这是一篇来自已证抗体库的有关人类 Fyn的综述,是根据46篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Fyn 抗体。
Fyn 同义词: SLK; SYN; p59-FYN

圣克鲁斯生物技术
小鼠 单克隆(15)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
圣克鲁斯生物技术 Fyn抗体(Santa Cruz, sc-434)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Cell Rep Med (2022) ncbi
小鼠 单克隆(15)
  • 免疫印迹; 小鼠; 1:200; 图 4g
圣克鲁斯生物技术 Fyn抗体(Santa Cruz, sc-434)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 4g). Front Pharmacol (2020) ncbi
小鼠 单克隆(E-3)
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术 Fyn抗体(Santa Cruz, SC-365913)被用于被用于免疫印迹在人类样本上 (图 3c). Redox Biol (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 s9b
圣克鲁斯生物技术 Fyn抗体(Santa Cruz, B-12)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s9b). Nat Commun (2017) ncbi
小鼠 单克隆(B-12)
  • 免疫印迹; 人类; 1:1000; 图 s9b
圣克鲁斯生物技术 Fyn抗体(Santa Cruz, B-12)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s9b). Nat Commun (2017) ncbi
小鼠 单克隆(E-12)
  • 免疫印迹; 人类; 图 s17b
圣克鲁斯生物技术 Fyn抗体(Santa Cruz Biotechnology, sc-271294)被用于被用于免疫印迹在人类样本上 (图 s17b). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(B-12)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 Fyn抗体(Santa Cruz, Sc-8056)被用于被用于免疫印迹在大鼠样本上. Physiol Rep (2016) ncbi
小鼠 单克隆(E-3)
  • 免疫印迹; 人类; 图 4c
圣克鲁斯生物技术 Fyn抗体(Santa Cruz Biotechnology, SC-365913)被用于被用于免疫印迹在人类样本上 (图 4c). Sci Rep (2016) ncbi
小鼠 单克隆(B-12)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Fyn抗体(Santa Cruz, sc8056)被用于被用于免疫印迹在人类样本上 (图 2). J Cell Biochem (2017) ncbi
小鼠 单克隆(B-12)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
  • 免疫沉淀; 人类; 1:50; 图 4
  • 免疫细胞化学; 人类; 1:100; 图 4
  • 免疫印迹; 人类; 1:200; 图 1
圣克鲁斯生物技术 Fyn抗体(Santa Cruz Biotechnology, sc-8056)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1), 被用于免疫沉淀在人类样本上浓度为1:50 (图 4), 被用于免疫细胞化学在人类样本上浓度为1:100 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:200 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(B-12)
  • 免疫印迹; 人类; 1:200; 图 1
圣克鲁斯生物技术 Fyn抗体(Santa Cruz, sc-8056;)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1). Int J Mol Med (2016) ncbi
小鼠 单克隆(B-12)
  • 免疫印迹; 大鼠; 图 8a
圣克鲁斯生物技术 Fyn抗体(Santa Cruz, sc8056)被用于被用于免疫印迹在大鼠样本上 (图 8a). J Cell Mol Med (2016) ncbi
小鼠 单克隆(15)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 Fyn抗体(Santa Cruz Biotech, sc-434)被用于被用于免疫印迹在大鼠样本上. Glia (2016) ncbi
小鼠 单克隆(B-12)
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术 Fyn抗体(Santa Cruz Biotechnology, sc-8056)被用于被用于免疫细胞化学在小鼠样本上. Am J Physiol Cell Physiol (2015) ncbi
小鼠 单克隆(B-12)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Fyn抗体(Santa Cruz, sc-8056)被用于被用于免疫印迹在人类样本上. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(B-12)
  • 免疫印迹; 人类; 1:1000; 图 5
圣克鲁斯生物技术 Fyn抗体(Santa Cruz, sc-8056 B-12)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(B-12)
  • 免疫组化-石蜡切片; 人类; 1:50
圣克鲁斯生物技术 Fyn抗体(Santa Cruz, sc8056)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Exp Dermatol (2015) ncbi
小鼠 单克隆(B-12)
  • 免疫细胞化学; 人类; 1:50
  • 免疫印迹; 人类; 1:200
圣克鲁斯生物技术 Fyn抗体(Santa Cruz, Sc-8056)被用于被用于免疫细胞化学在人类样本上浓度为1:50 和 被用于免疫印迹在人类样本上浓度为1:200. Cell Signal (2015) ncbi
小鼠 单克隆(B-12)
  • 免疫印迹; 小鼠; 图 8
圣克鲁斯生物技术 Fyn抗体(Santa Cruz Biotechnology, sc-8056)被用于被用于免疫印迹在小鼠样本上 (图 8). J Neurosci (2015) ncbi
小鼠 单克隆(FYN-59)
  • 免疫印迹; 人类; 图 2c
圣克鲁斯生物技术 Fyn抗体(Santa Cruz Biotechnology, SC-73388)被用于被用于免疫印迹在人类样本上 (图 2c). Mol Carcinog (2015) ncbi
小鼠 单克隆(B-12)
  • 免疫印迹; pigs
圣克鲁斯生物技术 Fyn抗体(Santa Cruz Biotechnology, sc-8056)被用于被用于免疫印迹在pigs 样本上. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(B-12)
  • 免疫组化-石蜡切片; 人类; 1:150
  • 免疫沉淀; 人类
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Fyn抗体(Santa Cruz, sc-8056)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150, 被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:1000. Int J Cancer (2014) ncbi
小鼠 单克隆(B-12)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Fyn抗体(Santa Cruz Biotechnology, sc-8056)被用于被用于免疫印迹在人类样本上. Eur J Cancer (2014) ncbi
小鼠 单克隆(B-12)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Fyn抗体(Santa Cruz, sc-8056)被用于被用于免疫印迹在小鼠样本上. J Hepatol (2014) ncbi
小鼠 单克隆(15)
  • 免疫沉淀; 人类
圣克鲁斯生物技术 Fyn抗体(Santa Cruz Biotechnology, sc-434)被用于被用于免疫沉淀在人类样本上. J Biol Chem (2013) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR5500)
  • 免疫印迹; 小鼠; 1:3000; 图 3e
艾博抗(上海)贸易有限公司 Fyn抗体(Abcam, ab125016)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 3e). Front Aging Neurosci (2019) ncbi
domestic rabbit 单克隆(EPR5500)
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司 Fyn抗体(Abcam, ab125016)被用于被用于免疫印迹在大鼠样本上. FASEB J (2015) ncbi
小鼠 单克隆(FYN-01)
  • 免疫印迹; 人类; 1:1000; 表 4
艾博抗(上海)贸易有限公司 Fyn抗体(Abcam, AB1881)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 4). Methods Mol Biol (2014) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(3G11-F9)
  • 免疫印迹; 人类; 1:1000; 图 2b
亚诺法生技股份有限公司 Fyn抗体(Abnova, H00002534-M01)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). BMC Cancer (2019) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 Fyn抗体(Cell Signaling, 4023)被用于被用于免疫印迹在小鼠样本上 (图 4b). Cell Rep Med (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 Fyn抗体(Cell Signaling, 4023)被用于被用于免疫印迹在小鼠样本上 (图 2a). iScience (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s4b
赛信通(上海)生物试剂有限公司 Fyn抗体(Cell Signaling, 4023)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4b). Acta Neuropathol Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7f
赛信通(上海)生物试剂有限公司 Fyn抗体(Cell Signaling, 4023T)被用于被用于免疫印迹在人类样本上 (图 7f). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 4a
赛信通(上海)生物试剂有限公司 Fyn抗体(CST, 4023)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2g
赛信通(上海)生物试剂有限公司 Fyn抗体(Cell Signaling Technology, 4023S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2g). J Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 Fyn抗体(Cell Signaling, 4023)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
  • 免疫印迹; pigs ; 图 5j
赛信通(上海)生物试剂有限公司 Fyn抗体(Cell Signaling, 4023)被用于被用于免疫印迹在人类样本上 (图 6a) 和 被用于免疫印迹在pigs 样本上 (图 5j). Front Mol Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 Fyn抗体(Cell Signaling, 4023P)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 图 1g
  • 免疫印迹; 大鼠; 图 1e
赛信通(上海)生物试剂有限公司 Fyn抗体(Cell Signaling, 4023)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 1g) 和 被用于免疫印迹在大鼠样本上 (图 1e). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Fyn抗体(Cell signaling, 4023)被用于被用于免疫印迹在人类样本上 (图 1). FASEB J (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 8
赛信通(上海)生物试剂有限公司 Fyn抗体(Cell Signaling Technology, 4023BC)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 8). Nat Commun (2016) ncbi
碧迪BD
小鼠 单克隆(25/Fyn)
  • 免疫印迹; 犬; 图 s4f
碧迪BD Fyn抗体(BD Biosciences, 610163)被用于被用于免疫印迹在犬样本上 (图 s4f). Life Sci Alliance (2021) ncbi
小鼠 单克隆(25/Fyn)
  • 免疫印迹; 人类; 图 2e
碧迪BD Fyn抗体(BD Biosciences, clone 25/Fyn)被用于被用于免疫印迹在人类样本上 (图 2e). Biol Open (2019) ncbi
小鼠 单克隆(25/Fyn)
  • 免疫组化-冰冻切片; 大鼠; 图 6h
  • 免疫印迹; 大鼠; 图 6i
碧迪BD Fyn抗体(Becton-Dickinson, 610163)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 6h) 和 被用于免疫印迹在大鼠样本上 (图 6i). Development (2017) ncbi
小鼠 单克隆(25/Fyn)
  • 免疫细胞化学; 大鼠; 1:500; 图 7
  • 免疫印迹; 大鼠; 1:250; 图 5
碧迪BD Fyn抗体(BD Transduction Laboratories, 610163)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 7) 和 被用于免疫印迹在大鼠样本上浓度为1:250 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(25/Fyn)
  • 免疫印迹; 小鼠
碧迪BD Fyn抗体(Transduction Laboratories, 25)被用于被用于免疫印迹在小鼠样本上. Eur J Immunol (2015) ncbi
小鼠 单克隆(25/Fyn)
  • 免疫印迹; 人类; 图 7
碧迪BD Fyn抗体(BD, 610163)被用于被用于免疫印迹在人类样本上 (图 7). J Biol Chem (2014) ncbi
小鼠 单克隆(25/Fyn)
  • 免疫印迹; 小鼠
碧迪BD Fyn抗体(BD Biosciences, 610163)被用于被用于免疫印迹在小鼠样本上. Stem Cells (2013) ncbi
文章列表
  1. Shiwaku H, Katayama S, Kondo K, Nakano Y, Tanaka H, Yoshioka Y, et al. Autoantibodies against NCAM1 from patients with schizophrenia cause schizophrenia-related behavior and changes in synapses in mice. Cell Rep Med. 2022;3:100597 pubmed 出版商
  2. Kajiwara K, Yamano S, Aoki K, Okuzaki D, Matsumoto K, Okada M. CDCP1 promotes compensatory renal growth by integrating Src and Met signaling. Life Sci Alliance. 2021;4: pubmed 出版商
  3. Amaral A, Perez Nievas B, Siao Tick Chong M, González Martínez A, Argente Escrig H, Rubio Guerra S, et al. Isoform-selective decrease of glycogen synthase kinase-3-beta (GSK-3β) reduces synaptic tau phosphorylation, transcellular spreading, and aggregation. iScience. 2021;24:102058 pubmed 出版商
  4. Tang S, Fesharaki Zadeh A, Takahashi H, Nies S, Smith L, Luo A, et al. Fyn kinase inhibition reduces protein aggregation, increases synapse density and improves memory in transgenic and traumatic Tauopathy. Acta Neuropathol Commun. 2020;8:96 pubmed 出版商
  5. Tan Y, Xu Y, Cheng C, Zheng C, Zeng W, Wang J, et al. LY354740 Reduces Extracellular Glutamate Concentration, Inhibits Phosphorylation of Fyn/NMDARs, and Expression of PLK2/pS129 α-Synuclein in Mice Treated With Acute or Sub-Acute MPTP. Front Pharmacol. 2020;11:183 pubmed 出版商
  6. Yao X, Xian X, Fang M, Fan S, Li W. Loss of miR-369 Promotes Tau Phosphorylation by Targeting the Fyn and Serine/Threonine-Protein Kinase 2 Signaling Pathways in Alzheimer's Disease Mice. Front Aging Neurosci. 2019;11:365 pubmed 出版商
  7. Timms R, Zhang Z, Rhee D, Harper J, Koren I, Elledge S. A glycine-specific N-degron pathway mediates the quality control of protein N-myristoylation. Science. 2019;365: pubmed 出版商
  8. Chen J, Huang W, Bamodu O, Chang P, Chao T, Huang T. Monospecific antibody targeting of CDH11 inhibits epithelial-to-mesenchymal transition and represses cancer stem cell-like phenotype by up-regulating miR-335 in metastatic breast cancer, in vitro and in vivo. BMC Cancer. 2019;19:634 pubmed 出版商
  9. Padmanabhan P, Martínez Mármol R, Xia D, Götz J, Meunier F. Frontotemporal dementia mutant Tau promotes aberrant Fyn nanoclustering in hippocampal dendritic spines. elife. 2019;8: pubmed 出版商
  10. Xiong X, Lee C, Li W, Yu J, Zhu L, Kim Y, et al. Acid Sphingomyelinase regulates the localization and trafficking of palmitoylated proteins. Biol Open. 2019;: pubmed 出版商
  11. Salazar S, Cox T, Lee S, Brody A, Chyung A, Haas L, et al. Alzheimer's Disease Risk Factor Pyk2 Mediates Amyloid-β-Induced Synaptic Dysfunction and Loss. J Neurosci. 2019;39:758-772 pubmed 出版商
  12. Kim H, Mun Y, Lee K, Park Y, Park J, Park J, et al. T cell microvilli constitute immunological synaptosomes that carry messages to antigen-presenting cells. Nat Commun. 2018;9:3630 pubmed 出版商
  13. Roberts S, Dun X, Doddrell R, Mindos T, Drake L, Onaitis M, et al. Sox2 expression in Schwann cells inhibits myelination in vivo and induces influx of macrophages to the nerve. Development. 2017;144:3114-3125 pubmed 出版商
  14. Poulsen E, Iannuzzi F, Rasmussen H, Maier T, Enghild J, Jørgensen A, et al. An Aberrant Phosphorylation of Amyloid Precursor Protein Tyrosine Regulates Its Trafficking and the Binding to the Clathrin Endocytic Complex in Neural Stem Cells of Alzheimer's Disease Patients. Front Mol Neurosci. 2017;10:59 pubmed 出版商
  15. Chattopadhyay R, Raghavan S, Rao G. Resolvin D1 via prevention of ROS-mediated SHP2 inactivation protects endothelial adherens junction integrity and barrier function. Redox Biol. 2017;12:438-455 pubmed 出版商
  16. Grasso S, Chapelle J, Salemme V, Aramu S, Russo I, Vitale N, et al. The scaffold protein p140Cap limits ERBB2-mediated breast cancer progression interfering with Rac GTPase-controlled circuitries. Nat Commun. 2017;8:14797 pubmed 出版商
  17. Sanchez Martin M, Ambesi Impiombato A, Qin Y, Herranz D, Bansal M, Girardi T, et al. Synergistic antileukemic therapies in NOTCH1-induced T-ALL. Proc Natl Acad Sci U S A. 2017;114:2006-2011 pubmed 出版商
  18. Belliard A, Gulati G, Duan Q, Alves R, Brewer S, Madan N, et al. Ischemia/reperfusion-induced alterations of enzymatic and signaling functions of the rat cardiac Na+/K+-ATPase: protection by ouabain preconditioning. Physiol Rep. 2016;4: pubmed
  19. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  20. Won S, Incontro S, Nicoll R, Roche K. PSD-95 stabilizes NMDA receptors by inducing the degradation of STEP61. Proc Natl Acad Sci U S A. 2016;113:E4736-44 pubmed 出版商
  21. Janjanam J, Rao G. Novel role of cortactin in G protein-coupled receptor agonist-induced nuclear export and degradation of p21Cip1. Sci Rep. 2016;6:28687 pubmed 出版商
  22. Subramaniam S, Ozdener M, Abdoul Azize S, Saito K, Malik B, Maquart G, et al. ERK1/2 activation in human taste bud cells regulates fatty acid signaling and gustatory perception of fat in mice and humans. FASEB J. 2016;30:3489-3500 pubmed
  23. DeRita R, Zerlanko B, Singh A, Lu H, Iozzo R, Benovic J, et al. c-Src, Insulin-Like Growth Factor I Receptor, G-Protein-Coupled Receptor Kinases and Focal Adhesion Kinase are Enriched Into Prostate Cancer Cell Exosomes. J Cell Biochem. 2017;118:66-73 pubmed 出版商
  24. Su L, Li X, Wu X, Hui B, Han S, Gao J, et al. Simultaneous deactivation of FAK and Src improves the pathology of hypertrophic scar. Sci Rep. 2016;6:26023 pubmed 出版商
  25. Kii I, Sumida Y, Goto T, Sonamoto R, Okuno Y, Yoshida S, et al. Selective inhibition of the kinase DYRK1A by targeting its folding process. Nat Commun. 2016;7:11391 pubmed 出版商
  26. Wu X, Yang L, Zheng Z, Li Z, Shi J, Li Y, et al. Src promotes cutaneous wound healing by regulating MMP-2 through the ERK pathway. Int J Mol Med. 2016;37:639-48 pubmed 出版商
  27. Peng K, Tian X, Qian Y, Skibba M, Zou C, Liu Z, et al. Novel EGFR inhibitors attenuate cardiac hypertrophy induced by angiotensin II. J Cell Mol Med. 2016;20:482-94 pubmed 出版商
  28. Peckham H, Giuffrida L, Wood R, Gonsalvez D, Ferner A, Kilpatrick T, et al. Fyn is an intermediate kinase that BDNF utilizes to promote oligodendrocyte myelination. Glia. 2016;64:255-69 pubmed 出版商
  29. Brigidi G, Santyr B, Shimell J, Jovellar B, Bamji S. Activity-regulated trafficking of the palmitoyl-acyl transferase DHHC5. Nat Commun. 2015;6:8200 pubmed 出版商
  30. Matsuoka H, Inoue M. Src mediates endocytosis of TWIK-related acid-sensitive K+ 1 channels in PC12 cells in response to nerve growth factor. Am J Physiol Cell Physiol. 2015;309:C251-63 pubmed 出版商
  31. Grossman H, Chuderland D, Ninio Many L, Hasky N, Kaplan Kraicer R, Shalgi R. A novel regulatory pathway in granulosa cells, the LH/human chorionic gonadotropin-microRNA-125a-3p-Fyn pathway, is required for ovulation. FASEB J. 2015;29:3206-16 pubmed 出版商
  32. Chien P, Lin C, Hsiao L, Yang C. c-Src/Pyk2/EGFR/PI3K/Akt/CREB-activated pathway contributes to human cardiomyocyte hypertrophy: Role of COX-2 induction. Mol Cell Endocrinol. 2015;409:59-72 pubmed 出版商
  33. Carnesecchi J, Malbouyres M, de Mets R, Balland M, Beauchef G, Vié K, et al. Estrogens induce rapid cytoskeleton re-organization in human dermal fibroblasts via the non-classical receptor GPR30. PLoS ONE. 2015;10:e0120672 pubmed 出版商
  34. Choi C, Kim Y, Sohn J, Lee H, Kim W. Focal adhesion kinase and Src expression in premalignant and malignant skin lesions. Exp Dermatol. 2015;24:361-4 pubmed 出版商
  35. Tamilzhalagan S, Muthuswami M, Periasamy J, Lee M, Rha S, Tan P, et al. Upregulated, 7q21-22 amplicon candidate gene SHFM1 confers oncogenic advantage by suppressing p53 function in gastric cancer. Cell Signal. 2015;27:1075-86 pubmed 出版商
  36. Sheng L, Leshchyns ka I, Sytnyk V. Neural cell adhesion molecule 2 promotes the formation of filopodia and neurite branching by inducing submembrane increases in Ca2+ levels. J Neurosci. 2015;35:1739-52 pubmed 出版商
  37. Gütgemann S, Sandusky M, Wingert S, Claus M, Watzl C. Recruitment of activating NK-cell receptors 2B4 and NKG2D to membrane microdomains in mammalian cells is dependent on their transmembrane regions. Eur J Immunol. 2015;45:1258-69 pubmed 出版商
  38. Cox S. Intracellular signaling of CTLs. Methods Mol Biol. 2014;1186:49-63 pubmed 出版商
  39. Fenton S, Hutchens K, Denning M. Targeting Fyn in Ras-transformed cells induces F-actin to promote adherens junction-mediated cell-cell adhesion. Mol Carcinog. 2015;54:1181-93 pubmed 出版商
  40. Gable M, Abdallah S, Najjar S, Liu L, Askari A. Digitalis-induced cell signaling by the sodium pump: on the relation of Src to Na(+)/K(+)-ATPase. Biochem Biophys Res Commun. 2014;446:1151-4 pubmed 出版商
  41. Fukumoto Y, Morii M, Miura T, Kubota S, Ishibashi K, Honda T, et al. Src family kinases promote silencing of ATR-Chk1 signaling in termination of DNA damage checkpoint. J Biol Chem. 2014;289:12313-29 pubmed 出版商
  42. Bouchekioua Bouzaghou K, Poulard C, Rambaud J, Lavergne E, Hussein N, Billaud M, et al. LKB1 when associated with methylatedER? is a marker of bad prognosis in breast cancer. Int J Cancer. 2014;135:1307-18 pubmed 出版商
  43. Cao M, Hou D, Liang H, Gong F, Wang Y, Yan X, et al. miR-150 promotes the proliferation and migration of lung cancer cells by targeting SRC kinase signalling inhibitor 1. Eur J Cancer. 2014;50:1013-24 pubmed 出版商
  44. Hou J, Xia Y, Jiang R, Chen D, Xu J, Deng L, et al. PTPRO plays a dual role in hepatic ischemia reperfusion injury through feedback activation of NF-?B. J Hepatol. 2014;60:306-12 pubmed 出版商
  45. Thompson W, Guilluy C, Xie Z, Sen B, Brobst K, Yen S, et al. Mechanically activated Fyn utilizes mTORC2 to regulate RhoA and adipogenesis in mesenchymal stem cells. Stem Cells. 2013;31:2528-37 pubmed 出版商
  46. Corvetta D, Chayka O, Gherardi S, D Acunto C, Cantilena S, Valli E, et al. Physical interaction between MYCN oncogene and polycomb repressive complex 2 (PRC2) in neuroblastoma: functional and therapeutic implications. J Biol Chem. 2013;288:8332-41 pubmed 出版商