这是一篇来自已证抗体库的有关人类 FKHR的综述,是根据132篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合FKHR 抗体。
FKHR 同义词: FKH1; FKHR; FOXO1A

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 FKHR抗体(ABCAM, ab 39,670)被用于被用于免疫细胞化学在小鼠样本上 (图 5a). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 FKHR抗体(ABCAM, ab131339)被用于被用于免疫细胞化学在小鼠样本上 (图 5a). Sci Rep (2021) ncbi
domestic rabbit 单克隆(EP927Y)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 8b
  • 免疫细胞化学; 人类; 1:200; 图 1f
艾博抗(上海)贸易有限公司 FKHR抗体(Abcam, ab52857)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 8b) 和 被用于免疫细胞化学在人类样本上浓度为1:200 (图 1f). Nat Commun (2019) ncbi
domestic rabbit 单克隆(EP927Y)
  • 免疫印迹; 大鼠; 图 2b
艾博抗(上海)贸易有限公司 FKHR抗体(Abcam, ab52857)被用于被用于免疫印迹在大鼠样本上 (图 2b). Am J Transl Res (2016) ncbi
domestic rabbit 单克隆(EP927Y)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 FKHR抗体(Abcam, ab52857)被用于被用于免疫印迹在人类样本上 (图 4). Braz J Med Biol Res (2017) ncbi
domestic rabbit 单克隆(EP927Y)
  • 免疫印迹; 人类; 图 7f
艾博抗(上海)贸易有限公司 FKHR抗体(Abcam, ab52857)被用于被用于免疫印迹在人类样本上 (图 7f). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 5f
艾博抗(上海)贸易有限公司 FKHR抗体(Abcam, ab39670)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 5f). Cell Death Discov (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 7d
  • 免疫印迹; 小鼠; 1:2000; 图 1c
艾博抗(上海)贸易有限公司 FKHR抗体(Abcam, ab39670)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 7d) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1c). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 4
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 FKHR抗体(Abcam, ab39670)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 FKHR抗体(Abcam, ab70382)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2016) ncbi
Novus Biologicals
小鼠 单克隆(83N7F8)
  • 免疫印迹; 大鼠; 1:25; 图 4g
Novus Biologicals FKHR抗体(Novus Biologicals, NBP2-31376)被用于被用于免疫印迹在大鼠样本上浓度为1:25 (图 4g). Am J Physiol Regul Integr Comp Physiol (2019) ncbi
北京傲锐东源
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 6
北京傲锐东源 FKHR抗体(ORIGENE, TA323072)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6). Nat Commun (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 2880S)被用于被用于免疫印迹在小鼠样本上 (图 3a). Clin Transl Med (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 9461S)被用于被用于免疫印迹在小鼠样本上 (图 3a). Clin Transl Med (2022) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6b). Dis Model Mech (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4m
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 9461)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4m). Nat Commun (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 9464)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). J Cachexia Sarcopenia Muscle (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s11c, s11f
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 9461)被用于被用于免疫印迹在小鼠样本上 (图 s11c, s11f). J Clin Invest (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s11c, s11f
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 9464)被用于被用于免疫印迹在小鼠样本上 (图 s11c, s11f). J Clin Invest (2022) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 图 7c
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell signaling, 2880)被用于被用于免疫印迹在小鼠样本上 (图 7c). elife (2022) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫组化-石蜡切片; 小鼠; 1:75; 图 6a
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:75 (图 6a). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在小鼠样本上 (图 5c). iScience (2021) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 1:1000; 图 s8
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 2880S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s8). Mol Metab (2021) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫细胞化学; 小鼠; 1:100; 图 7i
  • 免疫印迹; 小鼠; 1:1000; 图 7d
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signalling, CST2880)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 7i) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7d). BMC Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3i
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 9464)被用于被用于免疫印迹在小鼠样本上 (图 3i). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 FKHR抗体(CST, 2880)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). Breast Cancer Res (2021) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 人类; 图 s1f
赛信通(上海)生物试剂有限公司 FKHR抗体(CST, 2880)被用于被用于免疫印迹在人类样本上 (图 s1f). Nat Cell Biol (2021) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 FKHR抗体(CST, 2880)被用于被用于免疫印迹在小鼠样本上 (图 4b). Bioact Mater (2021) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 1:1000; 图 5f
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5f). Aging Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 9464)被用于被用于免疫印迹在小鼠样本上 (图 6b). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在小鼠样本上 (图 6b). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(C29H4)
  • 流式细胞仪; 小鼠; 1:100; 图 6c
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 2880)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6c). elife (2021) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 1:100; 图 6c
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 9464)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6c). elife (2021) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 图 s8b
赛信通(上海)生物试剂有限公司 FKHR抗体(CST, 2880)被用于被用于免疫印迹在小鼠样本上 (图 s8b). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在人类样本上 (图 2f). Cell Biosci (2021) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 FKHR抗体(CST, 2880)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). iScience (2021) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Science (2021) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 1:1000; 图 1m
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1m). elife (2020) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫组化; 人类; 1:1000
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 2880)被用于被用于免疫组化在人类样本上浓度为1:1000. elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 9464)被用于被用于免疫印迹在人类样本上浓度为1:1000. elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell signalling, 9464)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). elife (2020) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell signalling, 2880)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). elife (2020) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 1:1000; 图 11c
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 11c). PLoS ONE (2020) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫细胞化学; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 FKHR抗体(CST, 2880)被用于被用于免疫细胞化学在小鼠样本上 (图 5c). Stem Cell Reports (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 1:100; 图 4a
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 9461)被用于被用于免疫印迹在斑马鱼样本上浓度为1:100 (图 4a). elife (2020) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫组化; 小鼠; 1:100; 图 s3f
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 2880)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s3f). Nat Commun (2020) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Theranostics (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2486)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Theranostics (2020) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). Mol Metab (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 s4a
  • 免疫印迹; 小鼠; 图 s2c
赛信通(上海)生物试剂有限公司 FKHR抗体(CST, 9454)被用于被用于免疫印迹在大鼠样本上 (图 s4a) 和 被用于免疫印迹在小鼠样本上 (图 s2c). Mol Cell Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s2c
  • 免疫印迹; 大鼠; 图 s4a
赛信通(上海)生物试剂有限公司 FKHR抗体(CST, 9464)被用于被用于免疫印迹在小鼠样本上 (图 s2c) 和 被用于免疫印迹在大鼠样本上 (图 s4a). Mol Cell Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 3
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 9464)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3). Animals (Basel) (2020) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 1:1000; 图 6g
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6g). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3c
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technologies, 2880)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3c). PLoS ONE (2019) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 2880)被用于被用于免疫印迹在小鼠样本上 (图 4a). Autophagy (2019) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 1:3000; 图 e7a
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 e7a). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2500; 图 e7a
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 9464)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 e7a). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 9464)被用于被用于免疫印迹在人类样本上 (图 1c). Nat Cell Biol (2019) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 大鼠; 图 2b
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在大鼠样本上 (图 2b). Oxid Med Cell Longev (2018) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 FKHR抗体(CST, 2880)被用于被用于免疫印迹在小鼠样本上 (图 4b). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫组化基因敲除验证; 小鼠; 1:100; 图 3
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 2a
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:100 (图 3), 被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 2a), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Methods Mol Biol (2019) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫组化; 小鼠; 1:100; 图 3a, 3b
赛信通(上海)生物试剂有限公司 FKHR抗体(CST, #2880S)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3a, 3b). Cell Death Differ (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3a
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 9464)被用于被用于免疫印迹在小鼠样本上 (图 s3a). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3a
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 9461)被用于被用于免疫印迹在小鼠样本上 (图 s3a). Cell (2018) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 图 s3a
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在小鼠样本上 (图 s3a). Cell (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 9465)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(C29H4)
  • 流式细胞仪; 小鼠; 图 1g
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technoogy, C29H4)被用于被用于流式细胞仪在小鼠样本上 (图 1g). J Exp Med (2018) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫细胞化学; 人类; 图 4d
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, C29H4)被用于被用于免疫细胞化学在人类样本上 (图 4d). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 2880)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). Endocrinology (2018) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在人类样本上 (图 1a). Oncogene (2018) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 图 1f
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在小鼠样本上 (图 1f). FASEB J (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 9464)被用于被用于免疫印迹在人类样本上 (图 3a). Sci Transl Med (2017) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹基因敲除验证; 小鼠; 图 s24
  • 免疫细胞化学; 人类; 图 3c
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 s24), 被用于免疫细胞化学在人类样本上 (图 3c) 和 被用于免疫印迹在人类样本上 (图 3a). Sci Transl Med (2017) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 图 5f
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, C29H4)被用于被用于免疫印迹在小鼠样本上 (图 5f). Cell Death Differ (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 FKHR抗体(CST, 9461S)被用于被用于免疫印迹在人类样本上 (图 6e). Cancer Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1j
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell signaling, 9454)被用于被用于免疫印迹在小鼠样本上 (图 1j). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 9464)被用于被用于免疫印迹在人类样本上 (图 5b). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 9465P)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Cell Biochem (2017) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹基因敲除验证; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, C29H4)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 1b). J Exp Med (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 FKHR抗体(CST, 9465)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 9465)被用于被用于免疫印迹在人类样本上 (图 3f). Sci Rep (2017) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在人类样本上 (图 6f). Br J Cancer (2017) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 图 s3d
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在小鼠样本上 (图 s3d). Nature (2017) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫细胞化学; 小鼠; 1:500; 图 7a
  • 免疫印迹; 小鼠; 1:2000; 图 7e
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 7a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 7e). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 7e
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 9464)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 7e). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 人类; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司 FKHR抗体(cell signalling, 2880)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3g). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, C29H4)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Nucleic Acids Res (2017) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 图 1h
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signalling, 2880)被用于被用于免疫印迹在小鼠样本上 (图 1h). Nutr Diabetes (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1k
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signalling, 9461)被用于被用于免疫印迹在小鼠样本上 (图 1k). Nutr Diabetes (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 9464)被用于被用于免疫印迹在人类样本上 (图 8a). J Cell Biochem (2017) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 人类; 1:3000; 图 5a
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫细胞化学; 大鼠; 1:200; 图 6a
  • 免疫印迹; 大鼠; 图 6b
  • 免疫沉淀; 小鼠; 图 5f
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 6a), 被用于免疫印迹在大鼠样本上 (图 6b), 被用于免疫沉淀在小鼠样本上 (图 5f) 和 被用于免疫印迹在小鼠样本上 (图 5c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 9464 s)被用于被用于免疫印迹在小鼠样本上 (图 4a). Cell Death Discov (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 9454 s)被用于被用于免疫印迹在小鼠样本上 (图 4a). Cell Death Discov (2016) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 1:2000; 图 1c
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C29H4)
  • 流式细胞仪; 小鼠
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, C29H4)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫组化; 小鼠; 1:500; 图 4a
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4a). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Exp Ther Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell signaling, 9461)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell signaling, 2880)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在人类样本上 (图 5a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 9461)被用于被用于免疫印迹在人类样本上 (图 5a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在小鼠样本上 (图 2). FASEB J (2016) ncbi
小鼠 单克隆(D8T1S)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 97635)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 9461)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在人类样本上 (图 1d). Oncol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 9461)被用于被用于免疫细胞化学在小鼠样本上 (图 3). Nature (2016) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 人类; 1:500; 图 2
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 2880)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 9461)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Tech, 2880)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 图 s8
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在小鼠样本上 (图 s8). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 9464)被用于被用于免疫印迹在小鼠样本上 (图 5). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 FKHR抗体(CST, 2880)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (表 1). J Alzheimers Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 FKHR抗体(CST, 9461)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (表 1). J Alzheimers Dis (2016) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 9461)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 2880)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在小鼠样本上 (图 2c). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 9461)被用于被用于免疫印迹在小鼠样本上 (图 2c). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, C29H4)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫细胞化学; 小鼠; 1:150; 图 2
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫细胞化学在小鼠样本上浓度为1:150 (图 2). Nature (2016) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 2880)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 1:1000; 图 6c, 9b
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c, 9b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 人类; 1:1000; 图 s5
  • 免疫组化基因敲除验证; 小鼠; 1:100; 图 s1
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 2880)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5), 被用于免疫组化基因敲除验证在小鼠样本上浓度为1:100 (图 s1) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 9464)被用于被用于免疫印迹在小鼠样本上 (图 st1). Liver Int (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 9454)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). Aging Cell (2016) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫细胞化学; 人类; 图 7
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫细胞化学在人类样本上 (图 7) 和 被用于免疫印迹在人类样本上 (图 7). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 人类; 1:500; 图 9
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 2880)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 9). Biochem Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell signaling, 9454)被用于被用于免疫印迹在小鼠样本上 (图 8). Nat Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell signaling, 9464)被用于被用于免疫印迹在小鼠样本上 (图 8). Nat Immunol (2016) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 2880)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Front Physiol (2015) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫细胞化学; 小鼠; 图 6
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫细胞化学在小鼠样本上 (图 6) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 2880)被用于被用于免疫印迹在人类样本上 (图 4). Mol Cancer Res (2016) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫组化-冰冻切片; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 3). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 2880)被用于被用于免疫印迹在小鼠样本上 (图 1c). J Clin Invest (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signalling Technology, 9464)被用于被用于免疫印迹在人类样本上 (图 4). Gut (2016) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 9946)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 1:200; 图 2
赛信通(上海)生物试剂有限公司 FKHR抗体(Santa Cruz, 2880)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 2). Front Pharmacol (2015) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹基因敲除验证; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell signaling, C29H4)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 1). Diabetes (2015) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 大鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在大鼠样本上 和 被用于免疫印迹在小鼠样本上. J Lipid Res (2015) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 2880)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2014) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫组化基因敲除验证; 小鼠; 图 1
  • 免疫印迹基因敲除验证; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell signaling, 2880)被用于被用于免疫组化基因敲除验证在小鼠样本上 (图 1) 和 被用于免疫印迹基因敲除验证在小鼠样本上 (图 1). Cell Metab (2014) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在小鼠样本上 (图 2a). Cell Res (2014) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, C29H4)被用于被用于免疫印迹在人类样本上浓度为1:500. Pflugers Arch (2015) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, #2880)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Neurobiol Aging (2014) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 人类; 图 4a
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在人类样本上 (图 4a) 和 被用于免疫印迹在小鼠样本上 (图 3a). Genes Dev (2014) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 2880)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Toxicol Lett (2014) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 人类; 1:500; 图 10c
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell signaling, 2880)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 10c). Nature (2014) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, C29H4)被用于被用于免疫印迹在人类样本上浓度为1:500. Front Physiol (2014) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 2880)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. FEBS J (2014) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在小鼠样本上 (图 5). Autophagy (2014) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 2880)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Biochim Biophys Acta (2014) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 FKHR抗体(CST, 2880)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. J Clin Invest (2013) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling, 2880)被用于被用于免疫印迹在人类样本上 (图 4). Cancer Res (2013) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 2880)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(C29H4)
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 FKHR抗体(Cell Signaling Technology, 2880)被用于被用于免疫印迹在小鼠样本上 (图 1b). J Biol Chem (2012) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 4g
西格玛奥德里奇 FKHR抗体(Sigma, SAB4300410)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4g). Mol Cell Endocrinol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 4g
西格玛奥德里奇 FKHR抗体(Sigma, SAB4300112)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4g). Mol Cell Endocrinol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500
西格玛奥德里奇 FKHR抗体(Sigma-Aldrich, SAB4300410)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Mol Nutr Food Res (2016) ncbi
文章列表
  1. Zhu Y, Gu H, Yang L, Li N, Chen Q, Kang D, et al. Involvement of MST1/mTORC1/STAT1 activity in the regulation of B-cell receptor signalling by chemokine receptor 2. Clin Transl Med. 2022;12:e887 pubmed 出版商
  2. Schoppa A, Chen X, Ramge J, Vikman A, Fischer V, Haffner Luntzer M, et al. Osteoblast lineage Sod2 deficiency leads to an osteoporosis-like phenotype in mice. Dis Model Mech. 2022;15: pubmed 出版商
  3. Jiang Q, Zhang X, Dai X, Han S, Wu X, Wang L, et al. S6K1-mediated phosphorylation of PDK1 impairs AKT kinase activity and oncogenic functions. Nat Commun. 2022;13:1548 pubmed 出版商
  4. Luan Y, Zhang Y, Yu S, You M, Xu P, Chung S, et al. Development of ovarian tumour causes significant loss of muscle and adipose tissue: a novel mouse model for cancer cachexia study. J Cachexia Sarcopenia Muscle. 2022;13:1289-1301 pubmed 出版商
  5. Yang K, Han J, Asada M, Gill J, Park J, Sathe M, et al. Cytoplasmic RNA quality control failure engages mTORC1-mediated autoinflammatory disease. J Clin Invest. 2022;132: pubmed 出版商
  6. Cao X, Shi T, Zhang C, Jin W, Song L, Zhang Y, et al. ACE2 pathway regulates thermogenesis and energy metabolism. elife. 2022;11: pubmed 出版商
  7. Nahle A, Joseph Y, Pereira S, Mori Y, Poon F, Ghadieh H, et al. Nicotinamide Mononucleotide Prevents Free Fatty Acid-Induced Reduction in Glucose Tolerance by Decreasing Insulin Clearance. Int J Mol Sci. 2021;22: pubmed 出版商
  8. Takaoka S, Yanagiya A, Mohamed H, Higa R, Abe T, Inoue K, et al. Neuronal XRN1 is required for maintenance of whole-body metabolic homeostasis. iScience. 2021;24:103151 pubmed 出版商
  9. Kitakaze K, Oyadomari M, Zhang J, Hamada Y, Takenouchi Y, Tsuboi K, et al. ATF4-mediated transcriptional regulation protects against β-cell loss during endoplasmic reticulum stress in a mouse model. Mol Metab. 2021;54:101338 pubmed 出版商
  10. Coudert L, Osseni A, Gangloff Y, Schaeffer L, Leblanc P. The ESCRT-0 subcomplex component Hrs/Hgs is a master regulator of myogenesis via modulation of signaling and degradation pathways. BMC Biol. 2021;19:153 pubmed 出版商
  11. Wang W, Lu G, Liu H, Xiong Z, Leung H, Cao R, et al. Pten Regulates Cardiomyocyte Differentiation by Modulating Non-CG Methylation via Dnmt3. Adv Sci (Weinh). 2021;:e2100849 pubmed 出版商
  12. Al Zahrani K, Abou Hamad J, Pascoal J, Labrèche C, Garland B, Sabourin L. AKT-mediated phosphorylation of Sox9 induces Sox10 transcription in a murine model of HER2-positive breast cancer. Breast Cancer Res. 2021;23:55 pubmed 出版商
  13. Andrade J, Shi C, Costa A, Choi J, Kim J, Doddaballapur A, et al. Control of endothelial quiescence by FOXO-regulated metabolites. Nat Cell Biol. 2021;23:413-423 pubmed 出版商
  14. Huang J, Li R, Yang J, Cai M, Lee Y, Wang A, et al. Bioadaptation of implants to In vitro and In vivo oxidative stress pathological conditions via nanotopography-induced FoxO1 signaling pathways to enhance Osteoimmunal regeneration. Bioact Mater. 2021;6:3164-3176 pubmed 出版商
  15. Wallace M, Aguirre N, Marcotte G, Marshall A, Baehr L, Hughes D, et al. The ketogenic diet preserves skeletal muscle with aging in mice. Aging Cell. 2021;20:e13322 pubmed 出版商
  16. Wang X, Zhao Y, Zhou D, Tian Y, Feng G, Lu Z. Gab2 deficiency suppresses high-fat diet-induced obesity by reducing adipose tissue inflammation and increasing brown adipose function in mice. Cell Death Dis. 2021;12:212 pubmed 出版商
  17. Sun Z, Yao Y, You M, Liu J, Guo W, Qi Z, et al. The kinase PDK1 is critical for promoting T follicular helper cell differentiation. elife. 2021;10: pubmed 出版商
  18. Wan X, Zhou M, Huang F, Zhao N, Chen X, Wu Y, et al. AKT1-CREB stimulation of PDGFRα expression is pivotal for PTEN deficient tumor development. Cell Death Dis. 2021;12:172 pubmed 出版商
  19. Hu Q, Zhu L, Li Y, Zhou J, Xu J. ACTA1 is inhibited by PAX3-FOXO1 through RhoA-MKL1-SRF signaling pathway and impairs cell proliferation, migration and tumor growth in Alveolar Rhabdomyosarcoma. Cell Biosci. 2021;11:25 pubmed 出版商
  20. Singh S, Abu Zaid A, Lin W, Low J, Abdolvahabi A, Jin H, et al. 17-DMAG dually inhibits Hsp90 and histone lysine demethylases in alveolar rhabdomyosarcoma. iScience. 2021;24:101996 pubmed 出版商
  21. Xu K, Yin N, Peng M, Stamatiades E, Shyu A, Li P, et al. Glycolysis fuels phosphoinositide 3-kinase signaling to bolster T cell immunity. Science. 2021;371:405-410 pubmed 出版商
  22. Friedman B, Corciulo C, Castro C, Cronstein B. Adenosine A2A receptor signaling promotes FoxO associated autophagy in chondrocytes. Sci Rep. 2021;11:968 pubmed 出版商
  23. Ow J, Cadez M, Zafer G, Foo J, Li H, Ghosh S, et al. Remodeling of whole-body lipid metabolism and a diabetic-like phenotype caused by loss of CDK1 and hepatocyte division. elife. 2020;9: pubmed 出版商
  24. Helker C, Eberlein J, Wilhelm K, Sugino T, Malchow J, Schuermann A, et al. Apelin signaling drives vascular endothelial cells toward a pro-angiogenic state. elife. 2020;9: pubmed 出版商
  25. Kumar A, Xie L, Ta C, Hinton A, Gunasekar S, Minerath R, et al. SWELL1 regulates skeletal muscle cell size, intracellular signaling, adiposity and glucose metabolism. elife. 2020;9: pubmed 出版商
  26. Suzuki K, Matsumoto M, Katoh Y, Liu L, Ochiai K, Aizawa Y, et al. Bach1 promotes muscle regeneration through repressing Smad-mediated inhibition of myoblast differentiation. PLoS ONE. 2020;15:e0236781 pubmed 出版商
  27. Kuroki S, Maeda R, Yano M, Kitano S, Miyachi H, Fukuda M, et al. H3K9 Demethylases JMJD1A and JMJD1B Control Prospermatogonia to Spermatogonia Transition in Mouse Germline. Stem Cell Reports. 2020;15:424-438 pubmed 出版商
  28. El Maï M, Marzullo M, de Castro I, Ferreira M. Opposing p53 and mTOR/AKT promote an in vivo switch from apoptosis to senescence upon telomere shortening in zebrafish. elife. 2020;9: pubmed 出版商
  29. Fulgenzi G, Hong Z, Tomassoni Ardori F, Barella L, Becker J, Barrick C, et al. Novel metabolic role for BDNF in pancreatic β-cell insulin secretion. Nat Commun. 2020;11:1950 pubmed 出版商
  30. Wu W, Jing D, Meng Z, Hu B, Zhong B, Deng X, et al. FGD1 promotes tumor progression and regulates tumor immune response in osteosarcoma via inhibiting PTEN activity. Theranostics. 2020;10:2859-2871 pubmed 出版商
  31. Xu M, Ge C, Qin Y, Lou D, Li Q, Feng J, et al. Functional loss of inactive rhomboid-like protein 2 mitigates obesity by suppressing pro-inflammatory macrophage activation-triggered adipose inflammation. Mol Metab. 2020;34:112-123 pubmed 出版商
  32. Peng Z, Aggarwal R, Zeng N, He L, Stiles E, Debebe A, et al. AKT1 Regulates Endoplasmic Reticulum Stress and Mediates the Adaptive Response of Pancreatic β Cells. Mol Cell Biol. 2020;40: pubmed 出版商
  33. Li J, Zhang W, Zhu S, Shi F. Nitric Oxide Synthase Is Involved in Follicular Development via the PI3K/AKT/FoxO3a Pathway in Neonatal and Immature Rats. Animals (Basel). 2020;10: pubmed 出版商
  34. Presby D, Checkley L, Jackman M, Higgins J, Jones K, Giles E, et al. Regular exercise potentiates energetically expensive hepatic de novo lipogenesis during early weight regain. Am J Physiol Regul Integr Comp Physiol. 2019;317:R684-R695 pubmed 出版商
  35. Wu Q, Yuan X, Bai J, Han R, Li Z, Zhang H, et al. MicroRNA-181a protects against pericyte apoptosis via directly targeting FOXO1: implication for ameliorated cognitive deficits in APP/PS1 mice. Aging (Albany NY). 2019;11:6120-6133 pubmed 出版商
  36. Dabral S, Muecke C, Valasarajan C, Schmoranzer M, Wietelmann A, Semenza G, et al. A RASSF1A-HIF1α loop drives Warburg effect in cancer and pulmonary hypertension. Nat Commun. 2019;10:2130 pubmed 出版商
  37. Ghaffari R, Di Bona K, Riley C, Richburg J. Copper transporter 1 (CTR1) expression by mouse testicular germ cells, but not Sertoli cells, is essential for functional spermatogenesis. PLoS ONE. 2019;14:e0215522 pubmed 出版商
  38. Wang S, Ni H, Chao X, Wang H, Bridges B, Kumer S, et al. Impaired TFEB-mediated lysosomal biogenesis promotes the development of pancreatitis in mice and is associated with human pancreatitis. Autophagy. 2019;15:1954-1969 pubmed 出版商
  39. Ranek M, Kokkonen Simon K, Chen A, Dunkerly Eyring B, Vera M, Oeing C, et al. PKG1-modified TSC2 regulates mTORC1 activity to counter adverse cardiac stress. Nature. 2019;566:264-269 pubmed 出版商
  40. Guo J, Dai X, Laurent B, Zheng N, Gan W, Zhang J, et al. AKT methylation by SETDB1 promotes AKT kinase activity and oncogenic functions. Nat Cell Biol. 2019;21:226-237 pubmed 出版商
  41. Bitar M, Nader J, Al Ali W, Al Madhoun A, Arefanian H, Al Mulla F. Hydrogen Sulfide Donor NaHS Improves Metabolism and Reduces Muscle Atrophy in Type 2 Diabetes: Implication for Understanding Sarcopenic Pathophysiology. Oxid Med Cell Longev. 2018;2018:6825452 pubmed 出版商
  42. Du X, de Almeida P, Manieri N, de Almeida Nagata D, Wu T, Harden Bowles K, et al. CD226 regulates natural killer cell antitumor responses via phosphorylation-mediated inactivation of transcription factor FOXO1. Proc Natl Acad Sci U S A. 2018;115:E11731-E11740 pubmed 出版商
  43. Oh H, Paik J. Genetic Ablation of FOXO in Mice to Investigate Its Physiological Role. Methods Mol Biol. 2019;1890:239-248 pubmed 出版商
  44. Zhang J, Zhang Y, Zhao L, Guo J, Yu J, Ji S, et al. Mammalian nucleolar protein DCAF13 is essential for ovarian follicle maintenance and oocyte growth by mediating rRNA processing. Cell Death Differ. 2019;26:1251-1266 pubmed 出版商
  45. Xiao G, Chan L, Klemm L, Braas D, Chen Z, Geng H, et al. B-Cell-Specific Diversion of Glucose Carbon Utilization Reveals a Unique Vulnerability in B Cell Malignancies. Cell. 2018;173:470-484.e18 pubmed 出版商
  46. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  47. Omilusik K, Nadjsombati M, Shaw L, Yu B, Milner J, Goldrath A. Sustained Id2 regulation of E proteins is required for terminal differentiation of effector CD8+ T cells. J Exp Med. 2018;215:773-783 pubmed 出版商
  48. Souma T, Thomson B, Heinen S, Carota I, Yamaguchi S, Onay T, et al. Context-dependent functions of angiopoietin 2 are determined by the endothelial phosphatase VEPTP. Proc Natl Acad Sci U S A. 2018;115:1298-1303 pubmed 出版商
  49. Ling A, Gearing M, Semova I, Shin D, Clements R, Lai Z, et al. FoxO1 Is Required for Most of the Metabolic and Hormonal Perturbations Produced by Hepatic Insulin Receptor Deletion in Male Mice. Endocrinology. 2018;159:1253-1263 pubmed 出版商
  50. Zhang F, Virshup D, Cheong J. Oncogenic RAS-induced CK1α drives nuclear FOXO proteolysis. Oncogene. 2018;37:363-376 pubmed 出版商
  51. Cai X, Yuan Y, Liao Z, Xing K, Zhu C, Xu Y, et al. α-Ketoglutarate prevents skeletal muscle protein degradation and muscle atrophy through PHD3/ADRB2 pathway. FASEB J. 2018;32:488-499 pubmed 出版商
  52. Hwangbo C, Wu J, Papangeli I, Adachi T, Sharma B, Park S, et al. Endothelial APLNR regulates tissue fatty acid uptake and is essential for apelin's glucose-lowering effects. Sci Transl Med. 2017;9: pubmed 出版商
  53. Lingel H, Wissing J, Arra A, Schanze D, Lienenklaus S, Klawonn F, et al. CTLA-4-mediated posttranslational modifications direct cytotoxic T-lymphocyte differentiation. Cell Death Differ. 2017;24:1739-1749 pubmed 出版商
  54. Liu S, Cheng C. Akt Signaling Is Sustained by a CD44 Splice Isoform-Mediated Positive Feedback Loop. Cancer Res. 2017;77:3791-3801 pubmed 出版商
  55. Wang B, Jie Z, Joo D, Ordureau A, Liu P, Gan W, et al. TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2 signalling. Nature. 2017;545:365-369 pubmed 出版商
  56. Hu L, Liang S, Chen H, Lv T, Wu J, Chen D, et al. ΔNp63α is a common inhibitory target in oncogenic PI3K/Ras/Her2-induced cell motility and tumor metastasis. Proc Natl Acad Sci U S A. 2017;114:E3964-E3973 pubmed 出版商
  57. Xiao Y, Yang Z, Wu Q, Jiang X, Yuan Y, Chang W, et al. Cucurbitacin B Protects Against Pressure Overload Induced Cardiac Hypertrophy. J Cell Biochem. 2017;118:3899-3910 pubmed 出版商
  58. Inoue T, Shinnakasu R, Ise W, Kawai C, Egawa T, Kurosaki T. The transcription factor Foxo1 controls germinal center B cell proliferation in response to T cell help. J Exp Med. 2017;214:1181-1198 pubmed 出版商
  59. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  60. Møller A, Kampmann U, Hedegaard J, Thorsen K, Nordentoft I, Vendelbo M, et al. Altered gene expression and repressed markers of autophagy in skeletal muscle of insulin resistant patients with type 2 diabetes. Sci Rep. 2017;7:43775 pubmed 出版商
  61. Mandl M, Zhang S, Ulrich M, Schmoeckel E, Mayr D, Vollmar A, et al. Inhibition of Cdk5 induces cell death of tumor-initiating cells. Br J Cancer. 2017;116:912-922 pubmed 出版商
  62. Chan L, Chen Z, Braas D, Lee J, Xiao G, Geng H, et al. Metabolic gatekeeper function of B-lymphoid transcription factors. Nature. 2017;542:479-483 pubmed 出版商
  63. Yue F, Bi P, Wang C, Shan T, Nie Y, Ratliff T, et al. Pten is necessary for the quiescence and maintenance of adult muscle stem cells. Nat Commun. 2017;8:14328 pubmed 出版商
  64. Xu J, Zhou W, Yang F, Chen G, Li H, Zhao Y, et al. The β-TrCP-FBXW2-SKP2 axis regulates lung cancer cell growth with FBXW2 acting as a tumour suppressor. Nat Commun. 2017;8:14002 pubmed 出版商
  65. Zhu J, Wang P, Yu Z, Lai W, Cao Y, Huang P, et al. Advanced glycosylation end product promotes forkhead box O1 and inhibits Wnt pathway to suppress capacities of epidermal stem cells. Am J Transl Res. 2016;8:5569-5579 pubmed
  66. Yang N, Liang Y, Yang P, Yang T, Jiang L. Propofol inhibits lung cancer cell viability and induces cell apoptosis by upregulating microRNA-486 expression. Braz J Med Biol Res. 2017;50:e5794 pubmed 出版商
  67. Zangari J, Ilie M, Rouaud F, Signetti L, Ohanna M, Didier R, et al. Rapid decay of engulfed extracellular miRNA by XRN1 exonuclease promotes transient epithelial-mesenchymal transition. Nucleic Acids Res. 2017;45:4131-4141 pubmed 出版商
  68. Pal M, Gupta S. Testosterone supplementation improves glucose homeostasis despite increasing hepatic insulin resistance in male mouse model of type 2 diabetes mellitus. Nutr Diabetes. 2016;6:e236 pubmed 出版商
  69. Natarajan S, Muthukrishnan E, Khalimonchuk O, Mott J, Becker D. Evidence for Pipecolate Oxidase in Mediating Protection Against Hydrogen Peroxide Stress. J Cell Biochem. 2017;118:1678-1688 pubmed 出版商
  70. Fletcher C, Godfrey J, Shibakawa A, Bushell M, Bevan C. A novel role for GSK3? as a modulator of Drosha microprocessor activity and MicroRNA biogenesis. Nucleic Acids Res. 2016;: pubmed
  71. He X, Liu Z, Xia Y, Xu J, Lv G, Wang L, et al. HOXB7 overexpression promotes cell proliferation and correlates with poor prognosis in gastric cancer patients by inducing expression of both AKT and MARKs. Oncotarget. 2017;8:1247-1261 pubmed 出版商
  72. Li J, Chen T, Xiao M, Li N, Wang S, Su H, et al. Mouse Sirt3 promotes autophagy in AngII-induced myocardial hypertrophy through the deacetylation of FoxO1. Oncotarget. 2016;7:86648-86659 pubmed 出版商
  73. Graus Nunes F, Marinho T, Barbosa da Silva S, Aguila M, Mandarim de Lacerda C, Souza Mello V. Differential effects of angiotensin receptor blockers on pancreatic islet remodelling and glucose homeostasis in diet-induced obese mice. Mol Cell Endocrinol. 2017;439:54-64 pubmed 出版商
  74. Liu L, Tao Z, Zheng L, Brooke J, Smith C, Liu D, et al. FoxO1 interacts with transcription factor EB and differentially regulates mitochondrial uncoupling proteins via autophagy in adipocytes. Cell Death Discov. 2016;2:16066 pubmed
  75. Doan K, Kinyua A, Yang D, Ko C, Moh S, Shong K, et al. FoxO1 in dopaminergic neurons regulates energy homeostasis and targets tyrosine hydroxylase. Nat Commun. 2016;7:12733 pubmed 出版商
  76. Ladle B, Li K, Phillips M, Pucsek A, Haile A, Powell J, et al. De novo DNA methylation by DNA methyltransferase 3a controls early effector CD8+ T-cell fate decisions following activation. Proc Natl Acad Sci U S A. 2016;113:10631-6 pubmed 出版商
  77. Kim M, Allen B, Korhonen E, Nitschké M, Yang H, Baluk P, et al. Opposing actions of angiopoietin-2 on Tie2 signaling and FOXO1 activation. J Clin Invest. 2016;126:3511-25 pubmed 出版商
  78. Liu M, Shan J, Li J, Zhang Y, Lin X. Resveratrol inhibits doxorubicin-induced cardiotoxicity via sirtuin 1 activation in H9c2 cardiomyocytes. Exp Ther Med. 2016;12:1113-1118 pubmed
  79. Jang H, Lee G, Selby C, Lee G, Jeon Y, Lee J, et al. SREBP1c-CRY1 signalling represses hepatic glucose production by promoting FOXO1 degradation during refeeding. Nat Commun. 2016;7:12180 pubmed 出版商
  80. Chan W, Ismail H, Mayaki D, Sanchez V, Tiedemann K, Davis E, et al. Fibulin-5 Regulates Angiopoietin-1/Tie-2 Receptor Signaling in Endothelial Cells. PLoS ONE. 2016;11:e0156994 pubmed 出版商
  81. Nwadozi E, Roudier E, Rullman E, Tharmalingam S, Liu H, Gustafsson T, et al. Endothelial FoxO proteins impair insulin sensitivity and restrain muscle angiogenesis in response to a high-fat diet. FASEB J. 2016;30:3039-52 pubmed 出版商
  82. Li B, Guo W, Hong L, Liu Y, Liu C, Hong S, et al. Role of mechanical strain-activated PI3K/Akt signaling pathway in pelvic organ prolapse. Mol Med Rep. 2016;14:243-53 pubmed 出版商
  83. Yang Y, Lu Y, Wang L, Mizokami A, Keller E, Zhang J, et al. Skp2 is associated with paclitaxel resistance in prostate cancer cells. Oncol Rep. 2016;36:559-66 pubmed 出版商
  84. Verbist K, Guy C, Milasta S, Liedmann S, Kaminski M, Wang R, et al. Metabolic maintenance of cell asymmetry following division in activated T lymphocytes. Nature. 2016;532:389-93 pubmed 出版商
  85. Rhee M, Lee S, Kim J, Ham D, Park H, Yang H, et al. Preadipocyte factor 1 induces pancreatic ductal cell differentiation into insulin-producing cells. Sci Rep. 2016;6:23960 pubmed 出版商
  86. Cheng C, Jiao J, Qian Y, Guo X, Huang J, Dai M, et al. Curcumin induces G2/M arrest and triggers apoptosis via FoxO1 signaling in U87 human glioma cells. Mol Med Rep. 2016;13:3763-70 pubmed 出版商
  87. Winnay J, Solheim M, Dirice E, Sakaguchi M, Noh H, Kang H, et al. PI3-kinase mutation linked to insulin and growth factor resistance in vivo. J Clin Invest. 2016;126:1401-12 pubmed 出版商
  88. Guillot F, Kemppainen S, Lavasseur G, Miettinen P, Laroche S, Tanila H, et al. Brain-Specific Basal and Novelty-Induced Alternations in PI3K-Akt and MAPK/ERK Signaling in a Middle-Aged AβPP/PS1 Mouse Model of Alzheimer's Disease. J Alzheimers Dis. 2016;51:1157-73 pubmed 出版商
  89. Kan H, Huang Y, Li X, Liu D, Chen J, Shu M. Zinc finger protein ZBTB20 is an independent prognostic marker and promotes tumor growth of human hepatocellular carcinoma by repressing FoxO1. Oncotarget. 2016;7:14336-49 pubmed 出版商
  90. Tobita T, Guzman Lepe J, Takeishi K, Nakao T, Wang Y, Meng F, et al. SIRT1 Disruption in Human Fetal Hepatocytes Leads to Increased Accumulation of Glucose and Lipids. PLoS ONE. 2016;11:e0149344 pubmed 出版商
  91. Wang P, Zhang X, Luo P, Jiang X, Zhang P, Guo J, et al. Hepatocyte TRAF3 promotes liver steatosis and systemic insulin resistance through targeting TAK1-dependent signalling. Nat Commun. 2016;7:10592 pubmed 出版商
  92. Malanga D, Belmonte S, Colelli F, Scarfò M, De Marco C, Oliveira D, et al. AKT1E¹⁷K Is Oncogenic in Mouse Lung and Cooperates with Chemical Carcinogens in Inducing Lung Cancer. PLoS ONE. 2016;11:e0147334 pubmed 出版商
  93. Kavlashvili T, Jia Y, Dai D, Meng X, Thiel K, Leslie K, et al. Inverse Relationship between Progesterone Receptor and Myc in Endometrial Cancer. PLoS ONE. 2016;11:e0148912 pubmed 出版商
  94. Chen C, Lee T, Kwok C, Hsu Y, Shih K, Lin Y, et al. Cannabinoid receptor type 1 mediates high-fat diet-induced insulin resistance by increasing forkhead box O1 activity in a mouse model of obesity. Int J Mol Med. 2016;37:743-54 pubmed 出版商
  95. Bothur E, Raifer H, Haftmann C, Stittrich A, Brüstle A, Brenner D, et al. Antigen receptor-mediated depletion of FOXP3 in induced regulatory T-lymphocytes via PTPN2 and FOXO1. Nat Commun. 2015;6:8576 pubmed 出版商
  96. Luo C, Liao W, Dadi S, Toure A, Li M. Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity. Nature. 2016;529:532-6 pubmed 出版商
  97. Ruiz A, Rockfield S, Taran N, Haller E, Engelman R, Flores I, et al. Effect of hydroxychloroquine and characterization of autophagy in a mouse model of endometriosis. Cell Death Dis. 2016;7:e2059 pubmed 出版商
  98. Wu B, Yu L, Wang Y, Wang H, Li C, Yin Y, et al. Aldehyde dehydrogenase 2 activation in aged heart improves the autophagy by reducing the carbonyl modification on SIRT1. Oncotarget. 2016;7:2175-88 pubmed 出版商
  99. Wilhelm K, Happel K, Eelen G, Schoors S, Oellerich M, Lim R, et al. FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature. 2016;529:216-20 pubmed 出版商
  100. Wang C, Che L, Hu J, Zhang S, Jiang L, Latte G, et al. Activated mutant forms of PIK3CA cooperate with RasV12 or c-Met to induce liver tumour formation in mice via AKT2/mTORC1 cascade. Liver Int. 2016;36:1176-86 pubmed 出版商
  101. Kondo H, Kim H, Wang L, Okada M, Paul C, Millard R, et al. Blockade of senescence-associated microRNA-195 in aged skeletal muscle cells facilitates reprogramming to produce induced pluripotent stem cells. Aging Cell. 2016;15:56-66 pubmed 出版商
  102. Yasuda K, Takahashi M, Mori N. Mdm20 Modulates Actin Remodeling through the mTORC2 Pathway via Its Effect on Rictor Expression. PLoS ONE. 2015;10:e0142943 pubmed 出版商
  103. E L, Swerdlow R. Lactate's effect on human neuroblastoma cell bioenergetic fluxes. Biochem Pharmacol. 2016;99:88-100 pubmed 出版商
  104. Hukelmann J, Anderson K, Sinclair L, Grzes K, Murillo A, Hawkins P, et al. The cytotoxic T cell proteome and its shaping by the kinase mTOR. Nat Immunol. 2016;17:104-12 pubmed 出版商
  105. Borges C, Salles A, Bringhenti I, Souza Mello V, Mandarim de Lacerda C, Aguila M. Adverse effects of vitamin D deficiency on the Pi3k/Akt pathway and pancreatic islet morphology in diet-induced obese mice. Mol Nutr Food Res. 2016;60:346-57 pubmed 出版商
  106. de Andrade P, Neff L, Strosova M, Arsenijevic D, Patthey Vuadens O, Scapozza L, et al. Caloric restriction induces energy-sparing alterations in skeletal muscle contraction, fiber composition and local thyroid hormone metabolism that persist during catch-up fat upon refeeding. Front Physiol. 2015;6:254 pubmed 出版商
  107. Nemazanyy I, Montagnac G, Russell R, Morzyglod L, Burnol A, Guan K, et al. Class III PI3K regulates organismal glucose homeostasis by providing negative feedback on hepatic insulin signalling. Nat Commun. 2015;6:8283 pubmed 出版商
  108. Agarwal S, Bell C, Taylor S, Moran R. p53 Deletion or Hotspot Mutations Enhance mTORC1 Activity by Altering Lysosomal Dynamics of TSC2 and Rheb. Mol Cancer Res. 2016;14:66-77 pubmed 出版商
  109. Yang L, McKnight G. Hypothalamic PKA regulates leptin sensitivity and adiposity. Nat Commun. 2015;6:8237 pubmed 出版商
  110. Krishnan N, Krishnan K, Connors C, Choy M, Page R, Peti W, et al. PTP1B inhibition suggests a therapeutic strategy for Rett syndrome. J Clin Invest. 2015;125:3163-77 pubmed 出版商
  111. Urban B, Collard T, Eagle C, Southern S, Greenhough A, Hamdollah Zadeh M, et al. BCL-3 expression promotes colorectal tumorigenesis through activation of AKT signalling. Gut. 2016;65:1151-64 pubmed 出版商
  112. Milan G, Romanello V, Pescatore F, Armani A, Paik J, Frasson L, et al. Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Nat Commun. 2015;6:6670 pubmed 出版商
  113. Lee I, Hüttemann M, Kruger A, Bollig Fischer A, Malek M. (-)-Epicatechin combined with 8 weeks of treadmill exercise is associated with increased angiogenic and mitochondrial signaling in mice. Front Pharmacol. 2015;6:43 pubmed 出版商
  114. Tontonoz P, Cortez Toledo O, Wroblewski K, Hong C, Lim L, Carranza R, et al. The orphan nuclear receptor Nur77 is a determinant of myofiber size and muscle mass in mice. Mol Cell Biol. 2015;35:1125-38 pubmed 出版商
  115. Cook J, Matsumoto M, Banks A, Kitamura T, Tsuchiya K, Accili D. A mutant allele encoding DNA binding-deficient FoxO1 differentially regulates hepatic glucose and lipid metabolism. Diabetes. 2015;64:1951-65 pubmed 出版商
  116. Jaishy B, Zhang Q, Chung H, Riehle C, Soto J, Jenkins S, et al. Lipid-induced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity. J Lipid Res. 2015;56:546-61 pubmed 出版商
  117. Huertas Martínez J, Rello Varona S, Herrero Martín D, Barrau I, García Monclús S, Sáinz Jaspeado M, et al. Caveolin-1 is down-regulated in alveolar rhabdomyosarcomas and negatively regulates tumor growth. Oncotarget. 2014;5:9744-55 pubmed
  118. Kim Muller J, Zhao S, Srivastava S, Mugabo Y, Noh H, Kim Y, et al. Metabolic inflexibility impairs insulin secretion and results in MODY-like diabetes in triple FoxO-deficient mice. Cell Metab. 2014;20:593-602 pubmed 出版商
  119. Chu Y, Gómez Rosso L, Huang P, Wang Z, Xu Y, Yao X, et al. Liver Med23 ablation improves glucose and lipid metabolism through modulating FOXO1 activity. Cell Res. 2014;24:1250-65 pubmed 出版商
  120. Stefanetti R, Lamon S, Wallace M, Vendelbo M, Russell A, Vissing K. Regulation of ubiquitin proteasome pathway molecular markers in response to endurance and resistance exercise and training. Pflugers Arch. 2015;467:1523-1537 pubmed 出版商
  121. E L, Burns J, Swerdlow R. Effect of high-intensity exercise on aged mouse brain mitochondria, neurogenesis, and inflammation. Neurobiol Aging. 2014;35:2574-2583 pubmed 出版商
  122. Zheng X, Zhai B, Koivunen P, Shin S, Lu G, Liu J, et al. Prolyl hydroxylation by EglN2 destabilizes FOXO3a by blocking its interaction with the USP9x deubiquitinase. Genes Dev. 2014;28:1429-44 pubmed 出版商
  123. Harman J, Richburg J. Cisplatin-induced alterations in the functional spermatogonial stem cell pool and niche in C57/BL/6J mice following a clinically relevant multi-cycle exposure. Toxicol Lett. 2014;227:99-112 pubmed 出版商
  124. Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, et al. REST and stress resistance in ageing and Alzheimer's disease. Nature. 2014;507:448-54 pubmed 出版商
  125. Stefanetti R, Zacharewicz E, Della Gatta P, Garnham A, Russell A, Lamon S. Ageing has no effect on the regulation of the ubiquitin proteasome-related genes and proteins following resistance exercise. Front Physiol. 2014;5:30 pubmed 出版商
  126. Tanaka T, Iino M. Knockdown of Sec8 promotes cell-cycle arrest at G1/S phase by inducing p21 via control of FOXO proteins. FEBS J. 2014;281:1068-84 pubmed 出版商
  127. Tan S, Shui G, Zhou J, Shi Y, Huang J, Xia D, et al. Critical role of SCD1 in autophagy regulation via lipogenesis and lipid rafts-coupled AKT-FOXO1 signaling pathway. Autophagy. 2014;10:226-42 pubmed 出版商
  128. Zhang Y, Zhang X, Gao L, Liu Y, Jiang D, Chen K, et al. Growth/differentiation factor 1 alleviates pressure overload-induced cardiac hypertrophy and dysfunction. Biochim Biophys Acta. 2014;1842:232-44 pubmed 出版商
  129. Ravnskjaer K, Hogan M, Lackey D, Tora L, Dent S, Olefsky J, et al. Glucagon regulates gluconeogenesis through KAT2B- and WDR5-mediated epigenetic effects. J Clin Invest. 2013;123:4318-28 pubmed 出版商
  130. Shats I, Gatza M, Liu B, Angus S, You L, Nevins J. FOXO transcription factors control E2F1 transcriptional specificity and apoptotic function. Cancer Res. 2013;73:6056-67 pubmed 出版商
  131. Dai J, Shen D, Bian Z, Zhou H, Gan H, Zong J, et al. IKKi deficiency promotes pressure overload-induced cardiac hypertrophy and fibrosis. PLoS ONE. 2013;8:e53412 pubmed 出版商
  132. Deng X, Zhang W, O Sullivan I, Williams J, Dong Q, Park E, et al. FoxO1 inhibits sterol regulatory element-binding protein-1c (SREBP-1c) gene expression via transcription factors Sp1 and SREBP-1c. J Biol Chem. 2012;287:20132-43 pubmed 出版商