这是一篇来自已证抗体库的有关人类 GFAP的综述,是根据719篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合GFAP 抗体。
GFAP 同义词: ALXDRD; glial fibrillary acidic protein

艾博抗(上海)贸易有限公司
鸡 多克隆
  • 免疫组化; 大鼠; 1:3000; 图 1b
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在大鼠样品上浓度为1:3000 (图 1b). J Histochem Cytochem (2018) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:5000; 图 2
  • immunohistochemistry - free floating section; 人类; 1:5000; 图 4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:5000 (图 2) 和 被用于immunohistochemistry - free floating section在人类样品上浓度为1:5000 (图 4). Neurosci Res (2018) ncbi
鸡 多克隆
  • 免疫组化; 人类; 1:1000; 图 1a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在人类样品上浓度为1:1000 (图 1a). Am J Physiol Gastrointest Liver Physiol (2017) ncbi
鸡 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:500; 图 3d
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500 (图 3d). J Neurosci (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:4000; 图 4b
艾博抗(上海)贸易有限公司 GFAP抗体(Millipore, AB7260)被用于被用于免疫印迹在小鼠样品上浓度为1:4000 (图 4b). Biochem Biophys Res Commun (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:50; 图 1c
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫细胞化学在大鼠样品上浓度为1:50 (图 1c). Oncol Lett (2017) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:1600; 图 2a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫细胞化学在小鼠样品上浓度为1:1600 (图 2a). Invest Ophthalmol Vis Sci (2017) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司 GFAP抗体(Sigma, AB7260)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 1b). Nat Commun (2017) ncbi
鸡 多克隆
  • 免疫组化; 大鼠; 1:200; 图 6
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在大鼠样品上浓度为1:200 (图 6). Glia (2017) ncbi
山羊 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在大鼠样品上浓度为1:200 (图 4a). J Headache Pain (2017) ncbi
兔 单克隆(EP672Y)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7f
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab33922)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图 7f). Ann Neurol (2017) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:500; 图 1f
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在人类样品上浓度为1:500 (图 1f). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1c
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, AB7260)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图 1c). Mol Psychiatry (2018) ncbi
鸡 多克隆
  • 免疫组化; 人类; 1:500; 图 2d
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在人类样品上浓度为1:500 (图 2d). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(2A5)
  • immunohistochemistry - free floating section; 大鼠; 1:2000; 图 6
  • 免疫印迹; 大鼠; 1:1000; 图 6
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4648)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:2000 (图 6) 和 被用于免疫印迹在大鼠样品上浓度为1:1000 (图 6). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1c
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图 1c). PLoS ONE (2016) ncbi
小鼠 单克隆(2A5)
  • immunohistochemistry - free floating section; 小鼠; 图 2f
艾博抗(上海)贸易有限公司 GFAP抗体(abcam, ab4648)被用于被用于immunohistochemistry - free floating section在小鼠样品上 (图 2f). Neuroimage (2017) ncbi
山羊 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 7g
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4d
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图 7g) 和 被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 4d). Sci Rep (2016) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 图 s4d
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于被用于免疫细胞化学在人类样品上 (图 s4d). Nature (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:50
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫细胞化学在大鼠样品上浓度为1:50 和 被用于免疫细胞化学在人类样品上. Mol Med Rep (2016) ncbi
鸡 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:200; 图 2
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:200 (图 2). Cell Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 8
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 7260)被用于被用于免疫印迹在小鼠样品上 (图 8). Mol Vis (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:50; 图 1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 7260)被用于被用于免疫细胞化学在大鼠样品上浓度为1:50 (图 1). Oncol Lett (2016) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1:600; 表 1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, Ab53554)被用于被用于免疫组化在小鼠样品上浓度为1:600 (表 1). Int J Mol Sci (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500 (图 4). Acta Neuropathol Commun (2016) ncbi
兔 多克隆
  • 流式细胞仪; 小鼠; 1:100; 图 2
  • 免疫印迹; 小鼠; 1:100; 图 2
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab16997)被用于被用于流式细胞仪在小鼠样品上浓度为1:100 (图 2) 和 被用于免疫印迹在小鼠样品上浓度为1:100 (图 2). Dis Model Mech (2016) ncbi
小鼠 单克隆(GF5)
  • 免疫组化; 小鼠; 1:1000; 图 1b
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 10,062)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 1b). Mol Ther Nucleic Acids (2016) ncbi
兔 单克隆(EP672Y)
  • 免疫细胞化学; 人类; 1:500; 图 1g
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab33922)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 1g). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫细胞化学在小鼠样品上浓度为1:1000 (图 5a). Dev Neurobiol (2017) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 1:400; 图 1s1
艾博抗(上海)贸易有限公司 GFAP抗体(abcam, 54554)被用于被用于免疫细胞化学在人类样品上浓度为1:400 (图 1s1). elife (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化; 小鼠; 1:50; 图 3
  • 免疫组化; 大鼠; 1:50; 图 4
艾博抗(上海)贸易有限公司 GFAP抗体(AbCam, Ab4648)被用于被用于免疫组化在小鼠样品上浓度为1:50 (图 3) 和 被用于免疫组化在大鼠样品上浓度为1:50 (图 4). Neuroscience (2016) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-石蜡切片; 大鼠; 图 1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于被用于免疫组化-石蜡切片在大鼠样品上 (图 1). Mol Brain (2016) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 6
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 (图 6). PLoS ONE (2016) ncbi
鸡 多克隆
  • 免疫组化; domestic ferret; 1:500; 图 9d
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在domestic ferret样品上浓度为1:500 (图 9d). Shock (2016) ncbi
山羊 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于被用于免疫印迹在大鼠样品上浓度为1:500 (图 4). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:500 (图 1b). Front Cell Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:5000; 图 4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:5000 (图 4). Sci Rep (2016) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 6
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 6). Front Cell Neurosci (2016) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 1g
  • 免疫细胞化学; 小鼠; 1:2000; 图 1l
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:2000 (图 1g) 和 被用于免疫细胞化学在小鼠样品上浓度为1:2000 (图 1l). Nat Commun (2016) ncbi
鸡 多克隆
  • 流式细胞仪; 大鼠; 图 6
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于流式细胞仪在大鼠样品上 (图 6). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (图 1). Aging (Albany NY) (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:5000; 图 3
  • 免疫印迹; 大鼠; 1:20,000; 图 3
艾博抗(上海)贸易有限公司 GFAP抗体(abcam, ab7260)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:5000 (图 3) 和 被用于免疫印迹在大鼠样品上浓度为1:20,000 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化-冰冻切片; 大鼠; 1:300; 图 5f
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4648)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:300 (图 5f). Mol Neurobiol (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 ev1c
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫印迹在小鼠样品上浓度为1:5000 (图 ev1c). EMBO Mol Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫印迹在小鼠样品上 (图 1). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:2000; 图 1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab16997)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:2000 (图 1). Mol Med Rep (2016) ncbi
山羊 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000 (图 4). Proc Natl Acad Sci U S A (2016) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 表 1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (表 1). Cell Mol Gastroenterol Hepatol (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图 6a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, AB7260)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 6a). PLoS ONE (2015) ncbi
小鼠 单克隆(2A5)
  • 免疫组化; 小鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4648)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 2). Mol Ther (2016) ncbi
鸡 多克隆
  • 免疫细胞化学; 大鼠; 1:1000; 图 6c
  • 免疫印迹; 大鼠; 1:10,000; 图 1b
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫细胞化学在大鼠样品上浓度为1:1000 (图 6c) 和 被用于免疫印迹在大鼠样品上浓度为1:10,000 (图 1b). PLoS ONE (2015) ncbi
小鼠 单克隆(2A5)
  • 免疫组化; 人类; 1:100; 图 2c
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 2A5)被用于被用于免疫组化在人类样品上浓度为1:100 (图 2c). Oncotarget (2016) ncbi
小鼠 单克隆(GF5)
  • 免疫组化; 人类; 1:100; 图 2
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于被用于免疫组化在人类样品上浓度为1:100 (图 2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 4). Gene Ther (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s10
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 s10). Brain (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1500; 图 2
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫印迹在人类样品上浓度为1:1500 (图 2). Stem Cell Res (2015) ncbi
鸡 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:2000; 图 3
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:2000 (图 3). Front Mol Neurosci (2015) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 3
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:100 (图 3). Mol Brain (2015) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 图 6.d,e
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样品上 (图 6.d,e). Sci Signal (2015) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-冰冻切片; 小鼠; 图 2
  • 免疫细胞化学; 小鼠; 图 4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, GF5)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 2) 和 被用于免疫细胞化学在小鼠样品上 (图 4). Neuroscience (2015) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-冰冻切片; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 GFAP抗体(abcam, ab10062)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 2a). PLoS ONE (2015) ncbi
小鼠 单克隆(GF5)
  • 免疫印迹; 小鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 1). Nat Neurosci (2015) ncbi
小鼠 单克隆(2A5)
  • 免疫组化-冰冻切片; 大鼠; 图 4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4648)被用于被用于免疫组化-冰冻切片在大鼠样品上 (图 4). Mol Pain (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 图 3
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在大鼠样品上 (图 3). J Korean Med Sci (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(abcam, ab7260)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500. Iran J Basic Med Sci (2015) ncbi
小鼠 单克隆(2A5)
  • 免疫细胞化学; 人类; 1:100; 图 3
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4648)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 3). PLoS ONE (2015) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:400
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:400. J Histochem Cytochem (2015) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300
  • 免疫细胞化学; 小鼠; 1:300
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:300 和 被用于免疫细胞化学在小鼠样品上浓度为1:300. Mol Cell Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 7260)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 3). Hum Mol Genet (2015) ncbi
鸡 多克隆
  • 免疫细胞化学; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(AbCam, ab4674)被用于被用于免疫细胞化学在大鼠样品上浓度为1:1000. Exp Eye Res (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:5000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样品上浓度为1:5000. Shock (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 2
艾博抗(上海)贸易有限公司 GFAP抗体(abcam, ab7260)被用于被用于免疫组化在小鼠样品上 (图 2). Oncotarget (2015) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. Cereb Cortex (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样品上浓度为1:500. J Assoc Res Otolaryngol (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在大鼠样品上浓度为1:1000. Biol Psychiatry (2015) ncbi
小鼠 单克隆(GF5)
  • 免疫组化; 小鼠; 1:100; 图 s2a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 s2a). Nat Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 1.23.5
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样品上 (图 1.23.5). Curr Protoc Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, AB7260)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. J Neurosci (2015) ncbi
小鼠 单克隆(GF5)
  • immunohistochemistry - free floating section; 大鼠; 1:500
  • 免疫组化; 大鼠; 1:500
  • 免疫印迹; 大鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:500, 被用于免疫组化在大鼠样品上浓度为1:500 和 被用于免疫印迹在大鼠样品上浓度为1:500. Biochim Biophys Acta (2015) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫细胞化学在人类样品上浓度为1:100. Mol Med Rep (2015) ncbi
山羊 多克隆
  • 免疫印迹; 小鼠; 图 3a
艾博抗(上海)贸易有限公司 GFAP抗体(abcam, ab53554)被用于被用于免疫印迹在小鼠样品上 (图 3a). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在人类样品上浓度为1:500. Tumour Biol (2015) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 7260)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500. Ann Neurol (2015) ncbi
小鼠 单克隆(GF5)
  • 免疫组化; 小鼠; 1:250; 图 5
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于被用于免疫组化在小鼠样品上浓度为1:250 (图 5). Age (Dordr) (2015) ncbi
小鼠 单克隆(GF5)
  • 免疫细胞化学; 人类; 1:100; 图 1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 1). J Neurosci (2015) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于被用于免疫组化在小鼠样品上浓度为1:500. Nature (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司 GFAP抗体(abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 5). Nat Cell Biol (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 人类; 图 3
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在人类样品上 (图 3). Transl Psychiatry (2015) ncbi
鸡 多克隆
  • 免疫组化; 大鼠; 图 4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在大鼠样品上 (图 4). Mol Ther (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000
  • 免疫印迹; 大鼠; 1:5000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 7260)被用于被用于免疫印迹在人类样品上浓度为1:5000 和 被用于免疫印迹在大鼠样品上浓度为1:5000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样品上 和 被用于免疫印迹在小鼠样品上. Stem Cells (2015) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:500
  • 免疫组化; 大鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样品上浓度为1:500 和 被用于免疫组化在大鼠样品上浓度为1:500. J Neurotrauma (2015) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样品上浓度为1:500. Neurobiol Dis (2015) ncbi
鸡 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:200
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:200. Cereb Cortex (2015) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 人类; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:500. J Comp Neurol (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫细胞化学在小鼠样品上. Glia (2015) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:3000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫细胞化学在人类样品上浓度为1:3000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1 ul/ml; 图 2
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样品上浓度为1 ul/ml (图 2). Methods Mol Biol (2014) ncbi
山羊 多克隆
  • 免疫印迹; 大鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于被用于免疫印迹在大鼠样品上浓度为1:500. PLoS ONE (2014) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样品上浓度为1:1000. Neurobiol Dis (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫细胞化学在小鼠样品上. PLoS Genet (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-冰冻切片; 小鼠
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 10062)被用于被用于免疫组化-冰冻切片在小鼠样品上. Mol Cell Neurosci (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 牛; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫细胞化学在牛样品上浓度为1:500. AAPS J (2014) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:1000
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在人类样品上浓度为1:1000 和 被用于免疫印迹在人类样品上浓度为1:1000. J Neuroimmunol (2014) ncbi
山羊 多克隆
  • 免疫组化; 大鼠; 1:2000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于被用于免疫组化在大鼠样品上浓度为1:2000. Front Synaptic Neurosci (2014) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Neurotrauma (2014) ncbi
鸡 多克隆
  • immunohistochemistry - free floating section; 大鼠; 6.6 ug/ml
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为6.6 ug/ml. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样品上浓度为1:1000. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样品上浓度为1:500. Cell Mol Neurobiol (2014) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500. Acta Neuropathol (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab16997)被用于被用于免疫组化-冰冻切片在大鼠样品上. PLoS ONE (2013) ncbi
山羊 多克隆
  • 免疫组化-冰冻切片; 人类; 1:200
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:200. Stem Cells Dev (2014) ncbi
兔 多克隆
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, Ab7260)被用于. Hum Mol Genet (2014) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-石蜡切片; 小鼠; 1:250
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:250. J Innate Immun (2014) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-冰冻切片; 大鼠; 1:500
  • 免疫印迹; 大鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500 和 被用于免疫印迹在大鼠样品上浓度为1:500. Exp Neurol (2013) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样品上浓度为1:1000. Hum Mol Genet (2013) ncbi
小鼠 单克隆(2A5)
  • 免疫组化; 大鼠; 1:200
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4648)被用于被用于免疫组化在大鼠样品上浓度为1:200. BMC Neurosci (2013) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Neuroscience (2013) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-石蜡切片; 小鼠; 1:250
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:250. Mol Neurodegener (2012) ncbi
兔 多克隆
  • 其他; 猪; 1:500; 图 2a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于其他在猪样品上浓度为1:500 (图 2a). Electrophoresis (2012) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-石蜡切片; 小鼠; 1:250
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:250. J Neuroimmunol (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 4). PLoS ONE (2011) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:600
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:600. J Comp Neurol (2009) ncbi
赛默飞世尔
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 1c
  • 免疫印迹; 小鼠; 图 1d
赛默飞世尔 GFAP抗体(Thermo Fisher, 13-0300)被用于被用于免疫组化在小鼠样品上 (图 1c) 和 被用于免疫印迹在小鼠样品上 (图 1d). J Neurochem (2018) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫细胞化学; 小鼠; 图 s1b
赛默飞世尔 GFAP抗体(Thermo, MA5-12023)被用于被用于免疫细胞化学在小鼠样品上 (图 s1b). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫印迹; 小鼠; 1:500; 图 s1b
赛默飞世尔 GFAP抗体(ThermoFischer, 13-0300)被用于被用于免疫印迹在小鼠样品上浓度为1:500 (图 s1b). Invest Ophthalmol Vis Sci (2017) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 S2G
赛默飞世尔 GFAP抗体(invitrogen, PA1-10019)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 S2G). PLoS ONE (2017) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 图 7a
赛默飞世尔 GFAP抗体(ThermoFisher, PA1-10004)被用于被用于免疫组化在小鼠样品上 (图 7a). Cell Stem Cell (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1f
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 1f). Nature (2017) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 5e
赛默飞世尔 GFAP抗体(Invitrogen, MA5-12023)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:500 (图 5e). Nature (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫印迹; 小鼠; 1:500; 图 s1a
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于被用于免疫印迹在小鼠样品上浓度为1:500 (图 s1a). J Cell Sci (2017) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 2g
赛默飞世尔 GFAP抗体(Thermo Fischer Scientific, 131-17719)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400 (图 2g). Mediators Inflamm (2016) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫细胞化学; Epinephelus; 图 1a
赛默飞世尔 GFAP抗体(Thermo Fisher Scientific, MA5-12023)被用于被用于免疫细胞化学在Epinephelus样品上 (图 1a). Dev Comp Immunol (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 小鼠; 1:1000; 图 3
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫细胞化学在小鼠样品上浓度为1:1000 (图 3). J Vis Exp (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 8m
赛默飞世尔 GFAP抗体(Zymed, 2.2B10)被用于被用于免疫组化在小鼠样品上 (图 8m). J Neurosci (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6d
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 6d). PLoS ONE (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (表 1). Glia (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 4a
赛默飞世尔 GFAP抗体(生活技术, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:250 (图 4a). Glia (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:500; 表 1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样品上浓度为1:500 (表 1). J Neurovirol (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:5000; 图 5a
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样品上浓度为1:5000 (图 5a). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 6b
赛默飞世尔 GFAP抗体(ThermoFisher Scientific, PA3-16727)被用于被用于免疫细胞化学在人类样品上浓度为1:1000 (图 6b). Dev Growth Differ (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 人类; 图 1g
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫细胞化学在人类样品上 (图 1g). Neuroscience (2016) ncbi
小鼠 单克隆(131-17719)
赛默飞世尔 GFAP抗体(分子探针, A-21294)被用于. Neuroscience (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5a
赛默飞世尔 GFAP抗体(Zymed, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图 5a). J Neuroinflammation (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 2
赛默飞世尔 GFAP抗体(生活技术, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:400 (图 2). J Neuroinflammation (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 7b
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于免疫组化在小鼠样品上 (图 7b). Neuroimage (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 3). Acta Neuropathol Commun (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:500; 图 1f
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 1f). Science (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 表 1
赛默飞世尔 GFAP抗体(Thermo Fisher, PA1-9565)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (表 1). J Comp Neurol (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 图 3a
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 3a). Biol Cell (2016) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化; 小鼠; 1:2000; 图 2C
赛默飞世尔 GFAP抗体(Thermo, MA5-12023)被用于被用于免疫组化在小鼠样品上浓度为1:2000 (图 2C). Sci Rep (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:2000; 表 1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样品上浓度为1:2000 (表 1). J Comp Neurol (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s2
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 s2). Nature (2016) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化; 小鼠; 1:250; 图 3f
赛默飞世尔 GFAP抗体(Invitrogen, A21282)被用于被用于免疫组化在小鼠样品上浓度为1:250 (图 3f). Neuroscience (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 小鼠; 图 1
赛默飞世尔 GFAP抗体(生活技术, 13-0300)被用于被用于免疫细胞化学在小鼠样品上 (图 1). Proteomics (2016) ncbi
鸡 多克隆
  • immunohistochemistry - free floating section; 大鼠; 1:2000; 图 4
赛默飞世尔 GFAP抗体(Thermo Scientific, PA1-10004)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:2000 (图 4). J Neurochem (2016) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛默飞世尔 GFAP抗体(Thermo Scientific, MS-1376)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4
赛默飞世尔 GFAP抗体(Thermo Fisher, MA5-12023)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 4). Oncol Lett (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 2). J Neuroinflammation (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 GFAP抗体(Pierce, PA3-16727)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 6) 和 被用于免疫印迹在小鼠样品上 (图 4). J Neurochem (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图 3). Neuroscience (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 人类; 图 3f
赛默飞世尔 GFAP抗体(Invitrogen, GA5)被用于被用于免疫组化-石蜡切片在人类样品上 (图 3f). Sci Rep (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1c
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 1c). Neurobiol Dis (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 7
赛默飞世尔 GFAP抗体(Pierce, PA1-10019)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 7). Neuroscience (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:6000; 图 1
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:6000 (图 1). J Neurochem (2016) ncbi
小鼠 单克隆(S.880.0)
  • 免疫细胞化学; 人类; 图 7
赛默飞世尔 GFAP抗体(生活技术, MA5-15086)被用于被用于免疫细胞化学在人类样品上 (图 7). Sci Rep (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 图 1a
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 1a). Mol Neurobiol (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 小鼠
赛默飞世尔 GFAP抗体(生活技术, 13-0300)被用于被用于免疫细胞化学在小鼠样品上. Biochem J (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 7
赛默飞世尔 GFAP抗体(Thermo Scientific, RB-087-A)被用于被用于免疫组化在小鼠样品上 (图 7). Neural Dev (2015) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 3
  • 免疫印迹; 小鼠; 1:5000; 图 7
赛默飞世尔 GFAP抗体(Thermo Scientific, MA5-12023)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:2000 (图 3) 和 被用于免疫印迹在小鼠样品上浓度为1:5000 (图 7). Anesthesiology (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:200
赛默飞世尔 GFAP抗体(生活技术, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200. Ann Clin Transl Neurol (2015) ncbi
小鼠 单克隆(131-17719)
  • 免疫细胞化学; 人类; 1:500; 图 3
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 3). J Tissue Eng Regen Med (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:2000
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于被用于免疫组化在小鼠样品上浓度为1:2000. J Neurosci (2015) ncbi
小鼠 单克隆(131-17719)
  • immunohistochemistry - free floating section; 大鼠; 1:400
赛默飞世尔 GFAP抗体(生活技术, 131-17719)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:400. Free Radic Biol Med (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:300
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:300. Glia (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1a
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图 1a). Nat Neurosci (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:1000
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样品上浓度为1:1000. Neuroscience (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; ready-to-use
赛默飞世尔 GFAP抗体(LabVision, RB-087-R7)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为ready-to-use. Nutr Neurosci (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:500
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500. Genes Cancer (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 人类; 1:1000
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫细胞化学在人类样品上浓度为1:1000. J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 GFAP抗体(Lab Vision, RB-087-R7)被用于被用于免疫组化-石蜡切片在人类样品上. Korean J Parasitol (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛默飞世尔 GFAP抗体(thermo, pa3-16727)被用于被用于免疫印迹在大鼠样品上. Biochim Biophys Acta (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:1000; 图 2
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 2). Stroke (2015) ncbi
小鼠 单克隆(S.880.0)
  • immunohistochemistry - free floating section; 小鼠; 1:1000
赛默飞世尔 GFAP抗体(Millipore, MA5-15086)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. Curr Gene Ther (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样品上浓度为1:200. Acta Neuropathol (2015) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化-石蜡切片; 小鼠; 图 5
赛默飞世尔 GFAP抗体(Thermo, ASTRO6)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 5). PLoS ONE (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 图 s1c
赛默飞世尔 GFAP抗体(生活技术, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 s1c). EMBO Mol Med (2015) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化-石蜡切片; 大鼠
赛默飞世尔 GFAP抗体(Lab Vision, MS-1376-P)被用于被用于免疫组化-石蜡切片在大鼠样品上. Int J Stem Cells (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图 5
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 5). PLoS ONE (2014) ncbi
小鼠 单克隆(131-17719)
  • immunohistochemistry - free floating section; 小鼠; 1:600
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:600. Cereb Cortex (2015) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-冰冻切片; 小鼠; 5 ug/ml
赛默飞世尔 GFAP抗体(Invitrogen, A21294)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为5 ug/ml. J Virol (2014) ncbi
小鼠 单克隆(131-17719)
  • 免疫细胞化学; 小鼠; 1:400; 图 2
赛默飞世尔 GFAP抗体(生活技术, A21282)被用于被用于免疫细胞化学在小鼠样品上浓度为1:400 (图 2). J Neuroinflammation (2014) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 大鼠; 1:5000
赛默飞世尔 GFAP抗体(ThermoScientific, PA3-16727)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:5000. Pain (2014) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-石蜡切片; 人类; 图 8
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于被用于免疫组化-石蜡切片在人类样品上 (图 8). J Exp Med (2014) ncbi
小鼠 单克隆(S.880.0)
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔 GFAP抗体(Thermo Sci., MA5-15086)被用于被用于免疫印迹在小鼠样品上浓度为1:2000. J Neurosci Res (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图 s1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 s1). Stem Cells Dev (2014) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-冰冻切片; 大鼠; 1:200
赛默飞世尔 GFAP抗体(生活技术, 131-17719)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200. Mar Drugs (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠
赛默飞世尔 GFAP抗体(Neomarkers, RB-087)被用于被用于免疫组化在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:500
赛默飞世尔 GFAP抗体(Thermo Scientific, PA1-9565)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:500. Acta Histochem (2014) ncbi
小鼠 单克隆(GFA-02)
  • 流式细胞仪; 小鼠
赛默飞世尔 GFAP抗体(Pierce, MA1-35376)被用于被用于流式细胞仪在小鼠样品上. Sci Rep (2014) ncbi
大鼠 单克隆(2.2B10)
赛默飞世尔 GFAP抗体(Invitrogen, 12-0300)被用于. J Immunol (2014) ncbi
小鼠 单克隆(131-17719)
  • 免疫印迹; 大鼠
赛默飞世尔 GFAP抗体(生活技术, A-21282)被用于被用于免疫印迹在大鼠样品上. Neurobiol Aging (2014) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化; Styela clava; 1:500
赛默飞世尔 GFAP抗体(Invitrogen, A-21282)被用于被用于免疫组化在Styela clava样品上浓度为1:500. Acta Biomater (2014) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 4
赛默飞世尔 GFAP抗体(Life Technologies Corporation, 131-17719)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200 (图 4). J Pain (2013) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:500
赛默飞世尔 GFAP抗体(Thermo Fisher Scientific , PA1-10004)被用于被用于免疫组化在小鼠样品上浓度为1:500. Genes Brain Behav (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫印迹; 小鼠
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样品上 和 被用于免疫印迹在小鼠样品上. Genes Cells (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 GFAP抗体(生活技术, 13-0300)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Exp Neurol (2013) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化; 大鼠; 1:500; 图 3
赛默飞世尔 GFAP抗体(Invitrogen, A-21282)被用于被用于免疫组化在大鼠样品上浓度为1:500 (图 3). Biomaterials (2013) ncbi
小鼠 单克隆(131-17719)
  • 免疫印迹; 人类; 1:2000
赛默飞世尔 GFAP抗体(Invitrogen, A-21282)被用于被用于免疫印迹在人类样品上浓度为1:2000. J Neurochem (2013) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 GFAP抗体(Invitrogen, A-21295)被用于被用于免疫组化-石蜡切片在小鼠样品上. Invest Ophthalmol Vis Sci (2013) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:50 (图 1). Neurobiol Dis (2013) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 图 5
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 5). J Virol (2013) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化; 大鼠; 1:200
赛默飞世尔 GFAP抗体(分子探针, 131-17719)被用于被用于免疫组化在大鼠样品上浓度为1:200. Mar Drugs (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图 1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 1). PLoS ONE (2012) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200
赛默飞世尔 GFAP抗体(Neomarkers, RB-087-A1)被用于被用于免疫组化在小鼠样品上浓度为1:200. PLoS ONE (2012) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-冰冻切片; 小鼠; 图 5
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 5). Clin Cancer Res (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:250; 图 2
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于被用于免疫组化在小鼠样品上浓度为1:250 (图 2). Endocrinology (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 s1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:250 (图 s1). Neurosci Lett (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 2
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 2) 和 被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 (图 2). Neuropathol Appl Neurobiol (2013) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 2). J Neuroimmunol (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 大鼠; 图 5
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在大鼠样品上 (图 5). Adv Funct Mater (2011) ncbi
小鼠 单克隆(131-17719)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于被用于流式细胞仪在小鼠样品上 (图 3). J Neuroinflammation (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 图 5
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 5). Am J Pathol (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 人类; 1:200; 图 4
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在人类样品上浓度为1:200 (图 4). Biomaterials (2011) ncbi
小鼠 单克隆(131-17719)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 GFAP抗体(Invitrogen, clone 131?C17719)被用于被用于流式细胞仪在小鼠样品上 (图 3). J Immunol (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 人类; 1:400
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于免疫组化在人类样品上浓度为1:400. Am J Pathol (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 大鼠; 1:200; 图 7
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在大鼠样品上浓度为1:200 (图 7). Acta Biomater (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 图 5
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 5). J Virol (2011) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-冰冻切片; 小鼠; 图 1
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 1). PLoS ONE (2010) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化; 猕猴; 1:500
赛默飞世尔 GFAP抗体(Invitrogen, A21282)被用于被用于免疫组化在猕猴样品上浓度为1:500. Toxicol Appl Pharmacol (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫印迹; 小鼠; 图 s1
赛默飞世尔 GFAP抗体(Zymed, 2.2B10)被用于被用于免疫印迹在小鼠样品上 (图 s1). Biol Psychiatry (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:100; 图 1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 1). Glia (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 大鼠; 1:1000; 图 2
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于免疫组化在大鼠样品上浓度为1:1000 (图 2). J Comp Neurol (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图 s4
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 s4). Pigment Cell Melanoma Res (2010) ncbi
小鼠 单克隆(131-17719)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于被用于流式细胞仪在小鼠样品上 (图 5). Virology (2010) ncbi
小鼠 单克隆(131-17719)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 GFAP抗体(Invitrogen, A-21294)被用于被用于流式细胞仪在小鼠样品上 (图 2). J Neurosci Methods (2010) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-冰冻切片; 小鼠; 图 3
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 3). Neurosci Lett (2010) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-冰冻切片; 小鼠; 1:600
赛默飞世尔 GFAP抗体(Invitrogen, A-21282)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:600. J Comp Neurol (2010) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于被用于免疫组化-冰冻切片在小鼠样品上. ASN Neuro (2009) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于被用于免疫组化-冰冻切片在小鼠样品上. J Neuroimmunol (2009) ncbi
小鼠 单克隆(131-17719)
  • 免疫细胞化学; 小鼠; 1:200; 图 4
赛默飞世尔 GFAP抗体(分子探针, A21282)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200 (图 4). PLoS ONE (2009) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 1
赛默飞世尔 GFAP抗体(Invitrogen, A21282)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500 (图 1). Neurobiol Dis (2009) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-冰冻切片; 小鼠; 5 ug/ml; 图 10
赛默飞世尔 GFAP抗体(Invitrogen, A21294)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为5 ug/ml (图 10). J Immunol (2009) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫细胞化学; 小鼠
赛默飞世尔 GFAP抗体(Zymed/Invitrogen, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样品上 和 被用于免疫细胞化学在小鼠样品上. J Neurosci (2008) ncbi
小鼠 单克隆(131-17719)
  • immunohistochemistry - free floating section; 小鼠; 1:500
  • 免疫细胞化学; 小鼠; 1:500
赛默飞世尔 GFAP抗体(分子探针, A-21282)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500 和 被用于免疫细胞化学在小鼠样品上浓度为1:500. J Comp Neurol (2009) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-冰冻切片; 小鼠; 图 1
  • 免疫组化-冰冻切片; 人类; 图 2
赛默飞世尔 GFAP抗体(分子探针, 131-17719)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 1) 和 被用于免疫组化-冰冻切片在人类样品上 (图 2). Invest Ophthalmol Vis Sci (2008) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 人类; 1:100-1:200
  • 免疫组化; Domestic guinea pig; 1:100-1:200
赛默飞世尔 GFAP抗体(Zytomed, 13-0300)被用于被用于免疫组化在人类样品上浓度为1:100-1:200 和 被用于免疫组化在Domestic guinea pig样品上浓度为1:100-1:200. J Comp Neurol (2008) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-冰冻切片; 小鼠; 1:200
赛默飞世尔 GFAP抗体(Invitrogen, A-21294)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200. J Nucl Med (2007) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 8
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于免疫组化在小鼠样品上 (图 8). J Virol (2007) ncbi
大鼠 单克隆(2.2B10)
  • immunohistochemistry - free floating section; 小鼠; 1:3000; 表 2
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:3000 (表 2). Glia (2006) ncbi
大鼠 单克隆(2.2B10)
  • 免疫沉淀; 小鼠
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于免疫沉淀在小鼠样品上. J Comp Neurol (2005) ncbi
大鼠 单克隆(2.2B10)
  • immunohistochemistry - free floating section; 小鼠; 1:3000; 表 1
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:3000 (表 1). Exp Neurol (2004) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:10,000; 图 1
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于免疫组化在小鼠样品上浓度为1:10,000 (图 1) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 1). Glia (2003) ncbi
大鼠 单克隆(2.2B10)
  • immunohistochemistry - free floating section; 小鼠; 1:10000
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:10000 和 被用于免疫印迹在小鼠样品上浓度为1:1000. Oncogene (2002) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:2; 图 3
赛默飞世尔 GFAP抗体(Zymed, 2.2B10)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:2 (图 3). J Neurosci Res (2002) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:100
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于免疫组化在小鼠样品上浓度为1:100. J Neurosci (1999) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 小鼠; 图 3
赛默飞世尔 GFAP抗体(Zymed, 2.2B10)被用于被用于免疫细胞化学在小鼠样品上 (图 3). Neuroreport (1998) ncbi
大鼠 单克隆(2.2B10)
赛默飞世尔 GFAP抗体(Zymed, clone 2.2B10(1))被用于. J Neuropathol Exp Neurol (1996) ncbi
小鼠 单克隆(131-17719)
  • 流式细胞仪; 小鼠
  • 免疫组化; 小鼠
赛默飞世尔 GFAP抗体(noco, noca)被用于被用于流式细胞仪在小鼠样品上 和 被用于免疫组化在小鼠样品上. J Neurosci (1996) ncbi
圣克鲁斯生物技术
小鼠 单克隆(F-7)
  • 免疫组化-石蜡切片; 小鼠; 图 3j
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-166458)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 3j). Biomed Rep (2017) ncbi
小鼠 单克隆(2E1)
  • 免疫印迹; 小鼠; 图 5d
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-33673)被用于被用于免疫印迹在小鼠样品上 (图 5d). Sci Rep (2017) ncbi
小鼠 单克隆(52)
  • 免疫组化; 大鼠; 1:1000; 图 3a
圣克鲁斯生物技术 GFAP抗体(Santa Cruz Biotechnology, sc-135921)被用于被用于免疫组化在大鼠样品上浓度为1:1000 (图 3a). Mol Med Rep (2017) ncbi
小鼠 单克隆(2E1)
  • 免疫印迹; 人类; 图 s1d
圣克鲁斯生物技术 GFAP抗体(Santa Cruz Biotechnology, sc-33673)被用于被用于免疫印迹在人类样品上 (图 s1d). Oncotarget (2016) ncbi
小鼠 单克隆(2E1)
  • 免疫组化; 小鼠; 1:50; 图 4a
  • 免疫印迹; 小鼠; 1:500; 图 9
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-33673)被用于被用于免疫组化在小鼠样品上浓度为1:50 (图 4a) 和 被用于免疫印迹在小鼠样品上浓度为1:500 (图 9). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(F-7)
  • 免疫组化-石蜡切片; 小鼠; 图 s4f
圣克鲁斯生物技术 GFAP抗体(Santa Cruz Biotech, sc-166458)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 s4f). Nat Biotechnol (2016) ncbi
小鼠 单克隆(GA-5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1
圣克鲁斯生物技术 GFAP抗体(Santa Cruz Biotechnology, sc-58766)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 1). Transl Psychiatry (2016) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4n
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-33673)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 4n). Exp Neurol (2016) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3
  • 免疫印迹; 小鼠; 1:200; 图 3
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-33673)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图 3) 和 被用于免疫印迹在小鼠样品上浓度为1:200 (图 3). Transl Psychiatry (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫印迹; 小鼠; 1:1000; 图 2
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-65343)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 2). Neuron (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫印迹; 狗; 1:1000; 图 6
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-65343)被用于被用于免疫印迹在狗样品上浓度为1:1000 (图 6). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 7a
圣克鲁斯生物技术 GFAP抗体(SantaCruz, sc-33673)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:500 (图 7a). Toxicology (2016) ncbi
小鼠 单克隆(GF5)
  • 免疫组化; 小鼠; 1:200
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-51908)被用于被用于免疫组化在小鼠样品上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫印迹; 大鼠; 图 7
圣克鲁斯生物技术 GFAP抗体(santa Cruz, sc-33673)被用于被用于免疫印迹在大鼠样品上 (图 7). Int J Mol Med (2015) ncbi
小鼠 单克隆(GA-5)
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, G3893)被用于被用于免疫细胞化学在小鼠样品上. J Clin Invest (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-石蜡切片; 小鼠; 1:300
  • 免疫印迹; 小鼠; 1:400
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-33673)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:300 和 被用于免疫印迹在小鼠样品上浓度为1:400. Neurobiol Aging (2015) ncbi
小鼠 单克隆(2E1)
  • immunohistochemistry - free floating section; 大鼠; 1:300; 图 7a
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-33673)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:300 (图 7a). Restor Neurol Neurosci (2015) ncbi
小鼠 单克隆(GA-5)
  • 免疫细胞化学; 大鼠; 1:200
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-58766)被用于被用于免疫细胞化学在大鼠样品上浓度为1:200. J Neuroinflammation (2014) ncbi
小鼠 单克隆(F-7)
  • 免疫细胞化学; 大鼠; 1:200
圣克鲁斯生物技术 GFAP抗体(Santa Cruz Biotechnology, sc-166458)被用于被用于免疫细胞化学在大鼠样品上浓度为1:200. Mol Cell Biol (2014) ncbi
小鼠 单克隆(2E1)
  • 免疫细胞化学; 大鼠; 1:300
  • 免疫印迹; 大鼠; 1:400
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-33673)被用于被用于免疫细胞化学在大鼠样品上浓度为1:300 和 被用于免疫印迹在大鼠样品上浓度为1:400. Cell Mol Neurobiol (2014) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-冰冻切片; 人类; 1:300; 图 5
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-33673)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:300 (图 5). Brain Struct Funct (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫组化; 人类
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc33673)被用于被用于免疫组化在人类样品上. Mol Psychiatry (2013) ncbi
小鼠 单克隆(F-2)
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术 GFAP抗体(Santa Cruz Biotechnology, sc-166481)被用于被用于免疫细胞化学在小鼠样品上. Mediators Inflamm (2012) ncbi
BioLegend
小鼠 单克隆(SMI 21)
  • 免疫细胞化学; 人类; 1:400; 表 1
  • 免疫印迹; 人类; 1:5000; 表 1
  • 免疫细胞化学; 小鼠; 1:400; 表 1
  • 免疫印迹; 小鼠; 1:5000; 表 1
BioLegend GFAP抗体(BioLegend, SMI-21)被用于被用于免疫细胞化学在人类样品上浓度为1:400 (表 1), 被用于免疫印迹在人类样品上浓度为1:5000 (表 1), 被用于免疫细胞化学在小鼠样品上浓度为1:400 (表 1) 和 被用于免疫印迹在小鼠样品上浓度为1:5000 (表 1). PLoS ONE (2017) ncbi
小鼠 单克隆(SMI 23)
  • 免疫细胞化学; 人类; 1:400; 表 1
  • 免疫印迹; 人类; 1:5000; 表 1
  • 免疫细胞化学; 小鼠; 1:400; 表 1
  • 免疫印迹; 小鼠; 1:5000; 表 1
BioLegend GFAP抗体(BioLegend, SMI-23)被用于被用于免疫细胞化学在人类样品上浓度为1:400 (表 1), 被用于免疫印迹在人类样品上浓度为1:5000 (表 1), 被用于免疫细胞化学在小鼠样品上浓度为1:400 (表 1) 和 被用于免疫印迹在小鼠样品上浓度为1:5000 (表 1). PLoS ONE (2017) ncbi
小鼠 单克隆(SMI 24)
  • 免疫细胞化学; 人类; 1:400; 表 1
  • 免疫印迹; 人类; 1:5000; 表 1
  • 免疫细胞化学; 小鼠; 1:400; 表 1
  • 免疫印迹; 小鼠; 1:5000; 表 1
BioLegend GFAP抗体(BioLegend, SMI-24)被用于被用于免疫细胞化学在人类样品上浓度为1:400 (表 1), 被用于免疫印迹在人类样品上浓度为1:5000 (表 1), 被用于免疫细胞化学在小鼠样品上浓度为1:400 (表 1) 和 被用于免疫印迹在小鼠样品上浓度为1:5000 (表 1). PLoS ONE (2017) ncbi
小鼠 单克隆(SMI 25)
  • 免疫细胞化学; 人类; 1:400; 表 1
  • 免疫印迹; 人类; 1:5000; 表 1
  • 免疫细胞化学; 小鼠; 1:400; 表 1
  • 免疫印迹; 小鼠; 1:5000; 表 1
BioLegend GFAP抗体(BioLegend, SMI-25)被用于被用于免疫细胞化学在人类样品上浓度为1:400 (表 1), 被用于免疫印迹在人类样品上浓度为1:5000 (表 1), 被用于免疫细胞化学在小鼠样品上浓度为1:400 (表 1) 和 被用于免疫印迹在小鼠样品上浓度为1:5000 (表 1). PLoS ONE (2017) ncbi
兔 多克隆(Poly28400)
  • 免疫印迹; 人类; 1:1000; 图 6h
BioLegend GFAP抗体(Covance, PRB-571C)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 6h). Nat Commun (2017) ncbi
小鼠 单克隆(SMI 21)
  • 免疫印迹; 人类; 图 3a
BioLegend GFAP抗体(Covance, SMI-21R)被用于被用于免疫印迹在人类样品上 (图 3a). JCI Insight (2017) ncbi
小鼠 单克隆(SMI 21)
  • 免疫组化; 小鼠; 1:1000; 图 s4c
BioLegend GFAP抗体(Covance, SMI21)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 s4c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(SMI 25)
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 4
BioLegend GFAP抗体(Covance, SMI-25R)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:2000 (图 4). Mol Neurodegener (2016) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化; 小鼠; 图 st1
BioLegend GFAP抗体(BioLegend, 835301)被用于被用于免疫组化在小鼠样品上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(SMI 21)
  • 免疫组化; 小鼠; 图 st1
BioLegend GFAP抗体(BioLegend, 837201)被用于被用于免疫组化在小鼠样品上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(SMI 26)
  • 免疫组化; 小鼠; 1:1000; 图 1
BioLegend GFAP抗体(Sternberger Monoclonals, SMI-26)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 1). J Proteome Res (2016) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化; 小鼠; 图 1
BioLegend GFAP抗体(Covance, SMI-22R-100)被用于被用于免疫组化在小鼠样品上 (图 1). Mol Biol Cell (2015) ncbi
小鼠 单克隆(SMI 22)
  • 免疫印迹; 小鼠
BioLegend GFAP抗体(Covance, SMI-22R)被用于被用于免疫印迹在小鼠样品上. J Vis Exp (2014) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化; 大鼠; 1:1000
BioLegend GFAP抗体(Covance, SMI-22R)被用于被用于免疫组化在大鼠样品上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(SMI 21)
  • 免疫细胞化学; 人类; 1:000; 图 4
BioLegend GFAP抗体(Covance, SMI21)被用于被用于免疫细胞化学在人类样品上浓度为1:000 (图 4). J Neurosci (2012) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化-石蜡切片; 人类; 1:3000
BioLegend GFAP抗体(Sternberger Monoclonals, SMI 22)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:3000. J Comp Neurol (2012) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化; 大鼠; 1:1,000
BioLegend GFAP抗体(Sternberger Monoclonals, SMI 22)被用于被用于免疫组化在大鼠样品上浓度为1:1,000. J Comp Neurol (2006) ncbi
Synaptic Systems
豚鼠 多克隆(/)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s3b
Synaptic Systems GFAP抗体(Synaptic Systems, 173 004)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图 s3b). Cell (2018) ncbi
豚鼠 多克隆(/)
  • 免疫组化; 小鼠; 图 5d
  • 免疫印迹; 小鼠; 图 5e
Synaptic Systems GFAP抗体(Synaptic systems, 173004)被用于被用于免疫组化在小鼠样品上 (图 5d) 和 被用于免疫印迹在小鼠样品上 (图 5e). Glia (2017) ncbi
小鼠 单克隆(134B1)
  • 免疫细胞化学; 小鼠; 1:2000; 图 7
Synaptic Systems GFAP抗体(Synaptic Systems, 173011)被用于被用于免疫细胞化学在小鼠样品上浓度为1:2000 (图 7). Histochem Cell Biol (2016) ncbi
豚鼠 多克隆(/)
  • immunohistochemistry - free floating section; 人类; 1:500; 图 1
Synaptic Systems GFAP抗体(SYnaptic SYstems, 173 004)被用于被用于immunohistochemistry - free floating section在人类样品上浓度为1:500 (图 1). Sci Rep (2016) ncbi
豚鼠 多克隆(/)
  • 免疫组化; 小鼠; 1:500; 图 3
Synaptic Systems GFAP抗体(Synaptic Systems, 173 004)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 3). Nature (2016) ncbi
小鼠 单克隆(134B1)
  • 免疫组化; 人类; 图 6
  • 免疫组化; 小鼠; 图 6
Synaptic Systems GFAP抗体(Synaptic Systems, 173011)被用于被用于免疫组化在人类样品上 (图 6) 和 被用于免疫组化在小鼠样品上 (图 6). Stem Cell Res Ther (2015) ncbi
EnCor Biotechnology
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 表 2
EnCor Biotechnology GFAP抗体(Encore, RPCA-GFAP)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (表 2). Glia (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 5a
EnCor Biotechnology GFAP抗体(Encor, RPCA-GFAP)被用于被用于免疫细胞化学在小鼠样品上 (图 5a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; equine; 图 3
EnCor Biotechnology GFAP抗体(EnCor-Biotechnology, 5C10)被用于被用于免疫组化-石蜡切片在equine样品上 (图 3). Peerj (2016) ncbi
小鼠 单克隆
  • immunohistochemistry - free floating section; 大鼠; 1:1000; 图 2
EnCor Biotechnology GFAP抗体(EnCor Biotechnology, MCA-5C10)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000 (图 2). Sci Rep (2015) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:1000
EnCor Biotechnology GFAP抗体(Encor, CPCA-GFAP)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:1000. Exp Neurol (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠; 1:5000
EnCor Biotechnology GFAP抗体(EnCor Biotechnology Inc, MCA5C10)被用于被用于免疫印迹在大鼠样品上浓度为1:5000. J Neurochem (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:12000
EnCor Biotechnology GFAP抗体(Encor, RPCA-GFAP)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:12000. J Mol Neurosci (2013) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:10000
EnCor Biotechnology GFAP抗体(Encore, RPCA-GFAP)被用于被用于免疫组化在小鼠样品上浓度为1:10000. Glia (2012) ncbi
武汉三鹰
兔 多克隆
  • 免疫组化; 小鼠; 图 4
武汉三鹰 GFAP抗体(Proteintech, 16825-1-AP)被用于被用于免疫组化在小鼠样品上 (图 4). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3a
武汉三鹰 GFAP抗体(ProteinTech, 16825-1-AP)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 3a). Biol Cell (2016) ncbi
小鼠 单克隆(4B2E10)
  • 免疫细胞化学; 大鼠; 1:500
武汉三鹰 GFAP抗体(Proteintech, 60190-1-Ig)被用于被用于免疫细胞化学在大鼠样品上浓度为1:500. Mol Brain (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200
武汉三鹰 GFAP抗体(Proteintech Group, 16825-1-AP)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Springerplus (2015) ncbi
小鼠 单克隆(4B2E10)
  • 免疫组化-石蜡切片; 人类; 图 1
武汉三鹰 GFAP抗体(Proteintech, 60190)被用于被用于免疫组化-石蜡切片在人类样品上 (图 1). In Vitro Cell Dev Biol Anim (2015) ncbi
小鼠 单克隆(4B2E10)
  • 免疫印迹; 人类
武汉三鹰 GFAP抗体(ProteinTech Group, 60190-1-Ig)被用于被用于免疫印迹在人类样品上. Carcinogenesis (2014) ncbi
Novus Biologicals
小鼠 单克隆(5c10)
  • immunohistochemistry - free floating section; 小鼠; 1:1000; 图 7c
Novus Biologicals GFAP抗体(Novus Biologicals, NBP1-05197)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000 (图 7c). J Comp Neurol (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4A
Novus Biologicals GFAP抗体(Novus Biologic, NB300-141)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 4A). Sci Rep (2015) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(GF-05)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 4b
伯乐(Bio-Rad)公司 GFAP抗体(AbD Serotec, 4650-0309)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:400 (图 4b). Front Neuroanat (2017) ncbi
小鼠 单克隆(GF-05)
  • 免疫组化-冰冻切片; African green monkey; 1:2000
伯乐(Bio-Rad)公司 GFAP抗体(生物合成, 4650-0309)被用于被用于免疫组化-冰冻切片在African green monkey样品上浓度为1:2000. J Comp Neurol (2009) ncbi
北京傲锐东源
小鼠 单克隆(OTI2C4)
  • 免疫组化; 大鼠; 1:100; 图 6
北京傲锐东源 GFAP抗体(Golden Bridge, TA500335)被用于被用于免疫组化在大鼠样品上浓度为1:100 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(OTI4C10)
  • 免疫组化; 人类; 图 1d
北京傲锐东源 GFAP抗体(ZSGB-BIO, TA500336)被用于被用于免疫组化在人类样品上 (图 1d). J Neuroinflammation (2015) ncbi
安迪生物R&D
羊 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 2b
安迪生物R&D GFAP抗体(R&D Systems, AF2594)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500 (图 2b). J Pineal Res (2017) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 0.57 ug/ml
亚诺法生技股份有限公司 GFAP抗体(Abnova, MAB11287)被用于被用于免疫组化在小鼠样品上浓度为0.57 ug/ml. J Biol Chem (2015) ncbi
Bioss
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 1
Bioss GFAP抗体(Beijing Biosynthesis Biotechnology, bs-0199R)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 (图 1). Neural Regen Res (2012) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(6F2)
  • 免疫组化-石蜡切片; 小鼠; 图 s4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 s4). Cell Mol Life Sci (2018) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 8f
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 8f). J Neurosci (2018) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 s5). Nat Neurosci (2018) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 1d
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上 (图 1d). J Clin Invest (2017) ncbi
小鼠 单克隆(6F2)
  • 免疫细胞化学; 小鼠; 1:100; 表 1
  • 免疫印迹; 小鼠; 1:1000; 表 1
  • 免疫细胞化学; 人类; 1:100; 表 1
  • 免疫印迹; 人类; 1:1000; 表 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, 6F2)被用于被用于免疫细胞化学在小鼠样品上浓度为1:100 (表 1), 被用于免疫印迹在小鼠样品上浓度为1:1000 (表 1), 被用于免疫细胞化学在人类样品上浓度为1:100 (表 1) 和 被用于免疫印迹在人类样品上浓度为1:1000 (表 1). PLoS ONE (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 8a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图 8a). EMBO Mol Med (2017) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:100; 图 1g
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在人类样品上浓度为1:100 (图 1g). Stem Cell Res Ther (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:5000; 图 4e
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:5000 (图 4e). Acta Neuropathol (2017) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 鸡; 1:500; 图 5a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z033)被用于被用于免疫组化-冰冻切片在鸡样品上浓度为1:500 (图 5a). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫组化; sea lamprey; 1:400; 图 2c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在sea lamprey样品上浓度为1:400 (图 2c). Nature (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:500. Front Cell Neurosci (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 3e
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200 (图 3e). Stem Cell Reports (2017) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s4b
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 s4b). Neuron (2017) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 1c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-石蜡切片; 狗; 1:50
  • 免疫组化-石蜡切片; 大鼠; 1:50
  • 免疫组化; 大鼠; 图 107
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于被用于免疫组化-石蜡切片在狗样品上浓度为1:50, 被用于免疫组化-石蜡切片在大鼠样品上浓度为1:50 和 被用于免疫组化在大鼠样品上 (图 107). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, 6F2)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图 1a). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200; 图 3e
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 3e). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1b
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 1b). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:300; 图 5a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z033401)被用于被用于免疫组化在小鼠样品上浓度为1:300 (图 5a). PLoS ONE (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3d
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0344)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图 3d). PLoS ONE (2017) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 6c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 6c). Dis Model Mech (2017) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 1f
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:5000 (图 1f). Nature (2017) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1500; 图 1c
  • 免疫细胞化学; 人类; 1:1500; 图 s4a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1500 (图 1c) 和 被用于免疫细胞化学在人类样品上浓度为1:1500 (图 s4a). Transl Res (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3h
  • 免疫细胞化学; 小鼠; 图 4b
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, ZO334)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 3h) 和 被用于免疫细胞化学在小鼠样品上 (图 4b). Mol Cell Biol (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 S1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500 (图 S1). Redox Biol (2017) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:1000; 图 5b
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000 (图 5b). Front Cell Neurosci (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 1e
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫印迹在大鼠样品上 (图 1e). Stem Cell Reports (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上 (图 6). Int J Mol Med (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:300; 图 5a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:300 (图 5a). Childs Nerv Syst (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 s1g
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在人类样品上 (图 s1g). Cell (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 s1f
  • 免疫印迹; 小鼠; 1:5000; 图 s1e
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:100 (图 s1f) 和 被用于免疫印迹在小鼠样品上浓度为1:5000 (图 s1e). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 斑马鱼; 1:1000; 图 3i
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在斑马鱼样品上浓度为1:1000 (图 3i). Dis Model Mech (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 1a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 1a). PLoS Genet (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 表 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (表 1). Brain Struct Funct (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2e
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫印迹在人类样品上 (图 2e). J Neuroinflammation (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200; 图 4a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 4a). MBio (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:400; 表 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:400 (表 2). Mol Neurobiol (2017) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:4000; 图 1d
  • 免疫组化; 小鼠; 1:500; 图 2c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:4000 (图 1d) 和 被用于免疫组化在小鼠样品上浓度为1:500 (图 2c). Brain (2017) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3d
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 3d). Nature (2016) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 大鼠; 1:1000; 表 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000 (表 2). Front Neurosci (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 5a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z334)被用于被用于免疫细胞化学在人类样品上 (图 5a). Mol Biol Cell (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:500; 表 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z033429-2)被用于被用于免疫细胞化学在大鼠样品上浓度为1:500 (表 1). Methods Mol Biol (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 2a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上 (图 2a). J Neurosci Res (2017) ncbi
小鼠 单克隆(6F2)
  • 免疫印迹; 小鼠; 1:2000; 图 4f
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, 6F2)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 4f). Glia (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:500; 表 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (表 2). Lab Chip (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 5c
  • 免疫印迹; 大鼠; 1:500; 图 5a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:500 (图 5c) 和 被用于免疫印迹在大鼠样品上浓度为1:500 (图 5a). Mol Pharm (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在小鼠样品上 (图 1). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:1000; 图 4a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在大鼠样品上浓度为1:1000 (图 4a). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上. Mol Cell Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 图 3a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上 (图 3a). Mol Neurobiol (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 s5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:1000 (图 s5). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 2c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 2c). Exp Neurol (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 图 S1d-f
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在人类样品上 (图 S1d-f). Mol Psychiatry (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 1a
  • 免疫组化; 人类; 1:1000; 图 4a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:2000 (图 1a) 和 被用于免疫组化在人类样品上浓度为1:1000 (图 4a). Glia (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:4000; 表 s4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:4000 (表 s4). Stem Cell Res (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:10,000; 图 7b
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:10,000 (图 7b). EMBO Mol Med (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:8000; 图 s5d
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:8000 (图 s5d). Nature (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 图 s1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在大鼠样品上 (图 s1). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图 5). elife (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 图 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在大鼠样品上 (图 1). J Alzheimers Dis (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 3). Acta Neuropathol Commun (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:5000; 图 3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z033429)被用于被用于免疫组化在小鼠样品上浓度为1:5000 (图 3). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:2000 (图 4). Mol Neurodegener (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2
  • 免疫印迹; 小鼠; 1:1000; 图 3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图 2) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 3). Mol Brain (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 2e
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200 (图 2e). J Neurochem (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 3c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:1000 (图 3c). Mol Ther (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 7
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cooperation, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 7). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:250 (图 5). Invest Ophthalmol Vis Sci (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s.8
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 s.8). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 3c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上 (图 3c). J Clin Invest (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 1b
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z03334)被用于被用于免疫细胞化学在小鼠样品上 (图 1b). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 3). J Mol Psychiatry (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:750
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:750. Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 图 3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于被用于免疫组化在大鼠样品上 (图 3). J Neuroinflammation (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:5000; 图 5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:5000 (图 5). Sci Rep (2016) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:5000; 图 7b
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:5000 (图 7b). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:100; 图 3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在大鼠样品上浓度为1:100 (图 3). Development (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200 (图 1). Cell Tissue Res (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 1). J Proteome Res (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上 (图 2). J Neuroinflammation (2016) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-石蜡切片; 人类; 1:40,000; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(dako, M-0761)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:40,000 (图 2). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 2). Mol Vis (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s6d
  • 免疫细胞化学; 小鼠; 1:4000; 图 1g
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 s6d) 和 被用于免疫细胞化学在小鼠样品上浓度为1:4000 (图 1g). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:40,000; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:40,000 (图 2). J Comp Pathol (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 6i
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 6i). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:200; 图 6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在大鼠样品上浓度为1:200 (图 6). Cell Death Dis (2016) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 大鼠; 1:5000; 图 3a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:5000 (图 3a). Endocrinology (2016) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-石蜡切片; 人类; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于被用于免疫组化-石蜡切片在人类样品上 (图 2). Breast Cancer Res (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 S2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DaKo, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 S2). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z 0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 5c). Am J Physiol Regul Integr Comp Physiol (2016) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 人类; 1:1000; 图 4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, z0334)被用于被用于immunohistochemistry - free floating section在人类样品上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:500; 图 6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500 (图 6). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上. Nature (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1g
  • 免疫细胞化学; 小鼠; 1:1000; 图 1l
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图 1g) 和 被用于免疫细胞化学在小鼠样品上浓度为1:1000 (图 1l). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:2000 (图 2). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s3c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 s3c). Science (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (图 5). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 表 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (表 1). Exp Neurol (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:3000; 图 5
  • 免疫细胞化学; 人类; 图 6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:3000 (图 5) 和 被用于免疫细胞化学在人类样品上 (图 6). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 2). Nat Commun (2016) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:200; 图 4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:200 (图 4). PLoS Pathog (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 斑马鱼; 1:100; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在斑马鱼样品上浓度为1:100 (图 2). Restor Neurol Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500; 图 s6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z-0334)被用于被用于免疫组化在大鼠样品上浓度为1:500 (图 s6). Acta Biomater (2016) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:500; 图 5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z-0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500 (图 5). Am J Pathol (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 s1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:5000 (图 s1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 羊; 1:1000; 图 5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-石蜡切片在羊样品上浓度为1:1000 (图 5). J Neuroinflammation (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫印迹在小鼠样品上浓度为1:5000 (图 2). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 3a). Nat Biotechnol (2016) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于被用于免疫组化在人类样品上浓度为1:200. Brain Tumor Pathol (2016) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 大鼠; 1:500; 图 8
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:500 (图 8). Exp Neurol (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:2000 (图 6). Neoplasia (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z033429)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 1c). Neurobiol Dis (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫印迹在小鼠样品上 (图 2). J Cell Biol (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上 (图 1). J Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 2). Stem Cell Reports (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 4). Dis Model Mech (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:250; 图 3
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:250 (图 3), 被用于免疫细胞化学在人类样品上 (图 1) 和 被用于免疫印迹在人类样品上 (图 1). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:500; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在人类样品上浓度为1:500 (图 2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 s1). Eur J Immunol (2016) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 人类; 1:200; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, 6 F2)被用于被用于免疫组化在人类样品上浓度为1:200 (图 2). Acta Neuropathol Commun (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:1000; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在人类样品上浓度为1:1000 (图 2). Brain (2016) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 人类; 1:50; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于被用于免疫组化在人类样品上浓度为1:50 (图 2). Brain (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 9
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500 (图 9). J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:4000; 图 3
  • 免疫印迹; 小鼠; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:4000 (图 3) 和 被用于免疫印迹在小鼠样品上浓度为1:2000. Brain (2016) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 图 4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上 (图 4). Front Cell Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500; 图 4b
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在大鼠样品上浓度为1:500 (图 4b). J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 斑马鱼; 1:500; 图 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, 20334)被用于被用于免疫组化在斑马鱼样品上浓度为1:500 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 人类; 1:2000; 图 3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, 6F2)被用于被用于免疫组化在人类样品上浓度为1:2000 (图 3). Acta Neuropathol Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 5a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫印迹在人类样品上浓度为1:10,000 (图 5a). Nat Cell Biol (2015) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 小鼠; 图 3c
  • 免疫印迹; 小鼠; 图 3a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于被用于免疫组化在小鼠样品上 (图 3c) 和 被用于免疫印迹在小鼠样品上 (图 3a). Mol Neurodegener (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:1000. Nat Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:3000; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:3000 (图 2). J Neuroinflammation (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, 20334)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 3). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(6F2)
  • 免疫细胞化学; 小鼠; 1:1000; 表 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dakocytomation, M0761)被用于被用于免疫细胞化学在小鼠样品上浓度为1:1000 (表 2). J Cell Physiol (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫细胞化学在小鼠样品上. Nature (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上 (图 6). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:4000; 图 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, N Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:4000 (图 1). ASN Neuro (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200 (图 1). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 s5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:1000 (图 s5). Development (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500 (图 5). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:1000. Methods (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 s4). Acta Neuropathol (2015) ncbi
兔 多克隆
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于. Acta Neuropathol Commun (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 5). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图 3a). Proc Natl Acad Sci U S A (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1 ug/ml; 图 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1 ug/ml (图 1). Nat Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在人类样品上. Mol Brain (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:1500; 图 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在人类样品上浓度为1:1500 (图 1). Mol Neurodegener (2015) ncbi
兔 多克隆
  • 免疫组化; 牛; 1:100; 图 6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在牛样品上浓度为1:100 (图 6). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 2). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫组化; 鸡; 1:2000; 图 8
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于被用于免疫组化在鸡样品上浓度为1:2000 (图 8). Exp Neurol (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在大鼠样品上. PLoS ONE (2015) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-石蜡切片; 人类; 1:5000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:5000. J Child Neurol (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 1
  • 免疫印迹; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上 (图 1) 和 被用于免疫印迹在小鼠样品上. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 斑马鱼; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在斑马鱼样品上浓度为1:200. Biol Open (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4,5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 4,5). J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 狗; 1:1000; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于被用于免疫组化在狗样品上浓度为1:1000 (图 2). PLoS ONE (2015) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:1000; 图 3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000 (图 3). Glia (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在人类样品上浓度为1:2000. Acta Neuropathol Commun (2015) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:500; 图 s14
  • 免疫细胞化学; 小鼠; 1:500; 图 s8
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500 (图 s14) 和 被用于免疫细胞化学在小鼠样品上浓度为1:500 (图 s8). Nat Med (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 表 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z 0334)被用于被用于免疫组化-石蜡切片在人类样品上 (表 2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 图 6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, z0334)被用于被用于免疫组化在大鼠样品上 (图 6). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:1000. J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 s5). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于被用于免疫组化在人类样品上 (图 2). J Neuroinflammation (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 3). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:1000 (图 3). Nat Protoc (2015) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 大鼠; 1:100000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:100000. J Comp Neurol (2015) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:400. Brain (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 s2). PLoS Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:30,000; 图 s3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫印迹在小鼠样品上浓度为1:30,000 (图 s3). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334l)被用于被用于免疫细胞化学在大鼠样品上浓度为1:1000. Mol Med Rep (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 7
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 7). J Neuroinflammation (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在人类样品上 (图 1). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上. Glia (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:10,000; 图 5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:10,000 (图 5). J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:1600
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在大鼠样品上浓度为1:1600. Tissue Eng Part A (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:10000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:10000. J Neuroinflammation (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:500. J Neurosci (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:5000; 图 1h
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:5000 (图 1h). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:400; 图 6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, Z0334)被用于被用于免疫组化在人类样品上浓度为1:400 (图 6). Hum Mol Genet (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000
  • 免疫印迹; 小鼠; 1:50000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:2000 和 被用于免疫印迹在小鼠样品上浓度为1:50000. J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:10,000; 图 5a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在人类样品上浓度为1:10,000 (图 5a). Front Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z 0334)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500. Exp Eye Res (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z033429-2)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000. Eur J Neurosci (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:2000
  • 免疫组化; 小鼠; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:2000 和 被用于免疫组化在小鼠样品上浓度为1:2000. Neurobiol Aging (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400. Brain (2015) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 2). Onco Targets Ther (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:200 (图 4). Onco Targets Ther (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 7
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, ZO334)被用于被用于免疫组化在小鼠样品上 (图 7). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:250
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:250. J Neurochem (2015) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:1800
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dakopatts, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1800. Glia (2015) ncbi
兔 多克隆
  • 免疫沉淀; 猪; 图 3
  • 免疫印迹; 猪; 图 1d,3
  • 免疫沉淀; 人类; 图 3
  • 免疫印迹; 人类; 图 1c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫沉淀在猪样品上 (图 3), 被用于免疫印迹在猪样品上 (图 1d,3), 被用于免疫沉淀在人类样品上 (图 3) 和 被用于免疫印迹在人类样品上 (图 1c). PLoS ONE (2015) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 小鼠; 1:200; 图 8
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, M0761)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 8). elife (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 4). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 斑马鱼; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在斑马鱼样品上浓度为1:1000. Mol Cancer (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 s5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上 (图 s5). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:1000. Cell Death Dis (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:20,000; 图 5h
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:20,000 (图 5h). Mol Cell Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:5000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:5000. Biomaterials (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:750
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:750. Exp Neurol (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:200. J Stroke Cerebrovasc Dis (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 s3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上 (图 s3). Cancer Cell (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:100
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dakocytomation, Z0334)被用于被用于免疫组化在大鼠样品上浓度为1:100. J Cell Mol Med (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:100
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:100. Ann Clin Transl Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 s6). Autophagy (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:400. J Neuroinflammation (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:1000. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:1000; 表 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, 20334)被用于被用于免疫细胞化学在人类样品上浓度为1:1000 (表 1). Acta Biomater (2015) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 表 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dakopatts, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上 (表 1). Brain Behav Immun (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:1000. Dev Neurobiol (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图 1). Neuropathology (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 s4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:2000 (图 s4). Nat Med (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, 70334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图 3). EMBO Mol Med (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:2000. Front Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Comp Neurol (2015) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:15000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:15000. Cereb Cortex (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:1000; 图 3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在大鼠样品上浓度为1:1000 (图 3). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:600
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:600. Glia (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上. Neuropathol Appl Neurobiol (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:800
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z 0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:800. PLoS ONE (2014) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 大鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:500. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:500; 图 4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于被用于免疫组化在人类样品上浓度为1:500 (图 4). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:600; 图 4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫印迹在小鼠样品上浓度为1:600 (图 4). Mol Vis (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500. J Biol Chem (2014) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 人类; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在人类样品上浓度为1:2000. Brain Pathol (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:2000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 7c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:5000 (图 7c). Dev Dyn (2015) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, 6F2)被用于被用于免疫组化在人类样品上浓度为1:200. Head Neck Pathol (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:250
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在大鼠样品上浓度为1:250. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫印迹在人类样品上浓度为1:1000. Stem Cell Rev (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫印迹在小鼠样品上浓度为1:400. J Neurotrauma (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. Eur J Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化; 斑马鱼; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在斑马鱼样品上浓度为1:2000. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 1). Nat Commun (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:400. Invest Ophthalmol Vis Sci (2014) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于被用于免疫组化在人类样品上浓度为1:200. Brain Pathol (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:500. Int J Dev Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400 (图 1). J Neurochem (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Immunol (2014) ncbi
兔 多克隆
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于. Nat Neurosci (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:500
  • 免疫印迹; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500 和 被用于免疫印迹在小鼠样品上浓度为1:1000. Glia (2014) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Corporation, Z0334)被用于被用于免疫组化在人类样品上浓度为1:500. Ann Neurol (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 3a
  • 免疫印迹; 小鼠; 1:1000; 图 5c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在小鼠样品上 (图 3a) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 5c). J Cell Mol Med (2014) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, M0761)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Ann Neurol (2014) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:250
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:250. Front Cell Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. Glia (2014) ncbi
小鼠 单克隆(6F2)
  • 免疫细胞化学; 人类
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于被用于免疫细胞化学在人类样品上. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:10000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:10000. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:20,000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:20,000. J Comp Neurol (2014) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 人类; 1:500
  • immunohistochemistry - free floating section; 猕猴; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在人类样品上浓度为1:500 和 被用于immunohistochemistry - free floating section在猕猴样品上浓度为1:500. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:1 000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:1 000. Cell Res (2014) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在大鼠样品上浓度为1:500. Hum Gene Ther (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:3000
  • 免疫组化-石蜡切片; 人类; 1:3000
  • 免疫组化-石蜡切片; 大鼠; 1:3000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:3000, 被用于免疫组化-石蜡切片在人类样品上浓度为1:3000 和 被用于免疫组化-石蜡切片在大鼠样品上浓度为1:3000. Acta Neuropathol (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上. J Thromb Haemost (2014) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在大鼠样品上浓度为1:500. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:1000 . J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. J Neurosci Methods (2014) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, 6F2)被用于被用于免疫组化在人类样品上. Histol Histopathol (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-石蜡切片在大鼠样品上. Mol Cancer Res (2014) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500. Glia (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (图 4). Acta Neuropathol Commun (2014) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-石蜡切片; 兔; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, 6F2)被用于被用于免疫组化-石蜡切片在兔样品上浓度为1:200. Biomaterials (2014) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 兔
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, 6F2)被用于被用于免疫组化在兔样品上. Neuropathology (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 7
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 7). PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:15,000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在人类样品上浓度为1:15,000. Neurobiol Aging (2014) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, 6F2)被用于被用于免疫组化-石蜡切片在人类样品上. Oncol Lett (2014) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. Acta Neuropathol Commun (2013) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在大鼠样品上浓度为1:1000. J Neurochem (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:700
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在大鼠样品上浓度为1:700. Biomaterials (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200. Genesis (2014) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上. J Neurosci (2013) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 狗; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于被用于免疫组化-冰冻切片在狗样品上浓度为1:400. Gene Ther (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:2000. Stem Cells Dev (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:1000. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:400. FASEB J (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:4000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:4000. Dev Neurobiol (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:500. Nat Neurosci (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 猪; 1:1500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于被用于免疫组化-石蜡切片在猪样品上浓度为1:1500. Toxicon (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 猪; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫细胞化学在猪样品上浓度为1:1000. Cell Reprogram (2013) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
  • 免疫印迹; 小鼠; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:1000 和 被用于免疫印迹在小鼠样品上浓度为1:2000. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100. Exp Neurol (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500. Methods Mol Biol (2013) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-石蜡切片; 小鼠; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, M0761)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200. J Neurosci (2013) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; lowland gorilla; 1:400
  • 免疫组化; lowland gorilla; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在lowland gorilla样品上浓度为1:400 和 被用于免疫组化在lowland gorilla样品上浓度为1:400. J Comp Neurol (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1,500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:1,500. Ann Neurol (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于被用于免疫细胞化学在小鼠样品上. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000
  • 免疫细胞化学; 人类; 1:1000
  • 免疫印迹; 人类; 1:5000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:1000, 被用于免疫细胞化学在人类样品上浓度为1:1000 和 被用于免疫印迹在人类样品上浓度为1:5000. Oncotarget (2013) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠
  • 免疫细胞化学; 人类
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上 和 被用于免疫细胞化学在人类样品上. Glia (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500
  • 免疫细胞化学; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 和 被用于免疫细胞化学在小鼠样品上. Glia (2013) ncbi
兔 多克隆
  • 免疫组化; smaller spotted catshark; 1:300
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在smaller spotted catshark样品上浓度为1:300. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上. Nature (2013) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, M0761)被用于被用于免疫组化在小鼠样品上. Cancer Res (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫细胞化学在人类样品上. Cancer Res (2013) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:1,000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在人类样品上浓度为1:1,000. J Cereb Blood Flow Metab (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, Z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:2000. Cytotherapy (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2,000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z 0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:2,000. J Comp Neurol (2013) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:4000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在人类样品上浓度为1:4000. Mol Brain (2013) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:3000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在大鼠样品上浓度为1:3000. Br J Pharmacol (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:1000. Stem Cell Rev (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200
  • 免疫细胞化学; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 和 被用于免疫细胞化学在小鼠样品上. EMBO J (2013) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 大鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Schweiz, Z0334)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000. Hum Gene Ther (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:3,000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:3,000. Acta Neuropathol (2013) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 人类; 0.73 ug/ml
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在人类样品上浓度为0.73 ug/ml. Neuropathol Appl Neurobiol (2014) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 人类; 1:5000
  • 免疫细胞化学; 人类; 1:5000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在人类样品上浓度为1:5000 和 被用于免疫细胞化学在人类样品上浓度为1:5000. Glia (2013) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠
  • 免疫细胞化学; 小鼠; 1:100
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上 和 被用于免疫细胞化学在小鼠样品上浓度为1:100. Neurosci Bull (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:10:000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:10:000. Cell Cycle (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:500. Am J Pathol (2013) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 图 8a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上 (图 8a). Biofabrication (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; smaller spotted catshark; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z 0334)被用于被用于免疫组化-石蜡切片在smaller spotted catshark样品上浓度为1:500. Brain Struct Funct (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:1000. PLoS ONE (2012) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:2,000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:2,000. Stem Cells Transl Med (2012) ncbi
兔 多克隆
  • 免疫细胞化学; Burton's mouthbrooder; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫细胞化学在Burton's mouthbrooder样品上浓度为1:500. J Neurosci Methods (2013) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dakopatts, Z-0334)被用于被用于免疫组化在大鼠样品上浓度为1:500. Gene Ther (2013) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-石蜡切片; 小鼠; 1:5000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:5000. PLoS ONE (2012) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:500 (图 2). J Tissue Eng Regen Med (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z-0334)被用于被用于免疫组化在大鼠样品上浓度为1:2000. J Comp Neurol (2013) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 羊; 1:10000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于被用于免疫组化-冰冻切片在羊样品上浓度为1:10000. J Comp Neurol (2013) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000
  • 免疫印迹; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 和 被用于免疫印迹在小鼠样品上. J Neurosci (2012) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 5b
  • 免疫印迹; 小鼠; 1:1000; 图 5d
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:1000 (图 5b) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 5d). PLoS ONE (2012) ncbi
兔 多克隆
  • 免疫细胞化学; 斑马鱼
  • 免疫印迹; 斑马鱼
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在斑马鱼样品上 和 被用于免疫印迹在斑马鱼样品上. Nucleic Acids Res (2012) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:1000. J Comp Neurol (2012) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:1500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在大鼠样品上浓度为1:1500. Brain (2012) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. J Comp Neurol (2011) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:40000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:40000. J Comp Neurol (2011) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 人类
  • 免疫组化-石蜡切片; 人类
  • 免疫组化-冰冻切片; African green monkey
  • 免疫组化-石蜡切片; African green monkey
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在人类样品上, 被用于免疫组化-石蜡切片在人类样品上, 被用于免疫组化-冰冻切片在African green monkey样品上 和 被用于免疫组化-石蜡切片在African green monkey样品上. J Comp Neurol (2011) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:5000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z-0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:5000. J Comp Neurol (2011) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3
  • 免疫组化; 小鼠; 1:100; 图 6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 3) 和 被用于免疫组化在小鼠样品上浓度为1:100 (图 6). J Neuroinflammation (2010) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 斑马鱼; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在斑马鱼样品上浓度为1:500. J Comp Neurol (2010) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:30000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:30000. J Comp Neurol (2010) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:250. J Comp Neurol (2010) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:250. J Comp Neurol (2010) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; common canary; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于immunohistochemistry - free floating section在common canary样品上浓度为1:500. J Comp Neurol (2010) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500. J Comp Neurol (2010) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:2500. J Comp Neurol (2010) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:20,000; 表 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z 0334)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:20,000 (表 2). PLoS ONE (2009) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:400. J Comp Neurol (2009) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500. J Comp Neurol (2009) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 人类; 1:2000
  • 免疫细胞化学; 人类; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:2000 和 被用于免疫细胞化学在人类样品上浓度为1:2000. J Comp Neurol (2009) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; African green monkey; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在African green monkey样品上浓度为1:2000. J Comp Neurol (2009) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:1000. J Comp Neurol (2009) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:100
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:100. J Comp Neurol (2009) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:500; 图 3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫细胞化学在大鼠样品上浓度为1:500 (图 3). Exp Neurol (2009) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:1,000
  • 免疫细胞化学; 小鼠; 1:1,000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1,000 和 被用于免疫细胞化学在小鼠样品上浓度为1:1,000. J Comp Neurol (2009) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 大鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:500. J Comp Neurol (2008) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:4000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:4000. J Comp Neurol (2008) ncbi
兔 多克隆
  • 免疫组化; Domestic guinea pig; 1:200
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在Domestic guinea pig样品上浓度为1:200 和 被用于免疫组化在人类样品上浓度为1:200. J Comp Neurol (2008) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. J Comp Neurol (2008) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 小鼠; 1:3000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于被用于免疫组化在小鼠样品上浓度为1:3000. J Comp Neurol (2006) ncbi
赛信通(上海)生物试剂有限公司
兔 单克隆(D1F4Q)
  • 免疫组化-冰冻切片; 小鼠; 图 1g
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 12389)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 1g). Cell (2017) ncbi
兔 单克隆(D1F4Q)
  • 免疫组化-冰冻切片; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 12389)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 4a). Epilepsia (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 图 3c
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, GA5)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 3c) 和 被用于免疫印迹在小鼠样品上 (图 1a). J Neurosci (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:300; 图 2j
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:300 (图 2j). J Pain (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于被用于免疫印迹在小鼠样品上 (图 1c). Redox Biol (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:2500; 图 st8
  • 免疫组化-石蜡切片; 大鼠; 1:2500; 图 st8
  • 免疫组化-冰冻切片; 狗; 1:2500; 图 st8
  • 免疫组化-石蜡切片; 狗; 1:2500; 图 st8
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, 3670)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:2500 (图 st8), 被用于免疫组化-石蜡切片在大鼠样品上浓度为1:2500 (图 st8), 被用于免疫组化-冰冻切片在狗样品上浓度为1:2500 (图 st8) 和 被用于免疫组化-石蜡切片在狗样品上浓度为1:2500 (图 st8). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 7b). PLoS ONE (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 图 3gb
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于被用于免疫细胞化学在人类样品上 (图 3gb) 和 被用于免疫印迹在人类样品上 (图 3a). Mol Oncol (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:100; 图 1d
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 1d). Nat Commun (2017) ncbi
兔 单克隆(D1F4Q)
  • 免疫印迹; 小鼠; 1:2000; 图 s2b
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 12389)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 s2b). J Exp Med (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 人类; 表 4
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell signaling, 3670)被用于被用于免疫印迹在人类样品上 (表 4). Transl Psychiatry (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:250; 图 s5b
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670P)被用于被用于免疫组化在小鼠样品上浓度为1:250 (图 s5b). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(GA5)
  • immunohistochemistry - free floating section; 小鼠; 1:400; 图 s5
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:400 (图 s5). PLoS Genet (2016) ncbi
兔 单克隆(D1F4Q)
  • 免疫细胞化学; 人类; 图 6b
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 12389)被用于被用于免疫细胞化学在人类样品上 (图 6b). Oncogene (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2c
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670S)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 2c). Neurobiol Dis (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s1a
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图 s1a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signalling, 8152)被用于被用于免疫组化在小鼠样品上 (图 st1). Nat Biotechnol (2016) ncbi
兔 单克隆(D1F4Q)
  • 免疫组化; 小鼠; 1:200; 图 S1c
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 12389)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 S1c). Nat Neurosci (2016) ncbi
兔 单克隆(D1F4Q)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 12389)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 5). Invest Ophthalmol Vis Sci (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:200; 图 8
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signalling, 36705)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 8). Hum Mol Genet (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 1:500; 图 s1
  • 免疫印迹; 人类; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell signaling, 3670)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 s1) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 s1). Mol Cell Endocrinol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 人类; 图 1
赛信通(上海)生物试剂有限公司 GFAP抗体(cell signalling, GA5)被用于被用于免疫组化-石蜡切片在人类样品上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:1000; 图 1
  • 免疫印迹; 小鼠; 1:500; 图 2
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, GA5)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 1) 和 被用于免疫印迹在小鼠样品上浓度为1:500 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 图 3
  • 免疫印迹; 大鼠; 图 7
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670S)被用于被用于免疫组化-冰冻切片在大鼠样品上 (图 3) 和 被用于免疫印迹在大鼠样品上 (图 7). J Neurosci (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:2000; 图 1s2
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signalling, 3670)被用于被用于免疫组化在小鼠样品上浓度为1:2000 (图 1s2). elife (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:1000; 图 3b
  • 免疫印迹; 小鼠; 1:2000; 图 3c
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 3b) 和 被用于免疫印迹在小鼠样品上浓度为1:2000 (图 3c). Am J Pathol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s22
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signalling, 3670)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 s22). Nat Biotechnol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 1:100; 图 4
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 4). Nature (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 图 3e
  • 免疫印迹; 大鼠; 1:1000; 图 3i
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于被用于免疫组化在大鼠样品上 (图 3e) 和 被用于免疫印迹在大鼠样品上浓度为1:1000 (图 3i). Int J Mol Med (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, 3670)被用于被用于免疫印迹在小鼠样品上浓度为1:500. FASEB J (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 GFAP抗体(CST, 3670)被用于被用于免疫印迹在人类样品上浓度为1:1000. Mol Brain (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 5c). Mol Cancer (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 大鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 4a). BMC Complement Altern Med (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signalling Technology, 3670S)被用于被用于免疫细胞化学在小鼠样品上. Neuromolecular Med (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 大鼠; 图 4h
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, 3657)被用于被用于免疫细胞化学在大鼠样品上 (图 4h). J Cell Biol (2015) ncbi
小鼠 单克隆(GA5)
  • immunohistochemistry - free floating section; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670S)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500. Mol Neurobiol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 图 7c
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, 3670)被用于被用于免疫组化在小鼠样品上 (图 7c) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 7a). PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠; 1:300; 图 5
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, GA5)被用于被用于免疫细胞化学在小鼠样品上浓度为1:300 (图 5). Cereb Cortex (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, clone GA5)被用于被用于免疫印迹在大鼠样品上. PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • 流式细胞仪; 小鼠; 1:500; 图 s2
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, 3670)被用于被用于流式细胞仪在小鼠样品上浓度为1:500 (图 s2) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 s2). Nat Commun (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:200
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, GA5)被用于被用于免疫组化在大鼠样品上浓度为1:200. Exp Mol Pathol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, 3655)被用于被用于免疫组化在小鼠样品上浓度为1:100. J Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 3
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:100 (图 3). Int J Oral Maxillofac Surg (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, #3670)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200. Neurochem Int (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:300
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, 3670S)被用于被用于免疫组化在小鼠样品上浓度为1:300. Mol Neurobiol (2014) ncbi
Takara Bio Clontech
小鼠 单克隆(STEM123)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 s5a
Takara Bio Clontech GFAP抗体(Clontech, Y40420)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:500 (图 s5a). Transl Res (2017) ncbi
碧迪BD
小鼠 单克隆(2E1)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 st8
  • 免疫组化-石蜡切片; 狗; 1:100; 图 st8
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 st8
碧迪BD GFAP抗体(BD Biosciences, 556329)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 (图 st8), 被用于免疫组化-石蜡切片在狗样品上浓度为1:100 (图 st8) 和 被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 st8). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(4A11)
  • 免疫印迹; 大鼠; 1:1000; 图 5c
碧迪BD GFAP抗体(BD Pharmingen, 556327)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 5c). Pharmacol Biochem Behav (2017) ncbi
小鼠 单克隆(1B4)
  • 免疫细胞化学; 人类; 1:100; 图 s8
碧迪BD GFAP抗体(BD Biosciences, 561483)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 s8). Nat Commun (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫组化; 大鼠; 1:2000; 图 3
  • 免疫印迹; 大鼠; 1:2000; 图 3
碧迪BD GFAP抗体(BD, 556327)被用于被用于免疫组化在大鼠样品上浓度为1:2000 (图 3) 和 被用于免疫印迹在大鼠样品上浓度为1:2000 (图 3). Alzheimers Res Ther (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫组化; 小鼠; 1:2000; 图 3
碧迪BD GFAP抗体(BD Pharmigen, 556327)被用于被用于免疫组化在小鼠样品上浓度为1:2000 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(1B4)
  • 流式细胞仪; 小鼠; 1:50; 图 4
碧迪BD GFAP抗体(BD Biosciences, 561483)被用于被用于流式细胞仪在小鼠样品上浓度为1:50 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫印迹; 人类; 1:500; 图 6
碧迪BD GFAP抗体(BD Pharmingen, 556330)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 6). Glia (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-石蜡切片; 小鼠; 0.01 ug/ml; 图 4
碧迪BD GFAP抗体(BD Biosciences, 556330)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为0.01 ug/ml (图 4). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(1B4)
  • 流式细胞仪; 小鼠; 图 4, 7
碧迪BD GFAP抗体(BD Pharmingen, 561483)被用于被用于流式细胞仪在小鼠样品上 (图 4, 7). Nat Neurosci (2016) ncbi
小鼠 单克隆(2E1)
  • 免疫组化; 小鼠; 1:1000; 图 5
碧迪BD GFAP抗体(BD Pharmingen, 556329)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 5). Eneuro (2015) ncbi
小鼠 单克隆(1B4)
  • 流式细胞仪; 人类; 图 4
碧迪BD GFAP抗体(Becton-Dickinson, 561449)被用于被用于流式细胞仪在人类样品上 (图 4). Int J Oncol (2015) ncbi
小鼠 单克隆(1B4)
  • 免疫细胞化学; 小鼠; 图 2a
碧迪BD GFAP抗体(BD Biosciences, 1B4)被用于被用于免疫细胞化学在小鼠样品上 (图 2a). Hepatology (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫组化; 大鼠
碧迪BD GFAP抗体(BD Pharmagen, Clon 4a11, Ref. 55632)被用于被用于免疫组化在大鼠样品上. J Neuroendocrinol (2015) ncbi
小鼠 单克隆(4A11)
  • 免疫组化; 小鼠; 1:200; 图 8
碧迪BD GFAP抗体(BD Biosciences, 556330)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 8). Neurotherapeutics (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-冰冻切片; 大鼠; 1:1000
碧迪BD GFAP抗体(BD Pharmingen, 55632)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. Mol Neurobiol (2015) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-冰冻切片; 大鼠; 1:1000
碧迪BD GFAP抗体(BD Pharmingen, 55632)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. Mol Neurobiol (2015) ncbi
小鼠 单克隆(52/GFAP)
  • 免疫细胞化学; 大鼠; 1:500; 图 11
碧迪BD GFAP抗体(BD Biosciences, 610565)被用于被用于免疫细胞化学在大鼠样品上浓度为1:500 (图 11). Pain (2014) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-冰冻切片; 大鼠; 1:200
碧迪BD GFAP抗体(BD Pharmigen, 556327)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200. J Comp Neurol (2010) ncbi
Neuromab
小鼠 单克隆(N206A/8)
  • 免疫印迹; 人类; 图 s4a
Neuromab GFAP抗体(NeuroMab, 75-240)被用于被用于免疫印迹在人类样品上 (图 s4a). Cell (2017) ncbi
小鼠 单克隆(N206A/8)
  • 免疫细胞化学; 人类; 1:100; 图 s1
Neuromab GFAP抗体(Neuromab, 75-240)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 s1). Nat Neurosci (2016) ncbi
小鼠 单克隆(N206A/8)
  • 免疫细胞化学; 小鼠; 图 s5
Neuromab GFAP抗体(NeuroMab, N206A/8)被用于被用于免疫细胞化学在小鼠样品上 (图 s5). elife (2016) ncbi
小鼠 单克隆(N206A/8)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5
Neuromab GFAP抗体(NeuroMab, N206A/8)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 5). Brain Behav (2015) ncbi
小鼠 单克隆(N206A/8)
  • 免疫印迹; 大鼠; 1:6000; 图 7
Neuromab GFAP抗体(Neuromab, 75?C240)被用于被用于免疫印迹在大鼠样品上浓度为1:6000 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(N206A/8)
  • 免疫印迹; 大鼠; 2.08 ug/ml
Neuromab GFAP抗体(UC Davis / NIH NeuroMab Facility, N206A/8)被用于被用于免疫印迹在大鼠样品上浓度为2.08 ug/ml. J Comp Neurol (2014) ncbi
Spring Bioscience Corp.
小鼠 单克隆(SPM507)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
Spring Bioscience Corp. GFAP抗体(Spring Bioscience, E16510)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (表 2). Eur J Histochem (2015) ncbi
兔 单克隆(SP78)
  • 免疫组化; 鸡; 图 7
Spring Bioscience Corp. GFAP抗体(Spring, M3782)被用于被用于免疫组化在鸡样品上 (图 7). Neurochem Int (2015) ncbi
徕卡显微系统(上海)贸易有限公司
小鼠 单克隆
  • 免疫印迹; 小鼠
徕卡显微系统(上海)贸易有限公司 GFAP抗体(Novocastra/Leica, GFAP-GA5)被用于被用于免疫印迹在小鼠样品上. Prog Neuropsychopharmacol Biol Psychiatry (2015) ncbi
BioLogo
小鼠 单克隆(MIG-G2)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
BioLogo GFAP抗体(Biologo, GF500)被用于被用于免疫细胞化学在人类样品上 和 被用于免疫印迹在人类样品上. Bone (2006) ncbi
文章列表
  1. Sato J, Horibe S, Kawauchi S, Sasaki N, Hirata K, Rikitake Y. Involvement of aquaporin-4 in laminin-enhanced process formation of mouse astrocytes in 2D culture: Roles of dystroglycan and ?-syntrophin in aquaporin-4 expression. J Neurochem. 2018;: pubmed 出版商
  2. Liu J, Modo M. Quantification of the Extracellular Matrix Molecule Thrombospondin 1 and Its Pericellular Association in the Brain Using a Semiautomated Computerized Approach. J Histochem Cytochem. 2018;66:643-662 pubmed 出版商
  3. Seipold L, Altmeppen H, Koudelka T, Tholey A, Kaspárek P, Sedlacek R, et al. In vivo regulation of the A disintegrin and metalloproteinase 10 (ADAM10) by the tetraspanin 15. Cell Mol Life Sci. 2018;75:3251-3267 pubmed 出版商
  4. Dias D, Kim H, Holl D, Werne Solnestam B, Lundeberg J, Carlén M, et al. Reducing Pericyte-Derived Scarring Promotes Recovery after Spinal Cord Injury. Cell. 2018;173:153-165.e22 pubmed 出版商
  5. Kuliyev E, Gingras S, Guy C, Howell S, Vogel P, Pelletier S. Overlapping Role of SCYL1 and SCYL3 in Maintaining Motor Neuron Viability. J Neurosci. 2018;: pubmed 出版商
  6. Gstrein T, Edwards A, Přistoupilová A, Leca I, Breuss M, Pilat Carotta S, et al. Mutations in Vps15 perturb neuronal migration in mice and are associated with neurodevelopmental disease in humans. Nat Neurosci. 2018;21:207-217 pubmed 出版商
  7. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, et al. Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell. 2017;: pubmed 出版商
  8. Watanabe Matsumoto S, Moriwaki Y, Okuda T, Ohara S, Yamanaka K, Abe Y, et al. Dissociation of blood-brain barrier disruption and disease manifestation in an aquaporin-4-deficient mouse model of amyotrophic lateral sclerosis. Neurosci Res. 2018;133:48-57 pubmed 出版商
  9. Zou J, Zhang B, Gutmann D, Wong M. Postnatal reduction of tuberous sclerosis complex 1 expression in astrocytes and neurons causes seizures in an age-dependent manner. Epilepsia. 2017;58:2053-2063 pubmed 出版商
  10. Brown I, Gulbransen B. The antioxidant glutathione protects against enteric neuron death in situ, but its depletion is protective during colitis. Am J Physiol Gastrointest Liver Physiol. 2017;:ajpgi.00165.2017 pubmed 出版商
  11. Zhao T, Hong Y, Yin P, Li S, Li X. Differential HspBP1 expression accounts for the greater vulnerability of neurons than astrocytes to misfolded proteins. Proc Natl Acad Sci U S A. 2017;114:E7803-E7811 pubmed 出版商
  12. Salazar S, Gallardo C, Kaufman A, Herber C, Haas L, Robinson S, et al. Conditional Deletion of Prnp Rescues Behavioral and Synaptic Deficits after Disease Onset in Transgenic Alzheimer's Disease. J Neurosci. 2017;37:9207-9221 pubmed 出版商
  13. Yang Y, Yang S, Guo J, Cui Y, Tang B, Li X, et al. Synergistic Toxicity of Polyglutamine-Expanded TATA-Binding Protein in Glia and Neuronal Cells: Therapeutic Implications for Spinocerebellar Ataxia 17. J Neurosci. 2017;37:9101-9115 pubmed 出版商
  14. Kim J, Kim Y, Kim J, Park D, Bae H, Lee D, et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest. 2017;127:3441-3461 pubmed 出版商
  15. Lin N, Messing A, Perng M. Characterization of a panel of monoclonal antibodies recognizing specific epitopes on GFAP. PLoS ONE. 2017;12:e0180694 pubmed 出版商
  16. Filice F, Celio M, Babalian A, Blum W, Szabolcsi V. Parvalbumin-expressing ependymal cells in rostral lateral ventricle wall adhesions contribute to aging-related ventricle stenosis in mice. J Comp Neurol. 2017;525:3266-3285 pubmed 出版商
  17. Shi Y, Ping Y, Zhou W, He Z, Chen C, Bian B, et al. Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth. Nat Commun. 2017;8:15080 pubmed 出版商
  18. Jung J, Kim L, Wang X, Wu Q, Sanvoranart T, Hubert C, et al. Nicotinamide metabolism regulates glioblastoma stem cell maintenance. JCI Insight. 2017;2: pubmed 出版商
  19. Feldner A, Adam M, Tetzlaff F, Moll I, Komljenovic D, Sahm F, et al. Loss of Mpdz impairs ependymal cell integrity leading to perinatal-onset hydrocephalus in mice. EMBO Mol Med. 2017;9:890-905 pubmed 出版商
  20. Mendivil Perez M, Soto Mercado V, Guerra Librero A, Fernandez Gil B, Florido J, Shen Y, et al. Melatonin enhances neural stem cell differentiation and engraftment by increasing mitochondrial function. J Pineal Res. 2017;63: pubmed 出版商
  21. Hou J, Xue J, Lee M, Sung C. Ginsenoside Rd as a potential neuroprotective agent prevents trimethyltin injury. Biomed Rep. 2017;6:435-440 pubmed 出版商
  22. Iglesia R, Prado M, Cruz L, Martins V, Santos T, Lopes M. Engagement of cellular prion protein with the co-chaperone Hsp70/90 organizing protein regulates the proliferation of glioblastoma stem-like cells. Stem Cell Res Ther. 2017;8:76 pubmed 出版商
  23. Schludi M, Becker L, Garrett L, Gendron T, Zhou Q, Schreiber F, et al. Spinal poly-GA inclusions in a C9orf72 mouse model trigger motor deficits and inflammation without neuron loss. Acta Neuropathol. 2017;134:241-254 pubmed 出版商
  24. Wizeman J, Mohan R. Expression of peptidylarginine deiminase 4 in an alkali injury model of retinal gliosis. Biochem Biophys Res Commun. 2017;487:134-139 pubmed 出版商
  25. Li J, Barrero C, Merali S, Pratico D. Five lipoxygenase hypomethylation mediates the homocysteine effect on Alzheimer's phenotype. Sci Rep. 2017;7:46002 pubmed 出版商
  26. Bryukhovetskiy I, Lyakhova I, Mischenko P, Milkina E, Zaitsev S, Khotimchenko Y, et al. Alkaloids of fascaplysin are effective conventional chemotherapeutic drugs, inhibiting the proliferation of C6 glioma cells and causing their death in vitro. Oncol Lett. 2017;13:738-746 pubmed 出版商
  27. Barlow Anacker A, Fu M, Erickson C, Bertocchini F, Gosain A. Neural Crest Cells Contribute an Astrocyte-like Glial Population to the Spleen. Sci Rep. 2017;7:45645 pubmed 出版商
  28. Yungher B, Ribeiro M, Park K. Regenerative Responses and Axon Pathfinding of Retinal Ganglion Cells in Chronically Injured Mice. Invest Ophthalmol Vis Sci. 2017;58:1743-1750 pubmed 出版商
  29. Zhou Y, Chen S, Liu D, Manyande A, Zhang W, Yang S, et al. The Role of Spinal GABAB Receptors in Cancer-Induced Bone Pain in Rats. J Pain. 2017;18:933-946 pubmed 出版商
  30. Green S, Uy B, Bronner M. Ancient evolutionary origin of vertebrate enteric neurons from trunk-derived neural crest. Nature. 2017;544:88-91 pubmed 出版商
  31. Huang H, Liu Y, Wang L, Li W. Age-related macular degeneration phenotypes are associated with increased tumor necrosis-alpha and subretinal immune cells in aged Cxcr5 knockout mice. PLoS ONE. 2017;12:e0173716 pubmed 出版商
  32. Jongbloets B, Lemstra S, Schellino R, Broekhoven M, Parkash J, Hellemons A, et al. Stage-specific functions of Semaphorin7A during adult hippocampal neurogenesis rely on distinct receptors. Nat Commun. 2017;8:14666 pubmed 出版商
  33. Hao M, Capoccia E, Cirillo C, Boesmans W, Vanden Berghe P. Arundic Acid Prevents Developmental Upregulation of S100B Expression and Inhibits Enteric Glial Development. Front Cell Neurosci. 2017;11:42 pubmed 出版商
  34. Itakura G, Kawabata S, Ando M, Nishiyama Y, Sugai K, Ozaki M, et al. Fail-Safe System against Potential Tumorigenicity after Transplantation of iPSC Derivatives. Stem Cell Reports. 2017;8:673-684 pubmed 出版商
  35. Ehrlich M, Mozafari S, Glatza M, Starost L, Velychko S, Hallmann A, et al. Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors. Proc Natl Acad Sci U S A. 2017;114:E2243-E2252 pubmed 出版商
  36. Pignataro D, Sucunza D, Vanrell L, Lopez Franco E, Dopeso Reyes I, Vales A, et al. Adeno-Associated Viral Vectors Serotype 8 for Cell-Specific Delivery of Therapeutic Genes in the Central Nervous System. Front Neuroanat. 2017;11:2 pubmed 出版商
  37. Cao M, Wu Y, Ashrafi G, McCartney A, Wheeler H, Bushong E, et al. Parkinson Sac Domain Mutation in Synaptojanin 1 Impairs Clathrin Uncoating at Synapses and Triggers Dystrophic Changes in Dopaminergic Axons. Neuron. 2017;93:882-896.e5 pubmed 出版商
  38. Aragon M, Topper L, Tyler C, Sanchez B, Zychowski K, Young T, et al. Serum-borne bioactivity caused by pulmonary multiwalled carbon nanotubes induces neuroinflammation via blood-brain barrier impairment. Proc Natl Acad Sci U S A. 2017;114:E1968-E1976 pubmed 出版商
  39. Prasad S, Sajja R, Kaisar M, Park J, Villalba H, Liles T, et al. Role of Nrf2 and protective effects of Metformin against tobacco smoke-induced cerebrovascular toxicity. Redox Biol. 2017;12:58-69 pubmed 出版商
  40. Benford H, Bolborea M, Pollatzek E, Lossow K, Hermans Borgmeyer I, Liu B, et al. A sweet taste receptor-dependent mechanism of glucosensing in hypothalamic tanycytes. Glia. 2017;65:773-789 pubmed 出版商
  41. Kuipers H, Yoon J, van Horssen J, Han M, Bollyky P, Palmer T, et al. Phosphorylation of αB-crystallin supports reactive astrogliosis in demyelination. Proc Natl Acad Sci U S A. 2017;114:E1745-E1754 pubmed 出版商
  42. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  43. Barca Mayo O, Pons Espinal M, Follert P, Armirotti A, Berdondini L, De Pietri Tonelli D. Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling. Nat Commun. 2017;8:14336 pubmed 出版商
  44. Delhove J, Buckley S, Perocheau D, Karda R, Arbuthnot P, Henderson N, et al. Longitudinal in vivo bioimaging of hepatocyte transcription factor activity following cholestatic liver injury in mice. Sci Rep. 2017;7:41874 pubmed 出版商
  45. Lim E, Nakanishi S, Hoghooghi V, Eaton S, Palmer A, Frederick A, et al. AlphaB-crystallin regulates remyelination after peripheral nerve injury. Proc Natl Acad Sci U S A. 2017;114:E1707-E1716 pubmed 出版商
  46. Stayte S, Rentsch P, Tröscher A, Bamberger M, Li K, Vissel B. Activin A Inhibits MPTP and LPS-Induced Increases in Inflammatory Cell Populations and Loss of Dopamine Neurons in the Mouse Midbrain In Vivo. PLoS ONE. 2017;12:e0167211 pubmed 出版商
  47. Guimarães Camboa N, Cattaneo P, Sun Y, Moore Morris T, Gu Y, Dalton N, et al. Pericytes of Multiple Organs Do Not Behave as Mesenchymal Stem Cells In Vivo. Cell Stem Cell. 2017;20:345-359.e5 pubmed 出版商
  48. Huang Y, Zhou B, Wernig M, Sudhof T. ApoE2, ApoE3, and ApoE4 Differentially Stimulate APP Transcription and A? Secretion. Cell. 2017;168:427-441.e21 pubmed 出版商
  49. Marigil M, Martinez Vélez N, Dominguez P, Idoate M, Xipell E, Patino Garcia A, et al. Development of a DIPG Orthotopic Model in Mice Using an Implantable Guide-Screw System. PLoS ONE. 2017;12:e0170501 pubmed 出版商
  50. Mellott T, Huleatt O, Shade B, Pender S, Liu Y, Slack B, et al. Perinatal Choline Supplementation Reduces Amyloidosis and Increases Choline Acetyltransferase Expression in the Hippocampus of the APPswePS1dE9 Alzheimer's Disease Model Mice. PLoS ONE. 2017;12:e0170450 pubmed 出版商
  51. Cho K, Yoon D, Qiu S, Danziger Z, Grill W, Wetsel W, et al. Loss of Ranbp2 in motoneurons causes disruption of nucleocytoplasmic and chemokine signaling, proteostasis of hnRNPH3 and Mmp28, and development of amyotrophic lateral sclerosis-like syndromes. Dis Model Mech. 2017;10:559-579 pubmed 出版商
  52. Zhang C, Mukherjee S, Tucker Burden C, Ross J, Chau M, Kong J, et al. TRIM8 regulates stemness in glioblastoma through PIAS3-STAT3. Mol Oncol. 2017;11:280-294 pubmed 出版商
  53. Liddelow S, Guttenplan K, Clarke L, Bennett F, Bohlen C, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541:481-487 pubmed 出版商
  54. Kang Y, Balter B, Csizmadia E, Haas B, Sharma H, Bronson R, et al. Contribution of classical end-joining to PTEN inactivation in p53-mediated glioblastoma formation and drug-resistant survival. Nat Commun. 2017;8:14013 pubmed 出版商
  55. Behm M, Wahlstedt H, Widmark A, Eriksson M, Ohman M. Accumulation of nuclear ADAR2 regulates adenosine-to-inosine RNA editing during neuronal development. J Cell Sci. 2017;130:745-753 pubmed 出版商
  56. Lee I, Koo K, Jung K, Kim M, Kim I, Hwang K, et al. Neurogenin-2-transduced human neural progenitor cells attenuate neonatal hypoxic-ischemic brain injury. Transl Res. 2017;183:121-136.e9 pubmed 出版商
  57. Ellman D, Degn M, Lund M, Clausen B, Novrup H, Flæng S, et al. Genetic Ablation of Soluble TNF Does Not Affect Lesion Size and Functional Recovery after Moderate Spinal Cord Injury in Mice. Mediators Inflamm. 2016;2016:2684098 pubmed 出版商
  58. Yamauchi T, Nishiyama M, Moroishi T, Kawamura A, Nakayama K. FBXL5 Inactivation in Mouse Brain Induces Aberrant Proliferation of Neural Stem Progenitor Cells. Mol Cell Biol. 2017;37: pubmed 出版商
  59. Redmann M, Wani W, Volpicelli Daley L, Darley Usmar V, Zhang J. Trehalose does not improve neuronal survival on exposure to alpha-synuclein pre-formed fibrils. Redox Biol. 2017;11:429-437 pubmed 出版商
  60. Walrave L, Vinken M, Albertini G, De Bundel D, Leybaert L, Smolders I. Inhibition of Connexin43 Hemichannels Impairs Spatial Short-Term Memory without Affecting Spatial Working Memory. Front Cell Neurosci. 2016;10:288 pubmed 出版商
  61. Chiang Y, Wu Y, Chi S. Interleukin-1β secreted from betanodavirus-infected microglia caused the death of neurons in giant grouper brains. Dev Comp Immunol. 2017;70:19-26 pubmed 出版商
  62. Kim J, Lee J, Sun W. Isolation and Culture of Adult Neural Stem Cells from the Mouse Subcallosal Zone. J Vis Exp. 2016;: pubmed 出版商
  63. Zhao B, Pan Y, Xu H, Song X. Hyperbaric oxygen attenuates neuropathic pain and reverses inflammatory signaling likely via the Kindlin-1/Wnt-10a signaling pathway in the chronic pain injury model in rats. J Headache Pain. 2017;18:1 pubmed 出版商
  64. Sha L, Wang X, Li J, Shi X, Wu L, Shen Y, et al. Pharmacologic inhibition of Hsp90 to prevent GLT-1 degradation as an effective therapy for epilepsy. J Exp Med. 2017;214:547-563 pubmed 出版商
  65. Park S, Yoon S, Kang M, Lee Y, Jung S, Han J. Hippocalcin Promotes Neuronal Differentiation and Inhibits Astrocytic Differentiation in Neural Stem Cells. Stem Cell Reports. 2017;8:95-111 pubmed 出版商
  66. Kemp K, Cerminara N, Hares K, Redondo J, Cook A, Haynes H, et al. Cytokine therapy-mediated neuroprotection in a Friedreich's ataxia mouse model. Ann Neurol. 2017;81:212-226 pubmed 出版商
  67. Park T, Ryu Y, Park H, Kim J, Go J, Noh J, et al. Humulus japonicus inhibits the progression of Alzheimer's disease in a APP/PS1 transgenic mouse model. Int J Mol Med. 2017;39:21-30 pubmed 出版商
  68. Li M, Li Z, Yao Y, Jin W, Wood K, Liu Q, et al. Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci U S A. 2017;114:E396-E405 pubmed 出版商
  69. Garcia C, Catalão C, Machado H, Júnior I, Romeiro T, Peixoto Santos J, et al. Edaravone reduces astrogliosis and apoptosis in young rats with kaolin-induced hydrocephalus. Childs Nerv Syst. 2017;33:419-428 pubmed 出版商
  70. Ang Y, Rivas R, Ribeiro A, Srivas R, Rivera J, Stone N, et al. Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis. Cell. 2016;167:1734-1749.e22 pubmed 出版商
  71. Sun C, Zhang J, Chen L, Liu T, Xu G, Li C, et al. IL-17 contributed to the neuropathic pain following peripheral nerve injury by promoting astrocyte proliferation and secretion of proinflammatory cytokines. Mol Med Rep. 2017;15:89-96 pubmed 出版商
  72. Lopes M, Leal R, Guarnieri R, Schwarzbold M, Hoeller A, Diaz A, et al. A single high dose of dexamethasone affects the phosphorylation state of glutamate AMPA receptors in the human limbic system. Transl Psychiatry. 2016;6:e986 pubmed 出版商
  73. Gray J, Rubin T, Kogan J, Marrocco J, Weidmann J, Lindkvist S, et al. Translational profiling of stress-induced neuroplasticity in the CA3 pyramidal neurons of BDNF Val66Met mice. Mol Psychiatry. 2018;23:904-913 pubmed 出版商
  74. Wang A, Jensen E, Rexach J, Vinters H, Hsieh Wilson L. Loss of O-GlcNAc glycosylation in forebrain excitatory neurons induces neurodegeneration. Proc Natl Acad Sci U S A. 2016;113:15120-15125 pubmed 出版商
  75. Kim B, Shin H, Goto J, Carp R, Choi E, Kim Y. Cellular Prion Protein Combined with Galectin-3 and -6 Affects the Infectivity Titer of an Endogenous Retrovirus Assayed in Hippocampal Neuronal Cells. PLoS ONE. 2016;11:e0167293 pubmed 出版商
  76. Mayrhofer M, Gourain V, Reischl M, Affaticati P, Jenett A, Joly J, et al. A novel brain tumour model in zebrafish reveals the role of YAP activation in MAPK- and PI3K-induced malignant growth. Dis Model Mech. 2017;10:15-28 pubmed 出版商
  77. Wang S, Jacquemyn J, Murru S, Martinelli P, Barth E, Langer T, et al. The Mitochondrial m-AAA Protease Prevents Demyelination and Hair Greying. PLoS Genet. 2016;12:e1006463 pubmed 出版商
  78. Retallack H, Di Lullo E, Arias C, Knopp K, Laurie M, Sandoval Espinosa C, et al. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc Natl Acad Sci U S A. 2016;113:14408-14413 pubmed
  79. Ji B, Kaneko H, Minamimoto T, Inoue H, Takeuchi H, Kumata K, et al. Multimodal Imaging for DREADD-Expressing Neurons in Living Brain and Their Application to Implantation of iPSC-Derived Neural Progenitors. J Neurosci. 2016;36:11544-11558 pubmed
  80. Marco E, Ballesta J, Irala C, Hernández M, Serrano M, Mela V, et al. Sex-dependent influence of chronic mild stress (CMS) on voluntary alcohol consumption; study of neurobiological consequences. Pharmacol Biochem Behav. 2017;152:68-80 pubmed 出版商
  81. Hurtado Alvarado G, Dominguez Salazar E, Velazquez Moctezuma J, Gómez González B. A2A Adenosine Receptor Antagonism Reverts the Blood-Brain Barrier Dysfunction Induced by Sleep Restriction. PLoS ONE. 2016;11:e0167236 pubmed 出版商
  82. Song D, Wilson B, Zhao L, Bhuyan R, Bandyopadhyay M, Lyubarsky A, et al. Retinal Pre-Conditioning by CD59a Knockout Protects against Light-Induced Photoreceptor Degeneration. PLoS ONE. 2016;11:e0166348 pubmed 出版商
  83. Sareddy G, Viswanadhapalli S, Surapaneni P, Suzuki T, Brenner A, Vadlamudi R. Novel KDM1A inhibitors induce differentiation and apoptosis of glioma stem cells via unfolded protein response pathway. Oncogene. 2017;36:2423-2434 pubmed 出版商
  84. Fraser J, Essebier A, Gronostajski R, Boden M, Wainwright B, Harvey T, et al. Cell-type-specific expression of NFIX in the developing and adult cerebellum. Brain Struct Funct. 2017;222:2251-2270 pubmed 出版商
  85. López de Maturana R, Lang V, Zubiarrain A, Sousa A, Vázquez N, Gorostidi A, et al. Mutations in LRRK2 impair NF-κB pathway in iPSC-derived neurons. J Neuroinflammation. 2016;13:295 pubmed
  86. Mildner A, Huang H, Radke J, Stenzel W, Priller J. P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia. 2017;65:375-387 pubmed 出版商
  87. Lajko M, Cardona H, Taylor J, Shah R, Farrow K, Fawzi A. Hyperoxia-Induced Proliferative Retinopathy: Early Interruption of Retinal Vascular Development with Severe and Irreversible Neurovascular Disruption. PLoS ONE. 2016;11:e0166886 pubmed 出版商
  88. Hübner N, Mechling A, Lee H, Reisert M, Bienert T, Hennig J, et al. The connectomics of brain demyelination: Functional and structural patterns in the cuprizone mouse model. Neuroimage. 2017;146:1-18 pubmed 出版商
  89. Hidano S, Randall L, Dawson L, Dietrich H, Konradt C, Klover P, et al. STAT1 Signaling in Astrocytes Is Essential for Control of Infection in the Central Nervous System. MBio. 2016;7: pubmed 出版商
  90. Lacaille H, Duterte Boucher D, Vaudry H, Zerdoumi Y, Flaman J, Hashimoto H, et al. PACAP Protects the Adolescent and Adult Mice Brain from Ethanol Toxicity and Modulates Distinct Sets of Genes Regulating Similar Networks. Mol Neurobiol. 2017;54:7534-7548 pubmed 出版商
  91. Zha J, Liu X, Zhu J, Liu S, Lu S, Xu P, et al. A scFv antibody targeting common oligomeric epitope has potential for treating several amyloidoses. Sci Rep. 2016;6:36631 pubmed 出版商
  92. Laurent C, Dorothee G, Hunot S, Martin E, Monnet Y, Duchamp M, et al. Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy. Brain. 2017;140:184-200 pubmed 出版商
  93. Fröhlich D, Suchowerska A, Spencer Z, von Jonquieres G, Klugmann C, Bongers A, et al. In vivocharacterization of the aspartyl-tRNA synthetase DARS: Homing in on the leukodystrophy HBSL. Neurobiol Dis. 2017;97:24-35 pubmed 出版商
  94. Tirosh I, Venteicher A, Hebert C, Escalante L, Patel A, Yizhak K, et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature. 2016;539:309-313 pubmed 出版商
  95. Shepherd D, Tsai S, O Brien T, Farrer R, Kartje G. Anti-Nogo-A Immunotherapy Does Not Alter Hippocampal Neurogenesis after Stroke in Adult Rats. Front Neurosci. 2016;10:467 pubmed
  96. Lin N, Huang Y, Opal P, Goldman R, Messing A, Perng M. The role of gigaxonin in the degradation of the glial-specific intermediate filament protein GFAP. Mol Biol Cell. 2016;27:3980-3990 pubmed
  97. Syed Y, Abdulla S, Kotter M. Studying the Effects of Semaphorins on Oligodendrocyte Lineage Cells. Methods Mol Biol. 2017;1493:363-378 pubmed
  98. Giannakopoulou A, Lyras G, Grigoriadis N. Long-term effects of autoimmune CNS inflammation on adult hippocampal neurogenesis. J Neurosci Res. 2017;95:1446-1458 pubmed 出版商
  99. Menzel L, Kleber L, Friedrich C, Hummel R, Dangel L, Winter J, et al. Progranulin protects against exaggerated axonal injury and astrogliosis following traumatic brain injury. Glia. 2017;65:278-292 pubmed 出版商
  100. Zukor K, Wang H, Hurst B, Siddharthan V, van Wettere A, Pilowsky P, et al. Phrenic nerve deficits and neurological immunopathology associated with acute West Nile virus infection in mice and hamsters. J Neurovirol. 2017;23:186-204 pubmed 出版商
  101. Nguyen H, Kirkton R, Bursac N. Engineering prokaryotic channels for control of mammalian tissue excitability. Nat Commun. 2016;7:13132 pubmed 出版商
  102. Bryukhovetskiy I, Dyuizen I, Shevchenko V, Bryukhovetskiy A, Mischenko P, Milkina E, et al. Hematopoietic stem cells as a tool for the treatment of glioblastoma multiforme. Mol Med Rep. 2016;14:4511-4520 pubmed 出版商
  103. He Q, Xiong L, Liu F, He X, Feng G, Shang F, et al. MicroRNA-127 targeting of mitoNEET inhibits neurite outgrowth, induces cell apoptosis and contributes to physiological dysfunction after spinal cord transection. Sci Rep. 2016;6:35205 pubmed 出版商
  104. Koyanagi S, Kusunose N, Taniguchi M, Akamine T, Kanado Y, Ozono Y, et al. Glucocorticoid regulation of ATP release from spinal astrocytes underlies diurnal exacerbation of neuropathic mechanical allodynia. Nat Commun. 2016;7:13102 pubmed 出版商
  105. Alvarez Saavedra M, De Repentigny Y, Yang D, O Meara R, Yan K, Hashem L, et al. Voluntary Running Triggers VGF-Mediated Oligodendrogenesis to Prolong the Lifespan of Snf2h-Null Ataxic Mice. Cell Rep. 2016;17:862-875 pubmed 出版商
  106. Hofmann K, Lamberz C, Piotrowitz K, Offermann N, But D, Scheller A, et al. Tanycytes and a differential fatty acid metabolism in the hypothalamus. Glia. 2017;65:231-249 pubmed 出版商
  107. Kilic O, Pamies D, Lavell E, Schiapparelli P, Feng Y, Hartung T, et al. Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis. Lab Chip. 2016;16:4152-4162 pubmed
  108. Mendonça M, Soares E, de Jesus M, Ceragioli H, Batista Ã, Nyúl Tóth Ã, et al. PEGylation of Reduced Graphene Oxide Induces Toxicity in Cells of the Blood-Brain Barrier: An in Vitro and in Vivo Study. Mol Pharm. 2016;13:3913-3924 pubmed
  109. Wizeman J, Nicholas A, Ishigami A, Mohan R. Citrullination of glial intermediate filaments is an early response in retinal injury. Mol Vis. 2016;22:1137-1155 pubmed
  110. Khoutorsky A, Sorge R, Prager Khoutorsky M, Pawlowski S, Longo G, Jafarnejad S, et al. eIF2? phosphorylation controls thermal nociception. Proc Natl Acad Sci U S A. 2016;113:11949-11954 pubmed
  111. Yamanaka T, Tosaki A, Miyazaki H, Kurosawa M, Koike M, Uchiyama Y, et al. Differential roles of NF-Y transcription factor in ER chaperone expression and neuronal maintenance in the CNS. Sci Rep. 2016;6:34575 pubmed 出版商
  112. Abolpour Mofrad S, Kuenzel K, Friedrich O, Gilbert D. Optimizing neuronal differentiation of human pluripotent NT2 stem cells in monolayer cultures. Dev Growth Differ. 2016;58:664-676 pubmed 出版商
  113. Sadick J, Boutin M, Hoffman Kim D, Darling E. Protein characterization of intracellular target-sorted, formalin-fixed cell subpopulations. Sci Rep. 2016;6:33999 pubmed 出版商
  114. Fogarty L, Song B, Suppiah Y, Hasan S, Martin H, Hogan S, et al. Bcl-xL dependency coincides with the onset of neurogenesis in the developing mammalian spinal cord. Mol Cell Neurosci. 2016;77:34-46 pubmed 出版商
  115. Cóppola Segovia V, Cavarsan C, Maia F, Ferraz A, Nakao L, Lima M, et al. ER Stress Induced by Tunicamycin Triggers ?-Synuclein Oligomerization, Dopaminergic Neurons Death and Locomotor Impairment: a New Model of Parkinson's Disease. Mol Neurobiol. 2017;54:5798-5806 pubmed 出版商
  116. Draheim T, Liessem A, Scheld M, Wilms F, Weißflog M, Denecke B, et al. Activation of the astrocytic Nrf2/ARE system ameliorates the formation of demyelinating lesions in a multiple sclerosis animal model. Glia. 2016;64:2219-2230 pubmed 出版商
  117. Torres A, Vargas Y, Uribe D, Jaramillo C, Gleisner A, Salazar Onfray F, et al. Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells. Oncotarget. 2016;7:67373-67386 pubmed 出版商
  118. Chen P, Qin L, Li G, Tellides G, Simons M. Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGF?)-dependent smooth muscle cell phenotype modulation. Sci Rep. 2016;6:33407 pubmed 出版商
  119. Kuan W, Bennett N, He X, Skepper J, Martynyuk N, Wijeyekoon R, et al. ?-Synuclein pre-formed fibrils impair tight junction protein expression without affecting cerebral endothelial cell function. Exp Neurol. 2016;285:72-81 pubmed 出版商
  120. Zhang S, Wang P, Ren L, Hu C, Bi J. Protective effect of melatonin on soluble A?1-42-induced memory impairment, astrogliosis, and synaptic dysfunction via the Musashi1/Notch1/Hes1 signaling pathway in the rat hippocampus. Alzheimers Res Ther. 2016;8:40 pubmed 出版商
  121. Pérez Cañamás A, Benvegnù S, Rueda C, Rábano A, Satrústegui J, Ledesma M. Sphingomyelin-induced inhibition of the plasma membrane calcium ATPase causes neurodegeneration in type A Niemann-Pick disease. Mol Psychiatry. 2017;22:711-723 pubmed 出版商
  122. Jansen A, van Hal M, Op den Kelder I, Meier R, de Ruiter A, Schut M, et al. Frequency of nuclear mutant huntingtin inclusion formation in neurons and glia is cell-type-specific. Glia. 2017;65:50-61 pubmed 出版商
  123. Zhang L, Hua Q, Tang K, Shi C, Xie X, Zhang R. CXCR4 activation promotes differentiation of human embryonic stem cells to neural stem cells. Neuroscience. 2016;337:88-97 pubmed 出版商
  124. Bryukhovetskiy I, Manzhulo I, Mischenko P, Milkina E, Dyuizen I, Bryukhovetskiy A, et al. Cancer stem cells and microglia in the processes of glioblastoma multiforme invasive growth. Oncol Lett. 2016;12:1721-1728 pubmed
  125. Hansen S, Stummann T, Borland H, Hasholt L, Tumer Z, Nielsen J, et al. Induced pluripotent stem cell - derived neurons for the study of spinocerebellar ataxia type 3. Stem Cell Res. 2016;17:306-317 pubmed 出版商
  126. Balusu S, Van Wonterghem E, De Rycke R, Raemdonck K, Stremersch S, Gevaert K, et al. Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles. EMBO Mol Med. 2016;8:1162-1183 pubmed 出版商
  127. Griffith C, Xie M, Qiu W, Sharp A, Ma C, Pan A, et al. Aberrant expression of the pore-forming KATP channel subunit Kir6.2 in hippocampal reactive astrocytes in the 3xTg-AD mouse model and human Alzheimer's disease. Neuroscience. 2016;336:81-101 pubmed 出版商
  128. Caporali P, Bruno F, Palladino G, Dragotto J, Petrosini L, Mangia F, et al. Developmental delay in motor skill acquisition in Niemann-Pick C1 mice reveals abnormal cerebellar morphogenesis. Acta Neuropathol Commun. 2016;4:94 pubmed 出版商
  129. Barron A, Tokunaga M, Zhang M, Ji B, Suhara T, Higuchi M. Assessment of neuroinflammation in a mouse model of obesity and β-amyloidosis using PET. J Neuroinflammation. 2016;13:221 pubmed 出版商
  130. Cheng Z, Zhu W, Cao K, Wu F, Li J, Wang G, et al. Anti-Inflammatory Mechanism of Neural Stem Cell Transplantation in Spinal Cord Injury. Int J Mol Sci. 2016;17: pubmed 出版商
  131. Vermeij W, Dollé M, Reiling E, Jaarsma D, Payan Gomez C, Bombardieri C, et al. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice. Nature. 2016;537:427-431 pubmed 出版商
  132. Dhillon R, Parker J, Syed Y, Edgley S, Young A, Fawcett J, et al. Axonal plasticity underpins the functional recovery following surgical decompression in a rat model of cervical spondylotic myelopathy. Acta Neuropathol Commun. 2016;4:89 pubmed 出版商
  133. Hillis J, Davies J, Mundim M, Al Dalahmah O, Szele F. Cuprizone demyelination induces a unique inflammatory response in the subventricular zone. J Neuroinflammation. 2016;13:190 pubmed 出版商
  134. Andersen N, Srinivas S, Piñero G, Monje P. A rapid and versatile method for the isolation, purification and cryogenic storage of Schwann cells from adult rodent nerves. Sci Rep. 2016;6:31781 pubmed 出版商
  135. Badea A, Kane L, Anderson R, Qi Y, Foster M, Cofer G, et al. The fornix provides multiple biomarkers to characterize circuit disruption in a mouse model of Alzheimer's disease. Neuroimage. 2016;142:498-511 pubmed 出版商
  136. Ju X, Hou Q, Sheng A, Wu K, Zhou Y, Jin Y, et al. The hominoid-specific gene TBC1D3 promotes generation of basal neural progenitors and induces cortical folding in mice. elife. 2016;5: pubmed 出版商
  137. Li Y, Chang L, Song Y, Gao X, Roselli F, Liu J, et al. Astrocytic GluN2A and GluN2B Oppose the Synaptotoxic Effects of Amyloid-?1-40 in Hippocampal Cells. J Alzheimers Dis. 2016;54:135-48 pubmed 出版商
  138. Saggu R, Schumacher T, Gerich F, Rakers C, Tai K, Delekate A, et al. Astroglial NF-kB contributes to white matter damage and cognitive impairment in a mouse model of vascular dementia. Acta Neuropathol Commun. 2016;4:76 pubmed 出版商
  139. Westbroek W, Nguyen M, Siebert M, Lindstrom T, Burnett R, Aflaki E, et al. A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease. Dis Model Mech. 2016;9:769-78 pubmed 出版商
  140. Ellett L, Hung L, Munckton R, Sherratt N, Culvenor J, Grubman A, et al. Restoration of intestinal function in an MPTP model of Parkinson's Disease. Sci Rep. 2016;6:30269 pubmed 出版商
  141. Alves S, Marais T, Biferi M, Furling D, Marinello M, El Hachimi K, et al. Lentiviral vector-mediated overexpression of mutant ataxin-7 recapitulates SCA7 pathology and promotes accumulation of the FUS/TLS and MBNL1 RNA-binding proteins. Mol Neurodegener. 2016;11:58 pubmed 出版商
  142. Pang J, Wu Y, Peng J, Yang P, Kuai L, Qin X, et al. Potential implications of Apolipoprotein E in early brain injury after experimental subarachnoid hemorrhage: Involvement in the modulation of blood-brain barrier integrity. Oncotarget. 2016;7:56030-56044 pubmed 出版商
  143. Choi M, Ahn S, Yang E, Kim H, Chong Y, Kim H. Hippocampus-based contextual memory alters the morphological characteristics of astrocytes in the dentate gyrus. Mol Brain. 2016;9:72 pubmed 出版商
  144. Thomsen M, Birkelund S, Burkhart A, Stensballe A, Moos T. Synthesis and deposition of basement membrane proteins by primary brain capillary endothelial cells in a murine model of the blood-brain barrier. J Neurochem. 2017;140:741-754 pubmed 出版商
  145. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  146. Murlidharan G, Sakamoto K, Rao L, Corriher T, Wang D, Gao G, et al. CNS-restricted Transduction and CRISPR/Cas9-mediated Gene Deletion with an Engineered AAV Vector. Mol Ther Nucleic Acids. 2016;5:e338 pubmed 出版商
  147. Li H, Li H, Hao Y, Jiao Y, Li Z, Yue H, et al. Differential long non?coding RNA and mRNA expression in differentiated human glioblastoma stem cells. Mol Med Rep. 2016;14:2067-76 pubmed 出版商
  148. Nott A, Cheng J, Gao F, Lin Y, Gjoneska E, Ko T, et al. Histone deacetylase 3 associates with MeCP2 to regulate FOXO and social behavior. Nat Neurosci. 2016;19:1497-1505 pubmed 出版商
  149. Urbán N, van den Berg D, Forget A, Andersen J, Demmers J, Hunt C, et al. Return to quiescence of mouse neural stem cells by degradation of a proactivation protein. Science. 2016;353:292-5 pubmed 出版商
  150. Achuta V, Grym H, Putkonen N, Louhivuori V, Kärkkäinen V, Koistinaho J, et al. Metabotropic glutamate receptor 5 responses dictate differentiation of neural progenitors to NMDA-responsive cells in fragile X syndrome. Dev Neurobiol. 2017;77:438-453 pubmed 出版商
  151. Akopian A, Kumar S, Ramakrishnan H, Viswanathan S, Bloomfield S. Amacrine cells coupled to ganglion cells via gap junctions are highly vulnerable in glaucomatous mouse retinas. J Comp Neurol. 2016;: pubmed 出版商
  152. Walker W, Oehler A, Edinger A, Wagner K, Gunn T. Oligodendroglial deletion of ESCRT-I component TSG101 causes spongiform encephalopathy. Biol Cell. 2016;108:324-337 pubmed 出版商
  153. Osman E, Washington C, Kaifer K, Mazzasette C, Patitucci T, Florea K, et al. Optimization of Morpholino Antisense Oligonucleotides Targeting the Intronic Repressor Element1 in Spinal Muscular Atrophy. Mol Ther. 2016;24:1592-601 pubmed 出版商
  154. Liu S, Li Q, Zhang M, Mao Ying Q, Hu L, Wu G, et al. Curcumin ameliorates neuropathic pain by down-regulating spinal IL-1β via suppressing astroglial NALP1 inflammasome and JAK2-STAT3 signalling. Sci Rep. 2016;6:28956 pubmed 出版商
  155. Tillberg P, Chen F, Piatkevich K, Zhao Y, Yu C, English B, et al. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat Biotechnol. 2016;34:987-92 pubmed 出版商
  156. Li T, Braunstein K, Zhang J, Lau A, Sibener L, Deeble C, et al. The neuritic plaque facilitates pathological conversion of tau in an Alzheimer's disease mouse model. Nat Commun. 2016;7:12082 pubmed 出版商
  157. Su X, Tan Q, Parikh B, Tan A, Mehta M, Sia Wey Y, et al. Characterization of Fatty Acid Binding Protein 7 (FABP7) in the Murine Retina. Invest Ophthalmol Vis Sci. 2016;57:3397-408 pubmed 出版商
  158. Mann A, Scodeller P, Hussain S, Joo J, Kwon E, Braun G, et al. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries. Nat Commun. 2016;7:11980 pubmed 出版商
  159. Park K, Luo X, Mooney S, Yungher B, Belin S, Wang C, et al. Retinal ganglion cell survival and axon regeneration after optic nerve injury in naked mole-rats. J Comp Neurol. 2017;525:380-388 pubmed 出版商
  160. Krusche B, Ottone C, Clements M, Johnstone E, Goetsch K, Lieven H, et al. EphrinB2 drives perivascular invasion and proliferation of glioblastoma stem-like cells. elife. 2016;5: pubmed 出版商
  161. Brahmachari S, Ge P, Lee S, Kim D, Karuppagounder S, Kumar M, et al. Activation of tyrosine kinase c-Abl contributes to ?-synuclein-induced neurodegeneration. J Clin Invest. 2016;126:2970-88 pubmed 出版商
  162. Schmitt D, Funk N, Blum R, Asan E, Andersen L, Rülicke T, et al. Initial characterization of a Syap1 knock-out mouse and distribution of Syap1 in mouse brain and cultured motoneurons. Histochem Cell Biol. 2016;146:489-512 pubmed 出版商
  163. Mavlyutov T, Duellman T, Kim H, Epstein M, Leese C, Davletov B, et al. Sigma-1 receptor expression in the dorsal root ganglion: Reexamination using a highly specific antibody. Neuroscience. 2016;331:148-57 pubmed 出版商
  164. Vasek M, Garber C, Dorsey D, Durrant D, Bollman B, Soung A, et al. A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature. 2016;534:538-43 pubmed 出版商
  165. Velandia Romero M, Calderón Peláez M, Castellanos J. In Vitro Infection with Dengue Virus Induces Changes in the Structure and Function of the Mouse Brain Endothelium. PLoS ONE. 2016;11:e0157786 pubmed 出版商
  166. Folmsbee S, Wilcox D, Tyberghein K, De Bleser P, Tourtellotte W, van Hengel J, et al. ?T-catenin in restricted brain cell types and its potential connection to autism. J Mol Psychiatry. 2016;4:2 pubmed 出版商
  167. Vernay A, Therreau L, Blot B, Risson V, Dirrig Grosch S, Waegaert R, et al. A transgenic mouse expressing CHMP2Bintron5 mutant in neurons develops histological and behavioural features of amyotrophic lateral sclerosis and frontotemporal dementia. Hum Mol Genet. 2016;25:3341-3360 pubmed 出版商
  168. Jones K, Han J, Debruyne J, Philpot B. Persistent neuronal Ube3a expression in the suprachiasmatic nucleus of Angelman syndrome model mice. Sci Rep. 2016;6:28238 pubmed 出版商
  169. Zhai W, Chen D, Shen H, Chen Z, Li H, Yu Z, et al. A1 adenosine receptor attenuates intracerebral hemorrhage-induced secondary brain injury in rats by activating the P38-MAPKAP2-Hsp27 pathway. Mol Brain. 2016;9:66 pubmed 出版商
  170. Cerman E, Akkoç T, Eraslan M, Sahin O, Ozkara S, Vardar Aker F, et al. Retinal Electrophysiological Effects of Intravitreal Bone Marrow Derived Mesenchymal Stem Cells in Streptozotocin Induced Diabetic Rats. PLoS ONE. 2016;11:e0156495 pubmed 出版商
  171. Choi Y, Lee B, Hansen K, Aten S, Horning P, Wheaton K, et al. Status epilepticus stimulates NDEL1 expression via the CREB/CRE pathway in the adult mouse brain. Neuroscience. 2016;331:1-12 pubmed 出版商
  172. Pellegrini C, Fornai M, Colucci R, Tirotta E, Blandini F, Levandis G, et al. Alteration of colonic excitatory tachykininergic motility and enteric inflammation following dopaminergic nigrostriatal neurodegeneration. J Neuroinflammation. 2016;13:146 pubmed 出版商
  173. Hutchinson E, Schwerin S, Radomski K, Irfanoglu M, Juliano S, Pierpaoli C. Quantitative MRI and DTI Abnormalities During the Acute Period Following CCI in the Ferret. Shock. 2016;46:167-76 pubmed 出版商
  174. Kizuka Y, Nakano M, Miura Y, Taniguchi N. Epigenetic regulation of neural N-glycomics. Proteomics. 2016;16:2854-2863 pubmed 出版商
  175. Xu Y, Liu J, He M, Liu R, Belegu V, Dai P, et al. Mechanisms of PDGF siRNA-mediated inhibition of bone cancer pain in the spinal cord. Sci Rep. 2016;6:27512 pubmed 出版商
  176. Auderset L, Cullen C, Young K. Low Density Lipoprotein-Receptor Related Protein 1 Is Differentially Expressed by Neuronal and Glial Populations in the Developing and Mature Mouse Central Nervous System. PLoS ONE. 2016;11:e0155878 pubmed 出版商
  177. Morisaki Y, Niikura M, Watanabe M, Onishi K, Tanabe S, Moriwaki Y, et al. Selective Expression of Osteopontin in ALS-resistant Motor Neurons is a Critical Determinant of Late Phase Neurodegeneration Mediated by Matrix Metalloproteinase-9. Sci Rep. 2016;6:27354 pubmed 出版商
  178. Ávila Rodriguez M, Garcia Segura L, Hidalgo Lanussa O, Baez E, Gonzalez J, Barreto G. Tibolone protects astrocytic cells from glucose deprivation through a mechanism involving estrogen receptor beta and the upregulation of neuroglobin expression. Mol Cell Endocrinol. 2016;433:35-46 pubmed 出版商
  179. Ko A, Hyun H, Min S, Kim J. The Differential DRP1 Phosphorylation and Mitochondrial Dynamics in the Regional Specific Astroglial Death Induced by Status Epilepticus. Front Cell Neurosci. 2016;10:124 pubmed 出版商
  180. Hayashi Y, Morinaga S, Zhang J, Satoh Y, Meredith A, Nakata T, et al. BK channels in microglia are required for morphine-induced hyperalgesia. Nat Commun. 2016;7:11697 pubmed 出版商
  181. Singh V, Singh M, Gorantla S, Poluektova L, Maggirwar S. Smoothened Agonist Reduces Human Immunodeficiency Virus Type-1-Induced Blood-Brain Barrier Breakdown in Humanized Mice. Sci Rep. 2016;6:26876 pubmed 出版商
  182. Morales I, Sánchez A, Rodriguez Sabate C, Rodriguez M. The astrocytic response to the dopaminergic denervation of the striatum. J Neurochem. 2016;139:81-95 pubmed 出版商
  183. Vilmont V, Cadot B, Ouanounou G, Gomes E. A system for studying mechanisms of neuromuscular junction development and maintenance. Development. 2016;143:2464-77 pubmed 出版商
  184. Rodríguez Jiménez F, Alastrue A, Stojkovic M, Erceg S, Moreno Manzano V. Connexin 50 modulates Sox2 expression in spinal-cord-derived ependymal stem/progenitor cells. Cell Tissue Res. 2016;365:295-307 pubmed 出版商
  185. Heaven M, Flint D, Randall S, Sosunov A, Wilson L, Barnes S, et al. Composition of Rosenthal Fibers, the Protein Aggregate Hallmark of Alexander Disease. J Proteome Res. 2016;15:2265-82 pubmed 出版商
  186. Marignier R, Ruiz A, Cavagna S, Nicole A, Watrin C, Touret M, et al. Neuromyelitis optica study model based on chronic infusion of autoantibodies in rat cerebrospinal fluid. J Neuroinflammation. 2016;13:111 pubmed 出版商
  187. Wharton K, Quigley C, Themeles M, Dunstan R, Doyle K, Cahir McFarland E, et al. JC Polyomavirus Abundance and Distribution in Progressive Multifocal Leukoencephalopathy (PML) Brain Tissue Implicates Myelin Sheath in Intracerebral Dissemination of Infection. PLoS ONE. 2016;11:e0155897 pubmed 出版商
  188. Kobayashi Y, Yoshida S, Zhou Y, Nakama T, Ishikawa K, Arima M, et al. Tenascin-C promotes angiogenesis in fibrovascular membranes in eyes with proliferative diabetic retinopathy. Mol Vis. 2016;22:436-45 pubmed
  189. Oishi S, Premarathne S, Harvey T, Iyer S, Dixon C, Alexander S, et al. Usp9x-deficiency disrupts the morphological development of the postnatal hippocampal dentate gyrus. Sci Rep. 2016;6:25783 pubmed 出版商
  190. He J, Zhou R, Wu Z, Carrasco M, Kurshan P, Farley J, et al. Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proc Natl Acad Sci U S A. 2016;113:6029-34 pubmed 出版商
  191. Miyawaki S, Kawamura Y, Oiwa Y, Shimizu A, Hachiya T, Bono H, et al. Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nat Commun. 2016;7:11471 pubmed 出版商
  192. Finnie J, Blumbergs P, Manavis J. Temporal Sequence of Autolysis in the Cerebellar Cortex of the Mouse. J Comp Pathol. 2016;154:323-8 pubmed 出版商
  193. Hochmeister S, Engel O, Adzemovic M, Pekar T, Kendlbacher P, Zeitelhofer M, et al. Lipocalin-2 as an Infection-Related Biomarker to Predict Clinical Outcome in Ischemic Stroke. PLoS ONE. 2016;11:e0154797 pubmed 出版商
  194. Zhang N, Chen B, Wang W, Chen C, Kang J, Deng S, et al. Isolation, characterization and multi-lineage differentiation of stem cells from human exfoliated deciduous teeth. Mol Med Rep. 2016;14:95-102 pubmed 出版商
  195. Foxton R, Osborne A, Martin K, Ng Y, Shima D. Distal retinal ganglion cell axon transport loss and activation of p38 MAPK stress pathway following VEGF-A antagonism. Cell Death Dis. 2016;7:e2212 pubmed 出版商
  196. Mohr M, Garcia F, Doncarlos L, Sisk C. Neurons and Glial Cells Are Added to the Female Rat Anteroventral Periventricular Nucleus During Puberty. Endocrinology. 2016;157:2393-402 pubmed 出版商
  197. Yang Y, Fang J, Li D, Wang L, Ji N, Zhang J. Recurrent intracranial neurenteric cyst with malignant transformation: A case report and literature review. Oncol Lett. 2016;11:3395-3402 pubmed
  198. Duchnowska R, Pęksa R, Radecka B, Mandat T, Trojanowski T, Jarosz B, et al. Immune response in breast cancer brain metastases and their microenvironment: the role of the PD-1/PD-L axis. Breast Cancer Res. 2016;18:43 pubmed 出版商
  199. Tong H, Kang W, Davy P, Shi Y, Sun S, Allsopp R, et al. Monocyte Trafficking, Engraftment, and Delivery of Nanoparticles and an Exogenous Gene into the Acutely Inflamed Brain Tissue - Evaluations on Monocyte-Based Delivery System for the Central Nervous System. PLoS ONE. 2016;11:e0154022 pubmed 出版商
  200. Xue Y, Qian H, Hu J, Zhou B, Zhou Y, Hu X, et al. Sequential regulatory loops as key gatekeepers for neuronal reprogramming in human cells. Nat Neurosci. 2016;19:807-15 pubmed 出版商
  201. Funk L, Hackett A, Bunge M, Lee J. Tumor necrosis factor superfamily member APRIL contributes to fibrotic scar formation after spinal cord injury. J Neuroinflammation. 2016;13:87 pubmed 出版商
  202. Srinivasan K, Friedman B, Larson J, Lauffer B, Goldstein L, Appling L, et al. Untangling the brain's neuroinflammatory and neurodegenerative transcriptional responses. Nat Commun. 2016;7:11295 pubmed 出版商
  203. Anesten F, Holt M, Schéle E, Pálsdóttir V, Reimann F, Gribble F, et al. Preproglucagon neurons in the hindbrain have IL-6 receptor-α and show Ca2+ influx in response to IL-6. Am J Physiol Regul Integr Comp Physiol. 2016;311:R115-23 pubmed 出版商
  204. Bouvier D, Jones E, Quesseveur G, Davoli M, A Ferreira T, Quirion R, et al. High Resolution Dissection of Reactive Glial Nets in Alzheimer's Disease. Sci Rep. 2016;6:24544 pubmed 出版商
  205. Basrai H, Christie K, Turbic A, Bye N, Turnley A. Suppressor of Cytokine Signaling-2 (SOCS2) Regulates the Microglial Response and Improves Functional Outcome after Traumatic Brain Injury in Mice. PLoS ONE. 2016;11:e0153418 pubmed 出版商
  206. Fourgeaud L, Traves P, Tufail Y, Leal Bailey H, Lew E, Burrola P, et al. TAM receptors regulate multiple features of microglial physiology. Nature. 2016;532:240-244 pubmed 出版商
  207. Bubenheimer R, Brown I, Fried D, McClain J, Gulbransen B. Sirtuin-3 Is Expressed by Enteric Neurons but It Does not Play a Major Role in Their Regulation of Oxidative Stress. Front Cell Neurosci. 2016;10:73 pubmed 出版商
  208. Fujiwara K, Fujita Y, Kasai A, Onaka Y, Hashimoto H, Okada H, et al. Deletion of JMJD2B in neurons leads to defective spine maturation, hyperactive behavior and memory deficits in mouse. Transl Psychiatry. 2016;6:e766 pubmed 出版商
  209. Chen C, Liu Y, Hua M, Li X, Ji C, Ma D. Neuropathy correlated with imbalanced Foxp3/IL-17 in bone marrow microenvironment of patients with acute myeloid leukemia. Oncotarget. 2016;7:24455-65 pubmed 出版商
  210. Nagao M, Ogata T, Sawada Y, Gotoh Y. Zbtb20 promotes astrocytogenesis during neocortical development. Nat Commun. 2016;7:11102 pubmed 出版商
  211. Monai H, Ohkura M, Tanaka M, Oe Y, Konno A, Hirai H, et al. Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nat Commun. 2016;7:11100 pubmed 出版商
  212. Yousuf M, Tan C, Torres Altoro M, Lu F, Plautz E, Zhang S, et al. Involvement of aberrant cyclin-dependent kinase 5/p25 activity in experimental traumatic brain injury. J Neurochem. 2016;138:317-27 pubmed 出版商
  213. Cui Y, Han J, Xiao Z, Chen T, Wang B, Chen B, et al. The miR-20-Rest-Wnt signaling axis regulates neural progenitor cell differentiation. Sci Rep. 2016;6:23300 pubmed 出版商
  214. Smeester B, O Brien E, Michlitsch K, Lee J, Beitz A. The relationship of bone-tumor-induced spinal cord astrocyte activation and aromatase expression to mechanical hyperalgesia and cold hypersensitivity in intact female and ovariectomized mice. Neuroscience. 2016;324:344-54 pubmed 出版商
  215. O Rourke J, Bogdanik L, Yáñez A, Lall D, Wolf A, Muhammad A, et al. C9orf72 is required for proper macrophage and microglial function in mice. Science. 2016;351:1324-9 pubmed 出版商
  216. Anastasiadou S, Knöll B. The multiple sclerosis drug fingolimod (FTY720) stimulates neuronal gene expression, axonal growth and regeneration. Exp Neurol. 2016;279:243-260 pubmed 出版商
  217. Linkus B, Wiesner D, Meßner M, Karabatsiakis A, Scheffold A, Rudolph K, et al. Telomere shortening leads to earlier age of onset in ALS mice. Aging (Albany NY). 2016;8:382-93 pubmed
  218. Jennewein L, Ronellenfitsch M, Antonietti P, Ilina E, Jung J, Stadel D, et al. Diagnostic and clinical relevance of the autophago-lysosomal network in human gliomas. Oncotarget. 2016;7:20016-32 pubmed 出版商
  219. Yang P, Leu D, Ye K, Srinivasan C, Fike J, Huang T. Cognitive impairments following cranial irradiation can be mitigated by treatment with a tropomyosin receptor kinase B agonist. Exp Neurol. 2016;279:178-186 pubmed 出版商
  220. Xu A, Zheng G, Wang Z, Chen X, Jiang Q. Neuroprotective effects of Ilexonin A following transient focal cerebral ischemia in rats. Mol Med Rep. 2016;13:2957-66 pubmed 出版商
  221. Fonseca M, Chu S, Pierce A, Brubaker W, Hauhart R, Mastroeni D, et al. Analysis of the Putative Role of CR1 in Alzheimer's Disease: Genetic Association, Expression and Function. PLoS ONE. 2016;11:e0149792 pubmed 出版商
  222. Ma Y, Matsuwaki T, Yamanouchi K, Nishihara M. Glucocorticoids Suppress the Protective Effect of Cyclooxygenase-2-Related Signaling on Hippocampal Neurogenesis Under Acute Immune Stress. Mol Neurobiol. 2017;54:1953-1966 pubmed 出版商
  223. Hinrich A, Jodelka F, Chang J, Brutman D, Bruno A, Briggs C, et al. Therapeutic correction of ApoER2 splicing in Alzheimer's disease mice using antisense oligonucleotides. EMBO Mol Med. 2016;8:328-45 pubmed 出版商
  224. Sancho Martinez I, Nivet E, Xia Y, Hishida T, Aguirre A, Ocampo A, et al. Establishment of human iPSC-based models for the study and targeting of glioma initiating cells. Nat Commun. 2016;7:10743 pubmed 出版商
  225. Cabral C, Tuladhar S, Dietrich H, Nguyen E, MacDonald W, Trivedi T, et al. Neurons are the Primary Target Cell for the Brain-Tropic Intracellular Parasite Toxoplasma gondii. PLoS Pathog. 2016;12:e1005447 pubmed 出版商
  226. Liu R, Li S, Garcia E, Glubrecht D, Poon H, Easaw J, et al. Association between cytoplasmic CRABP2, altered retinoic acid signaling, and poor prognosis in glioblastoma. Glia. 2016;64:963-76 pubmed 出版商
  227. Ma Y, Guo H, Zhang L, Tao L, Yin A, Liu Z, et al. Estrogen replacement therapy-induced neuroprotection against brain ischemia-reperfusion injury involves the activation of astrocytes via estrogen receptor β. Sci Rep. 2016;6:21467 pubmed 出版商
  228. Chen T, Yu Y, Hu C, Schachner M. L1.2, the zebrafish paralog of L1.1 and ortholog of the mammalian cell adhesion molecule L1 contributes to spinal cord regeneration in adult zebrafish. Restor Neurol Neurosci. 2016;34:325-35 pubmed 出版商
  229. Collazos Castro J, García Rama C, Alves Sampaio A. Glial progenitor cell migration promotes CNS axon growth on functionalized electroconducting microfibers. Acta Biomater. 2016;35:42-56 pubmed 出版商
  230. Zhang W, Kim P, Chen Z, Lokman H, Qiu L, Zhang K, et al. MiRNA-128 regulates the proliferation and neurogenesis of neural precursors by targeting PCM1 in the developing cortex. elife. 2016;5: pubmed 出版商
  231. Liu B, Ma A, Zhang F, Wang Y, Li Z, Li Q, et al. MAZ mediates the cross-talk between CT-1 and NOTCH1 signaling during gliogenesis. Sci Rep. 2016;6:21534 pubmed 出版商
  232. Lauretti E, Di Meco A, Merali S, Praticò D. Chronic behavioral stress exaggerates motor deficit and neuroinflammation in the MPTP mouse model of Parkinson's disease. Transl Psychiatry. 2016;6:e733 pubmed 出版商
  233. Winston C, Noël A, Neustadtl A, Parsadanian M, Barton D, Chellappa D, et al. Dendritic Spine Loss and Chronic White Matter Inflammation in a Mouse Model of Highly Repetitive Head Trauma. Am J Pathol. 2016;186:552-67 pubmed 出版商
  234. Delcambre G, Liu J, Herrington J, Vallario K, Long M. Immunohistochemistry for the detection of neural and inflammatory cells in equine brain tissue. Peerj. 2016;4:e1601 pubmed 出版商
  235. Li Y, Liu J, Gao D, Wei J, Yuan H, Niu X, et al. Age-related changes in hypertensive brain damage in the hippocampi of spontaneously hypertensive rats. Mol Med Rep. 2016;13:2552-60 pubmed 出版商
  236. Furman J, Sompol P, Kraner S, Pleiss M, Putman E, Dunkerson J, et al. Blockade of Astrocytic Calcineurin/NFAT Signaling Helps to Normalize Hippocampal Synaptic Function and Plasticity in a Rat Model of Traumatic Brain Injury. J Neurosci. 2016;36:1502-15 pubmed 出版商
  237. Sharma A, Lyashchenko A, Lu L, Nasrabady S, Elmaleh M, Mendelsohn M, et al. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function. Nat Commun. 2016;7:10465 pubmed 出版商
  238. Ophelders D, Gussenhoven R, Lammens M, Küsters B, Kemp M, Newnham J, et al. Neuroinflammation and structural injury of the fetal ovine brain following intra-amniotic Candida albicans exposure. J Neuroinflammation. 2016;13:29 pubmed 出版商
  239. Wang C, Zhang F, Jiang S, Siedlak S, Shen L, Perry G, et al. Estrogen receptor-? is localized to neurofibrillary tangles in Alzheimer's disease. Sci Rep. 2016;6:20352 pubmed 出版商
  240. Li H, Ruberu K, Karl T, Garner B. Cerebral Apolipoprotein-D Is Hypoglycosylated Compared to Peripheral Tissues and Is Variably Expressed in Mouse and Human Brain Regions. PLoS ONE. 2016;11:e0148238 pubmed 出版商
  241. Deverman B, Pravdo P, Simpson B, Kumar S, Chan K, Banerjee A, et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol. 2016;34:204-9 pubmed 出版商
  242. Okamoto S, Nitta M, Maruyama T, Sawada T, Komori T, Okada Y, et al. Bevacizumab changes vascular structure and modulates the expression of angiogenic factors in recurrent malignant gliomas. Brain Tumor Pathol. 2016;33:129-36 pubmed 出版商
  243. Tokuda E, Brännström T, Andersen P, Marklund S. Low autophagy capacity implicated in motor system vulnerability to mutant superoxide dismutase. Acta Neuropathol Commun. 2016;4:6 pubmed 出版商
  244. Lee Kubli C, Ingves M, Henry K, Shiao R, Collyer E, Tuszynski M, et al. Analysis of the behavioral, cellular and molecular characteristics of pain in severe rodent spinal cord injury. Exp Neurol. 2016;278:91-104 pubmed 出版商
  245. Misuraca K, Hu G, Barton K, Chung A, Becher O. A Novel Mouse Model of Diffuse Intrinsic Pontine Glioma Initiated in Pax3-Expressing Cells. Neoplasia. 2016;18:60-70 pubmed 出版商
  246. Hackett A, Lee D, Dawood A, Rodriguez M, Funk L, Tsoulfas P, et al. STAT3 and SOCS3 regulate NG2 cell proliferation and differentiation after contusive spinal cord injury. Neurobiol Dis. 2016;89:10-22 pubmed 出版商
  247. Kuipers H, Rieck M, Gurevich I, Nagy N, Butte M, Negrin R, et al. Hyaluronan synthesis is necessary for autoreactive T-cell trafficking, activation, and Th1 polarization. Proc Natl Acad Sci U S A. 2016;113:1339-44 pubmed 出版商
  248. Korwitz A, Merkwirth C, Richter Dennerlein R, Tröder S, Sprenger H, Quirós P, et al. Loss of OMA1 delays neurodegeneration by preventing stress-induced OPA1 processing in mitochondria. J Cell Biol. 2016;212:157-66 pubmed 出版商
  249. Kang S, Murphy R, Hwang S, Lee S, Harburg D, Krueger N, et al. Bioresorbable silicon electronic sensors for the brain. Nature. 2016;530:71-6 pubmed 出版商
  250. Brown I, McClain J, Watson R, Patel B, Gulbransen B. Enteric glia mediate neuron death in colitis through purinergic pathways that require connexin-43 and nitric oxide. Cell Mol Gastroenterol Hepatol. 2016;2:77-91 pubmed
  251. Yuan P, Grutzendler J. Attenuation of β-Amyloid Deposition and Neurotoxicity by Chemogenetic Modulation of Neural Activity. J Neurosci. 2016;36:632-41 pubmed 出版商
  252. Liu Q, Sanai N, Jin W, La Cava A, Van Kaer L, Shi F. Neural stem cells sustain natural killer cells that dictate recovery from brain inflammation. Nat Neurosci. 2016;19:243-52 pubmed 出版商
  253. Ruegsegger C, Stucki D, Steiner S, Angliker N, Radecke J, Keller E, et al. Impaired mTORC1-Dependent Expression of Homer-3 Influences SCA1 Pathophysiology. Neuron. 2016;89:129-46 pubmed 出版商
  254. Kawabata S, Takano M, Numasawa Kuroiwa Y, Itakura G, Kobayashi Y, Nishiyama Y, et al. Grafted Human iPS Cell-Derived Oligodendrocyte Precursor Cells Contribute to Robust Remyelination of Demyelinated Axons after Spinal Cord Injury. Stem Cell Reports. 2016;6:1-8 pubmed 出版商
  255. Sandoval Hernández A, Buitrago L, Moreno H, Cardona Gómez G, Arboleda G. Role of Liver X Receptor in AD Pathophysiology. PLoS ONE. 2015;10:e0145467 pubmed 出版商
  256. Choudhury S, Harris A, Cabral D, Keeler A, Sapp E, Ferreira J, et al. Widespread Central Nervous System Gene Transfer and Silencing After Systemic Delivery of Novel AAV-AS Vector. Mol Ther. 2016;24:726-35 pubmed 出版商
  257. Benedykcinska A, Ferreira A, Lau J, Broni J, Richard Loendt A, Henriquez N, et al. Generation of brain tumours in mice by Cre-mediated recombination of neural progenitors in situ with the tamoxifen metabolite endoxifen. Dis Model Mech. 2016;9:211-20 pubmed 出版商
  258. Platt T, Beckett T, Kohler K, Niedowicz D, Murphy M. Obesity, diabetes, and leptin resistance promote tau pathology in a mouse model of disease. Neuroscience. 2016;315:162-74 pubmed 出版商
  259. Joseph J, van Roosmalen I, Busschers E, Tomar T, Conroy S, Eggens Meijer E, et al. Serum-Induced Differentiation of Glioblastoma Neurospheres Leads to Enhanced Migration/Invasion Capacity That Is Associated with Increased MMP9. PLoS ONE. 2015;10:e0145393 pubmed 出版商
  260. He G, Xu W, Li J, Li S, Liu B, Tan X, et al. Huwe1 interacts with Gadd45b under oxygen-glucose deprivation and reperfusion injury in primary Rat cortical neuronal cells. Mol Brain. 2015;8:88 pubmed 出版商
  261. Müller A, Stellmacher A, Freitag C, Landgraf P, Dieterich D. Monitoring Astrocytic Proteome Dynamics by Cell Type-Specific Protein Labeling. PLoS ONE. 2015;10:e0145451 pubmed 出版商
  262. Sharpe M, Baskin D. Monoamine oxidase B levels are highly expressed in human gliomas and are correlated with the expression of HiF-1α and with transcription factors Sp1 and Sp3. Oncotarget. 2016;7:3379-93 pubmed 出版商
  263. Janmaat C, de Rooij K, Locher H, de Groot S, de Groot J, Frijns J, et al. Human Dermal Fibroblasts Demonstrate Positive Immunostaining for Neuron- and Glia- Specific Proteins. PLoS ONE. 2015;10:e0145235 pubmed 出版商
  264. Khoutorsky A, Bonin R, Sorge R, Gkogkas C, Pawlowski S, Jafarnejad S, et al. Translational control of nociception via 4E-binding protein 1. elife. 2015;4: pubmed 出版商
  265. Slowicka K, Vereecke L, Mc Guire C, Sze M, Maelfait J, Kolpe A, et al. Optineurin deficiency in mice is associated with increased sensitivity to Salmonella but does not affect proinflammatory NF-κB signaling. Eur J Immunol. 2016;46:971-80 pubmed 出版商
  266. Gilkes J, Bloom M, Heldermon C. Mucopolysaccharidosis IIIB confers enhanced neonatal intracranial transduction by AAV8 but not by 5, 9 or rh10. Gene Ther. 2016;23:263-71 pubmed 出版商
  267. Pages M, Lacroix L, Tauziède Espariat A, Castel D, Daudigeos Dubus E, Ridola V, et al. Papillary glioneuronal tumors: histological and molecular characteristics and diagnostic value of SLC44A1-PRKCA fusion. Acta Neuropathol Commun. 2015;3:85 pubmed 出版商
  268. Hristova M, Rocha Ferreira E, Fontana X, Thei L, Buckle R, Christou M, et al. Inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) reduces neonatal hypoxic-ischaemic brain damage. J Neurochem. 2016;136:981-94 pubmed 出版商
  269. Chen A, Akinyemi R, Hase Y, Firbank M, Ndung u M, Foster V, et al. Frontal white matter hyperintensities, clasmatodendrosis and gliovascular abnormalities in ageing and post-stroke dementia. Brain. 2016;139:242-58 pubmed 出版商
  270. Haas L, Salazar S, Kostylev M, Um J, Kaufman A, Strittmatter S. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer's disease. Brain. 2016;139:526-46 pubmed 出版商
  271. Bean L, Kumar A, Rani A, Guidi M, Rosario A, Cruz P, et al. Re-Opening the Critical Window for Estrogen Therapy. J Neurosci. 2015;35:16077-93 pubmed 出版商
  272. Müller Schiffmann A, Herring A, Abdel Hafiz L, Chepkova A, Schäble S, Wedel D, et al. Amyloid-β dimers in the absence of plaque pathology impair learning and synaptic plasticity. Brain. 2016;139:509-25 pubmed 出版商
  273. Higuchi A, Kao S, Ling Q, Chen Y, Li H, Alarfaj A, et al. Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity. Sci Rep. 2015;5:18136 pubmed 出版商
  274. Stefanitsch C, Lawrence A, Olverling A, Nilsson I, Fredriksson L. tPA Deficiency in Mice Leads to Rearrangement in the Cerebrovascular Tree and Cerebroventricular Malformations. Front Cell Neurosci. 2015;9:456 pubmed 出版商
  275. Frankowski J, Demars K, Ahmad A, Hawkins K, Yang C, Leclerc J, et al. Detrimental role of the EP1 prostanoid receptor in blood-brain barrier damage following experimental ischemic stroke. Sci Rep. 2015;5:17956 pubmed 出版商
  276. Stephen T, Higgs N, Sheehan D, Al Awabdh S, López Doménech G, Arancibia Carcamo I, et al. Miro1 Regulates Activity-Driven Positioning of Mitochondria within Astrocytic Processes Apposed to Synapses to Regulate Intracellular Calcium Signaling. J Neurosci. 2015;35:15996-6011 pubmed 出版商
  277. Hui S, Nag T, Ghosh S. Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish. PLoS ONE. 2015;10:e0143595 pubmed 出版商
  278. Kim Y, Jo S, Kim W, Kweon O. Antioxidant and anti-inflammatory effects of intravenously injected adipose derived mesenchymal stem cells in dogs with acute spinal cord injury. Stem Cell Res Ther. 2015;6:229 pubmed 出版商
  279. Benítez B, Cairns N, Schmidt R, Morris J, Norton J, Cruchaga C, et al. Clinically early-stage CSPα mutation carrier exhibits remarkable terminal stage neuronal pathology with minimal evidence of synaptic loss. Acta Neuropathol Commun. 2015;3:73 pubmed 出版商
  280. Grishchuk Y, Stember K, Matsunaga A, Olivares A, CRUZ N, King V, et al. Retinal Dystrophy and Optic Nerve Pathology in the Mouse Model of Mucolipidosis IV. Am J Pathol. 2016;186:199-209 pubmed 出版商
  281. Urraca N, Memon R, El Iyachi I, Goorha S, Valdez C, Tran Q, et al. Characterization of neurons from immortalized dental pulp stem cells for the study of neurogenetic disorders. Stem Cell Res. 2015;15:722-730 pubmed 出版商
  282. Tardito S, Oudin A, Ahmed S, Fack F, Keunen O, Zheng L, et al. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat Cell Biol. 2015;17:1556-68 pubmed 出版商
  283. Tapia Rojas C, Lindsay C, Montecinos Oliva C, Arrázola M, Retamales R, Bunout D, et al. Is L-methionine a trigger factor for Alzheimer's-like neurodegeneration?: Changes in Aβ oligomers, tau phosphorylation, synaptic proteins, Wnt signaling and behavioral impairment in wild-type mice. Mol Neurodegener. 2015;10:62 pubmed 出版商
  284. Mircsof D, Langouët M, Rio M, Moutton S, Siquier Pernet K, Bole Feysot C, et al. Mutations in NONO lead to syndromic intellectual disability and inhibitory synaptic defects. Nat Neurosci. 2015;18:1731-6 pubmed 出版商
  285. Cook Snyder D, Jones A, Reijmers L. A retrograde adeno-associated virus for collecting ribosome-bound mRNA from anatomically defined projection neurons. Front Mol Neurosci. 2015;8:56 pubmed 出版商
  286. Park S, Brenner D, Shin G, Morgan C, Copits B, Chung H, et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat Biotechnol. 2015;33:1280-1286 pubmed 出版商
  287. Cherry J, Olschowka J, O Banion M. Arginase 1+ microglia reduce Aβ plaque deposition during IL-1β-dependent neuroinflammation. J Neuroinflammation. 2015;12:203 pubmed 出版商
  288. Neirinckx V, Agirman G, Coste C, Marquet A, Dion V, Rogister B, et al. Adult bone marrow mesenchymal and neural crest stem cells are chemoattractive and accelerate motor recovery in a mouse model of spinal cord injury. Stem Cell Res Ther. 2015;6:211 pubmed 出版商
  289. Li Y, Adomat H, Guns E, Hojabrpour P, Duronio V, Curran T, et al. Identification of a Hematopoietic Cell Dedifferentiation-Inducing Factor. J Cell Physiol. 2016;231:1350-63 pubmed 出版商
  290. Pacey L, Guan S, Tharmalingam S, Thomsen C, Hampson D. Persistent astrocyte activation in the fragile X mouse cerebellum. Brain Behav. 2015;5:e00400 pubmed 出版商
  291. Wang S, Hsu J, Ko C, Chiu N, Kan W, Lai M, et al. Astrocytic CCAAT/Enhancer-Binding Protein Delta Contributes to Glial Scar Formation and Impairs Functional Recovery After Spinal Cord Injury. Mol Neurobiol. 2016;53:5912-5927 pubmed 出版商
  292. Zhang L, Zhang S, Yao J, Lowery F, Zhang Q, Huang W, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature. 2015;527:100-104 pubmed 出版商
  293. Baranowska Bosiacka I, Listos J, Gutowska I, Machoy MokrzyÅ„ska A, Kolasa WoÅ‚osiuk A, Tarnowski M, et al. Effects of perinatal exposure to lead (Pb) on purine receptor expression in the brain and gliosis in rats tolerant to morphine analgesia. Toxicology. 2016;339:19-33 pubmed 出版商
  294. Gu Y, Zhang Y, Bi Y, Liu J, Tan B, Gong M, et al. Mesenchymal stem cells suppress neuronal apoptosis and decrease IL-10 release via the TLR2/NFκB pathway in rats with hypoxic-ischemic brain damage. Mol Brain. 2015;8:65 pubmed 出版商
  295. Chang W, Chen M, Cheng I. Antroquinonol Lowers Brain Amyloid-β Levels and Improves Spatial Learning and Memory in a Transgenic Mouse Model of Alzheimer's Disease. Sci Rep. 2015;5:15067 pubmed 出版商
  296. Kizuka Y, Nakano M, Kitazume S, Saito T, Saido T, Taniguchi N. Bisecting GlcNAc modification stabilizes BACE1 protein under oxidative stress conditions. Biochem J. 2016;473:21-30 pubmed 出版商
  297. Hauser D, Primiani C, Langston R, Kumaran R, Cookson M. The Polg Mutator Phenotype Does Not Cause Dopaminergic Neurodegeneration in DJ-1-Deficient Mice. Eneuro. 2015;2: pubmed 出版商
  298. Suarez Mier G, Buckwalter M. Glial Fibrillary Acidic Protein-Expressing Glia in the Mouse Lung. ASN Neuro. 2015;7: pubmed 出版商
  299. Gautier H, Evans K, Volbracht K, James R, Sitnikov S, Lundgaard I, et al. Neuronal activity regulates remyelination via glutamate signalling to oligodendrocyte progenitors. Nat Commun. 2015;6:8518 pubmed 出版商
  300. Korzhevskii D, Sukhorukova E, Kirik O, Grigorev I. Immunohistochemical demonstration of specific antigens in the human brain fixed in zinc-ethanol-formaldehyde. Eur J Histochem. 2015;59:2530 pubmed 出版商
  301. Chen F, Rosiene J, Che A, Becker A, LoTurco J. Tracking and transforming neocortical progenitors by CRISPR/Cas9 gene targeting and piggyBac transposase lineage labeling. Development. 2015;142:3601-11 pubmed 出版商
  302. Werner A, Iwasaki S, McGourty C, Medina Ruiz S, Teerikorpi N, Fedrigo I, et al. Cell-fate determination by ubiquitin-dependent regulation of translation. Nature. 2015;525:523-7 pubmed 出版商
  303. Yamamuro S, Sano E, Okamoto Y, Ochiai Y, Ohta T, Ogino A, et al. Antitumorigenic effect of interferon-β by inhibition of undifferentiated glioblastoma cells. Int J Oncol. 2015;47:1647-54 pubmed 出版商
  304. Sun Y, Ju M, Lin Z, Fredrick T, Evans L, Tian K, et al. SOCS3 in retinal neurons and glial cells suppresses VEGF signaling to prevent pathological neovascular growth. Sci Signal. 2015;8:ra94 pubmed 出版商
  305. Hua Z, Emiliani F, Nathans J. Rac1 plays an essential role in axon growth and guidance and in neuronal survival in the central and peripheral nervous systems. Neural Dev. 2015;10:21 pubmed 出版商
  306. Cheng C, Lin C, Lee M, Tsai M, Huang W, Huang M, et al. Local Delivery of High-Dose Chondroitinase ABC in the Sub-Acute Stage Promotes Axonal Outgrowth and Functional Recovery after Complete Spinal Cord Transection. PLoS ONE. 2015;10:e0138705 pubmed 出版商
  307. Ahn S, Kim T, Kim K, Chung S. Differentiation of human pluripotent stem cells into Medial Ganglionic Eminence vs. Caudal Ganglionic Eminence cells. Methods. 2016;101:103-12 pubmed 出版商
  308. Chen H, Sun Y, Lai L, Wu H, Xiao Y, Ming B, et al. Interleukin-33 is released in spinal cord and suppresses experimental autoimmune encephalomyelitis in mice. Neuroscience. 2015;308:157-68 pubmed 出版商
  309. Clayton E, Mizielinska S, Edgar J, Nielsen T, Marshall S, Norona F, et al. Frontotemporal dementia caused by CHMP2B mutation is characterised by neuronal lysosomal storage pathology. Acta Neuropathol. 2015;130:511-23 pubmed 出版商
  310. Liu S, Mi W, Li Q, Zhang M, Han P, Hu S, et al. Spinal IL-33/ST2 Signaling Contributes to Neuropathic Pain via Neuronal CaMKII-CREB and Astroglial JAK2-STAT3 Cascades in Mice. Anesthesiology. 2015;123:1154-69 pubmed 出版商
  311. Henstridge C, Jackson R, Kim J, Herrmann A, Wright A, Harris S, et al. Post-mortem brain analyses of the Lothian Birth Cohort 1936: extending lifetime cognitive and brain phenotyping to the level of the synapse. Acta Neuropathol Commun. 2015;3:53 pubmed 出版商
  312. Zehendner C, Sebastiani A, Hugonnet A, Bischoff F, Luhmann H, Thal S. Traumatic brain injury results in rapid pericyte loss followed by reactive pericytosis in the cerebral cortex. Sci Rep. 2015;5:13497 pubmed 出版商
  313. Chen B, Tao J, Lin Y, Lin R, Liu W, Chen L. Electro-acupuncture exerts beneficial effects against cerebral ischemia and promotes the proliferation of neural progenitor cells in the cortical peri-infarct area through the Wnt/β-catenin signaling pathway. Int J Mol Med. 2015;36:1215-22 pubmed 出版商
  314. Prusiner S, Woerman A, Mordes D, Watts J, Rampersaud R, Berry D, et al. Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci U S A. 2015;112:E5308-17 pubmed 出版商
  315. Zarpelon A, Rodrigues F, Lopes A, Souza G, Carvalho T, Pinto L, et al. Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain. FASEB J. 2016;30:54-65 pubmed 出版商
  316. Huang Y, Tiao M, Huang L, Chuang J, Kuo K, Yang Y, et al. Activation of Mir-29a in Activated Hepatic Stellate Cells Modulates Its Profibrogenic Phenotype through Inhibition of Histone Deacetylases 4. PLoS ONE. 2015;10:e0136453 pubmed 出版商
  317. Korb E, Herre M, Zucker Scharff I, Darnell R, Allis C. BET protein Brd4 activates transcription in neurons and BET inhibitor Jq1 blocks memory in mice. Nat Neurosci. 2015;18:1464-73 pubmed 出版商
  318. Garwood C, Ratcliffe L, Morgan S, Simpson J, Owens H, Vazquez Villaseñor I, et al. Insulin and IGF1 signalling pathways in human astrocytes in vitro and in vivo; characterisation, subcellular localisation and modulation of the receptors. Mol Brain. 2015;8:51 pubmed 出版商
  319. Lee I, Jung K, Kim I, Lee H, Kim M, Yun S, et al. Human neural stem cells alleviate Alzheimer-like pathology in a mouse model. Mol Neurodegener. 2015;10:38 pubmed 出版商
  320. Mughal A, Grieg Z, Skjellegrind H, Fayzullin A, Lamkhannat M, Joel M, et al. Knockdown of NAT12/NAA30 reduces tumorigenic features of glioblastoma-initiating cells. Mol Cancer. 2015;14:160 pubmed 出版商
  321. Khadem F, Gao X, Mou Z, Jia P, Movassagh H, Onyilagha C, et al. Hepatic stellate cells regulate liver immunity to visceral leishmaniasis through P110δ-dependent induction and expansion of regulatory T cells in mice. Hepatology. 2016;63:620-32 pubmed 出版商
  322. Kawaguchi T, Tsukiyama T, Kimura K, Matsuyama S, Minami N, Yamada M, et al. Generation of Naïve Bovine Induced Pluripotent Stem Cells Using PiggyBac Transposition of Doxycycline-Inducible Transcription Factors. PLoS ONE. 2015;10:e0135403 pubmed 出版商
  323. Baruch K, Rosenzweig N, Kertser A, Deczkowska A, Sharif A, Spinrad A, et al. Breaking immune tolerance by targeting Foxp3(+) regulatory T cells mitigates Alzheimer's disease pathology. Nat Commun. 2015;6:7967 pubmed 出版商
  324. Fredriksson L, Stevenson T, Su E, Ragsdale M, Moore S, Craciun S, et al. Identification of a neurovascular signaling pathway regulating seizures in mice. Ann Clin Transl Neurol. 2015;2:722-38 pubmed 出版商
  325. Gallina D, Zelinka C, Cebulla C, Fischer A. Activation of glucocorticoid receptors in Müller glia is protective to retinal neurons and suppresses microglial reactivity. Exp Neurol. 2015;273:114-25 pubmed 出版商
  326. Qiu H, Xu Y, Jin G, Yang J, Liu M, Li S, et al. Koumine enhances spinal cord 3α-hydroxysteroid oxidoreductase expression and activity in a rat model of neuropathic pain. Mol Pain. 2015;11:46 pubmed 出版商
  327. Galbavy W, Kaczocha M, Puopolo M, Liu L, Rebecchi M. Neuroimmune and Neuropathic Responses of Spinal Cord and Dorsal Root Ganglia in Middle Age. PLoS ONE. 2015;10:e0134394 pubmed 出版商
  328. Thomsen L, Burkhart A, Moos T. A Triple Culture Model of the Blood-Brain Barrier Using Porcine Brain Endothelial cells, Astrocytes and Pericytes. PLoS ONE. 2015;10:e0134765 pubmed 出版商
  329. Kim K, Byeon G, Kim H, Baek S, Shin S, Koo S. Mechanical Antiallodynic Effect of Intrathecal Nefopam in a Rat Neuropathic Pain Model. J Korean Med Sci. 2015;30:1189-96 pubmed 出版商
  330. Lechpammer M, Wintermark P, Merry K, Jackson M, Jantzie L, Jensen F. Dysregulation of FMRP/mTOR Signaling Cascade in Hypoxic-Ischemic Injury of Premature Human Brain. J Child Neurol. 2016;31:426-32 pubmed 出版商
  331. Lutzenberger M, Burwinkel M, Riemer C, Bode V, Baier M. Ablation of CCAAT/Enhancer-Binding Protein Delta (C/EBPD): Increased Plaque Burden in a Murine Alzheimer's Disease Model. PLoS ONE. 2015;10:e0134228 pubmed 出版商
  332. Zhang P, Ha T, Larouche M, Swanson D, Goldowitz D. Kruppel-Like Factor 4 Regulates Granule Cell Pax6 Expression and Cell Proliferation in Early Cerebellar Development. PLoS ONE. 2015;10:e0134390 pubmed 出版商
  333. Miyamoto Y, Torii T, Takada S, Ohno N, Saitoh Y, Nakamura K, et al. Involvement of the Tyro3 receptor and its intracellular partner Fyn signaling in Schwann cell myelination. Mol Biol Cell. 2015;26:3489-503 pubmed 出版商
  334. Hassanzadeh K, Nikzaban M, Moloudi M, Izadpanah E. Effect of selegiline on neural stem cells differentiation: a possible role for neurotrophic factors. Iran J Basic Med Sci. 2015;18:549-54 pubmed
  335. Cortés Campos C, Letelier J, Ceriani R, Whitlock K. Zebrafish adult-derived hypothalamic neurospheres generate gonadotropin-releasing hormone (GnRH) neurons. Biol Open. 2015;4:1077-86 pubmed 出版商
  336. Ishikawa M, Ohnishi H, Skerleva D, Sakamoto T, Yamamoto N, Hotta A, et al. Transplantation of neurons derived from human iPS cells cultured on collagen matrix into guinea-pig cochleae. J Tissue Eng Regen Med. 2017;11:1766-1778 pubmed 出版商
  337. Gingras S, Earls L, Howell S, Smeyne R, Zakharenko S, Pelletier S. SCYL2 Protects CA3 Pyramidal Neurons from Excitotoxicity during Functional Maturation of the Mouse Hippocampus. J Neurosci. 2015;35:10510-22 pubmed 出版商
  338. Kegler K, Spitzbarth I, Imbschweiler I, Wewetzer K, Baumgärtner W, Seehusen F. Contribution of Schwann Cells to Remyelination in a Naturally Occurring Canine Model of CNS Neuroinflammation. PLoS ONE. 2015;10:e0133916 pubmed 出版商
  339. Minkel H, Anwer T, Arps K, Brenner M, Olsen M. Elevated GFAP induces astrocyte dysfunction in caudal brain regions: A potential mechanism for hindbrain involved symptoms in type II Alexander disease. Glia. 2015;63:2285-97 pubmed 出版商
  340. Cheng C, Lin J, Tang N, Kao S, Hsieh C. Electroacupuncture at different frequencies (5Hz and 25Hz) ameliorates cerebral ischemia-reperfusion injury in rats: possible involvement of p38 MAPK-mediated anti-apoptotic signaling pathways. BMC Complement Altern Med. 2015;15:241 pubmed 出版商
  341. Chen Y, Huang W, Séjourné J, Clipperton Allen A, Page D. Pten Mutations Alter Brain Growth Trajectory and Allocation of Cell Types through Elevated β-Catenin Signaling. J Neurosci. 2015;35:10252-67 pubmed 出版商
  342. Song C, Wang J, Mo C, Mu S, Jiang X, Li X, et al. Use of Ferritin Expression, Regulated by Neural Cell-Specific Promoters in Human Adipose Tissue-Derived Mesenchymal Stem Cells, to Monitor Differentiation with Magnetic Resonance Imaging In Vitro. PLoS ONE. 2015;10:e0132480 pubmed 出版商
  343. Gorojod R, Alaimo A, Porte Alcon S, Pomilio C, Saravia F, Kotler M. The autophagic- lysosomal pathway determines the fate of glial cells under manganese- induced oxidative stress conditions. Free Radic Biol Med. 2015;87:237-51 pubmed 出版商
  344. Ziskin J, Greicius M, Zhu W, Okumu A, Adams C, Plowey E. Neuropathologic analysis of Tyr69His TTR variant meningovascular amyloidosis with dementia. Acta Neuropathol Commun. 2015;3:43 pubmed 出版商
  345. Smith L, He Y, Park J, Bieri G, Snethlage C, Lin K, et al. β2-microglobulin is a systemic pro-aging factor that impairs cognitive function and neurogenesis. Nat Med. 2015;21:932-7 pubmed 出版商
  346. Puntambekar S, Hinton D, Yin X, Savarin C, Bergmann C, Trapp B, et al. Interleukin-10 is a critical regulator of white matter lesion containment following viral induced demyelination. Glia. 2015;63:2106-2120 pubmed 出版商
  347. Schachtrup C, Ryu J, Mammadzada K, Khan A, Carlton P, Perez A, et al. Nuclear pore complex remodeling by p75(NTR) cleavage controls TGF-β signaling and astrocyte functions. Nat Neurosci. 2015;18:1077-80 pubmed 出版商
  348. Hradsky J, Bernstein H, Marunde M, Mikhaylova M, Kreutz M. Alternative splicing, expression and cellular localization of Calneuron-1 in the rat and human brain. J Histochem Cytochem. 2015;63:793-804 pubmed 出版商
  349. Noell S, Fallier Becker P, Mack A, Hoffmeister M, Beschorner R, Ritz R. Water Channels Aquaporin 4 and -1 Expression in Subependymoma Depends on the Localization of the Tumors. PLoS ONE. 2015;10:e0131367 pubmed 出版商
  350. Sáez J, Gómez A, Barrios Ã, Parada G, Galdames L, González M, et al. Decreased Expression of CoREST1 and CoREST2 Together with LSD1 and HDAC1/2 during Neuronal Differentiation. PLoS ONE. 2015;10:e0131760 pubmed 出版商
  351. Liu Y, Miao Q, Yuan J, Han S, Zhang P, Li S, et al. Ascl1 Converts Dorsal Midbrain Astrocytes into Functional Neurons In Vivo. J Neurosci. 2015;35:9336-55 pubmed 出版商
  352. Cases O, Joseph A, Obry A, Santin M, Ben Yacoub S, Pâques M, et al. Foxg1-Cre Mediated Lrp2 Inactivation in the Developing Mouse Neural Retina, Ciliary and Retinal Pigment Epithelia Models Congenital High Myopia. PLoS ONE. 2015;10:e0129518 pubmed 出版商
  353. Kapuralin K, Ćurlin M, Mitrečić D, Kosi N, Schwarzer C, Glavan G, et al. STAM2, a member of the endosome-associated complex ESCRT-0 is highly expressed in neurons. Mol Cell Neurosci. 2015;67:104-15 pubmed 出版商
  354. Kwon J, NABINGER S, Vega Z, Sahu S, Alluri R, Abdul Sater Z, et al. Pathophysiological role of microRNA-29 in pancreatic cancer stroma. Sci Rep. 2015;5:11450 pubmed 出版商
  355. Perriard G, Mathias A, Enz L, Canales M, Schluep M, Gentner M, et al. Interleukin-22 is increased in multiple sclerosis patients and targets astrocytes. J Neuroinflammation. 2015;12:119 pubmed 出版商
  356. O Brien E, Smeester B, Michlitsch K, Lee J, Beitz A. Colocalization of aromatase in spinal cord astrocytes: differences in expression and relationship to mechanical and thermal hyperalgesia in murine models of a painful and a non-painful bone tumor. Neuroscience. 2015;301:235-45 pubmed 出版商
  357. Laclef C, Anselme I, Besse L, Catala M, Palmyre A, Baas D, et al. The role of primary cilia in corpus callosum formation is mediated by production of the Gli3 repressor. Hum Mol Genet. 2015;24:4997-5014 pubmed 出版商
  358. Zuckermann M, Hovestadt V, Knobbe Thomsen C, Zapatka M, Northcott P, Schramm K, et al. Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nat Commun. 2015;6:7391 pubmed 出版商
  359. Balzamino B, Esposito G, Marino R, Keller F, Micera A. NGF Expression in Reelin-Deprived Retinal Cells: A Potential Neuroprotective Effect. Neuromolecular Med. 2015;17:314-25 pubmed 出版商
  360. Jiang J, Zhang Z, Yuan X, Poo M. Spatiotemporal dynamics of traction forces show three contraction centers in migratory neurons. J Cell Biol. 2015;209:759-74 pubmed 出版商
  361. Guo Y, Wang D, Qiao T, Yang C, Su Q, Gao G, et al. A Single Injection of Recombinant Adeno-Associated Virus into the Lumbar Cistern Delivers Transgene Expression Throughout the Whole Spinal Cord. Mol Neurobiol. 2016;53:3235-3248 pubmed 出版商
  362. Kaja S, Payne A, Naumchuk Y, Levy D, Zaidi D, Altman A, et al. Plate reader-based cell viability assays for glioprotection using primary rat optic nerve head astrocytes. Exp Eye Res. 2015;138:159-66 pubmed 出版商
  363. Keller B, García Sevilla J. Regulation of hippocampal Fas receptor and death-inducing signaling complex after kainic acid treatment in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2015;63:54-62 pubmed 出版商
  364. Zhu S, Wang H, Ding S. Reprogramming fibroblasts toward cardiomyocytes, neural stem cells and hepatocytes by cell activation and signaling-directed lineage conversion. Nat Protoc. 2015;10:959-73 pubmed 出版商
  365. Stensrud M, Sogn C, Gundersen V. Immunogold characteristics of VGLUT3-positive GABAergic nerve terminals suggest corelease of glutamate. J Comp Neurol. 2015;523:2698-713 pubmed 出版商
  366. Sonneville R, Derese I, Marques M, Langouche L, Derde S, Chatre L, et al. Neuropathological Correlates of Hyperglycemia During Prolonged Polymicrobial Sepsis in Mice. Shock. 2015;44:245-51 pubmed 出版商
  367. Ozacmak V, Sayan Ozacmak H, Barut F. Chronic treatment with resveratrol, a natural polyphenol found in grapes, alleviates oxidative stress and apoptotic cell death in ovariectomized female rats subjected to chronic cerebral hypoperfusion. Nutr Neurosci. 2016;19:176-86 pubmed 出版商
  368. Yousef H, Conboy M, Morgenthaler A, Schlesinger C, Bugaj L, Paliwal P, et al. Systemic attenuation of the TGF-β pathway by a single drug simultaneously rejuvenates hippocampal neurogenesis and myogenesis in the same old mammal. Oncotarget. 2015;6:11959-78 pubmed
  369. Pei L, Wang S, Jin H, Bi L, Wei N, Yan H, et al. A Novel Mechanism of Spine Damages in Stroke via DAPK1 and Tau. Cereb Cortex. 2015;25:4559-71 pubmed 出版商
  370. Bhatt D, Puig K, Gorr M, Wold L, Combs C. A pilot study to assess effects of long-term inhalation of airborne particulate matter on early Alzheimer-like changes in the mouse brain. PLoS ONE. 2015;10:e0127102 pubmed 出版商
  371. Mao M, Montgomery J, Kubke M, Thorne P. The Structural Development of the Mouse Dorsal Cochlear Nucleus. J Assoc Res Otolaryngol. 2015;16:473-86 pubmed 出版商
  372. Wang D, Kinoshita Y, Kinoshita C, Uo T, Sopher B, Cudaback E, et al. Loss of endophilin-B1 exacerbates Alzheimer's disease pathology. Brain. 2015;138:2005-19 pubmed 出版商
  373. López Gallardo M, Antón Fernández A, Llorente R, Mela V, Llorente Berzal A, Prada C, et al. Neonatal Treatment with a Pegylated Leptin Antagonist Induces Sexually Dimorphic Effects on Neurones and Glial Cells, and on Markers of Synaptic Plasticity in the Developing Rat Hippocampal Formation. J Neuroendocrinol. 2015;27:658-69 pubmed 出版商
  374. Bedogni F, Cobolli Gigli C, Pozzi D, Rossi R, Scaramuzza L, Rossetti G, et al. Defects During Mecp2 Null Embryonic Cortex Development Precede the Onset of Overt Neurological Symptoms. Cereb Cortex. 2016;26:2517-2529 pubmed 出版商
  375. Zhou F, Gao S, Wang L, Sun C, Chen L, Yuan P, et al. Human adipose-derived stem cells partially rescue the stroke syndromes by promoting spatial learning and memory in mouse middle cerebral artery occlusion model. Stem Cell Res Ther. 2015;6:92 pubmed 出版商
  376. van Wyk M, Pielecka Fortuna J, Löwel S, Kleinlogel S. Restoring the ON Switch in Blind Retinas: Opto-mGluR6, a Next-Generation, Cell-Tailored Optogenetic Tool. PLoS Biol. 2015;13:e1002143 pubmed 出版商
  377. Liu P, Paulson J, Forster C, Shapiro S, Ashe K, Zahs K. Characterization of a Novel Mouse Model of Alzheimer's Disease--Amyloid Pathology and Unique β-Amyloid Oligomer Profile. PLoS ONE. 2015;10:e0126317 pubmed 出版商
  378. Liu R, Wang Z, Gou L, Xu H. A cortical astrocyte subpopulation inhibits axon growth in vitro and in vivo. Mol Med Rep. 2015;12:2598-606 pubmed 出版商
  379. Cardoso F, Herz J, Fernandes A, Rocha J, Sepodes B, Brito M, et al. Systemic inflammation in early neonatal mice induces transient and lasting neurodegenerative effects. J Neuroinflammation. 2015;12:82 pubmed 出版商
  380. Luo X, Fan Y, Park I, He J. Exosomes are unlikely involved in intercellular Nef transfer. PLoS ONE. 2015;10:e0124436 pubmed 出版商
  381. Theotokis P, Kleopa K, Touloumi O, Lagoudaki R, Lourbopoulos A, Nousiopoulou E, et al. Connexin43 and connexin47 alterations after neural precursor cells transplantation in experimental autoimmune encephalomyelitis. Glia. 2015;63:1772-83 pubmed 出版商
  382. Webster S, Van Eldik L, Watterson D, Bachstetter A. Closed head injury in an age-related Alzheimer mouse model leads to an altered neuroinflammatory response and persistent cognitive impairment. J Neurosci. 2015;35:6554-69 pubmed 出版商
  383. Hakim J, Esmaeili Rad M, Grahn P, Chen B, Knight A, Schmeichel A, et al. Positively Charged Oligo[Poly(Ethylene Glycol) Fumarate] Scaffold Implantation Results in a Permissive Lesion Environment after Spinal Cord Injury in Rat. Tissue Eng Part A. 2015;21:2099-114 pubmed 出版商
  384. Zhang Z, Liu Y, Huang Q, Wang H, Song Y, Xu Z, et al. Nuclear factor-κB activation in perihematomal brain tissue correlates with outcome in patients with intracerebral hemorrhage. J Neuroinflammation. 2015;12:53 pubmed 出版商
  385. Bachstetter A, Webster S, Goulding D, Morton J, Watterson D, Van Eldik L. Attenuation of traumatic brain injury-induced cognitive impairment in mice by targeting increased cytokine levels with a small molecule experimental therapeutic. J Neuroinflammation. 2015;12:69 pubmed 出版商
  386. Miller N, Feng Z, Edens B, Yang B, Shi H, Sze C, et al. Non-aggregating tau phosphorylation by cyclin-dependent kinase 5 contributes to motor neuron degeneration in spinal muscular atrophy. J Neurosci. 2015;35:6038-50 pubmed 出版商
  387. Deleyrolle L, Sabourin J, Rothhut B, Fujita H, Guichet P, Teigell M, et al. OCAM regulates embryonic spinal cord stem cell proliferation by modulating ErbB2 receptor. PLoS ONE. 2015;10:e0122337 pubmed 出版商
  388. Scofield M, Boger H, Smith R, Li H, Haydon P, Kalivas P. Gq-DREADD Selectively Initiates Glial Glutamate Release and Inhibits Cue-induced Cocaine Seeking. Biol Psychiatry. 2015;78:441-51 pubmed 出版商
  389. Guyenet S, Mookerjee S, Lin A, Custer S, Chen S, Sopher B, et al. Proteolytic cleavage of ataxin-7 promotes SCA7 retinal degeneration and neurological dysfunction. Hum Mol Genet. 2015;24:3908-17 pubmed 出版商
  390. Kett L, Stiller B, Bernath M, Tasset I, Blesa J, Jackson Lewis V, et al. α-Synuclein-independent histopathological and motor deficits in mice lacking the endolysosomal Parkinsonism protein Atp13a2. J Neurosci. 2015;35:5724-42 pubmed 出版商
  391. Brøchner C, Holst C, MøllgÃ¥rd K. Outer brain barriers in rat and human development. Front Neurosci. 2015;9:75 pubmed 出版商
  392. Frank C, Liu F, Wijayatunge R, Song L, Biegler M, Yang M, et al. Regulation of chromatin accessibility and Zic binding at enhancers in the developing cerebellum. Nat Neurosci. 2015;18:647-56 pubmed 出版商
  393. Sánchez Farías N, Candal E. Doublecortin is widely expressed in the developing and adult retina of sharks. Exp Eye Res. 2015;134:90-100 pubmed 出版商
  394. Leclerc J, Lampert A, Diller M, Doré S. Genetic deletion of the prostaglandin E2 E prostanoid receptor subtype 3 improves anatomical and functional outcomes after intracerebral hemorrhage. Eur J Neurosci. 2015;41:1381-91 pubmed 出版商
  395. Dissing Olesen L, MacVicar B. Fixation and Immunolabeling of Brain Slices: SNAPSHOT Method. Curr Protoc Neurosci. 2015;71:1.23.1-12 pubmed 出版商
  396. Fausther M, Goree J, Lavoie Ã, Graham A, Sévigny J, Dranoff J. Establishment and characterization of rat portal myofibroblast cell lines. PLoS ONE. 2015;10:e0121161 pubmed 出版商
  397. Shin C, Grossmann A, Holmen S, Robinson J. The BRAF kinase domain promotes the development of gliomas in vivo. Genes Cancer. 2015;6:9-18 pubmed
  398. Leung B, Balleine B. Ventral pallidal projections to mediodorsal thalamus and ventral tegmental area play distinct roles in outcome-specific Pavlovian-instrumental transfer. J Neurosci. 2015;35:4953-64 pubmed 出版商
  399. Koh H, Chang C, Jeon S, Yoon H, Ahn Y, Kim H, et al. The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia. Nat Commun. 2015;6:6340 pubmed 出版商
  400. Crouch E, Liu C, Silva Vargas V, Doetsch F. Regional and stage-specific effects of prospectively purified vascular cells on the adult V-SVZ neural stem cell lineage. J Neurosci. 2015;35:4528-39 pubmed 出版商
  401. Li H, Ruberu K, Muñoz S, Jenner A, Spiro A, Zhao H, et al. Apolipoprotein D modulates amyloid pathology in APP/PS1 Alzheimer's disease mice. Neurobiol Aging. 2015;36:1820-33 pubmed 出版商
  402. Liang Y, Sun H, Yu L, He B, Xie Y. Scorpion ethanol extract and valproic acid effects on hippocampal glial fibrillary acidic protein expression in a rat model of chronic-kindling epilepsy induced by lithium chloride-pilocarpine. Neural Regen Res. 2012;7:426-33 pubmed 出版商
  403. Filipcik P, Cente M, Zilka N, Smolek T, Hanes J, Kučerák J, et al. Intraneuronal accumulation of misfolded tau protein induces overexpression of Hsp27 in activated astrocytes. Biochim Biophys Acta. 2015;1852:1219-29 pubmed 出版商
  404. Matsushita T, Lankford K, Arroyo E, Sasaki M, Neyazi M, Radtke C, et al. Diffuse and persistent blood-spinal cord barrier disruption after contusive spinal cord injury rapidly recovers following intravenous infusion of bone marrow mesenchymal stem cells. Exp Neurol. 2015;267:152-64 pubmed 出版商
  405. Bedner P, Dupper A, Hüttmann K, Muller J, Herde M, Dublin P, et al. Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain. 2015;138:1208-22 pubmed 出版商
  406. Tokuda E, Watanabe S, Okawa E, Ono S. Regulation of Intracellular Copper by Induction of Endogenous Metallothioneins Improves the Disease Course in a Mouse Model of Amyotrophic Lateral Sclerosis. Neurotherapeutics. 2015;12:461-76 pubmed 出版商
  407. Ling G, Liu Y, Ke Y, Chen L, Jiang X, Jiang C, et al. All-trans retinoic acid impairs the vasculogenic mimicry formation ability of U87 stem-like cells through promoting differentiation. Mol Med Rep. 2015;12:165-72 pubmed 出版商
  408. Tennakoon A, Izawa T, Wijesundera K, Katou Ichikawa C, Tanaka M, Golbar H, et al. Analysis of glial fibrillary acidic protein (GFAP)-expressing ductular cells in a rat liver cirrhosis model induced by repeated injections of thioacetamide (TAA). Exp Mol Pathol. 2015;98:476-85 pubmed 出版商
  409. Eid M, El Kowrany S, Othman A, El Gendy D, Saied E. Immunopathological changes in the brain of immunosuppressed mice experimentally infected with Toxocara canis. Korean J Parasitol. 2015;53:51-8 pubmed 出版商
  410. Chung S, Gillies M, Sugiyama Y, Zhu L, Lee S, Shen W. Profiling of microRNAs involved in retinal degeneration caused by selective Müller cell ablation. PLoS ONE. 2015;10:e0118949 pubmed 出版商
  411. Mellai M, Piazzi A, Casalone C, Grifoni S, Melcarne A, Annovazzi L, et al. Astroblastoma: beside being a tumor entity, an occasional phenotype of astrocytic gliomas?. Onco Targets Ther. 2015;8:451-60 pubmed 出版商
  412. Valapala M, Edwards M, Hose S, Hu J, Wawrousek E, Lutty G, et al. βA3/A1-crystallin is a critical mediator of STAT3 signaling in optic nerve astrocytes. Sci Rep. 2015;5:8755 pubmed 出版商
  413. Romero J, Hanschmann E, Gellert M, Eitner S, Holubiec M, Blanco Calvo E, et al. Thioredoxin 1 and glutaredoxin 2 contribute to maintain the phenotype and integrity of neurons following perinatal asphyxia. Biochim Biophys Acta. 2015;1850:1274-85 pubmed 出版商
  414. Kawabori M, Kacimi R, Kauppinen T, Calosing C, Kim J, Hsieh C, et al. Triggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke. J Neurosci. 2015;35:3384-96 pubmed 出版商
  415. Campbell J, Miller D, Cundiff D, Feng Q, Litofsky N. Neural stem/progenitor cells react to non-glial cns neoplasms. Springerplus. 2015;4:53 pubmed 出版商
  416. Trylcova J, Busek P, Smetana K, Balaziova E, Dvořánková B, Mifková A, et al. Effect of cancer-associated fibroblasts on the migration of glioma cells in vitro. Tumour Biol. 2015;36:5873-9 pubmed 出版商
  417. Kaufman A, Salazar S, Haas L, Yang J, Kostylev M, Jeng A, et al. Fyn inhibition rescues established memory and synapse loss in Alzheimer mice. Ann Neurol. 2015;77:953-71 pubmed 出版商
  418. Schitine C, Méndez Flores O, Santos L, Ornelas I, Calaza K, Pérez Toledo K, et al. Functional plasticity of GAT-3 in avian Müller cells is regulated by neurons via a glutamatergic input. Neurochem Int. 2015;82:42-51 pubmed 出版商
  419. Zhu L, Shen W, Lyons B, Wang Y, Zhou F, Gillies M. Dysregulation of inter-photoreceptor retinoid-binding protein (IRBP) after induced Müller cell disruption. J Neurochem. 2015;133:909-18 pubmed 出版商
  420. Villacampa N, Almolda B, Vilella A, Campbell I, González B, Castellano B. Astrocyte-targeted production of IL-10 induces changes in microglial reactivity and reduces motor neuron death after facial nerve axotomy. Glia. 2015;63:1166-84 pubmed 出版商
  421. Chen Roetling J, Song W, Schipper H, Regan C, Regan R. Astrocyte overexpression of heme oxygenase-1 improves outcome after intracerebral hemorrhage. Stroke. 2015;46:1093-8 pubmed 出版商
  422. Xu H, Rösler T, Carlsson T, de Andrade A, Fiala O, Höllerhage M, et al. Tau silencing by siRNA in the P301S mouse model of tauopathy. Curr Gene Ther. 2014;14:343-51 pubmed
  423. Porquet D, Andrés Benito P, Griñán Ferré C, Camins A, Ferrer I, Canudas A, et al. Amyloid and tau pathology of familial Alzheimer's disease APP/PS1 mouse model in a senescence phenotype background (SAMP8). Age (Dordr). 2015;37:9747 pubmed 出版商
  424. Betzer C, Movius A, Shi M, Gai W, Zhang J, Jensen P. Identification of synaptosomal proteins binding to monomeric and oligomeric α-synuclein. PLoS ONE. 2015;10:e0116473 pubmed 出版商
  425. Altmeppen H, Prox J, Krasemann S, Puig B, Kruszewski K, Dohler F, et al. The sheddase ADAM10 is a potent modulator of prion disease. elife. 2015;4: pubmed 出版商
  426. Nagai J, Kitamura Y, Owada K, Yamashita N, Takei K, Goshima Y, et al. Crmp4 deletion promotes recovery from spinal cord injury by neuroprotection and limited scar formation. Sci Rep. 2015;5:8269 pubmed 出版商
  427. Ju B, Chen W, Orr B, Spitsbergen J, Jia S, Eden C, et al. Oncogenic KRAS promotes malignant brain tumors in zebrafish. Mol Cancer. 2015;14:18 pubmed 出版商
  428. Spilsbury A, Miwa S, Attems J, Saretzki G. The role of telomerase protein TERT in Alzheimer's disease and in tau-related pathology in vitro. J Neurosci. 2015;35:1659-74 pubmed 出版商
  429. Cantoni C, Bollman B, Licastro D, Xie M, Mikesell R, Schmidt R, et al. TREM2 regulates microglial cell activation in response to demyelination in vivo. Acta Neuropathol. 2015;129:429-47 pubmed 出版商
  430. Condello C, Yuan P, Schain A, Grutzendler J. Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques. Nat Commun. 2015;6:6176 pubmed 出版商
  431. Li W, Garringer H, GOODWIN C, Richine B, Acton A, Vanduyn N, et al. Systemic and cerebral iron homeostasis in ferritin knock-out mice. PLoS ONE. 2015;10:e0117435 pubmed 出版商
  432. Oka Y, Ye M, Zuker C. Thirst driving and suppressing signals encoded by distinct neural populations in the brain. Nature. 2015;520:349-52 pubmed 出版商
  433. Fong M, Zhou W, Liu L, Alontaga A, Chandra M, Ashby J, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol. 2015;17:183-94 pubmed 出版商
  434. Xue T, Wei L, Zha D, Qiao L, Lu L, Chen F, et al. Exposure to acoustic stimuli promotes the development and differentiation of neural stem cells from the cochlear nuclei through the clusterin pathway. Int J Mol Med. 2015;35:637-44 pubmed 出版商
  435. Pantazopoulos H, Markota M, Jaquet F, Ghosh D, Wallin A, Santos A, et al. Aggrecan and chondroitin-6-sulfate abnormalities in schizophrenia and bipolar disorder: a postmortem study on the amygdala. Transl Psychiatry. 2015;5:e496 pubmed 出版商
  436. Kizuka Y, Kitazume S, Fujinawa R, Saito T, Iwata N, Saido T, et al. An aberrant sugar modification of BACE1 blocks its lysosomal targeting in Alzheimer's disease. EMBO Mol Med. 2015;7:175-89 pubmed 出版商
  437. Benskey M, Kuhn N, Galligan J, García J, Boye S, Hauswirth W, et al. Targeted gene delivery to the enteric nervous system using AAV: a comparison across serotypes and capsid mutants. Mol Ther. 2015;23:488-500 pubmed 出版商
  438. Liu S, Sarkar C, Dinizo M, Faden A, Koh E, Lipinski M, et al. Disrupted autophagy after spinal cord injury is associated with ER stress and neuronal cell death. Cell Death Dis. 2015;6:e1582 pubmed 出版商
  439. Tian H, Wang L, Cai R, Zheng L, Guo L. Identification of protein network alterations upon retinal ischemia-reperfusion injury by quantitative proteomics using a Rattus norvegicus model. PLoS ONE. 2014;9:e116453 pubmed 出版商
  440. Jendresen C, Cui H, Zhang X, Vlodavsky I, Nilsson L, Li J. Overexpression of heparanase lowers the amyloid burden in amyloid-β precursor protein transgenic mice. J Biol Chem. 2015;290:5053-64 pubmed 出版商
  441. Gaudet A, Sweet D, Polinski N, Guan Z, Popovich P. Galectin-1 in injured rat spinal cord: implications for macrophage phagocytosis and neural repair. Mol Cell Neurosci. 2015;64:84-94 pubmed 出版商
  442. Gällentoft L, Pettersson L, Danielsen N, Schouenborg J, Prinz C, Linsmeier C. Size-dependent long-term tissue response to biostable nanowires in the brain. Biomaterials. 2015;42:172-83 pubmed 出版商
  443. Hollis E, Ishiko N, Tolentino K, Doherty E, Rodríguez M, Calcutt N, et al. A novel and robust conditioning lesion induced by ethidium bromide. Exp Neurol. 2015;265:30-9 pubmed 出版商
  444. Yao P, Kang D, Wang X, Lin R, Ye Z. Cell-density-dependent manifestation of partial characteristics for neuronal precursors in a newly established human gliosarcoma cell line. In Vitro Cell Dev Biol Anim. 2015;51:345-52 pubmed 出版商
  445. Yousef H, Morgenthaler A, Schlesinger C, Bugaj L, Conboy I, Schaffer D. Age-Associated Increase in BMP Signaling Inhibits Hippocampal Neurogenesis. Stem Cells. 2015;33:1577-88 pubmed 出版商
  446. Kono S, Kurata T, Sato K, Omote Y, Hishikawa N, Yamashita T, et al. Neurovascular protection by telmisartan via reducing neuroinflammation in stroke-resistant spontaneously hypertensive rat brain after ischemic stroke. J Stroke Cerebrovasc Dis. 2015;24:537-47 pubmed 出版商
  447. Hill R, Kuijper S, Lindsey J, Petrie K, Schwalbe E, Barker K, et al. Combined MYC and P53 defects emerge at medulloblastoma relapse and define rapidly progressive, therapeutically targetable disease. Cancer Cell. 2015;27:72-84 pubmed 出版商
  448. Ippolito C, Segnani C, Errede M, Virgintino D, Colucci R, Fornai M, et al. An integrated assessment of histopathological changes of the enteric neuromuscular compartment in experimental colitis. J Cell Mol Med. 2015;19:485-500 pubmed 出版商
  449. Okusa C, Oeschger F, Ginet V, Wang W, Hoerder Suabedissen A, Matsuyama T, et al. Subplate in a rat model of preterm hypoxia-ischemia. Ann Clin Transl Neurol. 2014;1:679-91 pubmed 出版商
  450. Zhu Y, Soderblom C, Trojanowsky M, Lee D, Lee J. Fibronectin Matrix Assembly after Spinal Cord Injury. J Neurotrauma. 2015;32:1158-67 pubmed 出版商
  451. Maltecca F, Baseggio E, Consolato F, Mazza D, Podini P, Young S, et al. Purkinje neuron Ca2+ influx reduction rescues ataxia in SCA28 model. J Clin Invest. 2015;125:263-74 pubmed 出版商
  452. Sarkar C, Zhao Z, Aungst S, Sabirzhanov B, Faden A, Lipinski M. Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury. Autophagy. 2014;10:2208-22 pubmed 出版商
  453. Kamel Ismail Z, Morcos M, Eldin Mohammad M, Gamal Aboulkhair A. Enhancement of Neural Stem Cells after Induction of Depression in Male Albino Rats (A histological & Immunohistochemical Study). Int J Stem Cells. 2014;7:70-8 pubmed 出版商
  454. Bricker Anthony C, Hines Beard J, D Surney L, Rex T. Exacerbation of blast-induced ocular trauma by an immune response. J Neuroinflammation. 2014;11:192 pubmed 出版商
  455. Cui W, Mizukami H, Yanagisawa M, Aida T, Nomura M, Isomura Y, et al. Glial dysfunction in the mouse habenula causes depressive-like behaviors and sleep disturbance. J Neurosci. 2014;34:16273-85 pubmed 出版商
  456. Johnstone S, Liley M, Dalby M, Barnett S. Comparison of human olfactory and skeletal MSCs using osteogenic nanotopography to demonstrate bone-specific bioactivity of the surfaces. Acta Biomater. 2015;13:266-76 pubmed 出版商
  457. Zhu Y, Soderblom C, Krishnan V, Ashbaugh J, Bethea J, Lee J. Hematogenous macrophage depletion reduces the fibrotic scar and increases axonal growth after spinal cord injury. Neurobiol Dis. 2015;74:114-25 pubmed 出版商
  458. Ceber M, Mihmanli A, Kilic U, Sener U, Yuksek A, Durak M, et al. Changes in expression of Slit1 and its receptor Robo2 in trigeminal ganglion and inferior alveolar nerve following inferior alveolar nerve axotomy in adult rats: a pilot study. Int J Oral Maxillofac Surg. 2015;44:518-27 pubmed 出版商
  459. Lauretti E, di Meco A, Chu J, Praticò D. Modulation of AD neuropathology and memory impairments by the isoprostane F2α is mediated by the thromboxane receptor. Neurobiol Aging. 2015;36:812-20 pubmed 出版商
  460. Almolda B, de Labra C, Barrera I, Gruart A, Delgado Garcia J, Villacampa N, et al. Alterations in microglial phenotype and hippocampal neuronal function in transgenic mice with astrocyte-targeted production of interleukin-10. Brain Behav Immun. 2015;45:80-97 pubmed 出版商
  461. Vergaño Vera E, Díaz Guerra E, Rodríguez Traver E, Méndez Gómez H, Solís Ã, Pignatelli J, et al. Nurr1 blocks the mitogenic effect of FGF-2 and EGF, inducing olfactory bulb neural stem cells to adopt dopaminergic and dopaminergic-GABAergic neuronal phenotypes. Dev Neurobiol. 2015;75:823-41 pubmed 出版商
  462. Inose Y, Kato Y, Kitagawa K, Uchiyama S, Shibata N. Activated microglia in ischemic stroke penumbra upregulate MCP-1 and CCR2 expression in response to lysophosphatidylcholine derived from adjacent neurons and astrocytes. Neuropathology. 2015;35:209-23 pubmed 出版商
  463. Wu C, Hung T, Chen C, Ke C, Lee C, Wang P, et al. Post-injury treatment with 7,8-dihydroxyflavone, a TrkB receptor agonist, protects against experimental traumatic brain injury via PI3K/Akt signaling. PLoS ONE. 2014;9:e113397 pubmed 出版商
  464. Gascon E, Lynch K, Ruan H, Almeida S, Verheyden J, Seeley W, et al. Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia. Nat Med. 2014;20:1444-51 pubmed 出版商
  465. Macías D, Fernández Agüera M, Bonilla Henao V, López Barneo J. Deletion of the von Hippel-Lindau gene causes sympathoadrenal cell death and impairs chemoreceptor-mediated adaptation to hypoxia. EMBO Mol Med. 2014;6:1577-92 pubmed 出版商
  466. Pérez Alvarez M, Mateos L, Alonso A, Wandosell F. Estradiol and Progesterone Administration After pMCAO Stimulates the Neurological Recovery and Reduces the Detrimental Effect of Ischemia Mainly in Hippocampus. Mol Neurobiol. 2015;52:1690-1703 pubmed 出版商
  467. Nardai S, Dobolyi A, Pál G, Skopál J, Pintér N, Lakatos K, et al. Selegiline promotes NOTCH-JAGGED signaling in astrocytes of the peri-infarct region and improves the functional integrity of the neurovascular unit in a rat model of focal ischemia. Restor Neurol Neurosci. 2015;33:1-14 pubmed 出版商
  468. Fuentes Santamaría V, Alvarado J, López Muñoz D, Melgar Rojas P, Gabaldón Ull M, Juiz J. Glia-related mechanisms in the anteroventral cochlear nucleus of the adult rat in response to unilateral conductive hearing loss. Front Neurosci. 2014;8:319 pubmed 出版商
  469. Levy C, Brooks J, Chen J, Su J, Fox M. Cell-specific and developmental expression of lectican-cleaving proteases in mouse hippocampus and neocortex. J Comp Neurol. 2015;523:629-48 pubmed 出版商
  470. Heng Y, Zhou B, Harris L, Harvey T, Smith A, Horne E, et al. NFIX Regulates Proliferation and Migration Within the Murine SVZ Neurogenic Niche. Cereb Cortex. 2015;25:3758-78 pubmed 出版商
  471. Scholze A, Foo L, Mulinyawe S, Barres B. BMP signaling in astrocytes downregulates EGFR to modulate survival and maturation. PLoS ONE. 2014;9:e110668 pubmed 出版商
  472. Ribeiro Resende V, Araújo Gomes T, de Lima S, Nascimento Lima M, Bargas Rega M, Santiago M, et al. Mice lacking GD3 synthase display morphological abnormalities in the sciatic nerve and neuronal disturbances during peripheral nerve regeneration. PLoS ONE. 2014;9:e108919 pubmed 出版商
  473. Falcone C, Filippis C, Granzotto M, Mallamaci A. Emx2 expression levels in NSCs modulate astrogenesis rates by regulating EgfR and Fgf9. Glia. 2015;63:412-22 pubmed 出版商
  474. Mirabile I, Jat P, Brandner S, Collinge J. Identification of clinical target areas in the brainstem of prion-infected mice. Neuropathol Appl Neurobiol. 2015;41:613-30 pubmed 出版商
  475. McLean N, Popescu B, Gordon T, Zochodne D, Verge V. Delayed nerve stimulation promotes axon-protective neurofilament phosphorylation, accelerates immune cell clearance and enhances remyelination in vivo in focally demyelinated nerves. PLoS ONE. 2014;9:e110174 pubmed 出版商
  476. Tate M, Lindquist R, Nguyen T, Sanai N, Barkovich A, Huang E, et al. Postnatal growth of the human pons: a morphometric and immunohistochemical analysis. J Comp Neurol. 2015;523:449-62 pubmed 出版商
  477. Rutkowska A, Preuss I, Gessier F, Sailer A, Dev K. EBI2 regulates intracellular signaling and migration in human astrocyte. Glia. 2015;63:341-51 pubmed 出版商
  478. Forny Germano L, Lyra e Silva N, Batista A, Brito Moreira J, Gralle M, Boehnke S, et al. Alzheimer's disease-like pathology induced by amyloid-β oligomers in nonhuman primates. J Neurosci. 2014;34:13629-43 pubmed 出版商
  479. Libard S, Popova S, Amini R, Kärjä V, Pietiläinen T, Hämäläinen K, et al. Human cytomegalovirus tegument protein pp65 is detected in all intra- and extra-axial brain tumours independent of the tumour type or grade. PLoS ONE. 2014;9:e108861 pubmed 出版商
  480. Dharmarajan S, Gurel Z, Wang S, Sorenson C, Sheibani N, Belecky Adams T. Bone morphogenetic protein 7 regulates reactive gliosis in retinal astrocytes and Müller glia. Mol Vis. 2014;20:1085-108 pubmed
  481. Steffensen M, Fenger C, Christensen J, Jørgensen C, Bassi M, Christensen J, et al. Suppressors of cytokine signaling 1 and 3 are upregulated in brain resident cells in response to virus-induced inflammation of the central nervous system via at least two distinctive pathways. J Virol. 2014;88:14090-104 pubmed 出版商
  482. Perreten Lambert H, Zenger M, Azarias G, Chatton J, Magistretti P, Lengacher S. Control of mitochondrial pH by uncoupling protein 4 in astrocytes promotes neuronal survival. J Biol Chem. 2014;289:31014-28 pubmed 出版商
  483. Novrup H, Bracchi Ricard V, Ellman D, Ricard J, Jain A, Runko E, et al. Central but not systemic administration of XPro1595 is therapeutic following moderate spinal cord injury in mice. J Neuroinflammation. 2014;11:159 pubmed 出版商
  484. Chou C, Sinden J, Couraud P, Modo M. In vitro modeling of the neurovascular environment by coculturing adult human brain endothelial cells with human neural stem cells. PLoS ONE. 2014;9:e106346 pubmed 出版商
  485. Lue L, Schmitz C, Serrano G, Sue L, Beach T, Walker D. TREM2 Protein Expression Changes Correlate with Alzheimer's Disease Neurodegenerative Pathologies in Post-Mortem Temporal Cortices. Brain Pathol. 2015;25:469-80 pubmed 出版商
  486. Holmberg Olausson K, Maire C, Haidar S, Ling J, Learner E, Nistér M, et al. Prominin-1 (CD133) defines both stem and non-stem cell populations in CNS development and gliomas. PLoS ONE. 2014;9:e106694 pubmed 出版商
  487. Galán Arriero I, Avila Martin G, Ferrer Donato A, Gómez Soriano J, Bravo Esteban E, Taylor J. Oral administration of the p38α MAPK inhibitor, UR13870, inhibits affective pain behavior after spinal cord injury. Pain. 2014;155:2188-98 pubmed 出版商
  488. Garraway S, Woller S, Huie J, Hartman J, Hook M, Miranda R, et al. Peripheral noxious stimulation reduces withdrawal threshold to mechanical stimuli after spinal cord injury: role of tumor necrosis factor alpha and apoptosis. Pain. 2014;155:2344-59 pubmed 出版商
  489. Zou M, Luo H, Xiang M. Selective neuronal lineages derived from Dll4-expressing progenitors/precursors in the retina and spinal cord. Dev Dyn. 2015;244:86-97 pubmed 出版商
  490. Praet J, Santermans E, Reekmans K, De Vocht N, Le Blon D, Hoornaert C, et al. Histological characterization and quantification of cellular events following neural and fibroblast(-like) stem cell grafting in healthy and demyelinated CNS tissue. Methods Mol Biol. 2014;1213:265-83 pubmed 出版商
  491. Thompson L, Bauer J, Chiosea S, McHugh J, Seethala R, Miettinen M, et al. Canalicular adenoma: a clinicopathologic and immunohistochemical analysis of 67 cases with a review of the literature. Head Neck Pathol. 2015;9:181-95 pubmed 出版商
  492. Schneider Hohendorf T, Rossaint J, Mohan H, Böning D, Breuer J, Kuhlmann T, et al. VLA-4 blockade promotes differential routes into human CNS involving PSGL-1 rolling of T cells and MCAM-adhesion of TH17 cells. J Exp Med. 2014;211:1833-46 pubmed 出版商
  493. Abazyan S, Yang E, Abazyan B, Xia M, Yang C, Rojas C, et al. Mutant disrupted-in-schizophrenia 1 in astrocytes: focus on glutamate metabolism. J Neurosci Res. 2014;92:1659-68 pubmed 出版商
  494. Shen W, Chung S, Irhimeh M, Li S, Lee S, Gillies M. Systemic administration of erythropoietin inhibits retinopathy in RCS rats. PLoS ONE. 2014;9:e104759 pubmed 出版商
  495. Jha B, Rao M, Malik N. Motor neuron differentiation from pluripotent stem cells and other intermediate proliferative precursors that can be discriminated by lineage specific reporters. Stem Cell Rev. 2015;11:194-204 pubmed 出版商
  496. Milesi S, Boussadia B, Plaud C, Catteau M, Rousset M, de Bock F, et al. Redistribution of PDGFR? cells and NG2DsRed pericytes at the cerebrovasculature after status epilepticus. Neurobiol Dis. 2014;71:151-8 pubmed 出版商
  497. Lööv C, Nadadhur A, Hillered L, Clausen F, Erlandsson A. Extracellular ezrin: a novel biomarker for traumatic brain injury. J Neurotrauma. 2015;32:244-51 pubmed 出版商
  498. Kawase S, Kuwako K, Imai T, Renault Mihara F, Yaguchi K, Itohara S, et al. Regulatory factor X transcription factors control Musashi1 transcription in mouse neural stem/progenitor cells. Stem Cells Dev. 2014;23:2250-61 pubmed 出版商
  499. Forrest S, Osborne P, Keast J. Characterization of axons expressing the artemin receptor in the female rat urinary bladder: a comparison with other major neuronal populations. J Comp Neurol. 2014;522:3900-27 pubmed 出版商
  500. Joly S, Jordi N, Schwab M, Pernet V. The Ephrin receptor EphA4 restricts axonal sprouting and enhances branching in the injured mouse optic nerve. Eur J Neurosci. 2014;40:3021-31 pubmed 出版商
  501. Vaidya A, Mao Z, Tian X, Spencer B, Seluanov A, Gorbunova V. Knock-in reporter mice demonstrate that DNA repair by non-homologous end joining declines with age. PLoS Genet. 2014;10:e1004511 pubmed 出版商
  502. Bai Q, Parris R, Burton E. Different mechanisms regulate expression of zebrafish myelin protein zero (P0) in myelinating oligodendrocytes and its induction following axonal injury. J Biol Chem. 2014;289:24114-28 pubmed 出版商
  503. Tyzack G, Sitnikov S, Barson D, Adams Carr K, Lau N, Kwok J, et al. Astrocyte response to motor neuron injury promotes structural synaptic plasticity via STAT3-regulated TSP-1 expression. Nat Commun. 2014;5:4294 pubmed 出版商
  504. Aldrin Kirk P, Davidsson M, Holmqvist S, Li J, Bjorklund T. Novel AAV-based rat model of forebrain synucleinopathy shows extensive pathologies and progressive loss of cholinergic interneurons. PLoS ONE. 2014;9:e100869 pubmed 出版商
  505. Bricker Anthony C, Hines Beard J, Rex T. Molecular changes and vision loss in a mouse model of closed-globe blast trauma. Invest Ophthalmol Vis Sci. 2014;55:4853-62 pubmed 出版商
  506. Hagel C, Krasemann S, Löffler J, Puschel K, Magnus T, Glatzel M. Upregulation of Shiga toxin receptor CD77/Gb3 and interleukin-1? expression in the brain of EHEC patients with hemolytic uremic syndrome and neurologic symptoms. Brain Pathol. 2015;25:146-56 pubmed 出版商
  507. Wijayatunge R, Chen L, Cha Y, Zannas A, Frank C, West A. The histone lysine demethylase Kdm6b is required for activity-dependent preconditioning of hippocampal neuronal survival. Mol Cell Neurosci. 2014;61:187-200 pubmed 出版商
  508. Chen N, Huang S, Lu C, Chen C, Feng C, Chen C, et al. Flexibilide obtained from cultured soft coral has anti-neuroinflammatory and analgesic effects through the upregulation of spinal transforming growth factor-?1 in neuropathic rats. Mar Drugs. 2014;12:3792-817 pubmed 出版商
  509. Saab S, Buteau B, Leclère L, Bron A, Creuzot Garcher C, Bretillon L, et al. Involvement of plasmalogens in post-natal retinal vascular development. PLoS ONE. 2014;9:e101076 pubmed 出版商
  510. Yassa H. Age-related changes in the optic nerve of Sprague-Dawley rats: an ultrastructural and immunohistochemical study. Acta Histochem. 2014;116:1085-95 pubmed 出版商
  511. Sandstrom R, Foret M, Grow D, Haugen E, Rhodes C, Cardona A, et al. Epigenetic regulation by chromatin activation mark H3K4me3 in primate progenitor cells within adult neurogenic niche. Sci Rep. 2014;4:5371 pubmed 出版商
  512. Helms H, Hersom M, Kuhlmann L, Badolo L, Nielsen C, Brodin B. An electrically tight in vitro blood-brain barrier model displays net brain-to-blood efflux of substrates for the ABC transporters, P-gp, Bcrp and Mrp-1. AAPS J. 2014;16:1046-55 pubmed 出版商
  513. Huang L, Zhu G, Deng Y, Jiang W, Fang M, Chen C, et al. Hypertonic saline alleviates cerebral edema by inhibiting microglia-derived TNF-? and IL-1?-induced Na-K-Cl Cotransporter up-regulation. J Neuroinflammation. 2014;11:102 pubmed 出版商
  514. Fallier Becker P, Vollmer J, Bauer H, Noell S, Wolburg H, Mack A. Onset of aquaporin-4 expression in the developing mouse brain. Int J Dev Neurosci. 2014;36:81-9 pubmed 出版商
  515. Inada C, Niu Y, Matsumoto K, Le X, Fujiwara H. Possible involvement of VEGF signaling system in rescuing effect of endogenous acetylcholine on NMDA-induced long-lasting hippocampal cell damage in organotypic hippocampal slice cultures. Neurochem Int. 2014;75:39-47 pubmed 出版商
  516. Bradford C, Ramos I, Cross A, Haddock G, McQuaid S, Nicholas A, et al. Localisation of citrullinated proteins in normal appearing white matter and lesions in the central nervous system in multiple sclerosis. J Neuroimmunol. 2014;273:85-95 pubmed 出版商
  517. Eroglu B, Kimbler D, Pang J, Choi J, Moskophidis D, Yanasak N, et al. Therapeutic inducers of the HSP70/HSP110 protect mice against traumatic brain injury. J Neurochem. 2014;130:626-41 pubmed 出版商
  518. Zhu Z, Liu Y, Li K, Liu J, Wang H, Sun B, et al. Protein tyrosine phosphatase receptor U (PTPRU) is required for glioma growth and motility. Carcinogenesis. 2014;35:1901-10 pubmed 出版商
  519. Cekanaviciute E, Dietrich H, Axtell R, Williams A, Egusquiza R, Wai K, et al. Astrocytic TGF-? signaling limits inflammation and reduces neuronal damage during central nervous system Toxoplasma infection. J Immunol. 2014;193:139-49 pubmed 出版商
  520. Kielar M, Tuy F, Bizzotto S, Lebrand C, de Juan Romero C, Poirier K, et al. Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human. Nat Neurosci. 2014;17:923-33 pubmed 出版商
  521. Betts J, Schweimer J, Burnham K, Burnet P, Sharp T, Harrison P. D-amino acid oxidase is expressed in the ventral tegmental area and modulates cortical dopamine. Front Synaptic Neurosci. 2014;6:11 pubmed 出版商
  522. Chucair Elliott A, Conrady C, Zheng M, Kroll C, Lane T, Carr D. Microglia-induced IL-6 protects against neuronal loss following HSV-1 infection of neural progenitor cells. Glia. 2014;62:1418-34 pubmed 出版商
  523. Cicchetti F, Lacroix S, Cisbani G, Vallières N, Saint Pierre M, St Amour I, et al. Mutant huntingtin is present in neuronal grafts in Huntington disease patients. Ann Neurol. 2014;76:31-42 pubmed 出版商
  524. Bennett R, Brody D. Acute reduction of microglia does not alter axonal injury in a mouse model of repetitive concussive traumatic brain injury. J Neurotrauma. 2014;31:1647-63 pubmed 出版商
  525. Schuster A, Klotz M, Schwab T, Di Liddo R, Bertalot T, Schrenk S, et al. Maintenance of the enteric stem cell niche by bacterial lipopolysaccharides? Evidence and perspectives. J Cell Mol Med. 2014;18:1429-43 pubmed 出版商
  526. Schirmer L, Srivastava R, Kalluri S, Böttinger S, Herwerth M, Carassiti D, et al. Differential loss of KIR4.1 immunoreactivity in multiple sclerosis lesions. Ann Neurol. 2014;75:810-28 pubmed 出版商
  527. Farioli Vecchioli S, Ceccarelli M, Saraulli D, Micheli L, Cannas S, D Alessandro F, et al. Tis21 is required for adult neurogenesis in the subventricular zone and for olfactory behavior regulating cyclins, BMP4, Hes1/5 and Ids. Front Cell Neurosci. 2014;8:98 pubmed 出版商
  528. Cekanaviciute E, Fathali N, Doyle K, Williams A, Han J, Buckwalter M. Astrocytic transforming growth factor-beta signaling reduces subacute neuroinflammation after stroke in mice. Glia. 2014;62:1227-40 pubmed 出版商
  529. Nguyen H, Nekanti U, Haus D, Funes G, Moreno D, Kamei N, et al. Induction of early neural precursors and derivation of tripotent neural stem cells from human pluripotent stem cells under xeno-free conditions. J Comp Neurol. 2014;522:2767-83 pubmed 出版商
  530. Eskilsson A, Tachikawa M, Hosoya K, Blomqvist A. Distribution of microsomal prostaglandin E synthase-1 in the mouse brain. J Comp Neurol. 2014;522:3229-44 pubmed 出版商
  531. Alarcón Aguilar A, Luna López A, Ventura Gallegos J, Lazzarini R, Galvan Arzate S, González Puertos V, et al. Primary cultured astrocytes from old rats are capable to activate the Nrf2 response against MPP+ toxicity after tBHQ pretreatment. Neurobiol Aging. 2014;35:1901-12 pubmed 出版商
  532. Hamity M, Walder R, Hammond D. Increased neuronal expression of neurokinin-1 receptor and stimulus-evoked internalization of the receptor in the rostral ventromedial medulla of the rat after peripheral inflammatory injury. J Comp Neurol. 2014;522:3037-51 pubmed 出版商
  533. Vessey K, Greferath U, Aplin F, Jobling A, Phipps J, Ho T, et al. Adenosine triphosphate-induced photoreceptor death and retinal remodeling in rats. J Comp Neurol. 2014;522:2928-50 pubmed 出版商
  534. Alfaro Cervello C, Cebrian Silla A, Soriano Navarro M, García Tárraga P, Matías Guiu J, Gomez Pinedo U, et al. The adult macaque spinal cord central canal zone contains proliferative cells and closely resembles the human. J Comp Neurol. 2014;522:1800-17 pubmed 出版商
  535. Cheng L, Hu W, Qiu B, Zhao J, Yu Y, Guan W, et al. Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Res. 2014;24:665-79 pubmed 出版商
  536. Lu Nguyen N, Broadstock M, Schliesser M, Bartholomae C, von Kalle C, Schmidt M, et al. Transgenic expression of human glial cell line-derived neurotrophic factor from integration-deficient lentiviral vectors is neuroprotective in a rodent model of Parkinson's disease. Hum Gene Ther. 2014;25:631-41 pubmed 出版商
  537. Schuh C, Wimmer I, Hametner S, Haider L, van Dam A, Liblau R, et al. Oxidative tissue injury in multiple sclerosis is only partly reflected in experimental disease models. Acta Neuropathol. 2014;128:247-66 pubmed 出版商
  538. Hultman K, Cortes Canteli M, Bounoutas A, Richards A, Strickland S, Norris E. Plasmin deficiency leads to fibrin accumulation and a compromised inflammatory response in the mouse brain. J Thromb Haemost. 2014;12:701-12 pubmed 出版商
  539. Garbuzova Davis S, Haller E, Williams S, Haim E, Tajiri N, Hernandez Ontiveros D, et al. Compromised blood-brain barrier competence in remote brain areas in ischemic stroke rats at the chronic stage. J Comp Neurol. 2014;522:3120-37 pubmed 出版商
  540. Sareen D, Gowing G, Sahabian A, Staggenborg K, Paradis R, Avalos P, et al. Human induced pluripotent stem cells are a novel source of neural progenitor cells (iNPCs) that migrate and integrate in the rodent spinal cord. J Comp Neurol. 2014;522:2707-28 pubmed 出版商
  541. Deboer E, Azevedo R, Vega T, Brodkin J, Akamatsu W, Okano H, et al. Prenatal deletion of the RNA-binding protein HuD disrupts postnatal cortical circuit maturation and behavior. J Neurosci. 2014;34:3674-86 pubmed 出版商
  542. Alves J, Muir E, Andrews M, Ward A, Michelmore N, Dasgupta D, et al. AAV vector-mediated secretion of chondroitinase provides a sensitive tracer for axonal arborisations. J Neurosci Methods. 2014;227:107-20 pubmed 出版商
  543. Toscano M, Butorano M, Cerase A, Miracco C. Correlative study of squash smear cytology with histopathology in a rare case of anaplastic giant cell ependymoma of the pineal. Histol Histopathol. 2014;29:1065-70 pubmed 出版商
  544. Chen F, Becker A, LoTurco J. Contribution of tumor heterogeneity in a new animal model of CNS tumors. Mol Cancer Res. 2014;12:742-53 pubmed 出版商
  545. McQueen J, Reimer M, Holland P, Manso Y, McLaughlin M, Fowler J, et al. Restoration of oligodendrocyte pools in a mouse model of chronic cerebral hypoperfusion. PLoS ONE. 2014;9:e87227 pubmed 出版商
  546. Talaverón R, Matarredona E, de la Cruz R, Macías D, Gálvez V, Pastor A. Implanted neural progenitor cells regulate glial reaction to brain injury and establish gap junctions with host glial cells. Glia. 2014;62:623-38 pubmed 出版商
  547. Karki P, Webb A, Smith K, Johnson J, Lee K, Son D, et al. Yin Yang 1 is a repressor of glutamate transporter EAAT2, and it mediates manganese-induced decrease of EAAT2 expression in astrocytes. Mol Cell Biol. 2014;34:1280-9 pubmed 出版商
  548. Potter K, Jorfi M, Householder K, Foster E, Weder C, Capadona J. Curcumin-releasing mechanically adaptive intracortical implants improve the proximal neuronal density and blood-brain barrier stability. Acta Biomater. 2014;10:2209-22 pubmed 出版商
  549. Bodi I, Curran O, Selway R, Elwes R, Burrone J, Laxton R, et al. Two cases of multinodular and vacuolating neuronal tumour. Acta Neuropathol Commun. 2014;2:7 pubmed 出版商
  550. Liu Z, Yu N, Holz F, Yang F, Stanzel B. Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography. Biomaterials. 2014;35:2837-50 pubmed 出版商
  551. Balu D, Takagi S, Puhl M, Benneyworth M, Coyle J. D-serine and serine racemase are localized to neurons in the adult mouse and human forebrain. Cell Mol Neurobiol. 2014;34:419-35 pubmed 出版商
  552. Chou V, Ko N, Holman T, Manning Bog A. Gene-environment interaction models to unmask susceptibility mechanisms in Parkinson's disease. J Vis Exp. 2014;:e50960 pubmed 出版商
  553. Kesdangsakonwut S, Sunden Y, Aoshima K, Iwaki Y, Okumura M, Sawa H, et al. Survival of rabid rabbits after intrathecal immunization. Neuropathology. 2014;34:277-83 pubmed 出版商
  554. Yamanaka T, Tosaki A, Kurosawa M, Akimoto K, Hirose T, Ohno S, et al. Loss of aPKC? in differentiated neurons disrupts the polarity complex but does not induce obvious neuronal loss or disorientation in mouse brains. PLoS ONE. 2013;8:e84036 pubmed 出版商
  555. Coppieters N, Dieriks B, Lill C, Faull R, Curtis M, Dragunow M. Global changes in DNA methylation and hydroxymethylation in Alzheimer's disease human brain. Neurobiol Aging. 2014;35:1334-44 pubmed 出版商
  556. Ishida M, Iwai M, Yoshida K, Kagotani A, Okabe H. Signet-ring cell melanoma with sentinel lymph node metastasis: A case report with immunohistochemical analysis and review of the clinicopathological features. Oncol Lett. 2014;7:65-68 pubmed
  557. Gao X, Zhang J, Zhang J, Zou H, Liu J. Identification of rat respiratory mucosa stem cells and comparison of the early neural differentiation potential with the bone marrow mesenchymal stem cells in vitro. Cell Mol Neurobiol. 2014;34:257-68 pubmed 出版商
  558. Chen N, Huang S, Chen W, Chen C, Lu C, Chen C, et al. TGF-?1 attenuates spinal neuroinflammation and the excitatory amino acid system in rats with neuropathic pain. J Pain. 2013;14:1671-85 pubmed 出版商
  559. Price M, Gong H, Parsons M, Kundert J, Reznikov L, Bernardinelli L, et al. Localization and behaviors in null mice suggest that ASIC1 and ASIC2 modulate responses to aversive stimuli. Genes Brain Behav. 2014;13:179-94 pubmed 出版商
  560. Wakatsuki S, Araki T, Sehara Fujisawa A. Neuregulin-1/glial growth factor stimulates Schwann cell migration by inducing ?5 ?1 integrin-ErbB2-focal adhesion kinase complex formation. Genes Cells. 2014;19:66-77 pubmed 出版商
  561. Judson M, Sosa Pagán J, Del Cid W, Han J, Philpot B. Allelic specificity of Ube3a expression in the mouse brain during postnatal development. J Comp Neurol. 2014;522:1874-96 pubmed 出版商
  562. Ní Fhlathartaigh M, McMahon J, Reynolds R, Connolly D, Higgins E, Counihan T, et al. Calreticulin and other components of endoplasmic reticulum stress in rat and human inflammatory demyelination. Acta Neuropathol Commun. 2013;1:37 pubmed 出版商
  563. Mitchell K, Shah J, Tsytsikova L, Campbell A, Affram K, Symes A. LPS antagonism of TGF-? signaling results in prolonged survival and activation of rat primary microglia. J Neurochem. 2014;129:155-68 pubmed 出版商
  564. Zuidema J, Hyzinski García M, Van Vlasselaer K, Zaccor N, Plopper G, Mongin A, et al. Enhanced GLT-1 mediated glutamate uptake and migration of primary astrocytes directed by fibronectin-coated electrospun poly-L-lactic acid fibers. Biomaterials. 2014;35:1439-49 pubmed 出版商
  565. Nishizaki Y, Takagi T, Matsui F, Higashi Y. SIP1 expression patterns in brain investigated by generating a SIP1-EGFP reporter knock-in mouse. Genesis. 2014;52:56-67 pubmed 出版商
  566. Yan Y, Zhang J, Wang K, Xu Y, Ren K, Zhang B, et al. Significant reduction of the GLUT3 level, but not GLUT1 level, was observed in the brain tissues of several scrapie experimental animals and scrapie-infected cell lines. Mol Neurobiol. 2014;49:991-1004 pubmed 出版商
  567. Wang C, Klechikov A, Gharibyan A, Wärmländer S, Jarvet J, Zhao L, et al. The role of pro-inflammatory S100A9 in Alzheimer's disease amyloid-neuroinflammatory cascade. Acta Neuropathol. 2014;127:507-22 pubmed 出版商
  568. Hawkins K, Demars K, Singh J, Yang C, Cho H, Frankowski J, et al. Neurovascular protection by post-ischemic intravenous injections of the lipoxin A4 receptor agonist, BML-111, in a rat model of ischemic stroke. J Neurochem. 2014;129:130-42 pubmed 出版商
  569. Sanderson T, Mahapatra G, Pecina P, Ji Q, Yu K, Sinkler C, et al. Cytochrome C is tyrosine 97 phosphorylated by neuroprotective insulin treatment. PLoS ONE. 2013;8:e78627 pubmed 出版商
  570. Petrova R, Garcia A, Joyner A. Titration of GLI3 repressor activity by sonic hedgehog signaling is critical for maintaining multiple adult neural stem cell and astrocyte functions. J Neurosci. 2013;33:17490-505 pubmed 出版商
  571. Feng N, Han Q, Li J, Wang S, Li H, Yao X, et al. Generation of highly purified neural stem cells from human adipose-derived mesenchymal stem cells by Sox1 activation. Stem Cells Dev. 2014;23:515-29 pubmed 出版商
  572. Swain G, Prociuk M, Bagel J, O DONNELL P, Berger K, Drobatz K, et al. Adeno-associated virus serotypes 9 and rh10 mediate strong neuronal transduction of the dog brain. Gene Ther. 2014;21:28-36 pubmed 出版商
  573. Wang H, Yang B, Qiu L, Yang C, Kramer J, Su Q, et al. Widespread spinal cord transduction by intrathecal injection of rAAV delivers efficacious RNAi therapy for amyotrophic lateral sclerosis. Hum Mol Genet. 2014;23:668-81 pubmed 出版商
  574. Dobolyi A, Ostergaard E, Bagó A, Doczi T, Palkovits M, Gal A, et al. Exclusive neuronal expression of SUCLA2 in the human brain. Brain Struct Funct. 2015;220:135-51 pubmed 出版商
  575. Momcilovic O, Liu Q, Swistowski A, Russo Tait T, Zhao Y, Rao M, et al. Genome wide profiling of dopaminergic neurons derived from human embryonic and induced pluripotent stem cells. Stem Cells Dev. 2014;23:406-20 pubmed 出版商
  576. Khalaf Nazzal R, Bruel Jungerman E, Rio J, Bureau J, Irinopoulou T, Sumia I, et al. Organelle and cellular abnormalities associated with hippocampal heterotopia in neonatal doublecortin knockout mice. PLoS ONE. 2013;8:e72622 pubmed 出版商
  577. Ishikawa K, Yoshida S, Nakao S, Nakama T, Kita T, Asato R, et al. Periostin promotes the generation of fibrous membranes in proliferative vitreoretinopathy. FASEB J. 2014;28:131-42 pubmed 出版商
  578. Kotagiri P, Chance S, Szele F, Esiri M. Subventricular zone cytoarchitecture changes in autism. Dev Neurobiol. 2014;74:25-41 pubmed 出版商
  579. Viganò F, Mobius W, Gotz M, Dimou L. Transplantation reveals regional differences in oligodendrocyte differentiation in the adult brain. Nat Neurosci. 2013;16:1370-2 pubmed 出版商
  580. Cholich L, Marquez M, Pumarola I Batlle M, Gimeno E, Teibler G, Rios E, et al. Experimental intoxication of guinea pigs with Ipomoea carnea: behavioural and neuropathological alterations. Toxicon. 2013;76:28-36 pubmed 出版商
  581. Merres J, Höss J, Albrecht L, Kress E, Soehnlein O, Jansen S, et al. Role of the cathelicidin-related antimicrobial peptide in inflammation and mortality in a mouse model of bacterial meningitis. J Innate Immun. 2014;6:205-18 pubmed 出版商
  582. Lim J, McCullen S, Piedrahita J, Loboa E, Olby N. Alternating current electric fields of varying frequencies: effects on proliferation and differentiation of porcine neural progenitor cells. Cell Reprogram. 2013;15:405-12 pubmed 出版商
  583. Schreiner A, Durry S, Aida T, Stock M, Ruther U, Tanaka K, et al. Laminar and subcellular heterogeneity of GLAST and GLT-1 immunoreactivity in the developing postnatal mouse hippocampus. J Comp Neurol. 2014;522:204-24 pubmed 出版商
  584. Cops E, Sashindranath M, Daglas M, Short K, da Fonseca Pereira C, Pang T, et al. Tissue-type plasminogen activator is an extracellular mediator of Purkinje cell damage and altered gait. Exp Neurol. 2013;249:8-19 pubmed 出版商
  585. Azari H. Isolation and enrichment of defined neural cell populations from heterogeneous neural stem cell progeny. Methods Mol Biol. 2013;1059:95-106 pubmed 出版商
  586. Prox J, Bernreuther C, Altmeppen H, Grendel J, Glatzel M, D Hooge R, et al. Postnatal disruption of the disintegrin/metalloproteinase ADAM10 in brain causes epileptic seizures, learning deficits, altered spine morphology, and defective synaptic functions. J Neurosci. 2013;33:12915-28, 12928a pubmed 出版商
  587. Sahu S, Kauser H, Ray K, Kishore K, Kumar S, Panjwani U. Caffeine and modafinil promote adult neuronal cell proliferation during 48 h of total sleep deprivation in rat dentate gyrus. Exp Neurol. 2013;248:470-81 pubmed 出版商
  588. Perez S, Raghanti M, Hof P, Kramer L, Ikonomovic M, Lacor P, et al. Alzheimer's disease pathology in the neocortex and hippocampus of the western lowland gorilla (Gorilla gorilla gorilla). J Comp Neurol. 2013;521:4318-38 pubmed 出版商
  589. Hametner S, Wimmer I, Haider L, Pfeifenbring S, Bruck W, Lassmann H. Iron and neurodegeneration in the multiple sclerosis brain. Ann Neurol. 2013;74:848-61 pubmed 出版商
  590. Stegeman S, Jolly L, Premarathne S, Gecz J, Richards L, Mackay Sim A, et al. Loss of Usp9x disrupts cortical architecture, hippocampal development and TGF?-mediated axonogenesis. PLoS ONE. 2013;8:e68287 pubmed 出版商
  591. Mao X, Hütt Cabezas M, Orr B, Weingart M, Taylor I, Rajan A, et al. LIN28A facilitates the transformation of human neural stem cells and promotes glioblastoma tumorigenesis through a pro-invasive genetic program. Oncotarget. 2013;4:1050-64 pubmed
  592. McGivern J, Patitucci T, Nord J, Barabas M, Stucky C, Ebert A. Spinal muscular atrophy astrocytes exhibit abnormal calcium regulation and reduced growth factor production. Glia. 2013;61:1418-1428 pubmed 出版商
  593. Brunne B, FRANCO S, Bouché E, Herz J, Howell B, Pahle J, et al. Role of the postnatal radial glial scaffold for the development of the dentate gyrus as revealed by Reelin signaling mutant mice. Glia. 2013;61:1347-63 pubmed 出版商
  594. Pose Méndez S, Candal E, Adrio F, Rodriguez Moldes I. Development of the cerebellar afferent system in the shark Scyliorhinus canicula: insights into the basal organization of precerebellar nuclei in gnathostomes. J Comp Neurol. 2014;522:131-68 pubmed 出版商
  595. Potter K, Buck A, Self W, Callanan M, Sunil S, Capadona J. The effect of resveratrol on neurodegeneration and blood brain barrier stability surrounding intracortical microelectrodes. Biomaterials. 2013;34:7001-15 pubmed 出版商
  596. Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature. 2013;498:492-6 pubmed 出版商
  597. Koval E, Shaner C, Zhang P, du Maine X, Fischer K, Tay J, et al. Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. Hum Mol Genet. 2013;22:4127-35 pubmed 出版商
  598. Natsume A, Ito M, Katsushima K, Ohka F, Hatanaka A, Shinjo K, et al. Chromatin regulator PRC2 is a key regulator of epigenetic plasticity in glioblastoma. Cancer Res. 2013;73:4559-70 pubmed 出版商
  599. Lowe M, Kim E, Faull R, Christie D, Waldvogel H. Dissociated expression of mitochondrial and cytosolic creatine kinases in the human brain: a new perspective on the role of creatine in brain energy metabolism. J Cereb Blood Flow Metab. 2013;33:1295-306 pubmed 出版商
  600. Liu Q, Pedersen O, Peng J, Couture L, Rao M, Zeng X. Optimizing dopaminergic differentiation of pluripotent stem cells for the manufacture of dopaminergic neurons for transplantation. Cytotherapy. 2013;15:999-1010 pubmed 出版商
  601. Langlet F, Mullier A, Bouret S, Prevot V, Dehouck B. Tanycyte-like cells form a blood-cerebrospinal fluid barrier in the circumventricular organs of the mouse brain. J Comp Neurol. 2013;521:3389-405 pubmed 出版商
  602. Kao C, Hsu Y, Liu J, Lee D, Chung Y, Chiu I. The mood stabilizer valproate activates human FGF1 gene promoter through inhibiting HDAC and GSK-3 activities. J Neurochem. 2013;126:4-18 pubmed 出版商
  603. Higurashi N, Uchida T, Lossin C, Misumi Y, Okada Y, Akamatsu W, et al. A human Dravet syndrome model from patient induced pluripotent stem cells. Mol Brain. 2013;6:19 pubmed 出版商
  604. Medrano M, Gerrikagoitia I, Martinez Millan L, Mendiguren A, Pineda J. Functional and morphological characterization of glutamate transporters in the rat locus coeruleus. Br J Pharmacol. 2013;169:1781-94 pubmed 出版商
  605. Delli Carri A, Onorati M, Castiglioni V, Faedo A, Camnasio S, Toselli M, et al. Human pluripotent stem cell differentiation into authentic striatal projection neurons. Stem Cell Rev. 2013;9:461-74 pubmed 出版商
  606. Sparmann A, Xie Y, Verhoeven E, Vermeulen M, Lancini C, Gargiulo G, et al. The chromodomain helicase Chd4 is required for Polycomb-mediated inhibition of astroglial differentiation. EMBO J. 2013;32:1598-612 pubmed 出版商
  607. Bourque S, Kuny S, Reyes L, Davidge S, Sauve Y. Prenatal hypoxia is associated with long-term retinal dysfunction in rats. PLoS ONE. 2013;8:e61861 pubmed 出版商
  608. Löw K, Aebischer P, Schneider B. Direct and retrograde transduction of nigral neurons with AAV6, 8, and 9 and intraneuronal persistence of viral particles. Hum Gene Ther. 2013;24:613-29 pubmed 出版商
  609. Misu T, Hoftberger R, Fujihara K, Wimmer I, Takai Y, Nishiyama S, et al. Presence of six different lesion types suggests diverse mechanisms of tissue injury in neuromyelitis optica. Acta Neuropathol. 2013;125:815-27 pubmed 出版商
  610. Brana C, Frossard M, Pescini Gobert R, Martinier N, Boschert U, Seabrook T. Immunohistochemical detection of sphingosine-1-phosphate receptor 1 and 5 in human multiple sclerosis lesions. Neuropathol Appl Neurobiol. 2014;40:564-78 pubmed 出版商
  611. Chio C, Chang C, Wang C, Cheong C, Chao C, Cheng B, et al. Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-?. BMC Neurosci. 2013;14:33 pubmed 出版商
  612. Smith A, Gibbons H, Oldfield R, Bergin P, Mee E, Faull R, et al. The transcription factor PU.1 is critical for viability and function of human brain microglia. Glia. 2013;61:929-42 pubmed 出版商
  613. Bai L, Hecker J, Kerstetter A, Miller R. Myelin repair and functional recovery mediated by neural cell transplantation in a mouse model of multiple sclerosis. Neurosci Bull. 2013;29:239-50 pubmed 出版商
  614. Yuan Y, Yeh L, Liu H, Yamanaka O, Hardie W, Kao W, et al. Targeted overexpression of TGF-? in the corneal epithelium of adult transgenic mice induces changes in anterior segment morphology and activates noncanonical Wnt signaling. Invest Ophthalmol Vis Sci. 2013;54:1829-37 pubmed 出版商
  615. Chapuis J, Hansmannel F, Gistelinck M, Mounier A, Van Cauwenberghe C, Kolen K, et al. Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Mol Psychiatry. 2013;18:1225-34 pubmed 出版商
  616. Karasinska J, de Haan W, Franciosi S, Ruddle P, Fan J, Kruit J, et al. ABCA1 influences neuroinflammation and neuronal death. Neurobiol Dis. 2013;54:445-55 pubmed 出版商
  617. Carra E, Barbieri F, Marubbi D, Pattarozzi A, Favoni R, Florio T, et al. Sorafenib selectively depletes human glioblastoma tumor-initiating cells from primary cultures. Cell Cycle. 2013;12:491-500 pubmed 出版商
  618. Kazmi S, Byer S, Eckert J, Turk A, Huijbregts R, Brossier N, et al. Transgenic mice overexpressing neuregulin-1 model neurofibroma-malignant peripheral nerve sheath tumor progression and implicate specific chromosomal copy number variations in tumorigenesis. Am J Pathol. 2013;182:646-67 pubmed 出版商
  619. Phares T, Stohlman S, Hinton D, Bergmann C. Astrocyte-derived CXCL10 drives accumulation of antibody-secreting cells in the central nervous system during viral encephalomyelitis. J Virol. 2013;87:3382-92 pubmed 出版商
  620. Zhai P, Chen X, Schreyer D. Preparation and characterization of alginate microspheres for sustained protein delivery within tissue scaffolds. Biofabrication. 2013;5:015009 pubmed 出版商
  621. Lonskaya I, Hebron M, Algarzae N, Desforges N, Moussa C. Decreased parkin solubility is associated with impairment of autophagy in the nigrostriatum of sporadic Parkinson's disease. Neuroscience. 2013;232:90-105 pubmed 出版商
  622. Quintana Urzainqui I, Rodriguez Moldes I, Candal E. Developmental, tract-tracing and immunohistochemical study of the peripheral olfactory system in a basal vertebrate: insights on Pax6 neurons migrating along the olfactory nerve. Brain Struct Funct. 2014;219:85-104 pubmed 出版商
  623. Hellwig S, Hack I, Zucker B, Brunne B, Junghans D. Reelin together with ApoER2 regulates interneuron migration in the olfactory bulb. PLoS ONE. 2012;7:e50646 pubmed 出版商
  624. Liu Q, Spusta S, Mi R, Lassiter R, Stark M, Hoke A, et al. Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: induction, maintenance, and differentiation into functional schwann cells. Stem Cells Transl Med. 2012;1:266-78 pubmed 出版商
  625. Mack A, Tiedemann K. Cultures of astroglial cells derived from brain of adult cichlid fish. J Neurosci Methods. 2013;212:269-75 pubmed 出版商
  626. Slowik A, Merres J, Elfgen A, Jansen S, Mohr F, Wruck C, et al. Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE)--and amyloid beta 1-42-induced signal transduction in glial cells. Mol Neurodegener. 2012;7:55 pubmed 出版商
  627. Ahmed F, Gyorgy A, Kamnaksh A, Ling G, Tong L, Parks S, et al. Time-dependent changes of protein biomarker levels in the cerebrospinal fluid after blast traumatic brain injury. Electrophoresis. 2012;33:3705-11 pubmed 出版商
  628. Brandenburg L, Jansen S, Albrecht L, Merres J, Gerber J, Pufe T, et al. CpG oligodeoxynucleotides induce the expression of the antimicrobial peptide cathelicidin in glial cells. J Neuroimmunol. 2013;255:18-31 pubmed 出版商
  629. Huang S, Chen N, Chen W, Hung H, Lee H, Lin Y, et al. Sinularin from indigenous soft coral attenuates nociceptive responses and spinal neuroinflammation in carrageenan-induced inflammatory rat model. Mar Drugs. 2012;10:1899-919 pubmed 出版商
  630. McClain C, Sim F, Goldman S. Pleiotrophin suppression of receptor protein tyrosine phosphatase-?/? maintains the self-renewal competence of fetal human oligodendrocyte progenitor cells. J Neurosci. 2012;32:15066-75 pubmed 出版商
  631. Peluffo H, Foster E, Ahmed S, Lago N, Hutson T, Moon L, et al. Efficient gene expression from integration-deficient lentiviral vectors in the spinal cord. Gene Ther. 2013;20:645-57 pubmed 出版商
  632. Helmy K, Halliday J, Fomchenko E, Setty M, Pitter K, Hafemeister C, et al. Identification of global alteration of translational regulation in glioma in vivo. PLoS ONE. 2012;7:e46965 pubmed 出版商
  633. Schmidt T, Awad H, Slowik A, Beyer C, Kipp M, Clarner T. Regional heterogeneity of cuprizone-induced demyelination: topographical aspects of the midline of the corpus callosum. J Mol Neurosci. 2013;49:80-8 pubmed 出版商
  634. Elias P, Spector M. Treatment of penetrating brain injury in a rat model using collagen scaffolds incorporating soluble Nogo receptor. J Tissue Eng Regen Med. 2015;9:137-50 pubmed 出版商
  635. Chen S, Tsai H, Hung T, Chen C, Lee C, Wu C, et al. Salidroside improves behavioral and histological outcomes and reduces apoptosis via PI3K/Akt signaling after experimental traumatic brain injury. PLoS ONE. 2012;7:e45763 pubmed 出版商
  636. Elvira G, Garcia I, Benito M, Gallo J, Desco M, Penadés S, et al. Live imaging of mouse endogenous neural progenitors migrating in response to an induced tumor. PLoS ONE. 2012;7:e44466 pubmed 出版商
  637. Wainwright D, Balyasnikova I, Chang A, Ahmed A, Moon K, Auffinger B, et al. IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin Cancer Res. 2012;18:6110-21 pubmed 出版商
  638. Gerber A, Bale T. Antiinflammatory treatment ameliorates HPA stress axis dysfunction in a mouse model of stress sensitivity. Endocrinology. 2012;153:4830-7 pubmed
  639. Dixon K, Munro K, Boyd A, Bartlett P, Turnley A. Partial change in EphA4 knockout mouse phenotype: loss of diminished GFAP upregulation following spinal cord injury. Neurosci Lett. 2012;525:66-71 pubmed 出版商
  640. Garcia Ovejero D, Arevalo Martin A, Paniagua Torija B, Sierra Palomares Y, Molina Holgado E. A cell population that strongly expresses the CB1 cannabinoid receptor in the ependyma of the rat spinal cord. J Comp Neurol. 2013;521:233-51 pubmed 出版商
  641. Brus M, Meurisse M, Gheusi G, Keller M, Lledo P, Levy F. Dynamics of olfactory and hippocampal neurogenesis in adult sheep. J Comp Neurol. 2013;521:169-88 pubmed 出版商
  642. Clarner T, Diederichs F, Berger K, Denecke B, Gan L, van der Valk P, et al. Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions. Glia. 2012;60:1468-80 pubmed 出版商
  643. Shimada I, LeComte M, Granger J, Quinlan N, Spees J. Self-renewal and differentiation of reactive astrocyte-derived neural stem/progenitor cells isolated from the cortical peri-infarct area after stroke. J Neurosci. 2012;32:7926-40 pubmed 出版商
  644. Pan H, Wang H, Wang X, Zhu L, Mao L. The absence of Nrf2 enhances NF-?B-dependent inflammation following scratch injury in mouse primary cultured astrocytes. Mediators Inflamm. 2012;2012:217580 pubmed 出版商
  645. Desilva T, Borenstein N, Volpe J, Kinney H, Rosenberg P. Expression of EAAT2 in neurons and protoplasmic astrocytes during human cortical development. J Comp Neurol. 2012;520:3912-32 pubmed 出版商
  646. Skjolding A, Holst A, Broholm H, Laursen H, Juhler M. Differences in distribution and regulation of astrocytic aquaporin-4 in human and rat hydrocephalic brain. Neuropathol Appl Neurobiol. 2013;39:179-91 pubmed 出版商
  647. Kim Y, Remacle A, Chernov A, Liu H, Shubayev I, Lai C, et al. The MMP-9/TIMP-1 axis controls the status of differentiation and function of myelin-forming Schwann cells in nerve regeneration. PLoS ONE. 2012;7:e33664 pubmed 出版商
  648. Schneider L, d Adda di Fagagna F. Neural stem cells exposed to BrdU lose their global DNA methylation and undergo astrocytic differentiation. Nucleic Acids Res. 2012;40:5332-42 pubmed 出版商
  649. Lutz S, Raine C, Brosnan C. Loss of astrocyte connexins 43 and 30 does not significantly alter susceptibility or severity of acute experimental autoimmune encephalomyelitis in mice. J Neuroimmunol. 2012;245:8-14 pubmed 出版商
  650. Laux A, Delalande F, Mouheiche J, Stuber D, Van Dorsselaer A, Bianchi E, et al. Localization of endogenous morphine-like compounds in the mouse spinal cord. J Comp Neurol. 2012;520:1547-61 pubmed 出版商
  651. Krajewska M, You Z, Rong J, Kress C, Huang X, Yang J, et al. Neuronal deletion of caspase 8 protects against brain injury in mouse models of controlled cortical impact and kainic acid-induced excitotoxicity. PLoS ONE. 2011;6:e24341 pubmed 出版商
  652. Schira J, Gasis M, Estrada V, Hendricks M, Schmitz C, Trapp T, et al. Significant clinical, neuropathological and behavioural recovery from acute spinal cord trauma by transplantation of a well-defined somatic stem cell from human umbilical cord blood. Brain. 2012;135:431-46 pubmed 出版商
  653. Lewitus D, Landers J, Branch J, Smith K, Callegari G, Kohn J, et al. Biohybrid Carbon Nanotube/Agarose Fibers for Neural Tissue Engineering. Adv Funct Mater. 2011;21:2624-2632 pubmed
  654. Furr S, Chauhan V, Moerdyk Schauwecker M, Marriott I. A role for DNA-dependent activator of interferon regulatory factor in the recognition of herpes simplex virus type 1 by glial cells. J Neuroinflammation. 2011;8:99 pubmed 出版商
  655. Zhao L, Ma W, Fariss R, Wong W. Minocycline attenuates photoreceptor degeneration in a mouse model of subretinal hemorrhage microglial: inhibition as a potential therapeutic strategy. Am J Pathol. 2011;179:1265-77 pubmed 出版商
  656. Lewitus D, Smith K, Shain W, Bolikal D, Kohn J. The fate of ultrafast degrading polymeric implants in the brain. Biomaterials. 2011;32:5543-50 pubmed 出版商
  657. Chauhan V, Kluttz J, Bost K, Marriott I. Prophylactic and therapeutic targeting of the neurokinin-1 receptor limits neuroinflammation in a murine model of pneumococcal meningitis. J Immunol. 2011;186:7255-63 pubmed 出版商
  658. Laux A, Muller A, Miehe M, Dirrig Grosch S, Deloulme J, Delalande F, et al. Mapping of endogenous morphine-like compounds in the adult mouse brain: Evidence of their localization in astrocytes and GABAergic cells. J Comp Neurol. 2011;519:2390-416 pubmed 出版商
  659. Adori C, Ando R, Szekeres M, Gutknecht L, Kovacs G, Hunyady L, et al. Recovery and aging of serotonergic fibers after single and intermittent MDMA treatment in Dark Agouti rat. J Comp Neurol. 2011;519:2353-78 pubmed 出版商
  660. Chang C, Chen S, Lee T, Lee H, Chen S, Shyue S. Caveolin-1 deletion reduces early brain injury after experimental intracerebral hemorrhage. Am J Pathol. 2011;178:1749-61 pubmed 出版商
  661. Lewitus D, Smith K, Shain W, Kohn J. Ultrafast resorbing polymers for use as carriers for cortical neural probes. Acta Biomater. 2011;7:2483-91 pubmed 出版商
  662. Bloch J, Kaeser M, Sadeghi Y, Rouiller E, Redmond D, Brunet J. Doublecortin-positive cells in the adult primate cerebral cortex and possible role in brain plasticity and development. J Comp Neurol. 2011;519:775-89 pubmed 出版商
  663. Jinno S. Decline in adult neurogenesis during aging follows a topographic pattern in the mouse hippocampus. J Comp Neurol. 2011;519:451-66 pubmed 出版商
  664. Phares T, Marques C, Stohlman S, Hinton D, Bergmann C. Factors supporting intrathecal humoral responses following viral encephalomyelitis. J Virol. 2011;85:2589-98 pubmed 出版商
  665. Roltsch E, Holcomb L, Young K, Marks A, Zimmer D. PSAPP mice exhibit regionally selective reductions in gliosis and plaque deposition in response to S100B ablation. J Neuroinflammation. 2010;7:78 pubmed 出版商
  666. Wainwright D, Sengupta S, Han Y, Ulasov I, Lesniak M. The presence of IL-17A and T helper 17 cells in experimental mouse brain tumors and human glioma. PLoS ONE. 2010;5:e15390 pubmed 出版商
  667. Grupp L, Wolburg H, Mack A. Astroglial structures in the zebrafish brain. J Comp Neurol. 2010;518:4277-87 pubmed 出版商
  668. Schwartz C, Cheng A, Mughal M, Mattson M, Yao P. Clathrin assembly proteins AP180 and CALM in the embryonic rat brain. J Comp Neurol. 2010;518:3803-18 pubmed 出版商
  669. Moldrich R, Gobius I, Pollak T, Zhang J, Ren T, Brown L, et al. Molecular regulation of the developing commissural plate. J Comp Neurol. 2010;518:3645-61 pubmed 出版商
  670. Sekizawa S, Bechtold A, Tham R, Kott K, Hyde D, Joad J, et al. House-dust mite allergen and ozone exposure decreases histamine H3 receptors in the brainstem respiratory nuclei. Toxicol Appl Pharmacol. 2010;247:204-10 pubmed 出版商
  671. Trifunovic D, Dengler K, Michalakis S, Zrenner E, Wissinger B, Paquet Durand F. cGMP-dependent cone photoreceptor degeneration in the cpfl1 mouse retina. J Comp Neurol. 2010;518:3604-17 pubmed 出版商
  672. Yang H, Zhuo J, Chu J, Chinnici C, Pratico D. Amelioration of the Alzheimer's disease phenotype by absence of 12/15-lipoxygenase. Biol Psychiatry. 2010;68:922-9 pubmed 出版商
  673. DellaValle B, Hempel C, Kurtzhals J, Penkowa M. In vivo expression of neuroglobin in reactive astrocytes during neuropathology in murine models of traumatic brain injury, cerebral malaria, and autoimmune encephalitis. Glia. 2010;58:1220-7 pubmed 出版商
  674. Pang J, Gao F, Wu S. Light responses and morphology of bNOS-immunoreactive neurons in the mouse retina. J Comp Neurol. 2010;518:2456-74 pubmed 出版商
  675. VanBrocklin M, Robinson J, Lastwika K, Khoury J, Holmen S. Targeted delivery of NRASQ61R and Cre-recombinase to post-natal melanocytes induces melanoma in Ink4a/Arflox/lox mice. Pigment Cell Melanoma Res. 2010;23:531-41 pubmed 出版商
  676. Lepousez G, Csaba Z, Bernard V, Loudes C, Videau C, Lacombe J, et al. Somatostatin interneurons delineate the inner part of the external plexiform layer in the mouse main olfactory bulb. J Comp Neurol. 2010;518:1976-94 pubmed 出版商
  677. Vellema M, Van der Linden A, Gahr M. Area-specific migration and recruitment of new neurons in the adult songbird brain. J Comp Neurol. 2010;518:1442-59 pubmed 出版商
  678. Chauhan V, Furr S, Sterka D, Nelson D, Moerdyk Schauwecker M, Marriott I, et al. Vesicular stomatitis virus infects resident cells of the central nervous system and induces replication-dependent inflammatory responses. Virology. 2010;400:187-96 pubmed 出版商
  679. Moussaud S, Draheim H. A new method to isolate microglia from adult mice and culture them for an extended period of time. J Neurosci Methods. 2010;187:243-53 pubmed 出版商
  680. Wainwright D, Xin J, Mesnard N, Sanders V, Jones K. Toll-like receptor 2 and facial motoneuron survival after facial nerve axotomy. Neurosci Lett. 2010;471:10-4 pubmed 出版商
  681. Caron E, Sachot C, Prevot V, Bouret S. Distribution of leptin-sensitive cells in the postnatal and adult mouse brain. J Comp Neurol. 2010;518:459-76 pubmed 出版商
  682. Martín Ibáñez R, Crespo E, Urbán N, Sergent Tanguy S, Herranz C, Jaumot M, et al. Ikaros-1 couples cell cycle arrest of late striatal precursors with neurogenesis of enkephalinergic neurons. J Comp Neurol. 2010;518:329-51 pubmed 出版商
  683. Su J, Gorse K, Ramirez F, Fox M. Collagen XIX is expressed by interneurons and contributes to the formation of hippocampal synapses. J Comp Neurol. 2010;518:229-53 pubmed 出版商
  684. Santagata S, Maire C, Idbaih A, Geffers L, Correll M, Holton K, et al. CRX is a diagnostic marker of retinal and pineal lineage tumors. PLoS ONE. 2009;4:e7932 pubmed 出版商
  685. Wainwright D, Xin J, Mesnard N, Beahrs T, Politis C, Sanders V, et al. Exacerbation of facial motoneuron loss after facial nerve axotomy in CCR3-deficient mice. ASN Neuro. 2009;1:e00024 pubmed 出版商
  686. Wainwright D, Xin J, Mesnard N, Politis C, Sanders V, Jones K. Effects of facial nerve axotomy on Th2- and Th1-associated chemokine expression in the facial motor nucleus of wild-type and presymptomatic mSOD1 mice. J Neuroimmunol. 2009;216:66-75 pubmed 出版商
  687. Gritti A, Dal Molin M, Foroni C, Bonfanti L. Effects of developmental age, brain region, and time in culture on long-term proliferation and multipotency of neural stem cell populations. J Comp Neurol. 2009;517:333-49 pubmed 出版商
  688. Rastegar M, Hotta A, Pasceri P, Makarem M, Cheung A, Elliott S, et al. MECP2 isoform-specific vectors with regulated expression for Rett syndrome gene therapy. PLoS ONE. 2009;4:e6810 pubmed 出版商
  689. Liu C, Fraser S, Koos D. Grueneberg ganglion olfactory subsystem employs a cGMP signaling pathway. J Comp Neurol. 2009;516:36-48 pubmed 出版商
  690. Sultan Styne K, Toledo R, Walker C, Kallkopf A, Ribak C, Guthrie K. Long-term survival of olfactory sensory neurons after target depletion. J Comp Neurol. 2009;515:696-710 pubmed 出版商
  691. Leonard B, Mastroeni D, Grover A, Liu Q, Yang K, Gao M, et al. Subventricular zone neural progenitors from rapid brain autopsies of elderly subjects with and without neurodegenerative disease. J Comp Neurol. 2009;515:269-94 pubmed 出版商
  692. Gil Perotin S, Duran Moreno M, Belzunegui S, Luquin M, Garcia Verdugo J. Ultrastructure of the subventricular zone in Macaca fascicularis and evidence of a mouse-like migratory stream. J Comp Neurol. 2009;514:533-54 pubmed 出版商
  693. Jakovcevski I, Siering J, Hargus G, Karl N, Hoelters L, Djogo N, et al. Close homologue of adhesion molecule L1 promotes survival of Purkinje and granule cells and granule cell migration during murine cerebellar development. J Comp Neurol. 2009;513:496-510 pubmed 出版商
  694. Toyoshima M, Sakurai K, Shimazaki K, Takeda Y, Nakamoto M, Serizawa S, et al. Preferential localization of neural cell recognition molecule NB-2 in developing glutamatergic neurons in the rat auditory brainstem. J Comp Neurol. 2009;513:349-62 pubmed 出版商
  695. Franz C, Federici T, Yang J, Backus C, Oh S, Teng Q, et al. Intraspinal cord delivery of IGF-I mediated by adeno-associated virus 2 is neuroprotective in a rat model of familial ALS. Neurobiol Dis. 2009;33:473-81 pubmed 出版商
  696. Christensen J, Simonsen S, Fenger C, Sørensen M, Moos T, Christensen J, et al. Fulminant lymphocytic choriomeningitis virus-induced inflammation of the CNS involves a cytokine-chemokine-cytokine-chemokine cascade. J Immunol. 2009;182:1079-87 pubmed
  697. Herring A, Ambrée O, Tomm M, Habermann H, Sachser N, Paulus W, et al. Environmental enrichment enhances cellular plasticity in transgenic mice with Alzheimer-like pathology. Exp Neurol. 2009;216:184-92 pubmed 出版商
  698. Ji B, Maeda J, Sawada M, Ono M, Okauchi T, Inaji M, et al. Imaging of peripheral benzodiazepine receptor expression as biomarkers of detrimental versus beneficial glial responses in mouse models of Alzheimer's and other CNS pathologies. J Neurosci. 2008;28:12255-67 pubmed 出版商
  699. Puverel S, Nakatani H, Parras C, Soussi Yanicostas N. Prokineticin receptor 2 expression identifies migrating neuroblasts and their subventricular zone transient-amplifying progenitors in adult mice. J Comp Neurol. 2009;512:232-42 pubmed 出版商
  700. Yang Z, You Y, Levison S. Neonatal hypoxic/ischemic brain injury induces production of calretinin-expressing interneurons in the striatum. J Comp Neurol. 2008;511:19-33 pubmed 出版商
  701. Tripathi R, McTigue D. Chronically increased ciliary neurotrophic factor and fibroblast growth factor-2 expression after spinal contusion in rats. J Comp Neurol. 2008;510:129-44 pubmed 出版商
  702. Cebulla C, Jockovich M, Pina Y, Boutrid H, Alegret A, Kulak A, et al. Basic fibroblast growth factor impact on retinoblastoma progression and survival. Invest Ophthalmol Vis Sci. 2008;49:5215-21 pubmed 出版商
  703. Hoff S, Zeller F, Von Weyhern C, Wegner M, Schemann M, Michel K, et al. Quantitative assessment of glial cells in the human and guinea pig enteric nervous system with an anti-Sox8/9/10 antibody. J Comp Neurol. 2008;509:356-71 pubmed 出版商
  704. Benton R, Maddie M, Minnillo D, Hagg T, Whittemore S. Griffonia simplicifolia isolectin B4 identifies a specific subpopulation of angiogenic blood vessels following contusive spinal cord injury in the adult mouse. J Comp Neurol. 2008;507:1031-52 pubmed
  705. Tang X, Wang Q, Koike M, Cheng D, Goris M, Blankenberg F, et al. Monitoring the protective effects of minocycline treatment with radiolabeled annexin V in an experimental model of focal cerebral ischemia. J Nucl Med. 2007;48:1822-8 pubmed
  706. Blakqori G, Delhaye S, Habjan M, Blair C, S nchez Vargas I, Olson K, et al. La Crosse bunyavirus nonstructural protein NSs serves to suppress the type I interferon system of mammalian hosts. J Virol. 2007;81:4991-9 pubmed 出版商
  707. Chen L, Zhang J, Kwok Yan Shum D, Chan Y. Localization of nerve growth factor, neurotrophin-3, and glial cell line-derived neurotrophic factor in nestin-expressing reactive astrocytes in the caudate-putamen of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated C57/Bl mice. J Comp Neurol. 2006;497:898-909 pubmed
  708. Talos D, Fishman R, Park H, Folkerth R, Follett P, Volpe J, et al. Developmental regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. I. Rodent cerebral white matter and cortex. J Comp Neurol. 2006;497:42-60 pubmed
  709. Wenisch S, Trinkaus K, Hild A, Hose D, Heiss C, Alt V, et al. Immunochemical, ultrastructural and electrophysiological investigations of bone-derived stem cells in the course of neuronal differentiation. Bone. 2006;38:911-21 pubmed
  710. Herber D, Maloney J, Roth L, Freeman M, Morgan D, Gordon M. Diverse microglial responses after intrahippocampal administration of lipopolysaccharide. Glia. 2006;53:382-91 pubmed
  711. Wicher G, Larsson M, Rask L, Aldskogius H. Low-density lipoprotein receptor-related protein (LRP)-2/megalin is transiently expressed in a subpopulation of neural progenitors in the embryonic mouse spinal cord. J Comp Neurol. 2005;492:123-31 pubmed
  712. Herber D, Roth L, Wilson D, Wilson N, Mason J, Morgan D, et al. Time-dependent reduction in Abeta levels after intracranial LPS administration in APP transgenic mice. Exp Neurol. 2004;190:245-53 pubmed
  713. Apicelli A, Uhlmann E, Baldwin R, Ding H, Nagy A, Guha A, et al. Role of the Rap1 GTPase in astrocyte growth regulation. Glia. 2003;42:225-34 pubmed
  714. Uhlmann E, Apicelli A, Baldwin R, Burke S, Bajenaru M, Onda H, et al. Heterozygosity for the tuberous sclerosis complex (TSC) gene products results in increased astrocyte numbers and decreased p27-Kip1 expression in TSC2+/- cells. Oncogene. 2002;21:4050-9 pubmed
  715. Seitz A, Aglow E, Heber Katz E. Recovery from spinal cord injury: a new transection model in the C57Bl/6 mouse. J Neurosci Res. 2002;67:337-45 pubmed
  716. Penkowa M, Carrasco J, Giralt M, Moos T, Hidalgo J. CNS wound healing is severely depressed in metallothionein I- and II-deficient mice. J Neurosci. 1999;19:2535-45 pubmed
  717. Satoh J, Yukitake M, Kuroda Y. Constitutive and heat-inducible expression of HSP105 in neurons and glial cells in culture. Neuroreport. 1998;9:2977-83 pubmed
  718. Haring H, Akamine B, Habermann R, Koziol J, del Zoppo G. Distribution of integrin-like immunoreactivity on primate brain microvasculature. J Neuropathol Exp Neurol. 1996;55:236-45 pubmed
  719. Balasingam V, Yong V. Attenuation of astroglial reactivity by interleukin-10. J Neurosci. 1996;16:2945-55 pubmed