这是一篇来自已证抗体库的有关人类 FADD的综述,是根据34篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合FADD 抗体。
FADD 同义词: GIG3; MORT1

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR5030)
  • 免疫印迹; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 FADD抗体(Abcam, ab124812)被用于被用于免疫印迹在小鼠样本上 (图 3b). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 单克隆(EPR5030)
  • 免疫印迹; 小鼠; 图 3c
艾博抗(上海)贸易有限公司 FADD抗体(Abcam, ab124812)被用于被用于免疫印迹在小鼠样本上 (图 3c). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(EPR4415)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 FADD抗体(EPITOMICS, 2988-1)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nature (2014) ncbi
Enzo Life Sciences
小鼠 单克隆(1F7)
  • 免疫印迹; 人类; 图 1c
Enzo Life Sciences FADD抗体(Enzo Life Sciences, IF7)被用于被用于免疫印迹在人类样本上 (图 1c). Blood (2017) ncbi
小鼠 单克隆(1F7)
  • 免疫印迹; 人类; 图 2b
Enzo Life Sciences FADD抗体(Enzo life sciences, 1F7)被用于被用于免疫印迹在人类样本上 (图 2b). EMBO J (2017) ncbi
小鼠 单克隆(1F7)
  • 免疫印迹; 小鼠; 1:1000; 图 5
Enzo Life Sciences FADD抗体(Enzo Life Science, ADI-AAM-212-E)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). J Biol Chem (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(H-10)
  • 免疫细胞化学; 人类; 1:200; 图 6a
  • 免疫印迹; 人类; 1:1000; 图 6d
圣克鲁斯生物技术 FADD抗体(Santa Cruz, H-10)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 6a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Mol Cell Biol (2017) ncbi
小鼠 单克隆(H-10)
  • 免疫印迹; 人类; 1:2000; 图 8b
圣克鲁斯生物技术 FADD抗体(Santa Cruz, sc-271520)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 8b). Int J Mol Sci (2016) ncbi
小鼠 单克隆(G-4)
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术 FADD抗体(Santa Cruz Biotechnology, sc-271748)被用于被用于免疫印迹在人类样本上 (图 5b). Oncotarget (2015) ncbi
西格玛奥德里奇
小鼠 单克隆(FD19)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 FADD抗体(Sigma, F8053)被用于被用于免疫印迹在人类样本上 (图 5). Int J Oncol (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 FADD抗体(Cell signaling, 2782)被用于被用于免疫印迹在人类样本上 (图 2b). Front Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 FADD抗体(Cell Signaling, 2782)被用于被用于免疫印迹在小鼠样本上 (图 4b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 FADD抗体(Cell Signaling, 2781)被用于被用于免疫组化在小鼠样本上 (图 4c). PLoS ONE (2016) ncbi
碧迪BD
小鼠 单克隆(1/FADD)
  • 免疫印迹; 人类; 1:1000; 图 1a
  • 免疫印迹; 小鼠; 1:1000; 图 1b
碧迪BD FADD抗体(BD Biosciences, 610400)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Mol Cell (2019) ncbi
小鼠 单克隆(1/FADD)
  • 免疫印迹基因敲除验证; 人类; 图 s1g
  • 免疫印迹; 人类; 图 s1g
碧迪BD FADD抗体(BD, 610399)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 s1g) 和 被用于免疫印迹在人类样本上 (图 s1g). Cell Death Differ (2019) ncbi
小鼠 单克隆(A66-2)
  • 免疫沉淀; 小鼠; 图 4b
  • 免疫印迹; 小鼠; 图 4b
碧迪BD FADD抗体(BD Bioscience, 556402)被用于被用于免疫沉淀在小鼠样本上 (图 4b) 和 被用于免疫印迹在小鼠样本上 (图 4b). EMBO J (2017) ncbi
小鼠 单克隆(1/FADD)
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 6d
碧迪BD FADD抗体(BD Transduction, 610400)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 6d). Mol Cell Biol (2017) ncbi
小鼠 单克隆(A66-2)
  • 免疫印迹; 人类; 图 s3
碧迪BD FADD抗体(BD Bioscience, 556402)被用于被用于免疫印迹在人类样本上 (图 s3). Mol Cell (2017) ncbi
小鼠 单克隆(A66-2)
  • 免疫印迹; 人类; 图 7a
碧迪BD FADD抗体(BD Pharmingen, 556402)被用于被用于免疫印迹在人类样本上 (图 7a). Cell Death Differ (2017) ncbi
小鼠 单克隆(1/FADD)
  • 免疫印迹; 人类; 图 3
碧迪BD FADD抗体(BD biosciences, 610400)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2017) ncbi
小鼠 单克隆(1/FADD)
  • 免疫印迹; 人类; 图 2b
碧迪BD FADD抗体(BD Biosciences, 610400)被用于被用于免疫印迹在人类样本上 (图 2b). Mol Cell Biol (2016) ncbi
小鼠 单克隆(1/FADD)
  • 免疫印迹; 人类; 1:1000; 图 s15
碧迪BD FADD抗体(BD Transduction, 610399)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s15). Nat Commun (2016) ncbi
小鼠 单克隆(1/FADD)
  • 免疫印迹; 人类; 图 1c
碧迪BD FADD抗体(BD Biosciences, 610399)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2016) ncbi
小鼠 单克隆(1/FADD)
  • 其他; 人类; 图 st1
碧迪BD FADD抗体(BD, 1)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(A66-2)
  • 其他; 人类; 图 st1
碧迪BD FADD抗体(BD, A66-2)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(1/FADD)
  • 免疫印迹; 人类; 图 1
碧迪BD FADD抗体(BD Biosciences, 610400)被用于被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2016) ncbi
小鼠 单克隆(A66-2)
  • 免疫印迹; 人类; 图 6
碧迪BD FADD抗体(BD Biosciences, 556402)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(1/FADD)
  • 免疫沉淀; 人类; 图 2b
碧迪BD FADD抗体(BD Transduction Laboratories, 610399)被用于被用于免疫沉淀在人类样本上 (图 2b). BMC Cancer (2015) ncbi
小鼠 单克隆(A66-2)
  • 免疫印迹; 人类
碧迪BD FADD抗体(BD Biosciences, 556402)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(1/FADD)
  • 免疫印迹; 人类; 图 1
碧迪BD FADD抗体(BD Biosciences, 610400)被用于被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2015) ncbi
小鼠 单克隆(1/FADD)
  • 免疫印迹; 人类
碧迪BD FADD抗体(BD Transduction Laboratories, 610399)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(A66-2)
  • 免疫印迹; 人类
碧迪BD FADD抗体(BD Biosciences, 556402)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
小鼠 单克隆(A66-2)
  • 免疫印迹; 人类
碧迪BD FADD抗体(BD Bioscience, 556402)被用于被用于免疫印迹在人类样本上. Mol Cancer Res (2013) ncbi
小鼠 单克隆(1/FADD)
  • 免疫印迹; 人类
碧迪BD FADD抗体(BD Biosciences, 610399)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2010) ncbi
小鼠 单克隆(1/FADD)
  • 免疫印迹; 人类; 图 6
碧迪BD FADD抗体(BD Transduction Laboratories, 1/FADD)被用于被用于免疫印迹在人类样本上 (图 6). Br J Cancer (2008) ncbi
小鼠 单克隆(1/FADD)
  • 免疫印迹; 人类
碧迪BD FADD抗体(Pharmingen, 610400)被用于被用于免疫印迹在人类样本上. Oncogene (2008) ncbi
默克密理博中国
小鼠 单克隆(1F7)
  • 免疫印迹; 小鼠; 图 1b
默克密理博中国 FADD抗体(Millipore, 05-486)被用于被用于免疫印迹在小鼠样本上 (图 1b). Cell Death Differ (2019) ncbi
小鼠 单克隆(1F7)
  • 免疫印迹; 小鼠; 图 6j
默克密理博中国 FADD抗体(Upstate, 05-486)被用于被用于免疫印迹在小鼠样本上 (图 6j). Immunity (2016) ncbi
文章列表
  1. Krishna Subramanian S, Singer S, Armaka M, Banales J, Hölzer K, Schirmacher P, et al. RIPK1 and death receptor signaling drive biliary damage and early liver tumorigenesis in mice with chronic hepatobiliary injury. Cell Death Differ. 2019;: pubmed 出版商
  2. Liccardi G, Ramos Garcia L, Tenev T, Annibaldi A, Legrand A, Robertson D, et al. RIPK1 and Caspase-8 Ensure Chromosome Stability Independently of Their Role in Cell Death and Inflammation. Mol Cell. 2019;73:413-428.e7 pubmed 出版商
  3. Fauster A, Rebsamen M, Willmann K, César Razquin A, Girardi E, Bigenzahn J, et al. Systematic genetic mapping of necroptosis identifies SLC39A7 as modulator of death receptor trafficking. Cell Death Differ. 2019;26:1138-1155 pubmed 出版商
  4. Meng H, Liu Z, Li X, Wang H, Jin T, Wu G, et al. Death-domain dimerization-mediated activation of RIPK1 controls necroptosis and RIPK1-dependent apoptosis. Proc Natl Acad Sci U S A. 2018;115:E2001-E2009 pubmed 出版商
  5. Wang H, Meng H, Li X, Zhu K, Dong K, Mookhtiar A, et al. PELI1 functions as a dual modulator of necroptosis and apoptosis by regulating ubiquitination of RIPK1 and mRNA levels of c-FLIP. Proc Natl Acad Sci U S A. 2017;114:11944-11949 pubmed 出版商
  6. Greenlee Wacker M, Kremserová S, Nauseef W. Lysis of human neutrophils by community-associated methicillin-resistant Staphylococcus aureus. Blood. 2017;129:3237-3244 pubmed 出版商
  7. Lafont E, Kantari Mimoun C, Dráber P, De Miguel D, Hartwig T, Reichert M, et al. The linear ubiquitin chain assembly complex regulates TRAIL-induced gene activation and cell death. EMBO J. 2017;36:1147-1166 pubmed 出版商
  8. Iurlaro R, Püschel F, León Annicchiarico C, O Connor H, Martin S, Palou Gramón D, et al. Glucose Deprivation Induces ATF4-Mediated Apoptosis through TRAIL Death Receptors. Mol Cell Biol. 2017;37: pubmed 出版商
  9. Hartwig T, Montinaro A, von Karstedt S, Sevko A, Surinova S, Chakravarthy A, et al. The TRAIL-Induced Cancer Secretome Promotes a Tumor-Supportive Immune Microenvironment via CCR2. Mol Cell. 2017;65:730-742.e5 pubmed 出版商
  10. Tanzer M, Khan N, Rickard J, Etemadi N, Lalaoui N, Spall S, et al. Combination of IAP antagonist and IFNγ activates novel caspase-10- and RIPK1-dependent cell death pathways. Cell Death Differ. 2017;24:481-491 pubmed 出版商
  11. Dufour F, Rattier T, Constantinescu A, Zischler L, Morlé A, Ben Mabrouk H, et al. TRAIL receptor gene editing unveils TRAIL-R1 as a master player of apoptosis induced by TRAIL and ER stress. Oncotarget. 2017;8:9974-9985 pubmed 出版商
  12. Ma W, Tummers B, van Esch E, Goedemans R, Melief C, Meyers C, et al. Human Papillomavirus Downregulates the Expression of IFITM1 and RIPK3 to Escape from IFN?- and TNF?-Mediated Antiproliferative Effects and Necroptosis. Front Immunol. 2016;7:496 pubmed
  13. Zhu X, Wang K, Zhang K, Zhang T, Yin Y, Xu F. Ziyuglycoside I Inhibits the Proliferation of MDA-MB-231 Breast Carcinoma Cells through Inducing p53-Mediated G2/M Cell Cycle Arrest and Intrinsic/Extrinsic Apoptosis. Int J Mol Sci. 2016;17: pubmed
  14. Joo D, Tang Y, Blonska M, Jin J, Zhao X, Lin X. Regulation of Linear Ubiquitin Chain Assembly Complex by Caspase-Mediated Cleavage of RNF31. Mol Cell Biol. 2016;36:3010-3018 pubmed
  15. Nakazawa S, Oikawa D, Ishii R, Ayaki T, Takahashi H, Takeda H, et al. Linear ubiquitination is involved in the pathogenesis of optineurin-associated amyotrophic lateral sclerosis. Nat Commun. 2016;7:12547 pubmed 出版商
  16. Weyhenmeyer B, Noonan J, Würstle M, Lincoln F, Johnston G, Rehm M, et al. Predicting the cell death responsiveness and sensitization of glioma cells to TRAIL and temozolomide. Oncotarget. 2016;7:61295-61311 pubmed 出版商
  17. Huang Y, Yang X, Xu T, Kong Q, Zhang Y, Shen Y, et al. Overcoming resistance to TRAIL-induced apoptosis in solid tumor cells by simultaneously targeting death receptors, c-FLIP and IAPs. Int J Oncol. 2016;49:153-63 pubmed 出版商
  18. Li J, Chen K, Li S, Liu T, Wang F, Xia Y, et al. Pretreatment with Fucoidan from Fucus vesiculosus Protected against ConA-Induced Acute Liver Injury by Inhibiting Both Intrinsic and Extrinsic Apoptosis. PLoS ONE. 2016;11:e0152570 pubmed 出版商
  19. Vlantis K, Wullaert A, Polykratis A, Kondylis V, Dannappel M, Schwarzer R, et al. NEMO Prevents RIP Kinase 1-Mediated Epithelial Cell Death and Chronic Intestinal Inflammation by NF-κB-Dependent and -Independent Functions. Immunity. 2016;44:553-567 pubmed 出版商
  20. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  21. Schirmer M, Trentin L, Queudeville M, Seyfried F, Demir S, Tausch E, et al. Intrinsic and chemo-sensitizing activity of SMAC-mimetics on high-risk childhood acute lymphoblastic leukemia. Cell Death Dis. 2016;7:e2052 pubmed 出版商
  22. Chhibber Goel J, Coleman Vaughan C, Agrawal V, Sawhney N, Hickey E, Powell J, et al. γ-Secretase Activity Is Required for Regulated Intramembrane Proteolysis of Tumor Necrosis Factor (TNF) Receptor 1 and TNF-mediated Pro-apoptotic Signaling. J Biol Chem. 2016;291:5971-85 pubmed 出版商
  23. Oh Y, Yue P, Wang D, Tong J, Chen Z, Khuri F, et al. Suppression of death receptor 5 enhances cancer cell invasion and metastasis through activation of caspase-8/TRAF2-mediated signaling. Oncotarget. 2015;6:41324-38 pubmed 出版商
  24. Kharaziha P, Chioureas D, Baltatzis G, Fonseca P, Rodriguez P, Gogvadze V, et al. Sorafenib-induced defective autophagy promotes cell death by necroptosis. Oncotarget. 2015;6:37066-82 pubmed 出版商
  25. Selmi T, Alecci C, dell Aquila M, Montorsi L, Martello A, Guizzetti F, et al. ZFP36 stabilizes RIP1 via degradation of XIAP and cIAP2 thereby promoting ripoptosome assembly. BMC Cancer. 2015;15:357 pubmed 出版商
  26. Shi S, Wang Q, Xu J, Jang J, Padilla M, Nyunoya T, et al. Synergistic anticancer effect of cisplatin and Chal-24 combination through IAP and c-FLIPL degradation, Ripoptosome formation and autophagy-mediated apoptosis. Oncotarget. 2015;6:1640-51 pubmed
  27. Morlé A, Garrido C, Micheau O. Hyperthermia restores apoptosis induced by death receptors through aggregation-induced c-FLIP cytosolic depletion. Cell Death Dis. 2015;6:e1633 pubmed 出版商
  28. Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, et al. REST and stress resistance in ageing and Alzheimer's disease. Nature. 2014;507:448-54 pubmed 出版商
  29. Pavet V, Shlyakhtina Y, He T, Ceschin D, Kohonen P, Perala M, et al. Plasminogen activator urokinase expression reveals TRAIL responsiveness and supports fractional survival of cancer cells. Cell Death Dis. 2014;5:e1043 pubmed 出版商
  30. He W, Wang Q, Srinivasan B, Xu J, Padilla M, Li Z, et al. A JNK-mediated autophagy pathway that triggers c-IAP degradation and necroptosis for anticancer chemotherapy. Oncogene. 2014;33:3004-13 pubmed 出版商
  31. Han J, Soletti R, Sadarangani A, Sridevi P, Ramirez M, Eckmann L, et al. Nuclear expression of ?-catenin promotes RB stability and resistance to TNF-induced apoptosis in colon cancer cells. Mol Cancer Res. 2013;11:207-18 pubmed 出版商
  32. Son J, Varadarajan S, Bratton S. TRAIL-activated stress kinases suppress apoptosis through transcriptional upregulation of MCL-1. Cell Death Differ. 2010;17:1288-301 pubmed 出版商
  33. Ashley D, Riffkin C, Lovric M, Mikeska T, Dobrovic A, Maxwell J, et al. In vitro sensitivity testing of minimally passaged and uncultured gliomas with TRAIL and/or chemotherapy drugs. Br J Cancer. 2008;99:294-304 pubmed 出版商
  34. Jeon Y, Kim I, Hong S, Nan H, Kim H, Lee H, et al. Ribosomal protein S6 is a selective mediator of TRAIL-apoptotic signaling. Oncogene. 2008;27:4344-52 pubmed 出版商