这是一篇来自已证抗体库的有关人类 FOXM1的综述,是根据29篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合FOXM1 抗体。
FOXM1 同义词: FKHL16; FOXM1A; FOXM1B; FOXM1C; HFH-11; HFH11; HNF-3; INS-1; MPHOSPH2; MPP-2; MPP2; PIG29; TRIDENT

圣克鲁斯生物技术
小鼠 单克隆
  • 免疫细胞化学; 人类; 1:500; 图 2b
圣克鲁斯生物技术 FOXM1抗体(Santa Cruz, SC-376471)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2b). Am J Cancer Res (2022) ncbi
小鼠 单克隆
  • 免疫组化; 人类; 1:100; 图 6a, 7a
圣克鲁斯生物技术 FOXM1抗体(Santa Cruz, sc-376471)被用于被用于免疫组化在人类样本上浓度为1:100 (图 6a, 7a). Oncogene (2021) ncbi
小鼠 单克隆
  • 染色质免疫沉淀 ; 小鼠
  • 染色质免疫沉淀 ; 人类
圣克鲁斯生物技术 FOXM1抗体(Santa Cruz Biotechnology, sc-376471)被用于被用于染色质免疫沉淀 在小鼠样本上 和 被用于染色质免疫沉淀 在人类样本上. Mol Cell (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 s3a
圣克鲁斯生物技术 FOXM1抗体(Santa Cruz, sc-376471)被用于被用于免疫印迹在人类样本上 (图 s3a). Cell Death Dis (2021) ncbi
小鼠 单克隆(A-11)
  • 免疫印迹; 人类; 1:500; 图 6d
圣克鲁斯生物技术 FOXM1抗体(Santa Cruz Biotechnology, sc-271746)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6d). Cancers (Basel) (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 s22c
圣克鲁斯生物技术 FOXM1抗体(Santa Cruz Biotechnology, sc-376471)被用于被用于免疫印迹在小鼠样本上 (图 s22c). Science (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
圣克鲁斯生物技术 FOXM1抗体(Santa Cruz Biotechnology, sc-376471)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Exp Ther Med (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:500; 图 6e; S6i
圣克鲁斯生物技术 FOXM1抗体(Santa Cruz, sc-376471)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6e; S6i). Nat Commun (2017) ncbi
小鼠 单克隆(A-11)
  • 免疫组化-石蜡切片; 人类; 图 4
圣克鲁斯生物技术 FOXM1抗体(Santa Cruz, sc-271746)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4). Mod Pathol (2016) ncbi
小鼠 单克隆(A-11)
  • 免疫印迹; 大鼠; 1:1000; 图 9f
圣克鲁斯生物技术 FOXM1抗体(Santa Cruz Biotechnology, sc-271746)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 9f). Int J Mol Med (2015) ncbi
小鼠 单克隆(A-11)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 FOXM1抗体(Santa Cruz Biotechnology, sc-271746)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Respir Res (2013) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(6F11A8)
  • 免疫沉淀; 人类; 图 2d
艾博抗(上海)贸易有限公司 FOXM1抗体(Abcam, ab234077)被用于被用于免疫沉淀在人类样本上 (图 2d). Am J Cancer Res (2022) ncbi
domestic rabbit 单克隆(EPR17379)
  • 免疫组化-石蜡切片; 人类; 图 1d
艾博抗(上海)贸易有限公司 FOXM1抗体(Abcam, ab207298)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1d). BMC Cancer (2019) ncbi
赛默飞世尔
domestic rabbit 重组(1H24L2)
  • 免疫印迹; 人类; 1:1000; 图 s5a, s9l
赛默飞世尔 FOXM1抗体(Thermo, 702664)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5a, s9l). Nat Commun (2020) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D3F2B)
  • 染色质免疫沉淀 ; 人类; 0.2 ug/ml; 图 5b
  • 免疫沉淀; 人类; 1:500; 图 s6c
  • 免疫印迹; 人类; 1:500; 图 4a
赛信通(上海)生物试剂有限公司 FOXM1抗体(Cell Signaling, 20459S)被用于被用于染色质免疫沉淀 在人类样本上浓度为0.2 ug/ml (图 5b), 被用于免疫沉淀在人类样本上浓度为1:500 (图 s6c) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Oncogene (2021) ncbi
domestic rabbit 单克隆(D12D5)
  • 免疫印迹; 人类; 1:500; 图 s1e
赛信通(上海)生物试剂有限公司 FOXM1抗体(Cell Signaling, 5436)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s1e). Mol Cancer (2021) ncbi
domestic rabbit 单克隆(D12D5)
  • 免疫印迹; 人类; 1:1000; 图 11a
赛信通(上海)生物试剂有限公司 FOXM1抗体(Cell Signaling Technology, 5436)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 11a). elife (2021) ncbi
domestic rabbit 单克隆(D12D5)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 FOXM1抗体(Cell Signaling Technology, 5436)被用于被用于免疫印迹在人类样本上 (图 6e). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(D12D5)
  • 免疫印迹; 小鼠; 图 7i
赛信通(上海)生物试剂有限公司 FOXM1抗体(Cell Signaling, 5436)被用于被用于免疫印迹在小鼠样本上 (图 7i). J Clin Invest (2020) ncbi
domestic rabbit 单克隆(D3F2B)
  • 染色质免疫沉淀 ; 人类; 1:100; 图 6j
赛信通(上海)生物试剂有限公司 FOXM1抗体(Cell Signaling, 20459)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:100 (图 6j). Oncol Rep (2019) ncbi
domestic rabbit 单克隆(D12D5)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 FOXM1抗体(Cell Signaling, 5436)被用于被用于免疫印迹在人类样本上 (图 4b). Br J Cancer (2019) ncbi
domestic rabbit 单克隆(D3F2B)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 FOXM1抗体(CST, 20459)被用于被用于免疫印迹在人类样本上 (图 2b). J Cell Physiol (2019) ncbi
domestic rabbit 单克隆(D9M6G)
  • 免疫细胞化学; 人类; 1:250; 图 2c
赛信通(上海)生物试剂有限公司 FOXM1抗体(Cell Signaling, 14655S)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 2c). Science (2018) ncbi
domestic rabbit 单克隆(D12D5)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 FOXM1抗体(Cell Signaling, 5436)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(D12D5)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 FOXM1抗体(Cell Signaling Technology., 5436)被用于被用于免疫印迹在人类样本上 (图 6e). Oncogene (2018) ncbi
domestic rabbit 单克隆(D12D5)
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 FOXM1抗体(CST, 5436)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(D12D5)
  • reverse phase protein lysate microarray; 人类; 图 3a
赛信通(上海)生物试剂有限公司 FOXM1抗体(Cell Signaling, 5436)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 3a). Nature (2017) ncbi
domestic rabbit 单克隆(D12D5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 FOXM1抗体(Cell Signaling Technology, 5436)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
domestic rabbit 单克隆(D12D5)
  • 免疫印迹; 人类; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 FOXM1抗体(Cell Signaling, 5436)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D12D5)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 FOXM1抗体(Cell signaling, 5436)被用于被用于免疫印迹在人类样本上 (图 5c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D12D5)
  • 免疫印迹; 人类; 1:2000; 图 4
赛信通(上海)生物试剂有限公司 FOXM1抗体(Cell Signaling Technology, 5436)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Nat Commun (2016) ncbi
文章列表
  1. Zhang Z, Liu W, Bao X, Sun T, Wang J, Li M, et al. USP39 facilitates breast cancer cell proliferation through stabilization of FOXM1. Am J Cancer Res. 2022;12:3644-3661 pubmed
  2. Kimura H, Sada R, Takada N, Harada A, Doki Y, Eguchi H, et al. The Dickkopf1 and FOXM1 positive feedback loop promotes tumor growth in pancreatic and esophageal cancers. Oncogene. 2021;40:4486-4502 pubmed 出版商
  3. Yan C, Saleh N, Yang J, Nebhan C, Vilgelm A, Reddy E, et al. Novel induction of CD40 expression by tumor cells with RAS/RAF/PI3K pathway inhibition augments response to checkpoint blockade. Mol Cancer. 2021;20:85 pubmed 出版商
  4. Barger C, Chee L, Albahrani M, Munoz Trujillo C, Boghean L, Branick C, et al. Co-regulation and function of FOXM1/RHNO1 bidirectional genes in cancer. elife. 2021;10: pubmed 出版商
  5. Kim M, Cervantes C, Jung Y, Zhang X, Zhang J, Lee S, et al. PAF remodels the DREAM complex to bypass cell quiescence and promote lung tumorigenesis. Mol Cell. 2021;81:1698-1714.e6 pubmed 出版商
  6. Yan Z, Cheng M, Hu G, Wang Y, Zeng S, Huang A, et al. Positive feedback of SuFu negating protein 1 on Hedgehog signaling promotes colorectal tumor growth. Cell Death Dis. 2021;12:199 pubmed 出版商
  7. Tang B, Sun R, Wang D, Sheng H, Wei T, Wang L, et al. ZMYND8 preferentially binds phosphorylated EZH2 to promote a PRC2-dependent to -independent function switch in hypoxia-inducible factor-activated cancer. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  8. Muller A, Dickmanns A, Resch C, Schakel K, Hailfinger S, Dobbelstein M, et al. The CDK4/6-EZH2 pathway is a potential therapeutic target for psoriasis. J Clin Invest. 2020;: pubmed 出版商
  9. Yang Y, Luo M, Zhang K, Zhang J, Gao T, Connell D, et al. Nedd4 ubiquitylates VDAC2/3 to suppress erastin-induced ferroptosis in melanoma. Nat Commun. 2020;11:433 pubmed 出版商
  10. Liang J, Liu Z, Wei X, Zhou L, Tang Y, Zhou C, et al. Expression of FSCN1 and FOXM1 are associated with poor prognosis of adrenocortical carcinoma patients. BMC Cancer. 2019;19:1165 pubmed 出版商
  11. Zhang L, Tian S, Pei M, Zhao M, Wang L, Jiang Y, et al. Crosstalk between histone modification and DNA methylation orchestrates the epigenetic regulation of the costimulatory factors, Tim‑3 and galectin‑9, in cervical cancer. Oncol Rep. 2019;42:2655-2669 pubmed 出版商
  12. Barger C, Branick C, Chee L, Karpf A. Pan-Cancer Analyses Reveal Genomic Features of FOXM1 Overexpression in Cancer. Cancers (Basel). 2019;11: pubmed 出版商
  13. Dufour F, Silina L, Neyret Kahn H, Moreno Vega A, Krucker C, Karboul N, et al. TYRO3 as a molecular target for growth inhibition and apoptosis induction in bladder cancer. Br J Cancer. 2019;120:555-564 pubmed 出版商
  14. Nicetto D, Donahue G, Jain T, Peng T, Sidoli S, Sheng L, et al. H3K9me3-heterochromatin loss at protein-coding genes enables developmental lineage specification. Science. 2019;363:294-297 pubmed 出版商
  15. Song S, Zhang R, Cao W, Fang G, Yu Y, Wan Y, et al. Foxm1 is a critical driver of TGF-β-induced EndMT in endothelial cells through Smad2/3 and binds to the Snail promoter. J Cell Physiol. 2019;234:9052-9064 pubmed 出版商
  16. Saldivar J, Hamperl S, Bocek M, Chung M, Bass T, Cisneros Soberanis F, et al. An intrinsic S/G2 checkpoint enforced by ATR. Science. 2018;361:806-810 pubmed 出版商
  17. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  18. Tanaka N, Zhao M, Tang L, Patel A, Xi Q, Van H, et al. Gain-of-function mutant p53 promotes the oncogenic potential of head and neck squamous cell carcinoma cells by targeting the transcription factors FOXO3a and FOXM1. Oncogene. 2018;37:1279-1292 pubmed 出版商
  19. Yuan X, Sun X, Shi X, Jiang C, Yu D, Zhang W, et al. USP39 regulates the growth of SMMC-7721 cells via FoxM1. Exp Ther Med. 2017;13:1506-1513 pubmed 出版商
  20. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  21. Vallejo A, Perurena N, Guruceaga E, Mazur P, Martínez Canarias S, Zandueta C, et al. An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer. Nat Commun. 2017;8:14294 pubmed 出版商
  22. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed 出版商
  23. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  24. Maachani U, Shankavaram U, Kramp T, Tofilon P, Camphausen K, Tandle A. FOXM1 and STAT3 interaction confers radioresistance in glioblastoma cells. Oncotarget. 2016;7:77365-77377 pubmed 出版商
  25. Han S, Ma X, Zhao Y, Zhao H, Batista A, Zhou S, et al. Identification of Glypican-3 as a potential metastasis suppressor gene in gastric cancer. Oncotarget. 2016;7:44406-44416 pubmed 出版商
  26. Lin S, Kao C, Lee H, Creighton C, Ittmann M, Tsai S, et al. Dysregulation of miRNAs-COUP-TFII-FOXM1-CENPF axis contributes to the metastasis of prostate cancer. Nat Commun. 2016;7:11418 pubmed 出版商
  27. Andersson E, Arvidsson Y, Swärd C, Hofving T, Wängberg B, Kristiansson E, et al. Expression profiling of small intestinal neuroendocrine tumors identifies subgroups with clinical relevance, prognostic markers and therapeutic targets. Mod Pathol. 2016;29:616-29 pubmed 出版商
  28. Xu J, Huang Z, Lin L, Fu M, Song Y, Shen Y, et al. miRNA-130b is required for the ERK/FOXM1 pathway activation-mediated protective effects of isosorbide dinitrate against mesenchymal stem cell senescence induced by high glucose. Int J Mol Med. 2015;35:59-71 pubmed 出版商
  29. Winden D, Ferguson N, Bukey B, Geyer A, Wright A, Jergensen Z, et al. Conditional over-expression of RAGE by embryonic alveolar epithelium compromises the respiratory membrane and impairs endothelial cell differentiation. Respir Res. 2013;14:108 pubmed 出版商