed 出版商
  1378. Kim T, Lawson M. GnRH Regulates Gonadotropin Gene Expression Through NADPH/Dual Oxidase-Derived Reactive Oxygen Species. Endocrinology. 2015;156:2185-99 pubmed 出版商
  1379. Chuang W, Su C, Lin P, Lin C, Chen Y. Sann-Joong-Kuey-Jian-Tang induces autophagy in HepG2 cells via regulation of the phosphoinositide-3 kinase/Akt/mammalian target of rapamycin and p38 mitogen-activated protein kinase pathways. Mol Med Rep. 2015;12:1677-84 pubmed 出版商
  1380. Boncompagni S, Arthurton L, Akujuru E, Pearson T, Steverding D, Protasi F, et al. Membrane glucocorticoid receptors are localised in the extracellular matrix and signal through the MAPK pathway in mammalian skeletal muscle fibres. J Physiol. 2015;593:2679-92 pubmed 出版商
  1381. Westcott J, Prechtl A, Maine E, Dang T, Esparza M, Sun H, et al. An epigenetically distinct breast cancer cell subpopulation promotes collective invasion. J Clin Invest. 2015;125:1927-43 pubmed 出版商
  1382. Brohée L, Demine S, Willems J, Arnould T, Colige A, Deroanne C. Lipin-1 regulates cancer cell phenotype and is a potential target to potentiate rapamycin treatment. Oncotarget. 2015;6:11264-80 pubmed
  1383. Ko R, Park J, Ha H, Choi Y, Lee S. Glycogen synthase kinase 3β ubiquitination by TRAF6 regulates TLR3-mediated pro-inflammatory cytokine production. Nat Commun. 2015;6:6765 pubmed 出版商
  1384. Bol G, Vesuna F, Xie M, Zeng J, Aziz K, Gandhi N, et al. Targeting DDX3 with a small molecule inhibitor for lung cancer therapy. EMBO Mol Med. 2015;7:648-69 pubmed 出版商
  1385. Mulens Arias V, Rojas J, Pérez Yagüe S, Morales M, Barber D. Polyethylenimine-coated SPIONs trigger macrophage activation through TLR-4 signaling and ROS production and modulate podosome dynamics. Biomaterials. 2015;52:494-506 pubmed 出版商
  1386. Richter E, Harms M, Ventz K, Gierok P, Chilukoti R, Hildebrandt J, et al. A multi-omics approach identifies key hubs associated with cell type-specific responses of airway epithelial cells to staphylococcal alpha-toxin. PLoS ONE. 2015;10:e0122089 pubmed 出版商
  1387. Giehl K, Keller C, Muehlich S, Goppelt Struebe M. Actin-mediated gene expression depends on RhoA and Rac1 signaling in proximal tubular epithelial cells. PLoS ONE. 2015;10:e0121589 pubmed 出版商
  1388. Hsieh C, Botta G, Gao S, Li T, Van Allen E, Treacy D, et al. PLZF, a tumor suppressor genetically lost in metastatic castration-resistant prostate cancer, is a mediator of resistance to androgen deprivation therapy. Cancer Res. 2015;75:1944-8 pubmed 出版商
  1389. Chan N, He S, Spee C, Ishikawa K, Hinton D. Attenuation of choroidal neovascularization by histone deacetylase inhibitor. PLoS ONE. 2015;10:e0120587 pubmed 出版商
  1390. Kann M, Bae E, Lenz M, Li L, Trannguyen B, Schumacher V, et al. WT1 targets Gas1 to maintain nephron progenitor cells by modulating FGF signals. Development. 2015;142:1254-66 pubmed 出版商
  1391. Zhang Q, Kuang H, Chen C, Yan J, Do Umehara H, Liu X, et al. The kinase Jnk2 promotes stress-induced mitophagy by targeting the small mitochondrial form of the tumor suppressor ARF for degradation. Nat Immunol. 2015;16:458-66 pubmed 出版商
  1392. Graziani G, Artuso S, De Luca A, Muzi A, Rotili D, Scimeca M, et al. A new water soluble MAPK activator exerts antitumor activity in melanoma cells resistant to the BRAF inhibitor vemurafenib. Biochem Pharmacol. 2015;95:16-27 pubmed 出版商
  1393. Kumar A, Pathak P, Purkait S, Faruq M, Jha P, Mallick S, et al. Oncogenic KIAA1549-BRAF fusion with activation of the MAPK/ERK pathway in pediatric oligodendrogliomas. Cancer Genet. 2015;208:91-5 pubmed 出版商
  1394. Muro R, Nitta T, Okada T, Ideta H, Tsubata T, Suzuki H. The Ras GTPase-activating protein Rasal3 supports survival of naive T cells. PLoS ONE. 2015;10:e0119898 pubmed 出版商
  1395. Kawada M, Inoue H, Ohba S, Yoshida J, Masuda T, Yamasaki M, et al. Stromal cells positively and negatively modulate the growth of cancer cells: stimulation via the PGE2-TNFα-IL-6 pathway and inhibition via secreted GAPDH-E-cadherin interaction. PLoS ONE. 2015;10:e0119415 pubmed 出版商
  1396. Freeman J, Feng Y, Demehri F, Dempsey P, Teitelbaum D. TPN-associated intestinal epithelial cell atrophy is modulated by TLR4/EGF signaling pathways. FASEB J. 2015;29:2943-58 pubmed 出版商
  1397. Carnesecchi J, Malbouyres M, de Mets R, Balland M, Beauchef G, Vié K, et al. Estrogens induce rapid cytoskeleton re-organization in human dermal fibroblasts via the non-classical receptor GPR30. PLoS ONE. 2015;10:e0120672 pubmed 出版商
  1398. Qu D, Chen Y, Xu X, Zhang M, Zhang Y, Li S. Cbl-b-regulated extracellular signal-regulated kinase signaling is involved in the shikonin-induced apoptosis of lung cancer cells in vitro. Exp Ther Med. 2015;9:1265-1270 pubmed
  1399. Richardson E, Shukla S, Sweet D, Wearsch P, Tsichlis P, Boom W, et al. Toll-like receptor 2-dependent extracellular signal-regulated kinase signaling in Mycobacterium tuberculosis-infected macrophages drives anti-inflammatory responses and inhibits Th1 polarization of responding T cells. Infect Immun. 2015;83:2242-54 pubmed 出版商
  1400. Gomez A, Gomez J, Lopez Torres M, Naudi A, Mota Martorell N, Pamplona R, et al. Cysteine dietary supplementation reverses the decrease in mitochondrial ROS production at complex I induced by methionine restriction. J Bioenerg Biomembr. 2015;47:199-208 pubmed 出版商
  1401. Woods S, Waite A, O Dea K, Halford P, Takata M, Wilson M. Kinetic profiling of in vivo lung cellular inflammatory responses to mechanical ventilation. Am J Physiol Lung Cell Mol Physiol. 2015;308:L912-21 pubmed 出版商
  1402. Wang B, Wu S, Tang S, Lai C, Ou C, Wu M, et al. Benzo[a]pyrene-induced cell cycle progression occurs via ERK-induced Chk1 pathway activation in human lung cancer cells. Mutat Res. 2015;773:1-8 pubmed 出版商
  1403. Maione F, Oliaro Bosso S, Meda C, Di Nicolantonio F, Bussolino F, Balliano G, et al. The cholesterol biosynthesis enzyme oxidosqualene cyclase is a new target to impair tumour angiogenesis and metastasis dissemination. Sci Rep. 2015;5:9054 pubmed 出版商
  1404. Wilson F, Johannessen C, Piccioni F, Tamayo P, Kim J, Van Allen E, et al. A functional landscape of resistance to ALK inhibition in lung cancer. Cancer Cell. 2015;27:397-408 pubmed 出版商
  1405. Lin Y, Yang Z, Xu A, Dong P, Huang Y, Liu H, et al. PIK3R1 negatively regulates the epithelial-mesenchymal transition and stem-like phenotype of renal cancer cells through the AKT/GSK3β/CTNNB1 signaling pathway. Sci Rep. 2015;5:8997 pubmed 出版商
  1406. Münzberg C, Höhn K, Krndija D, Maaß U, Bartsch D, Slater E, et al. IGF-1 drives chromogranin A secretion via activation of Arf1 in human neuroendocrine tumour cells. J Cell Mol Med. 2015;19:948-59 pubmed 出版商
  1407. Kim S, Kim W, Yoon J, Ji J, Morgan M, Cho H, et al. Upregulated RIP3 Expression Potentiates MLKL Phosphorylation-Mediated Programmed Necrosis in Toxic Epidermal Necrolysis. J Invest Dermatol. 2015;135:2021-2030 pubmed 出版商
  1408. Warren D, Tajsic T, Porter L, Minaisah R, Cobb A, Jacob A, et al. Nesprin-2-dependent ERK1/2 compartmentalisation regulates the DNA damage response in vascular smooth muscle cell ageing. Cell Death Differ. 2015;22:1540-50 pubmed 出版商
  1409. Pone E, Lam T, Lou Z, Wang R, Chen Y, Liu D, et al. B cell Rab7 mediates induction of activation-induced cytidine deaminase expression and class-switching in T-dependent and T-independent antibody responses. J Immunol. 2015;194:3065-78 pubmed 出版商
  1410. Wu H, Hwang Verslues W, Lee W, Huang C, Wei P, Chen C, et al. Targeting IL-17B-IL-17RB signaling with an anti-IL-17RB antibody blocks pancreatic cancer metastasis by silencing multiple chemokines. J Exp Med. 2015;212:333-49 pubmed 出版商
  1411. Vogel C, Smit M, Maddalo G, Possik P, Sparidans R, van der Burg S, et al. Cooperative induction of apoptosis in NRAS mutant melanoma by inhibition of MEK and ROCK. Pigment Cell Melanoma Res. 2015;28:307-17 pubmed 出版商
  1412. Silva G, Aboussekhra A. p16(INK4A) inhibits the pro-metastatic potentials of osteosarcoma cells through targeting the ERK pathway and TGF-β1. Mol Carcinog. 2016;55:525-36 pubmed 出版商
  1413. Tanaka T, Iino M. Sec8 regulates cytokeratin8 phosphorylation and cell migration by controlling the ERK and p38 MAPK signalling pathways. Cell Signal. 2015;27:1110-9 pubmed 出版商
  1414. Lee J, Chung L, Chen Y, Feng T, Chen W, Juang H. Upregulation of B-cell translocation gene 2 by epigallocatechin-3-gallate via p38 and ERK signaling blocks cell proliferation in human oral squamous cell carcinoma cells. Cancer Lett. 2015;360:310-8 pubmed 出版商
  1415. Cheng Z, Liu F, Zhu S, Tian H, Wang L, Wang Y. A rapid and convenient method for fluorescence analysis of in vitro cultivated metacestode vesicles from Echinococcus multilocularis. PLoS ONE. 2015;10:e0118215 pubmed 出版商
  1416. Wnorowski A, Sadowska M, Paul R, Singh N, Boguszewska Czubara A, Jimenez L, et al. Activation of β2-adrenergic receptor by (R,R')-4'-methoxy-1-naphthylfenoterol inhibits proliferation and motility of melanoma cells. Cell Signal. 2015;27:997-1007 pubmed 出版商
  1417. Young C, Sinadinos A, Lefebvre A, Chan P, Arkle S, Vaudry D, et al. A novel mechanism of autophagic cell death in dystrophic muscle regulated by P2RX7 receptor large-pore formation and HSP90. Autophagy. 2015;11:113-30 pubmed 出版商
  1418. Tamilzhalagan S, Muthuswami M, Periasamy J, Lee M, Rha S, Tan P, et al. Upregulated, 7q21-22 amplicon candidate gene SHFM1 confers oncogenic advantage by suppressing p53 function in gastric cancer. Cell Signal. 2015;27:1075-86 pubmed 出版商
  1419. Bauckman K, Haller E, Taran N, Rockfield S, Ruiz Rivera A, Nanjundan M. Iron alters cell survival in a mitochondria-dependent pathway in ovarian cancer cells. Biochem J. 2015;466:401-13 pubmed 出版商
  1420. Liu Y, Zhang Q, Ding Y, Li X, Zhao D, Zhao K, et al. Histone lysine methyltransferase Ezh1 promotes TLR-triggered inflammatory cytokine production by suppressing Tollip. J Immunol. 2015;194:2838-46 pubmed 出版商
  1421. Murrow L, Malhotra R, Debnath J. ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat Cell Biol. 2015;17:300-10 pubmed 出版商
  1422. Ito T, Taniguchi H, Fukagai K, Okamuro S, Kobayashi A. Inhibitory mechanism of FAT4 gene expression in response to actin dynamics during Src-induced carcinogenesis. PLoS ONE. 2015;10:e0118336 pubmed 出版商
  1423. Skarra D, Thackray V. FOXO1 is regulated by insulin and IGF1 in pituitary gonadotropes. Mol Cell Endocrinol. 2015;405:14-24 pubmed 出版商
  1424. Guillaumond F, Bidaut G, Ouaissi M, Servais S, Gouirand V, Olivares O, et al. Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proc Natl Acad Sci U S A. 2015;112:2473-8 pubmed 出版商
  1425. Momeny M, Saunus J, Marturana F, McCart Reed A, Black D, Sala G, et al. Heregulin-HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines. Oncotarget. 2015;6:3932-46 pubmed
  1426. Jeffery J, Neyt C, Moore W, Paterson S, Bower N, Chenevix Trench G, et al. Cep55 regulates embryonic growth and development by promoting Akt stability in zebrafish. FASEB J. 2015;29:1999-2009 pubmed 出版商
  1427. Fouladi F, Jehn L, Metzelder S, Hub F, Henkenius K, Burchert A, et al. Sorafenib induces paradoxical phosphorylation of the extracellular signal-regulated kinase pathway in acute myeloid leukemia cells lacking FLT3-ITD mutation. Leuk Lymphoma. 2015;56:2690-8 pubmed 出版商
  1428. Kondapalli K, Llongueras J, Capilla González V, Prasad H, Hack A, Smith C, et al. A leak pathway for luminal protons in endosomes drives oncogenic signalling in glioblastoma. Nat Commun. 2015;6:6289 pubmed 出版商
  1429. Kodigepalli K, Nanjundan M. Induction of PLSCR1 in a STING/IRF3-dependent manner upon vector transfection in ovarian epithelial cells. PLoS ONE. 2015;10:e0117464 pubmed 出版商
  1430. Castorina A, Waschek J, Marzagalli R, Cardile V, Drago F. PACAP interacts with PAC1 receptors to induce tissue plasminogen activator (tPA) expression and activity in schwann cell-like cultures. PLoS ONE. 2015;10:e0117799 pubmed 出版商
  1431. Papadakis A, Sun C, Knijnenburg T, Xue Y, Grernrum W, Hölzel M, et al. SMARCE1 suppresses EGFR expression and controls responses to MET and ALK inhibitors in lung cancer. Cell Res. 2015;25:445-58 pubmed 出版商
  1432. Bai L, Mao R, Wang J, Ding L, Jiang S, Gao C, et al. ERK1/2 promoted proliferation and inhibited apoptosis of human cervical cancer cells and regulated the expression of c-Fos and c-Jun proteins. Med Oncol. 2015;32:57 pubmed 出版商
  1433. Lewis M, Vyse S, Shields A, Boeltz S, Gordon P, Spector T, et al. UBE2L3 polymorphism amplifies NF-κB activation and promotes plasma cell development, linking linear ubiquitination to multiple autoimmune diseases. Am J Hum Genet. 2015;96:221-34 pubmed 出版商
  1434. Hakanpaa L, Sipilä T, Leppänen V, Gautam P, Nurmi H, Jacquemet G, et al. Endothelial destabilization by angiopoietin-2 via integrin β1 activation. Nat Commun. 2015;6:5962 pubmed 出版商
  1435. Shaw A, Pickup M, Chytil A, Aakre M, Owens P, Moses H, et al. TGFβ signaling in myeloid cells regulates mammary carcinoma cell invasion through fibroblast interactions. PLoS ONE. 2015;10:e0117908 pubmed 出版商
  1436. Cai K, Wang Y, Smith E, Smedberg J, Yang D, Yang W, et al. Global deletion of Trp53 reverts ovarian tumor phenotype of the germ cell-deficient white spotting variant (Wv) mice. Neoplasia. 2015;17:89-100 pubmed 出版商
  1437. Orr A, Hsiao E, Wang M, Ho K, Kim D, Wang X, et al. Astrocytic adenosine receptor A2A and Gs-coupled signaling regulate memory. Nat Neurosci. 2015;18:423-34 pubmed 出版商
  1438. Bele A, Mirza S, Zhang Y, Ahmad Mir R, Lin S, Kim J, et al. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells. Cell Cycle. 2015;14:990-1000 pubmed 出版商
  1439. Albanito L, Lappano R, Madeo A, Chimento A, Prossnitz E, Cappello A, et al. Effects of atrazine on estrogen receptor α- and G protein-coupled receptor 30-mediated signaling and proliferation in cancer cells and cancer-associated fibroblasts. Environ Health Perspect. 2015;123:493-9 pubmed 出版商
  1440. Tian E, Stevens S, Guan Y, Springer D, Anderson S, Starost M, et al. Galnt1 is required for normal heart valve development and cardiac function. PLoS ONE. 2015;10:e0115861 pubmed 出版商
  1441. Seaberg B, Henslee G, Wang S, Paez Colasante X, Landreth G, Rimer M. Muscle-derived extracellular signal-regulated kinases 1 and 2 are required for the maintenance of adult myofibers and their neuromuscular junctions. Mol Cell Biol. 2015;35:1238-53 pubmed 出版商
  1442. Tontonoz P, Cortez Toledo O, Wroblewski K, Hong C, Lim L, Carranza R, et al. The orphan nuclear receptor Nur77 is a determinant of myofiber size and muscle mass in mice. Mol Cell Biol. 2015;35:1125-38 pubmed 出版商
  1443. Domínguez Alonso A, Valdés Tovar M, Solís Chagoyán H, Benítez King G. Melatonin stimulates dendrite formation and complexity in the hilar zone of the rat hippocampus: participation of the Ca++/Calmodulin complex. Int J Mol Sci. 2015;16:1907-27 pubmed 出版商
  1444. Yoo J, Kim T, Kong S, Lee J, Choi W, Kim K, et al. Role of Mig-6 in hepatic glucose metabolism. J Diabetes. 2016;8:86-97 pubmed 出版商
  1445. Li X, Wu Y, Li X, Li D, Du J, Hu C, et al. Role of eukaryotic translation initiation factor 3a in bleomycin-induced pulmonary fibrosis. Eur J Pharmacol. 2015;749:89-97 pubmed 出版商
  1446. Schäker K, Bartsch S, Patry C, Stoll S, Hillebrands J, Wieland T, et al. The bipartite rac1 Guanine nucleotide exchange factor engulfment and cell motility 1/dedicator of cytokinesis 180 (elmo1/dock180) protects endothelial cells from apoptosis in blood vessel development. J Biol Chem. 2015;290:6408-18 pubmed 出版商
  1447. Blanchard Z, Paul B, Craft B, ElShamy W. BRCA1-IRIS inactivation overcomes paclitaxel resistance in triple negative breast cancers. Breast Cancer Res. 2015;17:5 pubmed 出版商
  1448. de Oliveira S, Boudinot P, Calado Ã, Mulero V. Duox1-derived H2O2 modulates Cxcl8 expression and neutrophil recruitment via JNK/c-JUN/AP-1 signaling and chromatin modifications. J Immunol. 2015;194:1523-33 pubmed 出版商
  1449. Majuelos Melguizo J, Rodríguez M, López Jiménez L, Rodríguez Vargas J, Martí Martín Consuegra J, Serrano Sáenz S, et al. PARP targeting counteracts gliomagenesis through induction of mitotic catastrophe and aggravation of deficiency in homologous recombination in PTEN-mutant glioma. Oncotarget. 2015;6:4790-803 pubmed
  1450. Cheng Y, Chen P, Chiang H, Suen C, Hwang M, Lin T, et al. Candidate tumor suppressor B-cell translocation gene 3 impedes neoplastic progression by suppression of AKT. Cell Death Dis. 2015;6:e1584 pubmed 出版商
  1451. Sathyamurthy A, Yin D, Barik A, Shen C, Bean J, Figueiredo D, et al. ERBB3-mediated regulation of Bergmann glia proliferation in cerebellar lamination. Development. 2015;142:522-32 pubmed 出版商
  1452. Loeuillard E, Bertrand J, Herranen A, Melchior C, Guérin C, Coëffier M, et al. 2,4,6-trinitrobenzene sulfonic acid-induced chronic colitis with fibrosis and modulation of TGF-β1 signaling. World J Gastroenterol. 2014;20:18207-15 pubmed 出版商
  1453. Boj S, Hwang C, Baker L, Chio I, Engle D, Corbo V, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell. 2015;160:324-38 pubmed 出版商
  1454. Wurm S, Zhang J, Guinea Viniegra J, García F, Muñoz J, Bakiri L, et al. Terminal epidermal differentiation is regulated by the interaction of Fra-2/AP-1 with Ezh2 and ERK1/2. Genes Dev. 2015;29:144-56 pubmed 出版商
  1455. Bharti S, Rani N, Bhatia J, Arya D. 5-HT2B receptor blockade attenuates β-adrenergic receptor-stimulated myocardial remodeling in rats via inhibiting apoptosis: role of MAPKs and HSPs. Apoptosis. 2015;20:455-65 pubmed 出版商
  1456. Zanotto Filho A, Braganhol E, Klafke K, Figueiró F, Terra S, Paludo F, et al. Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas. Cancer Lett. 2015;358:220-31 pubmed 出版商
  1457. Gonzalez Granado J, Navarro Puche A, Molina Sánchez P, Blanco Berrocal M, Viana R, Font de Mora J, et al. Sorting nexin 6 enhances lamin a synthesis and incorporation into the nuclear envelope. PLoS ONE. 2014;9:e115571 pubmed 出版商
  1458. Salotti J, Sakchaisri K, Tourtellotte W, Johnson P. An Arf-Egr-C/EBPβ pathway linked to ras-induced senescence and cancer. Mol Cell Biol. 2015;35:866-83 pubmed 出版商
  1459. Passos E, Pereira C, Gonçalves I, Rocha Rodrigues S, Silva N, Guimarães J, et al. Role of physical exercise on hepatic insulin, glucocorticoid and inflammatory signaling pathways in an animal model of non-alcoholic steatohepatitis. Life Sci. 2015;123:51-60 pubmed 出版商
  1460. Machado Neto J, Lazarini M, Favaro P, de Melo Campos P, Scopim Ribeiro R, Franchi Junior G, et al. ANKHD1 silencing inhibits Stathmin 1 activity, cell proliferation and migration of leukemia cells. Biochim Biophys Acta. 2015;1853:583-93 pubmed 出版商
  1461. Kim E, Kim S, Jin X, Ham S, Kim J, Park J, et al. Epidermal growth factor receptor variant III renders glioma cancer cells less differentiated by JAGGED1. Tumour Biol. 2015;36:2921-8 pubmed 出版商
  1462. Narumi K, Hirose T, Sato E, Mori T, Kisu K, Ishikawa M, et al. A functional (pro)renin receptor is expressed in human lymphocytes and monocytes. Am J Physiol Renal Physiol. 2015;308:F487-99 pubmed 出版商
  1463. Pastor Clerigues A, Martí Bonmatí E, Milara J, Almudever P, Cortijo J. Anti-inflammatory and anti-fibrotic profile of fish oil emulsions used in parenteral nutrition-associated liver disease. PLoS ONE. 2014;9:e115404 pubmed 出版商
  1464. Bifsha P, Yang J, Fisher R, Drouin J. Rgs6 is required for adult maintenance of dopaminergic neurons in the ventral substantia nigra. PLoS Genet. 2014;10:e1004863 pubmed 出版商
  1465. Girotti M, Lopes F, Preece N, Niculescu Duvaz D, Zambon A, Davies L, et al. Paradox-breaking RAF inhibitors that also target SRC are effective in drug-resistant BRAF mutant melanoma. Cancer Cell. 2015;27:85-96 pubmed 出版商
  1466. Yoda A, Adelmant G, Tamburini J, Chapuy B, Shindoh N, Yoda Y, et al. Mutations in G protein β subunits promote transformation and kinase inhibitor resistance. Nat Med. 2015;21:71-5 pubmed 出版商
  1467. Delloye Bourgeois C, Jacquier A, Charoy C, Reynaud F, Nawabi H, Thoinet K, et al. PlexinA1 is a new Slit receptor and mediates axon guidance function of Slit C-terminal fragments. Nat Neurosci. 2015;18:36-45 pubmed 出版商
  1468. Diesenberg K, Beerbaum M, Fink U, Schmieder P, Krauss M. SEPT9 negatively regulates ubiquitin-dependent downregulation of EGFR. J Cell Sci. 2015;128:397-407 pubmed 出版商
  1469. Bernusso V, Machado Neto J, Pericole F, Vieira K, Duarte A, Traina F, et al. Imatinib restores VASP activity and its interaction with Zyxin in BCR-ABL leukemic cells. Biochim Biophys Acta. 2015;1853:388-95 pubmed 出版商
  1470. Xu T, Pan Z, Dong M, Yu C, Niu Y. Ferulic acid suppresses activation of hepatic stellate cells through ERK1/2 and Smad signaling pathways in vitro. Biochem Pharmacol. 2015;93:49-58 pubmed 出版商
  1471. Tang D, Yu Y, Zhao X, Schachner M, Zhao W. Single chain fragment variable antibodies developed by using as target the 3rd fibronectin type III homologous repeat fragment of human neural cell adhesion molecule L1 promote cell migration and neuritogenesis. Exp Cell Res. 2015;330:336-45 pubmed 出版商
  1472. Olayanju A, Copple I, Bryan H, Edge G, Sison R, Wong M, et al. Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity-implications for therapeutic targeting of Nrf2. Free Radic Biol Med. 2015;78:202-12 pubmed 出版商
  1473. Giovannini C, Minguzzi M, Baglioni M, Fornari F, Giannone F, Ravaioli M, et al. Suppression of p53 by Notch3 is mediated by Cyclin G1 and sustained by MDM2 and miR-221 axis in hepatocellular carcinoma. Oncotarget. 2014;5:10607-20 pubmed
  1474. Heynen G, Fonfara A, Bernards R. Resistance to targeted cancer drugs through hepatocyte growth factor signaling. Cell Cycle. 2014;13:3808-17 pubmed 出版商
  1475. Matsuoka S, Gupta S, Suzuki E, Hiromi Y, Asaoka M. gone early, a novel germline factor, ensures the proper size of the stem cell precursor pool in the Drosophila ovary. PLoS ONE. 2014;9:e113423 pubmed 出版商
  1476. Kong B, Cho Y, Lee E. G protein-coupled estrogen receptor-1 is involved in the protective effect of protocatechuic aldehyde against endothelial dysfunction. PLoS ONE. 2014;9:e113242 pubmed 出版商
  1477. Banks A, McAllister F, Camporez J, Zushin P, Jurczak M, Laznik Bogoslavski D, et al. An ERK/Cdk5 axis controls the diabetogenic actions of PPARγ. Nature. 2015;517:391-5 pubmed 出版商
  1478. Krawczyk P, Twarog E, Kurowska E, Klopotowska D, Matuszyk J. Establishment of a cellular model to study TrkC-dependent neuritogenesis. In Vitro Cell Dev Biol Anim. 2015;51:241-8 pubmed 出版商
  1479. Janardhan S, Marks R, Gajewski T. Primary murine CD4+ T cells fail to acquire the ability to produce effector cytokines when active Ras is present during Th1/Th2 differentiation. PLoS ONE. 2014;9:e112831 pubmed 出版商
  1480. Huang L, Carney J, Cardona D, Counter C. Decreased tumorigenesis in mice with a Kras point mutation at C118. Nat Commun. 2014;5:5410 pubmed 出版商
  1481. Strand D, Liang Y, Yang F, Barron D, Ressler S, Schauer I, et al. TGF-β induction of FGF-2 expression in stromal cells requires integrated smad3 and MAPK pathways. Am J Clin Exp Urol. 2014;2:239-48 pubmed
  1482. Blair B, Wu X, Zahari M, Mohseni M, Cidado J, Wong H, et al. A phosphoproteomic screen demonstrates differential dependence on HER3 for MAP kinase pathway activation by distinct PIK3CA mutations. Proteomics. 2015;15:318-26 pubmed 出版商
  1483. Xu J, Huang Z, Lin L, Fu M, Song Y, Shen Y, et al. miRNA-130b is required for the ERK/FOXM1 pathway activation-mediated protective effects of isosorbide dinitrate against mesenchymal stem cell senescence induced by high glucose. Int J Mol Med. 2015;35:59-71 pubmed 出版商
  1484. Hong Y, Kim J, Pectasides E, Fox C, Hong S, Ma Q, et al. Src mutation induces acquired lapatinib resistance in ERBB2-amplified human gastroesophageal adenocarcinoma models. PLoS ONE. 2014;9:e109440 pubmed 出版商
  1485. Tan L, Wang J, Tanizaki J, Huang Z, Aref A, Rusan M, et al. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors. Proc Natl Acad Sci U S A. 2014;111:E4869-77 pubmed 出版商
  1486. Musazzi L, Seguini M, Mallei A, Treccani G, Pelizzari M, Tornese P, et al. Time-dependent activation of MAPK/Erk1/2 and Akt/GSK3 cascades: modulation by agomelatine. BMC Neurosci. 2014;15:119 pubmed 出版商
  1487. Niu G, Ye T, Qin L, Bourbon P, Chang C, Zhao S, et al. Orphan nuclear receptor TR3/Nur77 improves wound healing by upregulating the expression of integrin β4. FASEB J. 2015;29:131-40 pubmed 出版商
  1488. Blaabjerg L, Christensen G, Matsumoto M, van der Meulen T, Huising M, Billestrup N, et al. CRFR1 activation protects against cytokine-induced β-cell death. J Mol Endocrinol. 2014;53:417-27 pubmed 出版商
  1489. Huertas Martínez J, Rello Varona S, Herrero Martín D, Barrau I, García Monclús S, Sáinz Jaspeado M, et al. Caveolin-1 is down-regulated in alveolar rhabdomyosarcomas and negatively regulates tumor growth. Oncotarget. 2014;5:9744-55 pubmed
  1490. Cai X, Dai Z, Reeves R, Caballero Benítez A, Duran K, Delrow J, et al. Autonomous stimulation of cancer cell plasticity by the human NKG2D lymphocyte receptor coexpressed with its ligands on cancer cells. PLoS ONE. 2014;9:e108942 pubmed 出版商
  1491. Rai S, Tanaka H, Suzuki M, Ogoh H, Taniguchi Y, Morita Y, et al. Clathrin assembly protein CALM plays a critical role in KIT signaling by regulating its cellular transport from early to late endosomes in hematopoietic cells. PLoS ONE. 2014;9:e109441 pubmed 出版商
  1492. Gray A, Stephens C, Bigelow R, Coleman D, Cardelli J. The polyphenols (-)-epigallocatechin-3-gallate and luteolin synergistically inhibit TGF-β-induced myofibroblast phenotypes through RhoA and ERK inhibition. PLoS ONE. 2014;9:e109208 pubmed 出版商
  1493. Wang Y, Kuramitsu Y, Tokuda K, Baron B, Kitagawa T, Akada J, et al. Gemcitabine induces poly (ADP-ribose) polymerase-1 (PARP-1) degradation through autophagy in pancreatic cancer. PLoS ONE. 2014;9:e109076 pubmed 出版商
  1494. Kannike K, Sepp M, Zuccato C, Cattaneo E, Timmusk T. Forkhead transcription factor FOXO3a levels are increased in Huntington disease because of overactivated positive autofeedback loop. J Biol Chem. 2014;289:32845-57 pubmed 出版商
  1495. Zhang X, Zhang Q, Tu J, Zhu Y, Yang F, Liu B, et al. Prosurvival NMDA 2A receptor signaling mediates postconditioning neuroprotection in the hippocampus. Hippocampus. 2015;25:286-96 pubmed 出版商
  1496. Zhou X, Tao Y, Wang J, Liang C, Wang J, Li H, et al. Roles of FGF-2 and TGF-beta/FGF-2 on differentiation of human mesenchymal stem cells towards nucleus pulposus-like phenotype. Growth Factors. 2015;33:23-30 pubmed 出版商
  1497. Goldshmit Y, Trangle S, Kloog Y, Pinkas Kramarski R. Interfering with the interaction between ErbB1, nucleolin and Ras as a potential treatment for glioblastoma. Oncotarget. 2014;5:8602-13 pubmed
  1498. Charlaftis N, Suddason T, Wu X, Anwar S, Karin M, Gallagher E. The MEKK1 PHD ubiquitinates TAB1 to activate MAPKs in response to cytokines. EMBO J. 2014;33:2581-96 pubmed 出版商
  1499. Zhu X, Zhao L, Park J, Willingham M, Cheng S. Synergistic signaling of KRAS and thyroid hormone receptor β mutants promotes undifferentiated thyroid cancer through MYC up-regulation. Neoplasia. 2014;16:757-69 pubmed 出版商
  1500. Flinsenberg T, Janssen W, Herczenik E, Boross P, Nederend M, Jongeneel L, et al. A novel FcγRIIa Q27W gene variant is associated with common variable immune deficiency through defective FcγRIIa downstream signaling. Clin Immunol. 2014;155:108-17 pubmed 出版商
  1501. Lin C, Chen P, Hsu L, Kuo D, Chu S, Hsieh Y. Inhibition of the invasion and migration of renal carcinoma 786‑o‑si3 cells in vitro and in vivo by Koelreuteria formosana extract. Mol Med Rep. 2014;10:3334-42 pubmed 出版商
  1502. Bertin S, Lozano Ruiz B, Bachiller V, García Martínez I, Herdman S, Zapater P, et al. Dual-specificity phosphatase 6 regulates CD4+ T-cell functions and restrains spontaneous colitis in IL-10-deficient mice. Mucosal Immunol. 2015;8:505-15 pubmed 出版商
  1503. Dou W, Zhang J, Ren G, Ding L, Sun A, Deng C, et al. Mangiferin attenuates the symptoms of dextran sulfate sodium-induced colitis in mice via NF-κB and MAPK signaling inactivation. Int Immunopharmacol. 2014;23:170-8 pubmed 出版商
  1504. Sackmann Sala L, Chiche A, Mosquera Garrote N, Boutillon F, Cordier C, Pourmir I, et al. Prolactin-induced prostate tumorigenesis links sustained Stat5 signaling with the amplification of basal/stem cells and emergence of putative luminal progenitors. Am J Pathol. 2014;184:3105-19 pubmed 出版商
  1505. Guo W, Liu R, Bhardwaj G, Yang J, Changou C, Ma A, et al. Targeting Btk/Etk of prostate cancer cells by a novel dual inhibitor. Cell Death Dis. 2014;5:e1409 pubmed 出版商
  1506. Pilchova I, Klacanova K, Chomova M, Tatarkova Z, Dobrota D, Racay P. Possible contribution of proteins of Bcl-2 family in neuronal death following transient global brain ischemia. Cell Mol Neurobiol. 2015;35:23-31 pubmed 出版商
  1507. Candelaria N, Addanki S, Zheng J, Nguyen Vu T, Karaboga H, Dey P, et al. Antiproliferative effects and mechanisms of liver X receptor ligands in pancreatic ductal adenocarcinoma cells. PLoS ONE. 2014;9:e106289 pubmed 出版商
  1508. Tang J, Shen L, Yang Q, Zhang C. Overexpression of metadherin mediates metastasis of osteosarcoma by regulating epithelial-mesenchymal transition. Cell Prolif. 2014;47:427-34 pubmed 出版商
  1509. Niu F, Yao H, Zhang W, Sutliff R, Buch S. Tat 101-mediated enhancement of brain pericyte migration involves platelet-derived growth factor subunit B homodimer: implications for human immunodeficiency virus-associated neurocognitive disorders. J Neurosci. 2014;34:11812-25 pubmed 出版商
  1510. Cox S. Intracellular signaling of CTLs. Methods Mol Biol. 2014;1186:49-63 pubmed 出版商
  1511. Ahow M, Min L, Pampillo M, Nash C, Wen J, Soltis K, et al. KISS1R signals independently of Gαq/11 and triggers LH secretion via the β-arrestin pathway in the male mouse. Endocrinology. 2014;155:4433-46 pubmed 出版商
  1512. Sa S, Wong L, McCloskey K. Combinatorial fibronectin and laminin signaling promote highly efficient cardiac differentiation of human embryonic stem cells. Biores Open Access. 2014;3:150-61 pubmed 出版商
  1513. Han P, Zhou X, Chang N, Xiao C, Yan S, Ren H, et al. Hydrogen peroxide primes heart regeneration with a derepression mechanism. Cell Res. 2014;24:1091-107 pubmed 出版商
  1514. Tang S, Chen T, Yu Z, Zhu X, Yang M, Xie B, et al. RasGRP3 limits Toll-like receptor-triggered inflammatory response in macrophages by activating Rap1 small GTPase. Nat Commun. 2014;5:4657 pubmed 出版商
  1515. Yu B, Chang J, Liu Y, Li J, Kevork K, Al Hezaimi K, et al. Wnt4 signaling prevents skeletal aging and inflammation by inhibiting nuclear factor-?B. Nat Med. 2014;20:1009-17 pubmed 出版商
  1516. Li L, Wu P, Lee J, Li P, Hsieh W, Ho C, et al. Hinokitiol induces DNA damage and autophagy followed by cell cycle arrest and senescence in gefitinib-resistant lung adenocarcinoma cells. PLoS ONE. 2014;9:e104203 pubmed 出版商
  1517. Wang F, Cai M, Mai S, Chen J, Bai H, Li Y, et al. Ablation of EIF5A2 induces tumor vasculature remodeling and improves tumor response to chemotherapy via regulation of matrix metalloproteinase 2 expression. Oncotarget. 2014;5:6716-33 pubmed
  1518. Zhang S, Ren M, Zeng X, He P, Ma X, Qiao S. Leucine stimulates ASCT2 amino acid transporter expression in porcine jejunal epithelial cell line (IPEC-J2) through PI3K/Akt/mTOR and ERK signaling pathways. Amino Acids. 2014;46:2633-42 pubmed 出版商
  1519. Watanabe T, Nakamura S, Ono T, Ui S, Yagi S, Kagawa H, et al. Pyrrolidinium fullerene induces apoptosis by activation of procaspase-9 via suppression of Akt in primary effusion lymphoma. Biochem Biophys Res Commun. 2014;451:93-100 pubmed 出版商
  1520. Castorina A, Giunta S. Mucin 1 (MUC1) signalling contributes to increase the resistance to cell death in human bronchial epithelial cells exposed to nickel acetate. Biometals. 2014;27:1149-58 pubmed 出版商
  1521. Wu T, Ye Y, Min S, Zhu J, Khobahy E, Zhou J, et al. Prevention of murine lupus nephritis by targeting multiple signaling axes and oxidative stress using a synthetic triterpenoid. Arthritis Rheumatol. 2014;66:3129-39 pubmed 出版商
  1522. Zeldich E, Chen C, Colvin T, Bove Fenderson E, Liang J, Tucker Zhou T, et al. The neuroprotective effect of Klotho is mediated via regulation of members of the redox system. J Biol Chem. 2014;289:24700-15 pubmed 出版商
  1523. Kugel C, Hartsough E, Davies M, Setiady Y, Aplin A. Function-blocking ERBB3 antibody inhibits the adaptive response to RAF inhibitor. Cancer Res. 2014;74:4122-32 pubmed 出版商
  1524. Yalcin A, Clem B, Imbert Fernandez Y, Ozcan S, Peker S, O NEAL J, et al. 6-Phosphofructo-2-kinase (PFKFB3) promotes cell cycle progression and suppresses apoptosis via Cdk1-mediated phosphorylation of p27. Cell Death Dis. 2014;5:e1337 pubmed 出版商
  1525. Moorwood C, Philippou A, Spinazzola J, Keyser B, Macarak E, Barton E. Absence of ?-sarcoglycan alters the response of p70S6 kinase to mechanical perturbation in murine skeletal muscle. Skelet Muscle. 2014;4:13 pubmed 出版商
  1526. Kapur N, Qiao X, Paruchuri V, Mackey E, Daly G, Ughreja K, et al. Reducing endoglin activity limits calcineurin and TRPC-6 expression and improves survival in a mouse model of right ventricular pressure overload. J Am Heart Assoc. 2014;3: pubmed 出版商
  1527. Czaplinska D, Turczyk L, Grudowska A, Mieszkowska M, Lipinska A, Skladanowski A, et al. Phosphorylation of RSK2 at Tyr529 by FGFR2-p38 enhances human mammary epithelial cells migration. Biochim Biophys Acta. 2014;1843:2461-70 pubmed 出版商
  1528. Wang H, Leinwand L, Anseth K. Roles of transforming growth factor-?1 and OB-cadherin in porcine cardiac valve myofibroblast differentiation. FASEB J. 2014;28:4551-62 pubmed 出版商
  1529. Hu J, Cheng Y, Li Y, Jin Z, Pan Y, Liu G, et al. microRNA-128 plays a critical role in human non-small cell lung cancer tumourigenesis, angiogenesis and lymphangiogenesis by directly targeting vascular endothelial growth factor-C. Eur J Cancer. 2014;50:2336-50 pubmed 出版商
  1530. Ribeiro M, Rosenstock T, Oliveira A, Oliveira C, Rego A. Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington's disease knock-in striatal cells. Free Radic Biol Med. 2014;74:129-44 pubmed 出版商
  1531. Chondrogiannis G, Kastamoulas M, Kanavaros P, Vartholomatos G, Bai M, Baltogiannis D, et al. Cytokine effects on cell viability and death of prostate carcinoma cells. Biomed Res Int. 2014;2014:536049 pubmed 出版商
  1532. Piazzolla D, Palla A, Pantoja C, Canamero M, de Castro I, Ortega S, et al. Lineage-restricted function of the pluripotency factor NANOG in stratified epithelia. Nat Commun. 2014;5:4226 pubmed 出版商
  1533. Liu J, Ke F, Xu Z, Liu Z, Zhang L, Yan S, et al. CCR6 is a prognostic marker for overall survival in patients with colorectal cancer, and its overexpression enhances metastasis in vivo. PLoS ONE. 2014;9:e101137 pubmed 出版商
  1534. Martínez Pinilla E, Reyes Resina I, Oñatibia Astibia A, Zamarbide M, Ricobaraza A, Navarro G, et al. CB1 and GPR55 receptors are co-expressed and form heteromers in rat and monkey striatum. Exp Neurol. 2014;261:44-52 pubmed 出版商
  1535. Chang P, Hung C, Wang S, Tsai P, Shih Y, Chen L, et al. Identification and characterization of two novel spliced genes located in the orf47-orf46-orf45 gene locus of Kaposi's sarcoma-associated herpesvirus. J Virol. 2014;88:10092-109 pubmed 出版商
  1536. Rathore K, Cekanova M. Animal model of naturally occurring bladder cancer: characterization of four new canine transitional cell carcinoma cell lines. BMC Cancer. 2014;14:465 pubmed 出版商
  1537. Tabor V, Bocci M, Alikhani N, Kuiper R, Larsson L. MYC synergizes with activated BRAFV600E in mouse lung tumor development by suppressing senescence. Cancer Res. 2014;74:4222-9 pubmed 出版商
  1538. Ramos A, Rodríguez Seoane C, Rosa I, Trossbach S, Ortega Alonso A, Tomppo L, et al. Neuropeptide precursor VGF is genetically associated with social anhedonia and underrepresented in the brain of major mental illness: its downregulation by DISC1. Hum Mol Genet. 2014;23:5859-65 pubmed 出版商
  1539. Francis V, Abera A, Matjila M, Millar R, Katz A. Kisspeptin regulation of genes involved in cell invasion and angiogenesis in first trimester human trophoblast cells. PLoS ONE. 2014;9:e99680 pubmed 出版商
  1540. Fischer A, Zelinka C, Gallina D, Scott M, Todd L. Reactive microglia and macrophage facilitate the formation of Müller glia-derived retinal progenitors. Glia. 2014;62:1608-28 pubmed 出版商
  1541. Pysz M, Hao F, Hizli A, Lum M, Swetzig W, Black A, et al. Differential regulation of cyclin D1 expression by protein kinase C ? and ? signaling in intestinal epithelial cells. J Biol Chem. 2014;289:22268-83 pubmed 出版商
  1542. Benzina S, Harquail J, Jean S, Beauregard A, Colquhoun C, Carroll M, et al. Deoxypodophyllotoxin isolated from Juniperus communis induces apoptosis in breast cancer cells. Anticancer Agents Med Chem. 2015;15:79-88 pubmed
  1543. Ishikawa D, Shimada M, Utsunomiya T, Morine Y, Imura S, Ikemoto T, et al. Effect of Twist and Bmi1 on intraductal papillary mucinous neoplasm of the pancreas. J Gastroenterol Hepatol. 2014;29:2032-7 pubmed 出版商
  1544. García Hernández V, Flores Maldonado C, Rincon Heredia R, Verdejo Torres O, Bonilla Delgado J, Meneses Morales I, et al. EGF regulates claudin-2 and -4 expression through Src and STAT3 in MDCK cells. J Cell Physiol. 2015;230:105-15 pubmed 出版商
  1545. Wang J, Mikse O, Liao R, Li Y, Tan L, Jänne P, et al. Ligand-associated ERBB2/3 activation confers acquired resistance to FGFR inhibition in FGFR3-dependent cancer cells. Oncogene. 2015;34:2167-77 pubmed 出版商
  1546. Au Yeung B, Melichar H, Ross J, Cheng D, Zikherman J, Shokat K, et al. Quantitative and temporal requirements revealed for Zap70 catalytic activity during T cell development. Nat Immunol. 2014;15:687-94 pubmed 出版商
  1547. Zielniok K, Motyl T, Gajewska M. Functional interactions between 17 ? -estradiol and progesterone regulate autophagy during acini formation by bovine mammary epithelial cells in 3D cultures. Biomed Res Int. 2014;2014:382653 pubmed 出版商
  1548. Darcy M, Trouche S, Jin S, Feig L. Ras-GRF2 mediates long-term potentiation, survival, and response to an enriched environment of newborn neurons in the hippocampus. Hippocampus. 2014;24:1317-29 pubmed 出版商
  1549. Mena H, Lokajczyk A, Dizier B, Strier S, Voto L, Boisson Vidal C, et al. Acidic preconditioning improves the proangiogenic responses of endothelial colony forming cells. Angiogenesis. 2014;17:867-79 pubmed 出版商
  1550. Menaouar A, Florian M, Wang D, Danalache B, Jankowski M, Gutkowska J. Anti-hypertrophic effects of oxytocin in rat ventricular myocytes. Int J Cardiol. 2014;175:38-49 pubmed 出版商
  1551. Duitman J, Ruela de Sousa R, Shi K, de Boer O, Borensztajn K, Florquin S, et al. Protease activated receptor-1 deficiency diminishes bleomycin-induced skin fibrosis. Mol Med. 2014;20:410-6 pubmed 出版商
  1552. Attarha S, Andersson S, Mints M, Souchelnytskyi S. Mammalian sterile-like 1 kinase inhibits TGF? and EGF?dependent regulation of invasiveness, migration and proliferation of HEC-1-A endometrial cancer cells. Int J Oncol. 2014;45:853-60 pubmed 出版商
  1553. Yi X, Li X, Zhou Y, Ren S, Wan W, Feng G, et al. Hepatocyte growth factor regulates the TGF-?1-induced proliferation, differentiation and secretory function of cardiac fibroblasts. Int J Mol Med. 2014;34:381-90 pubmed 出版商
  1554. Shaiken T, Opekun A. Dissecting the cell to nucleus, perinucleus and cytosol. Sci Rep. 2014;4:4923 pubmed 出版商
  1555. Kardos G, Dai M, Robertson G. Growth inhibitory effects of large subunit ribosomal proteins in melanoma. Pigment Cell Melanoma Res. 2014;27:801-12 pubmed 出版商
  1556. Jiang Y, Kou Z, Wu T, An W, Zhou R, Wang H, et al. Xist deficiency and disorders of X-inactivation in rabbit embryonic stem cells can be rescued by transcription-factor-mediated conversion. Stem Cells Dev. 2014;23:2283-96 pubmed 出版商
  1557. Cazanave S, Wang X, Zhou H, Rahmani M, Grant S, Durrant D, et al. Degradation of Keap1 activates BH3-only proteins Bim and PUMA during hepatocyte lipoapoptosis. Cell Death Differ. 2014;21:1303-12 pubmed 出版商
  1558. Doughton G, Wei J, Tapon N, Welham M, Chalmers A. Formation of a polarised primitive endoderm layer in embryoid bodies requires fgfr/erk signalling. PLoS ONE. 2014;9:e95434 pubmed 出版商
  1559. Asp N, Pust S, Sandvig K. Flotillin depletion affects ErbB protein levels in different human breast cancer cells. Biochim Biophys Acta. 2014;1843:1987-96 pubmed 出版商
  1560. Ost M, Werner F, Dokas J, Klaus S, Voigt A. Activation of AMPK?2 is not crucial for mitochondrial uncoupling-induced metabolic effects but required to maintain skeletal muscle integrity. PLoS ONE. 2014;9:e94689 pubmed 出版商
  1561. Patki G, Solanki N, Atrooz F, Ansari A, Allam F, Jannise B, et al. Novel mechanistic insights into treadmill exercise based rescue of social defeat-induced anxiety-like behavior and memory impairment in rats. Physiol Behav. 2014;130:135-44 pubmed 出版商
  1562. Ota K, Liu R, Voleti B, Maldonado Avilés J, Duric V, Iwata M, et al. REDD1 is essential for stress-induced synaptic loss and depressive behavior. Nat Med. 2014;20:531-5 pubmed 出版商
  1563. Kerdivel G, Boudot A, Habauzit D, Percevault F, Demay F, Pakdel F, et al. Activation of the MKL1/actin signaling pathway induces hormonal escape in estrogen-responsive breast cancer cell lines. Mol Cell Endocrinol. 2014;390:34-44 pubmed 出版商
  1564. Gürtler C, Carty M, Kearney J, Schattgen S, Ding A, Fitzgerald K, et al. SARM regulates CCL5 production in macrophages by promoting the recruitment of transcription factors and RNA polymerase II to the Ccl5 promoter. J Immunol. 2014;192:4821-32 pubmed 出版商
  1565. Chen P, Qin L, Zhuang Z, Tellides G, Lax I, Schlessinger J, et al. The docking protein FRS2? is a critical regulator of VEGF receptors signaling. Proc Natl Acad Sci U S A. 2014;111:5514-9 pubmed 出版商
  1566. Lamprecht M, Morrison B. GPR30 activation is neither necessary nor sufficient for acute neuroprotection by 17?-estradiol after an ischemic injury in organotypic hippocampal slice cultures. Brain Res. 2014;1563:131-7 pubmed 出版商
  1567. Guerra M, Wauson E, McGlynn K, Cobb M. Muscarinic control of MIN6 pancreatic ? cells is enhanced by impaired amino acid signaling. J Biol Chem. 2014;289:14370-9 pubmed 出版商
  1568. Pérez Quintero L, Roncagalli R, Guo H, Latour S, Davidson D, Veillette A. EAT-2, a SAP-like adaptor, controls NK cell activation through phospholipase C?, Ca++, and Erk, leading to granule polarization. J Exp Med. 2014;211:727-42 pubmed 出版商
  1569. Bölck B, Ibrahim M, Steinritz D, Morguet C, Dühr S, Suhr F, et al. Detection of key enzymes, free radical reaction products and activated signaling molecules as biomarkers of cell damage induced by benzo[a]pyrene in human keratinocytes. Toxicol In Vitro. 2014;28:875-84 pubmed 出版商
  1570. Maier P, Zemoura K, Acu a M, Y venes G, Zeilhofer H, Benke D. Ischemia-like oxygen and glucose deprivation mediates down-regulation of cell surface ?-aminobutyric acidB receptors via the endoplasmic reticulum (ER) stress-induced transcription factor CCAAT/enhancer-binding protein (C/EBP)-homologous protein (CH. J Biol Chem. 2014;289:12896-907 pubmed 出版商
  1571. Anchan D, Clark S, Pollard K, Vasudevan N. GPR30 activation decreases anxiety in the open field test but not in the elevated plus maze test in female mice. Brain Behav. 2014;4:51-9 pubmed 出版商
  1572. Singel S, Batten K, Cornelius C, Jia G, Fasciani G, Barron S, et al. Receptor-interacting protein kinase 2 promotes triple-negative breast cancer cell migration and invasion via activation of nuclear factor-kappaB and c-Jun N-terminal kinase pathways. Breast Cancer Res. 2014;16:R28 pubmed 出版商
  1573. Pourreyron C, Chen M, McGrath J, Salas Alanis J, South A, Leigh I. High levels of type VII collagen expression in recessive dystrophic epidermolysis bullosa cutaneous squamous cell carcinoma keratinocytes increases PI3K and MAPK signalling, cell migration and invasion. Br J Dermatol. 2014;170:1256-65 pubmed 出版商
  1574. Tsai Y, Wang C, Leung P, Lin K, Chio C, Hu C, et al. Extracellular signal-regulated kinase 1/2 is involved in a tamoxifen neuroprotective effect in a lateral fluid percussion injury rat model. J Surg Res. 2014;189:106-16 pubmed 出版商
  1575. Wei N, Chu E, Wipf P, Schmitz J. Protein kinase d as a potential chemotherapeutic target for colorectal cancer. Mol Cancer Ther. 2014;13:1130-41 pubmed 出版商
  1576. Zhang L, Castanaro C, Luan B, Yang K, Fan L, Fairhurst J, et al. ERBB3/HER2 signaling promotes resistance to EGFR blockade in head and neck and colorectal cancer models. Mol Cancer Ther. 2014;13:1345-55 pubmed 出版商
  1577. Yu P, Laird A, Du X, Wu J, Won K, Yamaguchi K, et al. Characterization of the activity of the PI3K/mTOR inhibitor XL765 (SAR245409) in tumor models with diverse genetic alterations affecting the PI3K pathway. Mol Cancer Ther. 2014;13:1078-91 pubmed 出版商
  1578. Wang Q, Shen B, Chen L, Zheng P, Feng H, Hao Q, et al. Extracellular calumenin suppresses ERK1/2 signaling and cell migration by protecting fibulin-1 from MMP-13-mediated proteolysis. Oncogene. 2015;34:1006-18 pubmed 出版商
  1579. Chapnick D, Liu X. Leader cell positioning drives wound-directed collective migration in TGF?-stimulated epithelial sheets. Mol Biol Cell. 2014;25:1586-93 pubmed 出版商
  1580. Waitkus M, Chandrasekharan U, Willard B, Tee T, Hsieh J, Przybycin C, et al. Signal integration and gene induction by a functionally distinct STAT3 phosphoform. Mol Cell Biol. 2014;34:1800-11 pubmed 出版商
  1581. Bokobza S, Jiang Y, Weber A, Devery A, Ryan A. Short-course treatment with gefitinib enhances curative potential of radiation therapy in a mouse model of human non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2014;88:947-54 pubmed 出版商
  1582. Cheng C, Lin J, Su S, Tang N, Kao S, Hsieh C. Electroacupuncture-like stimulation at Baihui and Dazhui acupoints exerts neuroprotective effects through activation of the brain-derived neurotrophic factor-mediated MEK1/2/ERK1/2/p90RSK/bad signaling pathway in mild transient focal cerebral ischemi. BMC Complement Altern Med. 2014;14:92 pubmed 出版商
  1583. Fernandez Estevez M, Casarejos M, Lopez Sendon J, Garcia Caldentey J, Ruiz C, Gomez A, et al. Trehalose reverses cell malfunction in fibroblasts from normal and Huntington's disease patients caused by proteosome inhibition. PLoS ONE. 2014;9:e90202 pubmed 出版商
  1584. Okada T, Nitta T, Kaji K, Takashima A, Oda H, Tamehiro N, et al. Differential function of Themis CABIT domains during T cell development. PLoS ONE. 2014;9:e89115 pubmed 出版商
  1585. Son J, Jeong H, Kim H, Kim Y, Lee E, Lee H, et al. Pelargonidin attenuates PDGF-BB-induced aortic smooth muscle cell proliferation and migration by direct inhibition of focal adhesion kinase. Biochem Pharmacol. 2014;89:236-45 pubmed 出版商
  1586. Ihunnah C, Wada T, Philips B, Ravuri S, Gibbs R, Kirisci L, et al. Estrogen sulfotransferase/SULT1E1 promotes human adipogenesis. Mol Cell Biol. 2014;34:1682-94 pubmed 出版商
  1587. Cheng J, Fan Y, Xu X, Dou J, Tang Y, Zhong X, et al. A small-molecule inhibitor of UBE2N induces neuroblastoma cell death via activation of p53 and JNK pathways. Cell Death Dis. 2014;5:e1079 pubmed 出版商
  1588. Okada N, Lin C, Ribeiro M, Biton A, Lai G, He X, et al. A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev. 2014;28:438-50 pubmed 出版商
  1589. Wang Y, Kuramitsu Y, Tokuda K, Okada F, Baron B, Akada J, et al. Proteomic analysis indicates that overexpression and nuclear translocation of lactoylglutathione lyase (GLO1) is associated with tumor progression in murine fibrosarcoma. Electrophoresis. 2014;35:2195-202 pubmed 出版商
  1590. Feng C, Zhang Y, Yin J, Li J, Abounader R, Zuo Z. Regulatory factor X1 is a new tumor suppressive transcription factor that acts via direct downregulation of CD44 in glioblastoma. Neuro Oncol. 2014;16:1078-85 pubmed 出版商
  1591. Milara J, Peiró T, Serrano A, Guijarro R, Zaragozá C, Tenor H, et al. Roflumilast N-oxide inhibits bronchial epithelial to mesenchymal transition induced by cigarette smoke in smokers with COPD. Pulm Pharmacol Ther. 2014;28:138-48 pubmed 出版商
  1592. Kim K, Kim G, Kim J, Yun H, Lim S, Choi H. Interleukin-22 promotes epithelial cell transformation and breast tumorigenesis via MAP3K8 activation. Carcinogenesis. 2014;35:1352-61 pubmed 出版商
  1593. Park E, Kim B, Lee E, Chang E, Kim D, Choi S, et al. Targeting of receptor for advanced glycation end products suppresses cyst growth in polycystic kidney disease. J Biol Chem. 2014;289:9254-62 pubmed 出版商
  1594. Alkam T, Chebolu S, Darmani N. Cyclophosphamide causes activation of protein kinase A (PKA) in the brainstem of vomiting least shrews (Cryptotis parva). Eur J Pharmacol. 2014;722:156-64 pubmed
  1595. Berkenkamp B, Susnik N, Baisantry A, Kuznetsova I, Jacobi C, Sörensen Zender I, et al. In vivo and in vitro analysis of age-associated changes and somatic cellular senescence in renal epithelial cells. PLoS ONE. 2014;9:e88071 pubmed 出版商
  1596. Madak Erdogan Z, Ventrella R, Petry L, Katzenellenbogen B. Novel roles for ERK5 and cofilin as critical mediators linking ER?-driven transcription, actin reorganization, and invasiveness in breast cancer. Mol Cancer Res. 2014;12:714-27 pubmed 出版商
  1597. Zhang X, Zhang H, Shao H, Xue Q, Yu B. ERK MAP kinase activation in spinal cord regulates phosphorylation of Cdk5 at serine 159 and contributes to peripheral inflammation induced pain/hypersensitivity. PLoS ONE. 2014;9:e87788 pubmed 出版商
  1598. Tchetchelnitski V, Van Den Eijnden M, Schmidt F, Stoker A. Developmental co-expression and functional redundancy of tyrosine phosphatases with neurotrophin receptors in developing sensory neurons. Int J Dev Neurosci. 2014;34:48-59 pubmed 出版商
  1599. Lee M, Smith S, Murray S, Pham L, Minoo P, Nielsen H. Dihydrotestosterone potentiates EGF-induced ERK activation by inducing SRC in fetal lung fibroblasts. Am J Respir Cell Mol Biol. 2014;51:114-24 pubmed 出版商
  1600. Jin Y, Wi H, Choi M, Hong S, Bae Y. Regulation of anti-inflammatory cytokines IL-10 and TGF-? in mouse dendritic cells through treatment with Clonorchis sinensis crude antigen. Exp Mol Med. 2014;46:e74 pubmed 出版商
  1601. Gámez M, Calvo M, Selgas M, García M, Erler K, Böhm V, et al. Effect of E-beam treatment on the chemistry and on the antioxidant activity of lycopene from dry tomato peel and tomato powder. J Agric Food Chem. 2014;62:1557-63 pubmed 出版商
  1602. Yim D, Ghosh S, Guy G, Virshup D. Casein kinase 1 regulates Sprouty2 in FGF-ERK signaling. Oncogene. 2015;34:474-84 pubmed 出版商
  1603. Joannes A, Grelet S, Duca L, Gilles C, Kileztky C, Dalstein V, et al. Fhit regulates EMT targets through an EGFR/Src/ERK/Slug signaling axis in human bronchial cells. Mol Cancer Res. 2014;12:775-83 pubmed 出版商
  1604. Naudin C, Sirvent A, Leroy C, Larive R, Simon V, Pannequin J, et al. SLAP displays tumour suppressor functions in colorectal cancer via destabilization of the SRC substrate EPHA2. Nat Commun. 2014;5:3159 pubmed 出版商
  1605. Valdez Magaña G, Rodriguez A, Zhang H, Webb R, Alberio R. Paracrine effects of embryo-derived FGF4 and BMP4 during pig trophoblast elongation. Dev Biol. 2014;387:15-27 pubmed 出版商
  1606. Sperrhacke M, Fischer J, Wu Z, Klünder S, Sedlacek R, Schroeder J, et al. SPINK9 stimulates metalloprotease/EGFR-dependent keratinocyte migration via purinergic receptor activation. J Invest Dermatol. 2014;134:1645-1654 pubmed 出版商
  1607. Turner M, Cronin J, Healey G, Sheldon I. Epithelial and stromal cells of bovine endometrium have roles in innate immunity and initiate inflammatory responses to bacterial lipopeptides in vitro via Toll-like receptors TLR2, TLR1, and TLR6. Endocrinology. 2014;155:1453-65 pubmed 出版商
  1608. Zemljic Harpf A, Godoy J, Platoshyn O, Asfaw E, Busija A, Domenighetti A, et al. Vinculin directly binds zonula occludens-1 and is essential for stabilizing connexin-43-containing gap junctions in cardiac myocytes. J Cell Sci. 2014;127:1104-16 pubmed 出版商
  1609. Liu L, Wen Q, Gong R, Gilles L, Stankiewicz M, Guo M, et al. PSTPIP2 dysregulation contributes to aberrant terminal differentiation in GATA-1-deficient megakaryocytes by activating LYN. Cell Death Dis. 2014;5:e988 pubmed 出版商
  1610. Kloog Y, Mor A. Cytotoxic-T-lymphocyte antigen 4 receptor signaling for lymphocyte adhesion is mediated by C3G and Rap1. Mol Cell Biol. 2014;34:978-88 pubmed 出版商
  1611. Murcia Belmonte V, Medina Rodríguez E, Bribian A, De Castro F, Esteban P. ERK1/2 signaling is essential for the chemoattraction exerted by human FGF2 and human anosmin-1 on newborn rat and mouse OPCs via FGFR1. Glia. 2014;62:374-86 pubmed 出版商
  1612. Bist P, Dikshit N, Koh T, Mortellaro A, Tan T, Sukumaran B. The Nod1, Nod2, and Rip2 axis contributes to host immune defense against intracellular Acinetobacter baumannii infection. Infect Immun. 2014;82:1112-22 pubmed 出版商
  1613. Yabuta C, Yano F, Fujii A, Shearer T, Azuma M. Galectin-3 enhances epithelial cell adhesion and wound healing in rat cornea. Ophthalmic Res. 2014;51:96-103 pubmed 出版商
  1614. Wang Z, Ren Z, Hu Z, Hu X, Zhang H, Wu H, et al. Angiotensin-II induces phosphorylation of ERK1/2 and promotes aortic adventitial fibroblasts differentiating into myofibroblasts during aortic dissection formation. J Mol Histol. 2014;45:401-12 pubmed 出版商
  1615. Bohonowych J, Hance M, Nolan K, DEFEE M, Parsons C, Isaacs J. Extracellular Hsp90 mediates an NF-?B dependent inflammatory stromal program: implications for the prostate tumor microenvironment. Prostate. 2014;74:395-407 pubmed 出版商
  1616. Zhan Z, Xie X, Cao H, Zhou X, Zhang X, Fan H, et al. Autophagy facilitates TLR4- and TLR3-triggered migration and invasion of lung cancer cells through the promotion of TRAF6 ubiquitination. Autophagy. 2014;10:257-68 pubmed 出版商
  1617. Sanchez Roman I, Gomez A, Naudi A, Jove M, Gomez J, Lopez Torres M, et al. Independent and additive effects of atenolol and methionine restriction on lowering rat heart mitochondria oxidative stress. J Bioenerg Biomembr. 2014;46:159-72 pubmed 出版商
  1618. Nakayama A, Nakayama M, Turner C, Höing S, Lepore J, Adams R. Ephrin-B2 controls PDGFR? internalization and signaling. Genes Dev. 2013;27:2576-89 pubmed 出版商
  1619. Xu C, Chen H, Wang X, Gao J, Che Y, Li Y, et al. S100A14, a member of the EF-hand calcium-binding proteins, is overexpressed in breast cancer and acts as a modulator of HER2 signaling. J Biol Chem. 2014;289:827-37 pubmed 出版商
  1620. Choi J, Landrette S, Wang T, Evans P, Bacchiocchi A, Bjornson R, et al. Identification of PLX4032-resistance mechanisms and implications for novel RAF inhibitors. Pigment Cell Melanoma Res. 2014;27:253-62 pubmed 出版商
  1621. Zhang Y, Zhang X, Gao L, Liu Y, Jiang D, Chen K, et al. Growth/differentiation factor 1 alleviates pressure overload-induced cardiac hypertrophy and dysfunction. Biochim Biophys Acta. 2014;1842:232-44 pubmed 出版商
  1622. Wu J, Akkuratov E, Bai Y, Gaskill C, Askari A, Liu L. Cell signaling associated with Na(+)/K(+)-ATPase: activation of phosphatidylinositide 3-kinase IA/Akt by ouabain is independent of Src. Biochemistry. 2013;52:9059-67 pubmed 出版商
  1623. Wang J, Chen J, Miller D, Li W. Synergistic combination of novel tubulin inhibitor ABI-274 and vemurafenib overcome vemurafenib acquired resistance in BRAFV600E melanoma. Mol Cancer Ther. 2014;13:16-26 pubmed 出版商
  1624. Castorina A, Scuderi S, D Amico A, Drago F, D Agata V. PACAP and VIP increase the expression of myelin-related proteins in rat schwannoma cells: involvement of PAC1/VPAC2 receptor-mediated activation of PI3K/Akt signaling pathways. Exp Cell Res. 2014;322:108-21 pubmed 出版商
  1625. Zaganjor E, Osborne J, Weil L, Díaz Martínez L, Gonzales J, Singel S, et al. Ras regulates kinesin 13 family members to control cell migration pathways in transformed human bronchial epithelial cells. Oncogene. 2014;33:5457-66 pubmed 出版商
  1626. Wu H, Balsbaugh J, Chandler H, Georgilis A, Zullow H, Shabanowitz J, et al. Mitogen-activated protein kinase signaling mediates phosphorylation of polycomb ortholog Cbx7. J Biol Chem. 2013;288:36398-408 pubmed 出版商
  1627. Chen Z, Morris D, Jiang L, Liu Y, Rui L. SH2B1 in ?-cells regulates glucose metabolism by promoting ?-cell survival and islet expansion. Diabetes. 2014;63:585-95 pubmed 出版商
  1628. Udagawa T, Farny N, Jakovcevski M, Kaphzan H, Alarcon J, Anilkumar S, et al. Genetic and acute CPEB1 depletion ameliorate fragile X pathophysiology. Nat Med. 2013;19:1473-7 pubmed 出版商
  1629. Lee J, Park J, Kwon O, Kim H, Fornace A, Cha H. Off-target response of a Wip1 chemical inhibitor in skin keratinocytes. J Dermatol Sci. 2014;73:125-34 pubmed 出版商
  1630. Evans C, Cook S, Coleman M, Gilley J. MEK inhibitor U0126 reverses protection of axons from Wallerian degeneration independently of MEK-ERK signaling. PLoS ONE. 2013;8:e76505 pubmed 出版商
  1631. Reese C, Dyer S, Perry B, Bonner M, Oates J, Hofbauer A, et al. Differential regulation of cell functions by CSD peptide subdomains. Respir Res. 2013;14:90 pubmed 出版商
  1632. Philip B, Roland C, Daniluk J, Liu Y, Chatterjee D, Gomez S, et al. A high-fat diet activates oncogenic Kras and COX2 to induce development of pancreatic ductal adenocarcinoma in mice. Gastroenterology. 2013;145:1449-58 pubmed 出版商
  1633. Lu J, Chang Y, Wang C, Lin Y, Lin C, Wu Z. Trichostatin A modulates thiazolidinedione-mediated suppression of tumor necrosis factor ?-induced lipolysis in 3T3-L1 adipocytes. PLoS ONE. 2013;8:e71517 pubmed 出版商
  1634. O Brien M, Carbin S, Morrison J, Smith T. Decreased myometrial p160 ROCK-1 expression in obese women at term pregnancy. Reprod Biol Endocrinol. 2013;11:79 pubmed 出版商
  1635. Kreßner C, Nollau P, Grosse R, Brandt D. Functional interaction of SCAI with the SWI/SNF complex for transcription and tumor cell invasion. PLoS ONE. 2013;8:e69947 pubmed 出版商
  1636. Kucherlapati M, Esfahani S, Habibollahi P, Wang J, Still E, Bronson R, et al. Genotype directed therapy in murine mismatch repair deficient tumors. PLoS ONE. 2013;8:e68817 pubmed 出版商
  1637. Bittner S, Ruck T, Schuhmann M, Herrmann A, Moha Ou Maati H, Bobak N, et al. Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med. 2013;19:1161-5 pubmed 出版商
  1638. Chai Z, Dai A, Tu Y, Li J, Wu T, Wang Y, et al. Genetic deletion of cell division autoantigen 1 retards diabetes-associated renal injury. J Am Soc Nephrol. 2013;24:1782-92 pubmed 出版商
  1639. Yu P, Yan M, Lai H, Huang R, Chou Y, Lin W, et al. Downregulation of miR-29 contributes to cisplatin resistance of ovarian cancer cells. Int J Cancer. 2014;134:542-51 pubmed 出版商
  1640. Li Y, Takahashi M, Stork P. Ras-mutant cancer cells display B-Raf binding to Ras that activates extracellular signal-regulated kinase and is inhibited by protein kinase A phosphorylation. J Biol Chem. 2013;288:27646-57 pubmed 出版商
  1641. Mao X, Hütt Cabezas M, Orr B, Weingart M, Taylor I, Rajan A, et al. LIN28A facilitates the transformation of human neural stem cells and promotes glioblastoma tumorigenesis through a pro-invasive genetic program. Oncotarget. 2013;4:1050-64 pubmed
  1642. Wu J, Huang Z, Ren J, Zhang Z, He P, Li Y, et al. Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Res. 2013;23:994-1006 pubmed 出版商
  1643. Geissler A, Haun F, Frank D, Wieland K, Simon M, Idzko M, et al. Apoptosis induced by the fungal pathogen gliotoxin requires a triple phosphorylation of Bim by JNK. Cell Death Differ. 2013;20:1317-29 pubmed 出版商
  1644. Beckham T, Cheng J, Lu P, Shao Y, Troyer D, Lance R, et al. Acid ceramidase induces sphingosine kinase 1/S1P receptor 2-mediated activation of oncogenic Akt signaling. Oncogenesis. 2013;2:e49 pubmed 出版商
  1645. Henderson Y, Toro Serra R, Chen Y, Ryu J, Frederick M, Zhou G, et al. Src inhibitors in suppression of papillary thyroid carcinoma growth. Head Neck. 2014;36:375-84 pubmed 出版商
  1646. Zhou X, Wang H, Burg M, Ferraris J. High NaCl-induced inhibition of PTG contributes to activation of NFAT5 through attenuation of the negative effect of SHP-1. Am J Physiol Renal Physiol. 2013;305:F362-9 pubmed 出版商
  1647. Ahnstedt H, Cao L, Krause D, Warfvinge K, Saveland H, Nilsson O, et al. Male-female differences in upregulation of vasoconstrictor responses in human cerebral arteries. PLoS ONE. 2013;8:e62698 pubmed 出版商
  1648. Tokami H, Ago T, Sugimori H, Kuroda J, Awano H, Suzuki K, et al. RANTES has a potential to play a neuroprotective role in an autocrine/paracrine manner after ischemic stroke. Brain Res. 2013;1517:122-32 pubmed 出版商
  1649. Chu I, Lai W, Aprelikova O, El Touny L, Kouros Mehr H, Green J. Expression of GATA3 in MDA-MB-231 triple-negative breast cancer cells induces a growth inhibitory response to TGFß. PLoS ONE. 2013;8:e61125 pubmed 出版商
  1650. Abbonante V, Gruppi C, Rubel D, Gross O, Moratti R, Balduini A. Discoidin domain receptor 1 protein is a novel modulator of megakaryocyte-collagen interactions. J Biol Chem. 2013;288:16738-46 pubmed 出版商
  1651. Caldarelli A, Muller J, Paskowski Rogacz M, Herrmann K, Bauer R, Koch S, et al. A genome-wide RNAi screen identifies proteins modulating aberrant FLT3-ITD signaling. Leukemia. 2013;27:2301-10 pubmed 出版商
  1652. Mehmood T, Schneider A, Pannetier S, Hanauer A. Rsk2 Knockdown in PC12 Cells Results in Sp1 Dependent Increased Expression of the Gria2 Gene, Encoding the AMPA Receptor Subunit GluR2. Int J Mol Sci. 2013;14:3358-75 pubmed 出版商
  1653. Lin S, Hoffmann K, Xiao Z, Jin N, Galli U, Mohr E, et al. MEK inhibition induced downregulation of MRP1 and MRP3 expression in experimental hepatocellular carcinoma. Cancer Cell Int. 2013;13:3 pubmed 出版商
  1654. Cieslik K, Trial J, Carlson S, Taffet G, Entman M. Aberrant differentiation of fibroblast progenitors contributes to fibrosis in the aged murine heart: role of elevated circulating insulin levels. FASEB J. 2013;27:1761-71 pubmed 出版商
  1655. Fan C, Chen C, Chen K, Shen C, Kuo Y, Chen Y, et al. Blockade of phospholipid scramblase 1 with its N-terminal domain antibody reduces tumorigenesis of colorectal carcinomas in vitro and in vivo. J Transl Med. 2012;10:254 pubmed 出版商
  1656. Slowik A, Merres J, Elfgen A, Jansen S, Mohr F, Wruck C, et al. Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE)--and amyloid beta 1-42-induced signal transduction in glial cells. Mol Neurodegener. 2012;7:55 pubmed 出版商
  1657. Brandenburg L, Jansen S, Albrecht L, Merres J, Gerber J, Pufe T, et al. CpG oligodeoxynucleotides induce the expression of the antimicrobial peptide cathelicidin in glial cells. J Neuroimmunol. 2013;255:18-31 pubmed 出版商
  1658. Kim J, Hwang I, Choi S, Lee H, Lee Y, Goo J, et al. Aqueous extract of Liriope platyphylla, a traditional Chinese medicine, significantly inhibits abdominal fat accumulation and improves glucose regulation in OLETF type II diabetes model rats. Lab Anim Res. 2012;28:181-91 pubmed 出版商
  1659. Yang Y, Li J, Pan X, Zhou P, Yu X, Cao H, et al. Co-culture with mesenchymal stem cells enhances metabolic functions of liver cells in bioartificial liver system. Biotechnol Bioeng. 2013;110:958-68 pubmed 出版商
  1660. Turco M, Furia L, Dietze A, Fernandez Diaz L, Ronzoni S, Sciullo A, et al. Cellular heterogeneity during embryonic stem cell differentiation to epiblast stem cells is revealed by the ShcD/RaLP adaptor protein. Stem Cells. 2012;30:2423-36 pubmed 出版商
  1661. Iio W, Matsukawa N, Tsukahara T, Toyoda A. The effects of oral taurine administration on behavior and hippocampal signal transduction in rats. Amino Acids. 2012;43:2037-46 pubmed 出版商
  1662. Lemire B, Debigare R, Dubé A, Thériault M, Cote C, Maltais F. MAPK signaling in the quadriceps of patients with chronic obstructive pulmonary disease. J Appl Physiol (1985). 2012;113:159-66 pubmed 出版商
  1663. Austenaa L, Barozzi I, Chronowska A, Termanini A, Ostuni R, Prosperini E, et al. The histone methyltransferase Wbp7 controls macrophage function through GPI glycolipid anchor synthesis. Immunity. 2012;36:572-85 pubmed 出版商
  1664. Riaz A, Zeller K, Johansson S. Receptor-specific mechanisms regulate phosphorylation of AKT at Ser473: role of RICTOR in ?1 integrin-mediated cell survival. PLoS ONE. 2012;7:e32081 pubmed 出版商
  1665. Liu C, Chen C, Huang A, Li J. Subamolide A, a component isolated from Cinnamomum subavenium, induces apoptosis mediated by mitochondria-dependent, p53 and ERK1/2 pathways in human urothelial carcinoma cell line NTUB1. J Ethnopharmacol. 2011;137:503-11 pubmed 出版商
  1666. Machado Neto J, Favaro P, Lazarini M, Costa F, Olalla Saad S, Traina F. Knockdown of insulin receptor substrate 1 reduces proliferation and downregulates Akt/mTOR and MAPK pathways in K562 cells. Biochim Biophys Acta. 2011;1813:1404-11 pubmed 出版商
  1667. Urbanet R, Pilon C, Giorgino F, Vettor R, Fallo F. Insulin signaling in adipose tissue of patients with primary aldosteronism. J Endocrinol Invest. 2011;34:86-9 pubmed
  1668. Chang J, Adams M, Clifton M, Liao M, Brooks J, Hasdemir B, et al. Urocortin 1 modulates immunosignaling in a rat model of colitis via corticotropin-releasing factor receptor 2. Am J Physiol Gastrointest Liver Physiol. 2011;300:G884-94 pubmed 出版商
  1669. Modi H, Li L, Chu S, Rossi J, Yee J, Bhatia R. Inhibition of Grb2 expression demonstrates an important role in BCR-ABL-mediated MAPK activation and transformation of primary human hematopoietic cells. Leukemia. 2011;25:305-12 pubmed 出版商
  1670. Ngai J, Inngjerdingen M, Berge T, Tasken K. Interplay between the heterotrimeric G-protein subunits Galphaq and Galphai2 sets the threshold for chemotaxis and TCR activation. BMC Immunol. 2009;10:27 pubmed 出版商
  1671. Papadeas S, Halloran C, McCown T, Breese G, Blake B. Changes in apical dendritic structure correlate with sustained ERK1/2 phosphorylation in medial prefrontal cortex of a rat model of dopamine D1 receptor agonist sensitization. J Comp Neurol. 2008;511:271-85 pubmed 出版商
  1672. Rieger J, Lemke D, Maurer G, Weiler M, Frank B, Tabatabai G, et al. Enzastaurin-induced apoptosis in glioma cells is caspase-dependent and inhibited by BCL-XL. J Neurochem. 2008;106:2436-48 pubmed 出版商
  1673. Kunath T, Saba El Leil M, Almousailleakh M, Wray J, Meloche S, Smith A. FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development. 2007;134:2895-902 pubmed
  1674. Zha Y, Marks R, Ho A, Peterson A, Janardhan S, Brown I, et al. T cell anergy is reversed by active Ras and is regulated by diacylglycerol kinase-alpha. Nat Immunol. 2006;7:1166-73 pubmed
  1675. Zhu M, Feng J, Lucchinetti E, Fischer G, Xu L, Pedrazzini T, et al. Ischemic postconditioning protects remodeled myocardium via the PI3K-PKB/Akt reperfusion injury salvage kinase pathway. Cardiovasc Res. 2006;72:152-62 pubmed
  1676. Lo I, Shih J, Jiang M. Reactive oxygen species and ERK 1/2 mediate monocyte chemotactic protein-1-stimulated smooth muscle cell migration. J Biomed Sci. 2005;12:377-88 pubmed
  1677. Tsai M, Jiang M. Extracellular signal-regulated kinase1/2 in contraction of vascular smooth muscle. Life Sci. 2005;76:877-88 pubmed
  1678. Usui S, Sugimoto N, Takuwa N, Sakagami S, Takata S, Kaneko S, et al. Blood lipid mediator sphingosine 1-phosphate potently stimulates platelet-derived growth factor-A and -B chain expression through S1P1-Gi-Ras-MAPK-dependent induction of Kruppel-like factor 5. J Biol Chem. 2004;279:12300-11 pubmed
  1679. Hernandez M, Barrero M, Crespo M, Nieto M. Lysophosphatidic acid inhibits Ca2+ signaling in response to epidermal growth factor receptor stimulation in human astrocytoma cells by a mechanism involving phospholipase C(gamma) and a G(alphai) protein. J Neurochem. 2000;75:1575-82 pubmed
  1680. Chan E, Stang S, Bottorff D, Stone J. Hypothermic stress leads to activation of Ras-Erk signaling. J Clin Invest. 1999;103:1337-44 pubmed
  1681. Korneyev A. Stress-induced tau phosphorylation in mouse strains with different brain Erk 1 + 2 immunoreactivity. Neurochem Res. 1998;23:1539-43 pubmed
  1682. Webb C, Van Aelst L, Wigler M, Vande Woude G. Signaling pathways in Ras-mediated tumorigenicity and metastasis. Proc Natl Acad Sci U S A. 1998;95:8773-8 pubmed
  1683. Duesbery N, Webb C, Leppla S, Gordon V, Klimpel K, Copeland T, et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science. 1998;280:734-7 pubmed
  1684. Hidari K, Weyrich A, Zimmerman G, McEver R. Engagement of P-selectin glycoprotein ligand-1 enhances tyrosine phosphorylation and activates mitogen-activated protein kinases in human neutrophils. J Biol Chem. 1997;272:28750-6 pubmed