这是一篇来自已证抗体库的有关人类 GAPDHS的综述,是根据416篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合GAPDHS 抗体。
GAPDHS 同义词: GAPD2; GAPDH-2; GAPDS; HEL-S-278; HSD-35

赛默飞世尔
小鼠 单克隆(258)
  • 免疫印迹; 人类; 1:10,000; 图 6a
赛默飞世尔 GAPDHS抗体(Thermo-Fisher, 437000)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 6a). elife (2020) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 图 9
赛默飞世尔 GAPDHS抗体(Thermo Fisher Scientific, MA5-15738)被用于被用于免疫印迹在人类样本上 (图 9). Cells (2019) ncbi
小鼠 单克隆(GA1R)
  • 免疫细胞化学; 小鼠; 1:1000; 图 4c
赛默飞世尔 GAPDHS抗体(Thermo Fisher, GA1R)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 4c). Arch Immunol Ther Exp (Warsz) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4j
赛默飞世尔 GAPDHS抗体(Open Biosystems, TAB1001)被用于被用于免疫印迹在人类样本上 (图 4j). Cell (2019) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10,000; 图 1c
赛默飞世尔 GAPDHS抗体(Thermo Fisher, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1c). Nucleic Acids Res (2019) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 GAPDHS抗体(Pierce, MA5-15738)被用于被用于免疫印迹在人类样本上浓度为1:1000. Science (2019) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 6b
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 6b). Mol Cell (2019) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:150,000; 图 1a
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:150,000 (图 1a). Sci Rep (2019) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛默飞世尔 GAPDHS抗体(Ambion, 4300)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Biochem Pharmacol (2019) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 图 3d
赛默飞世尔 GAPDHS抗体(Invitrogen, MA5-15738)被用于被用于免疫印迹在人类样本上 (图 3d). PLoS Pathog (2018) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:5000; 图 s4g
赛默飞世尔 GAPDHS抗体(生活技术, AM43000)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s4g). Nat Commun (2018) ncbi
小鼠 单克隆(6C5)
  • 其他; 人类; 图 4c
赛默飞世尔 GAPDHS抗体(Thermo Fisher Scientific, AM4300)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 1:1000; 图 6h
  • 免疫印迹; 小鼠; 1:1000; 图 6h
赛默飞世尔 GAPDHS抗体(Thermo Fisher Scientific, MA5-15738-BTIN)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6h) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6h). Sci Rep (2017) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠; 1:5000; 图 9a
赛默飞世尔 GAPDHS抗体(Thermo Fisher Scientific, MA5-15738)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 9a). Invest Ophthalmol Vis Sci (2017) ncbi
domestic goat 多克隆
  • 免疫印迹; 人类; 1:50,000; 图 2b
赛默飞世尔 GAPDHS抗体(Thermo Fisher, PA1-9046)被用于被用于免疫印迹在人类样本上浓度为1:50,000 (图 2b). Ann Biomed Eng (2017) ncbi
小鼠 单克隆(4A1)
  • 免疫细胞化学; 大鼠; 1:100; 图 3c
  • 免疫印迹; 人类; 图 2a
赛默飞世尔 GAPDHS抗体(Thermo Fisher Scientific, LF-MA0100)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 3c) 和 被用于免疫印迹在人类样本上 (图 2a). FASEB J (2017) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠; 图 s1b
赛默飞世尔 GAPDHS抗体(Thermo Fisher Scientific, MA5-15738)被用于被用于免疫印迹在小鼠样本上 (图 s1b). Science (2017) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 图 4e
赛默飞世尔 GAPDHS抗体(Thermo Scientific, MA5-15738)被用于被用于免疫印迹在人类样本上 (图 4e). ChemMedChem (2017) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; brewer's yeast; 图 1c
赛默飞世尔 GAPDHS抗体(Thermo Scientific, MA5-15738)被用于被用于免疫印迹在brewer's yeast样本上 (图 1c). Autophagy (2017) ncbi
小鼠 单克隆(6C5)
  • reverse phase protein lysate microarray; 人类; 图 7a
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 7a). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛默飞世尔 GAPDHS抗体(Thermo Scientific, PA1-988)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Acta Neuropathol Commun (2017) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:5000; 图 2a
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2a). PLoS Biol (2017) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠; 1:10,000; 图 4f
赛默飞世尔 GAPDHS抗体(Thermo Fisher, GA1R)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 4f). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 1:4000; 图 1a
赛默飞世尔 GAPDHS抗体(Thermo, MA5-15738)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 1a). Am J Physiol Cell Physiol (2017) ncbi
小鼠 单克隆(6C5)
  • reverse phase protein lysate microarray; 人类; 图 3a
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 3a). Nature (2017) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 1:500; 图 2h
赛默飞世尔 GAPDHS抗体(生活技术, ZG003)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2h). Nat Med (2017) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 s2b
赛默飞世尔 GAPDHS抗体(Thermo Fisher Scientific, AM4300)被用于被用于免疫印迹在人类样本上 (图 s2b). Mol Carcinog (2017) ncbi
小鼠 单克隆(1D4)
  • 免疫印迹; 大鼠; 1:40,000
赛默飞世尔 GAPDHS抗体(Thermo Fischer Scientific, MA1-16757)被用于被用于免疫印迹在大鼠样本上浓度为1:40,000. elife (2017) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类
赛默飞世尔 GAPDHS抗体(Pierce, MA5-15738)被用于被用于免疫印迹在人类样本上. Am J Sports Med (2017) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠; 1:2000; 图 1c
赛默飞世尔 GAPDHS抗体(Thermo Fisher, MA5-15738)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1c). Nucleic Acids Res (2017) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠
赛默飞世尔 GAPDHS抗体(Pierce, MA5-15738)被用于被用于免疫印迹在小鼠样本上. Am J Physiol Gastrointest Liver Physiol (2017) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 3a
赛默飞世尔 GAPDHS抗体(生活技术, AM4300)被用于被用于免疫印迹在人类样本上 (图 3a). Osteoarthritis Cartilage (2017) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 图 2b
赛默飞世尔 GAPDHS抗体(Thermo Scientific, MA5-15738)被用于被用于免疫印迹在人类样本上 (图 2b). Biomed Pharmacother (2017) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 2e
赛默飞世尔 GAPDHS抗体(Thermo Fisher Scientific, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 2e). J Immunol (2017) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:5000; 图 6b
赛默飞世尔 GAPDHS抗体(生活技术, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 6b). Transl Res (2017) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠; 图 5d
赛默飞世尔 GAPDHS抗体(Pierce, MA5-15738)被用于被用于免疫印迹在小鼠样本上 (图 5d). Cell Death Discov (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 图 4b
赛默飞世尔 GAPDHS抗体(ThermoFisher, MA5-15738)被用于被用于免疫印迹在人类样本上 (图 4b). Integr Biol (Camb) (2016) ncbi
小鼠 单克隆(1D4)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 GAPDHS抗体(Invitrogen, MA1-16757)被用于被用于免疫印迹在小鼠样本上 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7b
赛默飞世尔 GAPDHS抗体(ThermoFisher Scientific, PA1-987)被用于被用于免疫印迹在小鼠样本上 (图 7b). Biomed Mater (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4d
赛默飞世尔 GAPDHS抗体(Thermo Fisher, PA1-987)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). J Steroid Biochem Mol Biol (2017) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 2a
赛默飞世尔 GAPDHS抗体(生活技术, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 2a). J Immunol (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 GAPDHS抗体(Ambion, 4300)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠; 图 5a
赛默飞世尔 GAPDHS抗体(Thermo Fischer, MA5-15738)被用于被用于免疫印迹在小鼠样本上 (图 5a). Am J Physiol Endocrinol Metab (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛默飞世尔 GAPDHS抗体(ThermoFisher, PA1-988)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Mol Nutr Food Res (2017) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 2). Front Oncol (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:4000; 图 1a
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 1a). J Cell Sci (2016) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 1:5000; 图 1
赛默飞世尔 GAPDHS抗体(Invitrogen, ZG003)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). BMC Mol Biol (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 6). Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 牛; 图 2
赛默飞世尔 GAPDHS抗体(Thermo Scientific, PA1-988)被用于被用于免疫印迹在牛样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2f
赛默飞世尔 GAPDHS抗体(Thermo Scientific, PA1-987)被用于被用于免疫印迹在小鼠样本上 (图 2f). Biol Reprod (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:1000; 图 2
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 GAPDHS抗体(Invitrogen, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 图 1b
赛默飞世尔 GAPDHS抗体(Thermo Fisher, MA5-15738)被用于被用于免疫印迹在人类样本上 (图 1b). Biochem Biophys Res Commun (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; fission yeast; 图 3
赛默飞世尔 GAPDHS抗体(Thermo Scientific, MA5-15738)被用于被用于免疫印迹在fission yeast样本上 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:2000; 图 1
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1d
赛默飞世尔 GAPDHS抗体(Invitrogen, PA1-988)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). Biochem Biophys Res Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1h
赛默飞世尔 GAPDHS抗体(Invitrogen, PA1-988)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1h). Biochem Biophys Res Commun (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 1:1500; 图 6
赛默飞世尔 GAPDHS抗体(Thermo Scientific, MA5-15738)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 图 6
赛默飞世尔 GAPDHS抗体(ThermoFisher, MA5-15738)被用于被用于免疫印迹在人类样本上 (图 6). Cell Microbiol (2017) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 GAPDHS抗体(Thermo Scientific, MA5-15738)被用于被用于免疫印迹在人类样本上 (图 3). J Virol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛默飞世尔 GAPDHS抗体(Pierce, PA1-16777)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:50,000; 表 2
赛默飞世尔 GAPDHS抗体(Ambion Applied Biosystems, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:50,000 (表 2). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 GAPDHS抗体(Thermo Fisher Scientific, MA5-15738)被用于被用于免疫印迹在小鼠样本上 (图 2). Diabetes (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 GAPDHS抗体(Pierce, MA5-15738)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Cycle (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠; 1:2000; 图 1c
赛默飞世尔 GAPDHS抗体(Thermo Fisher, MA5-15738)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1c). J Appl Physiol (1985) (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; roundworm ; 1:5000; 图 2
赛默飞世尔 GAPDHS抗体(Thermo Scientific, MA5-15738)被用于被用于免疫印迹在roundworm 样本上浓度为1:5000 (图 2). Exp Biol Med (Maywood) (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 7
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 7). Oncogene (2017) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 GAPDHS抗体(Invitrogen, AM4300)被用于被用于免疫印迹在人类样本上 (图 3). Mol Carcinog (2017) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔 GAPDHS抗体(Invitrogen, 39-8600)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Front Microbiol (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 猫; 图 1
  • 免疫印迹; 小鼠; 图 8
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在猫样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 8). J Virol (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:50,000; 图 7
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:50,000 (图 7). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛默飞世尔 GAPDHS抗体(ThermoFisher, PA1-16777)被用于被用于免疫印迹在人类样本上 (图 6). Acta Physiol (Oxf) (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 GAPDHS抗体(Thermo Scientific, MA5-15738)被用于被用于免疫印迹在人类样本上 (图 4). EMBO Rep (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10,000; 图 1
赛默飞世尔 GAPDHS抗体(Thermo Fisher Scientific, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Int J Obes (Lond) (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:5000; 图 4
赛默飞世尔 GAPDHS抗体(生活技术, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:4000; 图 5
赛默飞世尔 GAPDHS抗体(生活技术, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 5). J Cell Sci (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔 GAPDHS抗体(生活技术, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 6). Am J Respir Cell Mol Biol (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:3000; 图 2
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 2). J Cell Sci (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 GAPDHS抗体(Invitrogen, AM4300)被用于被用于免疫印迹在人类样本上 (图 5). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:6000; 图 4c
赛默飞世尔 GAPDHS抗体(Ambion, 4300)被用于被用于免疫印迹在大鼠样本上浓度为1:6000 (图 4c). PLoS ONE (2016) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 GAPDHS抗体(Invitrogen, 39-8600)被用于被用于免疫印迹在人类样本上 (图 4). F1000Res (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:20,000; 图 1
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类
赛默飞世尔 GAPDHS抗体(ThermoFisher, MA5-15738-HRP)被用于被用于免疫印迹在人类样本上. Nature (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2016) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 豚鼠; 1:1000; 图 7
赛默飞世尔 GAPDHS抗体(Invitrogen, 39-8600)被用于被用于免疫印迹在豚鼠样本上浓度为1:1000 (图 7). J Cell Biochem (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:5000; 图 1b
赛默飞世尔 GAPDHS抗体(生活技术, AM4300)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 1b). Sci Rep (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 图 1a
赛默飞世尔 GAPDHS抗体(Thermo Scientific, GA1R)被用于被用于免疫印迹在人类样本上 (图 1a). Melanoma Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 1
赛默飞世尔 GAPDHS抗体(Thermo Fisher, PA1-987)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Br J Pharmacol (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类
赛默飞世尔 GAPDHS抗体(生活技术, MA5-15738)被用于被用于免疫印迹在人类样本上. elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛默飞世尔 GAPDHS抗体(生活技术, PA1-988)被用于被用于免疫印迹在人类样本上. elife (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:4000; 图 1
赛默飞世尔 GAPDHS抗体(Applied Biosystems, AM4300)被用于被用于免疫印迹在大鼠样本上浓度为1:4000 (图 1). Neurobiol Dis (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; barley; 1:1000; 图 3
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在barley样本上浓度为1:1000 (图 3). Plant Physiol Biochem (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛默飞世尔 GAPDHS抗体(Thermo Fisher, GA1R)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:5000; 图 1
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:15,000; 图 4
赛默飞世尔 GAPDHS抗体(生活技术, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:15,000 (图 4). Oncogenesis (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 1:5000; 图 2
赛默飞世尔 GAPDHS抗体(Pierce, MA5-15738)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). Aging (Albany NY) (2016) ncbi
小鼠 单克隆(258)
  • 免疫印迹; 人类; 图 s2d
赛默飞世尔 GAPDHS抗体(Invitrogen, 258)被用于被用于免疫印迹在人类样本上 (图 s2d). Cancer Cell (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 8
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 8). PLoS Pathog (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 GAPDHS抗体(生活技术, AM4300)被用于被用于免疫印迹在人类样本上 (图 4). elife (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 仓鼠; 图 1
赛默飞世尔 GAPDHS抗体(Thermo Fisher, AM4300)被用于被用于免疫印迹在仓鼠样本上 (图 1). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 5
赛默飞世尔 GAPDHS抗体(Thermo Scientific, TAB1001)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5). J Cereb Blood Flow Metab (2017) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 GAPDHS抗体(生活技术, AM4300)被用于被用于免疫印迹在人类样本上 (图 2). Arthritis Res Ther (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 图 1
赛默飞世尔 GAPDHS抗体(Applied Biosystems, AM4300)被用于被用于免疫印迹在大鼠样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:5000; 图 3
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3). Clin Cancer Res (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:20,000; 图 2
赛默飞世尔 GAPDHS抗体(生活技术, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). J Biol Chem (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 GAPDHS抗体(Thermo Scientific, MA5-15738)被用于被用于免疫印迹在人类样本上 (图 1). elife (2015) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 GAPDHS抗体(Invitrogen, 398600)被用于被用于免疫印迹在人类样本上 (图 4). J Clin Invest (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 GAPDHS抗体(Ambion, AM43000)被用于被用于免疫印迹在人类样本上 (图 2). Methods Mol Biol (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛默飞世尔 GAPDHS抗体(生活技术, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上. BMJ Open Gastroenterol (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上. Hum Pathol (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔 GAPDHS抗体(Life Technologies-Ambion, AM4300)被用于被用于免疫印迹在人类样本上. Genes Cancer (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10000
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:10000. PLoS ONE (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:5000
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:5000. Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 1:10,000; 图 1a
赛默飞世尔 GAPDHS抗体(Invitrogen, 39-8600)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1a). Microbes Infect (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 GAPDHS抗体(Ambion, 6C5)被用于被用于免疫印迹在人类样本上 (图 2). Cell Mol Life Sci (2016) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 1:5000
赛默飞世尔 GAPDHS抗体(生活技术, 39-8600)被用于被用于免疫印迹在人类样本上浓度为1:5000. J Neurosci Res (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:4000
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:4000. Neuroscience (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔 GAPDHS抗体(Pierce, MA515738)被用于被用于免疫印迹在小鼠样本上 (图 6). J Neurosci (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠; 1:100; 图 2d
赛默飞世尔 GAPDHS抗体(Thermo Scientific, MA5-15738)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 2d). Parkinsonism Relat Disord (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 GAPDHS抗体(Ambion, am4300)被用于被用于免疫印迹在人类样本上 (图 1). Stem Cells (2015) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔 GAPDHS抗体(Invitrogen, 398600)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). PLoS Pathog (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; brewer's yeast; 图 6
赛默飞世尔 GAPDHS抗体(Pierce, MA5-15738)被用于被用于免疫印迹在brewer's yeast样本上 (图 6). Methods Enzymol (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔 GAPDHS抗体(Invitrogen, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 1:10,000; 图 1.a,b
赛默飞世尔 GAPDHS抗体(Thermo, MA5-15738)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1.a,b). Nat Commun (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在大鼠样本上. J Proteome Res (2015) ncbi
小鼠 单克隆(258)
  • 免疫印迹; 人类; 1:10,000; 图 7
赛默飞世尔 GAPDHS抗体(Invitrogen, 437000)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 7). Mol Biol Cell (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类
赛默飞世尔 GAPDHS抗体(Thermo Scientific, MA5-15738)被用于被用于免疫印迹在人类样本上. Cell Cycle (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 GAPDHS抗体(Thermo Scientific, MA5-15738)被用于被用于免疫印迹在人类样本上 (图 4). J Proteome Res (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠; 1:5000; 图 s3
赛默飞世尔 GAPDHS抗体(ThermoScientific, GA1R)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s3). Hum Mol Genet (2015) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
赛默飞世尔 GAPDHS抗体(生活技术, 398600)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 GAPDHS抗体(Invitrogen, 39-8600)被用于被用于免疫印迹在人类样本上 (图 5). Mol Cell Biol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 GAPDHS抗体(Thermo Scientific, TAB1001)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:50000
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:50000. J Cell Physiol (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000; 图 4d
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Nat Commun (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 幽门螺杆菌; 1:5000
赛默飞世尔 GAPDHS抗体(Thermo Fisher Scientific, GA1R)被用于被用于免疫印迹在幽门螺杆菌样本上浓度为1:5000. Int J Mol Med (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:20000
赛默飞世尔 GAPDHS抗体(ThermoFischer Scientific, 4300)被用于被用于免疫印迹在大鼠样本上浓度为1:20000. Eur J Neurosci (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 1). Autophagy (2015) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 GAPDHS抗体(Invitrogen, 398600)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔 GAPDHS抗体(生活技术, AM4300)被用于被用于免疫印迹在小鼠样本上. Vaccines (Basel) (2014) ncbi
domestic rabbit 多克隆
赛默飞世尔 GAPDHS抗体(Pierce Chemical Co, PA1-987)被用于. Am J Obstet Gynecol (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; fission yeast
赛默飞世尔 GAPDHS抗体(Thermo Scientific, MA5-15738)被用于被用于免疫印迹在fission yeast样本上. Genetics (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫细胞化学; 犬
赛默飞世尔 GAPDHS抗体(生活技术, AM4300)被用于被用于免疫细胞化学在犬样本上. J Cell Sci (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:15000
赛默飞世尔 GAPDHS抗体(Invitrogen, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:15000. Obesity (Silver Spring) (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类
赛默飞世尔 GAPDHS抗体(Thermo Scientific, GA1R)被用于被用于免疫印迹在人类样本上. J Virol (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上. Cell Struct Funct (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类
赛默飞世尔 GAPDHS抗体(Thermo Fisher Scientific, GA1R)被用于被用于免疫印迹在人类样本上. Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1b
赛默飞世尔 GAPDHS抗体(Applied Biosystems, 6C5)被用于被用于免疫印迹在人类样本上 (图 1b). Cell (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔 GAPDHS抗体(生活技术, AM4300)被用于被用于免疫印迹在小鼠样本上. Muscle Nerve (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 大鼠; 图 1
赛默飞世尔 GAPDHS抗体(Pierce, MA5-15738)被用于被用于免疫印迹在大鼠样本上 (图 1). J Transl Med (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔 GAPDHS抗体(生活技术, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 6). Gastroenterology (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:16,000; 图 5
  • 免疫印迹; 人类; 1:16,000; 图 2
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:16,000 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:16,000 (图 2). J Clin Endocrinol Metab (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:40,000; 图 2a
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:40,000 (图 2a). Sci Signal (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔 GAPDHS抗体(Applied Biosystems, 6C5)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:4000
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在大鼠样本上浓度为1:4000. Mol Med Rep (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 GAPDHS抗体(Thermo Scientific, PA1-988)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠
赛默飞世尔 GAPDHS抗体(Thermo Scientific, GA1R)被用于被用于免疫印迹在小鼠样本上. Infect Immun (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:20000; 图 1
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:20000 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:2000; 图 1
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Mol Endocrinol (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 非洲爪蛙; 1:5000
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:5000. PLoS Genet (2015) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 1:10000
赛默飞世尔 GAPDHS抗体(Invitrogen, 39-8600)被用于被用于免疫印迹在人类样本上浓度为1:10000. Neuroscience (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 鸡
赛默飞世尔 GAPDHS抗体(Thermo Scientific, GA1R)被用于被用于免疫印迹在鸡样本上. Virus Res (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 3). J Biol Chem (2015) ncbi
小鼠 单克隆(1D4)
  • 免疫印迹; 人类
赛默飞世尔 GAPDHS抗体(Thermo Scientific, MA1-16757)被用于被用于免疫印迹在人类样本上. Int J Cancer (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛默飞世尔 GAPDHS抗体(Ambion Austin, AM4300)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. Aging Cell (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 GAPDHS抗体(Pierce, MA5-15738)被用于被用于免疫印迹在小鼠样本上 (图 4). J Biol Chem (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 s2
赛默飞世尔 GAPDHS抗体(Ambion, 6C5)被用于被用于免疫印迹在小鼠样本上 (图 s2). Nature (2015) ncbi
小鼠 单克隆(GA1R)
赛默飞世尔 GAPDHS抗体(Thermo, MA5-15738)被用于. Nature (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠
赛默飞世尔 GAPDHS抗体(Thermo Fisher Scientific, MA5-15738)被用于被用于免疫印迹在小鼠样本上. Cell Death Dis (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 GAPDHS抗体(Thermo Scientific, PA1987)被用于. Dev Biol (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 1:3000; 图 1,2,3,4
赛默飞世尔 GAPDHS抗体(Thermo, MA5-15738)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1,2,3,4). Nat Commun (2014) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 25 ng/ml; 图 4
赛默飞世尔 GAPDHS抗体(Thermo, MA5-15738)被用于被用于免疫印迹在人类样本上浓度为25 ng/ml (图 4). Cell (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:20000
赛默飞世尔 GAPDHS抗体(生活技术, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:20000. J Appl Physiol (1985) (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 1). Autophagy (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:2000; 图 3
赛默飞世尔 GAPDHS抗体(Applied Biosystems, 6C5)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 3). J Neurosci Res (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 5
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 5). J Bone Miner Res (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔 GAPDHS抗体(Applied Biosystems, AM4300)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10000
赛默飞世尔 GAPDHS抗体(Ambion Inc./Life Technologies, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:10000. BMC Genomics (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔 GAPDHS抗体(生活技术, AM4300)被用于被用于免疫印迹在人类样本上. Virus Genes (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:40,000; 图 1
赛默飞世尔 GAPDHS抗体(Invitrogen, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:40,000 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:5000
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. J Orthop Res (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 1:2000
赛默飞世尔 GAPDHS抗体(Sigma-Aldrich, MA5-15738)被用于被用于免疫印迹在人类样本上浓度为1:2000. Breast Cancer Res (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔 GAPDHS抗体(Ambion Life Technologies, AM4300)被用于被用于免疫印迹在人类样本上. Behav Brain Res (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 0.2 ug/mL
赛默飞世尔 GAPDHS抗体(生活技术, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为0.2 ug/mL. PLoS ONE (2014) ncbi
小鼠 单克隆(3E8AD9)
  • 免疫印迹; 人类; 1:8000
赛默飞世尔 GAPDHS抗体(生活技术, A21994)被用于被用于免疫印迹在人类样本上浓度为1:8000. J Invest Dermatol (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Biochem Pharmacol (2014) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 图 6
赛默飞世尔 GAPDHS抗体(生活技术, 39-8600)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2014) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠
赛默飞世尔 GAPDHS抗体(Thermo Scientific, GA1R)被用于被用于免疫印迹在小鼠样本上. Front Physiol (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1 ug/ml; 图 6
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1 ug/ml (图 6). Stem Cells Dev (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:10,000; 图 1
赛默飞世尔 GAPDHS抗体(生活技术, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1). Oncogene (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 1:3000; 图 1a
  • 免疫印迹; 小鼠; 1:3000; 图 4c
赛默飞世尔 GAPDHS抗体(Thermo, MA5-15738)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 4c). Nat Cell Biol (2014) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 图 7
赛默飞世尔 GAPDHS抗体(Lifetechnologies, EP1264Y)被用于被用于免疫印迹在人类样本上 (图 7). PLoS ONE (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:40000
赛默飞世尔 GAPDHS抗体(生活技术, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:40000. Nat Commun (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:2000; 图  2
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图  2). Pharmacol Biochem Behav (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:15000
赛默飞世尔 GAPDHS抗体(Invitrogen, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:15000. J Leukoc Biol (2014) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 大鼠
赛默飞世尔 GAPDHS抗体(Thermo, MA5-15738)被用于被用于免疫印迹在大鼠样本上. J Parkinsons Dis (2014) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 1:5000; 图 4c
赛默飞世尔 GAPDHS抗体(Invitrogen, 398600)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4c). Nat Struct Mol Biol (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 2). Am J Physiol Heart Circ Physiol (2014) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔 GAPDHS抗体(Invitrogen, 39-8600)被用于被用于免疫印迹在小鼠样本上浓度为1:500. J Physiol (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 8
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 8). J Biol Chem (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:5000; 图 3
赛默飞世尔 GAPDHS抗体(生活技术, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3). Cancer Biol Ther (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10000
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:10000. Eur J Hum Genet (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:20000
赛默飞世尔 GAPDHS抗体(Applied Biosystems, AM4300)被用于被用于免疫印迹在大鼠样本上浓度为1:20000. PLoS ONE (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. Am J Physiol Gastrointest Liver Physiol (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔 GAPDHS抗体(Ambion, Am4300)被用于被用于免疫印迹在人类样本上. PLoS Genet (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:10,000
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. elife (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. Nucleus (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 仓鼠
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在仓鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫细胞化学; 小鼠; 1:1000
赛默飞世尔 GAPDHS抗体(生活技术, 6C5)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000. J Bone Miner Res (2014) ncbi
小鼠 单克隆(258)
  • 免疫印迹; 小鼠; 1:10000
赛默飞世尔 GAPDHS抗体(Invitrogen, 437000)被用于被用于免疫印迹在小鼠样本上浓度为1:10000. J Proteome Res (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:2000
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:2000. Head Neck (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. BMC Biol (2014) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛默飞世尔 GAPDHS抗体(Invitrogen, 398600)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). J Biol Chem (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:20000
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:20000. PLoS ONE (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10000; 图 1d
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:10000 (图 1d). Hum Mol Genet (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10000
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:10000. Toxicol Sci (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10000
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:10000. Genes Cells (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:5000
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:5000. Arthritis Rheumatol (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:4000
赛默飞世尔 GAPDHS抗体(Invitrogen, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:4000. PLoS ONE (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:5000; 图 2
赛默飞世尔 GAPDHS抗体(Applied Biosystems, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). Cell Death Dis (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 1, 2
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 1, 2). Cell Commun Signal (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔 GAPDHS抗体(生活技术, AM4300)被用于被用于免疫印迹在人类样本上. Autophagy (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:500; 图 1
  • 免疫印迹; 人类; 1:500; 图 1
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1). Endocrinology (2014) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 1:10000; 图 s1
赛默飞世尔 GAPDHS抗体(Zymed, clone ZG003)被用于被用于免疫印迹在人类样本上浓度为1:10000 (图 s1). Cell Commun Signal (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:5000; 图 2
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 2). PLoS ONE (2013) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 犬; 图 7
赛默飞世尔 GAPDHS抗体(Invitrogen, 39-8600)被用于被用于免疫印迹在犬样本上 (图 7). PLoS ONE (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. Hum Mol Genet (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:40,000
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:40,000. Brain Struct Funct (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:2000; 图 5
赛默飞世尔 GAPDHS抗体(Invitrogen, AM4300)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 5). PLoS ONE (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:5000
赛默飞世尔 GAPDHS抗体(生活技术, 6C5)被用于被用于免疫印迹在人类样本上浓度为1:5000. Cell Cycle (2013) ncbi
小鼠 单克隆(258)
  • 免疫印迹; 人类; 1:10000; 图 3
赛默飞世尔 GAPDHS抗体(Invitrogen, 437000)被用于被用于免疫印迹在人类样本上浓度为1:10000 (图 3). J Proteome Res (2013) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 GAPDHS抗体(Zymed, 39-8600)被用于被用于免疫印迹在人类样本上 (图 3). Mol Cancer Res (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:4000; 图 4
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 4). J Biol Chem (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Endocrinology (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000; 图 7
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). J Virol (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 3). J Pharmacol Sci (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 2). Mol Carcinog (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. Kidney Int (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:2000; 图 4
赛默飞世尔 GAPDHS抗体(Invitrogen, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4). Evid Based Complement Alternat Med (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 5
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 5). Sci Rep (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:15000; 图 1
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:15000 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 2). Bone (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 5
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 5). Cell Signal (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:20000; 图 4
赛默飞世尔 GAPDHS抗体(生活技术, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:20000 (图 4). Toxicol Appl Pharmacol (2013) ncbi
小鼠 单克隆(258)
  • 免疫印迹; 人类; 1:10000; 图 4
赛默飞世尔 GAPDHS抗体(Invitrogen, 437000)被用于被用于免疫印迹在人类样本上浓度为1:10000 (图 4). J Cell Sci (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:4000
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:4000. Urol Oncol (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. Cell Death Dis (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上. Clin Genet (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:10000
赛默飞世尔 GAPDHS抗体(Life TechnologiesIncorporated, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:10000. Neuroscience (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1, 2
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 1, 2). J Virol (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:1000. Am J Med Genet B Neuropsychiatr Genet (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; forest day mosquito; 1:6000; 图 4
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在forest day mosquito样本上浓度为1:6000 (图 4). Arch Virol (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:20000
赛默飞世尔 GAPDHS抗体(Applied Biosystems, AM4300)被用于被用于免疫印迹在大鼠样本上浓度为1:20000. Purinergic Signal (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 1b
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 1b). Biol Open (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 1). Biochem Biophys Res Commun (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 5
赛默飞世尔 GAPDHS抗体(Ambion, #AM4300)被用于被用于免疫印迹在小鼠样本上 (图 5). J Biol Chem (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:3000; 图 4
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 4). Glia (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 0.2 ug/ml; 图 3
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为0.2 ug/ml (图 3). Proc Natl Acad Sci U S A (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 2). Autophagy (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 图 8
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在大鼠样本上 (图 8). Am J Physiol Cell Physiol (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 6). Hum Mol Genet (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:3000
赛默飞世尔 GAPDHS抗体(Applied Biosystems, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:3000. J Immunol (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10000; 图 4
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:10000 (图 4). RNA Biol (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔 GAPDHS抗体(生活技术, AM4300)被用于被用于免疫印迹在人类样本上. Cell Stress Chaperones (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 图 2
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在大鼠样本上 (图 2). Endocrinology (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫细胞化学; 小鼠; 4 ug/ml; 图 3
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫细胞化学在小鼠样本上浓度为4 ug/ml (图 3). PLoS ONE (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. Stem Cells (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 8
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 8). Kidney Int (2012) ncbi
小鼠 单克隆(258)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 GAPDHS抗体(生活技术, 437000)被用于被用于免疫印迹在人类样本上 (图 5). Autophagy (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS Genet (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10000; 图 5
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:10000 (图 5). Toxicol Lett (2012) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 GAPDHS抗体(Invitrogen, 39-8600)被用于被用于免疫印迹在人类样本上 (图 3). Lab Invest (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:40000; 图 1
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:40000 (图 1). Blood (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:4000; 图 3
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 3). PLoS ONE (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:5000
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Nat Neurosci (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10000; 图 3
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:10000 (图 3). Am J Physiol Lung Cell Mol Physiol (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔 GAPDHS抗体(Zymed, AM4300)被用于被用于免疫组化在小鼠样本上浓度为1:200. Mech Dev (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 3). Front Biosci (Landmark Ed) (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. J Neuroimmune Pharmacol (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 6). Neuroscience (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上. J Virol (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 GAPDHS抗体(Ambion, 6C5)被用于被用于免疫印迹在人类样本上 (图 5). BMC Mol Biol (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10000; 图 4
  • 免疫印迹; 小鼠; 1:10000; 图 4
赛默飞世尔 GAPDHS抗体(Ambion, #AM4300)被用于被用于免疫印迹在人类样本上浓度为1:10000 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:10000 (图 4). PLoS ONE (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫组化; 小鼠; 1:1000; 图 1
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1). Endocrinology (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 s3
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 s3). PLoS ONE (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:5000; 图 6
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 6). PLoS ONE (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 s5
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 s5). Nucleic Acids Res (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 3). MAbs (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10,000; 图 1
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). J Thorac Oncol (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 6). Dev Biol (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 3). J Virol (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 1). Lab Invest (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 0.5 ug/ml; 图 4
赛默飞世尔 GAPDHS抗体(Ambion, clone 6C5)被用于被用于免疫印迹在人类样本上浓度为0.5 ug/ml (图 4). FASEB J (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:10,000; 图 5
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 5). J Cell Physiol (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 7
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 7). Am J Pathol (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 7
赛默飞世尔 GAPDHS抗体(Ambion, 4300)被用于被用于免疫印迹在人类样本上 (图 7). PLoS ONE (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:20,000; 图 5
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000 (图 5). J Am Coll Cardiol (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔 GAPDHS抗体(Ambion, 6C5)被用于被用于免疫印迹在小鼠样本上. Genes Cells (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:5000; 图 1
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1). J Immunol (2010) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:15,000; 图 5
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在大鼠样本上浓度为1:15,000 (图 5). J Neurosci (2010) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 1:2000; 图 6
赛默飞世尔 GAPDHS抗体(Invitrogen, 39-8600)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6). Int J Radiat Oncol Biol Phys (2010) ncbi
小鼠 单克隆(6C5)
  • 免疫细胞化学; 人类; 图 3
  • 免疫组化; 人类; 图 3
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫组化在人类样本上 (图 3). J Vasc Surg (2010) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 GAPDHS抗体(Ambion, AM 4300)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2010) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 大鼠; 图 1
赛默飞世尔 GAPDHS抗体(Applied Biosystems/Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在大鼠样本上 (图 1). Antioxid Redox Signal (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 1). J Immunol (2010) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 6
赛默飞世尔 GAPDHS抗体(Ambion, 4300)被用于被用于免疫印迹在人类样本上 (图 6). J Cell Physiol (2010) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 0.5 ug/ml; 图 8
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为0.5 ug/ml (图 8). J Proteomics (2010) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10,000; 图 1
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Clin Cancer Res (2010) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:5000; 图 5
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5). Cell Cycle (2010) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Am J Physiol Gastrointest Liver Physiol (2010) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 5
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 5). Stem Cells (2010) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 5
  • 免疫印迹; 人类; 图 5
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2010) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:4000
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在大鼠样本上浓度为1:4000. Mol Cell Endocrinol (2010) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 1:15,000
赛默飞世尔 GAPDHS抗体(Invitrogen, 39-8600)被用于被用于免疫印迹在人类样本上浓度为1:15,000. J Neurosci Res (2010) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 2). Innate Immun (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 图 3
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在大鼠样本上 (图 3). Mol Biol Cell (2010) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2010) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; roundworm ; 1:2000; 图 s1
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在roundworm 样本上浓度为1:2000 (图 s1). PLoS ONE (2009) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上. Oncogene (2009) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. Am J Physiol Renal Physiol (2009) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 GAPDHS抗体(Ambion, 4300)被用于被用于免疫印迹在小鼠样本上 (图 3). Exp Gerontol (2009) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. J Comp Neurol (2009) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 2). Eur J Cardiothorac Surg (2009) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; African green monkey; 图 5
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在African green monkey样本上 (图 5). Gene (2009) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:4000
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:4000. Biochim Biophys Acta (2009) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. Physiol Genomics (2009) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 7
赛默飞世尔 GAPDHS抗体(Affinity BioReagents, 6C5)被用于被用于免疫印迹在人类样本上 (图 7). Mol Biol Cell (2008) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; pigs ; 图 6
赛默飞世尔 GAPDHS抗体(Zymed, 39-8600)被用于被用于免疫印迹在pigs 样本上 (图 6). Circulation (2008) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1 ug/ml; 图 1
赛默飞世尔 GAPDHS抗体(Ambion, 6C5)被用于被用于免疫印迹在人类样本上浓度为1 ug/ml (图 1). Cancer Res (2008) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上. Apoptosis (2008) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔 GAPDHS抗体(Ambion, 6C5)被用于被用于免疫印迹在人类样本上. Oncogene (2008) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2008) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 4). Cancer Biol Ther (2007) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔 GAPDHS抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. Bone (2008) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 1:1000; 图 6
赛默飞世尔 GAPDHS抗体(Invitrogen, ZG003)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). J Neurochem (2008) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 非洲爪蛙; 1:1000
赛默飞世尔 GAPDHS抗体(ambion, AM4300)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:1000. Apoptosis (2007) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 GAPDHS抗体(Ambion, 4300)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2006) ncbi
圣克鲁斯生物技术
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:4000
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上浓度为1:4000. Science (2019) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 小鼠; 1:800; 图 s18a
圣克鲁斯生物技术 GAPDHS抗体(Santa, sc-365062)被用于被用于免疫印迹在小鼠样本上浓度为1:800 (图 s18a). Nat Commun (2019) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 图 s17d
圣克鲁斯生物技术 GAPDHS抗体(Santa, sc-365062)被用于被用于免疫印迹在人类样本上 (图 s17d). Science (2018) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:500; 图 4a
圣克鲁斯生物技术 GAPDHS抗体(Santa, sc-365062)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). J Virol (2018) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 GAPDHS抗体(Santa, sc-365062)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2018) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 1:1000; 图 4d
圣克鲁斯生物技术 GAPDHS抗体(Santa, sc-137179)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Mol Med Rep (2017) ncbi
小鼠 单克隆(G-9)
  • 免疫细胞化学; 人类; 1:200; 图 3e
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc-365062)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3e). Oncotarget (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在小鼠样本上 (图 3). elife (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 小鼠; 图 7d
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz Biotechnology, sc-365062)被用于被用于免疫印迹在小鼠样本上 (图 7d). elife (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:2000; 图 3
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Dis Model Mech (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上 (图 2). elife (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 图 3A
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上 (图 3A). Onco Targets Ther (2016) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz Biotechnology, sc-137179)被用于被用于免疫印迹在人类样本上 (图 1). Exp Ther Med (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:8000; 图 7
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上浓度为1:8000 (图 7). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 小鼠; 1:50,000; 图 6
  • 免疫印迹; 人类; 1:50,000; 图 1
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc365062)被用于被用于免疫印迹在小鼠样本上浓度为1:50,000 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:50,000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:200; 图 2
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2). Oncol Lett (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 大鼠; 图 4
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在大鼠样本上 (图 4). Mol Brain (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 GAPDHS抗体(santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上 (图 4). Protein Cell (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 小鼠; 1:1000; 图 2
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc-3650620)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在小鼠样本上 (图 3). Int J Mol Sci (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上 (图 1). Int J Oncol (2016) ncbi
小鼠 单克隆(G-9)
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc-365062)被用于. Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 小鼠; 图 6
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在小鼠样本上 (图 6). Autophagy (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 大鼠; 1:1000; 图 2
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Inflammation (2016) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 国内马; 1:1000; 图 1
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, SC-137179)被用于被用于免疫印迹在国内马样本上浓度为1:1000 (图 1). J Vet Sci (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 GAPDHS抗体(santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 大鼠; 1:5000; 图 5
圣克鲁斯生物技术 GAPDHS抗体(Kangchen Biotechnology Inc., sc-365062)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 5). Exp Ther Med (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:1000; 表 1
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:1000; 图 s1
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1). Nat Commun (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:1000; 图 5
圣克鲁斯生物技术 GAPDHS抗体(santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Mol Med Rep (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz Biotechnology, sc-365062)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Int J Mol Med (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 图 5d
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz Biotechnology, sc-365062)被用于被用于免疫印迹在人类样本上 (图 5d). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:10,000; 图 3a
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3a). Nat Commun (2016) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 1:1000; 图 5
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc-137179)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Genome Biol (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:2000; 图 2
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2). Front Pharmacol (2015) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz Biotechnology, A-3)被用于被用于免疫印迹在人类样本上 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 大鼠; 图 5
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在大鼠样本上 (图 5). Int J Mol Med (2015) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz Biotechnology, sc-13717)被用于被用于免疫印迹在人类样本上 (图 5). Autophagy (2015) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz Biotechnology, sc-137179)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc-137179)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 小鼠; 1:1000; 图 6
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Cell Rep (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 图 s4g
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, SC-365062)被用于被用于免疫印迹在人类样本上 (图 s4g). Nat Genet (2015) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 小鼠; 1:10,000; 图 s13
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, 137179)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 s13). Genome Res (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上浓度为1:500. Mol Med Rep (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:5000; 图 1
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz Biotechnology, sc-365062)被用于被用于免疫印迹在人类样本上. BMC Cancer (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruzs, sc365062)被用于被用于免疫印迹在小鼠样本上. Am J Pathol (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上 (图 4). J Exp Med (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:500; 图 4
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc365062)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). J Surg Res (2015) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 1:3000; 图 6
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc-137179)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 6). Mol Med Rep (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 大鼠; 1:5000; 图 8
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz Biotechnology, sc-365062)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 8). Mol Med Rep (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz Biotech, sc-365062)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 小鼠; 图 1f
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz Biotechnology, sc-365062)被用于被用于免疫印迹在小鼠样本上 (图 1f). Neuron (2015) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz Biotechnology, sc-137179)被用于被用于免疫印迹在人类样本上 (图 2). Mol Cancer (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在小鼠样本上 (图 1). J Cell Mol Med (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在大鼠样本上. Exp Neurol (2015) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz Biotechnology, sc-137179)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. Immunology (2015) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 小鼠; 1:2000
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz Biotechnology, sc-137179)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Cell Death Dis (2015) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz Biotechnology, sc-137179)被用于被用于免疫印迹在人类样本上 (图 3). Br J Cancer (2015) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz Biotechnology, sc-137179)被用于被用于免疫印迹在小鼠样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz Biotechnology, sc-365062)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz Biotechnology, sc-137179)被用于被用于免疫印迹在人类样本上浓度为1:500. FASEB J (2014) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz Biotechnology, sc-365062)被用于被用于免疫印迹在人类样本上. Eur J Cancer (2014) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类
圣克鲁斯生物技术 GAPDHS抗体(Santa Cruz Biotechnology, sc-137179)被用于被用于免疫印迹在人类样本上. Int J Oncol (2013) ncbi
文章列表
  1. Bodrug T, Wilson Kubalek E, Nithianantham S, Thompson A, Alfieri A, Gaska I, et al. The kinesin-5 tail domain directly modulates the mechanochemical cycle of the motor domain for anti-parallel microtubule sliding. elife. 2020;9: pubmed 出版商
  2. Wenta T, Rychlowski M, Jarzab M, Lipinska B. HtrA4 Protease Promotes Chemotherapeutic-Dependent Cancer Cell Death. Cells. 2019;8: pubmed 出版商
  3. Wyżewski Z, Gregorczyk Zboroch K, Mielcarska M, Bossowska Nowicka M, Struzik J, Szczepanowska J, et al. Mitochondrial Heat Shock Response Induced by Ectromelia Virus is Accompanied by Reduced Apoptotic Potential in Murine L929 Fibroblasts. Arch Immunol Ther Exp (Warsz). 2019;67:401-414 pubmed 出版商
  4. Laufman O, Perrino J, Andino R. Viral Generated Inter-Organelle Contacts Redirect Lipid Flux for Genome Replication. Cell. 2019;: pubmed 出版商
  5. Hyle J, Zhang Y, Wright S, Xu B, Shao Y, Easton J, et al. Acute depletion of CTCF directly affects MYC regulation through loss of enhancer-promoter looping. Nucleic Acids Res. 2019;: pubmed 出版商
  6. Chung H, Zou X, Bajar B, Brand V, Huo Y, Alcudia J, et al. A compact synthetic pathway rewires cancer signaling to therapeutic effector release. Science. 2019;364: pubmed 出版商
  7. Kang H, Yang B, Zhang K, Pan Q, Yuan W, Li G, et al. Immunoregulation of macrophages by dynamic ligand presentation via ligand-cation coordination. Nat Commun. 2019;10:1696 pubmed 出版商
  8. Gersch M, Wagstaff J, Toms A, Graves B, Freund S, Komander D. Distinct USP25 and USP28 Oligomerization States Regulate Deubiquitinating Activity. Mol Cell. 2019;74:436-451.e7 pubmed 出版商
  9. Rangel L, Bernabé Rubio M, Fernández Barrera J, Casares Arias J, Millan J, Alonso M, et al. Caveolin-1α regulates primary cilium length by controlling RhoA GTPase activity. Sci Rep. 2019;9:1116 pubmed 出版商
  10. Mooney M, Geerts D, Kort E, Bachmann A. Anti-tumor effect of sulfasalazine in neuroblastoma. Biochem Pharmacol. 2019;162:237-249 pubmed 出版商
  11. Bigenzahn J, Collu G, Kartnig F, Pieraks M, Vladimer G, Heinz L, et al. LZTR1 is a regulator of RAS ubiquitination and signaling. Science. 2018;362:1171-1177 pubmed 出版商
  12. Leoz M, Kukanja P, Luo Z, Huang F, Cary D, Peterlin B, et al. HEXIM1-Tat chimera inhibits HIV-1 replication. PLoS Pathog. 2018;14:e1007402 pubmed 出版商
  13. Heusinger E, Deppe K, Sette P, Krapp C, Kmiec D, Kluge S, et al. Preadaptation of Simian Immunodeficiency Virus SIVsmm Facilitated Env-Mediated Counteraction of Human Tetherin by Human Immunodeficiency Virus Type 2. J Virol. 2018;92: pubmed 出版商
  14. Pearce M, Gamble J, Kopparapu P, O Donnell E, Mueller M, Jang H, et al. Induction of apoptosis and suppression of tumor growth by Nur77-derived Bcl-2 converting peptide in chemoresistant lung cancer cells. Oncotarget. 2018;9:26072-26085 pubmed 出版商
  15. Luisier R, Tyzack G, Hall C, Mitchell J, Devine H, Taha D, et al. Intron retention and nuclear loss of SFPQ are molecular hallmarks of ALS. Nat Commun. 2018;9:2010 pubmed 出版商
  16. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  17. Xu Y, Wang Y, Yao A, Xu Z, Dou H, Shen S, et al. Low Frequency Magnetic Fields Induce Autophagy-associated Cell Death in Lung Cancer through miR-486-mediated Inhibition of Akt/mTOR Signaling Pathway. Sci Rep. 2017;7:11776 pubmed 出版商
  18. Wu X, Zhou H, Yue B, Li M, Liu F, Qiu C, et al. Upregulation of microRNA-25-3p inhibits proliferation, migration and invasion of osteosarcoma cells in vitro by directly targeting SOX4. Mol Med Rep. 2017;16:4293-4300 pubmed 出版商
  19. Whitson J, Zhang X, Medvedovic M, Chen J, Wei Z, Monnier V, et al. Transcriptome of the GSH-Depleted Lens Reveals Changes in Detoxification and EMT Signaling Genes, Transport Systems, and Lipid Homeostasis. Invest Ophthalmol Vis Sci. 2017;58:2666-2684 pubmed 出版商
  20. Shah M, Garcia Pak I, Darling E. Influence of Inherent Mechanophenotype on Competitive Cellular Adherence. Ann Biomed Eng. 2017;45:2036-2047 pubmed 出版商
  21. Hou X, Snarski P, Higashi Y, Yoshida T, Jurkevich A, Delafontaine P, et al. Nuclear complex of glyceraldehyde-3-phosphate dehydrogenase and DNA repair enzyme apurinic/apyrimidinic endonuclease I protect smooth muscle cells against oxidant-induced cell death. FASEB J. 2017;31:3179-3192 pubmed 出版商
  22. Bi P, Ramirez Martinez A, Li H, Cannavino J, McAnally J, Shelton J, et al. Control of muscle formation by the fusogenic micropeptide myomixer. Science. 2017;356:323-327 pubmed 出版商
  23. AlAmri M, Kadri H, Alderwick L, Simpkins N, Mehellou Y. Rafoxanide and Closantel Inhibit SPAK and OSR1 Kinases by Binding to a Highly Conserved Allosteric Site on Their C-terminal Domains. ChemMedChem. 2017;12:639-645 pubmed 出版商
  24. Suresh S, Chavalmane A, Dj V, Yarreiphang H, Rai S, Paul A, et al. A novel autophagy modulator 6-Bio ameliorates SNCA/?-synuclein toxicity. Autophagy. 2017;13:1221-1234 pubmed 出版商
  25. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  26. Longo F, Mercatelli D, Novello S, Arcuri L, Brugnoli A, Vincenzi F, et al. Age-dependent dopamine transporter dysfunction and Serine129 phospho-α-synuclein overload in G2019S LRRK2 mice. Acta Neuropathol Commun. 2017;5:22 pubmed 出版商
  27. de Oliveira R, Vicente Miranda H, Francelle L, Pinho R, Szego E, Martinho R, et al. The mechanism of sirtuin 2-mediated exacerbation of alpha-synuclein toxicity in models of Parkinson disease. PLoS Biol. 2017;15:e2000374 pubmed 出版商
  28. Xiang J, Yang S, Xin N, Gaertig M, Reeves R, Li S, et al. DYRK1A regulates Hap1-Dcaf7/WDR68 binding with implication for delayed growth in Down syndrome. Proc Natl Acad Sci U S A. 2017;114:E1224-E1233 pubmed 出版商
  29. Guo R, Si R, Scott B, Makino A. Mitochondrial connexin40 regulates mitochondrial calcium uptake in coronary endothelial cells. Am J Physiol Cell Physiol. 2017;312:C398-C406 pubmed 出版商
  30. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed 出版商
  31. Herold N, Rudd S, Ljungblad L, Sanjiv K, Myrberg I, Paulin C, et al. Targeting SAMHD1 with the Vpx protein to improve cytarabine therapy for hematological malignancies. Nat Med. 2017;23:256-263 pubmed 出版商
  32. Babagana M, Johnson S, Slabodkin H, Bshara W, Morrison C, Kandel E. P21-activated kinase 1 regulates resistance to BRAF inhibition in human cancer cells. Mol Carcinog. 2017;56:1515-1525 pubmed 出版商
  33. Yu X, Curlik D, Oh M, Yin J, Disterhoft J. CREB overexpression in dorsal CA1 ameliorates long-term memory deficits in aged rats. elife. 2017;6: pubmed 出版商
  34. Miroshnychenko O, Chang W, Dragoo J. The Use of Platelet-Rich and Platelet-Poor Plasma to Enhance Differentiation of Skeletal Myoblasts: Implications for the Use of Autologous Blood Products for Muscle Regeneration. Am J Sports Med. 2017;45:945-953 pubmed 出版商
  35. Zhang D, Wu B, Wang P, Wang Y, Lu P, Nechiporuk T, et al. Non-CpG methylation by DNMT3B facilitates REST binding and gene silencing in developing mouse hearts. Nucleic Acids Res. 2017;45:3102-3115 pubmed 出版商
  36. Radhakrishnan V, Gilpatrick M, Parsa N, Kiela P, Ghishan F. Expression of Cav1.3 calcium channel in the human and mouse colon: posttranscriptional inhibition by IFN?. Am J Physiol Gastrointest Liver Physiol. 2017;312:G77-G84 pubmed 出版商
  37. Akagi R, Akatsu Y, Fisch K, Alvarez Garcia O, Teramura T, Muramatsu Y, et al. Dysregulated circadian rhythm pathway in human osteoarthritis: NR1D1 and BMAL1 suppression alters TGF-? signaling in chondrocytes. Osteoarthritis Cartilage. 2017;25:943-951 pubmed 出版商
  38. Hwang D, Jo H, Hwang S, Kim J, Kim I, Lim Y. Conditioned medium from LS 174T goblet cells treated with oxyresveratrol strengthens tight junctions in Caco-2 cells. Biomed Pharmacother. 2017;85:280-286 pubmed 出版商
  39. Takács E, Boto P, Simo E, Csuth T, Toth B, Raveh Amit H, et al. Immunogenic Dendritic Cell Generation from Pluripotent Stem Cells by Ectopic Expression of Runx3. J Immunol. 2017;198:239-248 pubmed
  40. Chehaibi K, le Maire L, Bradoni S, Escolà J, Blanco Vaca F, Slimane M. Effect of PPAR-β/δ agonist GW0742 treatment in the acute phase response and blood-brain barrier permeability following brain injury. Transl Res. 2017;182:27-48 pubmed 出版商
  41. Liu L, Tao Z, Zheng L, Brooke J, Smith C, Liu D, et al. FoxO1 interacts with transcription factor EB and differentially regulates mitochondrial uncoupling proteins via autophagy in adipocytes. Cell Death Discov. 2016;2:16066 pubmed
  42. Nguyen A, Nyberg K, Scott M, Welsh A, Nguyen A, Wu N, et al. Stiffness of pancreatic cancer cells is associated with increased invasive potential. Integr Biol (Camb). 2016;8:1232-1245 pubmed
  43. Yang T, Wang J, Pang Y, Dang X, Ren H, Liu Y, et al. Emodin suppresses silica-induced lung fibrosis by promoting Sirt1 signaling via direct contact. Mol Med Rep. 2016;14:4643-4649 pubmed 出版商
  44. Jain S, Krishna Meka S, Chatterjee K. Curcumin eluting nanofibers augment osteogenesis toward phytochemical based bone tissue engineering. Biomed Mater. 2016;11:055007 pubmed
  45. Baravalle R, Di Nardo G, Bandino A, Barone I, Catalano S, Ando S, et al. Impact of R264C and R264H polymorphisms in human aromatase function. J Steroid Biochem Mol Biol. 2017;167:23-32 pubmed 出版商
  46. Alphonse M, Duong T, Shumitzu C, Hoang T, McCrindle B, Franco A, et al. Inositol-Triphosphate 3-Kinase C Mediates Inflammasome Activation and Treatment Response in Kawasaki Disease. J Immunol. 2016;197:3481-3489 pubmed
  47. Cao R, Meng Z, Liu T, Wang G, Qian G, Cao T, et al. Decreased TRPM7 inhibits activities and induces apoptosis of bladder cancer cells via ERK1/2 pathway. Oncotarget. 2016;7:72941-72960 pubmed 出版商
  48. Kim Y, Yadava R, Mandal M, Mahadevan K, Yu Q, Leitges M, et al. Disease Phenotypes in a Mouse Model of RNA Toxicity Are Independent of Protein Kinase Cα and Protein Kinase Cβ. PLoS ONE. 2016;11:e0163325 pubmed 出版商
  49. Vernia S, Edwards Y, Han M, Cavanagh Kyros J, Barrett T, Kim J, et al. An alternative splicing program promotes adipose tissue thermogenesis. elife. 2016;5: pubmed 出版商
  50. Charrier A, Wang L, Stephenson E, Ghanta S, Ko C, Croniger C, et al. Zinc finger protein 407 overexpression upregulates PPAR target gene expression and improves glucose homeostasis in mice. Am J Physiol Endocrinol Metab. 2016;311:E869-E880 pubmed 出版商
  51. De Los Santos S, García Pérez V, Hernández Reséndiz S, Palma Flores C, González Gutiérrez C, Zazueta C, et al. (-)-Epicatechin induces physiological cardiac growth by activation of the PI3K/Akt pathway in mice. Mol Nutr Food Res. 2017;61: pubmed 出版商
  52. Deeg K, Chung I, Bauer C, Rippe K. Cancer Cells with Alternative Lengthening of Telomeres Do Not Display a General Hypersensitivity to ATR Inhibition. Front Oncol. 2016;6:186 pubmed 出版商
  53. Diokmetzidou A, Soumaka E, Kloukina I, Tsikitis M, Makridakis M, Varela A, et al. Desmin and ?B-crystallin interplay in the maintenance of mitochondrial homeostasis and cardiomyocyte survival. J Cell Sci. 2016;129:3705-3720 pubmed
  54. Skrdlant L, Stark J, Lin R. Myelodysplasia-associated mutations in serine/arginine-rich splicing factor SRSF2 lead to alternative splicing of CDC25C. BMC Mol Biol. 2016;17:18 pubmed 出版商
  55. Damgaard R, Walker J, Marco Casanova P, Morgan N, Titheradge H, Elliott P, et al. The Deubiquitinase OTULIN Is an Essential Negative Regulator of Inflammation and Autoimmunity. Cell. 2016;166:1215-1230.e20 pubmed 出版商
  56. Koch F, Lamp O, Eslamizad M, Weitzel J, Kuhla B. Metabolic Response to Heat Stress in Late-Pregnant and Early Lactation Dairy Cows: Implications to Liver-Muscle Crosstalk. PLoS ONE. 2016;11:e0160912 pubmed 出版商
  57. Nadeau Vallée M, Boudreault A, Leimert K, Hou X, Obari D, Madaan A, et al. Uterotonic Neuromedin U Receptor 2 and Its Ligands Are Upregulated by Inflammation in Mice and Humans, and Elicit Preterm Birth. Biol Reprod. 2016;95:72 pubmed
  58. Batalha V, Ferreira D, Coelho J, Valadas J, Gomes R, Temido Ferreira M, et al. The caffeine-binding adenosine A2A receptor induces age-like HPA-axis dysfunction by targeting glucocorticoid receptor function. Sci Rep. 2016;6:31493 pubmed 出版商
  59. Ramo K, Sugamura K, Craige S, Keaney J, Davis R. Suppression of ischemia in arterial occlusive disease by JNK-promoted native collateral artery development. elife. 2016;5: pubmed 出版商
  60. Wang X, Buechler N, Martin A, Wells J, Yoza B, McCall C, et al. Sirtuin-2 Regulates Sepsis Inflammation in ob/ob Mice. PLoS ONE. 2016;11:e0160431 pubmed 出版商
  61. Wang Y, Lin S, Hsieh P, Hung S. Concomitant beige adipocyte differentiation upon induction of mesenchymal stem cells into brown adipocytes. Biochem Biophys Res Commun. 2016;478:689-95 pubmed 出版商
  62. Jiang Q, Chen S, Hu C, Huang P, Shen H, Zhao W. Neuregulin-1 (Nrg1) signaling has a preventive role and is altered in the frontal cortex under the pathological conditions of Alzheimer's disease. Mol Med Rep. 2016;14:2614-24 pubmed 出版商
  63. Kim H, Lee K, Kim A, Choi M, Choi K, Kang M, et al. A chemical with proven clinical safety rescues Down-syndrome-related phenotypes in through DYRK1A inhibition. Dis Model Mech. 2016;9:839-48 pubmed 出版商
  64. Al Sady B, Greenstein R, El Samad H, Braun S, Madhani H. Sensitive and Quantitative Three-Color Protein Imaging in Fission Yeast Using Spectrally Diverse, Recoded Fluorescent Proteins with Experimentally-Characterized In Vivo Maturation Kinetics. PLoS ONE. 2016;11:e0159292 pubmed 出版商
  65. Sullivan K, Lewis H, Hill A, Pandey A, Jackson L, Cabral J, et al. Trisomy 21 consistently activates the interferon response. elife. 2016;5: pubmed 出版商
  66. Song Y, Li A, Zhang L, Duan L. Expression of G protein-coupled receptor 56 is associated with tumor progression in non-small-cell lung carcinoma patients. Onco Targets Ther. 2016;9:4105-12 pubmed 出版商
  67. Ling D, Chen Z, Liao Q, Feng J, Zhang X, Yin T. Differential effects of MTSS1 on invasion and proliferation in subtypes of non-small cell lung cancer cells. Exp Ther Med. 2016;12:1225-1231 pubmed
  68. Cheng Y, Huang C, Lee Y, Tien L, Ku W, Chien R, et al. Knocking down of heat-shock protein 27 directs differentiation of functional glutamatergic neurons from placenta-derived multipotent cells. Sci Rep. 2016;6:30314 pubmed 出版商
  69. Gong K, Qu B, Liao D, Liu D, Wang C, Zhou J, et al. MiR-132 regulates osteogenic differentiation via downregulating Sirtuin1 in a peroxisome proliferator-activated receptor ?/?-dependent manner. Biochem Biophys Res Commun. 2016;478:260-267 pubmed 出版商
  70. Qu B, Ma Y, Yan M, Gong K, Liang F, Deng S, et al. Sirtuin1 promotes osteogenic differentiation through downregulation of peroxisome proliferator-activated receptor ? in MC3T3-E1 cells. Biochem Biophys Res Commun. 2016;478:439-445 pubmed 出版商
  71. Brai E, Alina Raio N, Alberi L. Notch1 hallmarks fibrillary depositions in sporadic Alzheimer's disease. Acta Neuropathol Commun. 2016;4:64 pubmed 出版商
  72. Dai L, Cui X, Zhang X, Cheng L, Liu Y, Yang Y, et al. SARI inhibits angiogenesis and tumour growth of human colon cancer through directly targeting ceruloplasmin. Nat Commun. 2016;7:11996 pubmed 出版商
  73. Edmondson R, Adcock A, Yang L. Influence of Matrices on 3D-Cultured Prostate Cancer Cells' Drug Response and Expression of Drug-Action Associated Proteins. PLoS ONE. 2016;11:e0158116 pubmed 出版商
  74. Zheng C, Yang K, Zhang M, Zou M, Bai E, Ma Q, et al. Specific protein 1 depletion attenuates glucose uptake and proliferation of human glioma cells by regulating GLUT3 expression. Oncol Lett. 2016;12:125-131 pubmed
  75. Justis A, Hansen B, Beare P, King K, Heinzen R, Gilk S. Interactions between the Coxiella burnetii parasitophorous vacuole and the endoplasmic reticulum involve the host protein ORP1L. Cell Microbiol. 2017;19: pubmed 出版商
  76. Ortiz D, Glassbrook J, Pellett P. Protein-Protein Interactions Suggest Novel Activities of Human Cytomegalovirus Tegument Protein pUL103. J Virol. 2016;90:7798-810 pubmed 出版商
  77. Li Y, Liu C, Su T, Cheng H, Jeng Y, Lin H, et al. Characterization of metastatic tumor antigen 1 and its interaction with hepatitis B virus X protein in NF-κB signaling and tumor progression in a woodchuck hepatocellular carcinoma model. Oncotarget. 2016;7:47173-47185 pubmed 出版商
  78. Muñoz Félix J, Pérez Roque L, Núñez Gómez E, Oujo B, Arevalo M, Ruiz Remolina L, et al. Overexpression of the short endoglin isoform reduces renal fibrosis and inflammation after unilateral ureteral obstruction. Biochim Biophys Acta. 2016;1862:1801-14 pubmed 出版商
  79. Zhai W, Chen D, Shen H, Chen Z, Li H, Yu Z, et al. A1 adenosine receptor attenuates intracerebral hemorrhage-induced secondary brain injury in rats by activating the P38-MAPKAP2-Hsp27 pathway. Mol Brain. 2016;9:66 pubmed 出版商
  80. Ryan T, Schmidt C, Green T, Spangenburg E, Neufer P, McClung J. Targeted Expression of Catalase to Mitochondria Protects Against Ischemic Myopathy in High-Fat Diet-Fed Mice. Diabetes. 2016;65:2553-68 pubmed 出版商
  81. Liu L, Zheng L, Zou P, Brooke J, Smith C, Long Y, et al. FoxO1 antagonist suppresses autophagy and lipid droplet growth in adipocytes. Cell Cycle. 2016;15:2033-41 pubmed 出版商
  82. Høydal M, Stølen T, Kettlewell S, Maier L, Brown J, Sowa T, et al. Exercise training reverses myocardial dysfunction induced by CaMKII?C overexpression by restoring Ca2+ homeostasis. J Appl Physiol (1985). 2016;121:212-20 pubmed 出版商
  83. Zhu K, Liu L, Zhang J, Wang Y, Liang H, Fan G, et al. MiR-29b suppresses the proliferation and migration of osteosarcoma cells by targeting CDK6. Protein Cell. 2016;7:434-44 pubmed 出版商
  84. Yang Z, Jiang Q, Chen S, Hu C, Shen H, Huang P, et al. Differential changes in Neuregulin-1 signaling in major brain regions in a lipopolysaccharide-induced neuroinflammation mouse model. Mol Med Rep. 2016;14:790-6 pubmed 出版商
  85. Lin J, Xue A, Li L, Li B, Li Y, Shen Y, et al. MicroRNA-19b Downregulates Gap Junction Protein Alpha1 and Synergizes with MicroRNA-1 in Viral Myocarditis. Int J Mol Sci. 2016;17: pubmed 出版商
  86. Huang Y, Yang X, Xu T, Kong Q, Zhang Y, Shen Y, et al. Overcoming resistance to TRAIL-induced apoptosis in solid tumor cells by simultaneously targeting death receptors, c-FLIP and IAPs. Int J Oncol. 2016;49:153-63 pubmed 出版商
  87. Lee J, Kwon G, Park J, Kim J, Lim Y. Brief Communication: SIR-2.1-dependent lifespan extension of Caenorhabditis elegans by oxyresveratrol and resveratrol. Exp Biol Med (Maywood). 2016;241:1757-63 pubmed 出版商
  88. Dar A, Majid S, Bezrookove V, Phan B, Ursu S, Nosrati M, et al. BPTF transduces MITF-driven prosurvival signals in melanoma cells. Proc Natl Acad Sci U S A. 2016;113:6254-8 pubmed 出版商
  89. Bianchi Smiraglia A, Bagati A, Fink E, Moparthy S, Wawrzyniak J, Marvin E, et al. Microphthalmia-associated transcription factor suppresses invasion by reducing intracellular GTP pools. Oncogene. 2017;36:84-96 pubmed 出版商
  90. Pastore N, Brady O, Diab H, Martina J, Sun L, Huynh T, et al. TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy. 2016;12:1240-58 pubmed 出版商
  91. Scott T, Wicker C, Suganya R, Dhar B, Pittman T, Horbinski C, et al. Polyubiquitination of apurinic/apyrimidinic endonuclease 1 by Parkin. Mol Carcinog. 2017;56:325-336 pubmed 出版商
  92. Maza P, Suzuki E. Histoplasma capsulatum-Induced Cytokine Secretion in Lung Epithelial Cells Is Dependent on Host Integrins, Src-Family Kinase Activation, and Membrane Raft Recruitment. Front Microbiol. 2016;7:580 pubmed 出版商
  93. Humoud M, Doyle N, Royall E, Willcocks M, Sorgeloos F, van Kuppeveld F, et al. Feline Calicivirus Infection Disrupts Assembly of Cytoplasmic Stress Granules and Induces G3BP1 Cleavage. J Virol. 2016;90:6489-6501 pubmed 出版商
  94. Watanabe Y, Papoutsoglou P, Maturi V, Tsubakihara Y, Hottiger M, Heldin C, et al. Regulation of Bone Morphogenetic Protein Signaling by ADP-ribosylation. J Biol Chem. 2016;291:12706-23 pubmed 出版商
  95. Josipovic I, Fork C, Preussner J, Prior K, Iloska D, Vasconez A, et al. PAFAH1B1 and the lncRNA NONHSAT073641 maintain an angiogenic phenotype in human endothelial cells. Acta Physiol (Oxf). 2016;218:13-27 pubmed 出版商
  96. Tran N, Su H, Khodadadi Jamayran A, Lin S, Zhang L, Zhou D, et al. The AS-RBM15 lncRNA enhances RBM15 protein translation during megakaryocyte differentiation. EMBO Rep. 2016;17:887-900 pubmed 出版商
  97. Kii I, Sumida Y, Goto T, Sonamoto R, Okuno Y, Yoshida S, et al. Selective inhibition of the kinase DYRK1A by targeting its folding process. Nat Commun. 2016;7:11391 pubmed 出版商
  98. Dokas J, Chadt A, Joost H, Al Hasani H. Tbc1d1 deletion suppresses obesity in leptin-deficient mice. Int J Obes (Lond). 2016;40:1242-9 pubmed 出版商
  99. Huang C, Lee C, Yang S, Chien C, Huang C, Yang R, et al. Upregulation of the growth arrest-specific-2 in recurrent colorectal cancers, and its susceptibility to chemotherapy in a model cell system. Biochim Biophys Acta. 2016;1862:1345-53 pubmed 出版商
  100. Feng L, Wang Y, Cai H, Sun G, Niu W, Xin Q, et al. ADAM10-Notch signaling governs the recruitment of ovarian pregranulosa cells and controls folliculogenesis in mice. J Cell Sci. 2016;129:2202-12 pubmed 出版商
  101. Flodby P, Kim Y, Beard L, Gao D, Ji Y, Kage H, et al. Knockout Mice Reveal a Major Role for Alveolar Epithelial Type I Cells in Alveolar Fluid Clearance. Am J Respir Cell Mol Biol. 2016;55:395-406 pubmed 出版商
  102. Liu Z, Wang S, Liu J, Wang F, Liu Y, Zhao Y. Leukocyte Infiltration Triggers Seizure Recurrence in a Rat Model of Temporal Lobe Epilepsy. Inflammation. 2016;39:1090-8 pubmed 出版商
  103. Wang Y, Lichter Konecki U, Anyane Yeboa K, Shaw J, Lu J, Ostlund C, et al. A mutation abolishing the ZMPSTE24 cleavage site in prelamin A causes a progeroid disorder. J Cell Sci. 2016;129:1975-80 pubmed 出版商
  104. Ledsaak M, Bengtsen M, Molværsmyr A, Fuglerud B, Matre V, Eskeland R, et al. PIAS1 binds p300 and behaves as a coactivator or corepressor of the transcription factor c-Myb dependent on SUMO-status. Biochim Biophys Acta. 2016;1859:705-18 pubmed 出版商
  105. Lee B, Kang H, Lee D, Ahn C, Jeung E. Claudin-1, -2, -4, and -5: comparison of expression levels and distribution in equine tissues. J Vet Sci. 2016;17:445-451 pubmed 出版商
  106. Liang H, Wang F, Chu D, Zhang W, Liao Z, Fu Z, et al. miR-93 functions as an oncomiR for the downregulation of PDCD4 in gastric carcinoma. Sci Rep. 2016;6:23772 pubmed 出版商
  107. Del Debbio C, Mir Q, Parameswaran S, Mathews S, Xia X, Zheng L, et al. Notch Signaling Activates Stem Cell Properties of Müller Glia through Transcriptional Regulation and Skp2-mediated Degradation of p27Kip1. PLoS ONE. 2016;11:e0152025 pubmed 出版商
  108. Ortuno D, Carlisle H, Miller S. Does inactivation of USP14 enhance degradation of proteasomal substrates that are associated with neurodegenerative diseases?. F1000Res. 2016;5:137 pubmed 出版商
  109. Yu L, Fan Y, Ye G, Li J, Feng X, Lin K, et al. Curcumin alleviates brain edema by lowering AQP4 expression levels in a rat model of hypoxia-hypercapnia-induced brain damage. Exp Ther Med. 2016;11:709-716 pubmed
  110. Giannogonas P, Apostolou A, Manousopoulou A, Theocharis S, Macari S, Psarras S, et al. Identification of a novel interaction between corticotropin releasing hormone (Crh) and macroautophagy. Sci Rep. 2016;6:23342 pubmed 出版商
  111. Lin R, Zhang J, Zhou L, Wang B. Altered function of monocytes/macrophages in patients with autoimmune hepatitis. Mol Med Rep. 2016;13:3874-80 pubmed 出版商
  112. Liu Y, Chen C, Xu Z, Scuoppo C, Rillahan C, Gao J, et al. Deletions linked to TP53 loss drive cancer through p53-independent mechanisms. Nature. 2016;531:471-475 pubmed 出版商
  113. German P, Bai S, Liu X, Sun M, Zhou L, Kalra S, et al. Phosphorylation-dependent cleavage regulates von Hippel Lindau proteostasis and function. Oncogene. 2016;35:4973-80 pubmed 出版商
  114. Álvarez Santos M, Carbajal V, Tellez Jiménez O, Martínez Cordero E, Ruiz V, Hernández Pando R, et al. Airway Hyperresponsiveness in Asthma Model Occurs Independently of Secretion of β1 Integrins in Airway Wall and Focal Adhesions Proteins Down Regulation. J Cell Biochem. 2016;117:2385-96 pubmed 出版商
  115. Barja Fernández S, Folgueira C, Castelao C, Al Massadi O, Bravo S, Garcia Caballero T, et al. FNDC5 is produced in the stomach and associated to body composition. Sci Rep. 2016;6:23067 pubmed 出版商
  116. Gdynia G, Sauer S, Kopitz J, Fuchs D, Duglova K, Ruppert T, et al. The HMGB1 protein induces a metabolic type of tumour cell death by blocking aerobic respiration. Nat Commun. 2016;7:10764 pubmed 出版商
  117. Jing H, Sun W, Fan J, Zhang Y, Yang J, Jia J, et al. Shikonin induces apoptosis of HaCaT cells via the mitochondrial, Erk and Akt pathways. Mol Med Rep. 2016;13:3009-16 pubmed 出版商
  118. Nguyen J, Bernert R, In K, Kang P, Sebastiao N, Hu C, et al. Gamma-interferon-inducible lysosomal thiol reductase is upregulated in human melanoma. Melanoma Res. 2016;26:125-37 pubmed 出版商
  119. Hyrsová L, Smutny T, Carazo A, Moravcik S, Mandíková J, Trejtnar F, et al. The pregnane X receptor down-regulates organic cation transporter 1 (SLC22A1) in human hepatocytes by competing for ("squelching") SRC-1 coactivator. Br J Pharmacol. 2016;173:1703-15 pubmed 出版商
  120. Haven B, Heilig E, Donham C, Settles M, Vasilevsky N, Owen K. Registered report: A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. elife. 2016;5: pubmed 出版商
  121. Awad P, Sanon N, Chattopadhyaya B, Carriço J, Ouardouz M, Gagné J, et al. Reducing premature KCC2 expression rescues seizure susceptibility and spine morphology in atypical febrile seizures. Neurobiol Dis. 2016;91:10-20 pubmed 出版商
  122. Khalid S, Drasche A, Thurner M, Hermann M, Ashraf M, Fresser F, et al. cJun N-terminal kinase (JNK) phosphorylation of serine 36 is critical for p66Shc activation. Sci Rep. 2016;6:20930 pubmed 出版商
  123. Astorquiza P, Usorach J, Racagni G, Villasuso A. Diacylglycerol pyrophosphate binds and inhibits the glyceraldehyde-3-phosphate dehydrogenase in barley aleurone. Plant Physiol Biochem. 2016;101:88-95 pubmed 出版商
  124. Li Y, Banerjee S, Wang Y, Goldstein S, Dong B, Gaughan C, et al. Activation of RNase L is dependent on OAS3 expression during infection with diverse human viruses. Proc Natl Acad Sci U S A. 2016;113:2241-6 pubmed 出版商
  125. Zhang Y, Zou C, Yang S, Fu J. P120 catenin attenuates the angiotensin II-induced apoptosis of human umbilical vein endothelial cells by suppressing the mitochondrial pathway. Int J Mol Med. 2016;37:623-30 pubmed 出版商
  126. Lima W, De Hoyos C, Liang X, Crooke S. RNA cleavage products generated by antisense oligonucleotides and siRNAs are processed by the RNA surveillance machinery. Nucleic Acids Res. 2016;44:3351-63 pubmed 出版商
  127. Button R, Vincent J, Strang C, Luo S. Dual PI-3 kinase/mTOR inhibition impairs autophagy flux and induces cell death independent of apoptosis and necroptosis. Oncotarget. 2016;7:5157-75 pubmed 出版商
  128. Martone J, Briganti F, Legnini I, Morlando M, Picillo E, Sthandier O, et al. The lack of the Celf2a splicing factor converts a Duchenne genotype into a Becker phenotype. Nat Commun. 2016;7:10488 pubmed 出版商
  129. Roßner F, Gieseler C, Morkel M, Royer H, Rivera M, Bläker H, et al. Uncoupling of EGFR-RAS signaling and nuclear localization of YBX1 in colorectal cancer. Oncogenesis. 2016;5:e187 pubmed 出版商
  130. Weilner S, Keider V, Winter M, Harreither E, Salzer B, Weiss F, et al. Vesicular Galectin-3 levels decrease with donor age and contribute to the reduced osteo-inductive potential of human plasma derived extracellular vesicles. Aging (Albany NY). 2016;8:16-33 pubmed
  131. Soragni A, Janzen D, Johnson L, Lindgren A, Thai Quynh Nguyen A, Tiourin E, et al. A Designed Inhibitor of p53 Aggregation Rescues p53 Tumor Suppression in Ovarian Carcinomas. Cancer Cell. 2016;29:90-103 pubmed 出版商
  132. Leen E, Sorgeloos F, Correia S, Chaudhry Y, Cannac F, Pastore C, et al. A Conserved Interaction between a C-Terminal Motif in Norovirus VPg and the HEAT-1 Domain of eIF4G Is Essential for Translation Initiation. PLoS Pathog. 2016;12:e1005379 pubmed 出版商
  133. Conery A, Centore R, Neiss A, Keller P, Joshi S, Spillane K, et al. Bromodomain inhibition of the transcriptional coactivators CBP/EP300 as a therapeutic strategy to target the IRF4 network in multiple myeloma. elife. 2016;5: pubmed 出版商
  134. Singh A, Kan C, Dong B, Liu J. SREBP2 Activation Induces Hepatic Long-chain Acyl-CoA Synthetase 1 (ACSL1) Expression in Vivo and in Vitro through a Sterol Regulatory Element (SRE) Motif of the ACSL1 C-promoter. J Biol Chem. 2016;291:5373-84 pubmed 出版商
  135. Lin A, Jahrling J, Zhang W, Derosa N, Bakshi V, Romero P, et al. Rapamycin rescues vascular, metabolic and learning deficits in apolipoprotein E4 transgenic mice with pre-symptomatic Alzheimer's disease. J Cereb Blood Flow Metab. 2017;37:217-226 pubmed
  136. Blachère N, Parveen S, Fak J, Frank M, Orange D. Inflammatory but not apoptotic death of granulocytes citrullinates fibrinogen. Arthritis Res Ther. 2015;17:369 pubmed 出版商
  137. Smith K, Zhou B, Avdulov S, Benyumov A, Peterson M, Liu Y, et al. Transforming Growth Factor-β1 Induced Epithelial Mesenchymal Transition is blocked by a chemical antagonist of translation factor eIF4E. Sci Rep. 2015;5:18233 pubmed 出版商
  138. Drilon A, Somwar R, Wagner J, Vellore N, Eide C, Zabriskie M, et al. A Novel Crizotinib-Resistant Solvent-Front Mutation Responsive to Cabozantinib Therapy in a Patient with ROS1-Rearranged Lung Cancer. Clin Cancer Res. 2016;22:2351-8 pubmed 出版商
  139. Kim J, Lee K, Rhee K. PLK1 regulation of PCNT cleavage ensures fidelity of centriole separation during mitotic exit. Nat Commun. 2015;6:10076 pubmed 出版商
  140. Nouws J, Goswami A, Bestwick M, McCann B, Surovtseva Y, Shadel G. Mitochondrial Ribosomal Protein L12 Is Required for POLRMT Stability and Exists as Two Forms Generated by Alternative Proteolysis during Import. J Biol Chem. 2016;291:989-97 pubmed 出版商
  141. Zhang L, Tran N, Su H, Wang R, Lu Y, Tang H, et al. Cross-talk between PRMT1-mediated methylation and ubiquitylation on RBM15 controls RNA splicing. elife. 2015;4: pubmed 出版商
  142. Xi L, Schmidt J, Zaug A, Ascarrunz D, Cech T. A novel two-step genome editing strategy with CRISPR-Cas9 provides new insights into telomerase action and TERT gene expression. Genome Biol. 2015;16:231 pubmed 出版商
  143. Albrecht I, Wick C, Hallgren Ã, Tjärnlund A, Nagaraju K, Andrade F, et al. Development of autoantibodies against muscle-specific FHL1 in severe inflammatory myopathies. J Clin Invest. 2015;125:4612-24 pubmed 出版商
  144. Tibullo D, Di Rosa M, Giallongo C, La Cava P, Parrinello N, Romano A, et al. Bortezomib modulates CHIT1 and YKL40 in monocyte-derived osteoclast and in myeloma cells. Front Pharmacol. 2015;6:226 pubmed 出版商
  145. Valcourt U, Carthy J, Okita Y, Alcaraz L, Kato M, Thuault S, et al. Analysis of Epithelial-Mesenchymal Transition Induced by Transforming Growth Factor β. Methods Mol Biol. 2016;1344:147-81 pubmed 出版商
  146. Quigley H, Pitha I, Welsbie D, Nguyen C, Steinhart M, Nguyen T, et al. Losartan Treatment Protects Retinal Ganglion Cells and Alters Scleral Remodeling in Experimental Glaucoma. PLoS ONE. 2015;10:e0141137 pubmed 出版商
  147. Graindorge D, Martineau S, Machon C, Arnoux P, Guitton J, Francesconi S, et al. Singlet Oxygen-Mediated Oxidation during UVA Radiation Alters the Dynamic of Genomic DNA Replication. PLoS ONE. 2015;10:e0140645 pubmed 出版商
  148. Evans C, Rosser R, Waby J, Noirel J, Lai D, Wright P, et al. Reduced keratin expression in colorectal neoplasia and associated fields is reversible by diet and resection. BMJ Open Gastroenterol. 2015;2:e000022 pubmed 出版商
  149. Chen D, Tao X, Wang Y, Tian F, Wei Y, Chen G, et al. Curcumin accelerates reendothelialization and ameliorates intimal hyperplasia in balloon-injured rat carotid artery via the upregulation of endothelial cell autophagy. Int J Mol Med. 2015;36:1563-71 pubmed 出版商
  150. Adesina A, Veo B, Courteau G, Mehta V, Wu X, Pang K, et al. FOXG1 expression shows correlation with neuronal differentiation in cerebellar development, aggressive phenotype in medulloblastomas, and survival in a xenograft model of medulloblastoma. Hum Pathol. 2015;46:1859-71 pubmed 出版商
  151. Krisenko M, Higgins R, Ghosh S, Zhou Q, Trybula J, Wang W, et al. Syk Is Recruited to Stress Granules and Promotes Their Clearance through Autophagy. J Biol Chem. 2015;290:27803-15 pubmed 出版商
  152. Ha J, Gomathinayagam R, Yan M, Jayaraman M, Ramesh R, Dhanasekaran D. Determinant role for the gep oncogenes, Gα12/13, in ovarian cancer cell proliferation and xenograft tumor growth. Genes Cancer. 2015;6:356-364 pubmed
  153. Seo M, Jang W, Rhee K. Integrity of the Pericentriolar Material Is Essential for Maintaining Centriole Association during M Phase. PLoS ONE. 2015;10:e0138905 pubmed 出版商
  154. Barroso M, Tucker H, Drake L, Nichol K, Drake J. Antigen-B Cell Receptor Complexes Associate with Intracellular major histocompatibility complex (MHC) Class II Molecules. J Biol Chem. 2015;290:27101-12 pubmed 出版商
  155. Granato M, Santarelli R, Filardi M, Gonnella R, Farina A, Torrisi M, et al. The activation of KSHV lytic cycle blocks autophagy in PEL cells. Autophagy. 2015;11:1978-1986 pubmed 出版商
  156. Davare M, Vellore N, Wagner J, Eide C, Goodman J, Drilon A, et al. Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors. Proc Natl Acad Sci U S A. 2015;112:E5381-90 pubmed 出版商
  157. Barros B, Maza P, Alcantara C, Suzuki E. Paracoccidioides brasiliensis induces recruitment of α3 and α5 integrins into epithelial cell membrane rafts, leading to cytokine secretion. Microbes Infect. 2016;18:68-77 pubmed 出版商
  158. Suzuki M, Watanabe M, Nakamaru Y, Takagi D, Takahashi H, Fukuda S, et al. TRIM39 negatively regulates the NFκB-mediated signaling pathway through stabilization of Cactin. Cell Mol Life Sci. 2016;73:1085-101 pubmed 出版商
  159. Zhao Y, Zhao L, Wang P, Miao Y, Liu Y, Wang Z, et al. Overexpression of miR-18a negatively regulates myocyte enhancer factor 2D to increase the permeability of the blood-tumor barrier via Krüppel-like factor 4-mediated downregulation of zonula occluden-1, claudin-5, and occludin. J Neurosci Res. 2015;93:1891-902 pubmed 出版商
  160. Zhao Y, Londono P, Cao Y, Sharpe E, Proenza C, O Rourke R, et al. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat Commun. 2015;6:8243 pubmed 出版商
  161. Renaud J, Dumont F, Khelfaoui M, Foisset S, Letourneur F, Bienvenu T, et al. Identification of intellectual disability genes showing circadian clock-dependent expression in the mouse hippocampus. Neuroscience. 2015;308:11-50 pubmed 出版商
  162. Granato M, Gilardini Montani M, Filardi M, Faggioni A, Cirone M. Capsaicin triggers immunogenic PEL cell death, stimulates DCs and reverts PEL-induced immune suppression. Oncotarget. 2015;6:29543-54 pubmed 出版商
  163. Kennedy A, Vallurupalli M, Chen L, Crompton B, Cowley G, Vazquez F, et al. Functional, chemical genomic, and super-enhancer screening identify sensitivity to cyclin D1/CDK4 pathway inhibition in Ewing sarcoma. Oncotarget. 2015;6:30178-93 pubmed 出版商
  164. Rolyan H, Tyurina Y, Hernandez M, Amoscato A, Sparvero L, Nmezi B, et al. Defects of Lipid Synthesis Are Linked to the Age-Dependent Demyelination Caused by Lamin B1 Overexpression. J Neurosci. 2015;35:12002-17 pubmed 出版商
  165. Volta M, Cataldi S, Beccano Kelly D, Munsie L, Tatarnikov I, Chou P, et al. Chronic and acute LRRK2 silencing has no long-term behavioral effects, whereas wild-type and mutant LRRK2 overexpression induce motor and cognitive deficits and altered regulation of dopamine release. Parkinsonism Relat Disord. 2015;21:1156-63 pubmed 出版商
  166. Wang Y, Li Z, Zhang P, Poon E, Kong C, Boheler K, et al. Nitric Oxide-cGMP-PKG Pathway Acts on Orai1 to Inhibit the Hypertrophy of Human Embryonic Stem Cell-Derived Cardiomyocytes. Stem Cells. 2015;33:2973-84 pubmed 出版商
  167. Chesarino N, McMichael T, Yount J. E3 Ubiquitin Ligase NEDD4 Promotes Influenza Virus Infection by Decreasing Levels of the Antiviral Protein IFITM3. PLoS Pathog. 2015;11:e1005095 pubmed 出版商
  168. Wu G, Huang C, Yu Y. Pseudouridine in mRNA: Incorporation, Detection, and Recoding. Methods Enzymol. 2015;560:187-217 pubmed 出版商
  169. Wang H, Lööf S, Borg P, Nader G, Blau H, Simon A. Turning terminally differentiated skeletal muscle cells into regenerative progenitors. Nat Commun. 2015;6:7916 pubmed 出版商
  170. Treacy Abarca S, Mukherjee S. Legionella suppresses the host unfolded protein response via multiple mechanisms. Nat Commun. 2015;6:7887 pubmed 出版商
  171. Parchem R, Moore N, Fish J, Parchem J, Braga T, Shenoy A, et al. miR-302 Is Required for Timing of Neural Differentiation, Neural Tube Closure, and Embryonic Viability. Cell Rep. 2015;12:760-73 pubmed 出版商
  172. Stiess M, Wegehingel S, Nguyen C, Nickel W, Bradke F, Cambridge S. A Dual SILAC Proteomic Labeling Strategy for Quantifying Constitutive and Cell-Cell Induced Protein Secretion. J Proteome Res. 2015;14:3229-38 pubmed 出版商
  173. Hobbs R, DePianto D, Jacob J, Han M, Chung B, Batazzi A, et al. Keratin-dependent regulation of Aire and gene expression in skin tumor keratinocytes. Nat Genet. 2015;47:933-8 pubmed 出版商
  174. Fei Q, Yang X, Jiang H, Wang Q, Yu Y, Yu Y, et al. SETDB1 modulates PRC2 activity at developmental genes independently of H3K9 trimethylation in mouse ES cells. Genome Res. 2015;25:1325-35 pubmed 出版商
  175. Chaki S, Barhoumi R, Rivera G. Actin remodeling by Nck regulates endothelial lumen formation. Mol Biol Cell. 2015;26:3047-60 pubmed 出版商
  176. Xiong H, Zhou S, Sun A, He Y, Li J, Yuan X. MicroRNA‑197 reverses the drug resistance of fluorouracil‑induced SGC7901 cells by targeting mitogen‑activated protein kinase 1. Mol Med Rep. 2015;12:5019-25 pubmed 出版商
  177. Siriwardana N, Meyer R, Panchenko M. The novel function of JADE1S in cytokinesis of epithelial cells. Cell Cycle. 2015;14:2821-34 pubmed 出版商
  178. Hoover H, Li J, Marchese J, Rothwell C, Borawoski J, Jeffery D, et al. Quantitative Proteomic Verification of Membrane Proteins as Potential Therapeutic Targets Located in the 11q13 Amplicon in Cancers. J Proteome Res. 2015;14:3670-9 pubmed 出版商
  179. Li F, Buck D, De Winter J, Kolb J, Meng H, Birch C, et al. Nebulin deficiency in adult muscle causes sarcomere defects and muscle-type-dependent changes in trophicity: novel insights in nemaline myopathy. Hum Mol Genet. 2015;24:5219-33 pubmed 出版商
  180. Zhang J, Gao Q, Zhou Y, Dier U, Hempel N, Hochwald S. Focal adhesion kinase-promoted tumor glucose metabolism is associated with a shift of mitochondrial respiration to glycolysis. Oncogene. 2016;35:1926-42 pubmed 出版商
  181. Verma S, Mohapatra G, Ahmad S, Rana S, Jain S, Khalsa J, et al. Salmonella Engages Host MicroRNAs To Modulate SUMOylation: a New Arsenal for Intracellular Survival. Mol Cell Biol. 2015;35:2932-46 pubmed 出版商
  182. Conti V, Gandaglia A, Galli F, Tirone M, Bellini E, Campana L, et al. MeCP2 Affects Skeletal Muscle Growth and Morphology through Non Cell-Autonomous Mechanisms. PLoS ONE. 2015;10:e0130183 pubmed 出版商
  183. Carthy J, Sundqvist A, Heldin A, van Dam H, Kletsas D, Heldin C, et al. Tamoxifen Inhibits TGF-β-Mediated Activation of Myofibroblasts by Blocking Non-Smad Signaling Through ERK1/2. J Cell Physiol. 2015;230:3084-92 pubmed 出版商
  184. Masuda Y, Takahashi H, Sato S, Tomomori Sato C, Saraf A, Washburn M, et al. TRIM29 regulates the assembly of DNA repair proteins into damaged chromatin. Nat Commun. 2015;6:7299 pubmed 出版商
  185. Yuan Y, Wu Q, Cheng G, Liu X, Liu S, Luo J, et al. Recombinant human lactoferrin enhances the efficacy of triple therapy in mice infected with Helicobacter pylori. Int J Mol Med. 2015;36:363-8 pubmed 出版商
  186. Li X, Yang X, Biskup E, Zhou J, Li H, Wu Y, et al. Co-expression of CXCL8 and HIF-1α is associated with metastasis and poor prognosis in hepatocellular carcinoma. Oncotarget. 2015;6:22880-9 pubmed
  187. Masuda Y, Takahashi H, Hatakeyama S. TRIM29 regulates the p63-mediated pathway in cervical cancer cells. Biochim Biophys Acta. 2015;1853:2296-305 pubmed 出版商
  188. Ronchi G, Haastert Talini K, Fornasari B, Perroteau I, Geuna S, Gambarotta G. The Neuregulin1/ErbB system is selectively regulated during peripheral nerve degeneration and regeneration. Eur J Neurosci. 2016;43:351-64 pubmed 出版商
  189. Liang H, Fu Z, Jiang X, Wang N, Wang F, Wang X, et al. miR-16 promotes the apoptosis of human cancer cells by targeting FEAT. BMC Cancer. 2015;15:448 pubmed 出版商
  190. Luan Q, Jin L, Jiang C, Tay K, Lai F, Liu X, et al. RIPK1 regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy. Autophagy. 2015;11:975-94 pubmed 出版商
  191. Ferry A, Parlakian A, Joanne P, Fraysse B, Mgrditchian T, Roy P, et al. Mechanical Overloading Increases Maximal Force and Reduces Fragility in Hind Limb Skeletal Muscle from Mdx Mouse. Am J Pathol. 2015;185:2012-24 pubmed 出版商
  192. Boisson B, Laplantine E, Dobbs K, Cobat A, Tarantino N, Hazen M, et al. Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia. J Exp Med. 2015;212:939-51 pubmed 出版商
  193. Coudé M, Braun T, Berrou J, Dupont M, Bertrand S, Massé A, et al. BET inhibitor OTX015 targets BRD2 and BRD4 and decreases c-MYC in acute leukemia cells. Oncotarget. 2015;6:17698-712 pubmed
  194. Lucido C, Vermeer P, Wieking B, Vermeer D, Lee J. CD137 enhancement of HPV positive head and neck squamous cell carcinoma tumor clearance. Vaccines (Basel). 2014;2:841-53 pubmed 出版商
  195. Dell Ovo V, Rosenzweig J, Burd I, Merabova N, Darbinian N, Goetzl L. An animal model for chorioamnionitis at term. Am J Obstet Gynecol. 2015;213:387.e1-10 pubmed 出版商
  196. Hodges A, Gallegos I, Laughery M, Meas R, Tran L, Wyrick J. Histone Sprocket Arginine Residues Are Important for Gene Expression, DNA Repair, and Cell Viability in Saccharomyces cerevisiae. Genetics. 2015;200:795-806 pubmed 出版商
  197. Reales E, Bernabé Rubio M, Casares Arias J, Rentero C, Fernández Barrera J, Rangel L, et al. The MAL protein is crucial for proper membrane condensation at the ciliary base, which is required for primary cilium elongation. J Cell Sci. 2015;128:2261-70 pubmed 出版商
  198. Wang X, Buechler N, Yoza B, McCall C, Vachharajani V. Resveratrol attenuates microvascular inflammation in sepsis via SIRT-1-Induced modulation of adhesion molecules in ob/ob mice. Obesity (Silver Spring). 2015;23:1209-17 pubmed 出版商
  199. Stangel D, Erkan M, Buchholz M, Gress T, Michalski C, Raulefs S, et al. Kif20a inhibition reduces migration and invasion of pancreatic cancer cells. J Surg Res. 2015;197:91-100 pubmed 出版商
  200. Zhao Y, Xiao Z, Chen W, Yang J, Li T, Fan B. Disulfiram sensitizes pituitary adenoma cells to temozolomide by regulating O6-methylguanine-DNA methyltransferase expression. Mol Med Rep. 2015;12:2313-22 pubmed 出版商
  201. Wright J, Atwan Z, Morris S, Leppard K. The Human Adenovirus Type 5 L4 Promoter Is Negatively Regulated by TFII-I and L4-33K. J Virol. 2015;89:7053-63 pubmed 出版商
  202. Iguchi Y, Ishihara S, Uchida Y, Tajima K, Mizutani T, Kawabata K, et al. Filamin B Enhances the Invasiveness of Cancer Cells into 3D Collagen Matrices. Cell Struct Funct. 2015;40:61-7 pubmed 出版商
  203. Pasqualon T, Pruessmeyer J, Weidenfeld S, Babendreyer A, Groth E, Schumacher J, et al. A transmembrane C-terminal fragment of syndecan-1 is generated by the metalloproteinase ADAM17 and promotes lung epithelial tumor cell migration and lung metastasis formation. Cell Mol Life Sci. 2015;72:3783-801 pubmed 出版商
  204. Mayer A, Di Iulio J, Maleri S, Eser U, Vierstra J, Reynolds A, et al. Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution. Cell. 2015;161:541-554 pubmed 出版商
  205. Ljubicic V, Jasmin B. Metformin increases peroxisome proliferator-activated receptor γ Co-activator-1α and utrophin a expression in dystrophic skeletal muscle. Muscle Nerve. 2015;52:139-42 pubmed 出版商
  206. Zou Z, Cai Y, Chen Y, Chen S, Liu L, Shen Z, et al. Bone marrow-derived mesenchymal stem cells attenuate acute liver injury and regulate the expression of fibrinogen-like-protein 1 and signal transducer and activator of transcription 3. Mol Med Rep. 2015;12:2089-97 pubmed 出版商
  207. Rocco M, Balzamino B, Petrocchi Passeri P, Micera A, Aloe L. Effect of purified murine NGF on isolated photoreceptors of a rodent developing retinitis pigmentosa. PLoS ONE. 2015;10:e0124810 pubmed 出版商
  208. Telese F, Ma Q, Perez P, Notani D, Oh S, Li W, et al. LRP8-Reelin-Regulated Neuronal Enhancer Signature Underlying Learning and Memory Formation. Neuron. 2015;86:696-710 pubmed 出版商
  209. Ji T, Guo Y, Kim K, McQueen P, Ghaffar S, Christ A, et al. Neuropilin-2 expression is inhibited by secreted Wnt antagonists and its down-regulation is associated with reduced tumor growth and metastasis in osteosarcoma. Mol Cancer. 2015;14:86 pubmed 出版商
  210. Moreira J, Wohlwend M, Alves M, Wisløff U, Bye A. A small molecule activator of AKT does not reduce ischemic injury of the rat heart. J Transl Med. 2015;13:76 pubmed 出版商
  211. Bettaieb A, Jiang J, Sasaki Y, Chao T, Kiss Z, Chen X, et al. Hepatocyte Nicotinamide Adenine Dinucleotide Phosphate Reduced Oxidase 4 Regulates Stress Signaling, Fibrosis, and Insulin Sensitivity During Development of Steatohepatitis in Mice. Gastroenterology. 2015;149:468-80.e10 pubmed 出版商
  212. Roca Rodríguez M, El Bekay R, Garrido Sanchez L, Gómez Serrano M, Coin Aragüez L, Oliva Olivera W, et al. Parathyroid Hormone-Related Protein, Human Adipose-Derived Stem Cells Adipogenic Capacity and Healthy Obesity. J Clin Endocrinol Metab. 2015;100:E826-35 pubmed 出版商
  213. Janes K. An analysis of critical factors for quantitative immunoblotting. Sci Signal. 2015;8:rs2 pubmed 出版商
  214. Tsukiyama T, Fukui A, Terai S, Fujioka Y, Shinada K, Takahashi H, et al. Molecular Role of RNF43 in Canonical and Noncanonical Wnt Signaling. Mol Cell Biol. 2015;35:2007-23 pubmed 出版商
  215. Maquigussa E, Arnoni C, Pereira L, Boim M. Calcitriol ameliorates renal damage in a pre-established proteinuria model. Mol Med Rep. 2015;12:1009-15 pubmed 出版商
  216. Verduzco D, Lloyd M, Xu L, Ibrahim Hashim A, Balagurunathan Y, Gatenby R, et al. Intermittent hypoxia selects for genotypes and phenotypes that increase survival, invasion, and therapy resistance. PLoS ONE. 2015;10:e0120958 pubmed 出版商
  217. Zeng H, Vaka V, He X, Booz G, Chen J. High-fat diet induces cardiac remodelling and dysfunction: assessment of the role played by SIRT3 loss. J Cell Mol Med. 2015;19:1847-56 pubmed 出版商
  218. Richardson E, Shukla S, Sweet D, Wearsch P, Tsichlis P, Boom W, et al. Toll-like receptor 2-dependent extracellular signal-regulated kinase signaling in Mycobacterium tuberculosis-infected macrophages drives anti-inflammatory responses and inhibits Th1 polarization of responding T cells. Infect Immun. 2015;83:2242-54 pubmed 出版商
  219. Hutchins A, Takahashi Y, Miranda Saavedra D. Genomic analysis of LPS-stimulated myeloid cells identifies a common pro-inflammatory response but divergent IL-10 anti-inflammatory responses. Sci Rep. 2015;5:9100 pubmed 出版商
  220. Liu Y, Li Y, Zhang D, Liu J, Gou K, Cui S. Mitogen-Activated Protein Kinase 8 (MAP3K8) Mediates the Signaling Pathway of Estradiol Stimulating Progesterone Production Through G Protein-Coupled Receptor 30 (GPR30) in Mouse Corpus Luteum. Mol Endocrinol. 2015;29:703-15 pubmed 出版商
  221. Griffin J, Sondalle S, del Viso F, Baserga S, Khokha M. The ribosome biogenesis factor Nol11 is required for optimal rDNA transcription and craniofacial development in Xenopus. PLoS Genet. 2015;11:e1005018 pubmed 出版商
  222. Å talekar M, Yin X, Rebolj K, Darovic S, Troakes C, Mayr M, et al. Proteomic analyses reveal that loss of TDP-43 affects RNA processing and intracellular transport. Neuroscience. 2015;293:157-70 pubmed 出版商
  223. Li B, Li H, Wang Z, Wang Y, Gao A, Cui Y, et al. Evidence for the role of phosphatidylcholine-specific phospholipase in experimental subarachnoid hemorrhage in rats. Exp Neurol. 2015;272:145-51 pubmed 出版商
  224. Takemoto K, Ishihara S, Mizutani T, Kawabata K, Haga H. Compressive stress induces dephosphorylation of the myosin regulatory light chain via RhoA phosphorylation by the adenylyl cyclase/protein kinase A signaling pathway. PLoS ONE. 2015;10:e0117937 pubmed 出版商
  225. Jarosinski K, Donovan K, Du G. Expression of fluorescent proteins within the repeat long region of the Marek's disease virus genome allows direct identification of infected cells while retaining full pathogenicity. Virus Res. 2015;201:50-60 pubmed 出版商
  226. Maganti A, Maier B, Tersey S, Sampley M, Mosley A, Özcan S, et al. Transcriptional activity of the islet β cell factor Pdx1 is augmented by lysine methylation catalyzed by the methyltransferase Set7/9. J Biol Chem. 2015;290:9812-22 pubmed 出版商
  227. Bulk E, Ay A, Hammadi M, Ouadid Ahidouch H, Schelhaas S, Hascher A, et al. Epigenetic dysregulation of KCa 3.1 channels induces poor prognosis in lung cancer. Int J Cancer. 2015;137:1306-17 pubmed 出版商
  228. Schreiber K, Ortiz D, Academia E, Anies A, Liao C, Kennedy B. Rapamycin-mediated mTORC2 inhibition is determined by the relative expression of FK506-binding proteins. Aging Cell. 2015;14:265-73 pubmed 出版商
  229. Radhakrishnan V, Kojs P, Ramalingam R, Midura Kiela M, Angeli P, Kiela P, et al. Experimental colitis is associated with transcriptional inhibition of Na+/Ca2+ exchanger isoform 1 (NCX1) expression by interferon γ in the renal distal convoluted tubules. J Biol Chem. 2015;290:8964-74 pubmed 出版商
  230. West A, Khoury Hanold W, Staron M, Tal M, Pineda C, Lang S, et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature. 2015;520:553-7 pubmed 出版商
  231. Mandell D, Lajoie M, Mee M, Takeuchi R, Kuznetsov G, Norville J, et al. Biocontainment of genetically modified organisms by synthetic protein design. Nature. 2015;518:55-60 pubmed 出版商
  232. Cheng Y, Song L, Huang Y, Xiong Y, Zhang X, Sun H, et al. Effect of enterohaemorrhagic Escherichia coli O157:H7-specific enterohaemolysin on interleukin-1β production differs between human and mouse macrophages due to the different sensitivity of NLRP3 activation. Immunology. 2015;145:258-67 pubmed 出版商
  233. Li P, Ma X, Adams I, Yuan P. A tight control of Rif1 by Oct4 and Smad3 is critical for mouse embryonic stem cell stability. Cell Death Dis. 2015;6:e1588 pubmed 出版商
  234. Liu L, Zou P, Zheng L, Linarelli L, Amarell S, Passaro A, et al. Tamoxifen reduces fat mass by boosting reactive oxygen species. Cell Death Dis. 2015;6:e1586 pubmed 出版商
  235. Hennig D, Müller S, Wichmann C, Drube S, Pietschmann K, Pelzl L, et al. Antagonism between granulocytic maturation and deacetylase inhibitor-induced apoptosis in acute promyelocytic leukaemia cells. Br J Cancer. 2015;112:329-37 pubmed 出版商
  236. Bisson J, Mills B, Paul Helt J, Zwaka T, Cohen E. Wnt5a and Wnt11 inhibit the canonical Wnt pathway and promote cardiac progenitor development via the Caspase-dependent degradation of AKT. Dev Biol. 2015;398:80-96 pubmed 出版商
  237. Zhang P, Wang L, Rodriguez Aguayo C, Yuan Y, Debeb B, Chen D, et al. miR-205 acts as a tumour radiosensitizer by targeting ZEB1 and Ubc13. Nat Commun. 2014;5:5671 pubmed 出版商
  238. Freund A, Zhong F, Venteicher A, Meng Z, Veenstra T, Frydman J, et al. Proteostatic control of telomerase function through TRiC-mediated folding of TCAB1. Cell. 2014;159:1389-403 pubmed 出版商
  239. Vigelsø A, Dybboe R, Hansen C, Dela F, Helge J, Guadalupe Grau A. GAPDH and β-actin protein decreases with aging, making Stain-Free technology a superior loading control in Western blotting of human skeletal muscle. J Appl Physiol (1985). 2015;118:386-94 pubmed 出版商
  240. Rovetta A, Peña D, Hernández Del Pino R, Recalde G, Pellegrini J, Bigi F, et al. IFNG-mediated immune responses enhance autophagy against Mycobacterium tuberculosis antigens in patients with active tuberculosis. Autophagy. 2014;10:2109-21 pubmed 出版商
  241. Caminos E, Garcia Pino E, Juiz J. Loss of auditory activity modifies the location of potassium channel KCNQ5 in auditory brainstem neurons. J Neurosci Res. 2015;93:604-14 pubmed 出版商
  242. Grünhagen J, Bhushan R, Degenkolbe E, Jäger M, Knaus P, Mundlos S, et al. MiR-497∼195 cluster microRNAs regulate osteoblast differentiation by targeting BMP signaling. J Bone Miner Res. 2015;30:796-808 pubmed 出版商
  243. Shriver M, Stroka K, Vitolo M, Martin S, Huso D, Konstantopoulos K, et al. Loss of giant obscurins from breast epithelium promotes epithelial-to-mesenchymal transition, tumorigenicity and metastasis. Oncogene. 2015;34:4248-59 pubmed 出版商
  244. Sedlmeier E, Brunner S, Much D, Pagel P, Ulbrich S, Meyer H, et al. Human placental transcriptome shows sexually dimorphic gene expression and responsiveness to maternal dietary n-3 long-chain polyunsaturated fatty acid intervention during pregnancy. BMC Genomics. 2014;15:941 pubmed 出版商
  245. Kaiser A, Jenewein B, Pircher H, Rostek U, Jansen Dürr P, Zwerschke W. Analysis of human papillomavirus E7 protein status in C-33A cervical cancer cells. Virus Genes. 2015;50:12-21 pubmed 出版商
  246. Oujo B, Muñoz Félix J, Arévalo M, Núñez Gómez E, Pérez Roque L, Pericacho M, et al. L-Endoglin overexpression increases renal fibrosis after unilateral ureteral obstruction. PLoS ONE. 2014;9:e110365 pubmed 出版商
  247. Otabe K, Nakahara H, Hasegawa A, Matsukawa T, Ayabe F, Onizuka N, et al. Transcription factor Mohawk controls tenogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo. J Orthop Res. 2015;33:1-8 pubmed 出版商
  248. Xu H, Zhou Y, Coughlan K, Ding Y, Wang S, Wu Y, et al. AMPKα1 deficiency promotes cellular proliferation and DNA damage via p21 reduction in mouse embryonic fibroblasts. Biochim Biophys Acta. 2015;1853:65-73 pubmed 出版商
  249. Tan X, Peng J, Fu Y, An S, Rezaei K, Tabbara S, et al. miR-638 mediated regulation of BRCA1 affects DNA repair and sensitivity to UV and cisplatin in triple-negative breast cancer. Breast Cancer Res. 2014;16:435 pubmed 出版商
  250. Haddock C, Blomenkamp K, Gautam M, James J, Mielcarska J, Gogol E, et al. PiZ mouse liver accumulates polyubiquitin conjugates that associate with catalytically active 26S proteasomes. PLoS ONE. 2014;9:e106371 pubmed 出版商
  251. Tantra M, Kröcher T, Papiol S, Winkler D, Röckle I, Jatho J, et al. St8sia2 deficiency plus juvenile cannabis exposure in mice synergistically affect higher cognition in adulthood. Behav Brain Res. 2014;275:166-75 pubmed 出版商
  252. Zieger M, Ahnelt P, Uhrin P. CX3CL1 (fractalkine) protein expression in normal and degenerating mouse retina: in vivo studies. PLoS ONE. 2014;9:e106562 pubmed 出版商
  253. Neumann C, Bigliardi Qi M, Widmann C, Bigliardi P. The δ-opioid receptor affects epidermal homeostasis via ERK-dependent inhibition of transcription factor POU2F3. J Invest Dermatol. 2015;135:471-480 pubmed 出版商
  254. Eberle M, Ebel P, Wegner M, Männich J, Tafferner N, Ferreirós N, et al. Regulation of ceramide synthase 6 in a spontaneous experimental autoimmune encephalomyelitis model is sex dependent. Biochem Pharmacol. 2014;92:326-35 pubmed 出版商
  255. Maarouf C, Kokjohn T, Walker D, Whiteside C, Kalback W, Whetzel A, et al. Biochemical assessment of precuneus and posterior cingulate gyrus in the context of brain aging and Alzheimer's disease. PLoS ONE. 2014;9:e105784 pubmed 出版商
  256. Sarkar J, Simanian E, Tuggy S, Bartlett J, Snead M, Sugiyama T, et al. Comparison of two mouse ameloblast-like cell lines for enamel-specific gene expression. Front Physiol. 2014;5:277 pubmed 出版商
  257. Curto G, Nieto Estévez V, Hurtado Chong A, Valero J, Gómez C, Alonso J, et al. Pax6 is essential for the maintenance and multi-lineage differentiation of neural stem cells, and for neuronal incorporation into the adult olfactory bulb. Stem Cells Dev. 2014;23:2813-30 pubmed 出版商
  258. Riemer P, Sreekumar A, Reinke S, Rad R, Schäfer R, Sers C, et al. Transgenic expression of oncogenic BRAF induces loss of stem cells in the mouse intestine, which is antagonized by β-catenin activity. Oncogene. 2015;34:3164-75 pubmed 出版商
  259. Zhang P, Wei Y, Wang L, Debeb B, Yuan Y, Zhang J, et al. ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat Cell Biol. 2014;16:864-75 pubmed 出版商
  260. Calabro S, Maczurek A, Morgan A, Tu T, Wen V, Yee C, et al. Hepatocyte produced matrix metalloproteinases are regulated by CD147 in liver fibrogenesis. PLoS ONE. 2014;9:e90571 pubmed 出版商
  261. Requejo Aguilar R, Lopez Fabuel I, Fernandez E, Martins L, Almeida A, Bolanos J. PINK1 deficiency sustains cell proliferation by reprogramming glucose metabolism through HIF1. Nat Commun. 2014;5:4514 pubmed 出版商
  262. Syhr K, Kallenborn Gerhardt W, Lu R, Olbrich K, Schmitz K, Männich J, et al. Lack of effect of a P2Y6 receptor antagonist on neuropathic pain behavior in mice. Pharmacol Biochem Behav. 2014;124:389-95 pubmed 出版商
  263. Vachharajani V, Liu T, Brown C, Wang X, Buechler N, Wells J, et al. SIRT1 inhibition during the hypoinflammatory phenotype of sepsis enhances immunity and improves outcome. J Leukoc Biol. 2014;96:785-96 pubmed 出版商
  264. Walker M, Volta M, Cataldi S, Dinelle K, Beccano Kelly D, Munsie L, et al. Behavioral deficits and striatal DA signaling in LRRK2 p.G2019S transgenic rats: a multimodal investigation including PET neuroimaging. J Parkinsons Dis. 2014;4:483-98 pubmed 出版商
  265. Ni Z, Xu C, Guo X, Hunter G, Kuznetsova O, Tempel W, et al. RPRD1A and RPRD1B are human RNA polymerase II C-terminal domain scaffolds for Ser5 dephosphorylation. Nat Struct Mol Biol. 2014;21:686-695 pubmed 出版商
  266. Cowling R, Yeo S, Kim I, Park J, Gu Y, Dalton N, et al. Discoidin domain receptor 2 germline gene deletion leads to altered heart structure and function in the mouse. Am J Physiol Heart Circ Physiol. 2014;307:H773-81 pubmed 出版商
  267. Charan R, Johnson B, Zaganelli S, Nardozzi J, LaVoie M. Inhibition of apoptotic Bax translocation to the mitochondria is a central function of parkin. Cell Death Dis. 2014;5:e1313 pubmed 出版商
  268. Olenich S, Audet G, Roberts K, Olfert I. Effects of detraining on the temporal expression of positive and negative angioregulatory proteins in skeletal muscle of mice. J Physiol. 2014;592:3325-38 pubmed 出版商
  269. Chung L, Bailey D, Leen E, Emmott E, Chaudhry Y, Roberts L, et al. Norovirus translation requires an interaction between the C Terminus of the genome-linked viral protein VPg and eukaryotic translation initiation factor 4G. J Biol Chem. 2014;289:21738-50 pubmed 出版商
  270. Lebron M, Brennan L, Damoci C, Prewett M, O Mahony M, Duignan I, et al. A human monoclonal antibody targeting the stem cell factor receptor (c-Kit) blocks tumor cell signaling and inhibits tumor growth. Cancer Biol Ther. 2014;15:1208-18 pubmed 出版商
  271. Kolanczyk M, Krawitz P, Hecht J, Hupalowska A, Miaczynska M, Marschner K, et al. Missense variant in CCDC22 causes X-linked recessive intellectual disability with features of Ritscher-Schinzel/3C syndrome. Eur J Hum Genet. 2015;23:633-8 pubmed 出版商
  272. Lamarca A, Gella A, Martiáñez T, Segura M, Figueiro Silva J, Grijota Martinez C, et al. Uridine 5'-triphosphate promotes in vitro Schwannoma cell migration through matrix metalloproteinase-2 activation. PLoS ONE. 2014;9:e98998 pubmed 出版商
  273. Premkumar M, Sule G, Nagamani S, Chakkalakal S, Nordin A, Jain M, et al. Argininosuccinate lyase in enterocytes protects from development of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol. 2014;307:G347-54 pubmed 出版商
  274. Relógio A, Thomas P, Medina Pérez P, Reischl S, Bervoets S, Gloc E, et al. Ras-mediated deregulation of the circadian clock in cancer. PLoS Genet. 2014;10:e1004338 pubmed 出版商
  275. Chapnik E, Rivkin N, Mildner A, Beck G, Pasvolsky R, Metzl Raz E, et al. miR-142 orchestrates a network of actin cytoskeleton regulators during megakaryopoiesis. elife. 2014;3:e01964 pubmed 出版商
  276. Shin J, Le Dour C, Sera F, Iwata S, Homma S, Joseph L, et al. Depletion of lamina-associated polypeptide 1 from cardiomyocytes causes cardiac dysfunction in mice. Nucleus. 2014;5:260-459 pubmed 出版商
  277. Jafari M, Xu W, Pan R, Sweeting C, Karunaratne D, Chen P. Serum stability and physicochemical characterization of a novel amphipathic peptide C6M1 for siRNA delivery. PLoS ONE. 2014;9:e97797 pubmed 出版商
  278. Li S, Zhou T, Li C, Dai Z, Che D, Yao Y, et al. High metastaticgastric and breast cancer cells consume oleic acid in an AMPK dependent manner. PLoS ONE. 2014;9:e97330 pubmed 出版商
  279. Vargas A, Zhou S, Ethier Chiasson M, Flipo D, Lafond J, Gilbert C, et al. Syncytin proteins incorporated in placenta exosomes are important for cell uptake and show variation in abundance in serum exosomes from patients with preeclampsia. FASEB J. 2014;28:3703-19 pubmed 出版商
  280. Ding Z, German P, Bai S, Reddy A, Liu X, Sun M, et al. Genetic and pharmacological strategies to refunctionalize the von Hippel Lindau R167Q mutant protein. Cancer Res. 2014;74:3127-36 pubmed 出版商
  281. Gonzalez Rodriguez A, Mayoral R, Agra N, Valdecantos M, Pardo V, Miquilena Colina M, et al. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 2014;5:e1179 pubmed 出版商
  282. Sun Y, Chung H, Woo A, Lin V. Protein arginine methyltransferase 6 enhances ligand-dependent and -independent activity of estrogen receptor ? via distinct mechanisms. Biochim Biophys Acta. 2014;1843:2067-78 pubmed 出版商
  283. Patoine A, Gaumond M, Jaiswal P, Fassier F, Rauch F, Moffatt P. Topological mapping of BRIL reveals a type II orientation and effects of osteogenesis imperfecta mutations on its cellular destination. J Bone Miner Res. 2014;29:2004-16 pubmed 出版商
  284. Stauch K, Purnell P, Fox H. Quantitative proteomics of synaptic and nonsynaptic mitochondria: insights for synaptic mitochondrial vulnerability. J Proteome Res. 2014;13:2620-36 pubmed 出版商
  285. Jung Y, Vermeer P, Vermeer D, Lee S, Goh A, Ahn H, et al. CD200: association with cancer stem cell features and response to chemoradiation in head and neck squamous cell carcinoma. Head Neck. 2015;37:327-35 pubmed 出版商
  286. Li Y, Pan J, Wei C, Chen J, Liu Y, Liu J, et al. LIM homeodomain transcription factor Isl1 directs normal pyloric development by targeting Gata3. BMC Biol. 2014;12:25 pubmed 出版商
  287. Chesarino N, McMichael T, Hach J, Yount J. Phosphorylation of the antiviral protein interferon-inducible transmembrane protein 3 (IFITM3) dually regulates its endocytosis and ubiquitination. J Biol Chem. 2014;289:11986-92 pubmed 出版商
  288. Storm M, Kumpfmueller B, Bone H, Buchholz M, Sanchez Ripoll Y, Chaudhuri J, et al. Zscan4 is regulated by PI3-kinase and DNA-damaging agents and directly interacts with the transcriptional repressors LSD1 and CtBP2 in mouse embryonic stem cells. PLoS ONE. 2014;9:e89821 pubmed 出版商
  289. Farg M, Sundaramoorthy V, Sultana J, Yang S, Atkinson R, Levina V, et al. C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum Mol Genet. 2014;23:3579-95 pubmed 出版商
  290. Muenyi C, Trivedi A, Helm C, States J. Cisplatin plus sodium arsenite and hyperthermia induces pseudo-G1 associated apoptotic cell death in ovarian cancer cells. Toxicol Sci. 2014;139:74-82 pubmed 出版商
  291. Miyazawa N, Yoshikawa H, Magae S, Ishikawa H, Izumikawa K, Terukina G, et al. Human cell growth regulator Ly-1 antibody reactive homologue accelerates processing of preribosomal RNA. Genes Cells. 2014;19:273-86 pubmed 出版商
  292. Yik J, Hu Z, Kumari R, Christiansen B, Haudenschild D. Cyclin-dependent kinase 9 inhibition protects cartilage from the catabolic effects of proinflammatory cytokines. Arthritis Rheumatol. 2014;66:1537-46 pubmed 出版商
  293. Bayer M, Schjerling P, Herchenhan A, Zeltz C, Heinemeier K, Christensen L, et al. Release of tensile strain on engineered human tendon tissue disturbs cell adhesions, changes matrix architecture, and induces an inflammatory phenotype. PLoS ONE. 2014;9:e86078 pubmed 出版商
  294. Gangoso E, Thirant C, Chneiweiss H, Medina J, Tabernero A. A cell-penetrating peptide based on the interaction between c-Src and connexin43 reverses glioma stem cell phenotype. Cell Death Dis. 2014;5:e1023 pubmed 出版商
  295. Cao M, Hou D, Liang H, Gong F, Wang Y, Yan X, et al. miR-150 promotes the proliferation and migration of lung cancer cells by targeting SRC kinase signalling inhibitor 1. Eur J Cancer. 2014;50:1013-24 pubmed 出版商
  296. Ashraf M, Ebner M, Wallner C, Haller M, Khalid S, Schwelberger H, et al. A p38MAPK/MK2 signaling pathway leading to redox stress, cell death and ischemia/reperfusion injury. Cell Commun Signal. 2014;12:6 pubmed 出版商
  297. Tsuyuki S, Takabayashi M, Kawazu M, Kudo K, Watanabe A, Nagata Y, et al. Detection of WIPI1 mRNA as an indicator of autophagosome formation. Autophagy. 2014;10:497-513 pubmed 出版商
  298. Lewis S, Hedman C, Ziegler T, Ricke W, Jorgensen J. Steroidogenic factor 1 promotes aggressive growth of castration-resistant prostate cancer cells by stimulating steroid synthesis and cell proliferation. Endocrinology. 2014;155:358-69 pubmed 出版商
  299. Shtam T, Kovalev R, Varfolomeeva E, Makarov E, Kil Y, Filatov M. Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal. 2013;11:88 pubmed 出版商
  300. Gurha P, Wang T, Larimore A, Sassi Y, Abreu Goodger C, Ramirez M, et al. microRNA-22 promotes heart failure through coordinate suppression of PPAR/ERR-nuclear hormone receptor transcription. PLoS ONE. 2013;8:e75882 pubmed 出版商
  301. Kyöstilä K, Lappalainen A, Lohi H. Canine chondrodysplasia caused by a truncating mutation in collagen-binding integrin alpha subunit 10. PLoS ONE. 2013;8:e75621 pubmed 出版商
  302. Goodwin A, Tidyman W, Jheon A, Sharir A, Zheng X, Charles C, et al. Abnormal Ras signaling in Costello syndrome (CS) negatively regulates enamel formation. Hum Mol Genet. 2014;23:682-92 pubmed 出版商
  303. Kr cher T, Malinovskaja K, J rgenson M, Aonurm Helm A, Zharkovskaya T, Kalda A, et al. Schizophrenia-like phenotype of polysialyltransferase ST8SIA2-deficient mice. Brain Struct Funct. 2015;220:71-83 pubmed 出版商
  304. Gao H, Fisher P, Lambi A, WADE C, Barr Gillespie A, Popoff S, et al. Increased serum and musculotendinous fibrogenic proteins following persistent low-grade inflammation in a rat model of long-term upper extremity overuse. PLoS ONE. 2013;8:e71875 pubmed 出版商
  305. Chen Y, Kamili A, Hardy J, Groblewski G, Khanna K, Byrne J. Tumor protein D52 represents a negative regulator of ATM protein levels. Cell Cycle. 2013;12:3083-97 pubmed 出版商
  306. Villeneuve L, Tiede L, Morsey B, Fox H. Quantitative proteomics reveals oxygen-dependent changes in neuronal mitochondria affecting function and sensitivity to rotenone. J Proteome Res. 2013;12:4599-606 pubmed 出版商
  307. Shimojo M, Shudo Y, Ikeda M, Kobashi T, Ito S. The small cell lung cancer-specific isoform of RE1-silencing transcription factor (REST) is regulated by neural-specific Ser/Arg repeat-related protein of 100 kDa (nSR100). Mol Cancer Res. 2013;11:1258-68 pubmed 出版商
  308. Jakobsson M, Moen A, Bousset L, Egge Jacobsen W, Kernstock S, Melki R, et al. Identification and characterization of a novel human methyltransferase modulating Hsp70 protein function through lysine methylation. J Biol Chem. 2013;288:27752-63 pubmed 出版商
  309. Guo H, Gao M, Lu Y, Liang J, Lorenzi P, Bai S, et al. Coordinate phosphorylation of multiple residues on single AKT1 and AKT2 molecules. Oncogene. 2014;33:3463-72 pubmed 出版商
  310. Dokas J, Chadt A, Nolden T, Himmelbauer H, Zierath J, Joost H, et al. Conventional knockout of Tbc1d1 in mice impairs insulin- and AICAR-stimulated glucose uptake in skeletal muscle. Endocrinology. 2013;154:3502-14 pubmed 出版商
  311. Sun X, Bristol J, Iwahori S, Hagemeier S, Meng Q, Barlow E, et al. Hsp90 inhibitor 17-DMAG decreases expression of conserved herpesvirus protein kinases and reduces virus production in Epstein-Barr virus-infected cells. J Virol. 2013;87:10126-38 pubmed 出版商
  312. Katsushima Y, Sato T, Yamada C, Ito M, Suzuki Y, Ogawa E, et al. Interaction of PICK1 with C-terminus of growth hormone-releasing hormone receptor (GHRHR) modulates trafficking and signal transduction of human GHRHR. J Pharmacol Sci. 2013;122:193-204 pubmed
  313. Brouxhon S, Kyrkanides S, Teng X, O Banion M, Clarke R, Byers S, et al. Soluble-E-cadherin activates HER and IAP family members in HER2+ and TNBC human breast cancers. Mol Carcinog. 2014;53:893-906 pubmed 出版商
  314. Zhou D, Tan R, Lin L, Zhou L, Liu Y. Activation of hepatocyte growth factor receptor, c-met, in renal tubules is required for renoprotection after acute kidney injury. Kidney Int. 2013;84:509-20 pubmed 出版商
  315. Xue W, Zhou X, Yi N, Jiang L, Tao W, Wu R, et al. Yueju pill rapidly induces antidepressant-like effects and acutely enhances BDNF expression in mouse brain. Evid Based Complement Alternat Med. 2013;2013:184367 pubmed 出版商
  316. Zhou D, Tan R, Zhou L, Li Y, Liu Y. Kidney tubular ?-catenin signaling controls interstitial fibroblast fate via epithelial-mesenchymal communication. Sci Rep. 2013;3:1878 pubmed 出版商
  317. Birrane G, Li H, Yang S, Tachado S, Seng S. Cigarette smoke induces nuclear translocation of heme oxygenase 1 (HO-1) in prostate cancer cells: nuclear HO-1 promotes vascular endothelial growth factor secretion. Int J Oncol. 2013;42:1919-28 pubmed 出版商
  318. Sanchez Ripoll Y, Bone H, Owen T, Guedes A, Abranches E, Kumpfmueller B, et al. Glycogen synthase kinase-3 inhibition enhances translation of pluripotency-associated transcription factors to contribute to maintenance of mouse embryonic stem cell self-renewal. PLoS ONE. 2013;8:e60148 pubmed 出版商
  319. Ishida K, Acharya C, Christiansen B, Yik J, Dicesare P, Haudenschild D. Cartilage oligomeric matrix protein enhances osteogenesis by directly binding and activating bone morphogenetic protein-2. Bone. 2013;55:23-35 pubmed 出版商
  320. Rejon C, Ho C, Wang Y, Zhou X, Bernard D, Hebert T. Cycloheximide inhibits follicle-stimulating hormone ? subunit transcription by blocking de novo synthesis of the labile activin type II receptor in gonadotrope cells. Cell Signal. 2013;25:1403-12 pubmed 出版商
  321. Takeuchi Yorimoto A, Noto T, Yamada A, Miyamae Y, Oishi Y, Matsumoto M. Persistent fibrosis in the liver of choline-deficient and iron-supplemented L-amino acid-defined diet-induced nonalcoholic steatohepatitis rat due to continuing oxidative stress after choline supplementation. Toxicol Appl Pharmacol. 2013;268:264-77 pubmed 出版商
  322. Chaki S, Barhoumi R, Berginski M, Sreenivasappa H, Trache A, Gomez S, et al. Nck enables directional cell migration through the coordination of polarized membrane protrusion with adhesion dynamics. J Cell Sci. 2013;126:1637-49 pubmed 出版商
  323. Gao Y, Yechikov S, Vazquez A, Chen D, Nie L. Distinct roles of molecular chaperones HSP90? and HSP90? in the biogenesis of KCNQ4 channels. PLoS ONE. 2013;8:e57282 pubmed 出版商
  324. Chen S, Chung C, Cheng Y, Huang C, Ruaan R, Chen W, et al. Hydrostatic pressure enhances mitomycin C induced apoptosis in urothelial carcinoma cells. Urol Oncol. 2014;32:26.e17-24 pubmed 出版商
  325. Shi J, Wu X, Surma M, Vemula S, Zhang L, Yang Y, et al. Distinct roles for ROCK1 and ROCK2 in the regulation of cell detachment. Cell Death Dis. 2013;4:e483 pubmed 出版商
  326. Nowaczyk M, Thompson B, Zeesman S, Moog U, Sanchez Lara P, Magoulas P, et al. Deletion of MAP2K2/MEK2: a novel mechanism for a RASopathy?. Clin Genet. 2014;85:138-46 pubmed 出版商
  327. Murakami K, Jiang Y, Tanaka T, Bando Y, Mitrovic B, Yoshida S. In vivo analysis of kallikrein-related peptidase 6 (KLK6) function in oligodendrocyte development and the expression of myelin proteins. Neuroscience. 2013;236:1-11 pubmed 出版商
  328. Kim S, Ishida H, Yamane D, Yi M, Swinney D, Foung S, et al. Contrasting roles of mitogen-activated protein kinases in cellular entry and replication of hepatitis C virus: MKNK1 facilitates cell entry. J Virol. 2013;87:4214-24 pubmed 出版商
  329. Torrell H, Montaña E, Abasolo N, Roig B, Gaviria A, Vilella E, et al. Mitochondrial DNA (mtDNA) in brain samples from patients with major psychiatric disorders: gene expression profiles, mtDNA content and presence of the mtDNA common deletion. Am J Med Genet B Neuropsychiatr Genet. 2013;162B:213-23 pubmed 出版商
  330. Vega Almeida T, Salas Benito M, De Nova Ocampo M, del Angel R, Salas Benito J. Surface proteins of C6/36 cells involved in dengue virus 4 binding and entry. Arch Virol. 2013;158:1189-207 pubmed 出版商
  331. Martiáñez T, Lamarca A, Casals N, Gella A. N-cadherin expression is regulated by UTP in schwannoma cells. Purinergic Signal. 2013;9:259-70 pubmed 出版商
  332. Yamamoto M, Matsuzaki T, Takahashi R, Adachi E, Maeda Y, Yamaguchi S, et al. The transformation suppressor gene Reck is required for postaxial patterning in mouse forelimbs. Biol Open. 2012;1:458-66 pubmed 出版商
  333. Shinozuka E, Miyashita M, Mizuguchi Y, Akagi I, Kikuchi K, Makino H, et al. SnoN/SKIL modulates proliferation through control of hsa-miR-720 transcription in esophageal cancer cells. Biochem Biophys Res Commun. 2013;430:101-6 pubmed 出版商
  334. García Huerta P, Diaz Hernandez M, Delicado E, Pimentel Santillana M, Miras Portugal M, Gomez Villafuertes R. The specificity protein factor Sp1 mediates transcriptional regulation of P2X7 receptors in the nervous system. J Biol Chem. 2012;287:44628-44 pubmed 出版商
  335. Baltanás F, Berciano M, Valero J, Gómez C, Diaz D, Alonso J, et al. Differential glial activation during the degeneration of Purkinje cells and mitral cells in the PCD mutant mice. Glia. 2013;61:254-72 pubmed 出版商
  336. Jones B, Brunet S, Gilbert M, Nichols C, Su T, Westenbroek R, et al. Cardiomyocytes from AKAP7 knockout mice respond normally to adrenergic stimulation. Proc Natl Acad Sci U S A. 2012;109:17099-104 pubmed 出版商
  337. Zou Z, Yuan Z, Zhang Q, Long Z, Chen J, Tang Z, et al. Aurora kinase A inhibition-induced autophagy triggers drug resistance in breast cancer cells. Autophagy. 2012;8:1798-810 pubmed 出版商
  338. Yui N, Lu H, Chen Y, Nomura N, Bouley R, Brown D. Basolateral targeting and microtubule-dependent transcytosis of the aquaporin-2 water channel. Am J Physiol Cell Physiol. 2013;304:C38-48 pubmed 出版商
  339. Lu C, Lin L, Tan H, Wu H, Sherman S, Gao F, et al. Fragile X premutation RNA is sufficient to cause primary ovarian insufficiency in mice. Hum Mol Genet. 2012;21:5039-47 pubmed 出版商
  340. Lopez Ramirez M, Fischer R, Torres Badillo C, Davies H, Logan K, Pfizenmaier K, et al. Role of caspases in cytokine-induced barrier breakdown in human brain endothelial cells. J Immunol. 2012;189:3130-9 pubmed 出版商
  341. Gao W, Liu M, Yang Y, Yang H, Liao Q, Bai Y, et al. The imprinted H19 gene regulates human placental trophoblast cell proliferation via encoding miR-675 that targets Nodal Modulator 1 (NOMO1). RNA Biol. 2012;9:1002-10 pubmed 出版商
  342. Takayanagi S, Fukuda R, Takeuchi Y, Tsukada S, Yoshida K. Gene regulatory network of unfolded protein response genes in endoplasmic reticulum stress. Cell Stress Chaperones. 2013;18:11-23 pubmed 出版商
  343. Peluso J, Lodde V, Liu X. Progesterone regulation of progesterone receptor membrane component 1 (PGRMC1) sumoylation and transcriptional activity in spontaneously immortalized granulosa cells. Endocrinology. 2012;153:3929-39 pubmed 出版商
  344. Esteves T, Psathaki O, Pfeiffer M, Balbach S, Zeuschner D, Shitara H, et al. Mitochondrial physiology and gene expression analyses reveal metabolic and translational dysregulation in oocyte-induced somatic nuclear reprogramming. PLoS ONE. 2012;7:e36850 pubmed 出版商
  345. Turinetto V, Orlando L, Sanchez Ripoll Y, Kumpfmueller B, Storm M, Porcedda P, et al. High basal ?H2AX levels sustain self-renewal of mouse embryonic and induced pluripotent stem cells. Stem Cells. 2012;30:1414-23 pubmed 出版商
  346. Zhou D, Li Y, Lin L, Zhou L, Igarashi P, Liu Y. Tubule-specific ablation of endogenous β-catenin aggravates acute kidney injury in mice. Kidney Int. 2012;82:537-47 pubmed 出版商
  347. Hancock M, Hermanson S, Dolman N. A quantitative TR-FRET plate reader immunoassay for measuring autophagy. Autophagy. 2012;8:1227-44 pubmed 出版商
  348. Zhang Y, Cooke M, Panjwani S, Cao K, Krauth B, Ho P, et al. Histone h1 depletion impairs embryonic stem cell differentiation. PLoS Genet. 2012;8:e1002691 pubmed 出版商
  349. Romoser A, Figueroa D, Sooresh A, Scribner K, Chen P, Porter W, et al. Distinct immunomodulatory effects of a panel of nanomaterials in human dermal fibroblasts. Toxicol Lett. 2012;210:293-301 pubmed 出版商
  350. Li L, Sarver A, Alamgir S, Subramanian S. Downregulation of microRNAs miR-1, -206 and -29 stabilizes PAX3 and CCND2 expression in rhabdomyosarcoma. Lab Invest. 2012;92:571-83 pubmed 出版商
  351. Hutchins A, Poulain S, Miranda Saavedra D. Genome-wide analysis of STAT3 binding in vivo predicts effectors of the anti-inflammatory response in macrophages. Blood. 2012;119:e110-9 pubmed 出版商
  352. Lee J, Jiffar T, Kupferman M. A novel role for BDNF-TrkB in the regulation of chemotherapy resistance in head and neck squamous cell carcinoma. PLoS ONE. 2012;7:e30246 pubmed 出版商
  353. Pérez Pérez R, Lopez J, García Santos E, Camafeita E, Gomez Serrano M, Ortega Delgado F, et al. Uncovering suitable reference proteins for expression studies in human adipose tissue with relevance to obesity. PLoS ONE. 2012;7:e30326 pubmed 出版商
  354. Shinohara R, Thumkeo D, Kamijo H, Kaneko N, Sawamoto K, Watanabe K, et al. A role for mDia, a Rho-regulated actin nucleator, in tangential migration of interneuron precursors. Nat Neurosci. 2012;15:373-80, S1-2 pubmed 出版商
  355. Aytekin M, Aulak K, Haserodt S, Chakravarti R, Cody J, Minai O, et al. Abnormal platelet aggregation in idiopathic pulmonary arterial hypertension: role of nitric oxide. Am J Physiol Lung Cell Mol Physiol. 2012;302:L512-20 pubmed 出版商
  356. Mork L, Tang H, Batchvarov I, Capel B. Mouse germ cell clusters form by aggregation as well as clonal divisions. Mech Dev. 2012;128:591-6 pubmed 出版商
  357. Medrzycki M, Zhang Y, McDonald J, Fan Y. Profiling of linker histone variants in ovarian cancer. Front Biosci (Landmark Ed). 2012;17:396-406 pubmed
  358. Matousek S, Ghosh S, Shaftel S, Kyrkanides S, Olschowka J, O Banion M. Chronic IL-1?-mediated neuroinflammation mitigates amyloid pathology in a mouse model of Alzheimer's disease without inducing overt neurodegeneration. J Neuroimmune Pharmacol. 2012;7:156-64 pubmed 出版商
  359. Gomez C, Curto G, Baltanás F, Valero J, O SHEA E, Colado M, et al. Changes in the serotonergic system and in brain-derived neurotrophic factor distribution in the main olfactory bulb of pcd mice before and after mitral cell loss. Neuroscience. 2012;201:20-33 pubmed 出版商
  360. Chen Z, Kolokoltsov A, Wang J, Adhikary S, Lorinczi M, Elferink L, et al. GRB2 interaction with the ecotropic murine leukemia virus receptor, mCAT-1, controls virus entry and is stimulated by virus binding. J Virol. 2012;86:1421-32 pubmed 出版商
  361. Miki T, Kamikawa Y, Kurono S, Kaneko Y, Katahira J, Yoneda Y. Cell type-dependent gene regulation by Staufen2 in conjunction with Upf1. BMC Mol Biol. 2011;12:48 pubmed 出版商
  362. Kahr P, Piccini I, Fabritz L, Greber B, Schöler H, Scheld H, et al. Systematic analysis of gene expression differences between left and right atria in different mouse strains and in human atrial tissue. PLoS ONE. 2011;6:e26389 pubmed 出版商
  363. Schulz N, Himmelbauer H, Rath M, van Weeghel M, Houten S, Kulik W, et al. Role of medium- and short-chain L-3-hydroxyacyl-CoA dehydrogenase in the regulation of body weight and thermogenesis. Endocrinology. 2011;152:4641-51 pubmed 出版商
  364. Thumkeo D, Shinohara R, Watanabe K, Takebayashi H, Toyoda Y, Tohyama K, et al. Deficiency of mDia, an actin nucleator, disrupts integrity of neuroepithelium and causes periventricular dysplasia. PLoS ONE. 2011;6:e25465 pubmed 出版商
  365. Kye M, Neveu P, Lee Y, Zhou M, Steen J, Sahin M, et al. NMDA mediated contextual conditioning changes miRNA expression. PLoS ONE. 2011;6:e24682 pubmed 出版商
  366. Zumer K, Plemenitas A, Saksela K, Peterlin B. Patient mutation in AIRE disrupts P-TEFb binding and target gene transcription. Nucleic Acids Res. 2011;39:7908-19 pubmed 出版商
  367. Michaelson J, Amatucci A, Kelly R, Su L, Garber E, Day E, et al. Development of an Fn14 agonistic antibody as an anti-tumor agent. MAbs. 2011;3:362-75 pubmed
  368. Selinger C, Cooper W, Al Sohaily S, Mladenova D, Pangon L, Kennedy C, et al. Loss of special AT-rich binding protein 1 expression is a marker of poor survival in lung cancer. J Thorac Oncol. 2011;6:1179-89 pubmed 出版商
  369. Billington C, Ng B, Forsman C, Schmidt B, Bagchi A, Symer D, et al. The molecular and cellular basis of variable craniofacial phenotypes and their genetic rescue in Twisted gastrulation mutant mice. Dev Biol. 2011;355:21-31 pubmed 出版商
  370. Kim S, Welsch C, Yi M, Lemon S. Regulation of the production of infectious genotype 1a hepatitis C virus by NS5A domain III. J Virol. 2011;85:6645-56 pubmed 出版商
  371. Baras A, Solomon A, Davidson R, Moskaluk C. Loss of VOPP1 overexpression in squamous carcinoma cells induces apoptosis through oxidative cellular injury. Lab Invest. 2011;91:1170-80 pubmed 出版商
  372. Selvais C, D Auria L, Tyteca D, Perrot G, Lemoine P, Troeberg L, et al. Cell cholesterol modulates metalloproteinase-dependent shedding of low-density lipoprotein receptor-related protein-1 (LRP-1) and clearance function. FASEB J. 2011;25:2770-81 pubmed 出版商
  373. Beguin P, Gosselin H, Mamarbachi M, Calderone A. Nestin expression is lost in ventricular fibroblasts during postnatal development of the rat heart and re-expressed in scar myofibroblasts. J Cell Physiol. 2012;227:813-20 pubmed 出版商
  374. Revuelta Cervantes J, Mayoral R, Miranda S, Gonzalez Rodriguez A, Fernandez M, Martín Sanz P, et al. Protein Tyrosine Phosphatase 1B (PTP1B) deficiency accelerates hepatic regeneration in mice. Am J Pathol. 2011;178:1591-604 pubmed 出版商
  375. Wang D, Li Y, Wu C, Liu Y. PINCH1 is transcriptional regulator in podocytes that interacts with WT1 and represses podocalyxin expression. PLoS ONE. 2011;6:e17048 pubmed 出版商
  376. Fabritz L, Hoogendijk M, Scicluna B, van Amersfoorth S, Fortmueller L, Wolf S, et al. Load-reducing therapy prevents development of arrhythmogenic right ventricular cardiomyopathy in plakoglobin-deficient mice. J Am Coll Cardiol. 2011;57:740-50 pubmed 出版商
  377. Inaki M, Kato D, Utsugi T, Onoda F, Hanaoka F, Murakami Y. Genetic analyses using a mouse cell cycle mutant identifies magoh as a novel gene involved in Cdk regulation. Genes Cells. 2011;16:166-78 pubmed 出版商
  378. Derbigny W, Johnson R, Toomey K, Ofner S, Jayarapu K. The Chlamydia muridarum-induced IFN-? response is TLR3-dependent in murine oviduct epithelial cells. J Immunol. 2010;185:6689-97 pubmed 出版商
  379. Nassirpour R, Bahima L, Lalive A, Lüscher C, Lujan R, Slesinger P. Morphine- and CaMKII-dependent enhancement of GIRK channel signaling in hippocampal neurons. J Neurosci. 2010;30:13419-30 pubmed 出版商
  380. Liikanen I, Dias J, Nokisalmi P, Sloniecka M, Kangasniemi L, Rajecki M, et al. Adenoviral E4orf3 and E4orf6 proteins, but not E1B55K, increase killing of cancer cells by radiotherapy in vivo. Int J Radiat Oncol Biol Phys. 2010;78:1201-9 pubmed 出版商
  381. Andersen N, Chopra A, Monahan T, Malek J, Jain M, Pradhan L, et al. Endothelial cells are susceptible to rapid siRNA transfection and gene silencing ex vivo. J Vasc Surg. 2010;52:1608-15 pubmed 出版商
  382. Fett M, Pilsl A, Paquet D, van Bebber F, Haass C, Tatzelt J, et al. Parkin is protective against proteotoxic stress in a transgenic zebrafish model. PLoS ONE. 2010;5:e11783 pubmed 出版商
  383. Stankowski J, Zeiger S, Cohen E, DeFranco D, Cai J, McLaughlin B. C-terminus of heat shock cognate 70 interacting protein increases following stroke and impairs survival against acute oxidative stress. Antioxid Redox Signal. 2011;14:1787-801 pubmed 出版商
  384. Weber K, Hildner K, Murphy K, Allen P. Trpm4 differentially regulates Th1 and Th2 function by altering calcium signaling and NFAT localization. J Immunol. 2010;185:2836-46 pubmed 出版商
  385. Dasgupta J, Kar S, Liu R, Joseph J, Kalyanaraman B, Remington S, et al. Reactive oxygen species control senescence-associated matrix metalloproteinase-1 through c-Jun-N-terminal kinase. J Cell Physiol. 2010;225:52-62 pubmed 出版商
  386. Magdeldin S, Li H, Yoshida Y, Enany S, Zhang Y, Xu B, et al. Comparison of two dimensional electrophoresis mouse colon proteomes before and after knocking out Aquaporin 8. J Proteomics. 2010;73:2031-40 pubmed 出版商
  387. Smith N, Baker D, James N, Ratcliffe K, Jenkins M, Ashton S, et al. Vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3 are localized primarily to the vasculature in human primary solid cancers. Clin Cancer Res. 2010;16:3548-61 pubmed 出版商
  388. Miller E, Berman S, Yuan T, Lees J. Disruption of calvarial ossification in E2f4 mutant embryos correlates with increased proliferation and progenitor cell populations. Cell Cycle. 2010;9:2620-8 pubmed 出版商
  389. Dalmasso G, Nguyen H, Charrier Hisamuddin L, Yan Y, Laroui H, Demoulin B, et al. PepT1 mediates transport of the proinflammatory bacterial tripeptide L-Ala-{gamma}-D-Glu-meso-DAP in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2010;299:G687-96 pubmed 出版商
  390. Smrt R, Szulwach K, Pfeiffer R, Li X, Guo W, Pathania M, et al. MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells. 2010;28:1060-70 pubmed 出版商
  391. Bergstrom R, Savary K, Morén A, Guibert S, Heldin C, Ohlsson R, et al. Transforming growth factor beta promotes complexes between Smad proteins and the CCCTC-binding factor on the H19 imprinting control region chromatin. J Biol Chem. 2010;285:19727-37 pubmed 出版商
  392. Peluso J, Liu X, Gawkowska A, Lodde V, Wu C. Progesterone inhibits apoptosis in part by PGRMC1-regulated gene expression. Mol Cell Endocrinol. 2010;320:153-61 pubmed 出版商
  393. Spatara M, Robinson A. Transgenic mouse and cell culture models demonstrate a lack of mechanistic connection between endoplasmic reticulum stress and tau dysfunction. J Neurosci Res. 2010;88:1951-61 pubmed 出版商
  394. Feingold K, Shigenaga J, Patzek S, Chui L, Moser A, Grunfeld C. Endotoxin, zymosan, and cytokines decrease the expression of the transcription factor, carbohydrate response element binding protein, and its target genes. Innate Immun. 2011;17:174-82 pubmed 出版商
  395. Qiang L, Yu W, Liu M, Solowska J, Baas P. Basic fibroblast growth factor elicits formation of interstitial axonal branches via enhanced severing of microtubules. Mol Biol Cell. 2010;21:334-44 pubmed 出版商
  396. Nguyen H, Dalmasso G, Yan Y, Laroui H, Dahan S, Mayer L, et al. MicroRNA-7 modulates CD98 expression during intestinal epithelial cell differentiation. J Biol Chem. 2010;285:1479-89 pubmed 出版商
  397. Hoffmann M, Bellance N, Rossignol R, Koopman W, Willems P, Mayatepek E, et al. C. elegans ATAD-3 is essential for mitochondrial activity and development. PLoS ONE. 2009;4:e7644 pubmed 出版商
  398. Hoover A, Strand G, Nowicki P, Anderson M, Vermeer P, Klingelhutz A, et al. Impaired PTPN13 phosphatase activity in spontaneous or HPV-induced squamous cell carcinomas potentiates oncogene signaling through the MAP kinase pathway. Oncogene. 2009;28:3960-70 pubmed 出版商
  399. Yu Z, Li M, Zhang D, Xu W, Kone B. Sp1 trans-activates the murine H(+)-K(+)-ATPase alpha(2)-subunit gene. Am J Physiol Renal Physiol. 2009;297:F63-70 pubmed 出版商
  400. Dasgupta J, Kar S, Van Remmen H, Melendez J. Age-dependent increases in interstitial collagenase and MAP Kinase levels are exacerbated by superoxide dismutase deficiencies. Exp Gerontol. 2009;44:503-10 pubmed 出版商
  401. Judson M, BERGMAN M, Campbell D, Eagleson K, Levitt P. Dynamic gene and protein expression patterns of the autism-associated met receptor tyrosine kinase in the developing mouse forebrain. J Comp Neurol. 2009;513:511-31 pubmed 出版商
  402. Semsroth S, Stigler R, Bernecker O, Ruttmann Ulmer E, Troppmair J, Macfelda K, et al. Everolimus attenuates neointimal hyperplasia in cultured human saphenous vein grafts. Eur J Cardiothorac Surg. 2009;35:515-20 pubmed 出版商
  403. Hohjoh H, Akari H, Fujiwara Y, Tamura Y, Hirai H, Wada K. Molecular cloning and characterization of the common marmoset huntingtin gene. Gene. 2009;432:60-6 pubmed 出版商
  404. Sugawara S, Kawano T, Omoto T, Hosono M, Tatsuta T, Nitta K. Binding of Silurus asotus lectin to Gb3 on Raji cells causes disappearance of membrane-bound form of HSP70. Biochim Biophys Acta. 2009;1790:101-9 pubmed 出版商
  405. Argyropoulos G, Stütz A, Ilnytska O, Rice T, Teran Garcia M, Rao D, et al. KIF5B gene sequence variation and response of cardiac stroke volume to regular exercise. Physiol Genomics. 2009;36:79-88 pubmed 出版商
  406. Inoue H, Ha V, Prekeris R, Randazzo P. Arf GTPase-activating protein ASAP1 interacts with Rab11 effector FIP3 and regulates pericentrosomal localization of transferrin receptor-positive recycling endosome. Mol Biol Cell. 2008;19:4224-37 pubmed 出版商
  407. Prunier F, Kawase Y, Gianni D, Scapin C, Danik S, Ellinor P, et al. Prevention of ventricular arrhythmias with sarcoplasmic reticulum Ca2+ ATPase pump overexpression in a porcine model of ischemia reperfusion. Circulation. 2008;118:614-24 pubmed 出版商
  408. Kano S, Miyajima N, Fukuda S, Hatakeyama S. Tripartite motif protein 32 facilitates cell growth and migration via degradation of Abl-interactor 2. Cancer Res. 2008;68:5572-80 pubmed 出版商
  409. Zhang Q, Wu J, Nguyen A, Wang B, He P, Laurent G, et al. Molecular mechanism underlying differential apoptosis between human melanoma cell lines UACC903 and UACC903(+6) revealed by mitochondria-focused cDNA microarrays. Apoptosis. 2008;13:993-1004 pubmed 出版商
  410. Cuende J, Moreno S, Bolanos J, Almeida A. Retinoic acid downregulates Rae1 leading to APC(Cdh1) activation and neuroblastoma SH-SY5Y differentiation. Oncogene. 2008;27:3339-44 pubmed 出版商
  411. Kuznetsov A, Smigelskaite J, Doblander C, Janakiraman M, Hermann M, Wurm M, et al. Survival signaling by C-RAF: mitochondrial reactive oxygen species and Ca2+ are critical targets. Mol Cell Biol. 2008;28:2304-13 pubmed 出版商
  412. Beck S, Carethers J. BMP suppresses PTEN expression via RAS/ERK signaling. Cancer Biol Ther. 2007;6:1313-7 pubmed
  413. Battaglino R, Pham L, Morse L, Vokes M, Sharma A, Odgren P, et al. NHA-oc/NHA2: a mitochondrial cation-proton antiporter selectively expressed in osteoclasts. Bone. 2008;42:180-92 pubmed
  414. Nguyen T, Galvan V, Huang W, Banwait S, Tang H, Zhang J, et al. Signal transduction in Alzheimer disease: p21-activated kinase signaling requires C-terminal cleavage of APP at Asp664. J Neurochem. 2008;104:1065-80 pubmed
  415. Saelim N, Holstein D, Chocron E, Camacho P, Lechleiter J. Inhibition of apoptotic potency by ligand stimulated thyroid hormone receptors located in mitochondria. Apoptosis. 2007;12:1781-94 pubmed
  416. Lu Z, Lam K, Wang N, Xu X, Cortes M, Andersen B. LMO4 can interact with Smad proteins and modulate transforming growth factor-beta signaling in epithelial cells. Oncogene. 2006;25:2920-30 pubmed