这是一篇来自已证抗体库的有关人类 FGFR1的综述,是根据51篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合FGFR1 抗体。
FGFR1 同义词: BFGFR; CD331; CEK; ECCL; FGFBR; FGFR-1; FLG; FLT-2; FLT2; HBGFR; HH2; HRTFDS; KAL2; N-SAM; OGD; bFGF-R-1

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR806Y)
  • 免疫印迹; 人类; 1:500; 图 2k
艾博抗(上海)贸易有限公司 FGFR1抗体(Abcam, ab76464)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2k). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(EPR843(N))
  • 免疫印迹; 小鼠; 图 8a
艾博抗(上海)贸易有限公司 FGFR1抗体(Abcam, ab173305)被用于被用于免疫印迹在小鼠样本上 (图 8a). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:250; 图 s8c
  • 免疫组化; 人类; 1:200; 图 2g
艾博抗(上海)贸易有限公司 FGFR1抗体(Abcam, ab10646)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 s8c) 和 被用于免疫组化在人类样本上浓度为1:200 (图 2g). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 s1e
艾博抗(上海)贸易有限公司 FGFR1抗体(Abcam, ab10646)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s1e). BMC Cancer (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4c
  • 免疫印迹; 人类; 图 4b
艾博抗(上海)贸易有限公司 FGFR1抗体(Abcam, ab10646)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4c) 和 被用于免疫印迹在人类样本上 (图 4b). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 单克隆(EPR806Y)
  • 免疫印迹; 人类; 图 1b
艾博抗(上海)贸易有限公司 FGFR1抗体(Abcam, ab76464)被用于被用于免疫印迹在人类样本上 (图 1b). Mol Cell Proteomics (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2c
艾博抗(上海)贸易有限公司 FGFR1抗体(abcam, ab63601)被用于被用于免疫组化在小鼠样本上 (图 2c). Circulation (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
  • 免疫印迹; 小鼠; 1:1000; 图 s1
艾博抗(上海)贸易有限公司 FGFR1抗体(abcam, ab59194)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7d
艾博抗(上海)贸易有限公司 FGFR1抗体(Abcam, ab59194)被用于被用于免疫印迹在小鼠样本上 (图 7d). EMBO J (2016) ncbi
domestic rabbit 单克隆(EPR806Y)
  • 免疫印迹; 人类; 图 s2f
艾博抗(上海)贸易有限公司 FGFR1抗体(Abcam, ab76464)被用于被用于免疫印迹在人类样本上 (图 s2f). Nat Biotechnol (2016) ncbi
domestic rabbit 单克隆(EPR843(N))
  • 免疫印迹; 人类; 1:1000; 图 s9b
艾博抗(上海)贸易有限公司 FGFR1抗体(abcam, ab173305)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s9b). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 4
艾博抗(上海)贸易有限公司 FGFR1抗体(Abcam, ab59194)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6) 和 被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 4). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 图 st1
艾博抗(上海)贸易有限公司 FGFR1抗体(Abcam, Ab10646)被用于被用于流式细胞仪在小鼠样本上 (图 st1). Nature (2016) ncbi
domestic rabbit 单克隆(EPR806Y)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 s4
艾博抗(上海)贸易有限公司 FGFR1抗体(Epitomics, 2144-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 s4). PLoS ONE (2016) ncbi
小鼠 单克隆(M2F12)
  • proximity ligation assay; 大鼠; 图 1A; 2
艾博抗(上海)贸易有限公司 FGFR1抗体(Abcam, ab829)被用于被用于proximity ligation assay在大鼠样本上 (图 1A; 2). Biochem Biophys Res Commun (2015) ncbi
domestic rabbit 单克隆(EPR806Y)
  • 免疫沉淀; 人类
艾博抗(上海)贸易有限公司 FGFR1抗体(abcam, ab76464)被用于被用于免疫沉淀在人类样本上. J Thyroid Res (2014) ncbi
小鼠 单克隆(M5G10)
  • 免疫印迹; 小鼠; 图 7
艾博抗(上海)贸易有限公司 FGFR1抗体(Abcam, ab824)被用于被用于免疫印迹在小鼠样本上 (图 7). PLoS ONE (2012) ncbi
圣克鲁斯生物技术
小鼠 单克隆(M2F12)
  • 免疫印迹; 小鼠; 图 6a
圣克鲁斯生物技术 FGFR1抗体(Santa Cruz, sc-57132)被用于被用于免疫印迹在小鼠样本上 (图 6a). Int J Mol Sci (2021) ncbi
小鼠 单克隆(M2F12)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术 FGFR1抗体(Santa Cruz Biotechnology, sc-57132)被用于被用于免疫印迹在人类样本上 (图 3b). Breast Cancer Res (2019) ncbi
小鼠 单克隆(M2F12)
  • 免疫印迹; 小鼠; 1:200; 图 3h
圣克鲁斯生物技术 FGFR1抗体(Santa Cruz Biotechnology, M2F12)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3h). elife (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:200; 图 3h
圣克鲁斯生物技术 FGFR1抗体(Santa Cruz Biotechnology, M2F12)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3h). elife (2019) ncbi
小鼠 单克隆
  • 免疫细胞化学; 人类; 图 5b
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 FGFR1抗体(Santa Cruz Biotechnology, sc-393911)被用于被用于免疫细胞化学在人类样本上 (图 5b) 和 被用于免疫印迹在人类样本上 (图 5a). Mol Cell Biochem (2015) ncbi
Novus Biologicals
小鼠 单克隆(M19B2)
  • 免疫印迹; 小鼠; 图 7d
Novus Biologicals FGFR1抗体(Novus, NB600-1287)被用于被用于免疫印迹在小鼠样本上 (图 7d). EMBO J (2016) ncbi
小鼠 单克隆(M19B2)
  • 免疫组化; 小鼠
Novus Biologicals FGFR1抗体(Novus Biological, nb600-1287)被用于被用于免疫组化在小鼠样本上. Mol Cell Biol (2014) ncbi
北京傲锐东源
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:250; 图 4b
  • 免疫印迹; 大鼠; 图 4a
北京傲锐东源 FGFR1抗体(OriGene, TA324059)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:250 (图 4b) 和 被用于免疫印迹在大鼠样本上 (图 4a). Sci Rep (2020) ncbi
赛默飞世尔
小鼠 单克隆(VBS-7)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 FGFR1抗体(Invitrogen, 13-3100)被用于被用于免疫印迹在人类样本上 (图 3). Clin Exp Metastasis (2013) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D8E4)
  • 免疫印迹; 小鼠; 1:500; 图 1d
赛信通(上海)生物试剂有限公司 FGFR1抗体(Cell Signaling Technology, 9740)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1d). Sci Adv (2021) ncbi
domestic rabbit 单克隆(D8E4)
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 FGFR1抗体(Cell Signaling, 9740S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). J Biol Chem (2021) ncbi
domestic rabbit 单克隆(D8E4)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 FGFR1抗体(Cell Signaling Technology, D8E4)被用于被用于免疫印迹在人类样本上 (图 3c). Acta Neuropathol (2021) ncbi
domestic rabbit 单克隆(D8E4)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 FGFR1抗体(Cell Signaling Technology, 9740)被用于被用于免疫印迹在人类样本上 (图 s1). Cancers (Basel) (2020) ncbi
domestic rabbit 单克隆(D8E4)
  • 免疫印迹; African green monkey; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 FGFR1抗体(Cell Signaling Technology, 9740)被用于被用于免疫印迹在African green monkey样本上浓度为1:1000 (图 1d). elife (2020) ncbi
domestic rabbit 单克隆(D8E4)
  • 免疫印迹; 人类; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司 FGFR1抗体(CST, 9740)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3g). PLoS ONE (2020) ncbi
domestic rabbit 单克隆(D8E4)
  • 免疫印迹; 小鼠; 1:500; 图 3c
赛信通(上海)生物试剂有限公司 FGFR1抗体(Cell Signaling, 9740)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3c). elife (2019) ncbi
domestic rabbit 单克隆(D8E4)
  • 免疫印迹; 人类; 1:2000; 图 7d
赛信通(上海)生物试剂有限公司 FGFR1抗体(CST, 9740)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7d). elife (2019) ncbi
domestic rabbit 单克隆(D8E4)
  • 免疫印迹; 人类; 1:1000; 图 6s1a
赛信通(上海)生物试剂有限公司 FGFR1抗体(Cell Signaling, 9740)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6s1a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 3
赛信通(上海)生物试剂有限公司 FGFR1抗体(Cell Signaling, 3471S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Transl Oncol (2019) ncbi
domestic rabbit 单克隆(D8E4)
  • 免疫印迹; 人类; 1:500; 图 1b
赛信通(上海)生物试剂有限公司 FGFR1抗体(Cell Signaling, 9740S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1b). Transl Oncol (2019) ncbi
小鼠 单克隆(55H2)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 FGFR1抗体(Cell Signaling, 3476)被用于被用于免疫印迹在人类样本上 (图 1b). Mol Cell Proteomics (2018) ncbi
domestic rabbit 单克隆(D8E4)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 FGFR1抗体(Cell Signaling, 9740)被用于被用于免疫印迹在人类样本上 (图 1b). Mol Cell Proteomics (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 FGFR1抗体(Cell Signalling, 3471)被用于被用于免疫印迹在人类样本上 (图 3d). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D8E4)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 FGFR1抗体(Cell Signaling, 9740)被用于被用于免疫印迹在人类样本上 (图 4b). Inflammation (2018) ncbi
domestic rabbit 单克隆(D8E4)
  • 免疫印迹; 人类; 图 2i
赛信通(上海)生物试剂有限公司 FGFR1抗体(Cell Signaling, 9740)被用于被用于免疫印迹在人类样本上 (图 2i). Nature (2017) ncbi
domestic rabbit 单克隆(D8E4)
  • 免疫印迹; 小鼠; 1:1000; 图 9c
赛信通(上海)生物试剂有限公司 FGFR1抗体(Cell Signaling, 9740)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9c). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 FGFR1抗体(Cell Signaling, 3471)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(55H2)
  • 免疫印迹; 大鼠; 1:1000; 图 7d
赛信通(上海)生物试剂有限公司 FGFR1抗体(Cell Signaling, 3476)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7d). J Pharmacol Exp Ther (2016) ncbi
domestic rabbit 单克隆(D8E4)
  • 免疫印迹; 人类; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司 FGFR1抗体(Cell Signaling, 9740)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3f). Exp Ther Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5f
赛信通(上海)生物试剂有限公司 FGFR1抗体(Cell Signaling, 3471)被用于被用于免疫细胞化学在小鼠样本上 (图 5f). Nat Med (2016) ncbi
domestic rabbit 单克隆(D8E4)
  • 免疫细胞化学; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 FGFR1抗体(Cell Signaling, 9740)被用于被用于免疫细胞化学在小鼠样本上 (图 5d). Nat Med (2016) ncbi
domestic rabbit 单克隆(D8E4)
  • 免疫印迹; 人类; 1:1000; 图 s9b
赛信通(上海)生物试剂有限公司 FGFR1抗体(cell signaling, 9740)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s9b). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D8E4)
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 FGFR1抗体(Cell Signaling Technology, D8E4)被用于被用于免疫印迹在人类样本上浓度为1:2000. Nature (2016) ncbi
domestic rabbit 单克隆(1E5)
  • 免疫印迹; 仓鼠; 图 3
赛信通(上海)生物试剂有限公司 FGFR1抗体(Cell Signaling Technologies, 2544)被用于被用于免疫印迹在仓鼠样本上 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 仓鼠; 1:100
赛信通(上海)生物试剂有限公司 FGFR1抗体(Cell Signaling Technologies, 3471)被用于被用于免疫印迹在仓鼠样本上浓度为1:100. Nat Commun (2016) ncbi
domestic rabbit 单克隆(D8E4)
  • 免疫印迹; 人类; 0.2 ug/ml; 图 6b
赛信通(上海)生物试剂有限公司 FGFR1抗体(Cell Signalling, 9740)被用于被用于免疫印迹在人类样本上浓度为0.2 ug/ml (图 6b). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D8E4)
  • 免疫印迹; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司 FGFR1抗体(Cell Signaling Technologies, D8E4)被用于被用于免疫印迹在小鼠样本上 (图 6d). Nat Genet (2015) ncbi
domestic rabbit 单克隆(D8E4)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 FGFR1抗体(Cell Signaling Technology, 9740)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(55H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 FGFR1抗体(cell signaling, 3476S)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
小鼠 单克隆(55H2)
  • 免疫组化; 小鼠; 1:500; 图 s11a
赛信通(上海)生物试剂有限公司 FGFR1抗体(Cell Signaling, 3476)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s11a). Nat Neurosci (2014) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 8
西格玛奥德里奇 FGFR1抗体(Sigma, F5421)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 10
西格玛奥德里奇 FGFR1抗体(Sigma, SAB4300488)被用于被用于免疫印迹在小鼠样本上 (图 10). PLoS ONE (2016) ncbi
文章列表
  1. Valussi M, Besser J, Wystub Lis K, Zukunft S, Richter M, Kubin T, et al. Repression of Osmr and Fgfr1 by miR-1/133a prevents cardiomyocyte dedifferentiation and cell cycle entry in the adult heart. Sci Adv. 2021;7:eabi6648 pubmed 出版商
  2. Rajendran R, Rajendran V, Giraldo Velasquez M, Megalofonou F, Gurski F, Stadelmann C, et al. Oligodendrocyte-Specific Deletion of FGFR1 Reduces Cerebellar Inflammation and Neurodegeneration in MOG35-55-Induced EAE. Int J Mol Sci. 2021;22: pubmed 出版商
  3. Guo T, Gu C, Li B, Xu C. Dual inhibition of FGFR4 and BCL-xL inhibits multi-resistant ovarian cancer with BCL2L1 gain. Aging (Albany NY). 2021;13:19750-19759 pubmed 出版商
  4. Matsuzawa T, Morita M, Shimane A, Otsuka R, Mei Y, Irie F, et al. Heparan sulfate promotes differentiation of white adipocytes to maintain insulin sensitivity and glucose homeostasis. J Biol Chem. 2021;:101006 pubmed 出版商
  5. Lötsch D, Kirchhofer D, Englinger B, Jiang L, Okonechnikov K, Senfter D, et al. Targeting fibroblast growth factor receptors to combat aggressive ependymoma. Acta Neuropathol. 2021;142:339-360 pubmed 出版商
  6. Homer Bouthiette C, Xiao L, Hurley M. Gait disturbances and muscle dysfunction in fibroblast growth factor 2 knockout mice. Sci Rep. 2021;11:11005 pubmed 出版商
  7. Wijshake T, Zou Z, Chen B, Zhong L, Xiao G, Xie Y, et al. Tumor-suppressor function of Beclin 1 in breast cancer cells requires E-cadherin. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  8. Alijaj N, Moutel S, Gouveia Z, Gray M, Roveri M, Dzhumashev D, et al. Novel FGFR4-Targeting Single-Domain Antibodies for Multiple Targeted Therapies against Rhabdomyosarcoma. Cancers (Basel). 2020;12: pubmed 出版商
  9. Letellier M, Lagardère M, Tessier B, Janovjak H, Thoumine O. Optogenetic control of excitatory post-synaptic differentiation through neuroligin-1 tyrosine phosphorylation. elife. 2020;9: pubmed 出版商
  10. Tisi A, Parete G, Flati V, Maccarone R. Up-regulation of pro-angiogenic pathways and induction of neovascularization by an acute retinal light damage. Sci Rep. 2020;10:6376 pubmed 出版商
  11. Chong Y, Thakur N, Paik K, Lee E, Kang C. Prognostic significance of stem cell/ epithelial-mesenchymal transition markers in periampullary/pancreatic cancers: FGFR1 is a promising prognostic marker. BMC Cancer. 2020;20:216 pubmed 出版商
  12. Potilinski M, Ortiz G, Salica J, Lopez E, Fernández Acquier M, Chuluyan E, et al. Elucidating the mechanism of action of alpha-1-antitrypsin using retinal pigment epithelium cells exposed to high glucose. Potential use in diabetic retinopathy. PLoS ONE. 2020;15:e0228895 pubmed 出版商
  13. Si J, Ma Y, Bi J, Xiong Y, Lv C, Li S, et al. Shisa3 brakes resistance to EGFR-TKIs in lung adenocarcinoma by suppressing cancer stem cell properties. J Exp Clin Cancer Res. 2019;38:481 pubmed 出版商
  14. Kon E, Calvo Jiménez E, Cossard A, Na Y, Cooper J, Jossin Y. N-cadherin-regulated FGFR ubiquitination and degradation control mammalian neocortical projection neuron migration. elife. 2019;8: pubmed 出版商
  15. Hori A, Shimoda M, Naoi Y, Kagara N, Tanei T, Miyake T, et al. Vasculogenic mimicry is associated with trastuzumab resistance of HER2-positive breast cancer. Breast Cancer Res. 2019;21:88 pubmed 出版商
  16. Angiolini F, Belloni E, Giordano M, Campioni M, Forneris F, Paronetto M, et al. A novel L1CAM isoform with angiogenic activity generated by NOVA2-mediated alternative splicing. elife. 2019;8: pubmed 出版商
  17. Xu H, Xu S, Xie S, Zhang Y, Yang J, Zhang W, et al. MicroRNA-122 supports robust innate immunity in hepatocytes by targeting the RTKs/STAT3 signaling pathway. elife. 2019;8: pubmed 出版商
  18. Javidi Sharifi N, Martinez J, English I, Joshi S, Scopim Ribeiro R, Viola S, et al. FGF2-FGFR1 signaling regulates release of Leukemia-Protective exosomes from bone marrow stromal cells. elife. 2019;8: pubmed 出版商
  19. Gammelgaard K, Vad Nielsen J, Clement M, Weiss S, Daugaard T, Dagnæs Hansen F, et al. Up-Regulated FGFR1 Expression as a Mediator of Intrinsic TKI Resistance in EGFR-Mutated NSCLC. Transl Oncol. 2019;12:432-440 pubmed 出版商
  20. Kostas M, Haugsten E, Zhen Y, Sørensen V, Szybowska P, Fiorito E, et al. Protein Tyrosine Phosphatase Receptor Type G (PTPRG) Controls Fibroblast Growth Factor Receptor (FGFR) 1 Activity and Influences Sensitivity to FGFR Kinase Inhibitors. Mol Cell Proteomics. 2018;17:850-870 pubmed 出版商
  21. Berrout J, Kyriakopoulou E, Moparthi L, Hogea A, Berrout L, Ivan C, et al. TRPA1-FGFR2 binding event is a regulatory oncogenic driver modulated by miRNA-142-3p. Nat Commun. 2017;8:947 pubmed 出版商
  22. Wang N, Li J, Zhao T, Li S, Shen C, Li D, et al. FGF-21 Plays a Crucial Role in the Glucose Uptake of Activated Monocytes. Inflammation. 2018;41:73-80 pubmed 出版商
  23. Yu P, Wilhelm K, Dubrac A, Tung J, Alves T, Fang J, et al. FGF-dependent metabolic control of vascular development. Nature. 2017;545:224-228 pubmed 出版商
  24. Koyama Y, Wang P, Liang S, Iwaisako K, Liu X, Xu J, et al. Mesothelin/mucin 16 signaling in activated portal fibroblasts regulates cholestatic liver fibrosis. J Clin Invest. 2017;127:1254-1270 pubmed 出版商
  25. Keshri G, Gupta A, Yadav A, Sharma S, Singh S. Photobiomodulation with Pulsed and Continuous Wave Near-Infrared Laser (810 nm, Al-Ga-As) Augments Dermal Wound Healing in Immunosuppressed Rats. PLoS ONE. 2016;11:e0166705 pubmed 出版商
  26. Piasecka D, Kitowska K, Czaplinska D, Mieczkowski K, Mieszkowska M, Turczyk L, et al. Fibroblast growth factor signalling induces loss of progesterone receptor in breast cancer cells. Oncotarget. 2016;7:86011-86025 pubmed 出版商
  27. Zangi L, Oliveira M, Ye L, Ma Q, Sultana N, Hadas Y, et al. Insulin-Like Growth Factor 1 Receptor-Dependent Pathway Drives Epicardial Adipose Tissue Formation After Myocardial Injury. Circulation. 2017;135:59-72 pubmed 出版商
  28. Chen P, Qin L, Li G, Tellides G, Simons M. Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGF?)-dependent smooth muscle cell phenotype modulation. Sci Rep. 2016;6:33407 pubmed 出版商
  29. Schwenk B, Hartmann H, Serdaroglu A, Schludi M, Hornburg D, Meissner F, et al. TDP-43 loss of function inhibits endosomal trafficking and alters trophic signaling in neurons. EMBO J. 2016;35:2350-2370 pubmed
  30. Olianas M, Dedoni S, Onali P. LPA1 Mediates Antidepressant-Induced ERK1/2 Signaling and Protection from Oxidative Stress in Glial Cells. J Pharmacol Exp Ther. 2016;359:340-353 pubmed
  31. Jiang M, Qiu J, Zhang L, Lu D, Long M, Chen L, et al. Changes in tension regulates proliferation and migration of fibroblasts by remodeling expression of ECM proteins. Exp Ther Med. 2016;12:1542-1550 pubmed
  32. Liang X, Shen W, Sun H, Migawa M, Vickers T, Crooke S. Translation efficiency of mRNAs is increased by antisense oligonucleotides targeting upstream open reading frames. Nat Biotechnol. 2016;34:875-80 pubmed 出版商
  33. Rozo M, Li L, Fan C. Targeting ?1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice. Nat Med. 2016;22:889-96 pubmed 出版商
  34. Seo H, Jeong H, Joo H, Choi S, Park C, Kim J, et al. Intrinsic FGF2 and FGF5 promotes angiogenesis of human aortic endothelial cells in 3D microfluidic angiogenesis system. Sci Rep. 2016;6:28832 pubmed 出版商
  35. Chen P, Qin L, Li G, Tellides G, Simons M. Smooth muscle FGF/TGFβ cross talk regulates atherosclerosis progression. EMBO Mol Med. 2016;8:712-28 pubmed 出版商
  36. Itkin T, Gur Cohen S, Spencer J, Schajnovitz A, Ramasamy S, Kusumbe A, et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature. 2016;532:323-8 pubmed 出版商
  37. Makani V, Jang Y, Christopher K, Judy W, Eckstein J, Hensley K, et al. BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR. PLoS ONE. 2016;11:e0149715 pubmed 出版商
  38. Rooney C, Geh C, Williams V, Heuckmann J, Menon R, Schneider P, et al. Characterization of FGFR1 Locus in sqNSCLC Reveals a Broad and Heterogeneous Amplicon. PLoS ONE. 2016;11:e0149628 pubmed 出版商
  39. Pillay S, Meyer N, Puschnik A, Davulcu O, Diep J, Ishikawa Y, et al. An essential receptor for adeno-associated virus infection. Nature. 2016;530:108-12 pubmed 出版商
  40. Sarabipour S, Hristova K. Mechanism of FGF receptor dimerization and activation. Nat Commun. 2016;7:10262 pubmed 出版商
  41. Litwin M, RadwaÅ„ska A, Paprocka M, Kieda C, Dobosz T, Witkiewicz W, et al. The role of FGF2 in migration and tubulogenesis of endothelial progenitor cells in relation to pro-angiogenic growth factor production. Mol Cell Biochem. 2015;410:131-42 pubmed 出版商
  42. Menz C, Parsi M, Adams J, Sideek M, Kopecki Z, Cowin A, et al. LTBP-2 Has a Single High-Affinity Binding Site for FGF-2 and Blocks FGF-2-Induced Cell Proliferation. PLoS ONE. 2015;10:e0135577 pubmed 出版商
  43. Mohankumar K, Currle D, White E, Boulos N, Dapper J, Eden C, et al. An in vivo screen identifies ependymoma oncogenes and tumor-suppressor genes. Nat Genet. 2015;47:878-87 pubmed 出版商
  44. Tate C, Mc Entire J, Pallini R, Vakana E, Wyss L, Blosser W, et al. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology. PLoS ONE. 2015;10:e0125697 pubmed 出版商
  45. Borroto Escuela D, Narvaez M, Pérez Alea M, Tarakanov A, Jiménez Beristain A, Mudó G, et al. Evidence for the existence of FGFR1-5-HT1A heteroreceptor complexes in the midbrain raphe 5-HT system. Biochem Biophys Res Commun. 2015;456:489-93 pubmed 出版商
  46. Tohyama O, Matsui J, Kodama K, Hata Sugi N, Kimura T, Okamoto K, et al. Antitumor activity of lenvatinib (e7080): an angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J Thyroid Res. 2014;2014:638747 pubmed 出版商
  47. Fu T, Seok S, Choi S, Huang Z, Suino Powell K, Xu H, et al. MicroRNA 34a inhibits beige and brown fat formation in obesity in part by suppressing adipocyte fibroblast growth factor 21 signaling and SIRT1 function. Mol Cell Biol. 2014;34:4130-42 pubmed 出版商
  48. Wang J, Mikse O, Liao R, Li Y, Tan L, Jänne P, et al. Ligand-associated ERBB2/3 activation confers acquired resistance to FGFR inhibition in FGFR3-dependent cancer cells. Oncogene. 2015;34:2167-77 pubmed 出版商
  49. Paez Gonzalez P, Asrican B, Rodriguez E, Kuo C. Identification of distinct ChAT? neurons and activity-dependent control of postnatal SVZ neurogenesis. Nat Neurosci. 2014;17:934-42 pubmed 出版商
  50. Mohanan V, Temburni M, Kappes J, Galileo D. L1CAM stimulates glioma cell motility and proliferation through the fibroblast growth factor receptor. Clin Exp Metastasis. 2013;30:507-20 pubmed 出版商
  51. Nagpal P, Plant P, Correa J, Bain A, Takeda M, Kawabe H, et al. The ubiquitin ligase Nedd4-1 participates in denervation-induced skeletal muscle atrophy in mice. PLoS ONE. 2012;7:e46427 pubmed 出版商