这是一篇来自已证抗体库的有关人类 FOXP3的综述,是根据273篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合FOXP3 抗体。
FOXP3 同义词: AIID; DIETER; IPEX; JM2; PIDX; XPID

赛默飞世尔
domestic rabbit 单克隆(SP97)
  • 免疫组化; 人类; 1:10; 图 4a
赛默飞世尔 FOXP3抗体(Thermo Fischer, MA5-16365)被用于被用于免疫组化在人类样本上浓度为1:10 (图 4a). Nat Commun (2021) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 人类; 图 6c
赛默飞世尔 FOXP3抗体(eBioscience, 236A/E7)被用于被用于流式细胞仪在人类样本上 (图 6c). Cell Death Dis (2020) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 s6a
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上 (图 s6a). J Clin Invest (2020) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 FOXP3抗体(eBioscience, 236A/E7)被用于被用于流式细胞仪在人类样本上 (图 2a). Arthritis Res Ther (2020) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 人类; 1:100; 图 2b
赛默飞世尔 FOXP3抗体(eBioscience, 14-4777)被用于被用于免疫组化在人类样本上浓度为1:100 (图 2b). Cancer Immunol Immunother (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1g
赛默飞世尔 FOXP3抗体(Thermo Fisher, PA1-46126)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1g). Cancer Med (2020) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上 (图 1a). Front Immunol (2019) ncbi
小鼠 单克隆(236a/E7)
  • mass cytometry; 人类; 图 2b
赛默飞世尔 FOXP3抗体(ThermoFisher, 14-4777-82)被用于被用于mass cytometry在人类样本上 (图 2b). Cell (2019) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 人类; 图 s7a
赛默飞世尔 FOXP3抗体(Thermo Fisher, 25-4777-41)被用于被用于流式细胞仪在人类样本上 (图 s7a). Cell (2019) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 小鼠; 图 s7c
赛默飞世尔 FOXP3抗体(Invitrogen, 11-4777-42)被用于被用于流式细胞仪在小鼠样本上 (图 s7c). Cell Metab (2019) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 FOXP3抗体(eBioscience, 236A/E7)被用于被用于流式细胞仪在人类样本上 (图 1a). Proc Natl Acad Sci U S A (2019) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上 (图 2a). Cancer (2019) ncbi
大鼠 单克隆(PCH101)
  • 免疫组化-冰冻切片; 人类; 图 2c
赛默飞世尔 FOXP3抗体(eBiosciences, PCH101)被用于被用于免疫组化-冰冻切片在人类样本上 (图 2c). J Infect Dis (2018) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-冰冻切片; 人类; 图 1a
赛默飞世尔 FOXP3抗体(eBioscience, 236A/E7)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1a). J Exp Med (2018) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 小鼠; 图 s2b
赛默飞世尔 FOXP3抗体(eBioscience, 12-4777-42)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Cell (2018) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 小鼠; 图 7a
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在小鼠样本上 (图 7a). J Clin Invest (2018) ncbi
小鼠 单克隆(150D/E4)
  • 流式细胞仪; 小鼠; 图 5c
赛默飞世尔 FOXP3抗体(eBioscience, 150D/E4)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Cell Metab (2018) ncbi
小鼠 单克隆(eBio7979 (221D/D3))
  • 免疫组化-石蜡切片; 人类; 图 5b
赛默飞世尔 FOXP3抗体(eBioscience, 14-7979)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5b). Int J Cancer (2018) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 1:100; 图 1a
赛默飞世尔 FOXP3抗体(eBioscience, 12-4776-42)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1a). Nat Commun (2018) ncbi
domestic rabbit 重组(5H10L18)
  • 免疫印迹; 人类; 1:1000; 图 4b
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5a
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛默飞世尔 FOXP3抗体(Thermo Scientific, 700914)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Br J Pharmacol (2018) ncbi
小鼠 单克隆(eBio7979 (221D/D3))
  • 免疫印迹; 小鼠; 图 1d
赛默飞世尔 FOXP3抗体(eBioscience, eBio7979)被用于被用于免疫印迹在小鼠样本上 (图 1d). Sci Rep (2017) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 5a
赛默飞世尔 FOXP3抗体(ebioscience, PCH101)被用于被用于流式细胞仪在人类样本上 (图 5a). Sci Rep (2017) ncbi
大鼠 单克隆(PCH101)
  • mass cytometry; 人类; 图 2a
赛默飞世尔 FOXP3抗体(eBiosciences, PCH101)被用于被用于mass cytometry在人类样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(PCH101)
  • 免疫组化; 人类; 图 8a
赛默飞世尔 FOXP3抗体(ebioscience, PCH101)被用于被用于免疫组化在人类样本上 (图 8a). Front Immunol (2017) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 1f
赛默飞世尔 FOXP3抗体(ebioscience, 12-4776)被用于被用于流式细胞仪在人类样本上 (图 1f). J Immunol (2017) ncbi
小鼠 单克隆(150D/E4)
  • 染色质免疫沉淀 ; 小鼠; 图 2b
赛默飞世尔 FOXP3抗体(eBioscience, 14-4774-82)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 2b). Cell Metab (2017) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 人类
赛默飞世尔 FOXP3抗体(eBioscience, 25-4777)被用于被用于流式细胞仪在人类样本上. J Immunol (2017) ncbi
大鼠 单克隆(PCH101)
  • 免疫印迹; 人类; 图 2g
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于免疫印迹在人类样本上 (图 2g). J Immunol (2017) ncbi
小鼠 单克隆(150D/E4)
  • 免疫印迹; 人类; 图 2g
赛默飞世尔 FOXP3抗体(eBioscience, 150D/E4)被用于被用于免疫印迹在人类样本上 (图 2g). J Immunol (2017) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 6f
赛默飞世尔 FOXP3抗体(Thermo Fisher Scientific, 12-4776)被用于被用于流式细胞仪在人类样本上 (图 6f). Cell Res (2017) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 人类; 图 3a
赛默飞世尔 FOXP3抗体(Thermo Fisher Scientific, 17-4777)被用于被用于流式细胞仪在人类样本上 (图 3a). Cell Res (2017) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 人类; 图 3b
赛默飞世尔 FOXP3抗体(eBiosciences, 236A/E7)被用于被用于流式细胞仪在人类样本上 (图 3b). J Immunol (2017) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上 (图 2). Clin Exp Immunol (2017) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 3b
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上 (图 3b). Med Princ Pract (2017) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 2e
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上 (图 2e). Am J Transplant (2017) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 FOXP3抗体(eBioscience, 48-4777-42)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol Methods (2017) ncbi
小鼠 单克隆(150D/E4)
  • 流式细胞仪; 小鼠
赛默飞世尔 FOXP3抗体(eBioscience, 150D/E4)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2016) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 图 6
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 FOXP3抗体(eBioscience, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6) 和 被用于流式细胞仪在人类样本上 (图 1a). Int J Cancer (2017) ncbi
小鼠 单克隆(eBio7979 (221D/D3))
  • 免疫印迹; 人类; 图 1a
赛默飞世尔 FOXP3抗体(eBioscience, eBio7979)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2016) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类; 图 4b
赛默飞世尔 FOXP3抗体(eBiosciences, PCH101)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上 (图 4b). J Exp Med (2016) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上. J Clin Invest (2016) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 4b
赛默飞世尔 FOXP3抗体(NatuTec, PCH101)被用于被用于流式细胞仪在人类样本上 (图 4b). J Allergy Clin Immunol (2017) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
赛默飞世尔 FOXP3抗体(eBioscience, 14-4777-82)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). J Transl Med (2016) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 人类; 1:150; 图 st1
赛默飞世尔 FOXP3抗体(ebioscience, 14-4777)被用于被用于免疫组化在人类样本上浓度为1:150 (图 st1). Oncoimmunology (2016) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 s1
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上 (图 s1). Science (2016) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类
赛默飞世尔 FOXP3抗体(eBioscience, 12-4776)被用于被用于流式细胞仪在人类样本上. Turk J Haematol (2016) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 人类
赛默飞世尔 FOXP3抗体(eBioscience, 236A/E7)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2016) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 1:20; 表 2
赛默飞世尔 FOXP3抗体(eBioscience, 12-4776-42)被用于被用于流式细胞仪在人类样本上浓度为1:20 (表 2). Oncoimmunology (2016) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 FOXP3抗体(eBioscience, 236A/E7)被用于被用于流式细胞仪在人类样本上 (图 1a). PLoS ONE (2016) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 人类; 图 2c
赛默飞世尔 FOXP3抗体(eBioscience, 236A/E7)被用于被用于流式细胞仪在人类样本上 (图 2c). Am J Transplant (2016) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 FOXP3抗体(eBiosciences, 12-4777-42)被用于被用于流式细胞仪在人类样本上 (图 4). J Clin Invest (2016) ncbi
小鼠 单克隆(150D/E4)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔 FOXP3抗体(Ebioscience, 150D/E4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). PLoS ONE (2016) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 3c
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上 (图 3c). Science (2016) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类
赛默飞世尔 FOXP3抗体(eBioscience, 12-4776)被用于被用于流式细胞仪在人类样本上. Immunity (2016) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上 (图 1a). Medicine (Baltimore) (2016) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 8a
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上 (图 8a). PLoS Pathog (2016) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 4d
赛默飞世尔 FOXP3抗体(eBioscience, 12-4776-42)被用于被用于流式细胞仪在人类样本上 (图 4d). J Immunol (2016) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 人类; 图 3a
赛默飞世尔 FOXP3抗体(eBioscience, 236A/E7)被用于被用于流式细胞仪在人类样本上 (图 3a). Eur J Immunol (2016) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 猕猴; 图 5
赛默飞世尔 FOXP3抗体(eBioscience, 236A/E7)被用于被用于流式细胞仪在猕猴样本上 (图 5). Clin Exp Immunol (2016) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 FOXP3抗体(eBioscience, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上. Nat Immunol (2015) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 1
赛默飞世尔 FOXP3抗体(eBioscience, 236A/E7)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 1). Nat Commun (2015) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上 (图 4). Haematologica (2016) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔 FOXP3抗体(eBioscience, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Medicine (Baltimore) (2015) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 人类; 图 8
赛默飞世尔 FOXP3抗体(eBioscience, 236A/E7)被用于被用于流式细胞仪在人类样本上 (图 8). J Clin Invest (2015) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类
赛默飞世尔 FOXP3抗体(eBiosciences, PCH101)被用于被用于流式细胞仪在人类样本上. Respir Res (2015) ncbi
小鼠 单克隆(236a/E7)
  • 免疫细胞化学; pigs
  • 免疫组化; pigs ; 1:50
赛默飞世尔 FOXP3抗体(eBioscience, 236A/E7)被用于被用于免疫细胞化学在pigs 样本上 和 被用于免疫组化在pigs 样本上浓度为1:50. Vaccine (2015) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 FOXP3抗体(eBioscience, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上. Immunology (2015) ncbi
大鼠 单克隆(PCH101)
  • 免疫组化; 人类
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于免疫组化在人类样本上. World J Urol (2016) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类
赛默飞世尔 FOXP3抗体(eBioscience, clone PCH101)被用于被用于流式细胞仪在人类样本上. Clin Vaccine Immunol (2015) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 2b
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上 (图 2b). Retrovirology (2015) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 st1
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上 (图 st1). Infect Immun (2015) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 1 ul/test
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上浓度为1 ul/test. J Immunol Methods (2015) ncbi
小鼠 单克隆(150D/E4)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 FOXP3抗体(eBioscience, 150D/E4)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS ONE (2015) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 6
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上 (图 6). Cancer Immunol Res (2015) ncbi
小鼠 单克隆(eBio7979 (221D/D3))
  • 免疫印迹; 小鼠; 1:500; 图 5,6
赛默飞世尔 FOXP3抗体(eBioscience, eBio7979)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5,6). Nat Commun (2015) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上 (图 2). Cell Res (2015) ncbi
小鼠 单克隆(150D/E4)
  • 流式细胞仪; 大鼠; 图 1
赛默飞世尔 FOXP3抗体(eBiosciences, 150D/E4)被用于被用于流式细胞仪在大鼠样本上 (图 1). Mol Vis (2014) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上 (图 4). Nat Immunol (2015) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上 (图 2). Mol Med Rep (2015) ncbi
小鼠 单克隆(eBio7979 (221D/D3))
  • 免疫印迹; 小鼠
赛默飞世尔 FOXP3抗体(eBiosciences, eBio7979)被用于被用于免疫印迹在小鼠样本上. Nature (2015) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类
赛默飞世尔 FOXP3抗体(eBiosciences, PCH101)被用于被用于流式细胞仪在人类样本上. J Neuroimmunol (2014) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 人类
赛默飞世尔 FOXP3抗体(eBioscience, 236A/E7)被用于被用于流式细胞仪在人类样本上. Hum Immunol (2014) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上. Hum Immunol (2015) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 人类
赛默飞世尔 FOXP3抗体(eBioscience, 236A/E7)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类
赛默飞世尔 FOXP3抗体(e-Bioscience, PCH101)被用于被用于流式细胞仪在人类样本上. Nat Commun (2014) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上. Nat Immunol (2015) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 人类
赛默飞世尔 FOXP3抗体(eBioscience, 236A/E7)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 FOXP3抗体(e-Bioscience, PCH101)被用于被用于流式细胞仪在人类样本上 (图 5). Clin Cancer Res (2015) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 人类
赛默飞世尔 FOXP3抗体(eBioscience, 236A/E7)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 FOXP3抗体(eBioscience, 14-4777-82)被用于被用于免疫组化-石蜡切片在人类样本上. J Immunol (2014) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 3a
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上 (图 3a). Eur J Immunol (2014) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上 (图 1). Immunology (2015) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上. Blood (2014) ncbi
大鼠 单克隆(PCH101)
  • 免疫细胞化学; 人类
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于免疫细胞化学在人类样本上. Eur J Immunol (2014) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 人类
赛默飞世尔 FOXP3抗体(eBioscience, 236A/E7)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上. Mol Oncol (2014) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 人类
赛默飞世尔 FOXP3抗体(eBioscience, clone 236A/E7)被用于被用于流式细胞仪在人类样本上. Mol Ther (2014) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 人类
赛默飞世尔 FOXP3抗体(eBioscience, 236-A/E7)被用于被用于流式细胞仪在人类样本上. Cancer Res (2014) ncbi
大鼠 单克隆(PCH101)
  • 免疫细胞化学; 人类; 1:200
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于免疫细胞化学在人类样本上浓度为1:200. J Crohns Colitis (2014) ncbi
小鼠 单克隆(eBio7979 (221D/D3))
  • 免疫组化-石蜡切片; 家羊; 1:250
赛默飞世尔 FOXP3抗体(eBioscience, 14-7979-82)被用于被用于免疫组化-石蜡切片在家羊样本上浓度为1:250. Am J Physiol Gastrointest Liver Physiol (2014) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; African green monkey; 1:20; 图 s6
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在African green monkey样本上浓度为1:20 (图 s6). Nat Med (2013) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 2b
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上 (图 2b). AIDS Res Hum Retroviruses (2013) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 1:50; 图 1
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1). PLoS ONE (2012) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上 (图 1). Cell Immunol (2012) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 3a
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上 (图 3a). N Engl J Med (2011) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上 (图 1a). J Virol (2011) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 人类; 1:1600
赛默飞世尔 FOXP3抗体(eBioscience, 144-777)被用于被用于免疫组化在人类样本上浓度为1:1600. PLoS ONE (2011) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 S5D
赛默飞世尔 FOXP3抗体(eBioscience, 15-4776-42)被用于被用于流式细胞仪在人类样本上 (图 S5D). Proc Natl Acad Sci U S A (2012) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 人类; 1:40; 图 S5B
赛默飞世尔 FOXP3抗体(eBioscience, 14-4777-82)被用于被用于免疫组化在人类样本上浓度为1:40 (图 S5B). Proc Natl Acad Sci U S A (2012) ncbi
小鼠 单克隆(eBio7979 (221D/D3))
  • 免疫组化-石蜡切片; 人类; 1:50; 表 2
赛默飞世尔 FOXP3抗体(eBioscience, eBio7979)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 2). Breast Cancer (Auckl) (2011) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 大鼠; 50 ug/ml; 表 2
赛默飞世尔 FOXP3抗体(eBioscience, 236A)被用于被用于流式细胞仪在大鼠样本上浓度为50 ug/ml (表 2). Arthritis Res Ther (2011) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 s1
赛默飞世尔 FOXP3抗体(eBioscience, (clone PCH101))被用于被用于流式细胞仪在人类样本上 (图 s1). Blood (2010) ncbi
大鼠 单克隆(PCH101)
  • 免疫组化; 人类; 1:200; 图 2
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2). J Clin Endocrinol Metab (2010) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 FOXP3抗体(eBioscience, 236A/E7)被用于被用于流式细胞仪在小鼠样本上 (图 3). Blood (2010) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 FOXP3抗体(eBioscience, PCH 101)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2010) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上. Arthritis Rheum (2010) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上. PLoS Biol (2010) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 FOXP3抗体(eBiosciences, PCH101)被用于被用于流式细胞仪在人类样本上 (图 4). Br J Dermatol (2010) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上 (图 1). Blood (2009) ncbi
小鼠 单克隆(eBio7979 (221D/D3))
  • 免疫印迹; 小鼠; 2 ug/ml; 图 7
赛默飞世尔 FOXP3抗体(eBioscience, eBio7979)被用于被用于免疫印迹在小鼠样本上浓度为2 ug/ml (图 7). J Immunol (2009) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 人类; 1:100; 图 8
赛默飞世尔 FOXP3抗体(eBioscience, 236A/E7)被用于被用于免疫组化在人类样本上浓度为1:100 (图 8). J Immunol (2009) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上. J Immunol (2009) ncbi
小鼠 单克隆(eBio7979 (221D/D3))
  • 免疫组化; 人类; 1:50; 图 2
赛默飞世尔 FOXP3抗体(eBioscience, 14-7979)被用于被用于免疫组化在人类样本上浓度为1:50 (图 2). PLoS ONE (2008) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上 (表 1). Clin Dev Immunol (2008) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 4a
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上 (图 4a). Blood (2008) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 人类
赛默飞世尔 FOXP3抗体(eBioscience, 236A/E7)被用于被用于流式细胞仪在人类样本上. Cancer Res (2008) ncbi
大鼠 单克隆(PCH101)
  • 免疫印迹; 人类; 2 ug/ml
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于免疫印迹在人类样本上浓度为2 ug/ml. Cancer Res (2008) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; African green monkey
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在African green monkey样本上. Exp Biol Med (Maywood) (2007) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 人类; 图 4
  • 免疫组化; 人类; 图 6
赛默飞世尔 FOXP3抗体(eBioscience, 236A/E7)被用于被用于流式细胞仪在人类样本上 (图 4) 和 被用于免疫组化在人类样本上 (图 6). J Immunol (2007) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 9A
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上 (图 9A). Int Immunol (2007) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上. Gastroenterology (2007) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上 (图 5). Blood (2007) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上. Inflamm Bowel Dis (2007) ncbi
大鼠 单克隆(PCH101)
  • 流式细胞仪; 人类
赛默飞世尔 FOXP3抗体(eBioscience, PCH101)被用于被用于流式细胞仪在人类样本上. J Immunol (2006) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-冰冻切片; 人类
  • 流式细胞仪; 人类
赛默飞世尔 FOXP3抗体(eBioscience, 236A/E7)被用于被用于免疫组化-冰冻切片在人类样本上 和 被用于流式细胞仪在人类样本上. J Immunol (2006) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR22102-37)
  • 免疫印迹; 人类; 1:50; 图 4h
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, ab215206)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 4h). J Cell Mol Med (2021) ncbi
小鼠 单克隆(3G3)
  • 流式细胞仪; 小鼠; 图 s3d
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, ab210232)被用于被用于流式细胞仪在小鼠样本上 (图 s3d). Mol Cancer (2021) ncbi
domestic rabbit 单克隆(EPR22102-37)
  • 免疫组化; 小鼠; 1:500; 图 5b
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, ab215206)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5b). Vaccines (Basel) (2021) ncbi
domestic rabbit 单克隆(EPR22102-37)
  • 免疫组化; 小鼠; 1:200; 图 2f
  • 免疫印迹; 小鼠; 1:1000; 图 7b
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, ab215206)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2f) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7b). Cell Death Discov (2021) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 人类; 图 s4
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, ab20034)被用于被用于免疫组化在人类样本上 (图 s4). Sci Rep (2021) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 人类; 1:200; 图 s2z
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, 236A/E7)被用于被用于免疫组化在人类样本上浓度为1:200 (图 s2z). Neuropathol Appl Neurobiol (2021) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 人类; 1:100; 图 1
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, 236/E7)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1). Mol Clin Oncol (2021) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 人类; 1:50; 图 1f
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, 236A/E7)被用于被用于免疫组化在人类样本上浓度为1:50 (图 1f). BMC Cancer (2021) ncbi
小鼠 单克隆(mAbcam 22510)
  • 免疫组化; 人类; 1:50
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, 22510)被用于被用于免疫组化在人类样本上浓度为1:50. Ann Hematol (2021) ncbi
小鼠 单克隆(mAbcam 22510)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 7a
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, mAbcam22510)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 7a). Arthritis Res Ther (2020) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1c
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1c). Breast Cancer Res (2020) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3c
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, ab2034)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3c). Front Immunol (2019) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 3a
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 3a). Cancer Sci (2020) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 1f
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, 236A/E7)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 1f). J Invest Dermatol (2019) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 图 1a
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, 20034)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). Sci Rep (2017) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2k
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2k). Arch Dermatol Res (2017) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 小鼠; 图 s3b
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, ab20034)被用于被用于免疫组化在小鼠样本上 (图 s3b). FASEB J (2017) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 图 2c
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(mAbcam 22510)
  • 免疫组化-石蜡切片; 人类; 表 1
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, ab22510)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). Cell (2017) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 人类; 1:50; 图 2c
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, ab20034)被用于被用于免疫组化在人类样本上浓度为1:50 (图 2c). Cell Res (2017) ncbi
小鼠 单克隆(236a/E7)
  • 免疫印迹; 人类; 图 3D
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, ab20034)被用于被用于免疫印迹在人类样本上 (图 3D). Int J Mol Sci (2017) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-冰冻切片; 人类; 图 4b
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, 236A/E7)被用于被用于免疫组化-冰冻切片在人类样本上 (图 4b). Am J Transplant (2017) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 人类; 图 1c
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, ab20034)被用于被用于免疫组化在人类样本上 (图 1c). Genome Biol (2016) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2c
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2c). Cancer Immunol Immunother (2017) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 20 ug/ml; 图 3a
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, ab20034)被用于被用于免疫组化-石蜡切片在人类样本上浓度为20 ug/ml (图 3a). J Immunol Res (2016) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 图 1
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Cancer Sci (2016) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 表 3
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上 (表 3). J Eur Acad Dermatol Venereol (2017) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 图 2b
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2b). J Allergy Clin Immunol (2017) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 小鼠; 图 6b
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, 236A/E7)被用于被用于免疫组化在小鼠样本上 (图 6b). Clin Cancer Res (2017) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3
艾博抗(上海)贸易有限公司 FOXP3抗体(abcam, ab20034)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3). Mol Med Rep (2016) ncbi
单克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
艾博抗(上海)贸易有限公司 FOXP3抗体(abcam, ab450)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(mAbcam 22510)
  • 免疫组化-石蜡切片; 人类; 17.0 ug/ml; 图 1F
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, ab22510)被用于被用于免疫组化-石蜡切片在人类样本上浓度为17.0 ug/ml (图 1F). PLoS ONE (2016) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 图 1
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, ab20034)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Oncotarget (2016) ncbi
单克隆
  • 免疫组化-石蜡切片; 人类; 图 1
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, ab450)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Autophagy (2016) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3). Mod Pathol (2016) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 图 1
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, Ab20034)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Head Neck (2016) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 人类; 1:50; 表 2
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, ab20034)被用于被用于免疫组化在人类样本上浓度为1:50 (表 2). Hematol Oncol (2017) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. PLoS ONE (2015) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 图 2
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, AB20034)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). J Immunother Cancer (2015) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上. Laryngoscope (2016) ncbi
单克隆
  • 免疫组化-石蜡切片; 人类; 图 3
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, ab450)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(mAbcam 22510)
  • 免疫组化-石蜡切片; 人类; 20 ug/ml; 图 3b
  • 免疫印迹; 人类; 图 3f
艾博抗(上海)贸易有限公司 FOXP3抗体(abcam, ab22510)被用于被用于免疫组化-石蜡切片在人类样本上浓度为20 ug/ml (图 3b) 和 被用于免疫印迹在人类样本上 (图 3f). PLoS ONE (2015) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 人类; 图 5
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, ab20034)被用于被用于免疫组化在人类样本上 (图 5). Oncoimmunology (2015) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, ab20034)被用于被用于免疫组化-石蜡切片在人类样本上. Cancer Immunol Immunother (2015) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 1:800
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800. J Dermatol Sci (2015) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 图 St1A
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, ab20034)被用于被用于免疫组化-石蜡切片在人类样本上 (图 St1A). Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, 236A/E7)被用于被用于免疫组化在人类样本上. Dis Markers (2014) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 1:60
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:60. World J Gastroenterol (2015) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 1:180; 图 4
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, ab20034)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:180 (图 4). PLoS ONE (2014) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 图 1
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Cancer Discov (2015) ncbi
小鼠 单克隆(mAbcam 22510)
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, ab22510)被用于被用于免疫印迹在人类样本上 (图 1a). Liver Int (2015) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 人类; 图 1c
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, ab20034)被用于被用于免疫组化在人类样本上 (图 1c). Liver Int (2015) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, 236 A/E7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Br J Dermatol (2015) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 人类; 1:100
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, 236A/E7)被用于被用于免疫组化在人类样本上浓度为1:100. PLoS Pathog (2014) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 FOXP3抗体(Abcam, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上. Cancer (2011) ncbi
BioLegend
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 图 5g
BioLegend FOXP3抗体(BioLegend, 150D)被用于被用于流式细胞仪在小鼠样本上 (图 5g). Sci Adv (2021) ncbi
小鼠 单克隆(259D)
  • 流式细胞仪; 人类; 图 6b
BioLegend FOXP3抗体(BioLegend, 320 208)被用于被用于流式细胞仪在人类样本上 (图 6b). Adv Sci (Weinh) (2021) ncbi
小鼠 单克隆(259D)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 s1a
BioLegend FOXP3抗体(Biolegend, 320201)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 s1a). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 1:100; 图 1a
BioLegend FOXP3抗体(Biolegend, 150D)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1a). Nat Commun (2021) ncbi
小鼠 单克隆(259D)
  • 流式细胞仪; 人类; 图 3a
BioLegend FOXP3抗体(BioLegend, 320214)被用于被用于流式细胞仪在人类样本上 (图 3a). Immunity (2021) ncbi
小鼠 单克隆(206D)
  • 免疫组化; 小鼠; 图 s1l
BioLegend FOXP3抗体(BioLegend, 320114)被用于被用于免疫组化在小鼠样本上 (图 s1l). Cell (2020) ncbi
小鼠 单克隆(206D)
  • 免疫组化-石蜡切片; 人类; 图 3
BioLegend FOXP3抗体(BioLegend, 206D)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Front Immunol (2020) ncbi
小鼠 单克隆(206D)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2e
  • 免疫组化; 人类; 1:50; 图 2f
BioLegend FOXP3抗体(Biolegend, 320102)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 2e) 和 被用于免疫组化在人类样本上浓度为1:50 (图 2f). Nature (2020) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 人类; 1:100; 图 7a
BioLegend FOXP3抗体(Biolegend, 320012)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 7a). elife (2019) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 人类; 图 4f
BioLegend FOXP3抗体(Biolegend, 320014)被用于被用于流式细胞仪在人类样本上 (图 4f). Cell Mol Gastroenterol Hepatol (2020) ncbi
小鼠 单克隆(206D)
  • 免疫组化; 人类; 图 3c
BioLegend FOXP3抗体(BioLegend, 320102)被用于被用于免疫组化在人类样本上 (图 3c). Cell (2019) ncbi
小鼠 单克隆(259D)
  • 流式细胞仪; 人类; 1:50; 图 1d
BioLegend FOXP3抗体(Biolegend, 320213)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1d). Nat Commun (2019) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 1:500; 图 e2f
BioLegend FOXP3抗体(Biolegend, 320008)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 e2f). Nature (2019) ncbi
小鼠 单克隆(259D)
  • 流式细胞仪; 人类; 图 s8c
BioLegend FOXP3抗体(BioLegend, 259D)被用于被用于流式细胞仪在人类样本上 (图 s8c). Nat Immunol (2019) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 1:40; 图 6s1
BioLegend FOXP3抗体(Biolegend, 320007)被用于被用于流式细胞仪在小鼠样本上浓度为1:40 (图 6s1). elife (2019) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend FOXP3抗体(Biolegend, 150D)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Int J Cancer (2019) ncbi
小鼠 单克隆(259D)
  • 流式细胞仪; 人类; 图 5a
BioLegend FOXP3抗体(BioLegend, 259D)被用于被用于流式细胞仪在人类样本上 (图 5a). Front Immunol (2018) ncbi
小鼠 单克隆(259D)
  • 流式细胞仪; 人类; 1:10; 图 2a
BioLegend FOXP3抗体(Biolegend, 320212)被用于被用于流式细胞仪在人类样本上浓度为1:10 (图 2a). Nat Med (2019) ncbi
小鼠 单克隆(259D)
  • 其他; 人类; 图 2a
BioLegend FOXP3抗体(BioLegend, 320208)被用于被用于其他在人类样本上 (图 2a). J Clin Invest (2018) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 猕猴; 图 2g
BioLegend FOXP3抗体(Biolegend, 150D)被用于被用于流式细胞仪在猕猴样本上 (图 2g). J Virol (2019) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 人类; 图 3c
BioLegend FOXP3抗体(Biolegend, 320013)被用于被用于流式细胞仪在人类样本上 (图 3c). Biosci Rep (2018) ncbi
小鼠 单克隆(206D)
  • 流式细胞仪; 人类; 图 1
BioLegend FOXP3抗体(BioLegend, 206D)被用于被用于流式细胞仪在人类样本上 (图 1). Am J Trop Med Hyg (2018) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend FOXP3抗体(BioLegend, 150D)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). J Clin Invest (2018) ncbi
小鼠 单克隆(206D)
  • 流式细胞仪; 人类; 图 3b
  • 免疫组化; 人类; 图 3a
BioLegend FOXP3抗体(Biolegend, 206D)被用于被用于流式细胞仪在人类样本上 (图 3b) 和 被用于免疫组化在人类样本上 (图 3a). J Immunol (2018) ncbi
小鼠 单克隆(206D)
  • 流式细胞仪; 人类; 图 4d
BioLegend FOXP3抗体(BioLegend, 206D)被用于被用于流式细胞仪在人类样本上 (图 4d). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 1:50; 图 5b
BioLegend FOXP3抗体(Biolegend, 150D)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 5b). Nat Commun (2017) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 图 4c
BioLegend FOXP3抗体(BioLegend, 150D)被用于被用于流式细胞仪在小鼠样本上 (图 4c). JCI Insight (2017) ncbi
小鼠 单克隆(206D)
  • 流式细胞仪; 人类; 图 4d
BioLegend FOXP3抗体(Biolegend, 320114)被用于被用于流式细胞仪在人类样本上 (图 4d). Front Immunol (2016) ncbi
小鼠 单克隆(206D)
  • 流式细胞仪; 人类; 图 1b
BioLegend FOXP3抗体(BioLegend, 206D)被用于被用于流式细胞仪在人类样本上 (图 1b). Cell Death Dis (2016) ncbi
小鼠 单克隆(206D)
  • 流式细胞仪; 人类; 图 2b
BioLegend FOXP3抗体(Biolegend, 206D)被用于被用于流式细胞仪在人类样本上 (图 2b). Cancer Res (2016) ncbi
小鼠 单克隆(206D)
  • 流式细胞仪; 人类; 图 s2
BioLegend FOXP3抗体(Biolegend, 206D)被用于被用于流式细胞仪在人类样本上 (图 s2). PLoS Pathog (2016) ncbi
小鼠 单克隆(206D)
  • 免疫组化-石蜡切片; 人类; 5 ug/ml; 表 2
BioLegend FOXP3抗体(Biolegend, 320102)被用于被用于免疫组化-石蜡切片在人类样本上浓度为5 ug/ml (表 2). Pathology (2016) ncbi
小鼠 单克隆(259D)
  • 流式细胞仪; 人类; 1:20; 图 st2
BioLegend FOXP3抗体(Biolegend, 320216)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 st2). Nat Commun (2016) ncbi
小鼠 单克隆(150D)
  • 染色质免疫沉淀 ; 小鼠; 图 4
BioLegend FOXP3抗体(Biolegend, 150D)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 4). Nat Immunol (2016) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 图 5d
BioLegend FOXP3抗体(BioLegend, 150D)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Gastroenterology (2016) ncbi
小鼠 单克隆(206D)
  • 流式细胞仪; 人类; 图 6b
BioLegend FOXP3抗体(BioLegend, 206D)被用于被用于流式细胞仪在人类样本上 (图 6b). J Allergy Clin Immunol (2016) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 图 6
BioLegend FOXP3抗体(BioLegend, 150D)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Transl Med (2016) ncbi
小鼠 单克隆(150D)
  • 免疫印迹; 小鼠; 1:500; 图 4
BioLegend FOXP3抗体(Biolegend, 150D)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 人类
BioLegend FOXP3抗体(Biolegend, 320014)被用于被用于流式细胞仪在人类样本上. Mol Oncol (2015) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 图 2
BioLegend FOXP3抗体(BioLegend, 320014)被用于被用于流式细胞仪在小鼠样本上 (图 2). Oncoimmunology (2014) ncbi
小鼠 单克隆(206D)
  • 流式细胞仪; 人类; 图 6
BioLegend FOXP3抗体(BioLegend, 206D)被用于被用于流式细胞仪在人类样本上 (图 6). Bone Marrow Transplant (2015) ncbi
小鼠 单克隆(206D)
  • 流式细胞仪; 人类; 表 s1
BioLegend FOXP3抗体(Biolegend, 206D)被用于被用于流式细胞仪在人类样本上 (表 s1). PLoS ONE (2015) ncbi
小鼠 单克隆(206D)
  • 流式细胞仪; 人类; 图 6
BioLegend FOXP3抗体(BioLegend, 206D)被用于被用于流式细胞仪在人类样本上 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 人类; 图 5
BioLegend FOXP3抗体(Biolegend, 150D)被用于被用于流式细胞仪在人类样本上 (图 5). J Cell Mol Med (2015) ncbi
小鼠 单克隆(206D)
  • 免疫组化; 人类; 图 2
BioLegend FOXP3抗体(320102, 320102)被用于被用于免疫组化在人类样本上 (图 2). Clin Cancer Res (2015) ncbi
小鼠 单克隆(259D)
  • 流式细胞仪; 小鼠; 图 8
BioLegend FOXP3抗体(BioLegend, 320212)被用于被用于流式细胞仪在小鼠样本上 (图 8). J Immunol (2015) ncbi
小鼠 单克隆(206D)
  • 流式细胞仪; 人类; 图 1
BioLegend FOXP3抗体(BioLegend, 206D)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2015) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠
BioLegend FOXP3抗体(BioLegend, 150D)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 大鼠; 图 7
BioLegend FOXP3抗体(BioLegend, 150D)被用于被用于流式细胞仪在大鼠样本上 (图 7). Eur J Immunol (2015) ncbi
小鼠 单克隆(206D)
BioLegend FOXP3抗体(Biolegend, 206D)被用于. PLoS ONE (2014) ncbi
小鼠 单克隆(206D)
BioLegend FOXP3抗体(BioLegend, 320102)被用于. Cancer Immunol Res (2014) ncbi
小鼠 单克隆(150D)
BioLegend FOXP3抗体(BioLegend, 150D)被用于. Nat Commun (2014) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠
BioLegend FOXP3抗体(Biolegend, 320013)被用于被用于流式细胞仪在小鼠样本上. Exp Parasitol (2014) ncbi
小鼠 单克隆(150D)
  • 免疫细胞化学; 人类; 1:50
BioLegend FOXP3抗体(BioLegend, 150D)被用于被用于免疫细胞化学在人类样本上浓度为1:50. Nephrology (Carlton) (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(2A11G9)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s6c
圣克鲁斯生物技术 FOXP3抗体(Santa, sc-53876)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s6c). Theranostics (2021) ncbi
小鼠 单克隆(2A11G9)
  • 免疫组化-石蜡切片; 小鼠; 图 4
  • 免疫印迹; 小鼠; 1:500; 图 6a, 6b
圣克鲁斯生物技术 FOXP3抗体(Santa Cruz, sc-53,876)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 6a, 6b). BMC Nephrol (2019) ncbi
小鼠 单克隆(F-9)
  • 免疫组化-石蜡切片; 小鼠; 表 1
圣克鲁斯生物技术 FOXP3抗体(Santa Cruz, sc166212)被用于被用于免疫组化-石蜡切片在小鼠样本上 (表 1). Methods Mol Biol (2015) ncbi
安迪生物R&D
domestic rabbit 单克隆(1054C)
  • 免疫组化; 人类; 1:100; 图 s2d
安迪生物R&D FOXP3抗体(R&D System, MAB8214)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s2d). Adv Sci (Weinh) (2021) ncbi
美天旎
人类 单克隆(REA788)
  • 免疫细胞化学; 小鼠; 图 s1l
美天旎 FOXP3抗体(Miltenyi Biotec, 130-111-601)被用于被用于免疫细胞化学在小鼠样本上 (图 s1l). Cell (2020) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3f
Novus Biologicals FOXP3抗体(Novus, NB100-39002)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3f). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
Novus Biologicals FOXP3抗体(Novus Biologicals, NB100-39002)被用于. Nature (2015) ncbi
北京傲锐东源
domestic rabbit 多克隆(polyclonal)
  • 免疫印迹; 人类; 图 1i
北京傲锐东源 FOXP3抗体(Origene, TA319911)被用于被用于免疫印迹在人类样本上 (图 1i). Oncotarget (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D2W8E)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4a
赛信通(上海)生物试剂有限公司 FOXP3抗体(Cell Signaling, 98377)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4a). J Immunother Cancer (2021) ncbi
domestic rabbit 单克隆(D2W8E)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 6a
赛信通(上海)生物试剂有限公司 FOXP3抗体(Cell Signaling, 98377S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 6a). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D2W8E)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1c
赛信通(上海)生物试剂有限公司 FOXP3抗体(Cell Signaling, 98377S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1c). J Immunother Cancer (2019) ncbi
domestic rabbit 单克隆(D2W8E)
  • 免疫细胞化学; 人类; 1:100; 图 s6c
赛信通(上海)生物试剂有限公司 FOXP3抗体(Cell Signaling, D2W8E)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s6c). J Immunother Cancer (2017) ncbi
Tonbo Biosciences
小鼠 单克隆(3G3)
  • 流式细胞仪; 小鼠; 图 4b
Tonbo Biosciences FOXP3抗体(Tonbo, 3G3)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Nutrients (2018) ncbi
小鼠 单克隆(3G3)
  • 流式细胞仪; 小鼠; 图 2e
Tonbo Biosciences FOXP3抗体(TONBO Bioscience, 3G3)被用于被用于流式细胞仪在小鼠样本上 (图 2e). J Exp Med (2016) ncbi
碧迪BD
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 小鼠; 图 3h
碧迪BD FOXP3抗体(BD Biosciences, 560852)被用于被用于流式细胞仪在小鼠样本上 (图 3h). Front Physiol (2021) ncbi
小鼠 单克隆(259D/C7)
  • 流式细胞仪; 人类
碧迪BD FOXP3抗体(BD, 560047)被用于被用于流式细胞仪在人类样本上. Cell (2021) ncbi
小鼠 单克隆(259D/C7)
  • 流式细胞仪; 人类; 图 4a-4d
碧迪BD FOXP3抗体(BD Biosciences, 560045)被用于被用于流式细胞仪在人类样本上 (图 4a-4d). elife (2020) ncbi
小鼠 单克隆(259D/C7)
  • 流式细胞仪; 人类; 图 s1c
碧迪BD FOXP3抗体(Becton Dickinson, 562421)被用于被用于流式细胞仪在人类样本上 (图 s1c). Cell (2020) ncbi
小鼠 单克隆(259D/C7)
  • 流式细胞仪; 人类; 图 7k
碧迪BD FOXP3抗体(BD, 259D/C7)被用于被用于流式细胞仪在人类样本上 (图 7k). J Exp Med (2020) ncbi
小鼠 单克隆(259D/C7)
  • 流式细胞仪; 人类; 图 s1
碧迪BD FOXP3抗体(BD Biosciences, 259D/C7)被用于被用于流式细胞仪在人类样本上 (图 s1). J Exp Med (2019) ncbi
小鼠 单克隆(259D/C7)
  • 流式细胞仪; 人类; 图 3a
碧迪BD FOXP3抗体(BD, 259D/C7)被用于被用于流式细胞仪在人类样本上 (图 3a). Front Immunol (2019) ncbi
小鼠 单克隆(259D/C7)
  • 流式细胞仪; 人类; 图 1c
碧迪BD FOXP3抗体(BD Biosciences, 259D/C7)被用于被用于流式细胞仪在人类样本上 (图 1c). Leukemia (2019) ncbi
小鼠 单克隆(259D/C7)
  • 流式细胞仪; 人类; 图 1b
碧迪BD FOXP3抗体(BD Biosciences, 259D/C7)被用于被用于流式细胞仪在人类样本上 (图 1b). J Exp Med (2018) ncbi
小鼠 单克隆(259D/C7)
  • 流式细胞仪; 人类; 图 s2d
碧迪BD FOXP3抗体(BD, 259D/C7)被用于被用于流式细胞仪在人类样本上 (图 s2d). Nature (2017) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 人类
碧迪BD FOXP3抗体(BD BIOSCIENCES, 236A/E7)被用于被用于流式细胞仪在人类样本上. Nature (2017) ncbi
小鼠 单克隆(259D/C7)
  • 流式细胞仪; 人类; 图 s1c
碧迪BD FOXP3抗体(BD Biosciences, 259D/C7)被用于被用于流式细胞仪在人类样本上 (图 s1c). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 人类; 图 1
碧迪BD FOXP3抗体(BD, 561493)被用于被用于流式细胞仪在人类样本上 (图 1). Oncoimmunology (2016) ncbi
小鼠 单克隆(259D/C7)
  • 流式细胞仪; 人类; 图 s7
碧迪BD FOXP3抗体(BD Biosciences, 259D)被用于被用于流式细胞仪在人类样本上 (图 s7). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(259D/C7)
  • 流式细胞仪; 人类; 表 3
碧迪BD FOXP3抗体(BD Pharmingen, 259D/C7)被用于被用于流式细胞仪在人类样本上 (表 3). Brain Behav (2016) ncbi
小鼠 单克隆(259D/C7)
  • 流式细胞仪; 人类
碧迪BD FOXP3抗体(BD, 259D/C7)被用于被用于流式细胞仪在人类样本上. J Exp Med (2016) ncbi
小鼠 单克隆(259D/C7)
  • 流式细胞仪; 人类; 1:100; 图 4
碧迪BD FOXP3抗体(BD Biosciences, 560045)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 4). Clin Cancer Res (2016) ncbi
小鼠 单克隆(259D/C7)
  • 流式细胞仪; 人类; 图 st1
碧迪BD FOXP3抗体(BD, 560046)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(259D/C7)
  • 流式细胞仪; 人类; 图 4b
碧迪BD FOXP3抗体(BD, 560046)被用于被用于流式细胞仪在人类样本上 (图 4b). Front Immunol (2015) ncbi
小鼠 单克隆(259D/C7)
  • 流式细胞仪; 人类; 1:25; 表 1
碧迪BD FOXP3抗体(BD Horizon, 562421)被用于被用于流式细胞仪在人类样本上浓度为1:25 (表 1). PLoS ONE (2015) ncbi
小鼠 单克隆(259D/C7)
  • 流式细胞仪; 人类; 图 2b
碧迪BD FOXP3抗体(BD PharMingen, 560046)被用于被用于流式细胞仪在人类样本上 (图 2b). PLoS ONE (2015) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 人类; 图 s1
碧迪BD FOXP3抗体(BD Pharmingen, 561181)被用于被用于流式细胞仪在人类样本上 (图 s1). Stem Cell Reports (2015) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 人类; 图 1b,1c,1e,1f
碧迪BD FOXP3抗体(BD, 561493)被用于被用于流式细胞仪在人类样本上 (图 1b,1c,1e,1f). PLoS Pathog (2015) ncbi
小鼠 单克隆(236a/E7)
  • 流式细胞仪; 人类; 图 2
碧迪BD FOXP3抗体(BD Biosciences, 236A/E7)被用于被用于流式细胞仪在人类样本上 (图 2). J Autoimmun (2015) ncbi
小鼠 单克隆(259D/C7)
  • 流式细胞仪; 人类; 图 1
碧迪BD FOXP3抗体(BD Biosciences, 259D)被用于被用于流式细胞仪在人类样本上 (图 1). Diabetes (2015) ncbi
小鼠 单克隆(259D/C7)
  • 流式细胞仪; 人类; 图 1g
碧迪BD FOXP3抗体(BD Bioscience, 560459)被用于被用于流式细胞仪在人类样本上 (图 1g). Immunol Res (2015) ncbi
小鼠 单克隆(259D/C7)
  • 流式细胞仪; 人类
碧迪BD FOXP3抗体(BD Biosciences, 259D/C7)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(259D/C7)
  • 流式细胞仪; 人类
碧迪BD FOXP3抗体(BD, 259D/C7)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(259D/C7)
  • 流式细胞仪; 人类
碧迪BD FOXP3抗体(BD Biosciences, 259D/C7)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(259D/C7)
  • 流式细胞仪; 人类; 图 1
碧迪BD FOXP3抗体(BD Biosciences, 259D/C7)被用于被用于流式细胞仪在人类样本上 (图 1). Cancer Discov (2015) ncbi
小鼠 单克隆(259D/C7)
  • 流式细胞仪; 人类; 图 1b
碧迪BD FOXP3抗体(BD, 259D/C7)被用于被用于流式细胞仪在人类样本上 (图 1b). Eur J Immunol (2014) ncbi
小鼠 单克隆(259D/C7)
  • 流式细胞仪; 人类
碧迪BD FOXP3抗体(BD Pharmingen, 259D/C7)被用于被用于流式细胞仪在人类样本上. Immunol Cell Biol (2014) ncbi
小鼠 单克隆(259D/C7)
  • 流式细胞仪; 人类
碧迪BD FOXP3抗体(BD Biosciences, 259D/C7)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2014) ncbi
文章列表
  1. Ni Y, Hu B, Wu G, Shao Z, Zheng Y, Zhang R, et al. Interruption of neutrophil extracellular traps formation dictates host defense and tubular HOXA5 stability to augment efficacy of anti-Fn14 therapy against septic AKI. Theranostics. 2021;11:9431-9451 pubmed 出版商
  2. Horiuchi S, Wu H, Liu W, Schmitt N, Provot J, Liu Y, et al. Tox2 is required for the maintenance of GC TFH cells and the generation of memory TFH cells. Sci Adv. 2021;7:eabj1249 pubmed 出版商
  3. Zou J, Pei X, Xing D, Wu X, Chen S. LINC00261 elevation inhibits angiogenesis and cell cycle progression of pancreatic cancer cells by upregulating SCP2 via targeting FOXP3. J Cell Mol Med. 2021;25:9826-9836 pubmed 出版商
  4. Liu Z, Wang T, She Y, Wu K, Gu S, Li L, et al. N6-methyladenosine-modified circIGF2BP3 inhibits CD8+ T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Mol Cancer. 2021;20:105 pubmed 出版商
  5. Xu M, Zheng X, Wang D, Fu X, Xing Y, Liu Y, et al. Blockage of C-X-C Motif Chemokine Receptor 2 (CXCR2) Suppressed Uric Acid (UA)-Induced Cardiac Remodeling. Front Physiol. 2021;12:700338 pubmed 出版商
  6. Guo L, Xie H, Zhang Z, Wang Z, Peng S, Niu Y, et al. Fusion Protein Vaccine Based on Ag85B and STEAP1 Induces a Protective Immune Response against Prostate Cancer. Vaccines (Basel). 2021;9: pubmed 出版商
  7. Kim G, Kim W, Lim S, Lee H, Koo J, Nam K, et al. In Vivo Induction of Regulatory T Cells Via CTLA-4 Signaling Peptide to Control Autoimmune Encephalomyelitis and Prevent Disease Relapse. Adv Sci (Weinh). 2021;8:2004973 pubmed 出版商
  8. Lu J, Wang W, Li P, Wang X, Gao C, Zhang B, et al. MiR-146a regulates regulatory T cells to suppress heart transplant rejection in mice. Cell Death Discov. 2021;7:165 pubmed 出版商
  9. Wu Q, Tian A, Li B, Leduc M, Forveille S, Hamley P, et al. IGF1 receptor inhibition amplifies the effects of cancer drugs by autophagy and immune-dependent mechanisms. J Immunother Cancer. 2021;9: pubmed 出版商
  10. Zhang J, Qi J, Wei H, Lei Y, Yu H, Liu N, et al. TGFβ1 in Cancer-Associated Fibroblasts Is Associated With Progression and Radiosensitivity in Small-Cell Lung Cancer. Front Cell Dev Biol. 2021;9:667645 pubmed 出版商
  11. Lomphithak T, Akara Amornthum P, Murakami K, Hashimoto M, Usubuchi H, Iwabuchi E, et al. Tumor necroptosis is correlated with a favorable immune cell signature and programmed death-ligand 1 expression in cholangiocarcinoma. Sci Rep. 2021;11:11743 pubmed 出版商
  12. Zimmer T, Broekaart D, Luinenburg M, Mijnsbergen C, Anink J, Sim N, et al. Balloon cells promote immune system activation in focal cortical dysplasia type 2b. Neuropathol Appl Neurobiol. 2021;47:826-839 pubmed 出版商
  13. Amoozgar Z, Kloepper J, Ren J, Tay R, Kazer S, Kiner E, et al. Targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine glioblastomas. Nat Commun. 2021;12:2582 pubmed 出版商
  14. Lindskrog S, Prip F, Lamy P, Taber A, Groeneveld C, Birkenkamp Demtroder K, et al. An integrated multi-omics analysis identifies prognostic molecular subtypes of non-muscle-invasive bladder cancer. Nat Commun. 2021;12:2301 pubmed 出版商
  15. Harada Y, Kazama S, Morikawa T, Sonoda H, Ishi H, Emoto S, et al. Clinical significance of CD8+ and FoxP3+ tumor-infiltrating lymphocytes and MFG-E8 expression in lower rectal cancer with preoperative chemoradiotherapy. Mol Clin Oncol. 2021;14:87 pubmed 出版商
  16. Szabo P, Dogra P, Gray J, Wells S, Connors T, Weisberg S, et al. Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity. 2021;54:797-814.e6 pubmed 出版商
  17. Kuroda H, Jamiyan T, Yamaguchi R, Kakumoto A, Abe A, Harada O, et al. Tumor-infiltrating B cells and T cells correlate with postoperative prognosis in triple-negative carcinoma of the breast. BMC Cancer. 2021;21:286 pubmed 出版商
  18. Brune M, Stussi G, Lundberg P, Vela V, Heim D, Manz M, et al. Effects of lenalidomide on the bone marrow microenvironment in acute myeloid leukemia: Translational analysis of the HOVON103 AML/SAKK30/10 Swiss trial cohort. Ann Hematol. 2021;100:1169-1179 pubmed 出版商
  19. Choi Y, Kim Y, Oh S, Suh K, Kim Y, Lee G, et al. Senescent Tumor Cells Build a Cytokine Shield in Colorectal Cancer. Adv Sci (Weinh). 2021;8:2002497 pubmed 出版商
  20. Rodda L, Netland J, Shehata L, Pruner K, Morawski P, Thouvenel C, et al. Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell. 2021;184:169-183.e17 pubmed 出版商
  21. Luo B, Zhan Y, Luo M, Dong H, Liu J, Lin Y, et al. Engineering of α-PD-1 antibody-expressing long-lived plasma cells by CRISPR/Cas9-mediated targeted gene integration. Cell Death Dis. 2020;11:973 pubmed 出版商
  22. Bhattacharya P, Ellegård R, Khalid M, Svanberg C, Govender M, Keita A, et al. Complement opsonization of HIV affects primary infection of human colorectal mucosa and subsequent activation of T cells. elife. 2020;9: pubmed 出版商
  23. Pasciuto E, Burton O, Roca C, Lagou V, Rajan W, Theys T, et al. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell. 2020;182:625-640.e24 pubmed 出版商
  24. Oh D, Kwek S, Raju S, Li T, McCarthy E, Chow E, et al. Intratumoral CD4+ T Cells Mediate Anti-tumor Cytotoxicity in Human Bladder Cancer. Cell. 2020;181:1612-1625.e13 pubmed 出版商
  25. Kuhny M, Forbes L, Çakan E, Vega Loza A, Kostiuk V, Dinesh R, et al. Disease-associated CTNNBL1 mutation impairs somatic hypermutation by decreasing nuclear AID. J Clin Invest. 2020;: pubmed 出版商
  26. Hanaoka H, Nishimoto T, Okazaki Y, Takeuchi T, Kuwana M. A unique thymus-derived regulatory T cell subset associated with systemic lupus erythematosus. Arthritis Res Ther. 2020;22:88 pubmed 出版商
  27. Kim M, Chung Y, Kim H, Woo J, Ahn S, Park S. Immune microenvironment in ductal carcinoma in situ: a comparison with invasive carcinoma of the breast. Breast Cancer Res. 2020;22:32 pubmed 出版商
  28. Beziat V, Tavernier S, Chen Y, Ma C, Materna M, Laurence A, et al. Dominant-negative mutations in human IL6ST underlie hyper-IgE syndrome. J Exp Med. 2020;217: pubmed 出版商
  29. Herrera Rios D, Mughal S, Teuber Hanselmann S, Pierscianek D, Sucker A, Jansen P, et al. Macrophages/Microglia Represent the Major Source of Indolamine 2,3-Dioxygenase Expression in Melanoma Metastases of the Brain. Front Immunol. 2020;11:120 pubmed 出版商
  30. Bell L, Lenhart A, Rosenwald A, Monoranu C, Berberich Siebelt F. Lymphoid Aggregates in the CNS of Progressive Multiple Sclerosis Patients Lack Regulatory T Cells. Front Immunol. 2019;10:3090 pubmed 出版商
  31. Boudewijns S, Bloemendal M, de Haas N, Westdorp H, Bol K, Schreibelt G, et al. Autologous monocyte-derived DC vaccination combined with cisplatin in stage III and IV melanoma patients: a prospective, randomized phase 2 trial. Cancer Immunol Immunother. 2020;69:477-488 pubmed 出版商
  32. Helmink B, Reddy S, Gao J, Zhang S, Basar R, Thakur R, et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 2020;577:549-555 pubmed 出版商
  33. Shima T, Shimoda M, Shigenobu T, Ohtsuka T, Nishimura T, Emoto K, et al. Infiltration of tumor-associated macrophages is involved in tumor programmed death-ligand 1 expression in early lung adenocarcinoma. Cancer Sci. 2020;111:727-738 pubmed 出版商
  34. Martínez Fábregas J, Wilmes S, Wang L, Hafer M, Pohler E, Lokau J, et al. Kinetics of cytokine receptor trafficking determine signaling and functional selectivity. elife. 2019;8: pubmed 出版商
  35. Li Z, Wang H, Zeng Q, Yan J, Hu Y, Li H, et al. p65/miR-23a/CCL22 axis regulated regulatory T cells recruitment in hepatitis B virus positive hepatocellular carcinoma. Cancer Med. 2020;9:711-723 pubmed 出版商
  36. Wang P, Qi X, Xu G, Liu J, Guo J, Li X, et al. CCL28 promotes locomotor recovery after spinal cord injury via recruiting regulatory T cells. Aging (Albany NY). 2019;11:7402-7415 pubmed 出版商
  37. Griss J, Bauer W, Wagner C, Simon M, Chen M, Grabmeier Pfistershammer K, et al. B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma. Nat Commun. 2019;10:4186 pubmed 出版商
  38. Fu D, Senouthai S, Wang J, You Y. Vasoactive intestinal peptide ameliorates renal injury in a pristane-induced lupus mouse model by modulating Th17/Treg balance. BMC Nephrol. 2019;20:350 pubmed 出版商
  39. Zhang Y, Xu J, Hua J, Liu J, Liang C, Meng Q, et al. A PD-L2-based immune marker signature helps to predict survival in resected pancreatic ductal adenocarcinoma. J Immunother Cancer. 2019;7:233 pubmed 出版商
  40. Di Blasi D, Boldanova T, Mori L, Terracciano L, Heim M, De Libero G. Unique T-Cell Populations Define Immune-Inflamed Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol. 2020;9:195-218 pubmed 出版商
  41. Riquelme E, Zhang Y, Zhang L, Montiel M, Zoltan M, Dong W, et al. Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes. Cell. 2019;178:795-806.e12 pubmed 出版商
  42. Leclerc M, Voilin E, Gros G, Corgnac S, de Montpreville V, Validire P, et al. Regulation of antitumour CD8 T-cell immunity and checkpoint blockade immunotherapy by Neuropilin-1. Nat Commun. 2019;10:3345 pubmed 出版商
  43. Canete P, Sweet R, Gonzalez Figueroa P, Papa I, Ohkura N, Bolton H, et al. Regulatory roles of IL-10-producing human follicular T cells. J Exp Med. 2019;: pubmed 出版商
  44. Del Duca E, Pavel A, Dubin C, Song T, Wallace E, Peng X, et al. Major Differences in Expression of Inflammatory Pathways in Skin from Different Body Sites of Healthy Individuals. J Invest Dermatol. 2019;139:2228-2232.e10 pubmed 出版商
  45. Thauland T, Pellerin L, Ohgami R, Bacchetta R, Butte M. Case Study: Mechanism for Increased Follicular Helper T Cell Development in Activated PI3K Delta Syndrome. Front Immunol. 2019;10:753 pubmed 出版商
  46. Lim S, Kim J, Jeon S, Shin M, Kwon J, Kim T, et al. Defective Localization With Impaired Tumor Cytotoxicity Contributes to the Immune Escape of NK Cells in Pancreatic Cancer Patients. Front Immunol. 2019;10:496 pubmed 出版商
  47. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  48. Binnewies M, Mujal A, Pollack J, Combes A, Hardison E, Barry K, et al. Unleashing Type-2 Dendritic Cells to Drive Protective Antitumor CD4+ T Cell Immunity. Cell. 2019;177:556-571.e16 pubmed 出版商
  49. Thompson P, Shah A, Ntranos V, Van Gool F, Atkinson M, Bhushan A. Targeted Elimination of Senescent Beta Cells Prevents Type 1 Diabetes. Cell Metab. 2019;29:1045-1060.e10 pubmed 出版商
  50. Han D, Liu J, Chen C, Dong L, Liu Y, Chang R, et al. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature. 2019;566:270-274 pubmed 出版商
  51. Wen Z, Jin K, Shen Y, Yang Z, Li Y, Wu B, et al. N-myristoyltransferase deficiency impairs activation of kinase AMPK and promotes synovial tissue inflammation. Nat Immunol. 2019;20:313-325 pubmed 出版商
  52. Lavoie S, Conway K, Lassen K, Jijon H, Pan H, Chun E, et al. The Crohn's disease polymorphism, ATG16L1 T300A, alters the gut microbiota and enhances the local Th1/Th17 response. elife. 2019;8: pubmed 出版商
  53. Ha D, Tanaka A, Kibayashi T, Tanemura A, Sugiyama D, Wing J, et al. Differential control of human Treg and effector T cells in tumor immunity by Fc-engineered anti-CTLA-4 antibody. Proc Natl Acad Sci U S A. 2019;116:609-618 pubmed 出版商
  54. Cornelissen L, Blanas A, van der Horst J, Kruijssen L, Zaal A, O Toole T, et al. Disruption of sialic acid metabolism drives tumor growth by augmenting CD8+ T cell apoptosis. Int J Cancer. 2019;144:2290-2302 pubmed 出版商
  55. Richardson J, Armbruster N, Günter M, Henes J, Autenrieth S. Staphylococcus aureus PSM Peptides Modulate Human Monocyte-Derived Dendritic Cells to Prime Regulatory T Cells. Front Immunol. 2018;9:2603 pubmed 出版商
  56. Williams P, Basu S, Garcia Manero G, Hourigan C, Oetjen K, Cortes J, et al. The distribution of T-cell subsets and the expression of immune checkpoint receptors and ligands in patients with newly diagnosed and relapsed acute myeloid leukemia. Cancer. 2019;125:1470-1481 pubmed 出版商
  57. Wagner D, Amini L, Wendering D, Burkhardt L, Akyüz L, Reinke P, et al. High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat Med. 2019;25:242-248 pubmed 出版商
  58. Kuranda K, Jean Alphonse P, Leborgne C, Hardet R, Collaud F, Marmier S, et al. Exposure to wild-type AAV drives distinct capsid immunity profiles in humans. J Clin Invest. 2018;128:5267-5279 pubmed 出版商
  59. Hoang T, Harper J, Pino M, Wang H, Micci L, King C, et al. Bone Marrow-Derived CD4+ T Cells Are Depleted in Simian Immunodeficiency Virus-Infected Macaques and Contribute to the Size of the Replication-Competent Reservoir. J Virol. 2019;93: pubmed 出版商
  60. Masuda J, Umemura C, Yokozawa M, Yamauchi K, Seko T, Yamashita M, et al. Dietary Supplementation of Selenoneine-Containing Tuna Dark Muscle Extract Effectively Reduces Pathology of Experimental Colorectal Cancers in Mice. Nutrients. 2018;10: pubmed 出版商
  61. Patel N, Vukmanovic Stejic M, Suárez Fariñas M, Chambers E, Sandhu D, Fuentes Duculan J, et al. Impact of Zostavax Vaccination on T-Cell Accumulation and Cutaneous Gene Expression in the Skin of Older Humans After Varicella Zoster Virus Antigen-Specific Challenge. J Infect Dis. 2018;218:S88-S98 pubmed 出版商
  62. Tai Y, Lin L, Xing L, Cho S, Yu T, Acharya C, et al. APRIL signaling via TACI mediates immunosuppression by T regulatory cells in multiple myeloma: therapeutic implications. Leukemia. 2019;33:426-438 pubmed 出版商
  63. Zhao S, Ding J, Wang S, Li C, Guo P, Zhang M, et al. Decreased expression of circulating Aire and increased Tfh/Tfr cells in myasthenia gravis patients. Biosci Rep. 2018;38: pubmed 出版商
  64. Sayin I, Radtke A, Vella L, Jin W, Wherry E, Buggert M, et al. Spatial distribution and function of T follicular regulatory cells in human lymph nodes. J Exp Med. 2018;215:1531-1542 pubmed 出版商
  65. Ondigo B, Ndombi E, Nicholson S, Oguso J, Carter J, Kittur N, et al. Functional Studies of T Regulatory Lymphocytes in Human Schistosomiasis in Western Kenya. Am J Trop Med Hyg. 2018;98:1770-1781 pubmed 出版商
  66. Varelias A, Bunting M, Ormerod K, Koyama M, Olver S, Straube J, et al. Recipient mucosal-associated invariant T cells control GVHD within the colon. J Clin Invest. 2018;128:1919-1936 pubmed 出版商
  67. Han Y, Liu Q, Hou J, Gu Y, Zhang Y, Chen Z, et al. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression. Cell. 2018;173:634-648.e12 pubmed 出版商
  68. Kawano Y, Zavidij O, Park J, Moschetta M, Kokubun K, Mouhieddine T, et al. Blocking IFNAR1 inhibits multiple myeloma-driven Treg expansion and immunosuppression. J Clin Invest. 2018;128:2487-2499 pubmed 出版商
  69. Macdougall C, Wood E, Loschko J, Scagliotti V, Cassidy F, Robinson M, et al. Visceral Adipose Tissue Immune Homeostasis Is Regulated by the Crosstalk between Adipocytes and Dendritic Cell Subsets. Cell Metab. 2018;27:588-601.e4 pubmed 出版商
  70. Qu S, Xue H, Dong X, Lin D, Wu R, Nabavi N, et al. Aneustat (OMN54) has aerobic glycolysis-inhibitory activity and also immunomodulatory activity as indicated by a first-generation PDX prostate cancer model. Int J Cancer. 2018;143:419-429 pubmed 出版商
  71. Hsieh W, Hsu T, Chang Y, Lai M. IL-6 receptor blockade corrects defects of XIAP-deficient regulatory T cells. Nat Commun. 2018;9:463 pubmed 出版商
  72. Lu Y, Kim N, Jiang Y, Zhang H, Zheng D, Zhu F, et al. Cambogin suppresses dextran sulphate sodium-induced colitis by enhancing Treg cell stability and function. Br J Pharmacol. 2018;175:1085-1099 pubmed 出版商
  73. Amodio D, Cotugno N, Macchiarulo G, Rocca S, Dimopoulos Y, Castrucci M, et al. Quantitative Multiplexed Imaging Analysis Reveals a Strong Association between Immunogen-Specific B Cell Responses and Tonsillar Germinal Center Immune Dynamics in Children after Influenza Vaccination. J Immunol. 2018;200:538-550 pubmed 出版商
  74. Mailer R, Gisterå A, Polyzos K, Ketelhuth D, Hansson G. Hypercholesterolemia Enhances T Cell Receptor Signaling and Increases the Regulatory T Cell Population. Sci Rep. 2017;7:15655 pubmed 出版商
  75. Blom S, Paavolainen L, Bychkov D, Turkki R, Mäki Teeri P, Hemmes A, et al. Systems pathology by multiplexed immunohistochemistry and whole-slide digital image analysis. Sci Rep. 2017;7:15580 pubmed 出版商
  76. Carvajal Hausdorf D, Mani N, Velcheti V, Schalper K, Rimm D. Objective measurement and clinical significance of IDO1 protein in hormone receptor-positive breast cancer. J Immunother Cancer. 2017;5:81 pubmed 出版商
  77. Matsuyama K, Mizutani Y, Takahashi T, Shu E, Kanoh H, Miyazaki T, et al. Enhanced dendritic cells and regulatory T cells in the dermis of porokeratosis. Arch Dermatol Res. 2017;309:749-756 pubmed 出版商
  78. Liaskou E, Jeffery L, Chanouzas D, Soskic B, Seldin M, Harper L, et al. Genetic variation at the CD28 locus and its impact on expansion of pro-inflammatory CD28 negative T cells in healthy individuals. Sci Rep. 2017;7:7652 pubmed 出版商
  79. Funken D, Ishikawa Ankerhold H, Uhl B, Lerchenberger M, Rentsch M, Mayr D, et al. In situ targeting of dendritic cells sets tolerogenic environment and ameliorates CD4+ T-cell response in the postischemic liver. FASEB J. 2017;31:4796-4808 pubmed 出版商
  80. Chew V, Lai L, Pan L, Lim C, Li J, Ong R, et al. Delineation of an immunosuppressive gradient in hepatocellular carcinoma using high-dimensional proteomic and transcriptomic analyses. Proc Natl Acad Sci U S A. 2017;114:E5900-E5909 pubmed 出版商
  81. Dias J, Leeansyah E, Sandberg J. Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines. Proc Natl Acad Sci U S A. 2017;114:E5434-E5443 pubmed 出版商
  82. Zheng C, Zheng L, Yoo J, Guo H, Zhang Y, Guo X, et al. Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing. Cell. 2017;169:1342-1356.e16 pubmed 出版商
  83. Garcia Hernandez M, Uribe Uribe N, Espinosa González R, Kast W, Khader S, Rangel Moreno J. A Unique Cellular and Molecular Microenvironment Is Present in Tertiary Lymphoid Organs of Patients with Spontaneous Prostate Cancer Regression. Front Immunol. 2017;8:563 pubmed 出版商
  84. Hasan Z, Koizumi S, Sasaki D, Yamada H, Arakaki N, Fujihara Y, et al. JunB is essential for IL-23-dependent pathogenicity of Th17 cells. Nat Commun. 2017;8:15628 pubmed 出版商
  85. Ventura E, Weller M, Burghardt I. Cutting Edge: ERK1 Mediates the Autocrine Positive Feedback Loop of TGF-? and Furin in Glioma-Initiating Cells. J Immunol. 2017;198:4569-4574 pubmed 出版商
  86. Angelin A, Gil de Gómez L, Dahiya S, Jiao J, Guo L, Levine M, et al. Foxp3 Reprograms T Cell Metabolism to Function in Low-Glucose, High-Lactate Environments. Cell Metab. 2017;25:1282-1293.e7 pubmed 出版商
  87. Huang A, Postow M, Orlowski R, Mick R, Bengsch B, Manne S, et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature. 2017;545:60-65 pubmed 出版商
  88. Zanin Zhorov A, Weiss J, Trzeciak A, Chen W, Zhang J, Nyuydzefe M, et al. Cutting Edge: Selective Oral ROCK2 Inhibitor Reduces Clinical Scores in Patients with Psoriasis Vulgaris and Normalizes Skin Pathology via Concurrent Regulation of IL-17 and IL-10. J Immunol. 2017;198:3809-3814 pubmed 出版商
  89. Melis D, Carbone F, Minopoli G, La Rocca C, Perna F, De Rosa V, et al. Cutting Edge: Increased Autoimmunity Risk in Glycogen Storage Disease Type 1b Is Associated with a Reduced Engagement of Glycolysis in T Cells and an Impaired Regulatory T Cell Function. J Immunol. 2017;198:3803-3808 pubmed 出版商
  90. Su S, Liao J, Liu J, Huang D, He C, Chen F, et al. Blocking the recruitment of naive CD4+ T cells reverses immunosuppression in breast cancer. Cell Res. 2017;27:461-482 pubmed 出版商
  91. Szabo P, Goswami A, Mazzuca D, Kim K, O Gorman D, Hess D, et al. Rapid and Rigorous IL-17A Production by a Distinct Subpopulation of Effector Memory T Lymphocytes Constitutes a Novel Mechanism of Toxic Shock Syndrome Immunopathology. J Immunol. 2017;198:2805-2818 pubmed 出版商
  92. Jeffery H, Jeffery L, Lutz P, Corrigan M, Webb G, Hirschfield G, et al. Low-dose interleukin-2 promotes STAT-5 phosphorylation, Treg survival and CTLA-4-dependent function in autoimmune liver diseases. Clin Exp Immunol. 2017;188:394-411 pubmed 出版商
  93. Rao D, Gurish M, Marshall J, Slowikowski K, Fonseka C, Liu Y, et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature. 2017;542:110-114 pubmed 出版商
  94. Kempińska Podhorodecka A, Milkiewicz M, Wasik U, Ligocka J, Zawadzki M, Krawczyk M, et al. Decreased Expression of Vitamin D Receptor Affects an Immune Response in Primary Biliary Cholangitis via the VDR-miRNA155-SOCS1 Pathway. Int J Mol Sci. 2017;18: pubmed 出版商
  95. Yanagita T, Murata Y, Tanaka D, Motegi S, Arai E, Daniwijaya E, et al. Anti-SIRPα antibodies as a potential new tool for cancer immunotherapy. JCI Insight. 2017;2:e89140 pubmed 出版商
  96. Kim J, Kwon C, Joh J, Sinn D, Choi G, Park J, et al. Differences in Peripheral Blood Lymphocytes between Brand-Name and Generic Tacrolimus Used in Stable Liver Transplant Recipients. Med Princ Pract. 2017;26:221-228 pubmed 出版商
  97. Boardman D, Philippeos C, Fruhwirth G, Ibrahim M, Hannen R, Cooper D, et al. Expression of a Chimeric Antigen Receptor Specific for Donor HLA Class I Enhances the Potency of Human Regulatory T Cells in Preventing Human Skin Transplant Rejection. Am J Transplant. 2017;17:931-943 pubmed 出版商
  98. Lévy R, Okada S, Béziat V, Moriya K, Liu C, Chai L, et al. Genetic, immunological, and clinical features of patients with bacterial and fungal infections due to inherited IL-17RA deficiency. Proc Natl Acad Sci U S A. 2016;113:E8277-E8285 pubmed 出版商
  99. Zhu H, Hu F, Sun X, Zhang X, Zhu L, Liu X, et al. CD16+ Monocyte Subset Was Enriched and Functionally Exacerbated in Driving T-Cell Activation and B-Cell Response in Systemic Lupus Erythematosus. Front Immunol. 2016;7:512 pubmed
  100. Wei C, Mei J, Tang L, Liu Y, Li D, Li M, et al. 1-Methyl-tryptophan attenuates regulatory T cells differentiation due to the inhibition of estrogen-IDO1-MRC2 axis in endometriosis. Cell Death Dis. 2016;7:e2489 pubmed 出版商
  101. Senbabaoglu Y, Gejman R, Winer A, Liu M, Van Allen E, de Velasco G, et al. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol. 2016;17:231 pubmed
  102. Sundara Y, Kostine M, Cleven A, Bovee J, Schilham M, Cleton Jansen A. Increased PD-L1 and T-cell infiltration in the presence of HLA class I expression in metastatic high-grade osteosarcoma: a rationale for T-cell-based immunotherapy. Cancer Immunol Immunother. 2017;66:119-128 pubmed 出版商
  103. Li J, Shayan G, Avery L, Jie H, Gildener Leapman N, Schmitt N, et al. Tumor-infiltrating Tim-3+ T cells proliferate avidly except when PD-1 is co-expressed: Evidence for intracellular cross talk. Oncoimmunology. 2016;5:e1200778 pubmed
  104. Weingartner E, Courneya J, Keegan A, Golding A. A novel method for assaying human regulatory T cell direct suppression of B cell effector function. J Immunol Methods. 2017;441:1-7 pubmed 出版商
  105. Shifrin N, Kissiov D, Ardolino M, Joncker N, Raulet D. Differential Role of Hematopoietic and Nonhematopoietic Cell Types in the Regulation of NK Cell Tolerance and Responsiveness. J Immunol. 2016;197:4127-4136 pubmed 出版商
  106. Peters C, Häsler R, Wesch D, Kabelitz D. Human Vδ2 T cells are a major source of interleukin-9. Proc Natl Acad Sci U S A. 2016;113:12520-12525 pubmed
  107. Dyer W, Tan J, Day T, Kiers L, Kiernan M, Yiannikas C, et al. Immunomodulation of inflammatory leukocyte markers during intravenous immunoglobulin treatment associated with clinical efficacy in chronic inflammatory demyelinating polyradiculoneuropathy. Brain Behav. 2016;6:e00516 pubmed
  108. Kaewkangsadan V, Verma C, Eremin J, Cowley G, Ilyas M, Eremin O. Crucial Contributions by T Lymphocytes (Effector, Regulatory, and Checkpoint Inhibitor) and Cytokines (TH1, TH2, and TH17) to a Pathological Complete Response Induced by Neoadjuvant Chemotherapy in Women with Breast Cancer. J Immunol Res. 2016;2016:4757405 pubmed
  109. Nagase H, Takeoka T, Urakawa S, Morimoto Okazawa A, Kawashima A, Iwahori K, et al. ICOS+ Foxp3+ TILs in gastric cancer are prognostic markers and effector regulatory T cells associated with Helicobacter pylori. Int J Cancer. 2017;140:686-695 pubmed 出版商
  110. Ogiya R, Niikura N, Kumaki N, Bianchini G, Kitano S, Iwamoto T, et al. Comparison of tumor-infiltrating lymphocytes between primary and metastatic tumors in breast cancer patients. Cancer Sci. 2016;107:1730-1735 pubmed 出版商
  111. Wang Y, Ma C, Ling Y, Bousfiha A, Camcioglu Y, Jacquot S, et al. Dual T cell- and B cell-intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med. 2016;213:2413-2435 pubmed
  112. Klarquist J, Tobin K, Farhangi Oskuei P, Henning S, Fernandez M, Dellacecca E, et al. Ccl22 Diverts T Regulatory Cells and Controls the Growth of Melanoma. Cancer Res. 2016;76:6230-6240 pubmed
  113. Pachnio A, Ciáurriz M, Begum J, Lal N, Zuo J, Beggs A, et al. Cytomegalovirus Infection Leads to Development of High Frequencies of Cytotoxic Virus-Specific CD4+ T Cells Targeted to Vascular Endothelium. PLoS Pathog. 2016;12:e1005832 pubmed 出版商
  114. Javvadi L, Parachuru V, Milne T, Seymour G, Rich A. Regulatory T-cells and IL17A(+) cells infiltrate oral lichen planus lesions. Pathology. 2016;48:564-73 pubmed 出版商
  115. Jou Y, Tsai Y, Lin C, Tung C, Shen C, Tsai H, et al. Foxp3 enhances HIF-1α target gene expression in human bladder cancer through decreasing its ubiquitin-proteasomal degradation. Oncotarget. 2016;7:65403-65417 pubmed 出版商
  116. Chopra M, Biehl M, Steinfatt T, Brandl A, Kums J, Amich J, et al. Exogenous TNFR2 activation protects from acute GvHD via host T reg cell expansion. J Exp Med. 2016;213:1881-900 pubmed 出版商
  117. Torrelo A, Noguera Morel L, Hernandez Martin A, Clemente D, Barja J, Buzon L, et al. Recurrent lipoatrophic panniculitis of children. J Eur Acad Dermatol Venereol. 2017;31:536-543 pubmed 出版商
  118. Cheng H, Gaddis D, Wu R, McSkimming C, Haynes L, Taylor A, et al. Loss of ABCG1 influences regulatory T cell differentiation and atherosclerosis. J Clin Invest. 2016;126:3236-46 pubmed 出版商
  119. Chen H, Händel N, Ngeow J, Muller J, Huhn M, Yang H, et al. Immune dysregulation in patients with PTEN hamartoma tumor syndrome: Analysis of FOXP3 regulatory T cells. J Allergy Clin Immunol. 2017;139:607-620.e15 pubmed 出版商
  120. Miyan M, Schmidt Mende J, Kiessling R, Poschke I, de Boniface J. Differential tumor infiltration by T-cells characterizes intrinsic molecular subtypes in breast cancer. J Transl Med. 2016;14:227 pubmed 出版商
  121. Baras A, Drake C, Liu J, Gandhi N, Kates M, Hoque M, et al. The ratio of CD8 to Treg tumor-infiltrating lymphocytes is associated with response to cisplatin-based neoadjuvant chemotherapy in patients with muscle invasive urothelial carcinoma of the bladder. Oncoimmunology. 2016;5:e1134412 pubmed 出版商
  122. Ashizawa T, Iizuka A, Nonomura C, Kondou R, Maeda C, Miyata H, et al. Antitumor Effect of Programmed Death-1 (PD-1) Blockade in Humanized the NOG-MHC Double Knockout Mouse. Clin Cancer Res. 2017;23:149-158 pubmed 出版商
  123. Orta Mascaró M, Consuegra Fernández M, Carreras E, Roncagalli R, Carreras Sureda A, Alvarez P, et al. CD6 modulates thymocyte selection and peripheral T cell homeostasis. J Exp Med. 2016;213:1387-97 pubmed 出版商
  124. Brinkman C, Iwami D, Hritzo M, Xiong Y, Ahmad S, Simon T, et al. Treg engage lymphotoxin beta receptor for afferent lymphatic transendothelial migration. Nat Commun. 2016;7:12021 pubmed 出版商
  125. Gu L, Deng W, Sun X, Zhou H, Xu Q. Rapamycin ameliorates CCl4-induced liver fibrosis in mice through reciprocal regulation of the Th17/Treg cell balance. Mol Med Rep. 2016;14:1153-61 pubmed 出版商
  126. Liu Y, Xia T, Jin C, Gu D, Yu J, Shi W, et al. FOXP3 and CEACAM6 expression and T cell infiltration in the occurrence and development of colon cancer. Oncol Lett. 2016;11:3693-3701 pubmed
  127. Chu H, Khosravi A, Kusumawardhani I, Kwon A, Vasconcelos A, Cunha L, et al. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science. 2016;352:1116-20 pubmed 出版商
  128. Akyol Erikci A, Karagoz B, Bilgi O. Regulatory T Cells in Patients with Idiopathic Thrombocytopenic Purpura. Turk J Haematol. 2016;33:153-5 pubmed 出版商
  129. Zhang H, Prado K, Zhang K, Peek E, Lee J, Wang X, et al. Biased Expression of the FOXP3Δ3 Isoform in Aggressive Bladder Cancer Mediates Differentiation and Cisplatin Chemotherapy Resistance. Clin Cancer Res. 2016;22:5349-5361 pubmed
  130. Stikvoort A, Sundin M, Uzunel M, Gertow J, Sundberg B, Schaffer M, et al. Long-Term Stable Mixed Chimerism after Hematopoietic Stem Cell Transplantation in Patients with Non-Malignant Disease, Shall We Be Tolerant?. PLoS ONE. 2016;11:e0154737 pubmed 出版商
  131. Cook A, McDonnell A, Lake R, Nowak A. Dexamethasone co-medication in cancer patients undergoing chemotherapy causes substantial immunomodulatory effects with implications for chemo-immunotherapy strategies. Oncoimmunology. 2016;5:e1066062 pubmed
  132. Ameratunga M, Asadi K, Lin X, Walkiewicz M, Murone C, Knight S, et al. PD-L1 and Tumor Infiltrating Lymphocytes as Prognostic Markers in Resected NSCLC. PLoS ONE. 2016;11:e0153954 pubmed 出版商
  133. Goldstein J, Burlion A, Zaragoza B, Sendeyo K, Polansky J, Huehn J, et al. Inhibition of the JAK/STAT Signaling Pathway in Regulatory T Cells Reveals a Very Dynamic Regulation of Foxp3 Expression. PLoS ONE. 2016;11:e0153682 pubmed 出版商
  134. Zwang N, Zhang R, Germana S, Fan M, Hastings W, Cao A, et al. Selective Sparing of Human Tregs by Pharmacologic Inhibitors of the Phosphatidylinositol 3-Kinase and MEK Pathways. Am J Transplant. 2016;16:2624-38 pubmed 出版商
  135. Chen C, Liu Y, Hua M, Li X, Ji C, Ma D. Neuropathy correlated with imbalanced Foxp3/IL-17 in bone marrow microenvironment of patients with acute myeloid leukemia. Oncotarget. 2016;7:24455-65 pubmed 出版商
  136. Macdonald K, Hoeppli R, Huang Q, Gillies J, Luciani D, Orban P, et al. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J Clin Invest. 2016;126:1413-24 pubmed 出版商
  137. Ladoire S, Enot D, Senovilla L, Ghiringhelli F, Poirier Colame V, Chaba K, et al. The presence of LC3B puncta and HMGB1 expression in malignant cells correlate with the immune infiltrate in breast cancer. Autophagy. 2016;12:864-75 pubmed 出版商
  138. Apostolidis S, Rodríguez Rodríguez N, Suárez Fueyo A, Dioufa N, Ozcan E, Crispín J, et al. Phosphatase PP2A is requisite for the function of regulatory T cells. Nat Immunol. 2016;17:556-64 pubmed 出版商
  139. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  140. Friedman K, Brodsky A, Lu S, Wood S, Gill A, Lombardo K, et al. Medullary carcinoma of the colon: a distinct morphology reveals a distinctive immunoregulatory microenvironment. Mod Pathol. 2016;29:528-41 pubmed 出版商
  141. Vermeulen J, Van Hecke W, Spliet W, Villacorta Hidalgo J, Fisch P, Broekhuizen R, et al. Pediatric Primitive Neuroectodermal Tumors of the Central Nervous System Differentially Express Granzyme Inhibitors. PLoS ONE. 2016;11:e0151465 pubmed 出版商
  142. Seifert L, Werba G, Tiwari S, Giao Ly N, Nguy S, Alothman S, et al. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice. Gastroenterology. 2016;150:1659-1672.e5 pubmed 出版商
  143. McGranahan N, Furness A, Rosenthal R, Ramskov S, Lyngaa R, Saini S, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351:1463-9 pubmed 出版商
  144. Leitch C, Natafji E, Yu C, Abdul Ghaffar S, Madarasingha N, Venables Z, et al. Filaggrin-null mutations are associated with increased maturation markers on Langerhans cells. J Allergy Clin Immunol. 2016;138:482-490.e7 pubmed 出版商
  145. Tagliamonte M, Petrizzo A, Napolitano M, Luciano A, Rea D, Barbieri A, et al. A novel multi-drug metronomic chemotherapy significantly delays tumor growth in mice. J Transl Med. 2016;14:58 pubmed 出版商
  146. Procaccini C, Carbone F, Di Silvestre D, Brambilla F, De Rosa V, Galgani M, et al. The Proteomic Landscape of Human Ex Vivo Regulatory and Conventional T Cells Reveals Specific Metabolic Requirements. Immunity. 2016;44:406-21 pubmed 出版商
  147. Nguyen N, Bellile E, Thomas D, McHugh J, Rozek L, Virani S, et al. Tumor infiltrating lymphocytes and survival in patients with head and neck squamous cell carcinoma. Head Neck. 2016;38:1074-84 pubmed 出版商
  148. Legorreta Haquet M, Chávez Rueda K, Chávez Sánchez L, Cervera Castillo H, Zenteno Galindo E, Barile Fabris L, et al. Function of Treg Cells Decreased in Patients With Systemic Lupus Erythematosus Due To the Effect of Prolactin. Medicine (Baltimore). 2016;95:e2384 pubmed 出版商
  149. Menter T, Dickenmann M, Juskevicius D, Steiger J, Dirnhofer S, Tzankov A. Comprehensive phenotypic characterization of PTLD reveals potential reliance on EBV or NF-κB signalling instead of B-cell receptor signalling. Hematol Oncol. 2017;35:187-197 pubmed 出版商
  150. James E, Gates T, LaFond R, Yamamoto S, Ni C, Mai D, et al. Neuroinvasive West Nile Infection Elicits Elevated and Atypically Polarized T Cell Responses That Promote a Pathogenic Outcome. PLoS Pathog. 2016;12:e1005375 pubmed 出版商
  151. Younis R, Han K, Webb T. Human Head and Neck Squamous Cell Carcinoma-Associated Semaphorin 4D Induces Expansion of Myeloid-Derived Suppressor Cells. J Immunol. 2016;196:1419-29 pubmed 出版商
  152. Kim K, Wen X, Yang H, Kim W, Kang G. Prognostic Implication of M2 Macrophages Are Determined by the Proportional Balance of Tumor Associated Macrophages and Tumor Infiltrating Lymphocytes in Microsatellite-Unstable Gastric Carcinoma. PLoS ONE. 2015;10:e0144192 pubmed 出版商
  153. Günther S, Ostheimer C, Stangl S, Specht H, Mózes P, Jesinghaus M, et al. Correlation of Hsp70 Serum Levels with Gross Tumor Volume and Composition of Lymphocyte Subpopulations in Patients with Squamous Cell and Adeno Non-Small Cell Lung Cancer. Front Immunol. 2015;6:556 pubmed 出版商
  154. Kobayashi S, Watanabe T, Suzuki R, Furu M, Ito H, Ito J, et al. TGF-β induces the differentiation of human CXCL13-producing CD4(+) T cells. Eur J Immunol. 2016;46:360-71 pubmed 出版商
  155. Vierboom M, Breedveld E, Kap Y, Mary C, Poirier N, t Hart B, et al. Clinical efficacy of a new CD28-targeting antagonist of T cell co-stimulation in a non-human primate model of collagen-induced arthritis. Clin Exp Immunol. 2016;183:405-18 pubmed 出版商
  156. Laborel Préneron E, Bianchi P, Boralevi F, Lehours P, Fraysse F, Morice Picard F, et al. Effects of the Staphylococcus aureus and Staphylococcus epidermidis Secretomes Isolated from the Skin Microbiota of Atopic Children on CD4+ T Cell Activation. PLoS ONE. 2015;10:e0141067 pubmed 出版商
  157. Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol. 2015;16:1235-44 pubmed 出版商
  158. Feng Z, Puri S, Moudgil T, Wood W, Hoyt C, Wang C, et al. Multispectral imaging of formalin-fixed tissue predicts ability to generate tumor-infiltrating lymphocytes from melanoma. J Immunother Cancer. 2015;3:47 pubmed 出版商
  159. Miles B, Miller S, Folkvord J, Kimball A, Chamanian M, Meditz A, et al. Follicular regulatory T cells impair follicular T helper cells in HIV and SIV infection. Nat Commun. 2015;6:8608 pubmed 出版商
  160. Scottà C, Fanelli G, Hoong S, Romano M, Lamperti E, Sukthankar M, et al. Impact of immunosuppressive drugs on the therapeutic efficacy of ex vivo expanded human regulatory T cells. Haematologica. 2016;101:91-100 pubmed 出版商
  161. Zhao L, Li C, Jin P, Ng C, Lin Z, Li Y, et al. Histopathological features of sinonasal inverted papillomas in chinese patients. Laryngoscope. 2016;126:E141-7 pubmed 出版商
  162. Liu K, Yang K, Wu B, Chen H, Chen X, Chen X, et al. Tumor-Infiltrating Immune Cells Are Associated With Prognosis of Gastric Cancer. Medicine (Baltimore). 2015;94:e1631 pubmed 出版商
  163. Bézie S, Picarda E, Ossart J, Tesson L, Usal C, Renaudin K, et al. IL-34 is a Treg-specific cytokine and mediates transplant tolerance. J Clin Invest. 2015;125:3952-64 pubmed 出版商
  164. Broos C, van Nimwegen M, Kleinjan A, Ten Berge B, Muskens F, In t Veen J, et al. Impaired survival of regulatory T cells in pulmonary sarcoidosis. Respir Res. 2015;16:108 pubmed 出版商
  165. Vacchelli E, Semeraro M, Enot D, Chaba K, Poirier Colame V, Dartigues P, et al. Negative prognostic impact of regulatory T cell infiltration in surgically resected esophageal cancer post-radiochemotherapy. Oncotarget. 2015;6:20840-50 pubmed
  166. Gao Y, Zhang M, Li J, Yang M, Liu Y, Guo X, et al. Circulating FoxP3+ Regulatory T and Interleukin17-Producing Th17 Cells Actively Influence HBV Clearance in De Novo Hepatitis B Virus Infected Patients after Orthotopic Liver Transplantation. PLoS ONE. 2015;10:e0137881 pubmed 出版商
  167. Wang W, Yen M, Liu K, Hsu P, Lin M, Chen P, et al. Interleukin-25 Mediates Transcriptional Control of PD-L1 via STAT3 in Multipotent Human Mesenchymal Stromal Cells (hMSCs) to Suppress Th17 Responses. Stem Cell Reports. 2015;5:392-404 pubmed 出版商
  168. Jasinski Bergner S, Stoehr C, Bukur J, Massa C, Braun J, Hüttelmaier S, et al. Clinical relevance of miR-mediated HLA-G regulation and the associated immune cell infiltration in renal cell carcinoma. Oncoimmunology. 2015;4:e1008805 pubmed
  169. Suradhat S, Wongyanin P, Kesdangsakonwut S, Teankum K, Lumyai M, Triyarach S, et al. A novel DNA vaccine for reduction of PRRSV-induced negative immunomodulatory effects: A proof of concept. Vaccine. 2015;33:3997-4003 pubmed 出版商
  170. Prata T, Bonin C, Ferreira A, Padovani C, Fernandes C, Machado A, et al. Local immunosuppression induced by high viral load of human papillomavirus: characterization of cellular phenotypes producing interleukin-10 in cervical neoplastic lesions. Immunology. 2015;146:113-21 pubmed 出版商
  171. Horn T, Laus J, Seitz A, Maurer T, Schmid S, Wolf P, et al. The prognostic effect of tumour-infiltrating lymphocytic subpopulations in bladder cancer. World J Urol. 2016;34:181-7 pubmed 出版商
  172. Castiglioni A, Corna G, Rigamonti E, Basso V, Vezzoli M, Monno A, et al. FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration. PLoS ONE. 2015;10:e0128094 pubmed 出版商
  173. McArthur M, Fresnay S, Magder L, Darton T, Jones C, Waddington C, et al. Activation of Salmonella Typhi-specific regulatory T cells in typhoid disease in a wild-type S. Typhi challenge model. PLoS Pathog. 2015;11:e1004914 pubmed 出版商
  174. Wang Z, Wei M, Zhang H, Chen H, Germana S, Huang C, et al. Diphtheria-toxin based anti-human CCR4 immunotoxin for targeting human CCR4(+) cells in vivo. Mol Oncol. 2015;9:1458-70 pubmed 出版商
  175. Liechtenstein T, Perez Janices N, Blanco Luquin I, Goyvaerts C, Schwarze J, Dufait I, et al. Anti-melanoma vaccines engineered to simultaneously modulate cytokine priming and silence PD-L1 characterized using ex vivo myeloid-derived suppressor cells as a readout of therapeutic efficacy. Oncoimmunology. 2014;3:e945378 pubmed
  176. Boer M, Prins C, van Meijgaarden K, van Dissel J, Ottenhoff T, Joosten S. Mycobacterium bovis BCG Vaccination Induces Divergent Proinflammatory or Regulatory T Cell Responses in Adults. Clin Vaccine Immunol. 2015;22:778-88 pubmed 出版商
  177. DaFonseca S, Niessl J, Pouvreau S, Wacleche V, Gosselin A, Cleret Buhot A, et al. Impaired Th17 polarization of phenotypically naive CD4(+) T-cells during chronic HIV-1 infection and potential restoration with early ART. Retrovirology. 2015;12:38 pubmed 出版商
  178. Anandasabapathy N, Breton G, Hurley A, Caskey M, Trumpfheller C, Sarma P, et al. Efficacy and safety of CDX-301, recombinant human Flt3L, at expanding dendritic cells and hematopoietic stem cells in healthy human volunteers. Bone Marrow Transplant. 2015;50:924-30 pubmed 出版商
  179. Kreiter S, Vormehr M, van de Roemer N, Diken M, Löwer M, Diekmann J, et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature. 2015;520:692-6 pubmed 出版商
  180. Weinberg A, Muresan P, Richardson K, Fenton T, Domínguez T, Bloom A, et al. Determinants of vaccine immunogenicity in HIV-infected pregnant women: analysis of B and T cell responses to pandemic H1N1 monovalent vaccine. PLoS ONE. 2015;10:e0122431 pubmed 出版商
  181. Rochman Y, Yukawa M, Kartashov A, Barski A. Functional characterization of human T cell hyporesponsiveness induced by CTLA4-Ig. PLoS ONE. 2015;10:e0122198 pubmed 出版商
  182. Punt S, van Vliet M, Spaans V, de Kroon C, Fleuren G, Gorter A, et al. FoxP3(+) and IL-17(+) cells are correlated with improved prognosis in cervical adenocarcinoma. Cancer Immunol Immunother. 2015;64:745-53 pubmed 出版商
  183. Romani R, Pirisinu I, Calvitti M, Pallotta M, Gargaro M, Bistoni G, et al. Stem cells from human amniotic fluid exert immunoregulatory function via secreted indoleamine 2,3-dioxygenase1. J Cell Mol Med. 2015;19:1593-605 pubmed 出版商
  184. Obiero J, Shekalaghe S, Hermsen C, Mpina M, Bijker E, Roestenberg M, et al. Impact of malaria preexposure on antiparasite cellular and humoral immune responses after controlled human malaria infection. Infect Immun. 2015;83:2185-96 pubmed 出版商
  185. Bowcutt R, Malter L, Chen L, Wolff M, Robertson I, Rifkin D, et al. Isolation and cytokine analysis of lamina propria lymphocytes from mucosal biopsies of the human colon. J Immunol Methods. 2015;421:27-35 pubmed 出版商
  186. Kim Y, Lim H, Jung H, Wetsel R, Chung Y. Regulation of autoimmune germinal center reactions in lupus-prone BXD2 mice by follicular helper T cells. PLoS ONE. 2015;10:e0120294 pubmed 出版商
  187. Nouël A, Pochard P, Simon Q, Ségalen I, Le Meur Y, Pers J, et al. B-Cells induce regulatory T cells through TGF-β/IDO production in A CTLA-4 dependent manner. J Autoimmun. 2015;59:53-60 pubmed 出版商
  188. Zsiros E, Duttagupta P, Dangaj D, Li H, Frank R, Garrabrant T, et al. The Ovarian Cancer Chemokine Landscape Is Conducive to Homing of Vaccine-Primed and CD3/CD28-Costimulated T Cells Prepared for Adoptive Therapy. Clin Cancer Res. 2015;21:2840-50 pubmed 出版商
  189. Severson J, Serracino H, Mateescu V, Raeburn C, McIntyre R, Sams S, et al. PD-1+Tim-3+ CD8+ T Lymphocytes Display Varied Degrees of Functional Exhaustion in Patients with Regionally Metastatic Differentiated Thyroid Cancer. Cancer Immunol Res. 2015;3:620-30 pubmed 出版商
  190. Hsiao H, Hsu T, Liu W, Hsieh W, Chou T, Wu Y, et al. Deltex1 antagonizes HIF-1α and sustains the stability of regulatory T cells in vivo. Nat Commun. 2015;6:6353 pubmed 出版商
  191. Torres Cabala C, Curry J, Li Ning Tapia E, Ramos C, Tetzlaff M, Prieto V, et al. HTLV-1-associated infective dermatitis demonstrates low frequency of FOXP3-positive T-regulatory lymphocytes. J Dermatol Sci. 2015;77:150-5 pubmed 出版商
  192. Valle A, Barbagiovanni G, Jofra T, Stabilini A, Pérol L, Baeyens A, et al. Heterogeneous CD3 expression levels in differing T cell subsets correlate with the in vivo anti-CD3-mediated T cell modulation. J Immunol. 2015;194:2117-27 pubmed 出版商
  193. Bhela S, Kempsell C, Manohar M, Dominguez Villar M, Griffin R, Bhatt P, et al. Nonapoptotic and extracellular activity of granzyme B mediates resistance to regulatory T cell (Treg) suppression by HLA-DR-CD25hiCD127lo Tregs in multiple sclerosis and in response to IL-6. J Immunol. 2015;194:2180-9 pubmed 出版商
  194. Crncec I, Pathria P, Svinka J, Eferl R. Induction of colorectal cancer in mice and histomorphometric evaluation of tumors. Methods Mol Biol. 2015;1267:145-64 pubmed 出版商
  195. Engels C, Charehbili A, van de Velde C, Bastiaannet E, Sajet A, Putter H, et al. The prognostic and predictive value of Tregs and tumor immune subtypes in postmenopausal, hormone receptor-positive breast cancer patients treated with adjuvant endocrine therapy: a Dutch TEAM study analysis. Breast Cancer Res Treat. 2015;149:587-96 pubmed 出版商
  196. Däster S, Eppenberger Castori S, Hirt C, Zlobec I, Delko T, Nebiker C, et al. High frequency of CD8 positive lymphocyte infiltration correlates with lack of lymph node involvement in early rectal cancer. Dis Markers. 2014;2014:792183 pubmed 出版商
  197. Vorobjova T, Uibo O, Heilman K, Uibo R. Increased density of tolerogenic dendritic cells in the small bowel mucosa of celiac patients. World J Gastroenterol. 2015;21:439-52 pubmed 出版商
  198. Hannani D, Vétizou M, Enot D, Rusakiewicz S, Chaput N, Klatzmann D, et al. Anticancer immunotherapy by CTLA-4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25. Cell Res. 2015;25:208-24 pubmed 出版商
  199. Yu A, Snowhite I, Vendrame F, Rosenzwajg M, Klatzmann D, Pugliese A, et al. Selective IL-2 responsiveness of regulatory T cells through multiple intrinsic mechanisms supports the use of low-dose IL-2 therapy in type 1 diabetes. Diabetes. 2015;64:2172-83 pubmed 出版商
  200. Hildebrand A, Jarsch C, Kern Y, Böhringer D, Reinhard T, Schwartzkopff J. Subconjunctivally applied naïve Tregs support corneal graft survival in baby rats. Mol Vis. 2014;20:1749-57 pubmed
  201. Li F, Ji L, Wang W, Hua F, Zhan Y, Zou S, et al. Insufficient secretion of IL-10 by Tregs compromised its control on over-activated CD4+ T effector cells in newly diagnosed adult immune thrombocytopenia patients. Immunol Res. 2015;61:269-80 pubmed 出版商
  202. Hatano R, Ohnuma K, Otsuka H, Komiya E, Taki I, Iwata S, et al. CD26-mediated induction of EGR2 and IL-10 as potential regulatory mechanism for CD26 costimulatory pathway. J Immunol. 2015;194:960-72 pubmed 出版商
  203. Nguyen L, Pan J, Dinh T, Hadeiba H, O Hara E, Ebtikar A, et al. Role and species-specific expression of colon T cell homing receptor GPR15 in colitis. Nat Immunol. 2015;16:207-213 pubmed 出版商
  204. Wu Y, Du Z, Cai Y, Peng W, Zheng G, Zheng G, et al. Effective expansion of forkhead box P3⁺ regulatory T cells via early secreted antigenic target 6 and antigen 85 complex B from Mycobacterium tuberculosis. Mol Med Rep. 2015;11:3134-42 pubmed 出版商
  205. Rutz S, Kayagaki N, Phung Q, Eidenschenk C, Noubade R, Wang X, et al. Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells. Nature. 2015;518:417-21 pubmed 出版商
  206. Kong L, Wei J, Haider A, Liebelt B, Ling X, Conrad C, et al. Therapeutic targets in subependymoma. J Neuroimmunol. 2014;277:168-75 pubmed 出版商
  207. Cousens L, Najafian N, Martin W, De Groot A. Tregitope: Immunomodulation powerhouse. Hum Immunol. 2014;75:1139-46 pubmed 出版商
  208. Rueda C, Wells C, Gisslen T, Jobe A, Kallapur S, Chougnet C. Effect of chorioamnionitis on regulatory T cells in moderate/late preterm neonates. Hum Immunol. 2015;76:65-73 pubmed 出版商
  209. Huss D, Mehta D, Sharma A, You X, Riester K, Sheridan J, et al. In vivo maintenance of human regulatory T cells during CD25 blockade. J Immunol. 2015;194:84-92 pubmed
  210. Willmann K, Klaver S, DoÄŸu F, Santos Valente E, Garncarz W, Bilic I, et al. Biallelic loss-of-function mutation in NIK causes a primary immunodeficiency with multifaceted aberrant lymphoid immunity. Nat Commun. 2014;5:5360 pubmed 出版商
  211. Dominguez Villar M, Gautron A, de Marcken M, Keller M, Hafler D. TLR7 induces anergy in human CD4(+) T cells. Nat Immunol. 2015;16:118-28 pubmed 出版商
  212. Thompson I, Mann E, Stokes M, English N, Knight S, Williamson D. Specific activation of dendritic cells enhances clearance of Bacillus anthracis following infection. PLoS ONE. 2014;9:e109720 pubmed 出版商
  213. Hermans C, Anz D, Engel J, Kirchner T, Endres S, Mayr D. Analysis of FoxP3+ T-regulatory cells and CD8+ T-cells in ovarian carcinoma: location and tumor infiltration patterns are key prognostic markers. PLoS ONE. 2014;9:e111757 pubmed 出版商
  214. Llosa N, Cruise M, Tam A, Wicks E, Hechenbleikner E, Taube J, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 2015;5:43-51 pubmed 出版商
  215. Thauland T, Koguchi Y, Dustin M, Parker D. CD28-CD80 interactions control regulatory T cell motility and immunological synapse formation. J Immunol. 2014;193:5894-903 pubmed 出版商
  216. Freeman A, Bridge J, Maruthayanar P, Overgaard N, Jung J, Simpson F, et al. Comparative immune phenotypic analysis of cutaneous Squamous Cell Carcinoma and Intraepidermal Carcinoma in immune-competent individuals: proportional representation of CD8+ T-cells but not FoxP3+ Regulatory T-cells is associated with disease stage. PLoS ONE. 2014;9:e110928 pubmed 出版商
  217. Xie L, Choudhury G, Winters A, Yang S, Jin K. Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10. Eur J Immunol. 2015;45:180-91 pubmed 出版商
  218. Weed D, Vella J, Reis I, De La Fuente A, Gomez C, Sargi Z, et al. Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma. Clin Cancer Res. 2015;21:39-48 pubmed 出版商
  219. Bacher P, Kniemeyer O, Teutschbein J, Thön M, Vödisch M, Wartenberg D, et al. Identification of immunogenic antigens from Aspergillus fumigatus by direct multiparameter characterization of specific conventional and regulatory CD4+ T cells. J Immunol. 2014;193:3332-43 pubmed 出版商
  220. Jin J, Zhang W, Wong K, Kwak M, van Driel I, Yu Q. Inhibition of breast cancer resistance protein (ABCG2) in human myeloid dendritic cells induces potent tolerogenic functions during LPS stimulation. PLoS ONE. 2014;9:e104753 pubmed 出版商
  221. Bending D, Pesenacker A, Ursu S, Wu Q, Lom H, Thirugnanabalan B, et al. Hypomethylation at the regulatory T cell-specific demethylated region in CD25hi T cells is decoupled from FOXP3 expression at the inflamed site in childhood arthritis. J Immunol. 2014;193:2699-708 pubmed 出版商
  222. Zhang X, Gao L, Liang X, Guo M, Wang R, Pan Y, et al. HBV preS2 transactivates FOXP3 expression in malignant hepatocytes. Liver Int. 2015;35:1087-94 pubmed 出版商
  223. Skogberg G, Lundberg V, Lindgren S, Gudmundsdottir J, Sandström K, Kämpe O, et al. Altered expression of autoimmune regulator in infant down syndrome thymus, a possible contributor to an autoimmune phenotype. J Immunol. 2014;193:2187-95 pubmed 出版商
  224. Noyan F, Lee Y, Zimmermann K, Hardtke Wolenski M, Taubert R, Warnecke G, et al. Isolation of human antigen-specific regulatory T cells with high suppressive function. Eur J Immunol. 2014;44:2592-602 pubmed 出版商
  225. Kim K, Chung B, Kim B, Cho M, Yang C. The effect of mammalian target of rapamycin inhibition on T helper type 17 and regulatory T cell differentiation in vitro and in vivo in kidney transplant recipients. Immunology. 2015;144:68-78 pubmed 出版商
  226. Gupta M, Kolli D, Molteni C, Casola A, Garofalo R. Paramyxovirus infection regulates T cell responses by BDCA-1+ and BDCA-3+ myeloid dendritic cells. PLoS ONE. 2014;9:e99227 pubmed 出版商
  227. Azzimonti B, Zavattaro E, Provasi M, Vidali M, Conca A, Catalano E, et al. Intense Foxp3+ CD25+ regulatory T-cell infiltration is associated with high-grade cutaneous squamous cell carcinoma and counterbalanced by CD8+/Foxp3+ CD25+ ratio. Br J Dermatol. 2015;172:64-73 pubmed 出版商
  228. Jitschin R, Braun M, Büttner M, Dettmer Wilde K, Bricks J, Berger J, et al. CLL-cells induce IDOhi CD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood. 2014;124:750-60 pubmed 出版商
  229. Hodi F, Lawrence D, Lezcano C, Wu X, Zhou J, Sasada T, et al. Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol Res. 2014;2:632-42 pubmed 出版商
  230. Gautron A, Dominguez Villar M, de Marcken M, Hafler D. Enhanced suppressor function of TIM-3+ FoxP3+ regulatory T cells. Eur J Immunol. 2014;44:2703-2711 pubmed 出版商
  231. Bedke T, Iannitti R, De Luca A, Giovannini G, Fallarino F, Berges C, et al. Distinct and complementary roles for Aspergillus fumigatus-specific Tr1 and Foxp3+ regulatory T cells in humans and mice. Immunol Cell Biol. 2014;92:659-70 pubmed 出版商
  232. Luciano A, Arbona Ramirez I, Ruiz R, Llorens Bonilla B, Martinez Lopez D, Funderburg N, et al. Alterations in regulatory T cell subpopulations seen in preterm infants. PLoS ONE. 2014;9:e95867 pubmed 出版商
  233. Grage Griebenow E, Jerg E, Gorys A, Wicklein D, Wesch D, Freitag Wolf S, et al. L1CAM promotes enrichment of immunosuppressive T cells in human pancreatic cancer correlating with malignant progression. Mol Oncol. 2014;8:982-97 pubmed 出版商
  234. Kuwahara M, Suzuki J, Tofukuji S, Yamada T, Kanoh M, Matsumoto A, et al. The Menin-Bach2 axis is critical for regulating CD4 T-cell senescence and cytokine homeostasis. Nat Commun. 2014;5:3555 pubmed 出版商
  235. Ito S, Bollard C, Carlsten M, Melenhorst J, Biancotto A, Wang E, et al. Ultra-low dose interleukin-2 promotes immune-modulating function of regulatory T cells and natural killer cells in healthy volunteers. Mol Ther. 2014;22:1388-1395 pubmed 出版商
  236. Keswani T, Bhattacharyya A. Differential role of T regulatory and Th17 in Swiss mice infected with Plasmodium berghei ANKA and Plasmodium yoelii. Exp Parasitol. 2014;141:82-92 pubmed 出版商
  237. Berney Meyer L, Hung N, Slatter T, Schollum J, Kitching A, Walker R. Omeprazole-induced acute interstitial nephritis: a possible Th1-Th17-mediated injury?. Nephrology (Carlton). 2014;19:359-65 pubmed 出版商
  238. Peguillet I, Milder M, Louis D, Vincent Salomon A, Dorval T, Piperno Neumann S, et al. High numbers of differentiated effector CD4 T cells are found in patients with cancer and correlate with clinical response after neoadjuvant therapy of breast cancer. Cancer Res. 2014;74:2204-16 pubmed 出版商
  239. Sereti I, Estes J, Thompson W, Morcock D, Fischl M, Croughs T, et al. Decreases in colonic and systemic inflammation in chronic HIV infection after IL-7 administration. PLoS Pathog. 2014;10:e1003890 pubmed 出版商
  240. Naviglio S, Arrigo S, Martelossi S, Villanacci V, Tommasini A, Loganes C, et al. Severe inflammatory bowel disease associated with congenital alteration of transforming growth factor beta signaling. J Crohns Colitis. 2014;8:770-4 pubmed 出版商
  241. Wolfs T, Kramer B, Thuijls G, Kemp M, Saito M, Willems M, et al. Chorioamnionitis-induced fetal gut injury is mediated by direct gut exposure of inflammatory mediators or by lung inflammation. Am J Physiol Gastrointest Liver Physiol. 2014;306:G382-93 pubmed 出版商
  242. Park S, Veerapu N, Shin E, Biancotto A, McCoy J, Capone S, et al. Subinfectious hepatitis C virus exposures suppress T cell responses against subsequent acute infection. Nat Med. 2013;19:1638-42 pubmed 出版商
  243. Shaw J, Hunt P, Critchfield J, McConnell D, Garcia J, Pollard R, et al. Short communication: HIV+ viremic slow progressors maintain low regulatory T cell numbers in rectal mucosa but exhibit high T cell activation. AIDS Res Hum Retroviruses. 2013;29:172-7 pubmed 出版商
  244. Wolff M, Leung J, Davenport M, Poles M, Cho I, Loke P. TH17, TH22 and Treg cells are enriched in the healthy human cecum. PLoS ONE. 2012;7:e41373 pubmed 出版商
  245. Nicholson I, Mavrangelos C, Bird D, Bresatz Atkins S, Eastaff Leung N, Grose R, et al. PI16 is expressed by a subset of human memory Treg with enhanced migration to CCL17 and CCL20. Cell Immunol. 2012;275:12-8 pubmed 出版商
  246. Koreth J, Matsuoka K, Kim H, McDonough S, Bindra B, Alyea E, et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N Engl J Med. 2011;365:2055-66 pubmed 出版商
  247. Shaw J, Hunt P, Critchfield J, McConnell D, Garcia J, Pollard R, et al. Increased frequency of regulatory T cells accompanies increased immune activation in rectal mucosae of HIV-positive noncontrollers. J Virol. 2011;85:11422-34 pubmed 出版商
  248. Caramori G, Lasagna L, Casalini A, Adcock I, Casolari P, Contoli M, et al. Immune response to Mycobacterium tuberculosis infection in the parietal pleura of patients with tuberculous pleurisy. PLoS ONE. 2011;6:e22637 pubmed 出版商
  249. Ruffell B, Au A, Rugo H, Esserman L, Hwang E, Coussens L. Leukocyte composition of human breast cancer. Proc Natl Acad Sci U S A. 2012;109:2796-801 pubmed 出版商
  250. West N, Panet Raymond V, Truong P, Alexander C, Babinszky S, Milne K, et al. Intratumoral Immune Responses Can Distinguish New Primary and True Recurrence Types of Ipsilateral Breast Tumor Recurrences (IBTR). Breast Cancer (Auckl). 2011;5:105-15 pubmed 出版商
  251. Gadiot J, Hooijkaas A, Kaiser A, Van Tinteren H, van Boven H, Blank C. Overall survival and PD-L1 expression in metastasized malignant melanoma. Cancer. 2011;117:2192-201 pubmed 出版商
  252. Wu Y, Ren M, Yang R, Liang X, Ma Y, Tang Y, et al. Reduced immunomodulation potential of bone marrow-derived mesenchymal stem cells induced CCR4+CCR6+ Th/Treg cell subset imbalance in ankylosing spondylitis. Arthritis Res Ther. 2011;13:R29 pubmed 出版商
  253. Antonelli L, Mahnke Y, Hodge J, Porter B, Barber D, DerSimonian R, et al. Elevated frequencies of highly activated CD4+ T cells in HIV+ patients developing immune reconstitution inflammatory syndrome. Blood. 2010;116:3818-27 pubmed 出版商
  254. French J, Weber Z, Fretwell D, Said S, Klopper J, Haugen B. Tumor-associated lymphocytes and increased FoxP3+ regulatory T cell frequency correlate with more aggressive papillary thyroid cancer. J Clin Endocrinol Metab. 2010;95:2325-33 pubmed 出版商
  255. Markley J, Sadelain M. IL-7 and IL-21 are superior to IL-2 and IL-15 in promoting human T cell-mediated rejection of systemic lymphoma in immunodeficient mice. Blood. 2010;115:3508-19 pubmed 出版商
  256. Oo Y, Weston C, Lalor P, Curbishley S, Withers D, Reynolds G, et al. Distinct roles for CCR4 and CXCR3 in the recruitment and positioning of regulatory T cells in the inflamed human liver. J Immunol. 2010;184:2886-98 pubmed 出版商
  257. Hunter P, Nistala K, Jina N, Eddaoudi A, Thomson W, Hubank M, et al. Biologic predictors of extension of oligoarticular juvenile idiopathic arthritis as determined from synovial fluid cellular composition and gene expression. Arthritis Rheum. 2010;62:896-907 pubmed 出版商
  258. Amarnath S, Costanzo C, Mariotti J, Ullman J, Telford W, Kapoor V, et al. Regulatory T cells and human myeloid dendritic cells promote tolerance via programmed death ligand-1. PLoS Biol. 2010;8:e1000302 pubmed 出版商
  259. Antiga E, Quaglino P, Bellandi S, Volpi W, Del Bianco E, Comessatti A, et al. Regulatory T cells in the skin lesions and blood of patients with systemic sclerosis and morphoea. Br J Dermatol. 2010;162:1056-63 pubmed 出版商
  260. Houot R, Goldstein M, Kohrt H, Myklebust J, Alizadeh A, Lin J, et al. Therapeutic effect of CD137 immunomodulation in lymphoma and its enhancement by Treg depletion. Blood. 2009;114:3431-8 pubmed 出版商
  261. Ellestad K, Tsutsui S, Noorbakhsh F, Warren K, Yong V, Pittman Q, et al. Early life exposure to lipopolysaccharide suppresses experimental autoimmune encephalomyelitis by promoting tolerogenic dendritic cells and regulatory T cells. J Immunol. 2009;183:298-309 pubmed 出版商
  262. Sivasankar B, Longhi M, Gallagher K, Betts G, Morgan B, Godkin A, et al. CD59 blockade enhances antigen-specific CD4+ T cell responses in humans: a new target for cancer immunotherapy?. J Immunol. 2009;182:5203-7 pubmed 出版商
  263. Milne K, Barnes R, Girardin A, Mawer M, Nesslinger N, Ng A, et al. Tumor-infiltrating T cells correlate with NY-ESO-1-specific autoantibodies in ovarian cancer. PLoS ONE. 2008;3:e3409 pubmed 出版商
  264. Fujimaki W, Takahashi N, Ohnuma K, Nagatsu M, Kurosawa H, Yoshida S, et al. Comparative study of regulatory T cell function of human CD25CD4 T cells from thymocytes, cord blood, and adult peripheral blood. Clin Dev Immunol. 2008;2008:305859 pubmed 出版商
  265. Koenen H, Smeets R, Vink P, van Rijssen E, Boots A, Joosten I. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood. 2008;112:2340-52 pubmed 出版商
  266. Ebert L, Tan B, Browning J, Svobodova S, Russell S, Kirkpatrick N, et al. The regulatory T cell-associated transcription factor FoxP3 is expressed by tumor cells. Cancer Res. 2008;68:3001-9 pubmed 出版商
  267. Pereira L, Villinger F, Wulff H, Sankaranarayanan A, Raman G, Ansari A. Pharmacokinetics, toxicity, and functional studies of the selective Kv1.3 channel blocker 5-(4-phenoxybutoxy)psoralen in rhesus macaques. Exp Biol Med (Maywood). 2007;232:1338-54 pubmed
  268. Kang S, Lim H, Andrisani O, Broxmeyer H, Kim C. Vitamin A metabolites induce gut-homing FoxP3+ regulatory T cells. J Immunol. 2007;179:3724-33 pubmed
  269. Yates J, Rovis F, Mitchell P, Afzali B, Tsang J, Garin M, et al. The maintenance of human CD4+ CD25+ regulatory T cell function: IL-2, IL-4, IL-7 and IL-15 preserve optimal suppressive potency in vitro. Int Immunol. 2007;19:785-99 pubmed
  270. Zuber J, Viguier M, Lemaitre F, Senée V, Patey N, Elain G, et al. Severe FOXP3+ and naïve T lymphopenia in a non-IPEX form of autoimmune enteropathy combined with an immunodeficiency. Gastroenterology. 2007;132:1694-704 pubmed
  271. Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood. 2007;110:1225-32 pubmed
  272. Yu Q, Saruta M, Avanesyan A, Fleshner P, Banham A, Papadakis K. Expression and functional characterization of FOXP3+ CD4+ regulatory T cells in ulcerative colitis. Inflamm Bowel Dis. 2007;13:191-9 pubmed
  273. Lim H, Broxmeyer H, Kim C. Regulation of trafficking receptor expression in human forkhead box P3+ regulatory T cells. J Immunol. 2006;177:840-51 pubmed