这是一篇来自已证抗体库的有关人类 肿瘤坏死因子受体超家族成员6 (Fas) 的综述,是根据125篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合肿瘤坏死因子受体超家族成员6 抗体。
肿瘤坏死因子受体超家族成员6 同义词: ALPS1A; APO-1; APT1; CD95; FAS1; FASTM; TNFRSF6

其他
  • 流式细胞仪; 人类; 图 e4d
肿瘤坏死因子受体超家族成员6抗体(BioLegend, DX2)被用于被用于流式细胞仪在人类样本上 (图 e4d). Nature (2019) ncbi
BioLegend
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 2b
BioLegend肿瘤坏死因子受体超家族成员6抗体(Biolegend, DX2)被用于被用于流式细胞仪在人类样本上 (图 2b). BMC Biol (2021) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 1:100; 图 2i
BioLegend肿瘤坏死因子受体超家族成员6抗体(Biolegend, 305624)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2i). Nat Med (2021) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 小鼠; 1:200; 图 1h
BioLegend肿瘤坏死因子受体超家族成员6抗体(Biolegend, 305612)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1h). elife (2021) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 小鼠; 1:1000
BioLegend肿瘤坏死因子受体超家族成员6抗体(Biolegend, 305608)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000. Cell Rep Med (2021) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 猕猴; 图 s3b
BioLegend肿瘤坏死因子受体超家族成员6抗体(BIOLEGEND, 305644)被用于被用于流式细胞仪在猕猴样本上 (图 s3b). Cell (2021) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 3a
BioLegend肿瘤坏死因子受体超家族成员6抗体(BioLegend, 305610)被用于被用于流式细胞仪在人类样本上 (图 3a). Immunity (2021) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 1:100
BioLegend肿瘤坏死因子受体超家族成员6抗体(Biolegend, 305642)被用于被用于流式细胞仪在人类样本上浓度为1:100. bioRxiv (2020) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 e4d
BioLegend肿瘤坏死因子受体超家族成员6抗体(BioLegend, DX2)被用于被用于流式细胞仪在人类样本上 (图 e4d). Nature (2019) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 3f, 3g
BioLegend肿瘤坏死因子受体超家族成员6抗体(Biolegend, DX2)被用于被用于流式细胞仪在人类样本上 (图 3f, 3g). Brain Pathol (2020) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 2a
BioLegend肿瘤坏死因子受体超家族成员6抗体(BioLegend, 305612)被用于被用于流式细胞仪在人类样本上 (图 2a). Sci Rep (2019) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 表 s1
BioLegend肿瘤坏死因子受体超家族成员6抗体(Biolegend, DX2)被用于被用于流式细胞仪在人类样本上 (表 s1). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 猕猴; 图 3a
BioLegend肿瘤坏死因子受体超家族成员6抗体(Biolegend, DX2)被用于被用于流式细胞仪在猕猴样本上 (图 3a). J Virol (2019) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 2a
BioLegend肿瘤坏死因子受体超家族成员6抗体(BioLegend, DX2)被用于被用于流式细胞仪在人类样本上 (图 2a). Int J Infect Dis (2018) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 小鼠; 图 s3f
BioLegend肿瘤坏死因子受体超家族成员6抗体(BioLegend, 305622)被用于被用于流式细胞仪在小鼠样本上 (图 s3f). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 2a
BioLegend肿瘤坏死因子受体超家族成员6抗体(Biolegend, 305607)被用于被用于流式细胞仪在人类样本上 (图 2a). Oncotarget (2017) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 猕猴; 图 4
BioLegend肿瘤坏死因子受体超家族成员6抗体(BioLegend, DX2)被用于被用于流式细胞仪在猕猴样本上 (图 4). PLoS Pathog (2016) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类
BioLegend肿瘤坏死因子受体超家族成员6抗体(BioLegend, Dx2)被用于被用于流式细胞仪在人类样本上. J Exp Med (2016) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 1c
BioLegend肿瘤坏死因子受体超家族成员6抗体(Biolegend, DX2)被用于被用于流式细胞仪在人类样本上 (图 1c). AIDS Res Hum Retroviruses (2016) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 2c
BioLegend肿瘤坏死因子受体超家族成员6抗体(Biolegend, DX2)被用于被用于流式细胞仪在人类样本上 (图 2c). PLoS ONE (2016) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 9c
BioLegend肿瘤坏死因子受体超家族成员6抗体(BioLegend, DX2)被用于被用于流式细胞仪在人类样本上 (图 9c). J Exp Med (2016) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 2a
BioLegend肿瘤坏死因子受体超家族成员6抗体(BioLegend, 305608)被用于被用于流式细胞仪在人类样本上 (图 2a). Haematologica (2016) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 猕猴; 图 4
BioLegend肿瘤坏死因子受体超家族成员6抗体(Biolegend, DX2)被用于被用于流式细胞仪在猕猴样本上 (图 4). J Virol (2016) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类
BioLegend肿瘤坏死因子受体超家族成员6抗体(Biolegend, 305612)被用于被用于流式细胞仪在人类样本上. Cancer Lett (2015) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 猕猴; 图 4
BioLegend肿瘤坏死因子受体超家族成员6抗体(BioLegend, DX2)被用于被用于流式细胞仪在猕猴样本上 (图 4). J Virol (2015) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 6
BioLegend肿瘤坏死因子受体超家族成员6抗体(Biolegend, DX2)被用于被用于流式细胞仪在人类样本上 (图 6). Am J Hum Genet (2015) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 1:40
BioLegend肿瘤坏死因子受体超家族成员6抗体(BioLegend, DX2)被用于被用于流式细胞仪在人类样本上浓度为1:40. Nat Med (2014) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类
BioLegend肿瘤坏死因子受体超家族成员6抗体(BioLegend, DX2)被用于被用于流式细胞仪在人类样本上. Eur J Immunol (2014) ncbi
赛默飞世尔
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 3s1
赛默飞世尔肿瘤坏死因子受体超家族成员6抗体(eBioscience, 12-0959-42)被用于被用于流式细胞仪在人类样本上 (图 3s1). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 6a
赛默飞世尔肿瘤坏死因子受体超家族成员6抗体(Thermo Fisher, PAS-38490)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6a). Oncotarget (2018) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 表 3
赛默飞世尔肿瘤坏死因子受体超家族成员6抗体(Invitrogen, DX2)被用于被用于流式细胞仪在人类样本上 (表 3). Am J Pathol (2017) ncbi
小鼠 单克隆(SM1/1)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔肿瘤坏死因子受体超家族成员6抗体(eBioscience, SM1/1)被用于被用于流式细胞仪在人类样本上 (图 1b). Sci Rep (2016) ncbi
小鼠 单克隆(SM1/23)
  • 抑制或激活实验; 人类; 10 ug/ml; 图 4b
赛默飞世尔肿瘤坏死因子受体超家族成员6抗体(eBioscience, SM1/23)被用于被用于抑制或激活实验在人类样本上浓度为10 ug/ml (图 4b). Sci Rep (2016) ncbi
小鼠 单克隆(DX2)
  • 免疫印迹; 大鼠; 图 7
赛默飞世尔肿瘤坏死因子受体超家族成员6抗体(ThermoFisher Scientific, MHCD9528)被用于被用于免疫印迹在大鼠样本上 (图 7). Exp Ther Med (2016) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 st1
赛默飞世尔肿瘤坏死因子受体超家族成员6抗体(e- Bioscienc e, 12-0959-73)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 s2
赛默飞世尔肿瘤坏死因子受体超家族成员6抗体(eBioscience, DX2)被用于被用于流式细胞仪在人类样本上 (图 s2). BMC Biotechnol (2016) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类
赛默飞世尔肿瘤坏死因子受体超家族成员6抗体(eBiosciences, DX2)被用于被用于流式细胞仪在人类样本上. Respir Res (2015) ncbi
小鼠 单克隆(LT95)
  • 流式细胞仪; 人类
赛默飞世尔肿瘤坏死因子受体超家族成员6抗体(Thermo, Clone LT95)被用于被用于流式细胞仪在人类样本上. Int J Infect Dis (2015) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔肿瘤坏死因子受体超家族成员6抗体(eBioscience, DX2)被用于被用于流式细胞仪在人类样本上 (图 2). J Immunol (2015) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔肿瘤坏死因子受体超家族成员6抗体(生活技术, DX2)被用于被用于流式细胞仪在人类样本上 (图 1). Blood (2015) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类
赛默飞世尔肿瘤坏死因子受体超家族成员6抗体(eBioscience, DX2)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类
赛默飞世尔肿瘤坏死因子受体超家族成员6抗体(eBioscience, 12-0959)被用于被用于流式细胞仪在人类样本上. Mol Med Rep (2014) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔肿瘤坏死因子受体超家族成员6抗体(Invitrogen, DX2)被用于被用于流式细胞仪在人类样本上 (图 3). Cytometry B Clin Cytom (2015) ncbi
小鼠 单克隆(EOS9.1)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔肿瘤坏死因子受体超家族成员6抗体(eBioscience, EOS9.1)被用于被用于流式细胞仪在人类样本上 (图 5). Ann Rheum Dis (2015) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔肿瘤坏死因子受体超家族成员6抗体(Invitrogen, clone DX2)被用于被用于流式细胞仪在人类样本上 (图 1). Hum Immunol (2011) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔肿瘤坏死因子受体超家族成员6抗体(Invitrogen, clone DX2)被用于被用于流式细胞仪在人类样本上 (图 3). J Immunol (2011) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 猕猴
赛默飞世尔肿瘤坏死因子受体超家族成员6抗体(Invitrogen, DX2)被用于被用于流式细胞仪在猕猴样本上. J Immunol (2010) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 猕猴
赛默飞世尔肿瘤坏死因子受体超家族成员6抗体(Invitrogen, DX2)被用于被用于流式细胞仪在猕猴样本上. J Med Primatol (2008) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔肿瘤坏死因子受体超家族成员6抗体(Caltag, DX2)被用于被用于流式细胞仪在人类样本上 (图 3). J Immunol (2008) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 猕猴
赛默飞世尔肿瘤坏死因子受体超家族成员6抗体(Caltag, DX2)被用于被用于流式细胞仪在猕猴样本上. Immunology (2006) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔肿瘤坏死因子受体超家族成员6抗体(Caltag Laboratories, clone DX2)被用于被用于流式细胞仪在人类样本上 (图 2). Blood (2002) ncbi
小鼠 单克隆(DX2)
  • 抑制或激活实验; 人类
赛默飞世尔肿瘤坏死因子受体超家族成员6抗体(invitrogen, DX2)被用于被用于抑制或激活实验在人类样本上. J Exp Med (1994) ncbi
圣克鲁斯生物技术
小鼠 单克隆(B-10)
  • 免疫印迹; 小鼠; 1:1000; 图 s1a
圣克鲁斯生物技术肿瘤坏死因子受体超家族成员6抗体(Santa Cruz, sc-8009)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1a). J Inflamm Res (2021) ncbi
小鼠 单克隆(B-10)
  • 免疫印迹; 大鼠; 1:200; 图 5c
圣克鲁斯生物技术肿瘤坏死因子受体超家族成员6抗体(Santa Cruz Biotechnology, sc-8009)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 5c). Int J Nanomedicine (2020) ncbi
小鼠 单克隆(B-10)
  • 免疫组化-石蜡切片; 人类; 图 3b, 3c
圣克鲁斯生物技术肿瘤坏死因子受体超家族成员6抗体(Santa Cruz, B-10)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3b, 3c). Brain Pathol (2020) ncbi
小鼠 单克隆(B-10)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术肿瘤坏死因子受体超家族成员6抗体(Santa Cruz Biotechnology, sc-8009)被用于被用于免疫印迹在人类样本上 (图 2a). Sci Rep (2017) ncbi
小鼠 单克隆(C236)
  • 免疫沉淀; 小鼠; 1 ug/ml; 图 2
圣克鲁斯生物技术肿瘤坏死因子受体超家族成员6抗体(santa Cruz, sc-21730)被用于被用于免疫沉淀在小鼠样本上浓度为1 ug/ml (图 2). Biomed Res Int (2015) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR5700)
  • 免疫印迹; 大鼠; 1:1000; 图 5c
艾博抗(上海)贸易有限公司肿瘤坏死因子受体超家族成员6抗体(Abcam, ab133619)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5c). Mol Med Rep (2021) ncbi
domestic rabbit 单克隆(EPR5700)
  • 免疫印迹; 人类; 图 6d
艾博抗(上海)贸易有限公司肿瘤坏死因子受体超家族成员6抗体(Abcam, ab133619)被用于被用于免疫印迹在人类样本上 (图 6d). Biosci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司肿瘤坏死因子受体超家族成员6抗体(Abcam, ab82419)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Int J Mol Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 小鼠; 图 4
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司肿瘤坏死因子受体超家族成员6抗体(abcam, ab82419)被用于被用于免疫沉淀在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 4). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
艾博抗(上海)贸易有限公司肿瘤坏死因子受体超家族成员6抗体(Abcam, ab82419)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Onco Targets Ther (2016) ncbi
Enzo Life Sciences
小鼠 单克隆(APO-1-3)
  • 免疫印迹; 人类; 图 2f
Enzo Life Sciences肿瘤坏死因子受体超家族成员6抗体(Enzo, ALX-805-020)被用于被用于免疫印迹在人类样本上 (图 2f). Cancer Gene Ther (2015) ncbi
小鼠 单克隆(ZB4)
  • 抑制或激活实验; 人类; 图 4
Enzo Life Sciences肿瘤坏死因子受体超家族成员6抗体(Enzo Life Sciences, ZB4)被用于被用于抑制或激活实验在人类样本上 (图 4). Leuk Res (2015) ncbi
ImmunoStar
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:400; 表 1
ImmunoStar肿瘤坏死因子受体超家族成员6抗体(Immunostar, 20065)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (表 1). J Neurosci Res (2016) ncbi
美天旎
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 1a
美天旎肿瘤坏死因子受体超家族成员6抗体(Miltenyi Biotec, DX2)被用于被用于流式细胞仪在人类样本上 (图 1a). Brain (2018) ncbi
Novus Biologicals
domestic rabbit 多克隆(514H12)
  • 免疫组化; 小鼠; 1:100; 图 6c
Novus Biologicals肿瘤坏死因子受体超家族成员6抗体(Novus Biologicals, NB120-13550)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6c). J Neuroinflammation (2017) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(C18C12)
  • 免疫印迹; 人类; 图 s2-1a
赛信通(上海)生物试剂有限公司肿瘤坏死因子受体超家族成员6抗体(Cell Signaling Technology, C18C12)被用于被用于免疫印迹在人类样本上 (图 s2-1a). elife (2021) ncbi
domestic rabbit 单克隆(C18C12)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司肿瘤坏死因子受体超家族成员6抗体(CST, 4233)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Death Dis (2020) ncbi
小鼠 单克隆(4C3)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司肿瘤坏死因子受体超家族成员6抗体(Cell Signaling, 8023)被用于被用于免疫印迹在人类样本上 (图 3). Oncol Lett (2017) ncbi
小鼠 单克隆(4C3)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司肿瘤坏死因子受体超家族成员6抗体(Cell Signaling, 8023)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(4C3)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司肿瘤坏死因子受体超家族成员6抗体(Cell Signaling, 8023)被用于被用于免疫印迹在小鼠样本上 (图 6). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C18C12)
  • 免疫细胞化学; 人类
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司肿瘤坏死因子受体超家族成员6抗体(Cell Signaling, 4233)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在大鼠样本上. Toxicol Lett (2015) ncbi
小鼠 单克隆(4C3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司肿瘤坏死因子受体超家族成员6抗体(Cell Signaling Technology, 8023S)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(C18C12)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司肿瘤坏死因子受体超家族成员6抗体(Cell Signaling Technology, 4233)被用于被用于免疫印迹在人类样本上 (图 6). J Pathol (2014) ncbi
domestic rabbit 单克隆(C18C12)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司肿瘤坏死因子受体超家族成员6抗体(Cell Signaling, 4233)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Biochim Biophys Acta (2014) ncbi
domestic rabbit 单克隆(C18C12)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司肿瘤坏死因子受体超家族成员6抗体(Cell Signaling Technology, 4233)被用于被用于免疫印迹在人类样本上浓度为1:1000. Haemophilia (2014) ncbi
Vector Laboratories
  • 免疫组化; 人类; 图 7
载体实验室肿瘤坏死因子受体超家族成员6抗体(Vector labs, VP-F702)被用于被用于免疫组化在人类样本上 (图 7). BMC Cancer (2015) ncbi
  • 免疫组化-石蜡切片; 人类
载体实验室肿瘤坏死因子受体超家族成员6抗体(Vector Lab, VP-F702)被用于被用于免疫组化-石蜡切片在人类样本上. Oncotarget (2012) ncbi
贝克曼库尔特实验系统(苏州)有限公司
  • dot blot; 人类; 图 1
贝克曼库尔特实验系统(苏州)有限公司肿瘤坏死因子受体超家族成员6抗体(Beckman Coulter, IM1505)被用于被用于dot blot在人类样本上 (图 1). J Extracell Vesicles (2016) ncbi
碧迪BD
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 1:100; 图 4b
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Biosciences, DX2)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 4b). Nat Commun (2021) ncbi
小鼠 单克隆(DX2)
  • mass cytometry; 人类; 0.5 mg/ml; 图 s11a
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD, DX2)被用于被用于mass cytometry在人类样本上浓度为0.5 mg/ml (图 s11a). Nature (2020) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 1a
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Biosciences, 559773)被用于被用于流式细胞仪在人类样本上 (图 1a). Nat Commun (2019) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 s3
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Biosciences, DX2)被用于被用于流式细胞仪在人类样本上 (图 s3). Eur J Immunol (2019) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Biosciences, 561633)被用于被用于流式细胞仪在人类样本上 (图 s1a). J Clin Invest (2019) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 s7d
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD, Dx2)被用于被用于流式细胞仪在人类样本上 (图 s7d). Cancer Res (2018) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 s4b
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD, DX2)被用于被用于流式细胞仪在人类样本上 (图 s4b). J Clin Invest (2018) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; African green monkey; 图 1a
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Biosciences, 561977)被用于被用于流式细胞仪在African green monkey样本上 (图 1a). J Clin Invest (2018) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 3a
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Biosciences, 555673)被用于被用于流式细胞仪在人类样本上 (图 3a). Oncotarget (2018) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 4a
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Bioscience, DX2)被用于被用于流式细胞仪在人类样本上 (图 4a). Nature (2017) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 st1
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD, DX2)被用于被用于流式细胞仪在人类样本上 (图 st1). J Exp Med (2017) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 猕猴; 图 4b
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Biosciences, DX2)被用于被用于流式细胞仪在猕猴样本上 (图 4b). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 猕猴; 图 s8a
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Biosciences, Dx2)被用于被用于流式细胞仪在猕猴样本上 (图 s8a). PLoS Pathog (2016) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD, DX2)被用于被用于流式细胞仪在人类样本上. J Exp Med (2017) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 2
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Biosciences, DX2)被用于被用于流式细胞仪在人类样本上 (图 2). J Immunol Res (2016) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 猕猴; 图 s7c
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Pharmingen, 561636)被用于被用于流式细胞仪在猕猴样本上 (图 s7c). Science (2016) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 猕猴; 图 4a
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Pharmingen, DX2)被用于被用于流式细胞仪在猕猴样本上 (图 4a). J Immunol (2016) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 猕猴; 图 1a
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Biosciences, DX2)被用于被用于流式细胞仪在猕猴样本上 (图 1a). J Virol (2016) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 2b
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Biosciences, DX2)被用于被用于流式细胞仪在人类样本上 (图 2b). J Clin Invest (2016) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 8
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Biosciences, 561978)被用于被用于流式细胞仪在人类样本上 (图 8). Nat Immunol (2016) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 猕猴; 表 1
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD, DX2)被用于被用于流式细胞仪在猕猴样本上 (表 1). Am J Pathol (2016) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 2
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Bioscience, DX2)被用于被用于流式细胞仪在人类样本上 (图 2). J Clin Invest (2016) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 猕猴
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Bioscience, 558814)被用于被用于流式细胞仪在猕猴样本上. Nat Med (2016) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Biosciences, DX2)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2016) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 1
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Biosciences, DX2)被用于被用于流式细胞仪在人类样本上 (图 1). Oncoimmunology (2016) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; African green monkey; 图 1
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Biosciences, DX2)被用于被用于流式细胞仪在African green monkey样本上 (图 1). J Immunol (2016) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 猕猴
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Biosciences, DX2)被用于被用于流式细胞仪在猕猴样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 猕猴
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Biosciences, DX2)被用于被用于流式细胞仪在猕猴样本上. Clin Exp Immunol (2016) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD, DX2)被用于被用于流式细胞仪在人类样本上. Am J Transplant (2015) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 7
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Biosciences, 556641)被用于被用于流式细胞仪在人类样本上 (图 7). Retrovirology (2015) ncbi
小鼠 单克隆(DX2)
  • 免疫组化-冰冻切片; 人类; 1:50
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Biosciences, DX2)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50. F1000Res (2015) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Biosciences, DX2)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 猕猴
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Biosciences, DX2)被用于被用于流式细胞仪在猕猴样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 猕猴
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Biosciences, DX2)被用于被用于流式细胞仪在猕猴样本上. J Leukoc Biol (2015) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Biosciences, DX2)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 猕猴
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Biosciences, DX2)被用于被用于流式细胞仪在猕猴样本上. J Immunol (2014) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 4
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Pharmingen, clone DX2)被用于被用于流式细胞仪在人类样本上 (图 4). Clin Immunol (2014) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 猕猴
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Pharmigen, 559773)被用于被用于流式细胞仪在猕猴样本上. J Virol (2014) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 猕猴; 图 s1c
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Pharmingen, DX2)被用于被用于流式细胞仪在猕猴样本上 (图 s1c). J Immunol (2014) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 小鼠
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Pharmingen, DX2)被用于被用于流式细胞仪在小鼠样本上. FASEB J (2014) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Bioscience, clone DX2)被用于被用于流式细胞仪在人类样本上. Mol Ther (2014) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 猕猴
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD, DX2)被用于被用于流式细胞仪在猕猴样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类; 图 1c
碧迪BD肿瘤坏死因子受体超家族成员6抗体(Becton Dickinson, DX2)被用于被用于流式细胞仪在人类样本上 (图 1c). Clin Immunol (2014) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; 人类
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Biosciences, Dx2)被用于被用于流式细胞仪在人类样本上. Retrovirology (2013) ncbi
小鼠 单克隆(DX2)
  • 抑制或激活实验; 人类
  • 流式细胞仪; 人类; 5 ug/ml
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Biosciences, DX2)被用于被用于抑制或激活实验在人类样本上 和 被用于流式细胞仪在人类样本上浓度为5 ug/ml. J Biol Chem (2011) ncbi
小鼠 单克隆(13/Fas)
  • 免疫细胞化学; 大鼠; 1:1000
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD Transduction Laboratories, 610197)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000. J Neurosci (2005) ncbi
小鼠 单克隆(DX2)
  • 流式细胞仪; South American squirrel monkey
碧迪BD肿瘤坏死因子受体超家族成员6抗体(BD, DX2)被用于被用于流式细胞仪在South American squirrel monkey样本上. J Immunol Methods (2005) ncbi
MBL International
  • 流式细胞仪; 人类; 2 ug/ml; 图 2d
MBL International肿瘤坏死因子受体超家族成员6抗体(MBL International, CH11)被用于被用于流式细胞仪在人类样本上浓度为2 ug/ml (图 2d). Sci Rep (2016) ncbi
  • 中和反应; 人类; 1 ug/ml
  • 免疫印迹; 人类; 1:200
MBL International肿瘤坏死因子受体超家族成员6抗体(MBL, MD-11-3)被用于被用于中和反应在人类样本上浓度为1 ug/ml 和 被用于免疫印迹在人类样本上浓度为1:200. FASEB J (2015) ncbi
  • 中和反应; 人类; 0.5 ug/ml
MBL International肿瘤坏死因子受体超家族成员6抗体(MBL, SY-001)被用于被用于中和反应在人类样本上浓度为0.5 ug/ml. FASEB J (2015) ncbi
徕卡显微系统(上海)贸易有限公司
单克隆
  • 免疫组化; 人类; 1:400; 表 3
徕卡显微系统(上海)贸易有限公司肿瘤坏死因子受体超家族成员6抗体(Leica, NCL-FAS-310)被用于被用于免疫组化在人类样本上浓度为1:400 (表 3). J Hematol Oncol (2015) ncbi
文章列表
  1. Zhao Y, Li W, Zhang D. Gycyrrhizic acid alleviates atherosclerotic lesions in rats with diabetes mellitus. Mol Med Rep. 2021;24: pubmed 出版商
  2. Zhu Y, Xie J, Shi J. Rac1/ROCK-driven membrane dynamics promote natural killer cell cytotoxicity via granzyme-induced necroptosis. BMC Biol. 2021;19:140 pubmed 出版商
  3. Spiegel J, Patel S, Muffly L, Hossain N, Oak J, Baird J, et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat Med. 2021;27:1419-1431 pubmed 出版商
  4. Jeong D, Kim H, Kim H, Kang M, Jung H, Oh Y, et al. Soluble Fas ligand drives autoantibody-induced arthritis by binding to DR5/TRAIL-R2. elife. 2021;10: pubmed 出版商
  5. Li N, Torres M, Spetz M, Wang R, Peng L, Tian M, et al. CAR T cells targeting tumor-associated exons of glypican 2 regress neuroblastoma in mice. Cell Rep Med. 2021;2:100297 pubmed 出版商
  6. He X, Chandrashekar A, Zahn R, Wegmann F, Yu J, Mercado N, et al. Low-dose Ad26.COV2.S protection against SARS-CoV-2 challenge in rhesus macaques. Cell. 2021;184:3467-3473.e11 pubmed 出版商
  7. Li L, Yang L, Yang F, Zhao X, Xue S, Gong F. Ginkgo biloba Extract 50 (GBE50) Ameliorates Insulin Resistance, Hepatic Steatosis and Liver Injury in High Fat Diet-Fed Mice. J Inflamm Res. 2021;14:1959-1971 pubmed 出版商
  8. Roca C, Burton O, Gergelits V, Prezzemolo T, Whyte C, Halpert R, et al. AutoSpill is a principled framework that simplifies the analysis of multichromatic flow cytometry data. Nat Commun. 2021;12:2890 pubmed 出版商
  9. Szabo P, Dogra P, Gray J, Wells S, Connors T, Weisberg S, et al. Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity. 2021;54:797-814.e6 pubmed 出版商
  10. Mathew D, Giles J, Baxter A, Greenplate A, Wu J, Alanio C, et al. Deep immune profiling of COVID-19 patients reveals patient heterogeneity and distinct immunotypes with implications for therapeutic interventions. bioRxiv. 2020;: pubmed 出版商
  11. Ding B, Yuan F, Damle P, Litovchick L, Drapkin R, Grossman S. CtBP determines ovarian cancer cell fate through repression of death receptors. Cell Death Dis. 2020;11:286 pubmed 出版商
  12. Lin Y, Huang X, Chang K, Liao K, Tsai N. Encapsulated n-Butylidenephthalide Efficiently Crosses the Blood-Brain Barrier and Suppresses Growth of Glioblastoma. Int J Nanomedicine. 2020;15:749-760 pubmed 出版商
  13. Minervina A, Pogorelyy M, Komech E, Karnaukhov V, Bacher P, Rosati E, et al. Primary and secondary anti-viral response captured by the dynamics and phenotype of individual T cell clones. elife. 2020;9: pubmed 出版商
  14. Helmink B, Reddy S, Gao J, Zhang S, Basar R, Thakur R, et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 2020;577:549-555 pubmed 出版商
  15. Lynn R, Weber E, Sotillo E, Gennert D, Xu P, Good Z, et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature. 2019;576:293-300 pubmed 出版商
  16. Serra Peinado C, Grau Expósito J, Luque Ballesteros L, Astorga Gamaza A, Navarro J, Gallego Rodriguez J, et al. Expression of CD20 after viral reactivation renders HIV-reservoir cells susceptible to Rituximab. Nat Commun. 2019;10:3705 pubmed 出版商
  17. Fransen N, Crusius J, Smolders J, Mizee M, Van Eden C, Luchetti S, et al. Post-mortem multiple sclerosis lesion pathology is influenced by single nucleotide polymorphisms. Brain Pathol. 2020;30:106-119 pubmed 出版商
  18. Remmerswaal E, Hombrink P, Nota B, Pircher H, ten Berge I, van Lier R, et al. Expression of IL-7Rα and KLRG1 defines functionally distinct CD8+ T-cell populations in humans. Eur J Immunol. 2019;49:694-708 pubmed 出版商
  19. de Jonge K, Ebering A, Nassiri S, Maby El Hajjami H, Ouertatani Sakouhi H, Baumgaertner P, et al. Circulating CD56bright NK cells inversely correlate with survival of melanoma patients. Sci Rep. 2019;9:4487 pubmed 出版商
  20. Finney O, Brakke H, Rawlings Rhea S, Hicks R, Doolittle D, López M, et al. CD19 CAR T cell product and disease attributes predict leukemia remission durability. J Clin Invest. 2019;129:2123-2132 pubmed 出版商
  21. Dias J, Boulouis C, Gorin J, van den Biggelaar R, Lal K, Gibbs A, et al. The CD4-CD8- MAIT cell subpopulation is a functionally distinct subset developmentally related to the main CD8+ MAIT cell pool. Proc Natl Acad Sci U S A. 2018;115:E11513-E11522 pubmed 出版商
  22. Hoang T, Harper J, Pino M, Wang H, Micci L, King C, et al. Bone Marrow-Derived CD4+ T Cells Are Depleted in Simian Immunodeficiency Virus-Infected Macaques and Contribute to the Size of the Replication-Competent Reservoir. J Virol. 2019;93: pubmed 出版商
  23. Wang J, Lv X, Xu F, Wei M, Liu C, Yang Y. GNA14 silencing suppresses the proliferation of endometrial carcinoma cells through inducing apoptosis and G2/M cell cycle arrest. Biosci Rep. 2018;38: pubmed 出版商
  24. Jung I, Kim Y, Yu H, Lee M, Kim S, Lee J. CRISPR/Cas9-Mediated Knockout of DGK Improves Antitumor Activities of Human T Cells. Cancer Res. 2018;78:4692-4703 pubmed 出版商
  25. Huang W, Bei L, Eklund E. Inhibition of Fas associated phosphatase 1 (Fap1) facilitates apoptosis of colon cancer stem cells and enhances the effects of oxaliplatin. Oncotarget. 2018;9:25891-25902 pubmed 出版商
  26. Scelsi M, Khan R, Lorenzi M, Christopher L, Greicius M, Schott J, et al. Genetic study of multimodal imaging Alzheimer's disease progression score implicates novel loci. Brain. 2018;141:2167-2180 pubmed 出版商
  27. Yeo L, Woodwyk A, Sood S, Lorenc A, Eichmann M, Pujol Autonell I, et al. Autoreactive T effector memory differentiation mirrors β cell function in type 1 diabetes. J Clin Invest. 2018;128:3460-3474 pubmed 出版商
  28. Ferrando Martinez S, Moysi E, Pegu A, Andrews S, Nganou Makamdop K, Ambrozak D, et al. Accumulation of follicular CD8+ T cells in pathogenic SIV infection. J Clin Invest. 2018;128:2089-2103 pubmed 出版商
  29. Shi Y, Zhang P, Wang G, Liu X, Sun X, Zhang X, et al. Description of organ-specific phenotype, and functional characteristics of tissue resident lymphocytes from liver transplantation donor and research on immune tolerance mechanism of liver. Oncotarget. 2018;9:15552-15565 pubmed 出版商
  30. Song H, Li X, Liu Y, Lu W, Cui Z, Zhou L, et al. Carnosic acid protects mice from high-fat diet-induced NAFLD by regulating MARCKS. Int J Mol Med. 2018;42:193-207 pubmed 出版商
  31. Li M, Zhang W, Liu J, Li M, Zhang Y, Xiong Y, et al. Dynamic changes in the immunological characteristics of T lymphocytes in surviving patients with severe fever with thrombocytopenia syndrome (SFTS). Int J Infect Dis. 2018;70:72-80 pubmed 出版商
  32. Papa I, Saliba D, Ponzoni M, Bustamante S, Canete P, Gonzalez Figueroa P, et al. TFH-derived dopamine accelerates productive synapses in germinal centres. Nature. 2017;547:318-323 pubmed 出版商
  33. Cerboni S, Jeremiah N, Gentili M, Gehrmann U, Conrad C, Stolzenberg M, et al. Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes. J Exp Med. 2017;214:1769-1785 pubmed 出版商
  34. Ji X, Pan C, Li X, Gao Y, Xia L, Quan X, et al. Trametes robiniophila may induce apoptosis and inhibit MMPs expression in the human gastric carcinoma cell line MKN-45. Oncol Lett. 2017;13:841-846 pubmed 出版商
  35. Vodret S, Bortolussi G, Jašprová J, Vitek L, Muro A. Inflammatory signature of cerebellar neurodegeneration during neonatal hyperbilirubinemia in Ugt1 -/- mouse model. J Neuroinflammation. 2017;14:64 pubmed 出版商
  36. Zhao L, Zhang B. Doxorubicin induces cardiotoxicity through upregulation of death receptors mediated apoptosis in cardiomyocytes. Sci Rep. 2017;7:44735 pubmed 出版商
  37. Pishesha N, Bilate A, Wibowo M, Huang N, Li Z, Deshycka R, et al. Engineered erythrocytes covalently linked to antigenic peptides can protect against autoimmune disease. Proc Natl Acad Sci U S A. 2017;114:3157-3162 pubmed 出版商
  38. Ren J, Zhang X, Liu X, Fang C, Jiang S, June C, et al. A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget. 2017;8:17002-17011 pubmed 出版商
  39. Mylvaganam G, Rios D, Abdelaal H, Iyer S, Tharp G, Mavigner M, et al. Dynamics of SIV-specific CXCR5+ CD8 T cells during chronic SIV infection. Proc Natl Acad Sci U S A. 2017;114:1976-1981 pubmed 出版商
  40. Roberts E, Carnathan D, Li H, Shaw G, Silvestri G, Betts M. Collapse of Cytolytic Potential in SIV-Specific CD8+ T Cells Following Acute SIV Infection in Rhesus Macaques. PLoS Pathog. 2016;12:e1006135 pubmed 出版商
  41. Izawa K, Martin E, Soudais C, Bruneau J, Boutboul D, Rodriguez R, et al. Inherited CD70 deficiency in humans reveals a critical role for the CD70-CD27 pathway in immunity to Epstein-Barr virus infection. J Exp Med. 2017;214:73-89 pubmed 出版商
  42. Berry N, Manoussaka M, Ham C, Ferguson D, Tudor H, Mattiuzzo G, et al. Role of Occult and Post-acute Phase Replication in Protective Immunity Induced with a Novel Live Attenuated SIV Vaccine. PLoS Pathog. 2016;12:e1006083 pubmed 出版商
  43. Fromm J, Thomas A, Wood B. Characterization and Purification of Neoplastic Cells of Nodular Lymphocyte Predominant Hodgkin Lymphoma from Lymph Nodes by Flow Cytometry and Flow Cytometric Cell Sorting. Am J Pathol. 2017;187:304-317 pubmed 出版商
  44. Sairafi D, Stikvoort A, Gertow J, Mattsson J, Uhlin M. Donor Cell Composition and Reactivity Predict Risk of Acute Graft-versus-Host Disease after Allogeneic Hematopoietic Stem Cell Transplantation. J Immunol Res. 2016;2016:5601204 pubmed
  45. Chang L, Li Y, Kaplan D. Endotoxemia contributes to CD27+ memory B-cell apoptosis via enhanced sensitivity to Fas ligation in patients with Cirrhosis. Sci Rep. 2016;6:36862 pubmed 出版商
  46. Byrareddy S, Arthos J, Cicala C, Villinger F, Ortiz K, Little D, et al. Sustained virologic control in SIV+ macaques after antiretroviral and α4β7 antibody therapy. Science. 2016;354:197-202 pubmed
  47. Hu X, Valentin A, Dayton F, Kulkarni V, Alicea C, Rosati M, et al. DNA Prime-Boost Vaccine Regimen To Increase Breadth, Magnitude, and Cytotoxicity of the Cellular Immune Responses to Subdominant Gag Epitopes of Simian Immunodeficiency Virus and HIV. J Immunol. 2016;197:3999-4013 pubmed
  48. Tagawa T, Albanese M, Bouvet M, Moosmann A, Mautner J, Heissmeyer V, et al. Epstein-Barr viral miRNAs inhibit antiviral CD4+ T cell responses targeting IL-12 and peptide processing. J Exp Med. 2016;213:2065-80 pubmed 出版商
  49. Keefer M, Zheng B, Rosenberg A, Kobie J. Increased Steady-State Memory B Cell Subsets Among High-Risk Participants in an HIV Vaccine Trial. AIDS Res Hum Retroviruses. 2016;32:1143-1148 pubmed
  50. Kong S, Yang Y, Xu Y, Wang Y, Zhang Y, Melo Cardenas J, et al. Endoplasmic reticulum-resident E3 ubiquitin ligase Hrd1 controls B-cell immunity through degradation of the death receptor CD95/Fas. Proc Natl Acad Sci U S A. 2016;113:10394-9 pubmed 出版商
  51. Ayala V, Trivett M, Barsov E, Jain S, Piatak M, Trubey C, et al. Adoptive Transfer of Engineered Rhesus Simian Immunodeficiency Virus-Specific CD8+ T Cells Reduces the Number of Transmitted/Founder Viruses Established in Rhesus Macaques. J Virol. 2016;90:9942-9952 pubmed 出版商
  52. Kagoya Y, Nakatsugawa M, Yamashita Y, Ochi T, Guo T, Anczurowski M, et al. BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. J Clin Invest. 2016;126:3479-94 pubmed 出版商
  53. Liu Y, Wang Y, Ding G, Yang T, Yao L, Hua J, et al. JAK2 inhibitor combined with DC-activated AFP-specific T-cells enhances antitumor function in a Fas/FasL signal-independent pathway. Onco Targets Ther. 2016;9:4425-33 pubmed 出版商
  54. Piepenbrink M, Samuel M, Zheng B, Carter B, Fucile C, Bunce C, et al. Humoral Dysregulation Associated with Increased Systemic Inflammation among Injection Heroin Users. PLoS ONE. 2016;11:e0158641 pubmed 出版商
  55. Stadinski B, Shekhar K, Gomez Tourino I, Jung J, Sasaki K, Sewell A, et al. Hydrophobic CDR3 residues promote the development of self-reactive T cells. Nat Immunol. 2016;17:946-55 pubmed 出版商
  56. Williams D, Engle E, Shirk E, Queen S, Gama L, Mankowski J, et al. Splenic Damage during SIV Infection: Role of T-Cell Depletion and Macrophage Polarization and Infection. Am J Pathol. 2016;186:2068-2087 pubmed 出版商
  57. Saha A, O Connor R, Thangavelu G, Lovitch S, Dandamudi D, Wilson C, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126:2642-60 pubmed 出版商
  58. Vaccari M, Gordon S, Fourati S, Schifanella L, Liyanage N, Cameron M, et al. Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition. Nat Med. 2016;22:762-70 pubmed 出版商
  59. Stikvoort A, Sundin M, Uzunel M, Gertow J, Sundberg B, Schaffer M, et al. Long-Term Stable Mixed Chimerism after Hematopoietic Stem Cell Transplantation in Patients with Non-Malignant Disease, Shall We Be Tolerant?. PLoS ONE. 2016;11:e0154737 pubmed 出版商
  60. Belov L, Matic K, Hallal S, Best O, Mulligan S, Christopherson R. Extensive surface protein profiles of extracellular vesicles from cancer cells may provide diagnostic signatures from blood samples. J Extracell Vesicles. 2016;5:25355 pubmed 出版商
  61. Bao L, Hu L, Zhang Y, Wang Y. Hypolipidemic effects of flavonoids extracted from Lomatogonium rotatum. Exp Ther Med. 2016;11:1417-1424 pubmed
  62. Jackson S, Jacobs H, Arkatkar T, Dam E, Scharping N, Kolhatkar N, et al. B cell IFN-γ receptor signaling promotes autoimmune germinal centers via cell-intrinsic induction of BCL-6. J Exp Med. 2016;213:733-50 pubmed 出版商
  63. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  64. Flint S, Gibson A, Lucas G, Nandigam R, Taylor L, Provan D, et al. A distinct plasmablast and naïve B-cell phenotype in primary immune thrombocytopenia. Haematologica. 2016;101:698-706 pubmed 出版商
  65. Simon S, Vignard V, Florenceau L, Dreno B, Khammari A, Lang F, et al. PD-1 expression conditions T cell avidity within an antigen-specific repertoire. Oncoimmunology. 2016;5:e1104448 pubmed
  66. Liesche C, Venkatraman L, Aschenbrenner S, Grosse S, Grimm D, Eils R, et al. Death receptor-based enrichment of Cas9-expressing cells. BMC Biotechnol. 2016;16:17 pubmed 出版商
  67. Vargas Inchaustegui D, Demers A, Shaw J, Kang G, Ball D, Tuero I, et al. Vaccine Induction of Lymph Node-Resident Simian Immunodeficiency Virus Env-Specific T Follicular Helper Cells in Rhesus Macaques. J Immunol. 2016;196:1700-10 pubmed 出版商
  68. Gravina G, Mancini A, Sanità P, Vitale F, Marampon F, Ventura L, et al. KPT-330, a potent and selective exportin-1 (XPO-1) inhibitor, shows antitumor effects modulating the expression of cyclin D1 and survivin [corrected] in prostate cancer models. BMC Cancer. 2015;15:941 pubmed 出版商
  69. Chen B, Wu Z, Xu J, Xu Y. Calreticulin Binds to Fas Ligand and Inhibits Neuronal Cell Apoptosis Induced by Ischemia-Reperfusion Injury. Biomed Res Int. 2015;2015:895284 pubmed 出版商
  70. Bolton D, Pegu A, Wang K, McGinnis K, Nason M, Foulds K, et al. Human Immunodeficiency Virus Type 1 Monoclonal Antibodies Suppress Acute Simian-Human Immunodeficiency Virus Viremia and Limit Seeding of Cell-Associated Viral Reservoirs. J Virol. 2016;90:1321-32 pubmed 出版商
  71. Javed A, Leuchte N, Neumann B, Sopper S, Sauermann U. Noncytolytic CD8+ Cell Mediated Antiviral Response Represents a Strong Element in the Immune Response of Simian Immunodeficiency Virus-Infected Long-Term Non-Progressing Rhesus Macaques. PLoS ONE. 2015;10:e0142086 pubmed 出版商
  72. Vierboom M, Breedveld E, Kap Y, Mary C, Poirier N, t Hart B, et al. Clinical efficacy of a new CD28-targeting antagonist of T cell co-stimulation in a non-human primate model of collagen-induced arthritis. Clin Exp Immunol. 2016;183:405-18 pubmed 出版商
  73. Newell K, Asare A, Sanz I, Wei C, Rosenberg A, Gao Z, et al. Longitudinal studies of a B cell-derived signature of tolerance in renal transplant recipients. Am J Transplant. 2015;15:2908-20 pubmed 出版商
  74. Heigele A, Joas S, Regensburger K, Kirchhoff F. Increased susceptibility of CD4+ T cells from elderly individuals to HIV-1 infection and apoptosis is associated with reduced CD4 and enhanced CXCR4 and FAS surface expression levels. Retrovirology. 2015;12:86 pubmed 出版商
  75. Hirata H, Umemori J, Yoshioka H, Koide T, Watanabe K, Shimoda Y. Cell adhesion molecule contactin-associated protein 3 is expressed in the mouse basal ganglia during early postnatal stages. J Neurosci Res. 2016;94:74-89 pubmed 出版商
  76. Broos C, van Nimwegen M, Kleinjan A, Ten Berge B, Muskens F, In t Veen J, et al. Impaired survival of regulatory T cells in pulmonary sarcoidosis. Respir Res. 2015;16:108 pubmed 出版商
  77. Fernandez L, Valentin J, Zalacain M, Leung W, Patino Garcia A, Perez Martinez A. Activated and expanded natural killer cells target osteosarcoma tumor initiating cells in an NKG2D-NKG2DL dependent manner. Cancer Lett. 2015;368:54-63 pubmed 出版商
  78. Gulati N, Suárez Fariñas M, Correa Da Rosa J, Krueger J. Psoriasis is characterized by deficient negative immune regulation compared to transient delayed-type hypersensitivity reactions. F1000Res. 2015;4:149 pubmed 出版商
  79. Navarro F, Lieberman J. miR-34 and p53: New Insights into a Complex Functional Relationship. PLoS ONE. 2015;10:e0132767 pubmed 出版商
  80. Tzankov A, Leu N, Muenst S, Juskevicius D, Klingbiel D, Mamot C, et al. Multiparameter analysis of homogeneously R-CHOP-treated diffuse large B cell lymphomas identifies CD5 and FOXP1 as relevant prognostic biomarkers: report of the prospective SAKK 38/07 study. J Hematol Oncol. 2015;8:70 pubmed 出版商
  81. Chowdhury A, Hayes T, Bosinger S, Lawson B, Vanderford T, Schmitz J, et al. Differential Impact of In Vivo CD8+ T Lymphocyte Depletion in Controller versus Progressor Simian Immunodeficiency Virus-Infected Macaques. J Virol. 2015;89:8677-86 pubmed 出版商
  82. Feng D, Youn D, Zhao X, Gao Y, Quinn W, Xiaoli A, et al. mTORC1 Down-Regulates Cyclin-Dependent Kinase 8 (CDK8) and Cyclin C (CycC). PLoS ONE. 2015;10:e0126240 pubmed 出版商
  83. Zhang L, Wang H, Ding K, Xu J. FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells. Toxicol Lett. 2015;236:43-59 pubmed 出版商
  84. Marozin S, Altomonte J, Muñoz Álvarez K, Rizzani A, De Toni E, Thasler W, et al. STAT3 inhibition reduces toxicity of oncolytic VSV and provides a potentially synergistic combination therapy for hepatocellular carcinoma. Cancer Gene Ther. 2015;22:317-25 pubmed 出版商
  85. Schmueck Henneresse M, Sharaf R, Vogt K, Weist B, Landwehr Kenzel S, Fuehrer H, et al. Peripheral blood-derived virus-specific memory stem T cells mature to functional effector memory subsets with self-renewal potency. J Immunol. 2015;194:5559-67 pubmed 出版商
  86. Difranco K, Johnson Farley N, Bertino J, Elson D, Vega B, Belinka B, et al. LFA-1-targeting Leukotoxin (LtxA; Leukothera®) causes lymphoma tumor regression in a humanized mouse model and requires caspase-8 and Fas to kill malignant lymphocytes. Leuk Res. 2015;39:649-56 pubmed 出版商
  87. Axelsson Robertson R, Ju J, Kim H, Zumla A, Maeurer M. Mycobacterium tuberculosis-specific and MHC class I-restricted CD8+ T-cells exhibit a stem cell precursor-like phenotype in patients with active pulmonary tuberculosis. Int J Infect Dis. 2015;32:13-22 pubmed 出版商
  88. Tian X, Zhang A, Qiu C, Wang W, Yang Y, Qiu C, et al. The upregulation of LAG-3 on T cells defines a subpopulation with functional exhaustion and correlates with disease progression in HIV-infected subjects. J Immunol. 2015;194:3873-82 pubmed 出版商
  89. Lewis M, Vyse S, Shields A, Boeltz S, Gordon P, Spector T, et al. UBE2L3 polymorphism amplifies NF-κB activation and promotes plasma cell development, linking linear ubiquitination to multiple autoimmune diseases. Am J Hum Genet. 2015;96:221-34 pubmed 出版商
  90. Campbell J, Ratai E, Autissier P, Nolan D, Tse S, Miller A, et al. Anti-?4 antibody treatment blocks virus traffic to the brain and gut early, and stabilizes CNS injury late in infection. PLoS Pathog. 2014;10:e1004533 pubmed 出版商
  91. Reichel J, Chadburn A, Rubinstein P, Giulino Roth L, Tam W, Liu Y, et al. Flow sorting and exome sequencing reveal the oncogenome of primary Hodgkin and Reed-Sternberg cells. Blood. 2015;125:1061-72 pubmed 出版商
  92. Liu W, Lin Y, Yan X, Ding Y, Wu Y, Chen W, et al. Hepatitis B virus core protein inhibits Fas-mediated apoptosis of hepatoma cells via regulation of mFas/FasL and sFas expression. FASEB J. 2015;29:1113-23 pubmed 出版商
  93. Yin Y, Zhang S, Luo H, Zhang X, Geng G, Li J, et al. Interleukin 7 up-regulates CD95 protein on CD4+ T cells by affecting mRNA alternative splicing: priming for a synergistic effect on HIV-1 reservoir maintenance. J Biol Chem. 2015;290:35-45 pubmed 出版商
  94. Neumann B, Klippert A, Raue K, Sopper S, Stahl Hennig C. Characterization of B and plasma cells in blood, bone marrow, and secondary lymphoid organs of rhesus macaques by multicolor flow cytometry. J Leukoc Biol. 2015;97:19-30 pubmed 出版商
  95. Lim D, Yawata N, Selva K, Li N, Tsai C, Yeong L, et al. The combination of type I IFN, TNF-α, and cell surface receptor engagement with dendritic cells enables NK cells to overcome immune evasion by dengue virus. J Immunol. 2014;193:5065-75 pubmed 出版商
  96. Shi L, Wang H, Wang F, Feng M, Wang M, Guan W. Effects of gastrokine‑2 expression on gastric cancer cell apoptosis by activation of extrinsic apoptotic pathways. Mol Med Rep. 2014;10:2898-904 pubmed 出版商
  97. Lundholm M, Schröder M, Nagaeva O, Baranov V, Widmark A, Mincheva Nilsson L, et al. Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion. PLoS ONE. 2014;9:e108925 pubmed 出版商
  98. Mylvaganam G, Velu V, Hong J, Sadagopal S, Kwa S, Basu R, et al. Diminished viral control during simian immunodeficiency virus infection is associated with aberrant PD-1hi CD4 T cell enrichment in the lymphoid follicles of the rectal mucosa. J Immunol. 2014;193:4527-36 pubmed 出版商
  99. Gibbons D, Fleming P, Virasami A, Michel M, Sebire N, Costeloe K, et al. Interleukin-8 (CXCL8) production is a signatory T cell effector function of human newborn infants. Nat Med. 2014;20:1206-10 pubmed 出版商
  100. Kudernatsch R, Letsch A, Guerreiro M, Löbel M, Bauer S, Volk H, et al. Human bone marrow contains a subset of quiescent early memory CD8(+) T cells characterized by high CD127 expression and efflux capacity. Eur J Immunol. 2014;44:3532-42 pubmed 出版商
  101. Valentin A, McKinnon K, Li J, Rosati M, Kulkarni V, Pilkington G, et al. Comparative analysis of SIV-specific cellular immune responses induced by different vaccine platforms in rhesus macaques. Clin Immunol. 2014;155:91-107 pubmed 出版商
  102. Matsuda K, Dang Q, Brown C, Keele B, Wu F, Ourmanov I, et al. Characterization of simian immunodeficiency virus (SIV) that induces SIV encephalitis in rhesus macaques with high frequency: role of TRIM5 and major histocompatibility complex genotypes and early entry to the brain. J Virol. 2014;88:13201-11 pubmed 出版商
  103. Wu D, Allen C, Fromm J. Flow cytometry of ALK-negative anaplastic large cell lymphoma of breast implant-associated effusion and capsular tissue. Cytometry B Clin Cytom. 2015;88:58-63 pubmed 出版商
  104. Otani K, Dong Y, Li X, Lu J, Zhang N, Xu L, et al. Odd-skipped related 1 is a novel tumour suppressor gene and a potential prognostic biomarker in gastric cancer. J Pathol. 2014;234:302-15 pubmed 出版商
  105. Hong J, Amancha P, Rogers K, Courtney C, Havenar Daughton C, Crotty S, et al. Early lymphoid responses and germinal center formation correlate with lower viral load set points and better prognosis of simian immunodeficiency virus infection. J Immunol. 2014;193:797-806 pubmed 出版商
  106. Vargas A, Zhou S, Ethier Chiasson M, Flipo D, Lafond J, Gilbert C, et al. Syncytin proteins incorporated in placenta exosomes are important for cell uptake and show variation in abundance in serum exosomes from patients with preeclampsia. FASEB J. 2014;28:3703-19 pubmed 出版商
  107. Ito S, Bollard C, Carlsten M, Melenhorst J, Biancotto A, Wang E, et al. Ultra-low dose interleukin-2 promotes immune-modulating function of regulatory T cells and natural killer cells in healthy volunteers. Mol Ther. 2014;22:1388-1395 pubmed 出版商
  108. Borkham Kamphorst E, Schaffrath C, Van De Leur E, Haas U, Tihaa L, Meurer S, et al. The anti-fibrotic effects of CCN1/CYR61 in primary portal myofibroblasts are mediated through induction of reactive oxygen species resulting in cellular senescence, apoptosis and attenuated TGF-? signaling. Biochim Biophys Acta. 2014;1843:902-14 pubmed 出版商
  109. Kulkarni V, Valentin A, Rosati M, Alicea C, Singh A, Jalah R, et al. Altered response hierarchy and increased T-cell breadth upon HIV-1 conserved element DNA vaccination in macaques. PLoS ONE. 2014;9:e86254 pubmed 出版商
  110. Doi H, Tanoue S, Kaplan D. Peripheral CD27-CD21- B-cells represent an exhausted lymphocyte population in hepatitis C cirrhosis. Clin Immunol. 2014;150:184-91 pubmed 出版商
  111. Romano E, Manetti M, Peruzzi F, Melchiorre D, Milia A, Bellando Randone S, et al. Agonistic anti-human Fas monoclonal antibody induces fibroblast-like synoviocyte apoptosis in haemophilic arthropathy: potential therapeutic implications. Haemophilia. 2014;20:e32-9 pubmed 出版商
  112. Rapetti L, Chavele K, Evans C, Ehrenstein M. B cell resistance to Fas-mediated apoptosis contributes to their ineffective control by regulatory T cells in rheumatoid arthritis. Ann Rheum Dis. 2015;74:294-302 pubmed 出版商
  113. Li H, Pauza C. Critical roles for Akt kinase in controlling HIV envelope-mediated depletion of CD4 T cells. Retrovirology. 2013;10:60 pubmed 出版商
  114. Chen J, Shen H, Rivera Rosado L, Zhang Y, Di X, Zhang B. Mislocalization of death receptors correlates with cellular resistance to their cognate ligands in human breast cancer cells. Oncotarget. 2012;3:833-42 pubmed
  115. Moriwaki K, Shinzaki S, Miyoshi E. GDP-mannose-4,6-dehydratase (GMDS) deficiency renders colon cancer cells resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor- and CD95-mediated apoptosis by inhibiting complex II formation. J Biol Chem. 2011;286:43123-33 pubmed 出版商
  116. Thai P, Collins C, Fortner K, Koenig A, Hayes S, Budd R. Increased caspase activity primes human Lyme arthritis synovial ?? T cells for proliferation and death. Hum Immunol. 2011;72:1168-75 pubmed 出版商
  117. Meythaler M, Wang Z, Martinot A, Pryputniewicz S, Kasheta M, McClure H, et al. Early induction of polyfunctional simian immunodeficiency virus (SIV)-specific T lymphocytes and rapid disappearance of SIV from lymph nodes of sooty mangabeys during primary infection. J Immunol. 2011;186:5151-61 pubmed 出版商
  118. Salisch N, Kaufmann D, Awad A, Reeves R, Tighe D, Li Y, et al. Inhibitory TCR coreceptor PD-1 is a sensitive indicator of low-level replication of SIV and HIV-1. J Immunol. 2010;184:476-87 pubmed 出版商
  119. Hokey D, Yan J, Hirao L, Dai A, Boyer J, Jure Kunkel M, et al. CLTA-4 blockade in vivo promotes the generation of short-lived effector CD8 T cells and a more persistent central memory CD4 T cell response. J Med Primatol. 2008;37 Suppl 2:62-8 pubmed 出版商
  120. Lages C, Suffia I, Velilla P, Huang B, Warshaw G, Hildeman D, et al. Functional regulatory T cells accumulate in aged hosts and promote chronic infectious disease reactivation. J Immunol. 2008;181:1835-48 pubmed
  121. Macchia I, Gauduin M, Kaur A, Johnson R. Expression of CD8alpha identifies a distinct subset of effector memory CD4+ T lymphocytes. Immunology. 2006;119:232-42 pubmed
  122. Beier C, Wischhusen J, Gleichmann M, Gerhardt E, Pekanovic A, Krueger A, et al. FasL (CD95L/APO-1L) resistance of neurons mediated by phosphatidylinositol 3-kinase-Akt/protein kinase B-dependent expression of lifeguard/neuronal membrane protein 35. J Neurosci. 2005;25:6765-74 pubmed
  123. Contamin H, Loizon S, Bourreau E, Michel J, Garraud O, Mercereau Puijalon O, et al. Flow cytometry identification and characterization of mononuclear cell subsets in the neotropical primate Saimiri sciureus (squirrel monkey). J Immunol Methods. 2005;297:61-71 pubmed
  124. Rutella S, Pierelli L, Bonanno G, Sica S, Ameglio F, Capoluongo E, et al. Role for granulocyte colony-stimulating factor in the generation of human T regulatory type 1 cells. Blood. 2002;100:2562-71 pubmed
  125. Cifone M, De Maria R, Roncaioli P, Rippo M, Azuma M, Lanier L, et al. Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase. J Exp Med. 1994;180:1547-52 pubmed