这是一篇来自已证抗体库的有关人类 EPH受体B4 (EphB4) 的综述,是根据21篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合EPH受体B4 抗体。
EPH受体B4 同义词: HFASD; HTK; MYK1; TYRO11; ephrin type-B receptor 4; ephrin receptor EphB4; hepatoma transmembrane kinase; soluble EPHB4 variant 1; soluble EPHB4 variant 2; soluble EPHB4 variant 3; tyrosine-protein kinase TYRO11; tyrosine-protein kinase receptor HTK

赛默飞世尔
小鼠 单克隆(3D7G8)
  • 免疫组化-石蜡切片; 人类; 图 1a
赛默飞世尔EPH受体B4抗体(生活技术, 37-1800)被用于被用于免疫组化-石蜡切片在人类样品上 (图 1a). Int J Mol Sci (2017) ncbi
小鼠 单克隆(3D7G8)
  • 免疫沉淀; 人类; 图 4
赛默飞世尔EPH受体B4抗体(Biosource, 3D7G8)被用于被用于免疫沉淀在人类样品上 (图 4). Am J Cancer Res (2015) ncbi
小鼠 单克隆(3D7G8)
  • 免疫印迹; 人类; 1:500
赛默飞世尔EPH受体B4抗体(生活技术, 3D7G8)被用于被用于免疫印迹在人类样品上浓度为1:500. Oncotarget (2015) ncbi
小鼠 单克隆(3D7G8)
  • 免疫印迹; 人类; 1:200
赛默飞世尔EPH受体B4抗体(Zymed Laboratories, 3D7G8)被用于被用于免疫印迹在人类样品上浓度为1:200. Tumour Biol (2014) ncbi
小鼠 单克隆(3D7G8)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔EPH受体B4抗体(Invitrogen, 3D7G8)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50. Ann Diagn Pathol (2014) ncbi
小鼠 单克隆(3D7G8)
  • 免疫组化-石蜡切片; 人类; 10 ug/ml; 图 2
赛默飞世尔EPH受体B4抗体(EPH受体B4, 37-1,800)被用于被用于免疫组化-石蜡切片在人类样品上浓度为10 ug/ml (图 2). Med Oncol (2013) ncbi
小鼠 单克隆(3D7F8)
  • 免疫印迹; 人类; 图 1
赛默飞世尔EPH受体B4抗体(Invitrogen, 35-2900)被用于被用于免疫印迹在人类样品上 (图 1). Epigenetics (2011) ncbi
小鼠 单克隆(3D7G8)
  • 免疫组化-石蜡切片; 人类; 图 1
  • 免疫印迹; 人类; 1:200; 图 3
赛默飞世尔EPH受体B4抗体(Zymed, 3D7G8)被用于被用于免疫组化-石蜡切片在人类样品上 (图 1) 和 被用于免疫印迹在人类样品上浓度为1:200 (图 3). Cancer Res (2006) ncbi
安迪生物R&D
山羊 多克隆
  • 免疫印迹; 小鼠; 图 1a
安迪生物R&DEPH受体B4抗体(R&D, AF446)被用于被用于免疫印迹在小鼠样品上 (图 1a). Sci Rep (2017) ncbi
山羊 多克隆
  • 免疫沉淀; 人类; 图 3
  • 免疫印迹; 人类; 图 3
安迪生物R&DEPH受体B4抗体(R&D, AF3038)被用于被用于免疫沉淀在人类样品上 (图 3) 和 被用于免疫印迹在人类样品上 (图 3). J Clin Invest (2016) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 图 s4
安迪生物R&DEPH受体B4抗体(R&D, AF446)被用于被用于免疫组化在小鼠样品上 (图 s4). J Clin Invest (2016) ncbi
山羊 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4
安迪生物R&DEPH受体B4抗体(R&D, AF446)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 4). Physiol Rep (2016) ncbi
山羊 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 2
安迪生物R&DEPH受体B4抗体(R&D Systems, AF446)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 2). Dev Biol (2016) ncbi
山羊 多克隆
  • 免疫组化-石蜡切片; 人类; 表 4
安迪生物R&DEPH受体B4抗体(R&D System, AF446)被用于被用于免疫组化-石蜡切片在人类样品上 (表 4). Chin J Cancer (2016) ncbi
山羊 多克隆
  • 免疫印迹; 人类
安迪生物R&DEPH受体B4抗体(R&D Systems, AF446)被用于被用于免疫印迹在人类样品上. Breast Cancer Res (2015) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 图 s5
安迪生物R&DEPH受体B4抗体(R&D Systems, AF446)被用于被用于免疫组化在小鼠样品上 (图 s5). Nat Commun (2015) ncbi
山羊 多克隆
  • 免疫印迹; 人类
安迪生物R&DEPH受体B4抗体(R&D Systems, AF3038)被用于被用于免疫印迹在人类样品上. J Biol Chem (2014) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 1:10
安迪生物R&DEPH受体B4抗体(R&D systems, AF3038)被用于被用于免疫细胞化学在人类样品上浓度为1:10. PLoS ONE (2014) ncbi
山羊 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100
安迪生物R&DEPH受体B4抗体(R&D Systems, AF446)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100. Development (2013) ncbi
山羊 多克隆
  • 免疫组化-冰冻切片; 小鼠
安迪生物R&DEPH受体B4抗体(R&D Systems, AF446)被用于被用于免疫组化-冰冻切片在小鼠样品上. Dev Biol (2013) ncbi
艾博抗(上海)贸易有限公司
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 4
  • 免疫细胞化学; 大鼠; 1:50; 图 4
艾博抗(上海)贸易有限公司EPH受体B4抗体(Abcam, ab76657)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:50 (图 4) 和 被用于免疫细胞化学在大鼠样品上浓度为1:50 (图 4). Physiol Rep (2016) ncbi
大鼠 单克隆(RM0056-6A14)
  • proximity ligation assay; 小鼠; 图 3
艾博抗(上海)贸易有限公司EPH受体B4抗体(abcam, ab73259)被用于被用于proximity ligation assay在小鼠样品上 (图 3). Sci Rep (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(5G2F8)
  • 免疫印迹; 小鼠; 图 3d
圣克鲁斯生物技术EPH受体B4抗体(santa cruz, sc-130081)被用于被用于免疫印迹在小鼠样品上 (图 3d). Int J Mol Med (2016) ncbi
文章列表
  1. Protack C, Foster T, Hashimoto T, Yamamoto K, Lee M, Kraehling J, et al. Eph-B4 regulates adaptive venous remodeling to improve arteriovenous fistula patency. Sci Rep. 2017;7:15386 pubmed 出版商
  2. Stammes M, Prevoo H, Ter Horst M, Groot S, Van De Velde C, Chan A, et al. Evaluation of EphA2 and EphB4 as Targets for Image-Guided Colorectal Cancer Surgery. Int J Mol Sci. 2017;18: pubmed 出版商
  3. Martin Almedina S, Martínez Corral I, Holdhus R, Vicente A, Fotiou E, Lin S, et al. EPHB4 kinase-inactivating mutations cause autosomal dominant lymphatic-related hydrops fetalis. J Clin Invest. 2016;126:3080-8 pubmed 出版商
  4. Bai H, Wang M, Foster T, Hu H, He H, Hashimoto T, et al. Pericardial patch venoplasty heals via attraction of venous progenitor cells. Physiol Rep. 2016;4: pubmed 出版商
  5. Chen I, Caprioli A, Ohnuki H, Kwak H, Porcher C, Tosato G. EphrinB2 regulates the emergence of a hemogenic endothelium from the aorta. Sci Rep. 2016;6:27195 pubmed 出版商
  6. Munger S, Geng X, Srinivasan R, Witte M, Paul D, Simon A. Segregated Foxc2, NFATc1 and Connexin expression at normal developing venous valves, and Connexin-specific differences in the valve phenotypes of Cx37, Cx43, and Cx47 knockout mice. Dev Biol. 2016;412:173-90 pubmed 出版商
  7. Adighibe O, Leek R, Fernandez Mercado M, Hu J, Snell C, Gatter K, et al. Why some tumours trigger neovascularisation and others don't: the story thus far. Chin J Cancer. 2016;35:18 pubmed 出版商
  8. Wu M, Ai W, Chen L, Zhao S, Liu E. Bradykinin receptors and EphB2/EphrinB2 pathway in response to high glucose-induced osteoblast dysfunction and hyperglycemia-induced bone deterioration in mice. Int J Mol Med. 2016;37:565-74 pubmed 出版商
  9. Dubois F, Leroy C, Simon V, Benistant C, Roche S. YES oncogenic activity is specified by its SH4 domain and regulates RAS/MAPK signaling in colon carcinoma cells. Am J Cancer Res. 2015;5:1972-87 pubmed
  10. Morancho B, Martínez Barriocanal Ã, Villanueva J, Arribas J. Role of ADAM17 in the non-cell autonomous effects of oncogene-induced senescence. Breast Cancer Res. 2015;17:106 pubmed 出版商
  11. Liebl J, Zhang S, Moser M, Agalarov Y, Demir C, Hager B, et al. Cdk5 controls lymphatic vessel development and function by phosphorylation of Foxc2. Nat Commun. 2015;6:7274 pubmed 出版商
  12. Kathawala R, Wei L, Anreddy N, Chen K, Patel A, Alqahtani S, et al. The small molecule tyrosine kinase inhibitor NVP-BHG712 antagonizes ABCC10-mediated paclitaxel resistance: a preclinical and pharmacokinetic study. Oncotarget. 2015;6:510-21 pubmed
  13. Eriksson O, Ramström M, Hörnaeus K, Bergquist J, Mokhtari D, Siegbahn A. The Eph tyrosine kinase receptors EphB2 and EphA2 are novel proteolytic substrates of tissue factor/coagulation factor VIIa. J Biol Chem. 2014;289:32379-91 pubmed 出版商
  14. Li M, Zhao J, Qiao J, Song C, Zhao Z. EphB4 regulates the growth and migration of pancreatic cancer cells. Tumour Biol. 2014;35:6855-9 pubmed 出版商
  15. Villarreal Calderon R, Luévano González A, Aragón Flores M, Zhu H, Yuan Y, Xiang Q, et al. Antral atrophy, intestinal metaplasia, and preneoplastic markers in Mexican children with Helicobacter pylori-positive and Helicobacter pylori-negative gastritis. Ann Diagn Pathol. 2014;18:129-35 pubmed 出版商
  16. Boyer Di Ponio J, El Ayoubi F, Glacial F, Ganeshamoorthy K, Driancourt C, Godet M, et al. Instruction of circulating endothelial progenitors in vitro towards specialized blood-brain barrier and arterial phenotypes. PLoS ONE. 2014;9:e84179 pubmed 出版商
  17. Guijarro Muñoz I, Sanchez A, Martínez Martínez E, Garcia J, Salas C, Provencio M, et al. Gene expression profiling identifies EPHB4 as a potential predictive biomarker in colorectal cancer patients treated with bevacizumab. Med Oncol. 2013;30:572 pubmed 出版商
  18. Davis R, Curtis C, Griffin C. BRG1 promotes COUP-TFII expression and venous specification during embryonic vascular development. Development. 2013;140:1272-81 pubmed 出版商
  19. Munger S, Kanady J, Simon A. Absence of venous valves in mice lacking Connexin37. Dev Biol. 2013;373:338-48 pubmed 出版商
  20. Rönsch K, Jäger M, Schöpflin A, Danciu M, Lassmann S, Hecht A. Class I and III HDACs and loss of active chromatin features contribute to epigenetic silencing of CDX1 and EPHB tumor suppressor genes in colorectal cancer. Epigenetics. 2011;6:610-22 pubmed
  21. Davalos V, Dopeso H, Castaño J, Wilson A, Vilardell F, Romero Gimenez J, et al. EPHB4 and survival of colorectal cancer patients. Cancer Res. 2006;66:8943-8 pubmed