这是一篇来自已证抗体库的有关人类 GFAP的综述,是根据826篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合GFAP 抗体。
GFAP 同义词: ALXDRD; glial fibrillary acidic protein

艾博抗(上海)贸易有限公司
鸡 多克隆
  • IHC-Free; 小鼠; 1:200; 图2
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:200 (图2). Cell Rep (2016) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 1:50; 图1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 7260)被用于免疫细胞化学在大鼠样品上浓度为1:50 (图1). Oncol Lett (2016) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1:600; 表1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, Ab53554)被用于免疫组化在小鼠样品上浓度为1:600 (表1). Int J Mol Sci (2016) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:500; 图4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500 (图4). Acta Neuropathol Commun (2016) ncbi
兔 多克隆
  • FC; 小鼠; 1:100; 图2
  • 免疫印迹; 小鼠; 1:100; 图2
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab16997)被用于流式细胞仪在小鼠样品上浓度为1:100 (图2) 和 免疫印迹在小鼠样品上浓度为1:100 (图2). Dis Model Mech (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化; 小鼠; 1:50; 图3
  • 免疫组化; 大鼠; 1:50; 图4
艾博抗(上海)贸易有限公司 GFAP抗体(AbCam, Ab4648)被用于免疫组化在小鼠样品上浓度为1:50 (图3) 和 在大鼠样品上浓度为1:50 (图4). Neuroscience (2016) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-P; 大鼠; 图1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于免疫组化-石蜡切片在大鼠样品上 (图1). Mol Brain (2016) ncbi
鸡 多克隆
  • 免疫组化-P; 大鼠; 1:100; 图6
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 (图6). PLoS ONE (2016) ncbi
山羊 多克隆
  • 免疫印迹; 大鼠; 1:500; 图4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于免疫印迹在大鼠样品上浓度为1:500 (图4). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:5000; 图4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:5000 (图4). Sci Rep (2016) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 图6
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化在小鼠样品上浓度为1:1000 (图6). Front Cell Neurosci (2016) ncbi
鸡 多克隆
  • 免疫组化-F; 小鼠; 1:2000; 图1g
  • 细胞化学; 小鼠; 1:2000; 图1l
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:2000 (图1g) 和 免疫细胞化学在小鼠样品上浓度为1:2000 (图1l). Nat Commun (2016) ncbi
鸡 多克隆
  • FC; 大鼠; 图6
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于流式细胞仪在大鼠样品上 (图6). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:1000; 图1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (图1). Aging (Albany NY) (2016) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:5000; 图3
  • 免疫印迹; 大鼠; 1:20,000; 图3
艾博抗(上海)贸易有限公司 GFAP抗体(abcam, ab7260)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:5000 (图3) 和 免疫印迹在大鼠样品上浓度为1:20,000 (图3). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫印迹在小鼠样品上 (图1). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:2000; 图1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab16997)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:2000 (图1). Mol Med Rep (2016) ncbi
山羊 多克隆
  • IHC-Free; 小鼠; 1:1000; 图4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000 (图4). Proc Natl Acad Sci U S A (2016) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 表1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化在小鼠样品上浓度为1:1000 (表1). Cell Mol Gastroenterol Hepatol (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化; 小鼠; 1:500; 图2
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4648)被用于免疫组化在小鼠样品上浓度为1:500 (图2). Mol Ther (2016) ncbi
鸡 多克隆
  • 免疫印迹; 大鼠; 1:10,000; 图1b
  • 细胞化学; 大鼠; 1:1000; 图6c
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫印迹在大鼠样品上浓度为1:10,000 (图1b) 和 免疫细胞化学在大鼠样品上浓度为1:1000 (图6c). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图4). Gene Ther (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图s10
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化在小鼠样品上浓度为1:500 (图s10). Brain (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1500; 图2
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫印迹在人类样品上浓度为1:1500 (图2). Stem Cell Res (2015) ncbi
鸡 多克隆
  • IHC-Free; 小鼠; 1:2000; 图3
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:2000 (图3). Front Mol Neurosci (2015) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-F; 大鼠; 1:100; 图3
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:100 (图3). Mol Brain (2015) ncbi
鸡 多克隆
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化在小鼠样品上. Sci Signal (2015) ncbi
小鼠 单克隆(GF5)
  • 免疫印迹; 小鼠; 1:1000; 图1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于免疫印迹在小鼠样品上浓度为1:1000 (图1). Nat Neurosci (2015) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(abcam, ab7260)被用于免疫细胞化学在小鼠样品上浓度为1:500. Iran J Basic Med Sci (2015) ncbi
鸡 多克隆
  • 免疫组化-P; 大鼠; 1:400
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:400. J Histochem Cytochem (2015) ncbi
鸡 多克隆
  • 免疫组化-F; 小鼠; 1:300
  • 细胞化学; 小鼠; 1:300
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:300 和 免疫细胞化学在小鼠样品上浓度为1:300. Mol Cell Neurosci (2015) ncbi
鸡 多克隆
  • 细胞化学; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(AbCam, ab4674)被用于免疫细胞化学在大鼠样品上浓度为1:1000. Exp Eye Res (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:5000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化在小鼠样品上浓度为1:5000. Shock (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图2
艾博抗(上海)贸易有限公司 GFAP抗体(abcam, ab7260)被用于免疫组化在小鼠样品上 (图2). Oncotarget (2015) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. Cereb Cortex (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化在小鼠样品上浓度为1:500. J Assoc Res Otolaryngol (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化在大鼠样品上浓度为1:1000. Biol Psychiatry (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化在小鼠样品上. Curr Protoc Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, AB7260)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. J Neurosci (2015) ncbi
小鼠 单克隆(GF5)
  • IHC-Free; 大鼠; 1:500
  • 免疫印迹; 大鼠; 1:500
  • 免疫组化; 大鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:500, 免疫印迹在大鼠样品上浓度为1:500, 和 免疫组化在大鼠样品上浓度为1:500. Biochim Biophys Acta (2015) ncbi
鸡 多克隆
  • 细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫细胞化学在人类样品上浓度为1:100. Mol Med Rep (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化在人类样品上浓度为1:500. Tumour Biol (2015) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 7260)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500. Ann Neurol (2015) ncbi
小鼠 单克隆(GF5)
  • 免疫组化; 小鼠; 1:250; 图5
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于免疫组化在小鼠样品上浓度为1:250 (图5). Age (Dordr) (2015) ncbi
小鼠 单克隆(GF5)
  • 细胞化学; 人类; 1:100; 图1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于免疫细胞化学在人类样品上浓度为1:100 (图1). J Neurosci (2015) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于免疫组化在小鼠样品上浓度为1:500. Nature (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图5
艾博抗(上海)贸易有限公司 GFAP抗体(abcam, ab7260)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图5). Nat Cell Biol (2015) ncbi
鸡 多克隆
  • 免疫组化; 大鼠; 图4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化在大鼠样品上 (图4). Mol Ther (2015) ncbi
鸡 多克隆
  • IHC-Free; 小鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab50738)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500. Neurobiol Dis (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000
  • 免疫印迹; 大鼠; 1:5000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 7260)被用于免疫印迹在人类样品上浓度为1:5000 和 在大鼠样品上浓度为1:5000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化在小鼠样品上 和 免疫印迹在小鼠样品上. Stem Cells (2015) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:500
  • 免疫组化; 大鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化在小鼠样品上浓度为1:500 和 在大鼠样品上浓度为1:500. J Neurotrauma (2015) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化在小鼠样品上浓度为1:500. Neurobiol Dis (2015) ncbi
鸡 多克隆
  • IHC-Free; 小鼠; 1:200
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:200. Cereb Cortex (2015) ncbi
鸡 多克隆
  • 免疫组化-F; 人类; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化-冰冻切片在人类样品上浓度为1:500. J Comp Neurol (2015) ncbi
兔 多克隆
  • 细胞化学; 小鼠
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫细胞化学在小鼠样品上. Glia (2015) ncbi
鸡 多克隆
  • 细胞化学; 人类; 1:3000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫细胞化学在人类样品上浓度为1:3000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1 ul/ml; 图2
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化在小鼠样品上浓度为1 ul/ml (图2). Methods Mol Biol (2014) ncbi
山羊 多克隆
  • 免疫印迹; 大鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于免疫印迹在大鼠样品上浓度为1:500. PLoS ONE (2014) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化在小鼠样品上浓度为1:1000. Neurobiol Dis (2014) ncbi
兔 多克隆
  • 细胞化学; 小鼠
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫细胞化学在小鼠样品上. PLoS Genet (2014) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-F; 小鼠
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 10062)被用于免疫组化-冰冻切片在小鼠样品上. Mol Cell Neurosci (2014) ncbi
兔 多克隆
  • 细胞化学; 牛; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫细胞化学在牛样品上浓度为1:500. AAPS J (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
  • 免疫组化; 人类; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫印迹在人类样品上浓度为1:1000 和 免疫组化在人类样品上浓度为1:1000. J Neuroimmunol (2014) ncbi
山羊 多克隆
  • 免疫组化; 大鼠; 1:2000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于免疫组化在大鼠样品上浓度为1:2000. Front Synaptic Neurosci (2014) ncbi
鸡 多克隆
  • 免疫组化-F; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Neurotrauma (2014) ncbi
鸡 多克隆
  • IHC-Free; 大鼠; 6.6 ug/ml
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于immunohistochemistry - free floating section在大鼠样品上浓度为6.6 ug/ml. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化在小鼠样品上浓度为1:1000. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化在小鼠样品上浓度为1:500. Cell Mol Neurobiol (2014) ncbi
鸡 多克隆
  • 免疫组化-P; 人类; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化-石蜡切片在人类样品上浓度为1:500. Acta Neuropathol (2014) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab16997)被用于免疫组化-冰冻切片在大鼠样品上. PLoS ONE (2013) ncbi
山羊 多克隆
  • 免疫组化-F; 人类; 1:200
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于免疫组化-冰冻切片在人类样品上浓度为1:200. Stem Cells Dev (2014) ncbi
兔 多克隆艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, Ab7260)被用于. Hum Mol Genet (2014) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-P; 小鼠; 1:250
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:250. J Innate Immun (2014) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-F; 大鼠; 1:500
  • 免疫印迹; 大鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500 和 免疫印迹在大鼠样品上浓度为1:500. Exp Neurol (2013) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化在小鼠样品上浓度为1:1000. Hum Mol Genet (2013) ncbi
小鼠 单克隆(2A5)
  • 免疫组化; 大鼠; 1:200
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4648)被用于免疫组化在大鼠样品上浓度为1:200. BMC Neurosci (2013) ncbi
鸡 多克隆
  • 免疫组化-P; 人类; 1:200
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Neuroscience (2013) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-P; 小鼠; 1:250
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:250. Mol Neurodegener (2012) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-P; 小鼠; 1:250
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:250. J Neuroimmunol (2013) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化-石蜡切片在小鼠样品上 (图4). PLoS ONE (2011) ncbi
未注明
  • 细胞化学; 人类
为了研究TGFβ在调节神经细胞发育过程中的功能,使用了Abcam公司的小鼠抗GFAP抗体来进行免疫荧光实验。Cereb Cortex (2010) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:600
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:600. J Comp Neurol (2009) ncbi
赛默飞世尔
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠; 1:400; 图2
赛默飞世尔 GFAP抗体(生活技术, 13-0300)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:400 (图2). J Neuroinflammation (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-P; 小鼠; 1:1000; 图3
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图3). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化; 小鼠; 1:2000; 图2C
赛默飞世尔 GFAP抗体(Thermo, MA5-12023)被用于免疫组化在小鼠样品上浓度为1:2000 (图2C). Sci Rep (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:2000; 表1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化在小鼠样品上浓度为1:2000 (表1). J Comp Neurol (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠; 1:200; 图s2
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图s2). Nature (2016) ncbi
大鼠 单克隆(2.2B10)
  • 细胞化学; 小鼠; 图1
赛默飞世尔 GFAP抗体(生活技术, 13-0300)被用于免疫细胞化学在小鼠样品上 (图1). Proteomics (2016) ncbi
鸡 多克隆
  • IHC-Free; 大鼠; 1:2000; 图4
赛默飞世尔 GFAP抗体(Thermo Scientific, PA1-10004)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:2000 (图4). J Neurochem (2016) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化-P; 小鼠; 图4
赛默飞世尔 GFAP抗体(Thermo Scientific, MS-1376)被用于免疫组化-石蜡切片在小鼠样品上 (图4). PLoS ONE (2016) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化-P; 人类; 1:100; 图4
赛默飞世尔 GFAP抗体(Thermo Fisher, MA5-12023)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图4). Oncol Lett (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠; 1:500; 图2
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图2). J Neuroinflammation (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图6
  • 免疫印迹; 小鼠; 图4
赛默飞世尔 GFAP抗体(Pierce, PA3-16727)被用于免疫组化-石蜡切片在小鼠样品上 (图6) 和 免疫印迹在小鼠样品上 (图4). J Neurochem (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠; 1:1000; 图3
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图3). Neuroscience (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图7
赛默飞世尔 GFAP抗体(Pierce, PA1-10019)被用于免疫组化在小鼠样品上浓度为1:1000 (图7). Neuroscience (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠; 1:6000; 图1
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:6000 (图1). J Neurochem (2016) ncbi
小鼠 单克隆(S.880.0)
  • 细胞化学; 人类; 图7
赛默飞世尔 GFAP抗体(生活技术, MA5-15086)被用于免疫细胞化学在人类样品上 (图7). Sci Rep (2015) ncbi
大鼠 单克隆(2.2B10)
  • 细胞化学; 小鼠
赛默飞世尔 GFAP抗体(生活技术, 13-0300)被用于免疫细胞化学在小鼠样品上. Biochem J (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图7
赛默飞世尔 GFAP抗体(Thermo Scientific, RB-087-A)被用于免疫组化在小鼠样品上 (图7). Neural Dev (2015) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化-F; 小鼠; 1:2000; 图3
  • 免疫印迹; 小鼠; 1:5000; 图7
赛默飞世尔 GFAP抗体(Thermo Scientific, MA5-12023)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:2000 (图3) 和 免疫印迹在小鼠样品上浓度为1:5000 (图7). Anesthesiology (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠; 1:200
赛默飞世尔 GFAP抗体(生活技术, 13-0300)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200. Ann Clin Transl Neurol (2015) ncbi
小鼠 单克隆(131-17719)
  • 细胞化学; 人类; 1:500; 图3
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于免疫细胞化学在人类样品上浓度为1:500 (图3). J Tissue Eng Regen Med (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:2000
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于免疫组化在小鼠样品上浓度为1:2000. J Neurosci (2015) ncbi
小鼠 单克隆(131-17719)
  • IHC-Free; 大鼠; 1:400
赛默飞世尔 GFAP抗体(生活技术, 131-17719)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:400. Free Radic Biol Med (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-P; 小鼠; 1:300
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:300. Glia (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠; 1:1000; 图1a
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图1a). Nat Neurosci (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:1000
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化在小鼠样品上浓度为1:1000. Neuroscience (2015) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; ready-to-use
赛默飞世尔 GFAP抗体(LabVision, RB-087-R7)被用于免疫组化-石蜡切片在大鼠样品上浓度为ready-to-use. Nutr Neurosci (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-P; 小鼠; 1:500
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500. Genes Cancer (2015) ncbi
大鼠 单克隆(2.2B10)
  • 细胞化学; 人类; 1:1000
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫细胞化学在人类样品上浓度为1:1000. J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-P; 人类
赛默飞世尔 GFAP抗体(Lab Vision, RB-087-R7)被用于免疫组化-石蜡切片在人类样品上. Korean J Parasitol (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛默飞世尔 GFAP抗体(thermo, pa3-16727)被用于免疫印迹在大鼠样品上. Biochim Biophys Acta (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:1000; 图2
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于免疫组化在小鼠样品上浓度为1:1000 (图2). Stroke (2015) ncbi
小鼠 单克隆(S.880.0)
  • IHC-Free; 小鼠; 1:1000
赛默飞世尔 GFAP抗体(Millipore, MA5-15086)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. Curr Gene Ther (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化在小鼠样品上浓度为1:200. Acta Neuropathol (2015) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化-P; 小鼠; 图5
赛默飞世尔 GFAP抗体(Thermo, ASTRO6)被用于免疫组化-石蜡切片在小鼠样品上 (图5). PLoS ONE (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠; 图s1c
赛默飞世尔 GFAP抗体(生活技术, 13-0300)被用于免疫组化-冰冻切片在小鼠样品上 (图s1c). EMBO Mol Med (2015) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化-P; 大鼠
赛默飞世尔 GFAP抗体(Lab Vision, MS-1376-P)被用于免疫组化-石蜡切片在大鼠样品上. Int J Stem Cells (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图5
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化在小鼠样品上浓度为1:200 (图5). PLoS ONE (2014) ncbi
小鼠 单克隆(131-17719)
  • IHC-Free; 小鼠; 1:600
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:600. Cereb Cortex (2015) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-F; 小鼠; 5 ug/ml
赛默飞世尔 GFAP抗体(Invitrogen, A21294)被用于免疫组化-冰冻切片在小鼠样品上浓度为5 ug/ml. J Virol (2014) ncbi
小鼠 单克隆(131-17719)
  • 细胞化学; 小鼠; 1:400; 图2
赛默飞世尔 GFAP抗体(生活技术, A21282)被用于免疫细胞化学在小鼠样品上浓度为1:400 (图2). J Neuroinflammation (2014) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 1:5000
赛默飞世尔 GFAP抗体(ThermoScientific, PA3-16727)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:5000. Pain (2014) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-P; 人类; 图8
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于免疫组化-石蜡切片在人类样品上 (图8). J Exp Med (2014) ncbi
小鼠 单克隆(S.880.0)
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔 GFAP抗体(Thermo Sci., MA5-15086)被用于免疫印迹在小鼠样品上浓度为1:2000. J Neurosci Res (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图s1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化在小鼠样品上浓度为1:200 (图s1). Stem Cells Dev (2014) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-F; 大鼠; 1:200
赛默飞世尔 GFAP抗体(生活技术, 131-17719)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200. Mar Drugs (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠
赛默飞世尔 GFAP抗体(Neomarkers, RB-087)被用于免疫组化在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:500
赛默飞世尔 GFAP抗体(Thermo Scientific, PA1-9565)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:500. Acta Histochem (2014) ncbi
小鼠 单克隆(GFA-02)
  • FC; 小鼠
赛默飞世尔 GFAP抗体(Pierce, MA1-35376)被用于流式细胞仪在小鼠样品上. Sci Rep (2014) ncbi
小鼠 单克隆(131-17719)
  • 免疫印迹; 大鼠
赛默飞世尔 GFAP抗体(生活技术, A-21282)被用于免疫印迹在大鼠样品上. Neurobiol Aging (2014) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化; Styela clava; 1:500
赛默飞世尔 GFAP抗体(Invitrogen, A-21282)被用于免疫组化在Styela clava样品上浓度为1:500. Acta Biomater (2014) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-F; 大鼠; 1:200; 图4
赛默飞世尔 GFAP抗体(Life Technologies Corporation, 131-17719)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200 (图4). J Pain (2013) ncbi
鸡 多克隆
  • 免疫组化-F; 小鼠; 1:500
赛默飞世尔 GFAP抗体(Thermo Fisher Scientific , PA1-10004)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. Genes Brain Behav (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠
  • 免疫印迹; 小鼠
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于免疫组化-冰冻切片在小鼠样品上 和 免疫印迹在小鼠样品上. Genes Cells (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 GFAP抗体(生活技术, 13-0300)被用于免疫印迹在小鼠样品上浓度为1:1000. Exp Neurol (2013) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化; 大鼠; 1:500; 图3
赛默飞世尔 GFAP抗体(Invitrogen, A-21282)被用于免疫组化在大鼠样品上浓度为1:500 (图3). Biomaterials (2013) ncbi
小鼠 单克隆(131-17719)
  • 免疫印迹; 人类; 1:2000
赛默飞世尔 GFAP抗体(Invitrogen, A-21282)被用于免疫印迹在人类样品上浓度为1:2000. J Neurochem (2013) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-P; 小鼠
赛默飞世尔 GFAP抗体(Invitrogen, A-21295)被用于免疫组化-石蜡切片在小鼠样品上. Invest Ophthalmol Vis Sci (2013) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠; 1:50; 图1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:50 (图1). Neurobiol Dis (2013) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-P; 小鼠; 图5
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于免疫组化-石蜡切片在小鼠样品上 (图5). J Virol (2013) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化; 大鼠; 1:200
赛默飞世尔 GFAP抗体(分子探针, 131-17719)被用于免疫组化在大鼠样品上浓度为1:200. Mar Drugs (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化在小鼠样品上浓度为1:200 (图1). PLoS ONE (2012) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200
赛默飞世尔 GFAP抗体(Neomarkers, RB-087-A1)被用于免疫组化在小鼠样品上浓度为1:200. PLoS ONE (2012) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-F; 小鼠; 图5
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于免疫组化-冰冻切片在小鼠样品上 (图5). Clin Cancer Res (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:250; 图2
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于免疫组化在小鼠样品上浓度为1:250 (图2). Endocrinology (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠; 1:250; 图s1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:250 (图s1). Neurosci Lett (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-P; 人类; 1:100; 图2
  • 免疫组化-P; 大鼠; 1:100; 图2
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图2) 和 在大鼠样品上浓度为1:100 (图2). Neuropathol Appl Neurobiol (2013) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-P; 小鼠; 1:100; 图2
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图2). J Neuroimmunol (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 大鼠; 图5
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化在大鼠样品上 (图5). Adv Funct Mater (2011) ncbi
小鼠 单克隆(131-17719)
  • FC; 小鼠; 图3
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于流式细胞仪在小鼠样品上 (图3). J Neuroinflammation (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠; 图5
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化-冰冻切片在小鼠样品上 (图5). Am J Pathol (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 人类; 1:200; 图4
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化在人类样品上浓度为1:200 (图4). Biomaterials (2011) ncbi
小鼠 单克隆(131-17719)
  • FC; 小鼠; 图 3
赛默飞世尔 GFAP抗体(Invitrogen, clone 131?C17719)被用于流式细胞仪在小鼠样品上 (图 3). J Immunol (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 人类; 1:400
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于免疫组化在人类样品上浓度为1:400. Am J Pathol (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 大鼠; 1:200; 图7
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化在大鼠样品上浓度为1:200 (图7). Acta Biomater (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠; 图5
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于免疫组化-冰冻切片在小鼠样品上 (图5). J Virol (2011) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-F; 小鼠; 图1
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于免疫组化-冰冻切片在小鼠样品上 (图1). PLoS ONE (2010) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化; African green monkey; 1:500; 图2
赛默飞世尔 GFAP抗体(Invitrogen, A21282)被用于免疫组化在African green monkey样品上浓度为1:500 (图2). Toxicol Appl Pharmacol (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫印迹; 小鼠; 图s1
赛默飞世尔 GFAP抗体(Zymed, 2.2B10)被用于免疫印迹在小鼠样品上 (图s1). Biol Psychiatry (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:100; 图1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化在小鼠样品上浓度为1:100 (图1). Glia (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 大鼠; 1:1000; 图2
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于免疫组化在大鼠样品上浓度为1:1000 (图2). J Comp Neurol (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图s4
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于免疫组化在小鼠样品上浓度为1:200 (图s4). Pigment Cell Melanoma Res (2010) ncbi
小鼠 单克隆(131-17719)
  • FC; 小鼠; 图5
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于流式细胞仪在小鼠样品上 (图5). Virology (2010) ncbi
小鼠 单克隆(131-17719)
  • FC; 小鼠; 图2
赛默飞世尔 GFAP抗体(Invitrogen, A-21294)被用于流式细胞仪在小鼠样品上 (图2). J Neurosci Methods (2010) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-F; 小鼠; 图3
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于免疫组化-冰冻切片在小鼠样品上 (图3). Neurosci Lett (2010) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-F; 小鼠; 1:600
赛默飞世尔 GFAP抗体(Invitrogen, A-21282)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:600. J Comp Neurol (2010) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-F; 小鼠
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于免疫组化-冰冻切片在小鼠样品上. ASN Neuro (2009) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-F; 小鼠
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于免疫组化-冰冻切片在小鼠样品上. J Neuroimmunol (2009) ncbi
小鼠 单克隆(131-17719)
  • 细胞化学; 小鼠; 1:200; 图4
赛默飞世尔 GFAP抗体(分子探针, A21282)被用于免疫细胞化学在小鼠样品上浓度为1:200 (图4). PLoS ONE (2009) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-F; 大鼠; 1:500; 图1
赛默飞世尔 GFAP抗体(Invitrogen, A21282)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500 (图1). Neurobiol Dis (2009) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-F; 小鼠; 5 ug/ml; 图10
赛默飞世尔 GFAP抗体(Invitrogen, A21294)被用于免疫组化-冰冻切片在小鼠样品上浓度为5 ug/ml (图10). J Immunol (2009) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠
  • 细胞化学; 小鼠
赛默飞世尔 GFAP抗体(Zymed/Invitrogen, 2.2B10)被用于免疫组化-冰冻切片在小鼠样品上 和 免疫细胞化学在小鼠样品上. J Neurosci (2008) ncbi
小鼠 单克隆(131-17719)
  • IHC-Free; 小鼠; 1:500
  • 细胞化学; 小鼠; 1:500
赛默飞世尔 GFAP抗体(分子探针, A-21282)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500 和 免疫细胞化学在小鼠样品上浓度为1:500. J Comp Neurol (2009) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-F; 人类; 图2
  • 免疫组化-F; 小鼠; 图1
赛默飞世尔 GFAP抗体(分子探针, 131-17719)被用于免疫组化-冰冻切片在人类样品上 (图2) 和 在小鼠样品上 (图1). Invest Ophthalmol Vis Sci (2008) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 人类; 1:100-1:200
  • 免疫组化; Domestic guinea pig; 1:100-1:200
赛默飞世尔 GFAP抗体(Zytomed, 13-0300)被用于免疫组化在人类样品上浓度为1:100-1:200 和 在Domestic guinea pig样品上浓度为1:100-1:200. J Comp Neurol (2008) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-F; 小鼠; 1:200
赛默飞世尔 GFAP抗体(Invitrogen, A-21294)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200. J Nucl Med (2007) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图8
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于免疫组化在小鼠样品上 (图8). J Virol (2007) ncbi
大鼠 单克隆(2.2B10)
  • IHC-Free; 小鼠; 1:3000; 表2
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:3000 (表2). Glia (2006) ncbi
大鼠 单克隆(2.2B10)
  • 免疫沉淀; 小鼠; 图4
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于免疫沉淀在小鼠样品上 (图4). J Comp Neurol (2005) ncbi
大鼠 单克隆(2.2B10)
  • IHC-Free; 小鼠; 1:3000; 表1
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:3000 (表1). Exp Neurol (2004) ncbi
大鼠 单克隆(2.2B10)
  • 免疫印迹; 小鼠; 1:1000; 图1
  • 免疫组化; 小鼠; 1:10,000; 图1
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于免疫印迹在小鼠样品上浓度为1:1000 (图1) 和 免疫组化在小鼠样品上浓度为1:10,000 (图1). Glia (2003) ncbi
大鼠 单克隆(2.2B10)
  • IHC-Free; 小鼠; 1:10000
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:10000 和 免疫印迹在小鼠样品上浓度为1:1000. Oncogene (2002) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-P; 小鼠; 1:2; 图3
赛默飞世尔 GFAP抗体(Zymed, 2.2B10)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:2 (图3). J Neurosci Res (2002) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:100
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于免疫组化在小鼠样品上浓度为1:100. J Neurosci (1999) ncbi
大鼠 单克隆(2.2B10)
  • 细胞化学; 小鼠; 图3
赛默飞世尔 GFAP抗体(Zymed, 2.2B10)被用于免疫细胞化学在小鼠样品上 (图3). Neuroreport (1998) ncbi
大鼠 单克隆(2.2B10)赛默飞世尔 GFAP抗体(Zymed, clone 2.2B10(1))被用于. J Neuropathol Exp Neurol (1996) ncbi
小鼠 单克隆(131-17719)
  • FC; 小鼠
  • 免疫组化; 小鼠
赛默飞世尔 GFAP抗体(noco, noca)被用于流式细胞仪在小鼠样品上 和 免疫组化在小鼠样品上. J Neurosci (1996) ncbi
圣克鲁斯生物技术
小鼠 单克隆(2E1)
  • 免疫组化; 小鼠; 1:50; 图4a
  • 免疫印迹; 小鼠; 1:500; 图9
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-33673)被用于免疫组化在小鼠样品上浓度为1:50 (图4a) 和 免疫印迹在小鼠样品上浓度为1:500 (图9). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(GA-5)
  • 免疫组化-F; 小鼠; 1:500; 图1
圣克鲁斯生物技术 GFAP抗体(Santa Cruz Biotechnology, sc-58766)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图1). Transl Psychiatry (2016) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-P; 小鼠; 1:200; 图3
  • 免疫印迹; 小鼠; 1:200; 图3
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-33673)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图3) 和 免疫印迹在小鼠样品上浓度为1:200 (图3). Transl Psychiatry (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫印迹; 小鼠; 1:1000; 图2
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-65343)被用于免疫印迹在小鼠样品上浓度为1:1000 (图2). Neuron (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫印迹; 狗; 1:1000; 图6
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-65343)被用于免疫印迹在狗样品上浓度为1:1000 (图6). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(GF5)
  • 免疫组化; 小鼠; 1:200
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-51908)被用于免疫组化在小鼠样品上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫印迹; 大鼠; 图7
圣克鲁斯生物技术 GFAP抗体(santa Cruz, sc-33673)被用于免疫印迹在大鼠样品上 (图7). Int J Mol Med (2015) ncbi
小鼠 单克隆(GA-5)
  • 细胞化学; 小鼠
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, G3893)被用于免疫细胞化学在小鼠样品上. J Clin Invest (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-P; 小鼠; 1:300
  • 免疫印迹; 小鼠; 1:400
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-33673)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:300 和 免疫印迹在小鼠样品上浓度为1:400. Neurobiol Aging (2015) ncbi
小鼠 单克隆(GA-5)
  • 细胞化学; 大鼠; 1:200
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-58766)被用于免疫细胞化学在大鼠样品上浓度为1:200. J Neuroinflammation (2014) ncbi
小鼠 单克隆(F-7)
  • 细胞化学; 大鼠; 1:200
圣克鲁斯生物技术 GFAP抗体(Santa Cruz Biotechnology, sc-166458)被用于免疫细胞化学在大鼠样品上浓度为1:200. Mol Cell Biol (2014) ncbi
小鼠 单克隆(2E1)
  • 免疫印迹; 大鼠; 1:400
  • 细胞化学; 大鼠; 1:300
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-33673)被用于免疫印迹在大鼠样品上浓度为1:400 和 免疫细胞化学在大鼠样品上浓度为1:300. Cell Mol Neurobiol (2014) ncbi
小鼠 单克隆(2E1)
  • 免疫组化; 人类
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc33673)被用于免疫组化在人类样品上. Mol Psychiatry (2013) ncbi
小鼠 单克隆(F-2)
  • 细胞化学; 小鼠
圣克鲁斯生物技术 GFAP抗体(Santa Cruz Biotechnology, sc-166481)被用于免疫细胞化学在小鼠样品上. Mediators Inflamm (2012) ncbi
EnCor Biotechnology
小鼠 单克隆
  • 免疫组化-P; equine; 图3
EnCor Biotechnology GFAP抗体(EnCor-Biotechnology, 5C10)被用于免疫组化-石蜡切片在equine样品上 (图3). Peerj (2016) ncbi
小鼠 单克隆
  • IHC-Free; 大鼠; 1:1000; 图2
EnCor Biotechnology GFAP抗体(EnCor Biotechnology, MCA-5C10)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000 (图2). Sci Rep (2015) ncbi
鸡 多克隆
  • 免疫组化-P; 大鼠; 1:1000
EnCor Biotechnology GFAP抗体(Encor, CPCA-GFAP)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:1000. Exp Neurol (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠; 1:5000
EnCor Biotechnology GFAP抗体(EnCor Biotechnology Inc, MCA5C10)被用于免疫印迹在大鼠样品上浓度为1:5000. J Neurochem (2014) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:12000
EnCor Biotechnology GFAP抗体(Encor, RPCA-GFAP)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:12000. J Mol Neurosci (2013) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:10000
EnCor Biotechnology GFAP抗体(Encore, RPCA-GFAP)被用于免疫组化在小鼠样品上浓度为1:10000. Glia (2012) ncbi
BioLegend
小鼠 单克隆(SMI 26)
  • 免疫组化; 小鼠; 1:1000; 图1
BioLegend GFAP抗体(Sternberger Monoclonals, SMI-26)被用于免疫组化在小鼠样品上浓度为1:1000 (图1). J Proteome Res (2016) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化; 小鼠; 图1
BioLegend GFAP抗体(Covance, SMI-22R-100)被用于免疫组化在小鼠样品上 (图1). Mol Biol Cell (2015) ncbi
小鼠 单克隆(SMI 22)
  • 免疫印迹; 小鼠
BioLegend GFAP抗体(Covance, SMI-22R)被用于免疫印迹在小鼠样品上. J Vis Exp (2014) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化; 大鼠; 1:1000
BioLegend GFAP抗体(Covance, SMI-22R)被用于免疫组化在大鼠样品上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(SMI 21)
  • 细胞化学; 人类; 1:000
BioLegend GFAP抗体(Covance, SMI21)被用于免疫细胞化学在人类样品上浓度为1:000. J Neurosci (2012) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化-P; 人类; 1:3000
BioLegend GFAP抗体(Sternberger Monoclonals, SMI 22)被用于免疫组化-石蜡切片在人类样品上浓度为1:3000. J Comp Neurol (2012) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化; 大鼠; 1:1,000
BioLegend GFAP抗体(Sternberger Monoclonals, SMI 22)被用于免疫组化在大鼠样品上浓度为1:1,000. J Comp Neurol (2006) ncbi
武汉三鹰
兔 多克隆
  • 免疫组化; 小鼠; 图4
武汉三鹰 GFAP抗体(Proteintech, 16825-1-AP)被用于免疫组化在小鼠样品上 (图4). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:200
武汉三鹰 GFAP抗体(Proteintech Group, 16825-1-AP)被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Springerplus (2015) ncbi
小鼠 单克隆(4B2E10)
  • 免疫组化-P; 人类; 图1
武汉三鹰 GFAP抗体(Proteintech, 60190)被用于免疫组化-石蜡切片在人类样品上 (图1). In Vitro Cell Dev Biol Anim (2015) ncbi
小鼠 单克隆(4B2E10)
  • 免疫印迹; 人类
武汉三鹰 GFAP抗体(ProteinTech Group, 60190-1-Ig)被用于免疫印迹在人类样品上. Carcinogenesis (2014) ncbi
Synaptic Systems
豚鼠 多克隆
  • IHC-Free; 人类; 1:500; 图1
Synaptic Systems GFAP抗体(SYnaptic SYstems, 173 004)被用于immunohistochemistry - free floating section在人类样品上浓度为1:500 (图1). Sci Rep (2016) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:500; 图3
Synaptic Systems GFAP抗体(Synaptic Systems, 173 004)被用于免疫组化在小鼠样品上浓度为1:500 (图3). Nature (2016) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 0.57 ug/ml
亚诺法生技股份有限公司 GFAP抗体(Abnova, MAB11287)被用于免疫组化在小鼠样品上浓度为0.57 ug/ml. J Biol Chem (2015) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(GF-05)
  • 免疫组化-F; African green monkey; 1:2000
伯乐(Bio-Rad)公司 GFAP抗体(生物合成, 4650-0309)被用于免疫组化-冰冻切片在African green monkey样品上浓度为1:2000. J Comp Neurol (2009) ncbi
未注明
  • 细胞化学; 人类
为了研究在头部发育期间FE65淀粉状蛋白先质蛋白干扰作用,使用了Serotec公司的CD-45抗体,进行了免疫组织化学实验。EMBO J (2006) ncbi
BioLogo
小鼠 单克隆(MIG-G2)
  • 细胞化学; 人类
  • 免疫印迹; 人类
BioLogo GFAP抗体(Biologo, GF500)被用于免疫细胞化学在人类样品上 和 免疫印迹在人类样品上. Bone (2006) ncbi
丹科医疗器械技术服务(上海)有限公司
兔 多克隆
  • 免疫组化-P; 大鼠; 1:1000; 图s5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:1000 (图s5). Sci Rep (2016) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 图s1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在大鼠样品上 (图s1). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000; 图5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图5). elife (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:1000; 图3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图3). Acta Neuropathol Commun (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:2000; 图4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:2000 (图4). Mol Neurodegener (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000; 图2
  • 免疫印迹; 小鼠; 1:1000; 图3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图2) 和 免疫印迹在小鼠样品上浓度为1:1000 (图3). Mol Brain (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图7
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cooperation, Z0334)被用于免疫组化-石蜡切片在小鼠样品上 (图7). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:250; 图5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:250 (图5). Invest Ophthalmol Vis Sci (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在小鼠样品上 (图3). J Mol Psychiatry (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:750
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:750. Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 图3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于免疫组化在大鼠样品上 (图3). J Neuroinflammation (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:5000; 图5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(dako, Z0334)被用于免疫组化在小鼠样品上浓度为1:5000 (图5). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:100; 图3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在大鼠样品上浓度为1:100 (图3). Development (2016) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:200; 图1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200 (图1). Cell Tissue Res (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上浓度为1:1000 (图1). J Proteome Res (2016) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在大鼠样品上 (图2). J Neuroinflammation (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化在小鼠样品上浓度为1:1000 (图4). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:40,000; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:40,000 (图2). J Comp Pathol (2016) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:200; 图6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在大鼠样品上浓度为1:200 (图6). Cell Death Dis (2016) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-P; 人类; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于免疫组化-石蜡切片在人类样品上 (图2). Breast Cancer Res (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图S2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DaKo, Z0334)被用于免疫组化在小鼠样品上浓度为1:1000 (图S2). PLoS ONE (2016) ncbi
兔 多克隆
  • IHC-Free; 人类; 1:1000; 图4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, z0334)被用于immunohistochemistry - free floating section在人类样品上浓度为1:1000 (图4). Sci Rep (2016) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:500; 图6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500 (图6). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000; 图1g
  • 细胞化学; 小鼠; 1:1000; 图1l
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图1g) 和 免疫细胞化学在小鼠样品上浓度为1:1000 (图1l). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:1000; 图5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (图5). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:3000; 图5
  • 细胞化学; 人类; 图6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在人类样品上浓度为1:3000 (图5) 和 免疫细胞化学在人类样品上 (图6). PLoS ONE (2016) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:500; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在人类样品上浓度为1:500 (图2). Nat Commun (2016) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:200; 图4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:200 (图4). PLoS Pathog (2016) ncbi
兔 多克隆
  • 免疫组化-F; 斑马鱼; 1:100; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在斑马鱼样品上浓度为1:100 (图2). Restor Neurol Neurosci (2016) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:500; 图5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z-0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500 (图5). Am J Pathol (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:5000; 图s1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:5000 (图s1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-P; 羊; 1:1000; 图5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-石蜡切片在羊样品上浓度为1:1000 (图5). J Neuroinflammation (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫印迹在小鼠样品上浓度为1:5000 (图2). PLoS ONE (2016) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于免疫组化在人类样品上浓度为1:200. Brain Tumor Pathol (2016) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 1:500; 图8
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:500 (图8). Exp Neurol (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:2000; 图6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:2000 (图6). Neoplasia (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫印迹在小鼠样品上 (图2). J Cell Biol (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上 (图1). J Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:1000; 图4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图4). Dis Model Mech (2016) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:250; 图3
  • 细胞化学; 人类; 图1
  • 免疫印迹; 人类; 图1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在人类样品上浓度为1:250 (图3), 免疫细胞化学在人类样品上 (图1), 和 免疫印迹在人类样品上 (图1). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图s1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在小鼠样品上 (图s1). Eur J Immunol (2016) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 人类; 1:200; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, 6 F2)被用于免疫组化在人类样品上浓度为1:200 (图2). Acta Neuropathol Commun (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:1000; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在人类样品上浓度为1:1000 (图2). Brain (2016) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 人类; 1:50; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于免疫组化在人类样品上浓度为1:50 (图2). Brain (2016) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:500; 图9
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500 (图9). J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:4000; 图3
  • 免疫印迹; 小鼠; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上浓度为1:4000 (图3) 和 免疫印迹在小鼠样品上浓度为1:2000. Brain (2016) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 图4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上 (图4). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 人类; 1:2000; 图3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, 6F2)被用于免疫组化在人类样品上浓度为1:2000 (图3). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(6F2)
  • 免疫印迹; 小鼠; 图3a
  • 免疫组化; 小鼠; 图3c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于免疫印迹在小鼠样品上 (图3a) 和 免疫组化在小鼠样品上 (图3c). Mol Neurodegener (2015) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫细胞化学在小鼠样品上浓度为1:1000. Nat Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:3000; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:3000 (图2). J Neuroinflammation (2015) ncbi
兔 多克隆
  • 细胞化学; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于. Nature (2015) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:1000; 图s5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:1000 (图s5). Development (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫细胞化学在人类样品上浓度为1:1000. Methods (2016) ncbi
兔 多克隆丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于. Acta Neuropathol Commun (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:200; 图5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图5). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:500; 图3a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图3a). Proc Natl Acad Sci U S A (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1 ug/ml; 图1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化在小鼠样品上浓度为1 ug/ml (图1). Nat Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化在人类样品上. Mol Brain (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:1500; 图1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在人类样品上浓度为1:1500 (图1). Mol Neurodegener (2015) ncbi
兔 多克隆
  • 免疫组化; 牛; 1:100; 图6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化在牛样品上浓度为1:100 (图6). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上浓度为1:200 (图2). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫组化; 鸡; 1:2000; 图8
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于免疫组化在鸡样品上浓度为1:2000 (图8). Exp Neurol (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化在大鼠样品上. PLoS ONE (2015) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-P; 人类; 1:5000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于免疫组化-石蜡切片在人类样品上浓度为1:5000. J Child Neurol (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图1
  • 免疫印迹; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上 (图1) 和 免疫印迹在小鼠样品上. PLoS ONE (2015) ncbi
兔 多克隆
  • 细胞化学; 斑马鱼; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在斑马鱼样品上浓度为1:200. Biol Open (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图4,5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在小鼠样品上 (图4,5). J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 狗; 1:1000; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于免疫组化在狗样品上浓度为1:1000 (图2). PLoS ONE (2015) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:1000; 图3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000 (图3). Glia (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在人类样品上浓度为1:2000. Acta Neuropathol Commun (2015) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:500; 图s14
  • 细胞化学; 小鼠; 1:500; 图s8
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500 (图s14) 和 免疫细胞化学在小鼠样品上浓度为1:500 (图s8). Nat Med (2015) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 表2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z 0334)被用于免疫组化-石蜡切片在人类样品上 (表2). PLoS ONE (2015) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫细胞化学在小鼠样品上浓度为1:1000. J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图s5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图s5). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于免疫组化在人类样品上 (图2). J Neuroinflammation (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:1000; 图3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图3). Nat Commun (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:1000; 图3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, z0334)被用于免疫细胞化学在人类样品上浓度为1:1000 (图3). Nat Protoc (2015) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 1:100000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:100000. J Comp Neurol (2015) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:400. Brain (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:30,000; 图s3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫印迹在小鼠样品上浓度为1:30,000 (图s3). PLoS ONE (2015) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334l)被用于免疫细胞化学在大鼠样品上浓度为1:1000. Mol Med Rep (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:200; 图7
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图7). J Neuroinflammation (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 图1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在人类样品上 (图1). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在小鼠样品上. Glia (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:10,000; 图5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上浓度为1:10,000 (图5). J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:1600
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在大鼠样品上浓度为1:1600. Tissue Eng Part A (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:10000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上浓度为1:10000. J Neuroinflammation (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上浓度为1:500. J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:400; 图6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, Z0334)被用于免疫组化在人类样品上浓度为1:400 (图6). Hum Mol Genet (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:2000
  • 免疫印迹; 小鼠; 1:50000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, Z0334)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:2000 和 免疫印迹在小鼠样品上浓度为1:50000. J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z 0334)被用于免疫组化-石蜡切片在人类样品上浓度为1:500. Exp Eye Res (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z033429-2)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000. Eur J Neurosci (2015) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:2000
  • 免疫组化; 小鼠; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫细胞化学在小鼠样品上浓度为1:2000 和 免疫组化在小鼠样品上浓度为1:2000. Neurobiol Aging (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400. Brain (2015) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-P; 人类; 1:200; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图2). Onco Targets Ther (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:200; 图4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在人类样品上浓度为1:200 (图4). Onco Targets Ther (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:250
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上浓度为1:250. J Neurochem (2015) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:1800
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dakopatts, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1800. Glia (2015) ncbi
兔 多克隆
  • 免疫组化-P; 斑马鱼; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在斑马鱼样品上浓度为1:1000. Mol Cancer (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图s5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上 (图s5). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:1000. Cell Death Dis (2015) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:5000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:5000. Biomaterials (2015) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:750
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:750. Exp Neurol (2015) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:200. J Stroke Cerebrovasc Dis (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图s3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上 (图s3). Cancer Cell (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:100
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dakocytomation, Z0334)被用于免疫组化在大鼠样品上浓度为1:100. J Cell Mol Med (2015) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:100
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:100. Ann Clin Transl Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图s6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图s6). Autophagy (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上浓度为1:400. J Neuroinflammation (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上浓度为1:1000. J Neurosci (2014) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在小鼠样品上浓度为1:1000. Dev Neurobiol (2015) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:500; 图1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图1). Neuropathology (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:2000; 图s4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:2000 (图s4). Nat Med (2014) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:2000. Front Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Comp Neurol (2015) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:15000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:15000. Cereb Cortex (2015) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 1:1000; 图3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在大鼠样品上浓度为1:1000 (图3). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:600
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化在小鼠样品上浓度为1:600. Glia (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-石蜡切片在小鼠样品上. Neuropathol Appl Neurobiol (2015) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:800
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z 0334)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:800. PLoS ONE (2014) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:500. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:500; 图4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于免疫组化在人类样品上浓度为1:500 (图4). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:600; 图4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫印迹在小鼠样品上浓度为1:600 (图4). Mol Vis (2014) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在小鼠样品上浓度为1:500. J Biol Chem (2014) ncbi
兔 多克隆
  • IHC-Free; 人类; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在人类样品上浓度为1:2000. Brain Pathol (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:2000. PLoS ONE (2014) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, 6F2)被用于免疫组化在人类样品上浓度为1:200. Head Neck Pathol (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:250
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在大鼠样品上浓度为1:250. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫印迹在人类样品上浓度为1:1000. Stem Cell Rev (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫印迹在小鼠样品上浓度为1:400. J Neurotrauma (2015) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. Eur J Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化; 斑马鱼; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在斑马鱼样品上浓度为1:2000. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图1). Nat Commun (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:400. Invest Ophthalmol Vis Sci (2014) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于免疫组化在人类样品上浓度为1:200. Brain Pathol (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化在小鼠样品上浓度为1:500. Int J Dev Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:400; 图1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400 (图1). J Neurochem (2014) ncbi
未注明
  • 免疫组化; 人类
为了研究炎症过程中造血系统与多种器官(包括脑部)之间基于RNA的信号传递机制,采用了Dako公司的glial fibrillary acidic protein的抗体,进行免疫组化实验。PLoS Biol (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Immunol (2014) ncbi
兔 多克隆丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于. Nat Neurosci (2014) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫细胞化学在小鼠样品上浓度为1:500. Glia (2014) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Corporation, Z0334)被用于免疫组化在人类样品上浓度为1:500. Ann Neurol (2014) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-P; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, M0761)被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Ann Neurol (2014) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:250
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:250. Front Cell Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. Glia (2014) ncbi
小鼠 单克隆(6F2)
  • 细胞化学; 人类
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于免疫细胞化学在人类样品上. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:10000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:10000. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:20,000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:20,000. J Comp Neurol (2014) ncbi
兔 多克隆
  • IHC-Free; 猕猴; 1:500
  • IHC-Free; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在猕猴样品上浓度为1:500 和 在人类样品上浓度为1:500. J Comp Neurol (2014) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:1 000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在小鼠样品上浓度为1:1 000. Cell Res (2014) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在大鼠样品上浓度为1:500. Hum Gene Ther (2014) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:3000
  • 免疫组化-P; 小鼠; 1:3000
  • 免疫组化-P; 大鼠; 1:3000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在人类样品上浓度为1:3000, 在小鼠样品上浓度为1:3000, 和 在大鼠样品上浓度为1:3000. Acta Neuropathol (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上. J Thromb Haemost (2014) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在大鼠样品上浓度为1:500. J Comp Neurol (2014) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在人类样品上浓度为1:1000 . J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. J Neurosci Methods (2014) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, 6F2)被用于免疫组化在人类样品上. Histol Histopathol (2014) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-石蜡切片在大鼠样品上. Mol Cancer Res (2014) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500. Glia (2014) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:1000; 图 4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (图 4). Acta Neuropathol Commun (2014) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-P; 兔; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, 6F2)被用于免疫组化-石蜡切片在兔样品上浓度为1:200. Biomaterials (2014) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 兔
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, 6F2)被用于免疫组化在兔样品上. Neuropathology (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 图7
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在小鼠样品上 (图7). PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:15,000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在人类样品上浓度为1:15,000. Neurobiol Aging (2014) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-P; 人类
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, 6F2)被用于免疫组化-石蜡切片在人类样品上. Oncol Lett (2014) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. Acta Neuropathol Commun (2013) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化在大鼠样品上浓度为1:1000. J Neurochem (2014) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 1:700
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在大鼠样品上浓度为1:700. Biomaterials (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200. Genesis (2014) ncbi
兔 多克隆
  • IHC-Free; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上. J Neurosci (2013) ncbi
兔 多克隆
  • 免疫组化-F; 狗; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于免疫组化-冰冻切片在狗样品上浓度为1:400. Gene Ther (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于免疫组化在小鼠样品上浓度为1:2000. Stem Cells Dev (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上浓度为1:1000. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在人类样品上浓度为1:400. FASEB J (2014) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:4000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-石蜡切片在人类样品上浓度为1:4000. Dev Neurobiol (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上浓度为1:500. Nat Neurosci (2013) ncbi
兔 多克隆
  • 免疫组化-P; 猪; 1:1500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于免疫组化-石蜡切片在猪样品上浓度为1:1500. Toxicon (2013) ncbi
兔 多克隆
  • 细胞化学; 猪; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫细胞化学在猪样品上浓度为1:1000. Cell Reprogram (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000
  • 免疫组化; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, Z0334)被用于免疫印迹在小鼠样品上浓度为1:2000 和 免疫组化在小鼠样品上浓度为1:1000. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:100
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100. Exp Neurol (2013) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在小鼠样品上浓度为1:500. Methods Mol Biol (2013) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-P; 小鼠; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, M0761)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200. J Neurosci (2013) ncbi
兔 多克隆
  • IHC-Free; lowland gorilla; 1:400
  • 免疫组化; lowland gorilla; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在lowland gorilla样品上浓度为1:400 和 免疫组化在lowland gorilla样品上浓度为1:400. J Comp Neurol (2013) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:1,500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在人类样品上浓度为1:1,500. Ann Neurol (2013) ncbi
兔 多克隆
  • 细胞化学; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于免疫细胞化学在小鼠样品上. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:1000
  • 细胞化学; 人类; 1:1000
  • 免疫印迹; 人类; 1:5000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-石蜡切片在人类样品上浓度为1:1000, 免疫细胞化学在人类样品上浓度为1:1000, 和 免疫印迹在人类样品上浓度为1:5000. Oncotarget (2013) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠
  • 细胞化学; 人类
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上 和 免疫细胞化学在人类样品上. Glia (2013) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:500
  • 细胞化学; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, Z0334)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 和 免疫细胞化学在小鼠样品上. Glia (2013) ncbi
兔 多克隆
  • 免疫组化; smaller spotted catshark; 1:300
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在smaller spotted catshark样品上浓度为1:300. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上. Nature (2013) ncbi
兔 多克隆
  • 细胞化学; 人类
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫细胞化学在人类样品上. Cancer Res (2013) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, M0761)被用于免疫组化在小鼠样品上. Cancer Res (2013) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:1,000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在人类样品上浓度为1:1,000. J Cereb Blood Flow Metab (2013) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, Z0334)被用于免疫细胞化学在人类样品上浓度为1:2000. Cytotherapy (2013) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:2,000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z 0334)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:2,000. J Comp Neurol (2013) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:4000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在人类样品上浓度为1:4000. Mol Brain (2013) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:3000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化在大鼠样品上浓度为1:3000. Br J Pharmacol (2013) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫细胞化学在人类样品上浓度为1:1000. Stem Cell Rev (2013) ncbi
兔 多克隆
  • 细胞化学; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在小鼠样品上. EMBO J (2013) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Schweiz, Z0334)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000. Hum Gene Ther (2013) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:3,000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在人类样品上浓度为1:3,000. Acta Neuropathol (2013) ncbi
兔 多克隆
  • 免疫组化-F; 人类; 0.73 ug/ml
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在人类样品上浓度为0.73 ug/ml. Neuropathol Appl Neurobiol (2014) ncbi
兔 多克隆
  • IHC-Free; 人类; 1:5000
  • 细胞化学; 人类; 1:5000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在人类样品上浓度为1:5000 和 免疫细胞化学在人类样品上浓度为1:5000. Glia (2013) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠
  • 细胞化学; 小鼠; 1:100
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, z0334)被用于免疫组化-冰冻切片在小鼠样品上 和 免疫细胞化学在小鼠样品上浓度为1:100. Neurosci Bull (2013) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:10:000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫细胞化学在人类样品上浓度为1:10:000. Cell Cycle (2013) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在人类样品上浓度为1:500. Am J Pathol (2013) ncbi
兔 多克隆
  • 免疫组化-P; smaller spotted catshark; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z 0334)被用于免疫组化-石蜡切片在smaller spotted catshark样品上浓度为1:500. Brain Struct Funct (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化在小鼠样品上浓度为1:1000. PLoS ONE (2012) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:2,000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于免疫细胞化学在人类样品上浓度为1:2,000. Stem Cells Transl Med (2012) ncbi
兔 多克隆
  • 细胞化学; Burton's mouthbrooder; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫细胞化学在Burton's mouthbrooder样品上浓度为1:500. J Neurosci Methods (2013) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dakopatts, Z-0334)被用于免疫组化在大鼠样品上浓度为1:500. Gene Ther (2013) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-P; 小鼠; 1:5000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:5000. PLoS ONE (2012) ncbi
未注明
  • 免疫组化; 人类
  • 细胞化学; 人类
为了研究某些GBM病人有FGFR-TACC融合突变,采用了Dako的兔抗GFAP抗体以1:200浓度进行免疫组化和免疫细胞化学实验。Science (2012) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z-0334)被用于免疫组化在大鼠样品上浓度为1:2000. J Comp Neurol (2013) ncbi
兔 多克隆
  • 免疫组化-F; 羊; 1:10000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于免疫组化-冰冻切片在羊样品上浓度为1:10000. J Comp Neurol (2013) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000
  • 免疫印迹; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 和 免疫印迹在小鼠样品上. J Neurosci (2012) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:1000; 图5b
  • 免疫印迹; 小鼠; 1:1000; 图5d
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在小鼠样品上浓度为1:1000 (图5b) 和 免疫印迹在小鼠样品上浓度为1:1000 (图5d). PLoS ONE (2012) ncbi
兔 多克隆
  • 细胞化学; 斑马鱼
  • 免疫印迹; 斑马鱼
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在斑马鱼样品上 和 免疫印迹在斑马鱼样品上. Nucleic Acids Res (2012) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化在小鼠样品上浓度为1:1000. J Comp Neurol (2012) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:1500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在大鼠样品上浓度为1:1500. Brain (2012) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. J Comp Neurol (2011) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:40000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:40000. J Comp Neurol (2011) ncbi
兔 多克隆
  • 免疫组化-P; African green monkey
  • 免疫组化-P; 人类
  • 免疫组化-F; African green monkey
  • 免疫组化-F; 人类
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-石蜡切片在African green monkey样品上 和 在人类样品上 和 免疫组化-冰冻切片在African green monkey样品上 和 在人类样品上. J Comp Neurol (2011) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:5000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z-0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:5000. J Comp Neurol (2011) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:1000; 图3
  • 免疫组化; 小鼠; 1:100; 图6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图3) 和 免疫组化在小鼠样品上浓度为1:100 (图6). J Neuroinflammation (2010) ncbi
兔 多克隆
  • 免疫组化-F; 斑马鱼; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在斑马鱼样品上浓度为1:500. J Comp Neurol (2010) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:30000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:30000. J Comp Neurol (2010) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:250
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:250. J Comp Neurol (2010) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:250
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:250. J Comp Neurol (2010) ncbi
兔 多克隆
  • IHC-Free; common canary; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于immunohistochemistry - free floating section在common canary样品上浓度为1:500. J Comp Neurol (2010) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在小鼠样品上浓度为1:500. J Comp Neurol (2010) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:2500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:2500. J Comp Neurol (2010) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:20,000; 表2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z 0334)被用于免疫组化-石蜡切片在人类样品上浓度为1:20,000 (表2). PLoS ONE (2009) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, Z0334)被用于免疫细胞化学在小鼠样品上浓度为1:400. J Comp Neurol (2009) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500. J Comp Neurol (2009) ncbi
兔 多克隆
  • 免疫组化-F; 人类; 1:2000
  • 细胞化学; 人类; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在人类样品上浓度为1:2000 和 免疫细胞化学在人类样品上浓度为1:2000. J Comp Neurol (2009) ncbi
兔 多克隆
  • 免疫组化-F; African green monkey; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在African green monkey样品上浓度为1:2000. J Comp Neurol (2009) ncbi
未注明
  • 免疫组化; 人类
为了研究Shank2在调控成长视网膜神经元分化中的作用,使用了Dako公司的兔抗GFAP抗体,进行了免疫组织化学实验。Exp Mol Med (2009) ncbi
未注明
  • 免疫组化; 人类
为了研究Arc在调控自身平衡的突触可塑性中的作用,采用了DakoCytomation公司的兔多克隆抗GFAP抗体产品,进行了免疫组化实验PLoS ONE (2009) ncbi
未注明
  • 细胞化学; 人类
为研究Bmi-1和Foxg1的协作对前脑的神经干细胞的自我更新所起的作用 ,使用了DAKO公司的抗GFAP抗体来进行免疫细胞化学分析。Genes Dev (2009) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, Z0334)被用于免疫组化在小鼠样品上浓度为1:1000. J Comp Neurol (2009) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:100
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:100. J Comp Neurol (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究S100B蛋白在星形胶质细胞成形和迁移过程中所起的调控作用,使用了Dako公司的抗GFAP抗体来进行蛋白印迹分析。J Biol Chem (2009) ncbi
未注明
  • 免疫组化; 人类
为了表明Bmi1基因对神经元的氧化代谢机制所起的调控作用与p53的表达抑制相关联,使用了DAKO公司的兔源抗GFAP抗体来进行免疫组化分析。J Neurosci (2009) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 1:500; 图3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫细胞化学在大鼠样品上浓度为1:500 (图3). Exp Neurol (2009) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:1,000
  • 细胞化学; 小鼠; 1:1,000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1,000 和 免疫细胞化学在小鼠样品上浓度为1:1,000. J Comp Neurol (2009) ncbi
未注明
  • 免疫组化; 人类
运用Dako公司的抗胶质细胞原纤维酸性蛋白抗体进行免疫组织化学实验以研究白质tau样蛋白病在额颞(骨)小叶退化中的作用。J Neuropathol Exp Neurol (2008) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:500. J Comp Neurol (2008) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:4000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:4000. J Comp Neurol (2008) ncbi
未注明
  • 免疫组化; 人类
为了研究CCR5对于肺纤维细胞的转移所起的作用,使用了Dako公司的鼠源抗GFAP抗体来进行免疫组化分析。PLoS ONE (2008) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:200
  • 免疫组化; Domestic guinea pig; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在人类样品上浓度为1:200 和 在Domestic guinea pig样品上浓度为1:200. J Comp Neurol (2008) ncbi
未注明
  • 免疫组化; 人类
为了研究Muller细胞反应性中神经胶质纤维酸性蛋白和波形蛋白的作用,在免疫组织化学试验中使用了Dako的兔神经胶质纤维酸性蛋白的多克隆抗体。Invest Ophthalmol Vis Sci (2008) ncbi
未注明
  • 免疫组化; 人类
为了展示向兔视网膜静脉插管并在ICG协助下注射组织型纤维蛋白溶酶原激活剂的效果,采用了Dako公司的抗GFAP的抗体进行免疫组化实验。Tohoku J Exp Med (2008) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. J Comp Neurol (2008) ncbi
未注明
  • 细胞化学; 人类
为了研究内皮细胞末端转移酶端粒受抑制所导致的胶质母细胞瘤异种移植物中肿瘤新生血管的破坏,采用了Dako的抗GFAP抗体进行免疫细胞化学试验。Int J Cancer (2008) ncbi
未注明
  • 免疫组化; 人类
为了探讨海马体中的常规序列与人类海马标本的PROPELLER图像质量,采用了Dako的抗GFAP多抗进行免疫组化试验。Epilepsia (2008) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200. J Comp Neurol (2007) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500. J Comp Neurol (2007) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 4.1 ug/ml
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为4.1 ug/ml. J Comp Neurol (2006) ncbi
兔 多克隆
  • 免疫组化-F; 兔; 1:1,000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在兔样品上浓度为1:1,000. J Comp Neurol (2006) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 小鼠; 1:3000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于免疫组化在小鼠样品上浓度为1:3000. J Comp Neurol (2006) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上浓度为1:500. J Comp Neurol (2006) ncbi
默克密理博中国
小鼠 单克隆(GA5)
  • 免疫组化-P; 小鼠; 图4
默克密理博中国 GFAP抗体(EMD Millipore, MAB3402)被用于免疫组化-石蜡切片在小鼠样品上 (图4). elife (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 图2
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在小鼠样品上 (图2). Redox Biol (2016) ncbi
小鼠 单克隆
  • 免疫组化-F; 鸡; 1:400; 图2
默克密理博中国 GFAP抗体(Calbiochem, IF03L)被用于免疫组化-冰冻切片在鸡样品上浓度为1:400 (图2). BMC Biol (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图3
  • 免疫印迹; 小鼠; 1:1000; 图6
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图3) 和 免疫印迹在小鼠样品上浓度为1:1000 (图6). Nat Neurosci (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:50; 图2
默克密理博中国 GFAP抗体(Millipore, MAB3402x)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:50 (图2). Sci Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 小鼠; 1:800; 图6
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:800 (图6). PLoS ONE (2016) ncbi
小鼠 单克隆(GA5)
  • IHC-Free; 大鼠; 1:1200; 图3
默克密理博中国 GFAP抗体(millipore, MAB360)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1200 (图3). J Neurochem (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 小鼠; 1:1000; 图1
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图1). Nat Commun (2016) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 人类; 1:800; 图3
默克密理博中国 GFAP抗体(Merck Millipore, MAB360)被用于免疫细胞化学在人类样品上浓度为1:800 (图3). PLoS ONE (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:2000; 图s6
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫印迹在小鼠样品上浓度为1:2000 (图s6). Sci Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:5000; 图1
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫印迹在小鼠样品上浓度为1:5000 (图1). Glia (2016) ncbi
鸡 多克隆
  • 免疫组化-F; 小鼠; 1:200; 图1
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图1). Glia (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:500; 图4
默克密理博中国 GFAP抗体(EMD Millipore, MAB3402)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图4). J Clin Invest (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000; 图4
默克密理博中国 GFAP抗体(EMD Millipore, AB5804)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图4). J Clin Invest (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:100; 图2b
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在大鼠样品上浓度为1:100 (图2b). Sci Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 小鼠; 1:200
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在小鼠样品上浓度为1:200. Nat Commun (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:1000; 图1g
  • 细胞化学; 小鼠; 1:1000; 图1l
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图1g) 和 免疫细胞化学在小鼠样品上浓度为1:1000 (图1l). Nat Commun (2016) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 大鼠; 1:500; 图5
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在大鼠样品上浓度为1:500 (图5). Sci Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:1000; 图3
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图3). EMBO Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:1000; 图1
默克密理博中国 GFAP抗体(Millipore, MAB3402X)被用于免疫组化在小鼠样品上浓度为1:1000 (图1). Front Mol Neurosci (2016) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 大鼠; 图1
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在大鼠样品上 (图1). Sci Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 人类; 图2
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫印迹在人类样品上 (图2). Stem Cells Int (2016) ncbi
小鼠 单克隆(GA5)
  • IHC-Free; 大鼠; 1:1000; 图6
  • 免疫印迹; 大鼠; 1:400; 图6
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000 (图6) 和 免疫印迹在大鼠样品上浓度为1:400 (图6). Exp Neurol (2016) ncbi
小鼠 单克隆
  • 免疫组化-P; 人类; 1:200; 图3
默克密理博中国 GFAP抗体(Millipore, IF03L)被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图3). Neuropathol Appl Neurobiol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 图1
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化-冰冻切片在小鼠样品上 (图1). J Neurosci (2016) ncbi
鸡 多克隆
  • 免疫组化; 人类; 1:100; 图1
  • 免疫组化; 小鼠; 1:100; 图s4
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于免疫组化在人类样品上浓度为1:100 (图1) 和 在小鼠样品上浓度为1:100 (图s4). Nat Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:1000; 图5
默克密理博中国 GFAP抗体(Chemicon, AB5804)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000 (图5). Ann Anat (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 大鼠; 图5
默克密理博中国 GFAP抗体(Merck KGaA, MAB360)被用于免疫组化-石蜡切片在大鼠样品上 (图5). BMC Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 小鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在小鼠样品上浓度为1:1000. Nat Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; tiger salamander; 1:400; 图7
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于免疫组化在tiger salamander样品上浓度为1:400 (图7). elife (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 人类; 1:400; 图6
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在人类样品上浓度为1:400 (图6). PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 人类; 1:500; 图2
默克密理博中国 GFAP抗体(Chemicon-Millipore, MAB 360)被用于免疫细胞化学在人类样品上浓度为1:500 (图2). PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • IHC-Free; 小鼠; 1:5000; 图7
默克密理博中国 GFAP抗体(millipore, MAB3402)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:5000 (图7). Anesthesiology (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:4000; 图2
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:4000 (图2). Mol Brain (2015) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 1:500; 图5
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫细胞化学在大鼠样品上浓度为1:500 (图5). Tissue Eng Part A (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:500; 图2
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化在小鼠样品上浓度为1:500 (图2). Int J Dev Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 人类; 图1
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在人类样品上 (图1). Stem Cells Dev (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 人类; 1:500
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-石蜡切片在人类样品上浓度为1:500. Glia (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 图3
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-冰冻切片在小鼠样品上 (图3). J Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:100
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在小鼠样品上浓度为1:100. Eur J Neurosci (2015) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:250
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于免疫组化在小鼠样品上浓度为1:250. Front Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 人类; 1:500; 图s13
默克密理博中国 GFAP抗体(Millipore, MAB 360)被用于免疫细胞化学在人类样品上浓度为1:500 (图s13). PLoS Biol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 大鼠; 1:1000
  • 免疫组化; 大鼠; 1:5000
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于免疫印迹在大鼠样品上浓度为1:1000 和 免疫组化在大鼠样品上浓度为1:5000. Neuroscience (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:30000; 图1
默克密理博中国 GFAP抗体(Millipore, MAB5628)被用于免疫印迹在小鼠样品上浓度为1:30000 (图1). Glia (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于免疫组化在大鼠样品上. CNS Neurosci Ther (2015) ncbi
鸡 多克隆默克密理博中国 GFAP抗体(Millipore, AB5541)被用于. Glia (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 人类; 图2
默克密理博中国 GFAP抗体(Millipore, MAB 360)被用于免疫组化-石蜡切片在人类样品上 (图2). PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 小鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在小鼠样品上浓度为1:1000. J Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:200
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200 和 免疫印迹在大鼠样品上浓度为1:1000. Brain Inj (2015) ncbi
兔 多克隆
  • 免疫组化; 人类
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫组化在人类样品上. J Neuroinflammation (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 大鼠; 1:200; 图s1
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于免疫细胞化学在大鼠样品上浓度为1:200 (图s1). PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 大鼠; 1:100
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在大鼠样品上浓度为1:100. J Cell Physiol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 图10
默克密理博中国 GFAP抗体(EMD Millipore, mab3402)被用于免疫组化在小鼠样品上 (图10). Mol Cell Biol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 人类; 1:200; 图1
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化在人类样品上浓度为1:200 (图1). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 图S4
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫组化-石蜡切片在人类样品上 (图S4). PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:200
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化在大鼠样品上浓度为1:200. Biomaterials (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 图4
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在小鼠样品上 (图4). J Neuroinflammation (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:200
默克密理博中国 GFAP抗体(EMD Millipore, MAB3402)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200. J Neuroinflammation (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:400
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在小鼠样品上浓度为1:400. Neuroimage (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:1000; 图5P
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在小鼠样品上浓度为1:1000 (图5P). J Neurochem (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 大鼠; 1:200; 图s4
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在大鼠样品上浓度为1:200 (图s4). Nat Commun (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 人类; 1:500; 图2
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫细胞化学在人类样品上浓度为1:500 (图2). Int J Oncol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在大鼠样品上浓度为1:1000. Neurobiol Dis (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:500
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫细胞化学在人类样品上浓度为1:500. Brain Pathol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 小鼠
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-石蜡切片在小鼠样品上. EMBO Mol Med (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 人类; 1:400
  • 免疫组化-P; 小鼠; 1:400
默克密理博中国 GFAP抗体(Millipore, MAB 360)被用于免疫组化-石蜡切片在人类样品上浓度为1:400 和 在小鼠样品上浓度为1:400. Brain (2015) ncbi
鸡 多克隆
  • 细胞化学; 人类
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于免疫细胞化学在人类样品上. Tissue Eng Part A (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:500; 图7
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图7). Nat Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:100
默克密理博中国 GFAP抗体(Millipore Corporation, Mab360)被用于免疫组化在小鼠样品上浓度为1:100. J Neurochem (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫组化在小鼠样品上浓度为1:1000. Surg Neurol Int (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 大鼠; 1:400
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:400 和 免疫印迹在大鼠样品上浓度为1:1000. Mol Neurobiol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:500; 图5
  • 细胞化学; 小鼠; 1:500; 图4
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图5) 和 免疫细胞化学在小鼠样品上浓度为1:500 (图4). Development (2015) ncbi
小鼠 单克隆
  • 细胞化学; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB3402C3)被用于免疫细胞化学在大鼠样品上浓度为1:1000. Toxicol In Vitro (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB3402X)被用于免疫细胞化学在大鼠样品上浓度为1:1000. Toxicol In Vitro (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:500
  • 免疫组化; 大鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在小鼠样品上浓度为1:500 和 在大鼠样品上浓度为1:500. Neurobiol Dis (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:4000
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:4000. Front Neural Circuits (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:100
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在小鼠样品上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:1000
默克密理博中国 GFAP抗体(EMD Millipore, MAB360)被用于免疫组化在大鼠样品上浓度为1:1000. Free Radic Biol Med (2015) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:2000
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于免疫组化在小鼠样品上浓度为1:2000. Mol Cell Neurosci (2014) ncbi
兔 单克隆(EP672Y)
  • 免疫组化-P; 人类; 1:500
默克密理博中国 GFAP抗体(Millipore, 04-1031)被用于免疫组化-石蜡切片在人类样品上浓度为1:500. Acta Neuropathol Commun (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 小鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500. Cell Tissue Res (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:2000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:2000. Front Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • IHC-Free; 小鼠; 1:100
默克密理博中国 GFAP抗体(Millipore, MAB 360)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:100. Cereb Cortex (2015) ncbi
兔 多克隆
  • IHC-Free; African green monkey; 1:1600; 表1
默克密理博中国 GFAP抗体(Millipore, #AB5804)被用于immunohistochemistry - free floating section在African green monkey样品上浓度为1:1600 (表1). J Comp Neurol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 人类; 1:1000
默克密理博中国 GFAP抗体(EMD Millipore, MAB360)被用于免疫组化-冰冻切片在人类样品上浓度为1:1000. J Comp Neurol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:100
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在大鼠样品上浓度为1:100. Toxicol Sci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 小鼠
默克密理博中国 GFAP抗体(MIllipore, GA5)被用于免疫组化-石蜡切片在小鼠样品上. J Neurosci Res (2015) ncbi
小鼠 单克隆(GA5)
  • IHC-Free; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000. Neuroscience (2014) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 大鼠
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在大鼠样品上. PLoS ONE (2014) ncbi
鸡 多克隆
  • 免疫组化; 人类; 1:1000
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于免疫组化在人类样品上浓度为1:1000. Neuroscience (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:200
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200. J Anat (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:10,000; 图2
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫印迹在小鼠样品上浓度为1:10,000 (图2). Front Cell Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在大鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:200
  • 免疫印迹; 大鼠
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200 和 免疫印迹在大鼠样品上. Brain Behav Immun (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:200; 图6
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在大鼠样品上浓度为1:200 (图6). Stem Cells (2014) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:500
默克密理博中国 GFAP抗体(Chemicon, AB5804)被用于免疫细胞化学在人类样品上浓度为1:500. Biomed Res Int (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 人类; 1:200
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Acta Neuropathol (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:1000; 图2
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化在小鼠样品上浓度为1:1000 (图2). Nat Med (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. J Neurosci Res (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:200; 图 4
默克密理博中国 GFAP抗体(Chemicon/Millipore, MAB360)被用于免疫组化在小鼠样品上浓度为1:200 (图 4). Pharmacol Biochem Behav (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 斑马鱼; 1:100; 图3
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在斑马鱼样品上浓度为1:100 (图3). Neuroscience (2014) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 小鼠; 1:100
默克密理博中国 GFAP抗体(Merck Millipore, MAB360)被用于免疫细胞化学在小鼠样品上浓度为1:100. Int J Dev Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:5000
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫印迹在小鼠样品上浓度为1:5000. Neuroscience (2014) ncbi
鸡 多克隆
  • 细胞化学; 小鼠; 1:1000; 图1
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于免疫细胞化学在小鼠样品上浓度为1:1000 (图1). Nat Commun (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:100
  • 细胞化学; 大鼠; 1:100
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在大鼠样品上浓度为1:100, 免疫印迹在大鼠样品上浓度为1:100, 和 免疫细胞化学在大鼠样品上浓度为1:100. J Neuroinflammation (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:400
默克密理博中国 GFAP抗体(Millipore, Mab360)被用于免疫组化在小鼠样品上浓度为1:400. Int J Dev Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:4000
默克密理博中国 GFAP抗体(Millepore, AB5804)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:4000. Environ Health Perspect (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫印迹在大鼠样品上浓度为1:1000. Mol Pain (2014) ncbi
小鼠 单克隆(GA5)
  • IHC-Free; 小鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. Cell Tissue Res (2014) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; common platanna; 1:400
默克密理博中国 GFAP抗体(Milipore, MAB360)被用于免疫细胞化学在common platanna样品上浓度为1:400. Gen Comp Endocrinol (2014) ncbi
小鼠 单克隆(GA5)
  • IHC-Free; 大鼠; 1:1000
默克密理博中国 GFAP抗体(EMD Millipore, mAb360)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000. J Biol Chem (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:1000. J Histochem Cytochem (2014) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 小鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在小鼠样品上浓度为1:1000. Mol Cell Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:10000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫印迹在小鼠样品上浓度为1:10000. Front Integr Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:1000
  • 免疫印迹; 小鼠; 1:3000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 和 免疫印迹在小鼠样品上浓度为1:3000. J Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在小鼠样品上浓度为1:500. J Neurochem (2014) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 1:2000
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:2000. Curr Protoc Cytom (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化在大鼠样品上浓度为1:500. Neuroscience (2014) ncbi
小鼠 单克隆(GA5)
  • IHC-Free; 猕猴; 1:500
  • IHC-Free; 人类; 1:500
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于immunohistochemistry - free floating section在猕猴样品上浓度为1:500 和 在人类样品上浓度为1:500. J Comp Neurol (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫印迹在大鼠样品上浓度为1:1000. Glia (2014) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. Glia (2014) ncbi
鸡 多克隆
  • 免疫印迹; 小鼠
  • 免疫组化; 小鼠
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于免疫印迹在小鼠样品上 和 免疫组化在小鼠样品上. J Neuroinflammation (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 小鼠
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-石蜡切片在小鼠样品上. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在小鼠样品上浓度为1:500. J Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 大鼠; 1:1000
  • 免疫组化; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Chemicon International, MAB360)被用于免疫细胞化学在大鼠样品上浓度为1:1000 和 免疫组化在大鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠
默克密理博中国 GFAP抗体(Chemicon International, MAB360)被用于免疫组化-冰冻切片在小鼠样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:10000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在小鼠样品上浓度为1:10000. Cell Mol Neurobiol (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫组化在小鼠样品上. J Vis Exp (2014) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:500
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫组化在人类样品上浓度为1:500. Cancer Res (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; African green monkey; 1:100000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在African green monkey样品上浓度为1:100000. Mol Ther (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:200
  • 细胞化学; 小鼠; 1:200
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化在小鼠样品上浓度为1:200 和 免疫细胞化学在小鼠样品上浓度为1:200. Stem Cells Dev (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:200
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在大鼠样品上浓度为1:200. Exp Eye Res (2014) ncbi
兔 多克隆
  • 细胞化学; 人类
  • 免疫组化; 人类; 1:400
默克密理博中国 GFAP抗体(Chemicon, AB5804)被用于免疫细胞化学在人类样品上 和 免疫组化在人类样品上浓度为1:400. J Cell Mol Med (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:400
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:400. J Virol (2014) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 人类
  • 细胞化学; 大鼠
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在人类样品上 和 在大鼠样品上. J Mol Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:200; 图2, 3
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于免疫组化在小鼠样品上浓度为1:200 (图2, 3). Development (2014) ncbi
兔 多克隆
  • 免疫组化; 大鼠
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫组化在大鼠样品上. J Cereb Blood Flow Metab (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:100; 图2
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图2). Development (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:1500
默克密理博中国 GFAP抗体(Chemicon International, GA5)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1500. Acta Neuropathol Commun (2013) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 小鼠
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫细胞化学在小鼠样品上. Anal Chem (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在小鼠样品上浓度为1:500. PLoS ONE (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 大鼠; 1:200
默克密理博中国 GFAP抗体(Millipore, GA5)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:200. Toxicol Lett (2014) ncbi
小鼠 单克隆(GA5)
  • IHC-Free; 小鼠
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于immunohistochemistry - free floating section在小鼠样品上. J Neurosci (2013) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:100
默克密理博中国 GFAP抗体(Chemicon, AB5804)被用于免疫细胞化学在人类样品上浓度为1:100. Cytotechnology (2013) ncbi
鸡 多克隆
  • 免疫组化-P; 大鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:500. J Neuroinflammation (2013) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 人类
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在人类样品上. elife (2013) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 狗
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在狗样品上. Methods Mol Biol (2013) ncbi
小鼠 单克隆(GA5)
  • IHC-Free; 小鼠; 1:4000
  • IHC-Free; 大鼠; 1:4000
  • 免疫印迹; 小鼠
  • 免疫印迹; 大鼠
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:4000 和 在大鼠样品上浓度为1:4000 和 免疫印迹在小鼠样品上 和 在大鼠样品上. Mol Neurobiol (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:100
  • 免疫组化-F; 大鼠
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 和 在大鼠样品上. Anesthesiology (2014) ncbi
兔 多克隆
  • 免疫组化-F; African green monkey; 1:2000
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫组化-冰冻切片在African green monkey样品上浓度为1:2000. Neuroscience (2013) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:400
默克密理博中国 GFAP抗体(Chemicon, AB5804)被用于免疫组化在大鼠样品上浓度为1:400. Cereb Cortex (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:2500; 图6
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫印迹在小鼠样品上浓度为1:2500 (图6). ASN Neuro (2013) ncbi
鸡 多克隆
  • 免疫组化-P; 小鼠; 1:600
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:600. J Comp Neurol (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 大鼠; 1:1000
  • 细胞化学; 大鼠; 1:500
  • 免疫组化; 大鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫印迹在大鼠样品上浓度为1:1000, 免疫细胞化学在大鼠样品上浓度为1:500, 和 免疫组化在大鼠样品上浓度为1:500. Biomaterials (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 人类; 1:1000
  • 免疫组化; 人类; 1:200
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫印迹在人类样品上浓度为1:1000 和 免疫组化在人类样品上浓度为1:200. Neuro Oncol (2013) ncbi
兔 多克隆
  • 免疫组化-F; 人类; 1:75
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫组化-冰冻切片在人类样品上浓度为1:75. Cell Tissue Res (2013) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:1000
默克密理博中国 GFAP抗体(Millipore, ab5804)被用于免疫组化-石蜡切片在人类样品上浓度为1:1000. Neuroscience (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 人类; 1 ug/ml
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于免疫组化-冰冻切片在人类样品上浓度为1 ug/ml. Neuropathol Appl Neurobiol (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; African green monkey; 1:100000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-冰冻切片在African green monkey样品上浓度为1:100000. Hum Gene Ther (2013) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500. J Neurotrauma (2013) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 大鼠; 1:800
  • 免疫印迹; 大鼠; 1:60000
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:800 和 免疫印迹在大鼠样品上浓度为1:60000. J Neurotrauma (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:200
默克密理博中国 GFAP抗体(Millipore Corporation, GA5)被用于免疫组化在小鼠样品上浓度为1:200. Reprod Toxicol (2013) ncbi
小鼠 单克隆(GA5)
  • IHC-Free; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000. J Neuroinflammation (2013) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 小鼠
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在小鼠样品上. Neurobiol Dis (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:300
默克密理博中国 GFAP抗体(Millipore, GA5)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:300. J Neurosci (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 大鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:500. PLoS ONE (2012) ncbi
兔 多克隆
  • 免疫组化-F; 狗; 1:200
  • 细胞化学; 狗; 1:200
默克密理博中国 GFAP抗体(Chemicon, AB5804)被用于免疫组化-冰冻切片在狗样品上浓度为1:200 和 免疫细胞化学在狗样品上浓度为1:200. Histochem Cell Biol (2013) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 猕猴; 1:500
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于免疫细胞化学在猕猴样品上浓度为1:500. Stem Cells Dev (2013) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 人类; 1:800
  • 免疫组化; 人类; 1:800
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在人类样品上浓度为1:800 和 免疫组化在人类样品上浓度为1:800. Gene Ther (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 大鼠; 1:800
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:800. Cell Mol Neurobiol (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:5000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:5000. J Neuroinflammation (2012) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图6
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫组化-石蜡切片在小鼠样品上 (图6). PLoS ONE (2011) ncbi
鸡 多克隆
  • IHC-Free; 小鼠; 1:2000
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:2000. J Comp Neurol (2012) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化在大鼠样品上浓度为1:1000. Brain (2012) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:500
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500. Exp Neurol (2011) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:2000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:2000. J Comp Neurol (2011) ncbi
鸡 多克隆
  • 细胞化学; African green monkey
  • 细胞化学; 人类
默克密理博中国 GFAP抗体(Chemicon, AB5541)被用于免疫细胞化学在African green monkey样品上 和 在人类样品上. J Comp Neurol (2011) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:2000
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:2000. J Comp Neurol (2011) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 人类
  • 细胞化学; 人类
为了确定人腺病毒的原子结构,使用了Millipore公司的抗GFAP单克隆抗体来进行免疫印迹分析和免疫荧光实验。Science (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究Nkx2.2和Nkx6.2在调节髓鞘形成中的作用,采用了Chemicon公司的抗大鼠GFAP抗体产品(1:300),进行了免疫荧光实验。Glia (2010) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 人类; 1:2000
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化-冰冻切片在人类样品上浓度为1:2000. J Comp Neurol (2009) ncbi
兔 多克隆
  • 免疫组化-F; 人类; 1:750
默克密理博中国 GFAP抗体(Chemicon, AB9598)被用于免疫组化-冰冻切片在人类样品上浓度为1:750. J Comp Neurol (2009) ncbi
兔 多克隆
  • 免疫组化; Trachemys dorbigni; 1:500
默克密理博中国 GFAP抗体(Chemicon, AB 5804)被用于免疫组化在Trachemys dorbigni样品上浓度为1:500. J Comp Neurol (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究B1R在调控氧化应激中的作用,采用了Chemicon公司的抗GFAP抗体产品,进行了免疫印迹实验。J Neuroinflammation (2009) ncbi
未注明
  • 细胞化学; 人类
为了研究YB-1蛋白在成年大鼠、猕猴和人大脑中的细胞内定位,使用了Millipore公司的小鼠抗GFAP单克隆抗体来进行免疫荧光实验。BMC Neurosci (2009) ncbi
未注明
  • 免疫组化; 人类
为了阐明在帕金森症中,一个新的转铁蛋白/TfR2-介导的线粒体铁离子运输体系被阻断这样一个机制,采用了Chemicon公司的抗GFAP抗体应用于免疫组化实验中。Neurobiol Dis (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究神经胶原发生和H-IL-6激活的神经发生途径,使用了Chemicon公司的GFAP抗体来进行蛋白印迹实验。Mol Biol Cell (2009) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:2000
默克密理博中国 GFAP抗体(Chemicon / Millipore, AB5804)被用于免疫组化在大鼠样品上浓度为1:2000. J Comp Neurol (2008) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000
默克密理博中国 GFAP抗体(Chemicon, AB5804)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Comp Neurol (2008) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:1000
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Comp Neurol (2008) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 人类
为了研究Raf-1对神经胶质瘤形成的作用,采用了Chemicon的抗GFAP抗体进行免疫组化实验。Neoplasia (2008) ncbi
未注明
  • 免疫组化; 人类
为了研究丝裂原活化蛋白激酶在BV诱导的疼痛过敏反应产生中的作用,Chemicon鼠单克隆抗-胶质细胞原纤维酸性蛋白(胶质纤维酸性蛋白)抗血清(1:2000)用于免疫组织化学技术。Mol Pain (2008) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:1,000
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于免疫组化在小鼠样品上浓度为1:1,000. J Comp Neurol (2008) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 小鼠; 1:2,000
  • 细胞化学; 小鼠; 1:2,000
  • 免疫印迹; 小鼠; 1:30,000
默克密理博中国 GFAP抗体(Chemicon, MAB 3402)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:2,000, 免疫细胞化学在小鼠样品上浓度为1:2,000, 和 免疫印迹在小鼠样品上浓度为1:30,000. J Comp Neurol (2007) ncbi
兔 多克隆默克密理博中国 GFAP抗体(Chemicon International, AB 5804)被用于. J Comp Neurol (2007) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 鸡; 1:400
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于免疫组化在鸡样品上浓度为1:400. J Comp Neurol (2007) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:200
默克密理博中国 GFAP抗体(Chemicon, AB5804)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200. J Comp Neurol (2006) ncbi
小鼠 单克隆(GA5)
  • IHC-Free; 小鼠; 1:2,500
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:2,500. J Comp Neurol (2006) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500
默克密理博中国 GFAP抗体(Chemicon International, AB 5804)被用于免疫组化在大鼠样品上浓度为1:500. J Comp Neurol (2006) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:200
  • 免疫组化; 大鼠; 1:200
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于免疫组化在小鼠样品上浓度为1:200 和 在大鼠样品上浓度为1:200. J Comp Neurol (2006) ncbi
西格玛奥德里奇
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 大鼠; 图3
西格玛奥德里奇 GFAP抗体(Sigma, C9205)被用于免疫组化-冰冻切片在大鼠样品上 (图3). Sci Rep (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; 小鼠; 1:500; 图s6
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图s6). Cell Death Dis (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000; 图2
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上浓度为1:1000 (图2). Front Neurosci (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000; 图1
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上浓度为1:1000 (图1). J Proteome Res (2016) ncbi
小鼠 单克隆(G-A-5)
  • IHC-Free; 小鼠; 1:500; 图s2
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500 (图s2). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图2a
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于免疫印迹在大鼠样品上 (图2a). Sci Rep (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:200; 图6
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图6). Neurobiol Dis (2016) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1:1000; 图s4
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, SAB2500462)被用于免疫组化在小鼠样品上浓度为1:1000 (图s4). Nat Commun (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:500; 图7
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化在小鼠样品上浓度为1:500 (图7). Acta Neuropathol Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于免疫印迹在小鼠样品上 (图3). J Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:200; 图1
西格玛奥德里奇 GFAP抗体(Sigma Aldrich, G4546)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200 (图1). Am J Physiol Heart Circ Physiol (2016) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 人类; 图s1
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫细胞化学在人类样品上 (图s1). F1000Res (2015) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 大鼠; 1:500; 图s2
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫细胞化学在大鼠样品上浓度为1:500 (图s2). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 小鼠; 图6
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫印迹在小鼠样品上 (图6). elife (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:10,000; 图s4
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化在小鼠样品上浓度为1:10,000 (图s4). Front Mol Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 人类; 1:1000; 表1
西格玛奥德里奇 GFAP抗体(Sigma, C9205)被用于免疫细胞化学在人类样品上浓度为1:1000 (表1). Exp Eye Res (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:100; 图8
西格玛奥德里奇 GFAP抗体(Sigma, G6171)被用于免疫组化在小鼠样品上浓度为1:100 (图8). Sci Rep (2016) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 图1
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于免疫细胞化学在小鼠样品上 (图1). Sci Rep (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 小鼠; 1:1000; 图5
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫印迹在小鼠样品上浓度为1:1000 (图5). J Biol Chem (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:500; 图6
西格玛奥德里奇 GFAP抗体(Sigma, G 3893)被用于免疫组化在小鼠样品上浓度为1:500 (图6). Neuropharmacology (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:3000; 图1
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化在小鼠样品上浓度为1:3000 (图1). Dis Model Mech (2016) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 图5
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于免疫细胞化学在大鼠样品上 (图5). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 图6
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, C9205)被用于免疫组化在大鼠样品上 (图6). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 图7
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在小鼠样品上 (图7). J Neurosci Res (2016) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 小鼠; 1:500; 表1
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫细胞化学在小鼠样品上浓度为1:500 (表1). J Neurosci Res (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma Aldrich, G9269)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. Glia (2016) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 小鼠; 1:500; 图1
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫细胞化学在小鼠样品上浓度为1:500 (图1). BMC Biol (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:800; 图5
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, C9205)被用于免疫组化在小鼠样品上浓度为1:800 (图5). J Clin Invest (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图3
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于免疫组化-石蜡切片在小鼠样品上 (图3). Oxid Med Cell Longev (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, cat# G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. EMBO J (2015) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 大鼠; 1:200
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫细胞化学在大鼠样品上浓度为1:200. Cell J (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上浓度为1:1000. J Neuroimmunol (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 大鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma, G389)被用于免疫印迹在大鼠样品上浓度为1:400. J Proteome Res (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫印迹在小鼠样品上浓度为1:500. PLoS ONE (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:400; 表2
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上浓度为1:400 (表2). Eur J Neurosci (2015) ncbi
兔 多克隆西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于. Glia (2015) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 1:200; 图1
西格玛奥德里奇 GFAP抗体(Sigma, G4546)被用于免疫细胞化学在大鼠样品上浓度为1:200 (图1). Front Neuroanat (2015) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, C9205)被用于免疫细胞化学在小鼠样品上浓度为1:500. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:5000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G9269)被用于免疫印迹在大鼠样品上浓度为1:5000. J Neurochem (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 人类; 图5
西格玛奥德里奇 GFAP抗体(Sigma, G-A-5)被用于免疫组化在人类样品上 (图5). J Neuroinflammation (2015) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, SAB2500462)被用于免疫组化在小鼠样品上浓度为1:1000. J Immunol (2015) ncbi
小鼠 单克隆(G-A-5)
  • IHC-Free; 小鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma, G-A-5)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. Cell Tissue Res (2016) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 大鼠; 1:200
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫细胞化学在大鼠样品上浓度为1:200. J Mol Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • IHC-Free; 大鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G-3893)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:400. Mol Neurobiol (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; 小鼠; 图6
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-石蜡切片在小鼠样品上 (图6). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图4
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G-9269)被用于免疫组化在小鼠样品上浓度为1:500 (图4). Amyotroph Lateral Scler Frontotemporal Degener (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G9269)被用于免疫印迹在小鼠样品上 (图1). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, C9205)被用于免疫组化在大鼠样品上浓度为1:1000. Front Mol Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; 小鼠; 1:500; 图s2
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图s2). Stem Cell Reports (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在大鼠样品上浓度为1:500. Front Cell Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在大鼠样品上. Brain Struct Funct (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. Neuroscience (2015) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 人类; 1:1000; 图1
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫细胞化学在人类样品上浓度为1:1000 (图1). J Immunol (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. J Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:2000; 图5
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化在大鼠样品上浓度为1:2000 (图5). Neuroscience (2015) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 大鼠
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫细胞化学在大鼠样品上. Brain Behav (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G 3893)被用于免疫组化在小鼠样品上浓度为1:500. Neuropharmacology (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图3
  • 免疫印迹; 小鼠; 1:3000; 图s2
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G9269)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图3) 和 免疫印迹在小鼠样品上浓度为1:3000 (图s2). Nat Neurosci (2015) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. J Neurosci (2015) ncbi
兔 多克隆
  • 酶联免疫吸附测定; 大鼠
  • 免疫印迹; 大鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma Chemical, G9269)被用于酶联免疫吸附测定在大鼠样品上 和 免疫印迹在大鼠样品上浓度为1:1000. Mol Neurobiol (2016) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 人类; 1:5000
西格玛奥德里奇 GFAP抗体(SIGMA, G3893)被用于免疫细胞化学在人类样品上浓度为1:5000. J Cell Physiol (2015) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 0.1 ug/ul
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G9269)被用于immunohistochemistry - free floating section在大鼠样品上浓度为0.1 ug/ul. J Comp Neurol (2015) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 人类; 1:500
  • 细胞化学; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫细胞化学在人类样品上浓度为1:500 和 在小鼠样品上浓度为1:500. Cell Biol Int Rep (2010) (2013) ncbi
兔 多克隆
  • 免疫组化; Styela plicata; 1:100
  • 免疫印迹; Styela plicata; 1:5000
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于免疫组化在Styela plicata样品上浓度为1:100 和 免疫印迹在Styela plicata样品上浓度为1:5000. Dev Neurobiol (2015) ncbi
小鼠 单克隆(G-A-5)
  • IHC-Free; 大鼠; 1:1000
西格玛奥德里奇 GFAP抗体(SIGMA, G3893)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000. Neuroscience (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上浓度为1:400. Front Behav Neurosci (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:200; 图4
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图4). J Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:2000
  • 免疫印迹; 大鼠; 1:4000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G9269)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:2000 和 免疫印迹在大鼠样品上浓度为1:4000. Adv Alzheimer Dis (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:2000; 图4
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在大鼠样品上浓度为1:2000 (图4). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G9269)被用于免疫组化在小鼠样品上浓度为1:500. ASN Neuro (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 大鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G-3893)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. J Neurosci (2014) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 人类
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫细胞化学在人类样品上. Neuroscience (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:5000
西格玛奥德里奇 GFAP抗体(Sigma Aldrich, G3893)被用于免疫组化在大鼠样品上浓度为1:5000. Gene Ther (2014) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 人类; 1:3000
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫细胞化学在人类样品上浓度为1:3000. PLoS ONE (2014) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 大鼠; 1:600
西格玛奥德里奇 GFAP抗体(Sigma, G6171)被用于免疫细胞化学在大鼠样品上浓度为1:600. J Neuroinflammation (2014) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 1:600
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于免疫细胞化学在大鼠样品上浓度为1:600. J Neuroinflammation (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 人类; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在人类样品上浓度为1:1000. J Comp Neurol (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:100
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G6171)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100. Neurobiol Aging (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 人类
  • 免疫组化-F; 大鼠
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在人类样品上 和 在大鼠样品上. Ann Neurol (2014) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 人类; 1:400
西格玛奥德里奇 GFAP抗体(Sigma, C9205)被用于免疫细胞化学在人类样品上浓度为1:400. J Biol Chem (2014) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 小鼠; 1:2000; 图4
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫细胞化学在小鼠样品上浓度为1:2000 (图4). Stem Cells Dev (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; 人类; 1:500
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, Clone G-A-5)被用于免疫组化-石蜡切片在人类样品上浓度为1:500. J Immunol (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 人类; 1:1000
  • 免疫组化; 大鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在人类样品上浓度为1:1000 和 在大鼠样品上浓度为1:1000. Int J Clin Exp Pathol (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1600
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上浓度为1:1600. J Chem Neuroanat (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Neurosci (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; 人类; 1:5000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化-石蜡切片在人类样品上浓度为1:5000. J Chem Neuroanat (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫印迹在小鼠样品上浓度为1:1000. Neurobiol Dis (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于免疫组化在小鼠样品上浓度为1:500. Cereb Cortex (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:20
  • 免疫组化-F; 大鼠; 1:20
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:20 和 在大鼠样品上浓度为1:20. Neuroscience (2014) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 人类; 1:600
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫细胞化学在人类样品上浓度为1:600. J Vis Exp (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:400. J Alzheimers Dis (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 大鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G-3893)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. Exp Neurol (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠
西格玛奥德里奇 GFAP抗体(Sigma, G-3893)被用于免疫组化在大鼠样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 大鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G6171)被用于免疫细胞化学在大鼠样品上浓度为1:500. Neuroscience (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:2000; 图4a
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上浓度为1:2000 (图4a). Nat Neurosci (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 兔
  • 免疫组化; 大鼠
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在兔样品上 和 在大鼠样品上. Exp Eye Res (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G9269)被用于免疫组化在小鼠样品上浓度为1:200. Exp Neurol (2014) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 人类; 1:400
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫细胞化学在人类样品上浓度为1:400. J Proteomics (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; 人类; 1:500; 图2
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图2). Brain Struct Funct (2015) ncbi
小鼠 单克隆(G-A-5)
  • IHC-Free; 小鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. Front Neurosci (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma-aldrich, G3893)被用于免疫组化在小鼠样品上浓度为1:1000. Stem Cells (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 人类; 1:15,000
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在人类样品上浓度为1:15,000. Neurobiol Aging (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; Apteronotus leptorhynchus; 图3
西格玛奥德里奇 GFAP抗体(Sigma, G-A-5)被用于免疫组化在Apteronotus leptorhynchus样品上 (图3). Dev Neurobiol (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 大鼠; 1:2000
  • 免疫印迹; 大鼠; 1:2000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G6171)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:2000 和 免疫印迹在大鼠样品上浓度为1:2000. J Neurol Sci (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:100
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上浓度为1:100. Glia (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 大鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500. Acta Neuropathol Commun (2013) ncbi
小鼠 单克隆(G-A-5)
  • IHC-Free; 人类; 1:1000
  • IHC-Free; 小鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于immunohistochemistry - free floating section在人类样品上浓度为1:1000 和 在小鼠样品上浓度为1:1000. Acta Neuropathol Commun (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在小鼠样品上. Acta Neuropathol Commun (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 人类
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫印迹在人类样品上. PLoS ONE (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:50000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G6171)被用于免疫组化在小鼠样品上浓度为1:50000. Hippocampus (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上浓度为1:500. J Neurosci (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化在小鼠样品上浓度为1:500. Nat Neurosci (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 小鼠; 1:2000
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫印迹在小鼠样品上浓度为1:2000 和 免疫组化在小鼠样品上浓度为1:1000. J Comp Neurol (2014) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 小鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫细胞化学在小鼠样品上浓度为1:400. Nat Med (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 小鼠
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫印迹在小鼠样品上. J Neurosci (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 猕猴; 1:200
西格玛奥德里奇 GFAP抗体(Sigma, GA5)被用于免疫组化-冰冻切片在猕猴样品上浓度为1:200. J Neuroinflammation (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; 小鼠; 1:500
  • 细胞化学; 小鼠
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 和 免疫细胞化学在小鼠样品上. Glia (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:800
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:800. PLoS ONE (2013) ncbi
小鼠 单克隆(G-A-5)
  • IHC-Free; 人类; 1:20,000
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于immunohistochemistry - free floating section在人类样品上浓度为1:20,000. J Chem Neuroanat (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma, G 3893)被用于免疫组化在小鼠样品上浓度为1:400. J Comp Neurol (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; 小鼠; 1:800; 图7
西格玛奥德里奇 GFAP抗体(Sigma, C9205)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:800 (图7). PLoS ONE (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, GA5)被用于免疫组化在大鼠样品上. J Neurosci (2013) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 小鼠
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫细胞化学在小鼠样品上. EMBO J (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; 猪
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化-石蜡切片在猪样品上. Reprod Sci (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 人类; 1:75
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化-冰冻切片在人类样品上浓度为1:75. Cell Tissue Res (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; 人类; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, GA5)被用于免疫组化-石蜡切片在人类样品上浓度为1:1000. Dev Neurosci (2013) ncbi
小鼠 单克隆(G-A-5)
  • IHC-Free; 人类; 1:5000
  • 细胞化学; 人类; 1:5000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于immunohistochemistry - free floating section在人类样品上浓度为1:5000 和 免疫细胞化学在人类样品上浓度为1:5000. Glia (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 人类
  • 免疫组化-F; 兔
  • 免疫印迹; 兔
西格玛奥德里奇 GFAP抗体(Sigma, G6171)被用于免疫组化-冰冻切片在人类样品上 和 在兔样品上 和 免疫印迹在兔样品上. Exp Neurol (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:5000
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:5000. Neuroscience (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 大鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:400. J Histochem Cytochem (2012) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. J Neurosci (2012) ncbi
未注明
  • 细胞化学; 人类
为了研究血脑屏障的完整性和中枢神经免疫沉默能够被Shh信号通路促进,采用Sigma的Cy3标记的抗人GFAP抗体进行免疫细胞化学实验。Science (2011) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:400. J Comp Neurol (2011) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; African green monkey
  • 免疫组化-F; 人类
  • 免疫组化-P; African green monkey
  • 免疫组化-P; 人类
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化-冰冻切片在African green monkey样品上 和 在人类样品上 和 免疫组化-石蜡切片在African green monkey样品上 和 在人类样品上. J Comp Neurol (2011) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; African green monkey; 1:100
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在African green monkey样品上浓度为1:100. J Comp Neurol (2011) ncbi
小鼠 单克隆(G-A-5)
  • IHC-Free; 小鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:400. J Comp Neurol (2010) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 斑马鱼; 1:100
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在斑马鱼样品上浓度为1:100. J Comp Neurol (2010) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:2000; 图2
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上浓度为1:2000 (图2). Neuroscience (2010) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 人类
为了研究saposin C在调控鞘糖脂代谢和轴突完整性中的作用,采用了Sigma公司的抗GFAP抗体产品,进行了免疫组化实验Hum Mol Genet (2010) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; Trachemys dorbigni; 1:500
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化在Trachemys dorbigni样品上浓度为1:500. J Comp Neurol (2009) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. J Comp Neurol (2009) ncbi
小鼠 单克隆(G-A-5)
  • IHC-Free; 大鼠; 1:2500
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:2500. J Comp Neurol (2009) ncbi
未注明
  • 细胞化学; 人类
为了研究aprataxin在Tdp1缺失的小鼠原代神经细胞的染色体单链断裂修复过程中的功能,使用了Sigma公司的抗GFAP抗体来确认小鼠星形胶质细胞的纯度。DNA Repair (Amst) (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究酸性磷脂酶活性在神经胶质细胞释放微粒子过程中的作用,采用了Sigma公司生产的鼠源性胶原纤维酸性蛋白(GFAP)单克隆抗体(G-A-5克隆,1:1000)进行蛋白免疫印迹实验。EMBO J (2009) ncbi
未注明
  • 免疫组化; 人类
为了研究基质金属蛋白酶7对实验性自身免疫性脑脊髓炎患者中枢神经系统的功能,在免疫染色试验中使用了Sigma的PE标记的鼠抗GFAP抗体作为一抗。 BMC Neurosci (2009) ncbi
未注明
  • 免疫组化; 人类
为了说明放射性胶质中Tsc2基因功能的损失可以引起大脑结节状硬化综合症,使用了Sigma公司的GFAP抗体进行免疫组化实验。Hum Mol Genet (2009) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化在小鼠样品上浓度为1:400. J Comp Neurol (2009) ncbi
未注明
  • 细胞化学; 人类
为了研究神经胶原发生和H-IL-6激活的神经发生途径,使用了Sigma公司的GFAP抗体来进行免疫细胞化学实验。Mol Biol Cell (2009) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 大鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500. J Comp Neurol (2008) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:300
  • 细胞化学; 小鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:300 和 免疫细胞化学在小鼠样品上浓度为1:1000. J Comp Neurol (2008) ncbi
未注明
  • 免疫组化; 人类
为了研究在缺少鞘脂激活蛋白原的小鼠中,CEBPD对大脑疾病的影响,采用了Sigma的鼠抗GFAP单抗,进行免疫组化实验BMC Neurosci (2008) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 大鼠
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在大鼠样品上. J Comp Neurol (2008) ncbi
未注明
  • 细胞化学; 人类
为了研究星形细胞在血管新生中的作用,采用了Sigma的抗GFAP抗体进行细胞免疫化学实验。Arch Ophthalmol (2008) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 斑马鱼; 1:100
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在斑马鱼样品上浓度为1:100. J Comp Neurol (2008) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 大鼠; 1:600
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:600. J Comp Neurol (2008) ncbi
未注明
  • 免疫组化; 人类
为了检测细胞外基质金属蛋白酶诱导因子与基质金属蛋白酶表达的潜在关系,使用了变位的抗GFAP-CY3抗体进行免疫组化实验。Neurochem Int (2008) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在小鼠样品上. J Comp Neurol (2007) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1,000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G-3893)被用于免疫组化在小鼠样品上浓度为1:1,000. J Comp Neurol (2007) ncbi
未注明
  • 免疫印迹; 人类
为了研究Dlg5在维持哺乳动物的大脑和肾脏上皮管中的功能,使用了Sigma公司的抗GFAP抗体来进行免疫荧光实验。Dev Cell (2007) ncbi
未注明
  • 免疫印迹; 人类
为了研究帕金森(氏)病的鼠1-甲基-4-苯-1,2,3,6-四氢吡啶模型中PAR1遗传缺失和药理学阻断的作用,使用了Sigma公司的GFAP抗体,进行了免疫印迹实验。Mol Pharmacol (2007) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:300
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上浓度为1:300. J Comp Neurol (2007) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; 人类; 1:200
  • 免疫组化-P; 小鼠; 1:200
  • 免疫组化-P; 大鼠; 1:200
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-石蜡切片在人类样品上浓度为1:200, 在小鼠样品上浓度为1:200, 和 在大鼠样品上浓度为1:200. J Comp Neurol (2007) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:400
  • 免疫组化; 大鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上浓度为1:400 和 在大鼠样品上浓度为1:400. J Comp Neurol (2006) ncbi
未注明
  • 细胞化学; 人类
为了研究在头部发育期间FE65淀粉状蛋白先质蛋白干扰作用,使用了Sigma-Aldrich公司的GFAP抗体,进行了免疫细胞化学实验。EMBO J (2006) ncbi
小鼠 单克隆(G-A-5)
  • IHC-Free; 大鼠; 1:5000
西格玛奥德里奇 GFAP抗体(Sigma, GA5)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:5000. J Comp Neurol (2005) ncbi
赛信通(上海)生物试剂有限公司
  • 免疫组化; 小鼠; 1:200; 图S1c
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 12389)被用于免疫组化在小鼠样品上浓度为1:200 (图S1c). Nat Neurosci (2016) ncbi
兔 单克隆(D1F4Q)
  • 免疫印迹; 小鼠; 1:1000; 图5
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 12389)被用于免疫印迹在小鼠样品上浓度为1:1000 (图5). Invest Ophthalmol Vis Sci (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:200; 图8
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signalling, 36705)被用于免疫组化在小鼠样品上浓度为1:200 (图8). Hum Mol Genet (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 人类; 1:1000; 图s1
  • 细胞化学; 人类; 1:500; 图s1
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell signaling, 3670)被用于免疫印迹在人类样品上浓度为1:1000 (图s1) 和 免疫细胞化学在人类样品上浓度为1:500 (图s1). Mol Cell Endocrinol (2016) ncbi
  • 免疫印迹; 小鼠; 1:500; 图2
  • 免疫组化; 小鼠; 1:1000; 图1
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, GA5)被用于免疫印迹在小鼠样品上浓度为1:500 (图2) 和 免疫组化在小鼠样品上浓度为1:1000 (图1). Sci Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 图3
  • 免疫印迹; 大鼠; 图7
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670S)被用于免疫组化-冰冻切片在大鼠样品上 (图3) 和 免疫印迹在大鼠样品上 (图7). J Neurosci (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:2000; 图1s2
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signalling, 3670)被用于免疫组化在小鼠样品上浓度为1:2000 (图1s2). elife (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:500; 图s22
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signalling, 3670)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图s22). Nat Biotechnol (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 人类; 1:100; 图4
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于免疫细胞化学在人类样品上浓度为1:100 (图4). Nature (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, 3670)被用于免疫印迹在小鼠样品上浓度为1:500. FASEB J (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 GFAP抗体(CST, 3670)被用于免疫印迹在人类样品上浓度为1:1000. Mol Brain (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signalling Technology, 3670S)被用于免疫细胞化学在小鼠样品上. Neuromolecular Med (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 大鼠; 图4h
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, 3657)被用于免疫细胞化学在大鼠样品上 (图4h). J Cell Biol (2015) ncbi
小鼠 单克隆(GA5)
  • IHC-Free; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670S)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500. Mol Neurobiol (2016) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 小鼠; 1:300; 图5
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, GA5)被用于免疫细胞化学在小鼠样品上浓度为1:300 (图5). Cereb Cortex (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, clone GA5)被用于免疫印迹在大鼠样品上. PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • FC; 小鼠; 1:500; 图s2
  • 免疫印迹; 小鼠; 1:1000; 图s2
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, 3670)被用于流式细胞仪在小鼠样品上浓度为1:500 (图s2) 和 免疫印迹在小鼠样品上浓度为1:1000 (图s2). Nat Commun (2015) ncbi
  • 免疫组化; 大鼠; 1:200
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, GA5)被用于免疫组化在大鼠样品上浓度为1:200. Exp Mol Pathol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, 3655)被用于免疫组化在小鼠样品上浓度为1:100. J Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:100; 图3
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:100 (图3). Int J Oral Maxillofac Surg (2015) ncbi
  • 细胞化学; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, #3670)被用于免疫细胞化学在小鼠样品上浓度为1:200. Neurochem Int (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:300
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, 3670S)被用于免疫组化在小鼠样品上浓度为1:300. Mol Neurobiol (2014) ncbi
未注明
  • 免疫印迹; 人类
为了研究Neuroglian在调控循环中免疫监视细胞中Lis1的定位中的作用,采用了Cell Signaling Technology公司的兔抗GFAP抗体产品,进行了免疫印迹实验。Neoplasia (2009) ncbi
碧迪BD
小鼠 单克隆(4A11)
  • 免疫组化; 大鼠; 1:2000; 图3
  • 免疫印迹; 大鼠; 1:2000; 图3
碧迪BD GFAP抗体(BD, 556327)被用于免疫组化在大鼠样品上浓度为1:2000 (图3) 和 免疫印迹在大鼠样品上浓度为1:2000 (图3). Alzheimers Res Ther (2016) ncbi
小鼠 单克隆(1B4)
  • FC; 小鼠; 1:50; 图4
碧迪BD GFAP抗体(BD Biosciences, 561483)被用于流式细胞仪在小鼠样品上浓度为1:50 (图4). Nat Commun (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫印迹; 人类; 1:500; 图6
碧迪BD GFAP抗体(BD Pharmingen, 556330)被用于免疫印迹在人类样品上浓度为1:500 (图6). Glia (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-P; 小鼠; 0.01 ug/ml; 图4
碧迪BD GFAP抗体(BD Biosciences, 556330)被用于免疫组化-石蜡切片在小鼠样品上浓度为0.01 ug/ml (图4). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(1B4)
  • FC; 小鼠; 图4, 7
碧迪BD GFAP抗体(BD Pharmingen, 561483)被用于流式细胞仪在小鼠样品上 (图4, 7). Nat Neurosci (2016) ncbi
小鼠 单克隆(2E1)
  • 免疫组化; 小鼠; 1:1000; 图5
碧迪BD GFAP抗体(BD Pharmingen, 556329)被用于免疫组化在小鼠样品上浓度为1:1000 (图5). Eneuro (2015) ncbi
小鼠 单克隆(4A11)
  • 免疫组化; 大鼠
碧迪BD GFAP抗体(BD Pharmagen, Clon 4a11, Ref. 55632)被用于免疫组化在大鼠样品上. J Neuroendocrinol (2015) ncbi
小鼠 单克隆(4A11)
  • 免疫组化; 小鼠; 1:200; 图8
碧迪BD GFAP抗体(BD Biosciences, 556330)被用于免疫组化在小鼠样品上浓度为1:200 (图8). Neurotherapeutics (2015) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-F; 大鼠; 1:1000
碧迪BD GFAP抗体(BD Pharmingen, 55632)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. Mol Neurobiol (2015) ncbi
小鼠 单克隆(52/GFAP)
  • 细胞化学; 大鼠; 1:500; 图11
碧迪BD GFAP抗体(BD Biosciences, 610565)被用于免疫细胞化学在大鼠样品上浓度为1:500 (图11). Pain (2014) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-F; 大鼠; 1:200
碧迪BD GFAP抗体(BD Pharmigen, 556327)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200. J Comp Neurol (2010) ncbi
Neuromab
小鼠 单克隆(N206A/8)
  • 细胞化学; 人类; 1:100; 图s1
Neuromab GFAP抗体(Neuromab, 75-240)被用于免疫细胞化学在人类样品上浓度为1:100 (图s1). Nat Neurosci (2016) ncbi
小鼠 单克隆(N206A/8)
  • 细胞化学; 小鼠; 图s5
Neuromab GFAP抗体(NeuroMab, N206A/8)被用于免疫细胞化学在小鼠样品上 (图s5). elife (2016) ncbi
小鼠 单克隆(N206A/8)
  • 免疫印迹; 大鼠; 1:6000; 图7
Neuromab GFAP抗体(Neuromab, 75?C240)被用于免疫印迹在大鼠样品上浓度为1:6000 (图7). PLoS ONE (2015) ncbi
小鼠 单克隆(N206A/8)
  • 免疫印迹; 大鼠; 2.08 ug/ml
Neuromab GFAP抗体(UC Davis / NIH NeuroMab Facility, N206A/8)被用于免疫印迹在大鼠样品上浓度为2.08 ug/ml. J Comp Neurol (2014) ncbi
徕卡显微系统(上海)贸易有限公司
小鼠 单克隆
  • 免疫印迹; 小鼠
徕卡显微系统(上海)贸易有限公司 GFAP抗体(Novocastra/Leica, GFAP-GA5)被用于免疫印迹在小鼠样品上. Prog Neuropsychopharmacol Biol Psychiatry (2015) ncbi
Spring Bioscience Corp.
兔 单克隆(SP78)
  • 免疫组化; 鸡; 图7
Spring Bioscience Corp. GFAP抗体(Spring, M3782)被用于免疫组化在鸡样品上 (图7). Neurochem Int (2015) ncbi
安迪生物R&D
羊 多克隆
  • 细胞化学; 人类; 1:10; 图5
安迪生物R&D GFAP抗体(R&D Systems, NL2594R)被用于免疫细胞化学在人类样品上浓度为1:10 (图5). BMC Cell Biol (2014) ncbi
Bioss
兔 多克隆
  • 免疫组化-P; 大鼠; 1:100; 图1
Bioss GFAP抗体(Beijing Biosynthesis Biotechnology, bs-0199R)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 (图1). Neural Regen Res (2012) ncbi
其他
未注明
  • 免疫组化; 人类
为了阐明在帕金森症中,一个新的转铁蛋白/TfR2-介导的线粒体铁离子运输体系被阻断这样一个机制,采用了Temecula公司的抗GFAP抗体应用于免疫组化实验中。Neurobiol Dis (2009) ncbi
文章列表
  1. Matias Alvarez-Saavedra et al. (2016). "Voluntary Running Triggers VGF-Mediated Oligodendrogenesis to Prolong the Lifespan of Snf2h-Null Ataxic Mice".PMID 27732860
  2. Joanna Bednarczyk et al. (2016). "MBD3 expression and DNA binding patterns are altered in a rat model of temporal lobe epilepsy".PMID 27650712
  3. Joanna M Dragich et al. (2016). "Autophagy linked FYVE (Alfy/WDFY3) is required for establishing neuronal connectivity in the mammalian brain".PMID 27648578
  4. Pei Yu Chen et al. (2016). "Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGFβ)-dependent smooth muscle cell phenotype modulation".PMID 27634335
  5. Shuman Zhang et al. (2016). "Protective effect of melatonin on soluble Aβ1-42-induced memory impairment, astrogliosis, and synaptic dysfunction via the Musashi1/Notch1/Hes1 signaling pathway in the rat hippocampus".PMID 27630117
  6. Igor Bryukhovetskiy et al. (2016). "Cancer stem cells and microglia in the processes of glioblastoma multiforme invasive growth".PMID 27602106
  7. Paola Caporali et al. (2016). "Developmental delay in motor skill acquisition in Niemann-Pick C1 mice reveals abnormal cerebellar morphogenesis".PMID 27586038
  8. Ren Hong Du et al. (2016). "Uncoupling protein 2 modulation of the NLRP3 inflammasome in astrocytes and its implications in depression".PMID 27566281
  9. Zhijian Cheng et al. (2016). "Anti-Inflammatory Mechanism of Neural Stem Cell Transplantation in Spinal Cord Injury".PMID 27563878
  10. Rana S Dhillon et al. (2016). "Axonal plasticity underpins the functional recovery following surgical decompression in a rat model of cervical spondylotic myelopathy".PMID 27552807
  11. James M Hillis et al. (2016). "Cuprizone demyelination induces a unique inflammatory response in the subventricular zone".PMID 27550173
  12. Natalia D Andersen et al. (2016). "A rapid and versatile method for the isolation, purification and cryogenic storage of Schwann cells from adult rodent nerves".PMID 27549422
  13. Xiang Chun Ju et al. (2016). "The hominoid-specific gene TBC1D3 promotes generation of basal neural progenitors and induces cortical folding in mice".PMID 27504805
  14. Raman Saggu et al. (2016). "Astroglial NF-kB contributes to white matter damage and cognitive impairment in a mouse model of vascular dementia".PMID 27487766
  15. Wendy Westbroek et al. (2016). "A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease".PMID 27482815
  16. Vuk Palibrk et al. (2016). "PML regulates neuroprotective innate immunity and neuroblast commitment in a hypoxic-ischemic encephalopathy model".PMID 27468695
  17. Sandro Alves et al. (2016). "Lentiviral vector-mediated overexpression of mutant ataxin-7 recapitulates SCA7 pathology and promotes accumulation of the FUS/TLS and MBNL1 RNA-binding proteins".PMID 27465358
  18. Jinwei Pang et al. (2016). "Potential implications of Apolipoprotein E in early brain injury after experimental subarachnoid hemorrhage: involvement in the modulation of blood-brain barrier integrity".PMID 27463015
  19. Moonseok Choi et al. (2016). "Hippocampus-based contextual memory alters the morphological characteristics of astrocytes in the dentate gyrus".PMID 27460927
  20. Martina Senzacqua et al. (2016). "Action of Administered Ciliary Neurotrophic Factor on the Mouse Dorsal Vagal Complex".PMID 27445662
  21. Alexi Nott et al. (2016). "Histone deacetylase 3 associates with MeCP2 to regulate FOXO and social behavior".PMID 27428650
  22. Yuval Peretz et al. (2016). "A new role of hindbrain boundaries as pools of neural stem/progenitor cells regulated by Sox2".PMID 27392568
  23. Shenbin Liu et al. (2016). "Curcumin ameliorates neuropathic pain by down-regulating spinal IL-1β via suppressing astroglial NALP1 inflammasome and JAK2-STAT3 signalling".PMID 27381056
  24. Tong Li et al. (2016). "The neuritic plaque facilitates pathological conversion of tau in an Alzheimer's disease mouse model".PMID 27373369
  25. Xinyi Su et al. (2016). "Characterization of Fatty Acid Binding Protein 7 (FABP7) in the Murine Retina".PMID 27367508
  26. Kevin K Park et al. (2017). "Retinal ganglion cell survival and axon regeneration after optic nerve injury in naked mole-rats".PMID 27350178
  27. Timur A Mavlyutov et al. (2016). "Sigma-1 receptor expression in the dorsal root ganglion: Reexamination using a highly specific antibody".PMID 27339730
  28. Michael J Vasek et al. (2016). "A complement-microglial axis drives synapse loss during virus-induced memory impairment".PMID 27337340
  29. Stephen Sai Folmsbee et al. (2016). "αT-catenin in restricted brain cell types and its potential connection to autism".PMID 27330745
  30. Aurélia Vernay et al. (2016). "A transgenic mouse expressing CHMP2Bintron5 mutant in neurons develops histological and behavioural features of amyotrophic lateral sclerosis and frontotemporal dementia".PMID 27329763
  31. Kelly A Jones et al. (2016). "Persistent neuronal Ube3a expression in the suprachiasmatic nucleus of Angelman syndrome model mice".PMID 27306933
  32. Weiwei Zhai et al. (2016). "A1 adenosine receptor attenuates intracerebral hemorrhage-induced secondary brain injury in rats by activating the P38-MAPKAP2-Hsp27 pathway".PMID 27301321
  33. Eren Cerman et al. (2016). "Retinal Electrophysiological Effects of Intravitreal Bone Marrow Derived Mesenchymal Stem Cells in Streptozotocin Induced Diabetic Rats".PMID 27300133
  34. Carolina Pellegrini et al. (2016). "Alteration of colonic excitatory tachykininergic motility and enteric inflammation following dopaminergic nigrostriatal neurodegeneration".PMID 27295950
  35. Xiang Dong Sun et al. (2016). "Lrp4 in astrocytes modulates glutamatergic transmission".PMID 27294513
  36. Yasuhiko Kizuka et al. (2016). "Epigenetic regulation of neural N-glycomics".PMID 27286656
  37. Yang Xu et al. (2016). "Mechanisms of PDGF siRNA-mediated inhibition of bone cancer pain in the spinal cord".PMID 27282805
  38. Emelie Perland et al. (2016). "The Putative SLC Transporters Mfsd5 and Mfsd11 Are Abundantly Expressed in the Mouse Brain and Have a Potential Role in Energy Homeostasis".PMID 27272503
  39. Yuta Morisaki et al. (2016). "Selective Expression of Osteopontin in ALS-resistant Motor Neurons is a Critical Determinant of Late Phase Neurodegeneration Mediated by Matrix Metalloproteinase-9".PMID 27264390
  40. Marco Ávila-Rodriguez et al. (2016). "Tibolone protects astrocytic cells from glucose deprivation through a mechanism involving estrogen receptor beta and the upregulation of neuroglobin expression".PMID 27250720
  41. Vir B Singh et al. (2016). "Smoothened Agonist Reduces Human Immunodeficiency Virus Type-1-Induced Blood-Brain Barrier Breakdown in Humanized Mice".PMID 27241024
  42. Ingrid Morales et al. (2016). "The astrocytic response to the dopaminergic denervation of the striatum".PMID 27230040
  43. Valérie Vilmont et al. (2016). "A system for studying mechanisms of neuromuscular junction development and maintenance".PMID 27226316
  44. Francisco Javier Rodríguez-Jiménez et al. (2016). "Connexin 50 modulates Sox2 expression in spinal-cord-derived ependymal stem/progenitor cells".PMID 27221278
  45. Judith R Reinhard et al. (2016). "The calcium sensor Copine-6 regulates spine structural plasticity and learning and memory".PMID 27194588
  46. Michael R Heaven et al. (2016). "Composition of Rosenthal Fibers, the Protein Aggregate Hallmark of Alexander Disease".PMID 27193225
  47. R Marignier et al. (2016). "Neuromyelitis optica study model based on chronic infusion of autoantibodies in rat cerebrospinal fluid".PMID 27193196
  48. Sabrina Oishi et al. (2016). "Usp9x-deficiency disrupts the morphological development of the postnatal hippocampal dentate gyrus".PMID 27181636
  49. J W Finnie et al. (2016). "Temporal Sequence of Autolysis in the Cerebellar Cortex of the Mouse".PMID 27156898
  50. Sonja Hochmeister et al. (2016). "Lipocalin-2 as an Infection-Related Biomarker to Predict Clinical Outcome in Ischemic Stroke".PMID 27152948
  51. R Foxton et al. (2016). "Distal retinal ganglion cell axon transport loss and activation of p38 MAPK stress pathway following VEGF-A antagonism".PMID 27148685
  52. Kamila Rosiak et al. (2016). "IDH1R132H in Neural Stem Cells: Differentiation Impaired by Increased Apoptosis".PMID 27145078
  53. Gergely Szalay et al. (2016). "Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke".PMID 27139776
  54. Yang Yang et al. (2016). "Recurrent intracranial neurenteric cyst with malignant transformation: A case report and literature review".PMID 27123123
  55. Renata Duchnowska et al. (2016). "Immune response in breast cancer brain metastases and their microenvironment: the role of the PD-1/PD-L axis".PMID 27117582
  56. Hsin I Tong et al. (2016). "Monocyte Trafficking, Engraftment, and Delivery of Nanoparticles and an Exogenous Gene into the Acutely Inflamed Brain Tissue - Evaluations on Monocyte-Based Delivery System for the Central Nervous System".PMID 27115998
  57. Yuanchao Xue et al. (2016). "Sequential regulatory loops as key gatekeepers for neuronal reprogramming in human cells".PMID 27110916
  58. Lucy H Funk et al. (2016). "Tumor necrosis factor superfamily member APRIL contributes to fibrotic scar formation after spinal cord injury".PMID 27098833
  59. Karpagam Srinivasan et al. (2016). "Untangling the brain's neuroinflammatory and neurodegenerative transcriptional responses".PMID 27097852
  60. David S Bouvier et al. (2016). "High Resolution Dissection of Reactive Glial Nets in Alzheimer's Disease".PMID 27090093
  61. Akshata A Almad et al. (2016). "Connexin 43 in astrocytes contributes to motor neuron toxicity in amyotrophic lateral sclerosis".PMID 27083773
  62. Harleen S Basrai et al. (2016). "Suppressor of Cytokine Signaling-2 (SOCS2) Regulates the Microglial Response and Improves Functional Outcome after Traumatic Brain Injury in Mice".PMID 27071013
  63. Sun Kwang Kim et al. (2016). "Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain".PMID 27064281
  64. Ayako Isotani et al. (2016). "Generation of Hprt-disrupted rat through mouse←rat ES chimeras".PMID 27062982
  65. Rebecca K Bubenheimer et al. (2016). "Sirtuin-3 Is Expressed by Enteric Neurons but It Does not Play a Major Role in Their Regulation of Oxidative Stress".PMID 27047337
  66. Changsheng Du et al. (2016). "Kappa opioid receptor activation alleviates experimental autoimmune encephalomyelitis and promotes oligodendrocyte-mediated remyelination".PMID 27040771
  67. Esther Fuente-Martín et al. (2016). "Ghrelin Regulates Glucose and Glutamate Transporters in Hypothalamic Astrocytes".PMID 27026049
  68. K Fujiwara et al. (2016). "Deletion of JMJD2B in neurons leads to defective spine maturation, hyperactive behavior and memory deficits in mouse".PMID 27023172
  69. Motoshi Nagao et al. (2016). "Zbtb20 promotes astrocytogenesis during neocortical development".PMID 27000654
  70. Mohammad A Yousuf et al. (2016). "Involvement of aberrant cyclin-dependent kinase 5/p25 activity in experimental traumatic brain injury".PMID 26998748
  71. Yi Cui et al. (2016). "The miR-20-Rest-Wnt signaling axis regulates neural progenitor cell differentiation".PMID 26996236
  72. B A Smeester et al. (2016). "The relationship of bone-tumor-induced spinal cord astrocyte activation and aromatase expression to mechanical hyperalgesia and cold hypersensitivity in intact female and ovariectomized mice".PMID 26995084
  73. Birgit Linkus et al. (2016). "Telomere shortening leads to earlier age of onset in ALS mice".PMID 26978042
  74. Lukas Jennewein et al. (2016). "Diagnostic and clinical relevance of the autophago-lysosomal network in human gliomas".PMID 26956048
  75. Meera Ramani et al. (2016). "Differential expression of astrocytic connexins in a mouse model of prenatal alcohol exposure".PMID 26951949
  76. Ai Ling Xu et al. (2016). "Neuroprotective effects of Ilexonin A following transient focal cerebral ischemia in rats".PMID 26936330
  77. Sumihiro Maeda et al. (2016). "Expression of A152T human tau causes age-dependent neuronal dysfunction and loss in transgenic mice".PMID 26931567
  78. Dhiraj G Kabra et al. (2016). "Hypothalamic leptin action is mediated by histone deacetylase 5".PMID 26923837
  79. Maria I Fonseca et al. (2016). "Analysis of the Putative Role of CR1 in Alzheimer's Disease: Genetic Association, Expression and Function".PMID 26914463
  80. Anna G McNally et al. (2016). "Characterization of a Novel Chromatin Sorting Tool Reveals Importance of Histone Variant H3.3 in Contextual Fear Memory and Motor Learning".PMID 26903803
  81. Ignacio Sancho-Martinez et al. (2016). "Establishment of human iPSC-based models for the study and targeting of glioma initiating cells".PMID 26899176
  82. Carla M Cabral et al. (2016). "Neurons are the Primary Target Cell for the Brain-Tropic Intracellular Parasite Toxoplasma gondii".PMID 26895155
  83. Rong Zong Liu et al. (2016). "Association between cytoplasmic CRABP2, altered retinoic acid signaling, and poor prognosis in glioblastoma".PMID 26893190
  84. Yulong Ma et al. (2016). "Estrogen replacement therapy-induced neuroprotection against brain ischemia-reperfusion injury involves the activation of astrocytes via estrogen receptor β".PMID 26891996
  85. Jurate Lasiene et al. (2016). "Neuregulin 1 confers neuroprotection in SOD1-linked amyotrophic lateral sclerosis mice via restoration of C-boutons of spinal motor neurons".PMID 26891847
  86. Tianli Chen et al. (2016). "L1.2, the zebrafish paralog of L1.1 and ortholog of the mammalian cell adhesion molecule L1 contributes to spinal cord regeneration in adult zebrafish".PMID 26889968
  87. Qiangge Zhang et al. (2016). "Impaired Dendritic Development and Memory in Sorbs2 Knock-Out Mice".PMID 26888934
  88. Wei Zhang et al. (2016). "MiRNA-128 regulates the proliferation and neurogenesis of neural precursors by targeting PCM1 in the developing cortex".PMID 26883496
  89. Yan Bing Zhu et al. (2016). "Astrocyte-derived phosphatidic acid promotes dendritic branching".PMID 26883475
  90. Giuseppina Catanzaro et al. (2016). "MicroRNAs-Proteomic Networks Characterizing Human Medulloblastoma-SLCs".PMID 26880947
  91. Ivan Merdzo et al. (2016). "The mitochondrial function of the cerebral vasculature in insulin-resistant Zucker obese rats".PMID 26873973
  92. Peddagangannagari Sreekanthreddy et al. (2015). "A three-dimensional model of the human blood-brain barrier to analyse the transport of nanoparticles and astrocyte/endothelial interactions".PMID 26870320
  93. Bin Liu et al. (2016). "MAZ mediates the cross-talk between CT-1 and NOTCH1 signaling during gliogenesis".PMID 26867947
  94. E Lauretti et al. (2016). "Chronic behavioral stress exaggerates motor deficit and neuroinflammation in the MPTP mouse model of Parkinson's disease".PMID 26859816
  95. Charisse N Winston et al. (2016). "Dendritic Spine Loss and Chronic White Matter Inflammation in a Mouse Model of Highly Repetitive Head Trauma".PMID 26857506
  96. Gretchen H Delcambre et al. (2016). "Immunohistochemistry for the detection of neural and inflammatory cells in equine brain tissue".PMID 26855862
  97. Yali Li et al. (2016). "Age-related changes in hypertensive brain damage in the hippocampi of spontaneously hypertensive rats".PMID 26846626
  98. Jennifer L Furman et al. (2016). "Blockade of Astrocytic Calcineurin/NFAT Signaling Helps to Normalize Hippocampal Synaptic Function and Plasticity in a Rat Model of Traumatic Brain Injury".PMID 26843634
  99. Aarti Sharma et al. (2016). "ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function".PMID 26842965
  100. Daan R M G Ophelders et al. (2016). "Neuroinflammation and structural injury of the fetal ovine brain following intra-amniotic Candida albicans exposure".PMID 26842664
  101. Michael Schoen et al. (2015). "Super-Resolution Microscopy Reveals Presynaptic Localization of the ALS/FTD Related Protein FUS in Hippocampal Neurons".PMID 26834559
  102. Hongyun Li et al. (2016). "Cerebral Apolipoprotein-D Is Hypoglycosylated Compared to Peripheral Tissues and Is Variably Expressed in Mouse and Human Brain Regions".PMID 26829325
  103. Saori Okamoto et al. (2016). "Bevacizumab changes vascular structure and modulates the expression of angiogenic factors in recurrent malignant gliomas".PMID 26826105
  104. Eiichi Tokuda et al. (2016). "Low autophagy capacity implicated in motor system vulnerability to mutant superoxide dismutase".PMID 26810478
  105. Corinne A Lee-Kubli et al. (2016). "Analysis of the behavioral, cellular and molecular characteristics of pain in severe rodent spinal cord injury".PMID 26808661
  106. Katherine L Misuraca et al. (2016). "A Novel Mouse Model of Diffuse Intrinsic Pontine Glioma Initiated in Pax3-Expressing Cells".PMID 26806352
  107. Peer Hendrik Kuhn et al. (2016). "Systematic substrate identification indicates a central role for the metalloprotease ADAM10 in axon targeting and synapse function".PMID 26802628
  108. Yasuhito Watanabe et al. (2015). "Age-Dependent Degeneration of Mature Dentate Gyrus Granule Cells Following NMDA Receptor Ablation".PMID 26793056
  109. Hedwich F Kuipers et al. (2016). "Hyaluronan synthesis is necessary for autoreactive T-cell trafficking, activation, and Th1 polarization".PMID 26787861
  110. Kelly Hares et al. (2016). "Axonal motor protein KIF5A and associated cargo deficits in multiple sclerosis lesional and normal-appearing white matter".PMID 26785938
  111. Anne Korwitz et al. (2016). "Loss of OMA1 delays neurodegeneration by preventing stress-induced OPA1 processing in mitochondria".PMID 26783299
  112. Seung Kyun Kang et al. (2016). "Bioresorbable silicon electronic sensors for the brain".PMID 26779949
  113. Isola A M Brown et al. (2016). "Enteric glia mediate neuron death in colitis through purinergic pathways that require connexin-43 and nitric oxide".PMID 26771001
  114. Clairton F de Souza et al. (2016). "Macromolecular markers in normal human retina and applications to human retinal disease".PMID 26769220
  115. Peng Yuan et al. (2016). "Attenuation of β-Amyloid Deposition and Neurotoxicity by Chemogenetic Modulation of Neural Activity".PMID 26758850
  116. Hong Lian et al. (2016). "Astrocyte-Microglia Cross Talk through Complement Activation Modulates Amyloid Pathology in Mouse Models of Alzheimer's Disease".PMID 26758846
  117. Qiang Liu et al. (2016). "Neural stem cells sustain natural killer cells that dictate recovery from brain inflammation".PMID 26752157
  118. Céline Ruegsegger et al. (2016). "Impaired mTORC1-Dependent Expression of Homer-3 Influences SCA1 Pathophysiology".PMID 26748090
  119. Valentina Vacca et al. (2016). "17beta-estradiol counteracts neuropathic pain: a behavioural, immunohistochemical, and proteomic investigation on sex-related differences in mice".PMID 26742647
  120. Sourav R Choudhury et al. (2016). "Widespread Central Nervous System Gene Transfer and Silencing After Systemic Delivery of Novel AAV-AS Vector".PMID 26708003
  121. Anna Benedykcinska et al. (2016). "Generation of brain tumours in mice by Cre-mediated recombination of neural progenitors in situ with the tamoxifen metabolite endoxifen".PMID 26704996
  122. Ahmed A M Abdel-Hamid et al. (2016). "Effect of memantine: A NMDA receptor blocker, on ethambutol-induced retinal injury".PMID 26704355
  123. T L Platt et al. (2016). "Obesity, diabetes, and leptin resistance promote tau pathology in a mouse model of disease".PMID 26701291
  124. Justin V Joseph et al. (2015). "Serum-Induced Differentiation of Glioblastoma Neurospheres Leads to Enhanced Migration/Invasion Capacity That Is Associated with Increased MMP9".PMID 26700636
  125. Anke Müller et al. (2015). "Monitoring Astrocytic Proteome Dynamics by Cell Type-Specific Protein Labeling".PMID 26690742
  126. Arkady Khoutorsky et al. (2015). "Translational control of nociception via 4E-binding protein 1".PMID 26678009
  127. Karolina Slowicka et al. (2016). "Optineurin deficiency in mice is associated with increased sensitivity to Salmonella but does not affect proinflammatory NF-κB signaling".PMID 26677802
  128. J A Gilkes et al. (2016). "Mucopolysaccharidosis IIIB confers enhanced neonatal intracranial transduction by AAV8 but not by 5, 9 or rh10".PMID 26674264
  129. Mélanie Pages et al. (2015). "Papillary glioneuronal tumors: histological and molecular characteristics and diagnostic value of SLC44A1-PRKCA fusion".PMID 26671581
  130. Mariya Hristova et al. (2016). "Inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) reduces neonatal hypoxic-ischaemic brain damage".PMID 26669927
  131. Aiqing Chen et al. (2016). "Frontal white matter hyperintensities, clasmatodendrosis and gliovascular abnormalities in ageing and post-stroke dementia".PMID 26667280
  132. Laura T Haas et al. (2016). "Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer's disease".PMID 26667279
  133. Linda A Bean et al. (2015). "Re-Opening the Critical Window for Estrogen Therapy".PMID 26658861
  134. Andreas Müller-Schiffmann et al. (2016). "Amyloid-β dimers in the absence of plaque pathology impair learning and synaptic plasticity".PMID 26657517
  135. Akon Higuchi et al. (2015). "Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity".PMID 26656754
  136. Christina Stefanitsch et al. (2015). "tPA Deficiency in Mice Leads to Rearrangement in the Cerebrovascular Tree and Cerebroventricular Malformations".PMID 26648843
  137. Jan C Frankowski et al. (2015). "Detrimental role of the EP1 prostanoid receptor in blood-brain barrier damage following experimental ischemic stroke".PMID 26648273
  138. Marilyn Scandaglia et al. (2015). "Fine-tuned SRF activity controls asymmetrical neuronal outgrowth: implications for cortical migration, neural tissue lamination and circuit assembly".PMID 26638868
  139. Misuzu Hashimoto et al. (2016). "Severe Hypomyelination and Developmental Defects Are Caused in Mice Lacking Protein Arginine Methyltransferase 1 (PRMT1) in the Central Nervous System".PMID 26637354
  140. Yongsun Kim et al. (2015). "Antioxidant and anti-inflammatory effects of intravenously injected adipose derived mesenchymal stem cells in dogs with acute spinal cord injury".PMID 26612085
  141. Bruno A Benítez et al. (2015). "Clinically early-stage CSPα mutation carrier exhibits remarkable terminal stage neuronal pathology with minimal evidence of synaptic loss".PMID 26610600
  142. Ming Fang et al. (2015). "Scutellarin regulates microglia-mediated TNC1 astrocytic reaction and astrogliosis in cerebral ischemia in the adult rats".PMID 26608466
  143. Nora Urraca et al. (2015). "Characterization of neurons from immortalized dental pulp stem cells for the study of neurogenetic disorders".PMID 26599327
  144. Cheril Tapia-Rojas et al. (2015). "Is L-methionine a trigger factor for Alzheimer's-like neurodegeneration?: Changes in Aβ oligomers, tau phosphorylation, synaptic proteins, Wnt signaling and behavioral impairment in wild-type mice".PMID 26590557
  145. Dennis Mircsof et al. (2015). "Mutations in NONO lead to syndromic intellectual disability and inhibitory synaptic defects".PMID 26571461
  146. Aida Rodrigo Albors et al. (2015). "Planar cell polarity-mediated induction of neural stem cell expansion during axolotl spinal cord regeneration".PMID 26568310
  147. Denise R Cook-Snyder et al. (2015). "A retrograde adeno-associated virus for collecting ribosome-bound mRNA from anatomically defined projection neurons".PMID 26557053
  148. Sung Il Park et al. (2015). "Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics".PMID 26551059
  149. Angélica Maria Sabogal-Guáqueta et al. (2016). "Linalool reverses neuropathological and behavioral impairments in old triple transgenic Alzheimer's mice".PMID 26549854
  150. Jonathan D Cherry et al. (2015). "Arginase 1+ microglia reduce Aβ plaque deposition during IL-1β-dependent neuroinflammation".PMID 26538310
  151. Marta Winiecka-Klimek et al. (2015). "SOX2 and SOX2-MYC Reprogramming Process of Fibroblasts to the Neural Stem Cells Compromised by Senescence".PMID 26535892
  152. Gabriele Bonaventura et al. (2015). "Different Tissue-Derived Stem Cells: A Comparison of Neural Differentiation Capability".PMID 26517263
  153. Jakub Sikora et al. (2016). "X-linked Christianson syndrome: heterozygous female Slc9a6 knockout mice develop mosaic neuropathological changes and related behavioral abnormalities".PMID 26515654
  154. Veronika Matschke et al. (2015). "NDRG2 phosphorylation provides negative feedback for SGK1-dependent regulation of a kainate receptor in astrocytes".PMID 26500492
  155. Maral Tajerian et al. (2015). "Differential Efficacy of Ketamine in the Acute versus Chronic Stages of Complex Regional Pain Syndrome in Mice".PMID 26492479
  156. Lin Zhang et al. (2015). "Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth".PMID 26479035
  157. Yan Gu et al. (2015). "Mesenchymal stem cells suppress neuronal apoptosis and decrease IL-10 release via the TLR2/NFκB pathway in rats with hypoxic-ischemic brain damage".PMID 26475712
  158. Yasuhiko Kizuka et al. (2016). "Bisecting GlcNAc modification stabilizes BACE1 protein under oxidative stress conditions".PMID 26467158
  159. David N Hauser et al. (2015). "The Polg Mutator Phenotype Does Not Cause Dopaminergic Neurodegeneration in DJ-1-Deficient Mice".PMID 26464968
  160. Ah Reum Ko et al. (2015). "Endothelin-1 induces LIMK2-mediated programmed necrotic neuronal death independent of NOS activity".PMID 26438559
  161. Jesse A Stokum et al. (2015). "Heterogeneity of aquaporin-4 localization and expression after focal cerebral ischemia underlies differences in white versus grey matter swelling".PMID 26419740
  162. Laura A Struzyna et al. (2015). "Rebuilding Brain Circuitry with Living Micro-Tissue Engineered Neural Networks".PMID 26414439
  163. Fuyi Chen et al. (2015). "Tracking and transforming neocortical progenitors by CRISPR/Cas9 gene targeting and piggyBac transposase lineage labeling".PMID 26400094
  164. Naoto Watamura et al. (2016). "Colocalization of phosphorylated forms of WAVE1, CRMP2, and tau in Alzheimer's disease model mice: Involvement of Cdk5 phosphorylation and the effect of ATRA treatment".PMID 26400044
  165. Achim Werner et al. (2015). "Cell-fate determination by ubiquitin-dependent regulation of translation".PMID 26399832
  166. Janne Hakanen et al. (2015). "Defects in neural guidepost structures and failure to remove leptomeningeal cells from the septal midline behind the interhemispheric fusion defects in Netrin1 deficient mice".PMID 26397040
  167. Ye Sun et al. (2015). "SOCS3 in retinal neurons and glial cells suppresses VEGF signaling to prevent pathological neovascular growth".PMID 26396267
  168. Zhong L Hua et al. (2015). "Rac1 plays an essential role in axon growth and guidance and in neuronal survival in the central and peripheral nervous systems".PMID 26395878
  169. Michael Telias et al. (2015). "Molecular mechanisms regulating impaired neurogenesis of fragile X syndrome human embryonic stem cells".PMID 26393806
  170. Haruna Hirata et al. (2016). "Cell adhesion molecule contactin-associated protein 3 is expressed in the mouse basal ganglia during early postnatal stages".PMID 26389685
  171. Sandra Ahn et al. (2016). "Differentiation of human pluripotent stem cells into Medial Ganglionic Eminence vs. Caudal Ganglionic Eminence cells".PMID 26364591
  172. Shenbin Liu et al. (2015). "Spinal IL-33/ST2 Signaling Contributes to Neuropathic Pain via Neuronal CaMKII-CREB and Astroglial JAK2-STAT3 Cascades in Mice".PMID 26352378
  173. Rachel E James et al. (2016). "Loss of galectin-3 decreases the number of immune cells in the subventricular zone and restores proliferation in a viral model of multiple sclerosis".PMID 26337870
  174. Christopher M Henstridge et al. (2015). "Post-mortem brain analyses of the Lothian Birth Cohort 1936: extending lifetime cognitive and brain phenotyping to the level of the synapse".PMID 26335101
  175. Christoph M Zehendner et al. (2015). "Traumatic brain injury results in rapid pericyte loss followed by reactive pericytosis in the cerebral cortex".PMID 26333872
  176. Stanley B Prusiner et al. (2015). "Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism".PMID 26324905
  177. Harshvardhan Rolyan et al. (2015). "Defects of Lipid Synthesis Are Linked to the Age-Dependent Demyelination Caused by Lamin B1 Overexpression".PMID 26311780
  178. Ana C Zarpelon et al. (2016). "Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain".PMID 26310268
  179. Michele Bellesi et al. (2015). "Effects of sleep and wake on astrocytes: clues from molecular and ultrastructural studies".PMID 26303010
  180. Susanne F Koch et al. (2015). "Halting progressive neurodegeneration in advanced retinitis pigmentosa".PMID 26301813
  181. Erica Korb et al. (2015). "BET protein Brd4 activates transcription in neurons and BET inhibitor Jq1 blocks memory in mice".PMID 26301327
  182. Naotaka Izuo et al. (2015). "Brain-Specific Superoxide Dismutase 2 Deficiency Causes Perinatal Death with Spongiform Encephalopathy in Mice".PMID 26301039
  183. Claire J Garwood et al. (2015). "Insulin and IGF1 signalling pathways in human astrocytes in vitro and in vivo; characterisation, subcellular localisation and modulation of the receptors".PMID 26297026
  184. Nico Angliker et al. (2015). "mTORC1 and mTORC2 have largely distinct functions in Purkinje cells".PMID 26296489
  185. Il Shin Lee et al. (2015). "Human neural stem cells alleviate Alzheimer-like pathology in a mouse model".PMID 26293123
  186. Mikio Shimada et al. (2015). "Polynucleotide kinase-phosphatase enables neurogenesis via multiple DNA repair pathways to maintain genome stability".PMID 26290337
  187. Takamasa Kawaguchi et al. (2015). "Generation of Naïve Bovine Induced Pluripotent Stem Cells Using PiggyBac Transposition of Doxycycline-Inducible Transcription Factors".PMID 26287611
  188. Kuti Baruch et al. (2015). "Breaking immune tolerance by targeting Foxp3(+) regulatory T cells mitigates Alzheimer's disease pathology".PMID 26284939
  189. Linda Fredriksson et al. (2015). "Identification of a neurovascular signaling pathway regulating seizures in mice".PMID 26273685
  190. Donika Gallina et al. (2015). "Activation of glucocorticoid receptors in Müller glia is protective to retinal neurons and suppresses microglial reactivity".PMID 26272753
  191. Mark D Meadowcroft et al. (2015). "Cortical iron regulation and inflammatory response in Alzheimer's disease and APPSWE/PS1ΔE9 mice: a histological perspective".PMID 26257600
  192. Fong Kuan Wong et al. (2015). "Sustained Pax6 Expression Generates Primate-like Basal Radial Glia in Developing Mouse Neocortex".PMID 26252244
  193. William Galbavy et al. (2015). "Neuroimmune and Neuropathic Responses of Spinal Cord and Dorsal Root Ganglia in Middle Age".PMID 26241743
  194. Louiza Bohn Thomsen et al. (2015). "A Triple Culture Model of the Blood-Brain Barrier Using Porcine Brain Endothelial cells, Astrocytes and Pericytes".PMID 26241648
  195. Mirna Lechpammer et al. (2016). "Dysregulation of FMRP/mTOR Signaling Cascade in Hypoxic-Ischemic Injury of Premature Human Brain".PMID 26239490
  196. J Y Kim et al. (2015). "ETB receptor-mediated MMP-9 activation induces vasogenic edema via ZO-1 protein degradation following status epilepticus".PMID 26232046
  197. Manuel Lutzenberger et al. (2015). "Ablation of CCAAT/Enhancer-Binding Protein Delta (C/EBPD): Increased Plaque Burden in a Murine Alzheimer's Disease Model".PMID 26230261
  198. Peter Zhang et al. (2015). "Kruppel-Like Factor 4 Regulates Granule Cell Pax6 Expression and Cell Proliferation in Early Cerebellar Development".PMID 26226504
  199. Yuki Miyamoto et al. (2015). "Involvement of the Tyro3 receptor and its intracellular partner Fyn signaling in Schwann cell myelination".PMID 26224309
  200. Kambiz Hassanzadeh et al. (2015). "Effect of selegiline on neural stem cells differentiation: a possible role for neurotrophic factors".PMID 26221478
  201. Christian Cortés-Campos et al. (2015). "Zebrafish adult-derived hypothalamic neurospheres generate gonadotropin-releasing hormone (GnRH) neurons".PMID 26209533
  202. Masaaki Ishikawa et al. (2015). "Transplantation of neurons derived from human iPS cells cultured on collagen matrix into guinea-pig cochleae".PMID 26205474
  203. Sebastien Gingras et al. (2015). "SCYL2 Protects CA3 Pyramidal Neurons from Excitotoxicity during Functional Maturation of the Mouse Hippocampus".PMID 26203146
  204. Alireza Mohammadi et al. (2015). "Generation of Rat Embryonic Germ Cells via Inhibition of TGFß and MEK Pathways".PMID 26199907
  205. Maria Nordheim Alme et al. (2015). "Fingolimod does not enhance cerebellar remyelination in the cuprizone model".PMID 26198937
  206. Kristel Kegler et al. (2015). "Contribution of Schwann Cells to Remyelination in a Naturally Occurring Canine Model of CNS Neuroinflammation".PMID 26196511
  207. Heather R Minkel et al. (2015). "Elevated GFAP induces astrocyte dysfunction in caudal brain regions: A potential mechanism for hindbrain involved symptoms in type II Alexander disease".PMID 26190408
  208. Wu Fu Chen et al. (2015). "Neuroprotective Effects of Direct Intrathecal Administration of Granulocyte Colony-Stimulating Factor in Rats with Spinal Cord Injury".PMID 26190345
  209. Michael Stiess et al. (2015). "A Dual SILAC Proteomic Labeling Strategy for Quantifying Constitutive and Cell-Cell Induced Protein Secretion".PMID 26189946
  210. Youjun Chen et al. (2015). "Pten Mutations Alter Brain Growth Trajectory and Allocation of Cell Types through Elevated β-Catenin Signaling".PMID 26180201
  211. Deepti Chugh et al. (2015). "Alterations in Brain Inflammation, Synaptic Proteins, and Adult Hippocampal Neurogenesis during Epileptogenesis in Mice Lacking Synapsin2".PMID 26177381
  212. Shotaro Michinaga et al. (2015). "Improvement of cold injury-induced mouse brain edema by endothelin ETB antagonists is accompanied by decreases in matrixmetalloproteinase 9 and vascular endothelial growth factor-A".PMID 26174228
  213. R M Gorojod et al. (2015). "The autophagic- lysosomal pathway determines the fate of glial cells under manganese- induced oxidative stress conditions".PMID 26163003
  214. Jennifer L Ziskin et al. (2015). "Neuropathologic analysis of Tyr69His TTR variant meningovascular amyloidosis with dementia".PMID 26156087
  215. Lucas K Smith et al. (2015). "β2-microglobulin is a systemic pro-aging factor that impairs cognitive function and neurogenesis".PMID 26147761
  216. Shweta S Puntambekar et al. (2015). "Interleukin-10 is a critical regulator of white matter lesion containment following viral induced demyelination".PMID 26132901
  217. Christian Schachtrup et al. (2015). "Nuclear pore complex remodeling by p75(NTR) cleavage controls TGF-β signaling and astrocyte functions".PMID 26120963
  218. Meenakshi Rao et al. (2015). "Enteric glia express proteolipid protein 1 and are a transcriptionally unique population of glia in the mammalian nervous system".PMID 26119414
  219. Johannes Hradsky et al. (2015). "Alternative splicing, expression and cellular localization of Calneuron-1 in the rat and human brain".PMID 26116628
  220. Susan Noell et al. (2015). "Water Channels Aquaporin 4 and -1 Expression in Subependymoma Depends on the Localization of the Tumors".PMID 26115524
  221. Yueguang Liu et al. (2015). "Ascl1 Converts Dorsal Midbrain Astrocytes into Functional Neurons In Vivo".PMID 26109658
  222. Olivier Cases et al. (2015). "Foxg1-Cre Mediated Lrp2 Inactivation in the Developing Mouse Neural Retina, Ciliary and Retinal Pigment Epithelia Models Congenital High Myopia".PMID 26107939
  223. Badrah Alghamdi et al. (2015). "Phenotype overlap in glial cell populations: astroglia, oligodendroglia and NG-2(+) cells".PMID 26106302
  224. Katarina Kapuralin et al. (2015). "STAM2, a member of the endosome-associated complex ESCRT-0 is highly expressed in neurons".PMID 26101075
  225. Kimberleve Rolón-Reyes et al. (2015). "Microglia Activate Migration of Glioma Cells through a Pyk2 Intracellular Pathway".PMID 26098895
  226. Keodavanh Chounlamountry et al. (2015). "Remodeling of glial coverage of glutamatergic synapses in the rat nucleus tractus solitarii after ozone inhalation".PMID 26083406
  227. Huiling Tang et al. (2015). "Progesterone and vitamin D combination therapy modulates inflammatory response after traumatic brain injury".PMID 26083048
  228. Guillaume Perriard et al. (2015). "Interleukin-22 is increased in multiple sclerosis patients and targets astrocytes".PMID 26077779
  229. E E O'Brien et al. (2015). "Colocalization of aromatase in spinal cord astrocytes: differences in expression and relationship to mechanical and thermal hyperalgesia in murine models of a painful and a non-painful bone tumor".PMID 26071956
  230. Kirsten S Evonuk et al. (2015). "Inhibition of System Xc(-) Transporter Attenuates Autoimmune Inflammatory Demyelination".PMID 26071560
  231. Marc Zuckermann et al. (2015). "Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling".PMID 26067104
  232. Bijorn Omar Balzamino et al. (2015). "NGF Expression in Reelin-Deprived Retinal Cells: A Potential Neuroprotective Effect".PMID 26066836
  233. Silke Götze et al. (2015). "Epigenetic Changes during Hepatic Stellate Cell Activation".PMID 26065684
  234. Ning Tang et al. (2016). "Different Effects of p52SHC1 and p52SHC3 on the Cell Cycle of Neurons and Neural Stem Cells".PMID 26058566
  235. Jian Jiang et al. (2015). "Spatiotemporal dynamics of traction forces show three contraction centers in migratory neurons".PMID 26056143
  236. Mei Du et al. (2015). "Transgenic Mice Overexpressing Serum Retinol-Binding Protein Develop Progressive Retinal Degeneration through a Retinoid-Independent Mechanism".PMID 26055327
  237. Jan Hoeber et al. (2015). "Human Embryonic Stem Cell-Derived Progenitors Assist Functional Sensory Axon Regeneration after Dorsal Root Avulsion Injury".PMID 26053681
  238. Yansu Guo et al. (2016). "A Single Injection of Recombinant Adeno-Associated Virus into the Lumbar Cistern Delivers Transgene Expression Throughout the Whole Spinal Cord".PMID 26050084
  239. Simon Kaja et al. (2015). "Plate reader-based cell viability assays for glioprotection using primary rat optic nerve head astrocytes".PMID 26048476
  240. Shoko Morita et al. (2016). "Heterogeneous vascular permeability and alternative diffusion barrier in sensory circumventricular organs of adult mouse brain".PMID 26048259
  241. Yue Juan Chen et al. (2015). "Schwann cells induce Proliferation and Migration of Oligodendrocyte Precursor Cells Through Secretion of PDGF-AA and FGF-2".PMID 26044662
  242. Benjamin Keller et al. (2015). "Regulation of hippocampal Fas receptor and death-inducing signaling complex after kainic acid treatment in mice".PMID 26044520
  243. Saiyong Zhu et al. (2015). "Reprogramming fibroblasts toward cardiomyocytes, neural stem cells and hepatocytes by cell activation and signaling-directed lineage conversion".PMID 26042385
  244. C Requejo et al. (2015). "Topographical Distribution of Morphological Changes in a Partial Model of Parkinson's Disease--Effects of Nanoencapsulated Neurotrophic Factors Administration".PMID 26041662
  245. Mats Julius Stensrud et al. (2015). "Immunogold characteristics of VGLUT3-positive GABAergic nerve terminals suggest corelease of glutamate".PMID 26010578
  246. Romain Sonneville et al. (2015). "Neuropathological Correlates of Hyperglycemia During Prolonged Polymicrobial Sepsis in Mice".PMID 26009823
  247. Veysel Haktan Ozacmak et al. (2016). "Chronic treatment with resveratrol, a natural polyphenol found in grapes, alleviates oxidative stress and apoptotic cell death in ovariectomized female rats subjected to chronic cerebral hypoperfusion".PMID 26005194
  248. Hanadie Yousef et al. (2015). "Systemic attenuation of the TGF-β pathway by a single drug simultaneously rejuvenates hippocampal neurogenesis and myogenesis in the same old mammal".PMID 26003168
  249. Lei Pei et al. (2015). "A Novel Mechanism of Spine Damages in Stroke via DAPK1 and Tau".PMID 25995053
  250. Shinya Yufune et al. (2015). "Transient Blockade of ERK Phosphorylation in the Critical Period Causes Autistic Phenotypes as an Adult in Mice".PMID 25993696
  251. Hannah K Robinson et al. (2015). "Early lethality and neuronal proteinopathy in mice expressing cytoplasm-targeted FUS that lacks the RNA recognition motif".PMID 25991062
  252. Miaomiao Mao et al. (2015). "The Structural Development of the Mouse Dorsal Cochlear Nucleus".PMID 25985874
  253. David B Wang et al. (2015). "Loss of endophilin-B1 exacerbates Alzheimer's disease pathology".PMID 25981964
  254. M López-Gallardo et al. (2015). "Neonatal Treatment with a Pegylated Leptin Antagonist Induces Sexually Dimorphic Effects on Neurones and Glial Cells, and on Markers of Synaptic Plasticity in the Developing Rat Hippocampal Formation".PMID 25981175
  255. Francesco Bedogni et al. (2016). "Defects During Mecp2 Null Embryonic Cortex Development Precede the Onset of Overt Neurological Symptoms".PMID 25979088
  256. Peng Liu et al. (2015). "Characterization of a Novel Mouse Model of Alzheimer's Disease--Amyloid Pathology and Unique β-Amyloid Oligomer Profile".PMID 25946042
  257. Andrea Milenkovic et al. (2015). "Bestrophin 1 is indispensable for volume regulation in human retinal pigment epithelium cells".PMID 25941382
  258. Rui Liu et al. (2015). "A cortical astrocyte subpopulation inhibits axon growth in vitro and in vivo".PMID 25936767
  259. J Michael Gee et al. (2015). "Imaging activity in astrocytes and neurons with genetically encoded calcium indicators following in utero electroporation".PMID 25926768
  260. Filipa L Cardoso et al. (2015). "Systemic inflammation in early neonatal mice induces transient and lasting neurodegenerative effects".PMID 25924675
  261. Wenze Niu et al. (2015). "SOX2 reprograms resident astrocytes into neural progenitors in the adult brain".PMID 25921813
  262. Xiaoyu Luo et al. (2015). "Exosomes are unlikely involved in intercellular Nef transfer".PMID 25919665
  263. Courtney M Tate et al. (2015). "A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology".PMID 25919028
  264. Paschalis Theotokis et al. (2015). "Connexin43 and connexin47 alterations after neural precursor cells transplantation in experimental autoimmune encephalomyelitis".PMID 25914045
  265. Scott J Webster et al. (2015). "Closed head injury in an age-related Alzheimer mouse model leads to an altered neuroinflammatory response and persistent cognitive impairment".PMID 25904805
  266. Jeffrey S Hakim et al. (2015). "Positively Charged Oligo[Poly(Ethylene Glycol) Fumarate] Scaffold Implantation Results in a Permissive Lesion Environment after Spinal Cord Injury in Rat".PMID 25891264
  267. Wu Fu Chen et al. (2015). "The use of the antimicrobial peptide piscidin (PCD)-1 as a novel anti-nociceptive agent".PMID 25890701
  268. Rebecca K Sheean et al. (2015). "Effect of thymic stimulation of CD4+ T cell expansion on disease onset and progression in mutant SOD1 mice".PMID 25889790
  269. Shi Ying Huang et al. (2015). "Involvement of phosphatase and tensin homolog deleted from chromosome 10 in rodent model of neuropathic pain".PMID 25889774
  270. Adam D Bachstetter et al. (2015). "Attenuation of traumatic brain injury-induced cognitive impairment in mice by targeting increased cytokine levels with a small molecule experimental therapeutic".PMID 25886256
  271. Nimrod Miller et al. (2015). "Non-aggregating tau phosphorylation by cyclin-dependent kinase 5 contributes to motor neuron degeneration in spinal muscular atrophy".PMID 25878277
  272. Jasmien Orije et al. (2015). "Longitudinal monitoring of metabolic alterations in cuprizone mouse model of multiple sclerosis using 1H-magnetic resonance spectroscopy".PMID 25871629
  273. Patricia Rivera et al. (2015). "Pharmacological blockade of the fatty acid amide hydrolase (FAAH) alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothalamus and striatum in a negative energy context".PMID 25870539
  274. Jens O Watzlawik et al. (2015). "Polysialic acid as an antigen for monoclonal antibody HIgM12 to treat multiple sclerosis and other neurodegenerative disorders".PMID 25866077
  275. Michael D Scofield et al. (2015). "Gq-DREADD Selectively Initiates Glial Glutamate Release and Inhibits Cue-induced Cocaine Seeking".PMID 25861696
  276. Stephan J Guyenet et al. (2015). "Proteolytic cleavage of ataxin-7 promotes SCA7 retinal degeneration and neurological dysfunction".PMID 25859008
  277. Qin Hua Gu et al. (2015). "miR-26a and miR-384-5p are required for LTP maintenance and spine enlargement".PMID 25858512
  278. Lauren R Kett et al. (2015). "α-Synuclein-independent histopathological and motor deficits in mice lacking the endolysosomal Parkinsonism protein Atp13a2".PMID 25855184
  279. A K Samhan-Arias et al. (2016). "High expression of cytochrome b 5 reductase isoform 3/cytochrome b 5 system in the cerebellum and pyramidal neurons of adult rat brain".PMID 25850901
  280. Nuria Sánchez-Farías et al. (2015). "Doublecortin is widely expressed in the developing and adult retina of sharks".PMID 25849205
  281. Jenna L Leclerc et al. (2015). "Genetic deletion of the prostaglandin E2 E prostanoid receptor subtype 3 improves anatomical and functional outcomes after intracerebral hemorrhage".PMID 25847406
  282. Carolin Kubelt et al. (2015). "Epithelial-to-mesenchymal transition in paired human primary and recurrent glioblastomas".PMID 25845427
  283. D Isaev et al. (2015). "Contribution of protease-activated receptor 1 in status epilepticus-induced epileptogenesis".PMID 25843668
  284. Lasse Dissing-Olesen et al. (2015). "Fixation and Immunolabeling of Brain Slices: SNAPSHOT Method".PMID 25829354
  285. Michel Fausther et al. (2015). "Establishment and characterization of rat portal myofibroblast cell lines".PMID 25822334
  286. Clifford H Shin et al. (2015). "The BRAF kinase domain promotes the development of gliomas in vivo".PMID 25821557
  287. Beatrice K Leung et al. (2015). "Ventral pallidal projections to mediodorsal thalamus and ventral tegmental area play distinct roles in outcome-specific Pavlovian-instrumental transfer".PMID 25810525
  288. Guillermo Agustin Videla Richardson et al. (2016). "Specific Preferences in Lineage Choice and Phenotypic Plasticity of Glioma Stem Cells Under BMP4 and Noggin Influence".PMID 25808628
  289. Marta Luna-Sánchez et al. (2015). "The clinical heterogeneity of coenzyme Q10 deficiency results from genotypic differences in the Coq9 gene".PMID 25802402
  290. M Smeyne et al. (2015). "HIF1α is necessary for exercise-induced neuroprotection while HIF2α is needed for dopaminergic neuron survival in the substantia nigra pars compacta".PMID 25796140
  291. Han Seok Koh et al. (2015). "The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia".PMID 25790768
  292. Elizabeth E Crouch et al. (2015). "Regional and stage-specific effects of prospectively purified vascular cells on the adult V-SVZ neural stem cell lineage".PMID 25788671
  293. Hongyun Li et al. (2015). "Apolipoprotein D modulates amyloid pathology in APP/PS1 Alzheimer's disease mice".PMID 25784209
  294. Yi Liang et al. (2012). "Scorpion ethanol extract and valproic acid effects on hippocampal glial fibrillary acidic protein expression in a rat model of chronic-kindling epilepsy induced by lithium chloride-pilocarpine".PMID 25774184
  295. Peter Filipcik et al. (2015). "Intraneuronal accumulation of misfolded tau protein induces overexpression of Hsp27 in activated astrocytes".PMID 25772164
  296. Takashi Matsushita et al. (2015). "Diffuse and persistent blood-spinal cord barrier disruption after contusive spinal cord injury rapidly recovers following intravenous infusion of bone marrow mesenchymal stem cells".PMID 25771801
  297. Eloy Cuadrado et al. (2015). "Phenotypic variation in Aicardi-Goutières syndrome explained by cell-specific IFN-stimulated gene response and cytokine release".PMID 25769924
  298. Peter Bedner et al. (2015). "Astrocyte uncoupling as a cause of human temporal lobe epilepsy".PMID 25765328
  299. Anne Cécile Boulay et al. (2015). "Immune quiescence of the brain is set by astroglial connexin 43".PMID 25762685
  300. Eiichi Tokuda et al. (2015). "Regulation of Intracellular Copper by Induction of Endogenous Metallothioneins Improves the Disease Course in a Mouse Model of Amyotrophic Lateral Sclerosis".PMID 25761970
  301. Adam J Mellott et al. (2015). "Nonviral Reprogramming of Human Wharton's Jelly Cells Reveals Differences Between ATOH1 Homologues".PMID 25760435
  302. Geng Qiang Ling et al. (2015). "All-trans retinoic acid impairs the vasculogenic mimicry formation ability of U87 stem-like cells through promoting differentiation".PMID 25760394
  303. Anusha H Tennakoon et al. (2015). "Analysis of glial fibrillary acidic protein (GFAP)-expressing ductular cells in a rat liver cirrhosis model induced by repeated injections of thioacetamide (TAA)".PMID 25758201
  304. Mohamed M Eid et al. (2015). "Immunopathological changes in the brain of immunosuppressed mice experimentally infected with Toxocara canis".PMID 25748709
  305. Marta Mellai et al. (2015). "Astroblastoma: beside being a tumor entity, an occasional phenotype of astrocytic gliomas?".PMID 25737639
  306. Juan Ignacio Romero et al. (2015). "Thioredoxin 1 and glutaredoxin 2 contribute to maintain the phenotype and integrity of neurons following perinatal asphyxia".PMID 25735211
  307. K Nakadate et al. (2015). "Developmental changes in the flotillin-1 expression pattern of the rat visual cortex".PMID 25732136
  308. Nurdan Ozkucur et al. (2015). "Membrane potential depolarization causes alterations in neuron arrangement and connectivity in cocultures".PMID 25722947
  309. Masahito Kawabori et al. (2015). "Triggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke".PMID 25716838
  310. Jack Griffin Campbell et al. (2015). "Neural stem/progenitor cells react to non-glial cns neoplasms".PMID 25713758
  311. Jana Trylcova et al. (2015). "Effect of cancer-associated fibroblasts on the migration of glioma cells in vitro".PMID 25712375
  312. Adam C Kaufman et al. (2015). "Fyn inhibition rescues established memory and synapse loss in Alzheimer mice".PMID 25707991
  313. Clarissa S Schitine et al. (2015). "Functional plasticity of GAT-3 in avian Müller cells is regulated by neurons via a glutamatergic input".PMID 25700791
  314. Ling Zhu et al. (2015). "Dysregulation of inter-photoreceptor retinoid-binding protein (IRBP) after induced Müller cell disruption".PMID 25692504
  315. Nàdia Villacampa et al. (2015). "Astrocyte-targeted production of IL-10 induces changes in microglial reactivity and reduces motor neuron death after facial nerve axotomy".PMID 25691003
  316. Jing Chen-Roetling et al. (2015). "Astrocyte overexpression of heme oxygenase-1 improves outcome after intracerebral hemorrhage".PMID 25690543
  317. Hong Xu et al. (2014). "Tau silencing by siRNA in the P301S mouse model of tauopathy".PMID 25687501
  318. Angélica Maria Sabogal-Guáqueta et al. (2015). "The flavonoid quercetin ameliorates Alzheimer's disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer's disease model mice".PMID 25666032
  319. D Porquet et al. (2015). "Amyloid and tau pathology of familial Alzheimer's disease APP/PS1 mouse model in a senescence phenotype background (SAMP8)".PMID 25663420
  320. Bensheng Ju et al. (2015). "Oncogenic KRAS promotes malignant brain tumors in zebrafish".PMID 25644510
  321. Alison Spilsbury et al. (2015). "The role of telomerase protein TERT in Alzheimer's disease and in tau-related pathology in vitro".PMID 25632141
  322. Claudia Cantoni et al. (2015). "TREM2 regulates microglial cell activation in response to demyelination in vivo".PMID 25631124
  323. Carlo Condello et al. (2015). "Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques".PMID 25630253
  324. Wei Li et al. (2015). "Systemic and cerebral iron homeostasis in ferritin knock-out mice".PMID 25629408
  325. Yuki Oka et al. (2015). "Thirst driving and suppressing signals encoded by distinct neural populations in the brain".PMID 25624099
  326. Anna G Orr et al. (2015). "Astrocytic adenosine receptor A2A and Gs-coupled signaling regulate memory".PMID 25622143
  327. Miranda Y Fong et al. (2015). "Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis".PMID 25621950
  328. Tao Xue et al. (2015). "Exposure to acoustic stimuli promotes the development and differentiation of neural stem cells from the cochlear nuclei through the clusterin pathway".PMID 25605314
  329. Khalil Bouyakdan et al. (2015). "A novel role for central ACBP/DBI as a regulator of long-chain fatty acid metabolism in astrocytes".PMID 25598214
  330. Anthony L Petraglia et al. (2014). "The pathophysiology underlying repetitive mild traumatic brain injury in a novel mouse model of chronic traumatic encephalopathy".PMID 25593768
  331. Yasuhiko Kizuka et al. (2015). "An aberrant sugar modification of BACE1 blocks its lysosomal targeting in Alzheimer's disease".PMID 25592972
  332. Matthew J Benskey et al. (2015). "Targeted gene delivery to the enteric nervous system using AAV: a comparison across serotypes and capsid mutants".PMID 25592336
  333. Daisuke Nakayama et al. (2015). "Long-delayed expression of the immediate early gene Arc/Arg3.1 refines neuronal circuits to perpetuate fear memory".PMID 25589774
  334. Shailendra Kumar Maurya et al. (2016). "Cypermethrin Stimulates GSK3β-Dependent Aβ and p-tau Proteins and Cognitive Loss in Young Rats: Reduced HB-EGF Signaling and Downstream Neuroinflammation as Critical Regulators".PMID 25575682
  335. Patrick M Long et al. (2015). "Acetate supplementation as a means of inducing glioblastoma stem-like cell growth arrest".PMID 25573156
  336. S Liu et al. (2015). "Disrupted autophagy after spinal cord injury is associated with ER stress and neuronal cell death".PMID 25569099
  337. Anupama Sathyamurthy et al. (2015). "ERBB3-mediated regulation of Bergmann glia proliferation in cerebellar lamination".PMID 25564653
  338. Kentaro Matsuzaki et al. (2015). "Aging attenuates acquired heat tolerance and hypothalamic neurogenesis in rats".PMID 25556765
  339. Fanny Ehret et al. (2015). "Mouse model of CADASIL reveals novel insights into Notch3 function in adult hippocampal neurogenesis".PMID 25555543
  340. Angela R Dixon et al. (2015). "Morphometric assessment of toxicant induced neuronal degeneration in full and restricted contact co-cultures of embryonic cortical rat neurons and astrocytes: using m-Dinitrobezene as a model neurotoxicant".PMID 25553915
  341. Han Tian et al. (2014). "Identification of protein network alterations upon retinal ischemia-reperfusion injury by quantitative proteomics using a Rattus norvegicus model".PMID 25549249
  342. Charlotte B Jendresen et al. (2015). "Overexpression of heparanase lowers the amyloid burden in amyloid-β precursor protein transgenic mice".PMID 25548284
  343. Lina Gällentoft et al. (2015). "Size-dependent long-term tissue response to biostable nanowires in the brain".PMID 25542805
  344. Edmund R Hollis et al. (2015). "A novel and robust conditioning lesion induced by ethidium bromide".PMID 25541322
  345. Pei Sen Yao et al. (2015). "Cell-density-dependent manifestation of partial characteristics for neuronal precursors in a newly established human gliosarcoma cell line".PMID 25539862
  346. Hanadie Yousef et al. (2015). "Age-Associated Increase in BMP Signaling Inhibits Hippocampal Neurogenesis".PMID 25538007
  347. Syoichiro Kono et al. (2015). "Neurovascular protection by telmisartan via reducing neuroinflammation in stroke-resistant spontaneously hypertensive rat brain after ischemic stroke".PMID 25534368
  348. Rebecca M Hill et al. (2015). "Combined MYC and P53 defects emerge at medulloblastoma relapse and define rapidly progressive, therapeutically targetable disease".PMID 25533335
  349. Chiara Ippolito et al. (2015). "An integrated assessment of histopathological changes of the enteric neuromuscular compartment in experimental colitis".PMID 25521239
  350. Carthur K Wan et al. (2013). "Spatiotemporal changes in Cx30 and Cx43 expression during neuronal differentiation of P19 EC and NT2/D1 cells".PMID 25505515
  351. Ying Li et al. (2015). "Toll-like receptor 4 enhancement of non-NMDA synaptic currents increases dentate excitability after brain injury".PMID 25497689
  352. Chika Okusa et al. (2014). "Subplate in a rat model of preterm hypoxia-ischemia".PMID 25493282
  353. Yunjiao Zhu et al. (2015). "Fibronectin Matrix Assembly after Spinal Cord Injury".PMID 25492623
  354. Francesca Maltecca et al. (2015). "Purkinje neuron Ca2+ influx reduction rescues ataxia in SCA28 model".PMID 25485680
  355. Bianca N S P Medina et al. (2015). "3-acetylpyridine-induced degeneration in the adult ascidian neural complex: Reactive and regenerative changes in glia and blood cells".PMID 25484282
  356. Chinmoy Sarkar et al. (2014). "Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury".PMID 25484084
  357. Jun Bin Yin et al. (2014). "Neurochemical properties of BDNF-containing neurons projecting to rostral ventromedial medulla in the ventrolateral periaqueductal gray".PMID 25477786
  358. Zeinab Mohamed Kamel Ismail et al. (2014). "Enhancement of Neural Stem Cells after Induction of Depression in Male Albino Rats (A histological & Immunohistochemical Study)".PMID 25473444
  359. Courtney Bricker-Anthony et al. (2014). "Exacerbation of blast-induced ocular trauma by an immune response".PMID 25472427
  360. Wanpeng Cui et al. (2014). "Glial dysfunction in the mouse habenula causes depressive-like behaviors and sleep disturbance".PMID 25471567
  361. Marietta Zille et al. (2014). "Influence of pigment epithelium-derived factor on outcome after striatal cerebral ischemia in the mouse".PMID 25470280
  362. Rachel C Lazarus et al. (2015). "Protein carbonylation after traumatic brain injury: cell specificity, regional susceptibility, and gender differences".PMID 25462645
  363. Y Zhu et al. (2015). "Hematogenous macrophage depletion reduces the fibrotic scar and increases axonal growth after spinal cord injury".PMID 25461258
  364. M Ceber et al. (2015). "Changes in expression of Slit1 and its receptor Robo2 in trigeminal ganglion and inferior alveolar nerve following inferior alveolar nerve axotomy in adult rats: a pilot study".PMID 25457824
  365. Elisabetta Lauretti et al. (2015). "Modulation of AD neuropathology and memory impairments by the isoprostane F2α is mediated by the thromboxane receptor".PMID 25457549
  366. B Paniagua-Torija et al. (2015). "Spinal cord injury induces a long-lasting upregulation of interleukin-1β in astrocytes around the central canal".PMID 25453765
  367. Lindsay A Hohsfield et al. (2014). "Vascular pathology of 20-month-old hypercholesterolemia mice in comparison to triple-transgenic and APPSwDI Alzheimer's disease mouse models".PMID 25447943
  368. Eva Vergaño-Vera et al. (2015). "Nurr1 blocks the mitogenic effect of FGF-2 and EGF, inducing olfactory bulb neural stem cells to adopt dopaminergic and dopaminergic-GABAergic neuronal phenotypes".PMID 25447275
  369. Yuri Inose et al. (2015). "Activated microglia in ischemic stroke penumbra upregulate MCP-1 and CCR2 expression in response to lysophosphatidylcholine derived from adjacent neurons and astrocytes".PMID 25443158
  370. Jeremy Petravicz et al. (2014). "Astrocyte IP3R2-dependent Ca(2+) signaling is not a major modulator of neuronal pathways governing behavior".PMID 25429263
  371. Jiwon Ryu et al. (2014). "The problem of axonal injury in the brains of veterans with histories of blast exposure".PMID 25422066
  372. Ahmed Sharaf et al. (2015). "Localization of reelin signaling pathway components in murine midbrain and striatum".PMID 25418135
  373. Chun Hu Wu et al. (2014). "Post-injury treatment with 7,8-dihydroxyflavone, a TrkB receptor agonist, protects against experimental traumatic brain injury via PI3K/Akt signaling".PMID 25415296
  374. Eduardo Gascon et al. (2014). "Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia".PMID 25401692
  375. Jian Zhang et al. (2014). "Synaptic and cognitive improvements by inhibition of 2-AG metabolism are through upregulation of microRNA-188-3p in a mouse model of Alzheimer's disease".PMID 25378159
  376. María José Pérez-Alvarez et al. (2015). "Estradiol and Progesterone Administration After pMCAO Stimulates the Neurological Recovery and Reduces the Detrimental Effect of Ischemia Mainly in Hippocampus".PMID 25377795
  377. Xiaohua Deng et al. (2014). "Lipolysaccharide-Induced Neuroinflammation Is Associated with Alzheimer-Like Amyloidogenic Axonal Pathology and Dendritic Degeneration in Rats".PMID 25360394
  378. Ver nica Fuentes-Santamaría et al. (2014). "Glia-related mechanisms in the anteroventral cochlear nucleus of the adult rat in response to unilateral conductive hearing loss".PMID 25352772
  379. C Levy et al. (2015). "Cell-specific and developmental expression of lectican-cleaving proteases in mouse hippocampus and neocortex".PMID 25349050
  380. Yee Hsieh Evelyn Heng et al. (2015). "NFIX Regulates Proliferation and Migration Within the Murine SVZ Neurogenic Niche".PMID 25331604
  381. Anja R Scholze et al. (2014). "BMP signaling in astrocytes downregulates EGFR to modulate survival and maturation".PMID 25330173
  382. Victor Túlio Ribeiro-Resende et al. (2014). "Mice lacking GD3 synthase display morphological abnormalities in the sciatic nerve and neuronal disturbances during peripheral nerve regeneration".PMID 25330147
  383. Carmen Falcone et al. (2015). "Emx2 expression levels in NSCs modulate astrogenesis rates by regulating EgfR and Fgf9".PMID 25327963
  384. Dennis Y Chuang et al. (2014). "Dietary Sutherlandia and elderberry mitigate cerebral ischemia-induced neuronal damage and attenuate p47phox and phospho-ERK1/2 expression in microglial cells".PMID 25324465
  385. Oswald Steward et al. (2014). "Characterization of ectopic colonies that form in widespread areas of the nervous system with neural stem cell transplants into the site of a severe spinal cord injury".PMID 25319698
  386. Ilaria Mirabile et al. (2015). "Identification of clinical target areas in the brainstem of prion-infected mice".PMID 25311251
  387. Nikki A McLean et al. (2014). "Delayed nerve stimulation promotes axon-protective neurofilament phosphorylation, accelerates immune cell clearance and enhances remyelination in vivo in focally demyelinated nerves".PMID 25310564
  388. Gregory B Stanton et al. (2015). "Cytogenesis in the adult monkey motor cortex: perivascular NG2 cells are the major adult born cell type".PMID 25308320
  389. Matthew C Tate et al. (2015). "Postnatal growth of the human pons: a morphometric and immunohistochemical analysis".PMID 25307966
  390. Aleksandra Rutkowska et al. (2015). "EBI2 regulates intracellular signaling and migration in human astrocyte".PMID 25297897
  391. Leticia Forny-Germano et al. (2014). "Alzheimer's disease-like pathology induced by amyloid-β oligomers in nonhuman primates".PMID 25297091
  392. Anushruti Ashok et al. (2015). "Exposure to As-, Cd-, and Pb-mixture induces Aβ, amyloidogenic APP processing and cognitive impairments via oxidative stress-dependent neuroinflammation in young rats".PMID 25288670
  393. Masayuki Kaneko et al. (2015). "Zinc transporters ZnT3 and ZnT6 are downregulated in the spinal cords of patients with sporadic amyotrophic lateral sclerosis".PMID 25284286
  394. Sylwia Libard et al. (2014). "Human cytomegalovirus tegument protein pp65 is detected in all intra- and extra-axial brain tumours independent of the tumour type or grade".PMID 25268364
  395. P S Rajput et al. (2014). "Protease activated receptor-1 mediates cytotoxicity during ischemia using in vivo and in vitro models".PMID 25261684
  396. D Pamies et al. (2014). "Silencing of PNPLA6, the neuropathy target esterase (NTE) codifying gene, alters neurodifferentiation of human embryonal carcinoma stem cells (NT2)".PMID 25255935
  397. Jie Zhang et al. (2014). "Myelin basic protein induces neuron-specific toxicity by directly damaging the neuronal plasma membrane".PMID 25255088
  398. Subramanian Dharmarajan et al. (2014). "Bone morphogenetic protein 7 regulates reactive gliosis in retinal astrocytes and Müller glia".PMID 25253985
  399. Maria Abildgaard Steffensen et al. (2014). "Suppressors of cytokine signaling 1 and 3 are upregulated in brain resident cells in response to virus-induced inflammation of the central nervous system via at least two distinctive pathways".PMID 25253351
  400. A F Bray et al. (2014). "Human dental pulp stem cells respond to cues from the rat retina and differentiate to express the retinal neuronal marker rhodopsin".PMID 25242642
  401. Hélène Perreten Lambert et al. (2014). "Control of mitochondrial pH by uncoupling protein 4 in astrocytes promotes neuronal survival".PMID 25237189
  402. D Young et al. (2014). "Adenosine kinase, glutamine synthetase and EAAT2 as gene therapy targets for temporal lobe epilepsy".PMID 25231174
  403. Hans G Novrup et al. (2014). "Central but not systemic administration of XPro1595 is therapeutic following moderate spinal cord injury in mice".PMID 25204558
  404. Chung Hsing Chou et al. (2014). "In vitro modeling of the neurovascular environment by coculturing adult human brain endothelial cells with human neural stem cells".PMID 25187991
  405. Lih Fen Lue et al. (2015). "TREM2 Protein Expression Changes Correlate with Alzheimer's Disease Neurodegenerative Pathologies in Post-Mortem Temporal Cortices".PMID 25186950
  406. Karl Holmberg Olausson et al. (2014). "Prominin-1 (CD133) defines both stem and non-stem cell populations in CNS development and gliomas".PMID 25184684
  407. G Berdugo-Vega et al. (2014). "GFAP immunoreactivity within the rat nucleus ambiguus after laryngeal nerve injury".PMID 25181319
  408. Iriana Galan-Arriero et al. (2014). "Oral administration of the p38α MAPK inhibitor, UR13870, inhibits affective pain behavior after spinal cord injury".PMID 25180015
  409. Sandra M Garraway et al. (2014). "Peripheral noxious stimulation reduces withdrawal threshold to mechanical stimuli after spinal cord injury: role of tumor necrosis factor alpha and apoptosis".PMID 25180012
  410. Clara Quintas et al. (2014). "Microglia P2Y₆ receptors mediate nitric oxide release and astrocyte apoptosis".PMID 25178395
  411. Donna L Gruol et al. (2014). "Increased astrocyte expression of IL-6 or CCL2 in transgenic mice alters levels of hippocampal and cerebellar proteins".PMID 25177271
  412. Jelle Praet et al. (2014). "Histological characterization and quantification of cellular events following neural and fibroblast(-like) stem cell grafting in healthy and demyelinated CNS tissue".PMID 25173390
  413. Hui qun Fu et al. (2014). "Prolonged neuroinflammation after lipopolysaccharide exposure in aged rats".PMID 25170959
  414. Matthew T J Lowe et al. (2015). "Distribution of the creatine transporter throughout the human brain reveals a spectrum of creatine transporter immunoreactivity".PMID 25159005
  415. Sara Marinelli et al. (2015). "Effects of age-related loss of P/Q-type calcium channels in a mice model of peripheral nerve injury".PMID 25150573
  416. Ying Zang et al. (2015). "Calpain-2 contributes to neuropathic pain following motor nerve injury via up-regulating interleukin-6 in DRG neurons".PMID 25150005
  417. Vanessa Ginet et al. (2014). "Dying neurons in thalamus of asphyxiated term newborns and rats are autophagic".PMID 25146903
  418. Lester D R Thompson et al. (2015). "Canalicular adenoma: a clinicopathologic and immunohistochemical analysis of 67 cases with a review of the literature".PMID 25141970
  419. Tilman Schneider-Hohendorf et al. (2014). "VLA-4 blockade promotes differential routes into human CNS involving PSGL-1 rolling of T cells and MCAM-adhesion of TH17 cells".PMID 25135296
  420. Monica J Chau et al. (2014). "iPSC Transplantation increases regeneration and functional recovery after ischemic stroke in neonatal rats".PMID 25132189
  421. Sofya Abazyan et al. (2014). "Mutant disrupted-in-schizophrenia 1 in astrocytes: focus on glutamate metabolism".PMID 25131692
  422. Tareck Rharass et al. (2014). "Ca2+-mediated mitochondrial reactive oxygen species metabolism augments Wnt/β-catenin pathway activation to facilitate cell differentiation".PMID 25124032
  423. T Pereira et al. (2014). "Promoting nerve regeneration in a neurotmesis rat model using poly(DL-lactide-ε-caprolactone) membranes and mesenchymal stem cells from the Wharton's jelly: in vitro and in vivo analysis".PMID 25121094
  424. Weiyong Shen et al. (2014). "Systemic administration of erythropoietin inhibits retinopathy in RCS rats".PMID 25119659
  425. Gloria G Curto et al. (2014). "Pax6 is essential for the maintenance and multi-lineage differentiation of neural stem cells, and for neuronal incorporation into the adult olfactory bulb".PMID 25117830
  426. Mark Yarchoan et al. (2014). "Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer's disease and tauopathies".PMID 25107476
  427. Balendu Shekhar Jha et al. (2015). "Motor neuron differentiation from pluripotent stem cells and other intermediate proliferative precursors that can be discriminated by lineage specific reporters".PMID 25091426
  428. Sebastien Milesi et al. (2014). "Redistribution of PDGFRβ cells and NG2DsRed pericytes at the cerebrovasculature after status epilepticus".PMID 25088711
  429. Camilla Lööv et al. (2015). "Extracellular ezrin: a novel biomarker for traumatic brain injury".PMID 25087457
  430. Jingqi Yan et al. (2014). "Obesity- and aging-induced excess of central transforming growth factor-β potentiates diabetic development via an RNA stress response".PMID 25086906
  431. Laura de Bock et al. (2014). "Sperm-associated antigen 16 is a novel target of the humoral autoimmune response in multiple sclerosis".PMID 25086173
  432. Satoshi Kawase et al. (2014). "Regulatory factor X transcription factors control Musashi1 transcription in mouse neural stem/progenitor cells".PMID 25058468
  433. Kentaro Hayakawa et al. (2014). "Lipopolysaccharide preconditioning facilitates M2 activation of resident microglia after spinal cord injury".PMID 25044014
  434. Shelley L Forrest et al. (2014). "Characterization of axons expressing the artemin receptor in the female rat urinary bladder: a comparison with other major neuronal populations".PMID 25043933
  435. Katharina Martina Janice Syhr et al. (2014). "Lack of effect of a P2Y6 receptor antagonist on neuropathic pain behavior in mice".PMID 25042778
  436. Sandrine Joly et al. (2014). "The Ephrin receptor EphA4 restricts axonal sprouting and enhances branching in the injured mouse optic nerve".PMID 25041248
  437. P Makantasi et al. (2014). "Estradiol treatment decreases cell proliferation in the neurogenic zones of adult female zebrafish (Danio rerio) brain".PMID 25034512
  438. Amita Vaidya et al. (2014). "Knock-in reporter mice demonstrate that DNA repair by non-homologous end joining declines with age".PMID 25033455
  439. Xian Dong Meng et al. (2014). "Astrocytic expression of cannabinoid type 1 receptor in rat and human sclerotic hippocampi".PMID 25031702
  440. Qing Bai et al. (2014). "Different mechanisms regulate expression of zebrafish myelin protein zero (P0) in myelinating oligodendrocytes and its induction following axonal injury".PMID 25028515
  441. J A D Dela Cruz et al. (2014). "Differential distribution of hypoxia-inducible factor 1-beta (ARNT or ARNT2) in mouse substantia nigra and ventral tegmental area".PMID 25017895
  442. Ema F Torrado et al. (2014). "Directing mouse embryonic neurosphere differentiation toward an enriched neuronal population".PMID 25016067
  443. Giulia E Tyzack et al. (2014). "Astrocyte response to motor neuron injury promotes structural synaptic plasticity via STAT3-regulated TSP-1 expression".PMID 25014177
  444. Spencer U McKinstry et al. (2014). "Huntingtin is required for normal excitatory synapse development in cortical and striatal circuits".PMID 25009276
  445. Patrick Aldrin-Kirk et al. (2014). "Novel AAV-based rat model of forebrain synucleinopathy shows extensive pathologies and progressive loss of cholinergic interneurons".PMID 24999658
  446. T Ho et al. (2014). "Immunolocalization of the P2X4 receptor on neurons and glia in the mammalian retina".PMID 24997270
  447. Courtney Bricker-Anthony et al. (2014). "Molecular changes and vision loss in a mouse model of closed-globe blast trauma".PMID 24994864
  448. Christian Hagel et al. (2015). "Upregulation of Shiga toxin receptor CD77/Gb3 and interleukin-1β expression in the brain of EHEC patients with hemolytic uremic syndrome and neurologic symptoms".PMID 24989888
  449. Ranjula Wijayatunge et al. (2014). "The histone lysine demethylase Kdm6b is required for activity-dependent preconditioning of hippocampal neuronal survival".PMID 24983519
  450. Nan Fu Chen et al. (2014). "Flexibilide obtained from cultured soft coral has anti-neuroinflammatory and analgesic effects through the upregulation of spinal transforming growth factor-β1 in neuropathic rats".PMID 24979268
  451. Megan J Dowie et al. (2014). "Cannabinoid receptor CB2 is expressed on vascular cells, but not astroglial cells in the post-mortem human Huntington's disease brain".PMID 24978314
  452. Sarah Saab et al. (2014). "Involvement of plasmalogens in post-natal retinal vascular development".PMID 24963632
  453. Hanan Dawood Yassa et al. (2014). "Age-related changes in the optic nerve of Sprague-Dawley rats: an ultrastructural and immunohistochemical study".PMID 24958340
  454. Hans Georg König et al. (2014). "The BCL-2 family protein Bid is critical for pro-inflammatory signaling in astrocytes".PMID 24956542
  455. Richard S Sandstrom et al. (2014). "Epigenetic regulation by chromatin activation mark H3K4me3 in primate progenitor cells within adult neurogenic niche".PMID 24947819
  456. Hans Christian Helms et al. (2014). "An electrically tight in vitro blood-brain barrier model displays net brain-to-blood efflux of substrates for the ABC transporters, P-gp, Bcrp and Mrp-1".PMID 24934296
  457. Navneet A Vasistha et al. (2015). "Cortical and Clonal Contribution of Tbr2 Expressing Progenitors in the Developing Mouse Brain".PMID 24927931
  458. Zheng Wu et al. (2014). "Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzheimer's [corrected] disease model".PMID 24923909
  459. Lin Qiang Huang et al. (2014). "Hypertonic saline alleviates cerebral edema by inhibiting microglia-derived TNF-α and IL-1β-induced Na-K-Cl Cotransporter up-regulation".PMID 24916922
  460. Candice A M Sauder et al. (2014). "Phenotypic plasticity in normal breast derived epithelial cells".PMID 24915897
  461. Petra Fallier-Becker et al. (2014). "Onset of aquaporin-4 expression in the developing mouse brain".PMID 24915007
  462. Chikako Inada et al. (2014). "Possible involvement of VEGF signaling system in rescuing effect of endogenous acetylcholine on NMDA-induced long-lasting hippocampal cell damage in organotypic hippocampal slice cultures".PMID 24911952
  463. Claire M Bradford et al. (2014). "Localisation of citrullinated proteins in normal appearing white matter and lesions in the central nervous system in multiple sclerosis".PMID 24907905
  464. S Sajjan et al. (2014). "Up-regulation of matrix metallopeptidase 12 in motor neurons undergoing synaptic stripping".PMID 24907602
  465. Binnur Eroglu et al. (2014). "Therapeutic inducers of the HSP70/HSP110 protect mice against traumatic brain injury".PMID 24903326
  466. Joshua L Allen et al. (2014). "Early postnatal exposure to ultrafine particulate matter air pollution: persistent ventriculomegaly, neurochemical disruption, and glial activation preferentially in male mice".PMID 24901756
  467. Marisa Karow et al. (2014). "Lineage-reprogramming of pericyte-derived cells of the adult human brain into induced neurons".PMID 24893711
  468. Kirsten Ridder et al. (2014). "Extracellular vesicle-mediated transfer of genetic information between the hematopoietic system and the brain in response to inflammation".PMID 24893313
  469. Paulino Barragán-Iglesias et al. (2014). "Role of spinal P2Y6 and P2Y11 receptors in neuropathic pain in rats: possible involvement of glial cells".PMID 24886406
  470. Zhichuan Zhu et al. (2014). "Protein tyrosine phosphatase receptor U (PTPRU) is required for glioma growth and motility".PMID 24876153
  471. Egle Cekanaviciute et al. (2014). "Astrocytic TGF-β signaling limits inflammation and reduces neuronal damage during central nervous system Toxoplasma infection".PMID 24860191
  472. Michel Kielar et al. (2014). "Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human".PMID 24859200
  473. Sang Jae Cho et al. (2014). "Anoctamin 1 expression in the mouse auditory brainstem".PMID 24853671
  474. Christine K Hamilton et al. (2014). "Early expression of aromatase and the membrane estrogen receptor GPER in neuromasts reveals a role for estrogens in the development of the frog lateral line system".PMID 24852348
  475. Ranjana Singh et al. (2014). "Calpain 5 is highly expressed in the central nervous system (CNS), carries dual nuclear localization signals, and is associated with nuclear promyelocytic leukemia protein bodies".PMID 24838245
  476. Michal K Oklinski et al. (2014). "Immunolocalization of Water Channel Proteins AQP1 and AQP4 in Rat Spinal Cord".PMID 24828513
  477. Jill F Betts et al. (2014). "D-amino acid oxidase is expressed in the ventral tegmental area and modulates cortical dopamine".PMID 24822045
  478. Ana J Chucair-Elliott et al. (2014). "Microglia-induced IL-6 protects against neuronal loss following HSV-1 infection of neural progenitor cells".PMID 24807365
  479. Francesca Cicchetti et al. (2014). "Mutant huntingtin is present in neuronal grafts in Huntington disease patients".PMID 24798518
  480. Rachel E Bennett et al. (2014). "Acute reduction of microglia does not alter axonal injury in a mouse model of repetitive concussive traumatic brain injury".PMID 24797413
  481. Yuhong Fu et al. (2014). "Age-dependent alterations of the hippocampal cell composition and proliferative potential in the hAβPPSwInd-J20 mouse".PMID 24787919
  482. Victoria M Ho et al. (2014). "GluA2 mRNA distribution and regulation by miR-124 in hippocampal neurons".PMID 24784359
  483. Lucas Schirmer et al. (2014). "Differential loss of KIR4.1 immunoreactivity in multiple sclerosis lesions".PMID 24777949
  484. Donna L Gruol et al. (2014). "CCL2-ethanol interactions and hippocampal synaptic protein expression in a transgenic mouse model".PMID 24772072
  485. Liana Roberts Stein et al. (2014). "Expression of Nampt in hippocampal and cortical excitatory neurons is critical for cognitive function".PMID 24760840
  486. Kelli G Sharp et al. (2014). "A re-assessment of long distance growth and connectivity of neural stem cells after severe spinal cord injury".PMID 24747827
  487. Stefano Farioli-Vecchioli et al. (2014). "Tis21 is required for adult neurogenesis in the subventricular zone and for olfactory behavior regulating cyclins, BMP4, Hes1/5 and Ids".PMID 24744701
  488. Egle Cekanaviciute et al. (2014). "Astrocytic transforming growth factor-beta signaling reduces subacute neuroinflammation after stroke in mice".PMID 24733756
  489. Hiroaki Okuda et al. (2014). "OASIS regulates chondroitin 6-O-sulfotransferase 1 gene transcription in the injured adult mouse cerebral cortex".PMID 24716865
  490. Hal X Nguyen et al. (2014). "Induction of early neural precursors and derivation of tripotent neural stem cells from human pluripotent stem cells under xeno-free conditions".PMID 24715528
  491. Victor Tapias et al. (2014). "A rapid and sensitive automated image-based approach for in vitro and in vivo characterization of cell morphology and quantification of cell number and neurite architecture".PMID 24692056
  492. S Camós et al. (2014). "The high-mobility group I-Y transcription factor is involved in cerebral ischemia and modulates the expression of angiogenic proteins".PMID 24680881
  493. Anna Eskilsson et al. (2014). "Distribution of microsomal prostaglandin E synthase-1 in the mouse brain".PMID 24668417
  494. Simone Codeluppi et al. (2014). "Interleukin-6 secretion by astrocytes is dynamically regulated by PI3K-mTOR-calcium signaling".PMID 24667246
  495. Adriana Alarcón-Aguilar et al. (2014). "Primary cultured astrocytes from old rats are capable to activate the Nrf2 response against MPP+ toxicity after tBHQ pretreatment".PMID 24650792
  496. Marta V Hamity et al. (2014). "Increased neuronal expression of neurokinin-1 receptor and stimulus-evoked internalization of the receptor in the rostral ventromedial medulla of the rat after peripheral inflammatory injury".PMID 24639151
  497. Kirstan A Vessey et al. (2014). "Adenosine triphosphate-induced photoreceptor death and retinal remodeling in rats".PMID 24639102
  498. Clara Alfaro-Cervello et al. (2014). "The adult macaque spinal cord central canal zone contains proliferative cells and closely resembles the human".PMID 24638933
  499. Lin Cheng et al. (2014). "Generation of neural progenitor cells by chemical cocktails and hypoxia".PMID 24638034
  500. Ngoc B Lu-Nguyen et al. (2014). "Transgenic expression of human glial cell line-derived neurotrophic factor from integration-deficient lentiviral vectors is neuroprotective in a rodent model of Parkinson's disease".PMID 24635742
  501. Cornelia Schuh et al. (2014). "Oxidative tissue injury in multiple sclerosis is only partly reflected in experimental disease models".PMID 24622774
  502. Min Xu et al. (2014). "Inhibition of cysteine cathepsin B and L activation in astrocytes contributes to neuroprotection against cerebral ischemia via blocking the tBid-mitochondrial apoptotic signaling pathway".PMID 24616078
  503. K Hultman et al. (2014). "Plasmin deficiency leads to fibrin accumulation and a compromised inflammatory response in the mouse brain".PMID 24612416
  504. Svitlana Garbuzova-Davis et al. (2014). "Compromised blood-brain barrier competence in remote brain areas in ischemic stroke rats at the chronic stage".PMID 24610730
  505. Dhruv Sareen et al. (2014). "Human induced pluripotent stem cells are a novel source of neural progenitor cells (iNPCs) that migrate and integrate in the rodent spinal cord".PMID 24610630
  506. K H Tse et al. (2014). "Lipopolysaccharide differentially modulates expression of cytokines and cyclooxygenases in dorsal root ganglion cells via Toll-like receptor-4 dependent pathways".PMID 24607321
  507. Erik M Deboer et al. (2014). "Prenatal deletion of the RNA-binding protein HuD disrupts postnatal cortical circuit maturation and behavior".PMID 24599466
  508. Ingrid R Niesman et al. (2014). "Traumatic brain injury enhances neuroinflammation and lesion volume in caveolin deficient mice".PMID 24593993
  509. Ulrike Pannasch et al. (2014). "Connexin 30 sets synaptic strength by controlling astroglial synapse invasion".PMID 24584052
  510. João Nuno Alves et al. (2014). "AAV vector-mediated secretion of chondroitinase provides a sensitive tracer for axonal arborisations".PMID 24583077
  511. Laura García-Corzo et al. (2014). "Ubiquinol-10 ameliorates mitochondrial encephalopathy associated with CoQ deficiency".PMID 24576561
  512. Marzia Toscano et al. (2014). "Correlative study of squash smear cytology with histopathology in a rare case of anaplastic giant cell ependymoma of the pineal".PMID 24570332
  513. Chandrakumar Balaratnasingam et al. (2014). "Comparative quantitative study of astrocytes and capillary distribution in optic nerve laminar regions".PMID 24560677
  514. H Levy Barazany et al. (2014). "Brain MRI of nasal MOG therapeutic effect in relapsing-progressive EAE".PMID 24552689
  515. Ali Fathi et al. (2014). "Quantitative proteomics analysis highlights the role of redox hemostasis and energy metabolism in human embryonic stem cell differentiation to neural cells".PMID 24530625
  516. Ryota Haba et al. (2014). "Central CRTH2, a second prostaglandin D2 receptor, mediates emotional impairment in the lipopolysaccharide and tumor-induced sickness behavior model".PMID 24523542
  517. Yara Dadalti Fragoso et al. (2015). "Expression in the human brain of retinoic acid induced 1, a protein associated with neurobehavioural disorders".PMID 24519454
  518. Fuyi Chen et al. (2014). "Contribution of tumor heterogeneity in a new animal model of CNS tumors".PMID 24501428
  519. Jamie McQueen et al. (2014). "Restoration of oligodendrocyte pools in a mouse model of chronic cerebral hypoperfusion".PMID 24498301
  520. YiYu Deng et al. (2014). "Astrocyte-derived proinflammatory cytokines induce hypomyelination in the periventricular white matter in the hypoxic neonatal brain".PMID 24498101
  521. Rocío Talaverón et al. (2014). "Implanted neural progenitor cells regulate glial reaction to brain injury and establish gap junctions with host glial cells".PMID 24481572
  522. Pratap Karki et al. (2014). "Yin Yang 1 is a repressor of glutamate transporter EAAT2, and it mediates manganese-induced decrease of EAAT2 expression in astrocytes".PMID 24469401
  523. Kelsey A Potter et al. (2014). "Curcumin-releasing mechanically adaptive intracortical implants improve the proximal neuronal density and blood-brain barrier stability".PMID 24468582
  524. Kunie Hagiwara et al. (2014). "Molecular and cellular features of murine craniofacial and trunk neural crest cells as stem cell-like cells".PMID 24465393
  525. Istvan Bodi et al. (2014). "Two cases of multinodular and vacuolating neuronal tumour".PMID 24444358
  526. Zengping Liu et al. (2014). "Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography".PMID 24439407
  527. Darrick T Balu et al. (2014). "D-serine and serine racemase are localized to neurons in the adult mouse and human forebrain".PMID 24436034
  528. Vivian P Chou et al. (2014). "Gene-environment interaction models to unmask susceptibility mechanisms in Parkinson's disease".PMID 24430802
  529. Matthew C Havrda et al. (2014). "Id2 mediates oligodendrocyte precursor cell maturation arrest and is tumorigenic in a PDGF-rich microenvironment".PMID 24425046
  530. Lluis Samaranch et al. (2014). "AAV9-mediated expression of a non-self protein in nonhuman primate central nervous system triggers widespread neuroinflammation driven by antigen-presenting cell transduction".PMID 24419081
  531. Ilenia Severi et al. (2013). "Opposite effects of a high-fat diet and calorie restriction on ciliary neurotrophic factor signaling in the mouse hypothalamus".PMID 24409114
  532. Sawang Kesdangsakonwut et al. (2014). "Survival of rabid rabbits after intrathecal immunization".PMID 24397792
  533. Jyhyun Ahn et al. (2014). "GSK3β, but not GSK3α, inhibits the neuronal differentiation of neural progenitor cells as a downstream target of mammalian target of rapamycin complex1".PMID 24397546
  534. Cecile L Maire et al. (2014). "Pten loss in Olig2 expressing neural progenitor cells and oligodendrocytes leads to interneuron dysplasia and leukodystrophy".PMID 24395742
  535. Tomoyuki Yamanaka et al. (2013). "Loss of aPKCλ in differentiated neurons disrupts the polarity complex but does not induce obvious neuronal loss or disorientation in mouse brains".PMID 24391875
  536. Natacha Coppieters et al. (2014). "Global changes in DNA methylation and hydroxymethylation in Alzheimer's disease human brain".PMID 24387984
  537. Yoshiko Matsumoto et al. (2014). "Sera from patients with seropositive neuromyelitis optica spectral disorders caused the degeneration of rodent optic nerve".PMID 24374258
  538. Jing Zhou et al. (2014). "17β-estradiol protects human eyelid-derived adipose stem cells against cytotoxicity and increases transplanted cell survival in spinal cord injury".PMID 24373095
  539. Antonio Trabalza et al. (2014). "Enhanced central nervous system transduction with lentiviral vectors pseudotyped with RVG/HIV-1gp41 chimeric envelope glycoproteins".PMID 24371049
  540. Gillian Muirhead et al. (2014). "The expression of neuronal sorting nexin 8 (SNX8) exacerbates abnormal cholesterol levels".PMID 24362679
  541. Mitsuaki Ishida et al. (2014). "Signet-ring cell melanoma with sentinel lymph node metastasis: A case report with immunohistochemical analysis and review of the clinicopathological features".PMID 24348822
  542. Luca G Di Giovannantonio et al. (2014). "Otx2 cell-autonomously determines dorsal mesencephalon versus cerebellum fate independently of isthmic organizing activity".PMID 24335253
  543. Seema Yousuf et al. (2014). "Delayed progesterone treatment reduces brain infarction and improves functional outcomes after ischemic stroke: a time-window study in middle-aged rats".PMID 24301297
  544. Ian M Traniello et al. (2014). "Age-related changes in stem cell dynamics, neurogenesis, apoptosis, and gliosis in the adult brain: a novel teleost fish model of negligible senescence".PMID 24293183
  545. Xin Gao et al. (2014). "Identification of rat respiratory mucosa stem cells and comparison of the early neural differentiation potential with the bone marrow mesenchymal stem cells in vitro".PMID 24292331
  546. Takayuki Nakajima et al. (2014). "Temporal and regional patterns of Smad activation in the rat hippocampus following global ischemia".PMID 24290497
  547. Nan Fu Chen et al. (2013). "TGF-β1 attenuates spinal neuroinflammation and the excitatory amino acid system in rats with neuropathic pain".PMID 24290447
  548. Takahiro Takano et al. (2014). "Rapid manifestation of reactive astrogliosis in acute hippocampal brain slices".PMID 24272704
  549. Stephanie A Hoffmann et al. (2014). "Stem cell factor Sox2 and its close relative Sox3 have differentiation functions in oligodendrocytes".PMID 24257626
  550. M P Price et al. (2014). "Localization and behaviors in null mice suggest that ASIC1 and ASIC2 modulate responses to aversive stimuli".PMID 24256442
  551. Shuji Wakatsuki et al. (2014). "Neuregulin-1/glial growth factor stimulates Schwann cell migration by inducing α5 β1 integrin-ErbB2-focal adhesion kinase complex formation".PMID 24256316
  552. Matthew C Judson et al. (2014). "Allelic specificity of Ube3a expression in the mouse brain during postnatal development".PMID 24254964
  553. Mary Ní Fhlathartaigh et al. (2013). "Calreticulin and other components of endoplasmic reticulum stress in rat and human inflammatory demyelination".PMID 24252779
  554. Animesh Alexander Raha et al. (2013). "The systemic iron-regulatory proteins hepcidin and ferroportin are reduced in the brain in Alzheimer's disease".PMID 24252754
  555. Huy Nguyen et al. (2013). "Glial scaffold required for cerebellar granule cell migration is dependent on dystroglycan function as a receptor for basement membrane proteins".PMID 24252195
  556. Ayman ElAli et al. (2013). "Mild chronic cerebral hypoperfusion induces neurovascular dysfunction, triggering peripheral beta-amyloid brain entry and aggregation".PMID 24252187
  557. Kendall Mitchell et al. (2014). "LPS antagonism of TGF-β signaling results in prolonged survival and activation of rat primary microglia".PMID 24251648
  558. Jonathan M Zuidema et al. (2014). "Enhanced GLT-1 mediated glutamate uptake and migration of primary astrocytes directed by fibronectin-coated electrospun poly-L-lactic acid fibers".PMID 24246642
  559. Yuriko Nishizaki et al. (2014). "SIP1 expression patterns in brain investigated by generating a SIP1-EGFP reporter knock-in mouse".PMID 24243579
  560. Yu E Yan et al. (2014). "Significant reduction of the GLUT3 level, but not GLUT1 level, was observed in the brain tissues of several scrapie experimental animals and scrapie-infected cell lines".PMID 24243341
  561. Chao Wang et al. (2014). "The role of pro-inflammatory S100A9 in Alzheimer's disease amyloid-neuroinflammatory cascade".PMID 24240735
  562. Ching Hui Lin et al. (2013). "Single-cell enzyme-free dissociation of neurospheres using a microfluidic chip".PMID 24228937
  563. Kimberly E Hawkins et al. (2014). "Neurovascular protection by post-ischemic intravenous injections of the lipoxin A4 receptor agonist, BML-111, in a rat model of ischemic stroke".PMID 24225006
  564. Thomas H Sanderson et al. (2013). "Cytochrome C is tyrosine 97 phosphorylated by neuroprotective insulin treatment".PMID 24223835
  565. Sarah C Robins et al. (2013). "Evidence for NG2-glia derived, adult-born functional neurons in the hypothalamus".PMID 24205170
  566. Davide Danovi et al. (2013). "A high-content small molecule screen identifies sensitivity of glioblastoma stem cells to inhibition of polo-like kinase 1".PMID 24204733
  567. Hirotoshi Akane et al. (2014). "Glycidol induces axonopathy and aberrations of hippocampal neurogenesis affecting late-stage differentiation by exposure to rats in a framework of 28-day toxicity study".PMID 24185127
  568. Ralitsa Petrova et al. (2013). "Titration of GLI3 repressor activity by sonic hedgehog signaling is critical for maintaining multiple adult neural stem cell and astrocyte functions".PMID 24174682
  569. Nianhua Feng et al. (2014). "Generation of highly purified neural stem cells from human adipose-derived mesenchymal stem cells by Sox1 activation".PMID 24138016
  570. G P Swain et al. (2014). "Adeno-associated virus serotypes 9 and rh10 mediate strong neuronal transduction of the dog brain".PMID 24131981
  571. Jun Yamada et al. (2014). "S100A6 (calcyclin) is a novel marker of neural stem cells and astrocyte precursors in the subgranular zone of the adult mouse hippocampus".PMID 24115312
  572. Hongyan Wang et al. (2014). "Widespread spinal cord transduction by intrathecal injection of rAAV delivers efficacious RNAi therapy for amyotrophic lateral sclerosis".PMID 24108104
  573. Long Wang et al. (2013). "Characterization of embryonic stem-like cells derived from HEK293T cells through miR302/367 expression and their potentiality to differentiate into germ-like cells".PMID 24091881
  574. Olga Momcilovic et al. (2014). "Genome wide profiling of dopaminergic neurons derived from human embryonic and induced pluripotent stem cells".PMID 24074155
  575. Reham Khalaf-Nazzal et al. (2013). "Organelle and cellular abnormalities associated with hippocampal heterotopia in neonatal doublecortin knockout mice".PMID 24023755
  576. Keijiro Ishikawa et al. (2014). "Periostin promotes the generation of fibrous membranes in proliferative vitreoretinopathy".PMID 24022401
  577. Alexandre Savard et al. (2013). "Involvement of neuronal IL-1β in acquired brain lesions in a rat model of neonatal encephalopathy".PMID 24007297
  578. Michele Bellesi et al. (2013). "Effects of sleep and wake on oligodendrocytes and their precursors".PMID 24005282
  579. Prasanti Kotagiri et al. (2014). "Subventricular zone cytoarchitecture changes in autism".PMID 24002902
  580. Francesca Viganò et al. (2013). "Transplantation reveals regional differences in oligodendrocyte differentiation in the adult brain".PMID 23995069
  581. Luciana A Cholich et al. (2013). "Experimental intoxication of guinea pigs with Ipomoea carnea: behavioural and neuropathological alterations".PMID 23994428
  582. Budd A Tucker et al. (2013). "Patient-specific iPSC-derived photoreceptor precursor cells as a means to investigate retinitis pigmentosa".PMID 23991284
  583. Ian C Tobias et al. (2013). "Derivation and culture of canine embryonic stem cells".PMID 23975806
  584. Julika Merres et al. (2014). "Role of the cathelicidin-related antimicrobial peptide in inflammation and mortality in a mouse model of bacterial meningitis".PMID 23969854
  585. Ji Hey Lim et al. (2013). "Alternating current electric fields of varying frequencies: effects on proliferation and differentiation of porcine neural progenitor cells".PMID 23961767
  586. Alexandra E Schreiner et al. (2014). "Laminar and subcellular heterogeneity of GLAST and GLT-1 immunoreactivity in the developing postnatal mouse hippocampus".PMID 23939750
  587. Elisa J Cops et al. (2013). "Tissue-type plasminogen activator is an extracellular mediator of Purkinje cell damage and altered gait".PMID 23939410
  588. Hassan Azari et al. (2013). "Isolation and enrichment of defined neural cell populations from heterogeneous neural stem cell progeny".PMID 23934837
  589. Xiao Long Sun et al. (2014). "The proform of glia cell line-derived neurotrophic factor: a potentially biologically active protein".PMID 23934644
  590. Stefan Bittner et al. (2013). "Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS".PMID 23933981
  591. Nian Gong et al. (2014). "Identification of a novel spinal dorsal horn astroglial D-amino acid oxidase-hydrogen peroxide pathway involved in morphine antinociceptive tolerance".PMID 23928652
  592. Johannes Prox et al. (2013). "Postnatal disruption of the disintegrin/metalloproteinase ADAM10 in brain causes epileptic seizures, learning deficits, altered spine morphology, and defective synaptic functions".PMID 23926248
  593. Surajit Sahu et al. (2013). "Caffeine and modafinil promote adult neuronal cell proliferation during 48 h of total sleep deprivation in rat dentate gyrus".PMID 23920241
  594. Sylvia E Perez et al. (2013). "Alzheimer's disease pathology in the neocortex and hippocampus of the western lowland gorilla (Gorilla gorilla gorilla)".PMID 23881733
  595. Simon Hametner et al. (2013). "Iron and neurodegeneration in the multiple sclerosis brain".PMID 23868451
  596. Geeta Ramesh et al. (2013). "The Lyme disease spirochete Borrelia burgdorferi induces inflammation and apoptosis in cells from dorsal root ganglia".PMID 23866773
  597. Shane Stegeman et al. (2013). "Loss of Usp9x disrupts cortical architecture, hippocampal development and TGFβ-mediated axonogenesis".PMID 23861879
  598. Xing gang Mao et al. (2013). "LIN28A facilitates the transformation of human neural stem cells and promotes glioblastoma tumorigenesis through a pro-invasive genetic program".PMID 23846349
  599. Jered V McGivern et al. (2013). "Spinal muscular atrophy astrocytes exhibit abnormal calcium regulation and reduced growth factor production".PMID 23839956
  600. M Ohlsson et al. (2013). "Long-term effects of a lumbosacral ventral root avulsion injury on axotomized motor neurons and avulsed ventral roots in a non-human primate model of cauda equina injury".PMID 23830908
  601. Bianka Brunne et al. (2013). "Role of the postnatal radial glial scaffold for the development of the dentate gyrus as revealed by Reelin signaling mutant mice".PMID 23828756
  602. Sol Pose-Méndez et al. (2014). "Development of the cerebellar afferent system in the shark Scyliorhinus canicula: insights into the basal organization of precerebellar nuclei in gnathostomes".PMID 23818330
  603. Xiaofei Wang et al. (2014). "Cortical PKC inhibition promotes axonal regeneration of the corticospinal tract and forelimb functional recovery after cervical dorsal spinal hemisection in adult rats".PMID 23810979
  604. David Marian Otte et al. (2013). "Effects of Chronic D-Serine Elevation on Animal Models of Depression and Anxiety-Related Behavior".PMID 23805296
  605. Kelsey A Potter et al. (2013). "The effect of resveratrol on neurodegeneration and blood brain barrier stability surrounding intracortical microelectrodes".PMID 23791503
  606. Hailong Li et al. (2013). "Inhibition of the group I mGluRs reduces acute brain damage and improves long-term histological outcomes after photothrombosis-induced ischaemia".PMID 23772679
  607. Birger V Dieriks et al. (2013). "GABA(A) receptor characterization and subunit localization in the human sub-ventricular zone".PMID 23770130
  608. Ulrike Mietzsch et al. (2013). "Comparative analysis of Tsc1 and Tsc2 single and double radial glial cell mutants".PMID 23749404
  609. Luigi Maddaluno et al. (2013). "EndMT contributes to the onset and progression of cerebral cavernous malformations".PMID 23748444
  610. Erica D Koval et al. (2013). "Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice".PMID 23740943
  611. Atsushi Natsume et al. (2013). "Chromatin regulator PRC2 is a key regulator of epigenetic plasticity in glioblastoma".PMID 23720055
  612. Matthew T J Lowe et al. (2013). "Dissociated expression of mitochondrial and cytosolic creatine kinases in the human brain: a new perspective on the role of creatine in brain energy metabolism".PMID 23715059
  613. Shilpa Prabhakar et al. (2013). "Stochastic model of Tsc1 lesions in mouse brain".PMID 23696872
  614. Qiuyue Liu et al. (2013). "Optimizing dopaminergic differentiation of pluripotent stem cells for the manufacture of dopaminergic neurons for transplantation".PMID 23664011
  615. Li Li Li et al. (2013). "The nNOS-p38MAPK pathway is mediated by NOS1AP during neuronal death".PMID 23658158
  616. Fanny Langlet et al. (2013). "Tanycyte-like cells form a blood-cerebrospinal fluid barrier in the circumventricular organs of the mouse brain".PMID 23649873
  617. Chien Yu Kao et al. (2013). "The mood stabilizer valproate activates human FGF1 gene promoter through inhibiting HDAC and GSK-3 activities".PMID 23647222
  618. Norimichi Higurashi et al. (2013). "A human Dravet syndrome model from patient induced pluripotent stem cells".PMID 23639079
  619. M C Medrano et al. (2013). "Functional and morphological characterization of glutamate transporters in the rat locus coeruleus".PMID 23638698
  620. Alessia Delli Carri et al. (2013). "Human pluripotent stem cell differentiation into authentic striatal projection neurons".PMID 23625190
  621. Anke Sparmann et al. (2013). "The chromodomain helicase Chd4 is required for Polycomb-mediated inhibition of astroglial differentiation".PMID 23624931
  622. Stephane L Bourque et al. (2013). "Prenatal hypoxia is associated with long-term retinal dysfunction in rats".PMID 23610595
  623. Karin Löw et al. (2013). "Direct and retrograde transduction of nigral neurons with AAV6, 8, and 9 and intraneuronal persistence of viral particles".PMID 23600720
  624. Xiaoran Li et al. (2013). "Promotion of neuronal differentiation of neural progenitor cells by using EGFR antibody functionalized collagen scaffolds for spinal cord injury repair".PMID 23591390
  625. Franz J Zemp et al. (2013). "Treating brain tumor-initiating cells using a combination of myxoma virus and rapamycin".PMID 23585629
  626. Meredith A Kelleher et al. (2013). "Changes in neuroactive steroid concentrations after preterm delivery in the Guinea pig".PMID 23585339
  627. Eva Degerman et al. (2013). "Expression of insulin signalling components in the sensory epithelium of the human saccule".PMID 23584706
  628. Tatsuro Misu et al. (2013). "Presence of six different lesion types suggests diverse mechanisms of tissue injury in neuromyelitis optica".PMID 23579868
  629. M J Hannula et al. (2013). "Prolyl oligopeptidase colocalizes with α-synuclein, β-amyloid, tau protein and astroglia in the post-mortem brain samples with Parkinson's and Alzheimer's diseases".PMID 23562579
  630. Corinne Brana et al. (2014). "Immunohistochemical detection of sphingosine-1-phosphate receptor 1 and 5 in human multiple sclerosis lesions".PMID 23551178
  631. R Vontell et al. (2013). "Toll-like receptor 3 expression in glia and neurons alters in response to white matter injury in preterm infants".PMID 23548575
  632. Lluis Samaranch et al. (2013). "Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the cerebrospinal fluid of nonhuman primates".PMID 23517473
  633. Neil G Harris et al. (2013). "Chondroitinase enhances cortical map plasticity and increases functionally active sprouting axons after brain injury".PMID 23517225
  634. Chung Ching Chio et al. (2013). "Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-α".PMID 23496862
  635. Amy M Smith et al. (2013). "The transcription factor PU.1 is critical for viability and function of human brain microglia".PMID 23483680
  636. Govindaiah Vinukonda et al. (2013). "Intraventricular hemorrhage induces deposition of proteoglycans in premature rabbits, but their in vivo degradation with chondroitinase does not restore myelination, ventricle size and neurological recovery".PMID 23474192
  637. Lianhua Bai et al. (2013). "Myelin repair and functional recovery mediated by neural cell transplantation in a mouse model of multiple sclerosis".PMID 23471865
  638. Bum Jun Kim et al. (2013). "An allelic series of mice reveals a role for RERE in the development of multiple organs affected in chromosome 1p36 deletions".PMID 23451234
  639. Sarah J Hemley et al. (2013). "Aquaporin-4 expression in post-traumatic syringomyelia".PMID 23441695
  640. Liyun Wang et al. (2013). "Reversible effect of developmental exposure to chlorpyrifos on late-stage neurogenesis in the hippocampal dentate gyrus in mouse offspring".PMID 23428981
  641. Yong Yuan et al. (2013). "Targeted overexpression of TGF-α in the corneal epithelium of adult transgenic mice induces changes in anterior segment morphology and activates noncanonical Wnt signaling".PMID 23412089
  642. J Chapuis et al. (2013). "Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology".PMID 23399914
  643. Joanna M Karasinska et al. (2013). "ABCA1 influences neuroinflammation and neuronal death".PMID 23376685
  644. K Murakami et al. (2013). "In vivo analysis of kallikrein-related peptidase 6 (KLK6) function in oligodendrocyte development and the expression of myelin proteins".PMID 23376368
  645. Yu Wen Hung et al. (2013). "Monocyte chemoattractant protein-1 affects migration of hippocampal neural progenitors following status epilepticus in rats".PMID 23339567
  646. Elisa Carra et al. (2013). "Sorafenib selectively depletes human glioblastoma tumor-initiating cells from primary cultures".PMID 23324350
  647. Syed J Kazmi et al. (2013). "Transgenic mice overexpressing neuregulin-1 model neurofibroma-malignant peripheral nerve sheath tumor progression and implicate specific chromosomal copy number variations in tumorigenesis".PMID 23321323
  648. Elaine L Pranski et al. (2013). "RING finger protein 11 (RNF11) modulates susceptibility to 6-OHDA-induced nigral degeneration and behavioral deficits through NF-κB signaling in dopaminergic cells".PMID 23318928
  649. Timothy W Phares et al. (2013). "Astrocyte-derived CXCL10 drives accumulation of antibody-secreting cells in the central nervous system during viral encephalomyelitis".PMID 23302888
  650. Donna J Calu et al. (2013). "Optogenetic inhibition of dorsal medial prefrontal cortex attenuates stress-induced reinstatement of palatable food seeking in female rats".PMID 23283335
  651. I Lonskaya et al. (2013). "Decreased parkin solubility is associated with impairment of autophagy in the nigrostriatum of sporadic Parkinson's disease".PMID 23262240
  652. Lin Cao et al. (2012). "Isoflurane induces learning impairment that is mediated by interleukin 1β in rodents".PMID 23251531
  653. Idoia Quintana-Urzainqui et al. (2014). "Developmental, tract-tracing and immunohistochemical study of the peripheral olfactory system in a basal vertebrate: insights on Pax6 neurons migrating along the olfactory nerve".PMID 23224251
  654. Sabine Hellwig et al. (2012). "Reelin together with ApoER2 regulates interneuron migration in the olfactory bulb".PMID 23209795
  655. Qiuyue Liu et al. (2012). "Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: induction, maintenance, and differentiation into functional schwann cells".PMID 23197806
  656. Raquel M Walton et al. (2013). "Postnatal neural precursor cell regions in the rostral subventricular zone, hippocampal subgranular zone and cerebellum of the dog (Canis lupus familiaris)".PMID 23192285
  657. Kittiphong Putkhao et al. (2013). "Pathogenic cellular phenotypes are germline transmissible in a transgenic primate model of Huntington's disease".PMID 23190281
  658. A Trabalza et al. (2013). "Venezuelan equine encephalitis virus glycoprotein pseudotyping confers neurotropism to lentiviral vectors".PMID 23171919
  659. Andreas F Mack et al. (2013). "Cultures of astroglial cells derived from brain of adult cichlid fish".PMID 23164962
  660. Alexander Slowik et al. (2012). "Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE)--and amyloid beta 1-42-induced signal transduction in glial cells".PMID 23164356
  661. Lars Ove Brandenburg et al. (2013). "CpG oligodeoxynucleotides induce the expression of the antimicrobial peptide cathelicidin in glial cells".PMID 23141747
  662. Xiao yan Zhu et al. (2013). "Temporal distribution of p300/CBP immunoreactivity in the adult rat spinal dorsal horn following chronic constriction injury (CCI)".PMID 23129231
  663. Shi Ying Huang et al. (2012). "Sinularin from indigenous soft coral attenuates nociceptive responses and spinal neuroinflammation in carrageenan-induced inflammatory rat model".PMID 23118711
  664. Jenna M Ziebell et al. (2012). "Rod microglia: elongation, alignment, and coupling to form trains across the somatosensory cortex after experimental diffuse brain injury".PMID 23111107
  665. Crystal R McClain et al. (2012). "Pleiotrophin suppression of receptor protein tyrosine phosphatase-β/ζ maintains the self-renewal competence of fetal human oligodendrocyte progenitor cells".PMID 23100427
  666. H Peluffo et al. (2013). "Efficient gene expression from integration-deficient lentiviral vectors in the spinal cord".PMID 23076378
  667. Karim Helmy et al. (2012). "Identification of global alteration of translational regulation in glioma in vivo".PMID 23056544
  668. T Schmidt et al. (2013). "Regional heterogeneity of cuprizone-induced demyelination: topographical aspects of the midline of the corpus callosum".PMID 23054589
  669. Szu Fu Chen et al. (2012). "Salidroside improves behavioral and histological outcomes and reduces apoptosis via PI3K/Akt signaling after experimental traumatic brain injury".PMID 23029230
  670. Gema Elvira et al. (2012). "Live imaging of mouse endogenous neural progenitors migrating in response to an induced tumor".PMID 22957072
  671. Derek A Wainwright et al. (2012). "IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival".PMID 22932670
  672. Alexis R Gerber et al. (2012). "Antiinflammatory treatment ameliorates HPA stress axis dysfunction in a mouse model of stress sensitivity".PMID 22893724
  673. Devendra Singh et al. (2012). "Transforming fusions of FGFR and TACC genes in human glioblastoma".PMID 22837387
  674. Kirsty J Dixon et al. (2012). "Partial change in EphA4 knockout mouse phenotype: loss of diminished GFAP upregulation following spinal cord injury".PMID 22824304
  675. Daniel Garcia-Ovejero et al. (2013). "A cell population that strongly expresses the CB1 cannabinoid receptor in the ependyma of the rat spinal cord".PMID 22791629
  676. Taketoshi Wakabayashi et al. (2012). "Prolonged expression of Puma in cholinergic amacrine cells during the development of rat retina".PMID 22736709
  677. M Brus et al. (2013). "Dynamics of olfactory and hippocampal neurogenesis in adult sheep".PMID 22700217
  678. Tim Clarner et al. (2012). "Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions".PMID 22689449
  679. Issei S Shimada et al. (2012). "Self-renewal and differentiation of reactive astrocyte-derived neural stem/progenitor cells isolated from the cortical peri-infarct area after stroke".PMID 22674268
  680. Hao Pan et al. (2012). "The absence of Nrf2 enhances NF-κB-dependent inflammation following scratch injury in mouse primary cultured astrocytes".PMID 22529521
  681. Tara M Desilva et al. (2012). "Expression of EAAT2 in neurons and protoplasmic astrocytes during human cortical development".PMID 22522966
  682. A D Skjolding et al. (2013). "Differences in distribution and regulation of astrocytic aquaporin-4 in human and rat hydrocephalic brain".PMID 22497211
  683. Youngsoon Kim et al. (2012). "The MMP-9/TIMP-1 axis controls the status of differentiation and function of myelin-forming Schwann cells in nerve regeneration".PMID 22438979
  684. Leonid Schneider et al. (2012). "Neural stem cells exposed to BrdU lose their global DNA methylation and undergo astrocytic differentiation".PMID 22379135
  685. Sarah E Lutz et al. (2012). "Loss of astrocyte connexins 43 and 30 does not significantly alter susceptibility or severity of acute experimental autoimmune encephalomyelitis in mice".PMID 22342190
  686. Anandh Dhanushkodi et al. (2011). "Intracranial V. cholerae sialidase protects against excitotoxic neurodegeneration".PMID 22195039
  687. Jorge Ivan Alvarez et al. (2011). "The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence".PMID 22144466
  688. Alexis Laux et al. (2012). "Localization of endogenous morphine-like compounds in the mouse spinal cord".PMID 22102217
  689. Nozomu Yoshioka et al. (2012). "The astrocytic lineage marker calmodulin-regulated spectrin-associated protein 1 (Camsap1): phenotypic heterogeneity of newly born Camsap1-expressing cells in injured mouse brain".PMID 22095662
  690. Maryla Krajewska et al. (2011). "Neuronal deletion of caspase 8 protects against brain injury in mouse models of controlled cortical impact and kainic acid-induced excitotoxicity".PMID 21957448
  691. Jessica Schira et al. (2012). "Significant clinical, neuropathological and behavioural recovery from acute spinal cord trauma by transplantation of a well-defined somatic stem cell from human umbilical cord blood".PMID 21903726
  692. Dan Y Lewitus et al. (2011). "Biohybrid Carbon Nanotube/Agarose Fibers for Neural Tissue Engineering".PMID 21887125
  693. Samantha R Furr et al. (2011). "A role for DNA-dependent activator of interferon regulatory factor in the recognition of herpes simplex virus type 1 by glial cells".PMID 21838860
  694. Anne Jaerve et al. (2011). "Differential effect of aging on axon sprouting and regenerative growth in spinal cord injury".PMID 21806987
  695. Lian Zhao et al. (2011). "Minocycline attenuates photoreceptor degeneration in a mouse model of subretinal hemorrhage microglial: inhibition as a potential therapeutic strategy".PMID 21763674
  696. Magdalena Zürner et al. (2011). "Analyses of the spatiotemporal expression and subcellular localization of liprin-α proteins".PMID 21618221
  697. Dan Y Lewitus et al. (2011). "The fate of ultrafast degrading polymeric implants in the brain".PMID 21609850
  698. Vinita S Chauhan et al. (2011). "Prophylactic and therapeutic targeting of the neurokinin-1 receptor limits neuroinflammation in a murine model of pneumococcal meningitis".PMID 21562162
  699. Alexis Laux et al. (2011). "Mapping of endogenous morphine-like compounds in the adult mouse brain: Evidence of their localization in astrocytes and GABAergic cells".PMID 21456021
  700. Csaba Adori et al. (2011). "Recovery and aging of serotonergic fibers after single and intermittent MDMA treatment in Dark Agouti rat".PMID 21456018
  701. Che Feng Chang et al. (2011). "Caveolin-1 deletion reduces early brain injury after experimental intracerebral hemorrhage".PMID 21435456
  702. Dan Lewitus et al. (2011). "Ultrafast resorbing polymers for use as carriers for cortical neural probes".PMID 21345383
  703. Nikol A Piskuric et al. (2011). "Confocal immunofluorescence study of rat aortic body chemoreceptors and associated neurons in situ and in vitro".PMID 21280041
  704. Jocelyne Bloch et al. (2011). "Doublecortin-positive cells in the adult primate cerebral cortex and possible role in brain plasticity and development".PMID 21246554
  705. Kazunobu Sawamoto et al. (2011). "Cellular composition and organization of the subventricular zone and rostral migratory stream in the adult and neonatal common marmoset brain".PMID 21246550
  706. Jelena Damm et al. (2011). "Spatiotemporal nuclear factor interleukin-6 expression in the rat brain during lipopolysaccharide-induced fever is linked to sustained hypothalamic inflammatory target gene induction".PMID 21192080
  707. Shozo Jinno et al. (2011). "Decline in adult neurogenesis during aging follows a topographic pattern in the mouse hippocampus".PMID 21192078
  708. Timothy W Phares et al. (2011). "Factors supporting intrathecal humoral responses following viral encephalomyelitis".PMID 21191015
  709. Emily Roltsch et al. (2010). "PSAPP mice exhibit regionally selective reductions in gliosis and plaque deposition in response to S100B ablation".PMID 21080947
  710. Derek A Wainwright et al. (2010). "The presence of IL-17A and T helper 17 cells in experimental mouse brain tumors and human glioma".PMID 21060663
  711. Larissa Grupp et al. (2010). "Astroglial structures in the zebrafish brain".PMID 20853506
  712. Jacqueline Burré et al. (2010). "Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro".PMID 20798282
  713. Catherine M Schwartz et al. (2010). "Clathrin assembly proteins AP180 and CALM in the embryonic rat brain".PMID 20653035
  714. Randal X Moldrich et al. (2010). "Molecular regulation of the developing commissural plate".PMID 20653027
  715. Shin ichi Sekizawa et al. (2010). "House-dust mite allergen and ozone exposure decreases histamine H3 receptors in the brainstem respiratory nuclei".PMID 20600210
  716. Dragana Trifunovic et al. (2010). "cGMP-dependent cone photoreceptor degeneration in the cpfl1 mouse retina".PMID 20593360
  717. Yun Yu Tseng et al. (2010). "Identification of the Tctex-1 regulatory element that directs expression to neural stem/progenitor cells in developing and adult brain".PMID 20575070
  718. Hengxuan Yang et al. (2010). "Amelioration of the Alzheimer's disease phenotype by absence of 12/15-lipoxygenase".PMID 20570249
  719. Brian DellaValle et al. (2010). "In vivo expression of neuroglobin in reactive astrocytes during neuropathology in murine models of traumatic brain injury, cerebral malaria, and autoimmune encephalitis".PMID 20544857
  720. Ji Jie Pang et al. (2010). "Light responses and morphology of bNOS-immunoreactive neurons in the mouse retina".PMID 20503422
  721. Matthew W VanBrocklin et al. (2010). "Targeted delivery of NRASQ61R and Cre-recombinase to post-natal melanocytes induces melanoma in Ink4a/Arflox/lox mice".PMID 20444198
  722. Gabriel Lepousez et al. (2010). "Somatostatin interneurons delineate the inner part of the external plexiform layer in the mouse main olfactory bulb".PMID 20394054
  723. Michiel Vellema et al. (2010). "Area-specific migration and recruitment of new neurons in the adult songbird brain".PMID 20187140
  724. Konstantinos Ampatzis et al. (2010). "Regional distribution and cellular localization of beta2-adrenoceptors in the adult zebrafish brain (Danio rerio)".PMID 20187137
  725. Vinita S Chauhan et al. (2010). "Vesicular stomatitis virus infects resident cells of the central nervous system and induces replication-dependent inflammatory responses".PMID 20172575
  726. Simon Moussaud et al. (2010). "A new method to isolate microglia from adult mice and culture them for an extended period of time".PMID 20097228
  727. Derek A Wainwright et al. (2010). "Toll-like receptor 2 and facial motoneuron survival after facial nerve axotomy".PMID 20056129
  728. Y Liu et al. (2010). "Glial fibrillary acidic protein-expressing neural progenitors give rise to immature neurons via early intermediate progenitors expressing both glial fibrillary acidic protein and neuronal markers in the adult hippocampus".PMID 20026190
  729. Emilie Caron et al. (2010). "Distribution of leptin-sensitive cells in the postnatal and adult mouse brain".PMID 20017211
  730. Ying Sun et al. (2010). "Specific saposin C deficiency: CNS impairment and acid beta-glucosidase effects in the mouse".PMID 20015957
  731. Raquel Martín-Ibáñez et al. (2010). "Ikaros-1 couples cell cycle arrest of late striatal precursors with neurogenesis of enkephalinergic neurons".PMID 19950118
  732. Jianmin Su et al. (2010). "Collagen XIX is expressed by interneurons and contributes to the formation of hippocampal synapses".PMID 19937713
  733. Sandro Santagata et al. (2009). "CRX is a diagnostic marker of retinal and pineal lineage tumors".PMID 19936203
  734. Derek A Wainwright et al. (2009). "Exacerbation of facial motoneuron loss after facial nerve axotomy in CCR3-deficient mice".PMID 19922414
  735. Derek A Wainwright et al. (2009). "Effects of facial nerve axotomy on Th2- and Th1-associated chemokine expression in the facial motor nucleus of wild-type and presymptomatic mSOD1 mice".PMID 19818514
  736. Jun Cai et al. (2010). "Co-localization of Nkx6.2 and Nkx2.2 homeodomain proteins in differentiated myelinating oligodendrocytes".PMID 19780200
  737. Angela Gritti et al. (2009). "Effects of developmental age, brain region, and time in culture on long-term proliferation and multipotency of neural stem cell populations".PMID 19760739
  738. Mojgan Rastegar et al. (2009). "MECP2 isoform-specific vectors with regulated expression for Rett syndrome gene therapy".PMID 19710912
  739. Tanja Vogel et al. (2010). "Transforming growth factor beta promotes neuronal cell fate of mouse cortical and hippocampal progenitors in vitro and in vivo: identification of Nedd9 as an essential signaling component".PMID 19587023
  740. Cambrian Y Liu et al. (2009). "Grueneberg ganglion olfactory subsystem employs a cGMP signaling pathway".PMID 19565523
  741. Krista Sultan-Styne et al. (2009). "Long-term survival of olfactory sensory neurons after target depletion".PMID 19496176
  742. Brian W Leonard et al. (2009). "Subventricular zone neural progenitors from rapid brain autopsies of elderly subjects with and without neurodegenerative disease".PMID 19425077
  743. María Inés Rehermann et al. (2009). "Neural reconnection in the transected spinal cord of the freshwater turtle Trachemys dorbignyi".PMID 19418545
  744. Benjamin H Singer et al. (2009). "Conditional ablation and recovery of forebrain neurogenesis in the mouse".PMID 19363795
  745. Sara Gil-Perotin et al. (2009). "Ultrastructure of the subventricular zone in Macaca fascicularis and evidence of a mouse-like migratory stream".PMID 19350672
  746. Pascal E Sanchez et al. (2009). "Erythropoietin receptor expression is concordant with erythropoietin but not with common beta chain expression in the rat brain throughout the life span".PMID 19330822
  747. Sébastien Talbot et al. (2009). "Cellular localization of kinin B1 receptor in the spinal cord of streptozotocin-diabetic rats with a fluorescent [Nalpha-Bodipy]-des-Arg9-bradykinin".PMID 19323833
  748. Bernadette Unkrüer et al. (2009). "Cellular localization of Y-box binding protein 1 in brain tissue of rats, macaques, and humans".PMID 19323802
  749. Kerri L Kislin et al. (2009). "NHERF-1: modulator of glioblastoma cell migration and invasion".PMID 19308292
  750. Sherif F El-Khamisy et al. (2009). "Synergistic decrease of DNA single-strand break repair rates in mouse neural cells lacking both Tdp1 and aprataxin".PMID 19303373
  751. Fabio Bianco et al. (2009). "Acid sphingomyelinase activity triggers microparticle release from glial cells".PMID 19300439
  752. Jeong Hun Kim et al. (2009). "Shank 2 expression coincides with neuronal differentiation in the developing retina".PMID 19299912
  753. Sjoukje D Kuipers et al. (2009). "Selective survival and maturation of adult-born dentate granule cells expressing the immediate early gene Arc/Arg3.1".PMID 19290048
  754. Christopher A Fasano et al. (2009). "Bmi-1 cooperates with Foxg1 to maintain neural stem cell self-renewal in the forebrain".PMID 19270157
  755. Lillian A Buhler et al. (2009). "Matrix metalloproteinase-7 facilitates immune access to the CNS in experimental autoimmune encephalomyelitis".PMID 19267908
  756. Pier Giorgio Mastroberardino et al. (2009). "A novel transferrin/TfR2-mediated mitochondrial iron transport system is disrupted in Parkinson's disease".PMID 19250966
  757. Igor Jakovcevski et al. (2009). "Close homologue of adhesion molecule L1 promotes survival of Purkinje and granule cells and granule cell migration during murine cerebellar development".PMID 19226508
  758. Manabu Toyoshima et al. (2009). "Preferential localization of neural cell recognition molecule NB-2 in developing glutamatergic neurons in the rat auditory brainstem".PMID 19177518
  759. Sharon W Way et al. (2009). "Loss of Tsc2 in radial glia models the brain pathology of tuberous sclerosis complex in the mouse".PMID 19150975
  760. Flora Brozzi et al. (2009). "S100B Protein Regulates Astrocyte Shape and Migration via Interaction with Src Kinase: IMPLICATIONS FOR ASTROCYTE DEVELOPMENT, ACTIVATION, AND TUMOR GROWTH".PMID 19147496
  761. Wassim Chatoo et al. (2009). "The polycomb group gene Bmi1 regulates antioxidant defenses in neurons by repressing p53 pro-oxidant activity".PMID 19144853
  762. Colin K Franz et al. (2009). "Intraspinal cord delivery of IGF-I mediated by adeno-associated virus 2 is neuroprotective in a rat model of familial ALS".PMID 19135533
  763. Jeanette E Christensen et al. (2009). "Fulminant lymphocytic choriomeningitis virus-induced inflammation of the CNS involves a cytokine-chemokine-cytokine-chemokine cascade".PMID 19124751
  764. Arne Herring et al. (2009). "Environmental enrichment enhances cellular plasticity in transgenic mice with Alzheimer-like pathology".PMID 19118549
  765. Mila Komitova et al. (2009). "NG2 cells are distinct from neurogenic cells in the postnatal mouse subventricular zone".PMID 19058188
  766. Bin Ji et al. (2008). "Imaging of peripheral benzodiazepine receptor expression as biomarkers of detrimental versus beneficial glial responses in mouse models of Alzheimer's and other CNS pathologies".PMID 19020019
  767. Sandrine Puverel et al. (2009). "Prokineticin receptor 2 expression identifies migrating neuroblasts and their subventricular zone transient-amplifying progenitors in adult mice".PMID 19003791
  768. Omedul Islam et al. (2009). "Interleukin-6 and neural stem cells: more than gliogenesis".PMID 18971377
  769. E K Y Chung et al. (2008). "Downregulation of glial glutamate transporters after dopamine denervation in the striatum of 6-hydroxydopamine-lesioned rats".PMID 18831527
  770. Gabor G Kovacs et al. (2008). "White matter tauopathy with globular glial inclusions: a distinct sporadic frontotemporal lobar degeneration".PMID 18800011
  771. Shin Ichi Sakakibara et al. (2008). "Developmental and spatial expression pattern of alpha-taxilin in the rat central nervous system".PMID 18729150
  772. Zhengang Yang et al. (2008). "Neonatal hypoxic/ischemic brain injury induces production of calretinin-expressing interneurons in the striatum".PMID 18720478
  773. Kazushi Miya et al. (2008). "Serine racemase is predominantly localized in neurons in mouse brain".PMID 18698599
  774. Ying Sun et al. (2008). "Temporal gene expression profiling reveals CEBPD as a candidate regulator of brain disease in prosaposin deficient mice".PMID 18673548
  775. Maria Buniel et al. (2008). "Distribution of voltage-gated potassium and hyperpolarization-activated channels in sensory afferent fibers in the rat carotid body".PMID 18668683
  776. Richa B Tripathi et al. (2008). "Chronically increased ciliary neurotrophic factor and fibroblast growth factor-2 expression after spinal contusion in rats".PMID 18615534
  777. Colleen M Cebulla et al. (2008). "Basic fibroblast growth factor impact on retinoblastoma progression and survival".PMID 18614803
  778. June Kawano et al. (2008). "Wolfram syndrome 1 (Wfs1) gene expression in the normal mouse visual system".PMID 18613120
  779. Ralf Dressel et al. (2008). "The tumorigenicity of mouse embryonic stem cells and in vitro differentiated neuronal cells is controlled by the recipients' immune response".PMID 18612432
  780. Sebastian Hoff et al. (2008). "Quantitative assessment of glial cells in the human and guinea pig enteric nervous system with an anti-Sox8/9/10 antibody".PMID 18512230
  781. Marcelo N Rudzinski et al. (2008). "Antiangiogenic characteristics of astrocytes from optic nerve heads with primary open-angle glaucoma".PMID 18474779
  782. Yelena Lyustikman et al. (2008). "Constitutive activation of Raf-1 induces glioma formation in mice".PMID 18472967
  783. Mark R Verardo et al. (2008). "Abnormal reactivity of muller cells after retinal detachment in mice deficient in GFAP and vimentin".PMID 18469190
  784. Xiu Yu Cui et al. (2008). "Differential activation of p38 and extracellular signal-regulated kinase in spinal cord in a model of bee venom-induced inflammation and hyperalgesia".PMID 18445299
  785. Kaori Suzuki et al. (2008). "Indocyanine green as useful guide for retinal vein cannulation and injection of tissue plasminogen activator in rabbits".PMID 18441511
  786. Celine Plachez et al. (2008). "Nuclear factor I gene expression in the developing forebrain".PMID 18335562
  787. Konstantinos Ampatzis et al. (2008). "Neuronal and glial localization of alpha(2A)-adrenoceptors in the adult zebrafish (Danio rerio) brain".PMID 18300261
  788. Jochen K Lennerz et al. (2008). "Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: differences between peripheral and central CGRP receptor distribution".PMID 18186028
  789. Wei Zhu et al. (2008). "Upregulation of EMMPRIN after permanent focal cerebral ischemia".PMID 18164515
  790. Richard L Benton et al. (2008). "Griffonia simplicifolia isolectin B4 identifies a specific subpopulation of angiogenic blood vessels following contusive spinal cord injury in the adult mouse".PMID 18092342
  791. Maria Laura Falchetti et al. (2008). "Inhibition of telomerase in the endothelial cells disrupts tumor angiogenesis in glioblastoma xenografts".PMID 18027853
  792. Xian Nan Tang et al. (2007). "Monitoring the protective effects of minocycline treatment with radiolabeled annexin V in an experimental model of focal cerebral ischemia".PMID 17942809
  793. Yuan Yang et al. (2007). "Ectopia of meningeal fibroblasts and reactive gliosis in the cerebral cortex of the mouse model of muscle-eye-brain disease".PMID 17924568
  794. Georgia A Bishop et al. (2007). "Type III adenylyl cyclase localizes to primary cilia throughout the adult mouse brain".PMID 17924533
  795. Sofia H Eriksson et al. (2008). "PROPELLER MRI visualizes detailed pathology of hippocampal sclerosis".PMID 17877734
  796. Tamilla Nechiporuk et al. (2007). "Failure of epithelial tube maintenance causes hydrocephalus and renal cysts in Dlg5-/- mice".PMID 17765678
  797. Barbara Ahlemeyer et al. (2007). "Differential expression of peroxisomal matrix and membrane proteins during postnatal development of mouse brain".PMID 17729295
  798. David M Howell et al. (2007). "Molecular guidance cues necessary for axon pathfinding from the ventral cochlear nucleus".PMID 17701984
  799. Cecily E Hamill et al. (2007). "Exacerbation of dopaminergic terminal damage in a mouse model of Parkinson's disease by the G-protein-coupled receptor protease-activated receptor 1".PMID 17596374
  800. Omar Trujillo-Cenóz et al. (2007). "Cytological organization of the central gelatinosa in the turtle spinal cord".PMID 17348014
  801. Irina Dudanova et al. (2007). "Deletion of alpha-neurexins does not cause a major impairment of axonal pathfinding or synapse formation".PMID 17347997
  802. Gjon Blakqori et al. (2007). "La Crosse bunyavirus nonstructural protein NSs serves to suppress the type I interferon system of mammalian hosts".PMID 17344298
  803. Núria Brunet et al. (2007). "Survival and death of mature avian motoneurons in organotypic slice culture: trophic requirements for survival and different types of degeneration".PMID 17299760
  804. Phuong B Tran et al. (2007). "Chemokine receptor expression by neural progenitor cells in neurogenic regions of mouse brain".PMID 17183554
  805. Huiyi Chen et al. (2007). "Epidermal growth factor receptor in adult retinal neurons of rat, mouse, and human".PMID 17111374
  806. Kasey L Baker et al. (2006). "Neuroblast protuberances in the subventricular zone of the regenerative MRL/MpJ mouse".PMID 16927265
  807. Giovanna Ponti et al. (2006). "Cellular composition and cytoarchitecture of the rabbit subventricular zone and its extensions in the forebrain".PMID 16874818
  808. Liang Wei Chen et al. (2006). "Localization of nerve growth factor, neurotrophin-3, and glial cell line-derived neurotrophic factor in nestin-expressing reactive astrocytes in the caudate-putamen of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated C57/Bl mice".PMID 16802332
  809. Byung G Kim et al. (2006). "Degradation of chondroitin sulfate proteoglycans potentiates transplant-mediated axonal remodeling and functional recovery after spinal cord injury in adult rats".PMID 16705682
  810. Robert Papay et al. (2006). "Localization of the mouse alpha1A-adrenergic receptor (AR) in the brain: alpha1AAR is expressed in neurons, GABAergic interneurons, and NG2 oligodendrocyte progenitors".PMID 16705673
  811. Delia M Talos et al. (2006). "Developmental regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. I. Rodent cerebral white matter and cortex".PMID 16680782
  812. Carlos Dedesma et al. (2006). "Dynein light chain Tctex-1 identifies neural progenitors in adult brain".PMID 16628620
  813. Michael H Donovan et al. (2006). "Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer's disease".PMID 16432899
  814. Sabine Wenisch et al. (2006). "Immunochemical, ultrastructural and electrophysiological investigations of bone-derived stem cells in the course of neuronal differentiation".PMID 16418015
  815. Suzanne Guenette et al. (2006). "Essential roles for the FE65 amyloid precursor protein-interacting proteins in brain development".PMID 16407979
  816. Donna L Herber et al. (2006). "Diverse microglial responses after intrahippocampal administration of lipopolysaccharide".PMID 16288481
  817. Emi Kiyokage et al. (2005). "Localization of 5alpha-reductase in the rat main olfactory bulb".PMID 16261538
  818. Grzegorz Wicher et al. (2005). "Low-density lipoprotein receptor-related protein (LRP)-2/megalin is transiently expressed in a subpopulation of neural progenitors in the embryonic mouse spinal cord".PMID 16196028
  819. Donna L Herber et al. (2004). "Time-dependent reduction in Abeta levels after intracranial LPS administration in APP transgenic mice".PMID 15473997
  820. Anthony J Apicelli et al. (2003). "Role of the Rap1 GTPase in astrocyte growth regulation".PMID 12673829
  821. Erik J Uhlmann et al. (2002). "Heterozygosity for the tuberous sclerosis complex (TSC) gene products results in increased astrocyte numbers and decreased p27-Kip1 expression in TSC2+/- cells".PMID 12037687
  822. Alexander Seitz et al. (2002). "Recovery from spinal cord injury: a new transection model in the C57Bl/6 mouse".PMID 11813238
  823. M Penkowa et al. (1999). "CNS wound healing is severely depressed in metallothionein I- and II-deficient mice".PMID 10087067
  824. J Satoh et al. (1998). "Constitutive and heat-inducible expression of HSP105 in neurons and glial cells in culture".PMID 9804301
  825. H P Haring et al. (1996). "Distribution of integrin-like immunoreactivity on primate brain microvasculature".PMID 8786382
  826. V Balasingam et al. (1996). "Attenuation of astroglial reactivity by interleukin-10".PMID 8622125