这是一篇来自已证抗体库的有关人类 GAD2的综述,是根据40篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合GAD2 抗体。
GAD2 同义词: GAD65

艾博抗(上海)贸易有限公司
小鼠 单克隆(GAD-6)
  • 免疫组化; 小鼠; 1:500; 图 1g
艾博抗(上海)贸易有限公司 GAD2抗体(Abcam, Ab26113)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1g). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 GAD2抗体(Abcam, Ab49832)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). Nat Metab (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:750; 图 s2g
艾博抗(上海)贸易有限公司 GAD2抗体(Abcam, ab49832)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:750 (图 s2g). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 图 2o
艾博抗(上海)贸易有限公司 GAD2抗体(Abcam, ab11070)被用于被用于免疫印迹在斑马鱼样本上 (图 2o). PLoS Genet (2017) ncbi
小鼠 单克隆(GAD-6)
  • 免疫印迹; 大鼠; 1:1000; 图 8b
艾博抗(上海)贸易有限公司 GAD2抗体(Abcam, ab26113)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8b). Mol Neurobiol (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6k
艾博抗(上海)贸易有限公司 GAD2抗体(Abcam, ab11070)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6k). Ann Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 1a
艾博抗(上海)贸易有限公司 GAD2抗体(Abcam, ab11070)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 1a). Nat Neurosci (2016) ncbi
小鼠 单克隆(GAD-6)
  • 免疫组化; 小鼠; 1:200; 图 7a
  • 免疫印迹; 小鼠; 1:2000; 图 7b
艾博抗(上海)贸易有限公司 GAD2抗体(AbCam, ab26113)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 7a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 7b). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 1:200; 图 8
艾博抗(上海)贸易有限公司 GAD2抗体(Abcam, Ab11070)被用于被用于免疫组化在斑马鱼样本上浓度为1:200 (图 8). J Comp Neurol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:500; 图 2
  • 免疫印迹; 大鼠; 1:5000; 图 6
艾博抗(上海)贸易有限公司 GAD2抗体(Abcam, ab11070)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500 (图 2) 和 被用于免疫印迹在大鼠样本上浓度为1:5000 (图 6). Front Mol Neurosci (2016) ncbi
小鼠 单克隆(GAD-6)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 GAD2抗体(Abcam, GAD-6)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Cereb Cortex (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 非洲爪蛙; 1:200; 图 s3
艾博抗(上海)贸易有限公司 GAD2抗体(Abcam, ab11070)被用于被用于免疫组化-冰冻切片在非洲爪蛙样本上浓度为1:200 (图 s3). Development (2016) ncbi
小鼠 单克隆(GAD-6)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 7a
艾博抗(上海)贸易有限公司 GAD2抗体(Abcam, ab26113)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 7a). Reprod Sci (2015) ncbi
小鼠 单克隆(GAD-6)
  • 免疫组化-冰冻切片; 小鼠; 1:400
艾博抗(上海)贸易有限公司 GAD2抗体(Abcam, ab26113)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400. Neurobiol Dis (2014) ncbi
小鼠 单克隆(GAD-6)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 4c
艾博抗(上海)贸易有限公司 GAD2抗体(Abcam, ab26113)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 4c). Cereb Cortex (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(GAD-6)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5d
圣克鲁斯生物技术 GAD2抗体(Santa Cruz, sc-32270)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5d). Sci Rep (2021) ncbi
小鼠 单克隆(A-3)
  • 免疫组化; 小鼠; 1:200; 图 4c
圣克鲁斯生物技术 GAD2抗体(Santa Cruz Biotechnology, sc-377145)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4c). elife (2020) ncbi
小鼠 单克隆(GAD-6)
  • 免疫组化; 小鼠; 图 1d
圣克鲁斯生物技术 GAD2抗体(Santa Cruz, sc-32270)被用于被用于免疫组化在小鼠样本上 (图 1d). Sci Rep (2017) ncbi
赛默飞世尔
domestic rabbit 多克隆
赛默飞世尔 GAD2抗体(Thermo Scientific, PA5-21297)被用于. Neurochem Int (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 GAD2抗体(Pierce, PA5-21297)被用于. FASEB J (2015) ncbi
小鼠 单克隆(144)
  • 免疫印迹; 人类
赛默飞世尔 GAD2抗体(Neomarkers, MS-1393-P0)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2015) ncbi
BioLegend
小鼠 单克隆(N-GAD65)
  • 免疫组化; 小鼠; 图 st1
BioLegend GAD2抗体(BioLegend, 844502)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
Novus Biologicals
domestic rabbit 多克隆(2A6)
  • 免疫印迹; 小鼠; 1:1000; 图 s2a
Novus Biologicals GAD2抗体(Novus Biologicals, NBP1-33284)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2a). J Cell Biol (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D5G2)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 GAD2抗体(Cell Signaling, 5843S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D5G2)
  • 免疫组化; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司 GAD2抗体(Cell Signalling, 5843)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
domestic rabbit 单克隆(D5G2)
  • 免疫组化; 小鼠; 1:100; 图 s5
赛信通(上海)生物试剂有限公司 GAD2抗体(Cell Signaling Technology, 5843)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s5). Genes Dev (2015) ncbi
domestic rabbit 单克隆(D5G2)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 GAD2抗体(Cell Signaling Technology, 5843)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Eur J Hum Genet (2016) ncbi
碧迪BD
小鼠 单克隆(GAD-6)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s1g
  • 免疫细胞化学; 小鼠; 图 3c
碧迪BD GAD2抗体(BD, 559931)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s1g) 和 被用于免疫细胞化学在小鼠样本上 (图 3c). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(GAD-6)
  • 免疫组化; 小鼠; 图 s4c
碧迪BD GAD2抗体(BD Pharmingen, 559931)被用于被用于免疫组化在小鼠样本上 (图 s4c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(GAD-6)
  • 免疫组化; 小鼠; 1:5000
碧迪BD GAD2抗体(BD Biosciences, 559931)被用于被用于免疫组化在小鼠样本上浓度为1:5000. Mol Brain (2015) ncbi
小鼠 单克隆(GAD-6)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4f
碧迪BD GAD2抗体(BD Pharmingen, 559931)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4f). Dev Dyn (2015) ncbi
小鼠 单克隆(GAD-6)
  • 免疫细胞化学; 小鼠
碧迪BD GAD2抗体(BD Pharmingen, 559931)被用于被用于免疫细胞化学在小鼠样本上. J Neurosci (2014) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(GAD-6)
  • 免疫组化-冰冻切片; 大鼠; 图 4k
  • 免疫组化; 大鼠; 1:25,000; 图 4h
Developmental Studies Hybridoma Bank GAD2抗体(DSHB, GAD65)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 4k) 和 被用于免疫组化在大鼠样本上浓度为1:25,000 (图 4h). J Comp Neurol (2019) ncbi
小鼠 单克隆(GAD-6)
  • 免疫组化; 大鼠; 1:200; 表 1
Developmental Studies Hybridoma Bank GAD2抗体(Developmental Hybridoma Bank, GAD6)被用于被用于免疫组化在大鼠样本上浓度为1:200 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(GAD-6)
  • 免疫印迹; 小鼠; 1:500; 图 s7e
Developmental Studies Hybridoma Bank GAD2抗体(DSHB, GAD-6)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s7e). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(GAD-6)
  • 免疫组化; 小鼠; 1:100; 图 s1a
  • 免疫细胞化学; 大鼠; 1:100; 图 1a
Developmental Studies Hybridoma Bank GAD2抗体(Developmental Studies Hybridoma Bank, GAD-6)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s1a) 和 被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 1a). J Cell Biol (2016) ncbi
小鼠 单克隆(GAD-6)
  • 免疫组化; 小鼠; 图 7
Developmental Studies Hybridoma Bank GAD2抗体(Developmental Studies Hybridoma Bank (DSHB), GAD-6)被用于被用于免疫组化在小鼠样本上 (图 7). Neural Dev (2015) ncbi
小鼠 单克隆(GAD-6)
  • 免疫细胞化学; 大鼠; 1:25
  • 免疫组化; 大鼠; 1:25
Developmental Studies Hybridoma Bank GAD2抗体(Developmental Studies Hybridoma Bank University of Iowa, GAD-6)被用于被用于免疫细胞化学在大鼠样本上浓度为1:25 和 被用于免疫组化在大鼠样本上浓度为1:25. J Comp Neurol (2015) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫组化; 猕猴; 1:1000; 图 10a'
西格玛奥德里奇 GAD2抗体(Sigma, G5163)被用于被用于免疫组化在猕猴样本上浓度为1:1000 (图 10a'). J Comp Neurol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 2c
西格玛奥德里奇 GAD2抗体(Sigma-Aldrich, G5163)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 2c). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 猫; 1:5000; 图 10b
西格玛奥德里奇 GAD2抗体(Sigma, G5163)被用于被用于免疫组化在猫样本上浓度为1:5000 (图 10b). Neuroscience (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000
西格玛奥德里奇 GAD2抗体(Sigma, G5163)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000. Neuroscience (2016) ncbi
文章列表
  1. Park G, Lee J, Han H, An H, Jin Z, Jeong E, et al. Ablation of dynamin-related protein 1 promotes diabetes-induced synaptic injury in the hippocampus. Cell Death Dis. 2021;12:445 pubmed 出版商
  2. Nasu M, Esumi S, Hatakeyama J, Tamamaki N, Shimamura K. Two-Phase Lineage Specification of Telencephalon Progenitors Generated From Mouse Embryonic Stem Cells. Front Cell Dev Biol. 2021;9:632381 pubmed 出版商
  3. Kato Y, Katsumata H, Inutsuka A, Yamanaka A, Onaka T, Minami S, et al. Involvement of MCH-oxytocin neural relay within the hypothalamus in murine nursing behavior. Sci Rep. 2021;11:3348 pubmed 出版商
  4. Echagarruga C, Gheres K, Norwood J, Drew P. nNOS-expressing interneurons control basal and behaviorally evoked arterial dilation in somatosensory cortex of mice. elife. 2020;9: pubmed 出版商
  5. Chang W, Tu C, Jean Alphonse F, HERBERGER A, Cheng Z, Hwong J, et al. PTH hypersecretion triggered by a GABAB1 and Ca2+-sensing receptor heterocomplex in hyperparathyroidism. Nat Metab. 2020;2:243-255 pubmed 出版商
  6. Borra E, Luppino G, Gerbella M, Rozzi S, Rockland K. Projections to the putamen from neurons located in the white matter and the claustrum in the macaque. J Comp Neurol. 2020;528:453-467 pubmed 出版商
  7. Riedemann S, Sutor B, Bergami M, Riedemann T. Gad1-promotor-driven GFP expression in non-GABAergic neurons of the nucleus endopiriformis in a transgenic mouse line. J Comp Neurol. 2019;: pubmed 出版商
  8. Carballo Carbajal I, Laguna A, Romero Gimenez J, Cuadros T, Bove J, Martinez Vicente M, et al. Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson's disease pathogenesis. Nat Commun. 2019;10:973 pubmed 出版商
  9. Rahman A, Weber J, Labin E, Lai C, Prieto A. Developmental expression of Neuregulin-3 in the rat central nervous system. J Comp Neurol. 2019;527:797-817 pubmed 出版商
  10. Xia Z, Wei J, Li Y, Wang J, Li W, Wang K, et al. Zebrafish slc30a10 deficiency revealed a novel compensatory mechanism of Atp2c1 in maintaining manganese homeostasis. PLoS Genet. 2017;13:e1006892 pubmed 出版商
  11. Schultz A, Rotterman T, Dwarakanath A, Alvarez F. VGLUT1 synapses and P-boutons on regenerating motoneurons after nerve crush. J Comp Neurol. 2017;525:2876-2889 pubmed 出版商
  12. Arcego D, Toniazzo A, Krolow R, Lampert C, Berlitz C, Dos Santos Garcia E, et al. Impact of High-Fat Diet and Early Stress on Depressive-Like Behavior and Hippocampal Plasticity in Adult Male Rats. Mol Neurobiol. 2018;55:2740-2753 pubmed 出版商
  13. Sterky F, Trotter J, Lee S, Recktenwald C, Du X, Zhou B, et al. Carbonic anhydrase-related protein CA10 is an evolutionarily conserved pan-neurexin ligand. Proc Natl Acad Sci U S A. 2017;114:E1253-E1262 pubmed 出版商
  14. González González M, Gómez González G, Becerra González M, Martinez Torres A. Identification of novel cellular clusters define a specialized area in the cerebellar periventricular zone. Sci Rep. 2017;7:40768 pubmed 出版商
  15. Li Y, Andereggen L, Yuki K, Omura K, Yin Y, Gilbert H, et al. Mobile zinc increases rapidly in the retina after optic nerve injury and regulates ganglion cell survival and optic nerve regeneration. Proc Natl Acad Sci U S A. 2017;114:E209-E218 pubmed 出版商
  16. Kemp K, Cerminara N, Hares K, Redondo J, Cook A, Haynes H, et al. Cytokine therapy-mediated neuroprotection in a Friedreich's ataxia mouse model. Ann Neurol. 2017;81:212-226 pubmed 出版商
  17. Fukuda T. Structural organization of the dendritic reticulum linked by gap junctions in layer 4 of the visual cortex. Neuroscience. 2017;340:76-90 pubmed 出版商
  18. Cai Y, Yang L, Hu G, Chen X, Niu F, Yuan L, et al. Regulation of morphine-induced synaptic alterations: Role of oxidative stress, ER stress, and autophagy. J Cell Biol. 2016;215:245-258 pubmed
  19. Dimidschstein J, Chen Q, Tremblay R, Rogers S, Saldi G, Guo L, et al. A viral strategy for targeting and manipulating interneurons across vertebrate species. Nat Neurosci. 2016;19:1743-1749 pubmed 出版商
  20. Urrutia M, Fernandez S, Gonzalez M, Vilches R, Rojas P, Vásquez M, et al. Overexpression of Glutamate Decarboxylase in Mesenchymal Stem Cells Enhances Their Immunosuppressive Properties and Increases GABA and Nitric Oxide Levels. PLoS ONE. 2016;11:e0163735 pubmed 出版商
  21. Caporali P, Bruno F, Palladino G, Dragotto J, Petrosini L, Mangia F, et al. Developmental delay in motor skill acquisition in Niemann-Pick C1 mice reveals abnormal cerebellar morphogenesis. Acta Neuropathol Commun. 2016;4:94 pubmed 出版商
  22. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  23. Glasauer S, Wager R, Gesemann M, Neuhauss S. mglur6b:EGFP Transgenic zebrafish suggest novel functions of metabotropic glutamate signaling in retina and other brain regions. J Comp Neurol. 2016;524:2363-78 pubmed 出版商
  24. Li J, Su Y, Wang H, Zhao Y, Liao X, Wang X, et al. Repeated Blockade of NMDA Receptors During Adolescence Impairs Reversal Learning and Disrupts GABAergic Interneurons in Rat Medial Prefrontal Cortex. Front Mol Neurosci. 2016;9:17 pubmed 出版商
  25. Bonini S, Mastinu A, Maccarinelli G, Mitola S, Premoli M, La Rosa L, et al. Cortical Structure Alterations and Social Behavior Impairment in p50-Deficient Mice. Cereb Cortex. 2016;26:2832-49 pubmed 出版商
  26. Roque C, Wong H, Lin J, Holt C. Tumor protein Tctp regulates axon development in the embryonic visual system. Development. 2016;143:1134-48 pubmed 出版商
  27. Hernández Enríquez B, Wu Z, Martinez E, Olsen O, Kaprielian Z, Maness P, et al. Floor plate-derived neuropilin-2 functions as a secreted semaphorin sink to facilitate commissural axon midline crossing. Genes Dev. 2015;29:2617-32 pubmed 出版商
  28. Boczek T, Lisek M, Ferenc B, Wiktorska M, Ivchevska I, Zylinska L. Region-specific effects of repeated ketamine administration on the presynaptic GABAergic neurochemistry in rat brain. Neurochem Int. 2015;91:13-25 pubmed 出版商
  29. Erbs E, Faget L, Ceredig R, Matifas A, Vonesch J, Kieffer B, et al. Impact of chronic morphine on delta opioid receptor-expressing neurons in the mouse hippocampus. Neuroscience. 2016;313:46-56 pubmed 出版商
  30. Hua Z, Emiliani F, Nathans J. Rac1 plays an essential role in axon growth and guidance and in neuronal survival in the central and peripheral nervous systems. Neural Dev. 2015;10:21 pubmed 出版商
  31. Abuhatzira L, Xu H, Tahhan G, Boulougoura A, Schäffer A, Notkins A. Multiple microRNAs within the 14q32 cluster target the mRNAs of major type 1 diabetes autoantigens IA-2, IA-2β, and GAD65. FASEB J. 2015;29:4374-83 pubmed 出版商
  32. Jin K, Jiang H, Xiao D, Zou M, Zhu J, Xiang M. Tfap2a and 2b act downstream of Ptf1a to promote amacrine cell differentiation during retinogenesis. Mol Brain. 2015;8:28 pubmed 出版商
  33. Machado C, Griesi Oliveira K, Rosenberg C, Kok F, Martins S, Passos Bueno M, et al. Collybistin binds and inhibits mTORC1 signaling: a potential novel mechanism contributing to intellectual disability and autism. Eur J Hum Genet. 2016;24:59-65 pubmed 出版商
  34. Markkanen E, Fischer R, Ledentcova M, Kessler B, Dianov G. Cells deficient in base-excision repair reveal cancer hallmarks originating from adjustments to genetic instability. Nucleic Acids Res. 2015;43:3667-79 pubmed 出版商
  35. Zhu B, Chen Y, Zhang H, Liu X, Guo S. Resveratrol Reduces Myometrial Infiltration, Uterine Hyperactivity, and Stress Levels and Alleviates Generalized Hyperalgesia in Mice With Induced Adenomyosis. Reprod Sci. 2015;22:1336-49 pubmed 出版商
  36. Fekete C, Chiou T, Miralles C, Harris R, Fiondella C, LoTurco J, et al. In vivo clonal overexpression of neuroligin 3 and neuroligin 2 in neurons of the rat cerebral cortex: Differential effects on GABAergic synapses and neuronal migration. J Comp Neurol. 2015;523:1359-78 pubmed 出版商
  37. Zou M, Luo H, Xiang M. Selective neuronal lineages derived from Dll4-expressing progenitors/precursors in the retina and spinal cord. Dev Dyn. 2015;244:86-97 pubmed 出版商
  38. Sidhu H, Dansie L, Hickmott P, Ethell D, Ethell I. Genetic removal of matrix metalloproteinase 9 rescues the symptoms of fragile X syndrome in a mouse model. J Neurosci. 2014;34:9867-79 pubmed 出版商
  39. Morell M, Camprubí Robles M, Culler M, de Lecea L, Delgado M. Cortistatin attenuates inflammatory pain via spinal and peripheral actions. Neurobiol Dis. 2014;63:141-54 pubmed 出版商
  40. Al Jaberi N, Lindsay S, Sarma S, Bayatti N, Clowry G. The early fetal development of human neocortical GABAergic interneurons. Cereb Cortex. 2015;25:631-45 pubmed 出版商