这是一篇来自已证抗体库的有关人类 GFAP的综述,是根据1126篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合GFAP 抗体。
GFAP 同义词: ALXDRD; glial fibrillary acidic protein

艾博抗(上海)贸易有限公司
鸡 多克隆
  • 免疫组化; 大鼠; 1:3000; 图 1b
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在大鼠样品上浓度为1:3000 (图 1b). J Histochem Cytochem (2018) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:5000; 图 2
  • immunohistochemistry - free floating section; 人类; 1:5000; 图 4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:5000 (图 2) 和 被用于immunohistochemistry - free floating section在人类样品上浓度为1:5000 (图 4). Neurosci Res (2018) ncbi
鸡 多克隆
  • 免疫组化; 人类; 1:1000; 图 1a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在人类样品上浓度为1:1000 (图 1a). Am J Physiol Gastrointest Liver Physiol (2017) ncbi
鸡 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:500; 图 3d
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500 (图 3d). J Neurosci (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:4000; 图 4b
艾博抗(上海)贸易有限公司 GFAP抗体(Millipore, AB7260)被用于被用于免疫印迹在小鼠样品上浓度为1:4000 (图 4b). Biochem Biophys Res Commun (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:50; 图 1c
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫细胞化学在大鼠样品上浓度为1:50 (图 1c). Oncol Lett (2017) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:1600; 图 2a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫细胞化学在小鼠样品上浓度为1:1600 (图 2a). Invest Ophthalmol Vis Sci (2017) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司 GFAP抗体(Sigma, AB7260)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 1b). Nat Commun (2017) ncbi
鸡 多克隆
  • 免疫组化; 大鼠; 1:200; 图 6
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在大鼠样品上浓度为1:200 (图 6). Glia (2017) ncbi
山羊 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在大鼠样品上浓度为1:200 (图 4a). J Headache Pain (2017) ncbi
兔 单克隆(EP672Y)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7f
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab33922)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图 7f). Ann Neurol (2017) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:500; 图 1f
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在人类样品上浓度为1:500 (图 1f). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1c
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, AB7260)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图 1c). Mol Psychiatry (2018) ncbi
鸡 多克隆
  • 免疫组化; 人类; 1:500; 图 2d
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在人类样品上浓度为1:500 (图 2d). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(2A5)
  • immunohistochemistry - free floating section; 大鼠; 1:2000; 图 6
  • 免疫印迹; 大鼠; 1:1000; 图 6
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4648)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:2000 (图 6) 和 被用于免疫印迹在大鼠样品上浓度为1:1000 (图 6). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1c
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图 1c). PLoS ONE (2016) ncbi
小鼠 单克隆(2A5)
  • immunohistochemistry - free floating section; 小鼠; 图 2f
艾博抗(上海)贸易有限公司 GFAP抗体(abcam, ab4648)被用于被用于immunohistochemistry - free floating section在小鼠样品上 (图 2f). Neuroimage (2017) ncbi
山羊 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 7g
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4d
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图 7g) 和 被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 4d). Sci Rep (2016) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 图 s4d
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于被用于免疫细胞化学在人类样品上 (图 s4d). Nature (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:50
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫细胞化学在大鼠样品上浓度为1:50 和 被用于免疫细胞化学在人类样品上. Mol Med Rep (2016) ncbi
鸡 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:200; 图 2
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:200 (图 2). Cell Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 8
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 7260)被用于被用于免疫印迹在小鼠样品上 (图 8). Mol Vis (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:50; 图 1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 7260)被用于被用于免疫细胞化学在大鼠样品上浓度为1:50 (图 1). Oncol Lett (2016) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1:600; 表 1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, Ab53554)被用于被用于免疫组化在小鼠样品上浓度为1:600 (表 1). Int J Mol Sci (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500 (图 4). Acta Neuropathol Commun (2016) ncbi
兔 多克隆
  • 流式细胞仪; 小鼠; 1:100; 图 2
  • 免疫印迹; 小鼠; 1:100; 图 2
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab16997)被用于被用于流式细胞仪在小鼠样品上浓度为1:100 (图 2) 和 被用于免疫印迹在小鼠样品上浓度为1:100 (图 2). Dis Model Mech (2016) ncbi
小鼠 单克隆(GF5)
  • 免疫组化; 小鼠; 1:1000; 图 1b
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 10,062)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 1b). Mol Ther Nucleic Acids (2016) ncbi
兔 单克隆(EP672Y)
  • 免疫细胞化学; 人类; 1:500; 图 1g
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab33922)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 1g). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫细胞化学在小鼠样品上浓度为1:1000 (图 5a). Dev Neurobiol (2017) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 1:400; 图 1s1
艾博抗(上海)贸易有限公司 GFAP抗体(abcam, 54554)被用于被用于免疫细胞化学在人类样品上浓度为1:400 (图 1s1). elife (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化; 小鼠; 1:50; 图 3
  • 免疫组化; 大鼠; 1:50; 图 4
艾博抗(上海)贸易有限公司 GFAP抗体(AbCam, Ab4648)被用于被用于免疫组化在小鼠样品上浓度为1:50 (图 3) 和 被用于免疫组化在大鼠样品上浓度为1:50 (图 4). Neuroscience (2016) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-石蜡切片; 大鼠; 图 1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于被用于免疫组化-石蜡切片在大鼠样品上 (图 1). Mol Brain (2016) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 6
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 (图 6). PLoS ONE (2016) ncbi
鸡 多克隆
  • 免疫组化; domestic ferret; 1:500; 图 9d
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在domestic ferret样品上浓度为1:500 (图 9d). Shock (2016) ncbi
山羊 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于被用于免疫印迹在大鼠样品上浓度为1:500 (图 4). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:500 (图 1b). Front Cell Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:5000; 图 4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:5000 (图 4). Sci Rep (2016) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 6
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 6). Front Cell Neurosci (2016) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 1g
  • 免疫细胞化学; 小鼠; 1:2000; 图 1l
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:2000 (图 1g) 和 被用于免疫细胞化学在小鼠样品上浓度为1:2000 (图 1l). Nat Commun (2016) ncbi
鸡 多克隆
  • 流式细胞仪; 大鼠; 图 6
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于流式细胞仪在大鼠样品上 (图 6). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (图 1). Aging (Albany NY) (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:5000; 图 3
  • 免疫印迹; 大鼠; 1:20,000; 图 3
艾博抗(上海)贸易有限公司 GFAP抗体(abcam, ab7260)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:5000 (图 3) 和 被用于免疫印迹在大鼠样品上浓度为1:20,000 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化-冰冻切片; 大鼠; 1:300; 图 5f
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4648)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:300 (图 5f). Mol Neurobiol (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 ev1c
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫印迹在小鼠样品上浓度为1:5000 (图 ev1c). EMBO Mol Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫印迹在小鼠样品上 (图 1). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:2000; 图 1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab16997)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:2000 (图 1). Mol Med Rep (2016) ncbi
山羊 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000 (图 4). Proc Natl Acad Sci U S A (2016) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 表 1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (表 1). Cell Mol Gastroenterol Hepatol (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图 6a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, AB7260)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 6a). PLoS ONE (2015) ncbi
小鼠 单克隆(2A5)
  • 免疫组化; 小鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4648)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 2). Mol Ther (2016) ncbi
鸡 多克隆
  • 免疫细胞化学; 大鼠; 1:1000; 图 6c
  • 免疫印迹; 大鼠; 1:10,000; 图 1b
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫细胞化学在大鼠样品上浓度为1:1000 (图 6c) 和 被用于免疫印迹在大鼠样品上浓度为1:10,000 (图 1b). PLoS ONE (2015) ncbi
小鼠 单克隆(2A5)
  • 免疫组化; 人类; 1:100; 图 2c
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 2A5)被用于被用于免疫组化在人类样品上浓度为1:100 (图 2c). Oncotarget (2016) ncbi
小鼠 单克隆(GF5)
  • 免疫组化; 人类; 1:100; 图 2
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于被用于免疫组化在人类样品上浓度为1:100 (图 2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 4). Gene Ther (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s10
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 s10). Brain (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1500; 图 2
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫印迹在人类样品上浓度为1:1500 (图 2). Stem Cell Res (2015) ncbi
鸡 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:2000; 图 3
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:2000 (图 3). Front Mol Neurosci (2015) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 3
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:100 (图 3). Mol Brain (2015) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 图 6.d,e
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样品上 (图 6.d,e). Sci Signal (2015) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-冰冻切片; 小鼠; 图 2
  • 免疫细胞化学; 小鼠; 图 4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, GF5)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 2) 和 被用于免疫细胞化学在小鼠样品上 (图 4). Neuroscience (2015) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-冰冻切片; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 GFAP抗体(abcam, ab10062)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 2a). PLoS ONE (2015) ncbi
小鼠 单克隆(GF5)
  • 免疫印迹; 小鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 1). Nat Neurosci (2015) ncbi
小鼠 单克隆(2A5)
  • 免疫组化-冰冻切片; 大鼠; 图 4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4648)被用于被用于免疫组化-冰冻切片在大鼠样品上 (图 4). Mol Pain (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 图 3
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在大鼠样品上 (图 3). J Korean Med Sci (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(abcam, ab7260)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500. Iran J Basic Med Sci (2015) ncbi
小鼠 单克隆(2A5)
  • 免疫细胞化学; 人类; 1:100; 图 3
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4648)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 3). PLoS ONE (2015) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:400
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:400. J Histochem Cytochem (2015) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300
  • 免疫细胞化学; 小鼠; 1:300
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:300 和 被用于免疫细胞化学在小鼠样品上浓度为1:300. Mol Cell Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 7260)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 3). Hum Mol Genet (2015) ncbi
鸡 多克隆
  • 免疫细胞化学; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(AbCam, ab4674)被用于被用于免疫细胞化学在大鼠样品上浓度为1:1000. Exp Eye Res (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:5000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样品上浓度为1:5000. Shock (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 2
艾博抗(上海)贸易有限公司 GFAP抗体(abcam, ab7260)被用于被用于免疫组化在小鼠样品上 (图 2). Oncotarget (2015) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. Cereb Cortex (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样品上浓度为1:500. J Assoc Res Otolaryngol (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在大鼠样品上浓度为1:1000. Biol Psychiatry (2015) ncbi
小鼠 单克隆(GF5)
  • 免疫组化; 小鼠; 1:100; 图 s2a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 s2a). Nat Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 1.23.5
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样品上 (图 1.23.5). Curr Protoc Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, AB7260)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. J Neurosci (2015) ncbi
小鼠 单克隆(GF5)
  • immunohistochemistry - free floating section; 大鼠; 1:500
  • 免疫组化; 大鼠; 1:500
  • 免疫印迹; 大鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:500, 被用于免疫组化在大鼠样品上浓度为1:500 和 被用于免疫印迹在大鼠样品上浓度为1:500. Biochim Biophys Acta (2015) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫细胞化学在人类样品上浓度为1:100. Mol Med Rep (2015) ncbi
山羊 多克隆
  • 免疫印迹; 小鼠; 图 3a
艾博抗(上海)贸易有限公司 GFAP抗体(abcam, ab53554)被用于被用于免疫印迹在小鼠样品上 (图 3a). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在人类样品上浓度为1:500. Tumour Biol (2015) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 7260)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500. Ann Neurol (2015) ncbi
小鼠 单克隆(GF5)
  • 免疫组化; 小鼠; 1:250; 图 5
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于被用于免疫组化在小鼠样品上浓度为1:250 (图 5). Age (Dordr) (2015) ncbi
小鼠 单克隆(GF5)
  • 免疫细胞化学; 人类; 1:100; 图 1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 1). J Neurosci (2015) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于被用于免疫组化在小鼠样品上浓度为1:500. Nature (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司 GFAP抗体(abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 5). Nat Cell Biol (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 人类; 图 3
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在人类样品上 (图 3). Transl Psychiatry (2015) ncbi
鸡 多克隆
  • 免疫组化; 大鼠; 图 4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在大鼠样品上 (图 4). Mol Ther (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000
  • 免疫印迹; 大鼠; 1:5000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 7260)被用于被用于免疫印迹在人类样品上浓度为1:5000 和 被用于免疫印迹在大鼠样品上浓度为1:5000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样品上 和 被用于免疫印迹在小鼠样品上. Stem Cells (2015) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:500
  • 免疫组化; 大鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样品上浓度为1:500 和 被用于免疫组化在大鼠样品上浓度为1:500. J Neurotrauma (2015) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样品上浓度为1:500. Neurobiol Dis (2015) ncbi
鸡 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:200
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:200. Cereb Cortex (2015) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 人类; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:500. J Comp Neurol (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫细胞化学在小鼠样品上. Glia (2015) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:3000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫细胞化学在人类样品上浓度为1:3000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1 ul/ml; 图 2
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样品上浓度为1 ul/ml (图 2). Methods Mol Biol (2014) ncbi
山羊 多克隆
  • 免疫印迹; 大鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于被用于免疫印迹在大鼠样品上浓度为1:500. PLoS ONE (2014) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样品上浓度为1:1000. Neurobiol Dis (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫细胞化学在小鼠样品上. PLoS Genet (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-冰冻切片; 小鼠
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 10062)被用于被用于免疫组化-冰冻切片在小鼠样品上. Mol Cell Neurosci (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 牛; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫细胞化学在牛样品上浓度为1:500. AAPS J (2014) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:1000
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在人类样品上浓度为1:1000 和 被用于免疫印迹在人类样品上浓度为1:1000. J Neuroimmunol (2014) ncbi
山羊 多克隆
  • 免疫组化; 大鼠; 1:2000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于被用于免疫组化在大鼠样品上浓度为1:2000. Front Synaptic Neurosci (2014) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Neurotrauma (2014) ncbi
鸡 多克隆
  • immunohistochemistry - free floating section; 大鼠; 6.6 ug/ml
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为6.6 ug/ml. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样品上浓度为1:1000. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样品上浓度为1:500. Cell Mol Neurobiol (2014) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500. Acta Neuropathol (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab16997)被用于被用于免疫组化-冰冻切片在大鼠样品上. PLoS ONE (2013) ncbi
山羊 多克隆
  • 免疫组化-冰冻切片; 人类; 1:200
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:200. Stem Cells Dev (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; scFv; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, Ab7260)被用于被用于免疫组化-冰冻切片在scFv样品上浓度为1:1000. Hum Mol Genet (2014) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-石蜡切片; 小鼠; 1:250
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:250. J Innate Immun (2014) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-冰冻切片; 大鼠; 1:500
  • 免疫印迹; 大鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500 和 被用于免疫印迹在大鼠样品上浓度为1:500. Exp Neurol (2013) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样品上浓度为1:1000. Hum Mol Genet (2013) ncbi
小鼠 单克隆(2A5)
  • 免疫组化; 大鼠; 1:200
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4648)被用于被用于免疫组化在大鼠样品上浓度为1:200. BMC Neurosci (2013) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Neuroscience (2013) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-石蜡切片; 小鼠; 1:250
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:250. Mol Neurodegener (2012) ncbi
兔 多克隆
  • 其他; 猪; 1:500; 图 2a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于其他在猪样品上浓度为1:500 (图 2a). Electrophoresis (2012) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-石蜡切片; 小鼠; 1:250
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:250. J Neuroimmunol (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 4). PLoS ONE (2011) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:600
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:600. J Comp Neurol (2009) ncbi
赛默飞世尔
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 1c
  • 免疫印迹; 小鼠; 图 1d
赛默飞世尔 GFAP抗体(Thermo Fisher, 13-0300)被用于被用于免疫组化在小鼠样品上 (图 1c) 和 被用于免疫印迹在小鼠样品上 (图 1d). J Neurochem (2018) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫细胞化学; 小鼠; 图 s1b
赛默飞世尔 GFAP抗体(Thermo, MA5-12023)被用于被用于免疫细胞化学在小鼠样品上 (图 s1b). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫印迹; 小鼠; 1:500; 图 s1b
赛默飞世尔 GFAP抗体(ThermoFischer, 13-0300)被用于被用于免疫印迹在小鼠样品上浓度为1:500 (图 s1b). Invest Ophthalmol Vis Sci (2017) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 S2G
赛默飞世尔 GFAP抗体(invitrogen, PA1-10019)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 S2G). PLoS ONE (2017) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 图 7a
赛默飞世尔 GFAP抗体(ThermoFisher, PA1-10004)被用于被用于免疫组化在小鼠样品上 (图 7a). Cell Stem Cell (2017) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 5e
赛默飞世尔 GFAP抗体(Invitrogen, MA5-12023)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:500 (图 5e). Nature (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1f
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 1f). Nature (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫印迹; 小鼠; 1:500; 图 s1a
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于被用于免疫印迹在小鼠样品上浓度为1:500 (图 s1a). J Cell Sci (2017) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 2g
赛默飞世尔 GFAP抗体(Thermo Fischer Scientific, 131-17719)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400 (图 2g). Mediators Inflamm (2016) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫细胞化学; Epinephelus; 图 1a
赛默飞世尔 GFAP抗体(Thermo Fisher Scientific, MA5-12023)被用于被用于免疫细胞化学在Epinephelus样品上 (图 1a). Dev Comp Immunol (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 小鼠; 1:1000; 图 3
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫细胞化学在小鼠样品上浓度为1:1000 (图 3). J Vis Exp (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 8m
赛默飞世尔 GFAP抗体(Zymed, 2.2B10)被用于被用于免疫组化在小鼠样品上 (图 8m). J Neurosci (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6d
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 6d). PLoS ONE (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (表 1). Glia (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 4a
赛默飞世尔 GFAP抗体(生活技术, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:250 (图 4a). Glia (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:500; 表 1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样品上浓度为1:500 (表 1). J Neurovirol (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:5000; 图 5a
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样品上浓度为1:5000 (图 5a). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 6b
赛默飞世尔 GFAP抗体(ThermoFisher Scientific, PA3-16727)被用于被用于免疫细胞化学在人类样品上浓度为1:1000 (图 6b). Dev Growth Differ (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 人类; 图 1g
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫细胞化学在人类样品上 (图 1g). Neuroscience (2016) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化; scFv; 1:1000; 图 7b
赛默飞世尔 GFAP抗体(分子探针, A-21294)被用于被用于免疫组化在scFv样品上浓度为1:1000 (图 7b). Neuroscience (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5a
赛默飞世尔 GFAP抗体(Zymed, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图 5a). J Neuroinflammation (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 2
赛默飞世尔 GFAP抗体(生活技术, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:400 (图 2). J Neuroinflammation (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 7b
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于免疫组化在小鼠样品上 (图 7b). Neuroimage (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 3). Acta Neuropathol Commun (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:500; 图 1f
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 1f). Science (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 表 1
赛默飞世尔 GFAP抗体(Thermo Fisher, PA1-9565)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (表 1). J Comp Neurol (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 图 3a
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 3a). Biol Cell (2016) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化; 小鼠; 1:2000; 图 2C
赛默飞世尔 GFAP抗体(Thermo, MA5-12023)被用于被用于免疫组化在小鼠样品上浓度为1:2000 (图 2C). Sci Rep (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:2000; 表 1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样品上浓度为1:2000 (表 1). J Comp Neurol (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s2
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 s2). Nature (2016) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化; 小鼠; 1:250; 图 3f
赛默飞世尔 GFAP抗体(Invitrogen, A21282)被用于被用于免疫组化在小鼠样品上浓度为1:250 (图 3f). Neuroscience (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 小鼠; 图 1
赛默飞世尔 GFAP抗体(生活技术, 13-0300)被用于被用于免疫细胞化学在小鼠样品上 (图 1). Proteomics (2016) ncbi
鸡 多克隆
  • immunohistochemistry - free floating section; 大鼠; 1:2000; 图 4
赛默飞世尔 GFAP抗体(Thermo Scientific, PA1-10004)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:2000 (图 4). J Neurochem (2016) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛默飞世尔 GFAP抗体(Thermo Scientific, MS-1376)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4
赛默飞世尔 GFAP抗体(Thermo Fisher, MA5-12023)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 4). Oncol Lett (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 2). J Neuroinflammation (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 GFAP抗体(Pierce, PA3-16727)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 6) 和 被用于免疫印迹在小鼠样品上 (图 4). J Neurochem (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图 3). Neuroscience (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 人类; 图 3f
赛默飞世尔 GFAP抗体(Invitrogen, GA5)被用于被用于免疫组化-石蜡切片在人类样品上 (图 3f). Sci Rep (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1c
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 1c). Neurobiol Dis (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 7
赛默飞世尔 GFAP抗体(Pierce, PA1-10019)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 7). Neuroscience (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:6000; 图 1
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:6000 (图 1). J Neurochem (2016) ncbi
小鼠 单克隆(S.880.0)
  • 免疫细胞化学; 人类; 图 7
赛默飞世尔 GFAP抗体(生活技术, MA5-15086)被用于被用于免疫细胞化学在人类样品上 (图 7). Sci Rep (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 图 1a
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 1a). Mol Neurobiol (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 小鼠
赛默飞世尔 GFAP抗体(生活技术, 13-0300)被用于被用于免疫细胞化学在小鼠样品上. Biochem J (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 7
赛默飞世尔 GFAP抗体(Thermo Scientific, RB-087-A)被用于被用于免疫组化在小鼠样品上 (图 7). Neural Dev (2015) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 3
  • 免疫印迹; 小鼠; 1:5000; 图 7
赛默飞世尔 GFAP抗体(Thermo Scientific, MA5-12023)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:2000 (图 3) 和 被用于免疫印迹在小鼠样品上浓度为1:5000 (图 7). Anesthesiology (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:200
赛默飞世尔 GFAP抗体(生活技术, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200. Ann Clin Transl Neurol (2015) ncbi
小鼠 单克隆(131-17719)
  • 免疫细胞化学; 人类; 1:500; 图 3
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 3). J Tissue Eng Regen Med (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:2000
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于被用于免疫组化在小鼠样品上浓度为1:2000. J Neurosci (2015) ncbi
小鼠 单克隆(131-17719)
  • immunohistochemistry - free floating section; 大鼠; 1:400
赛默飞世尔 GFAP抗体(生活技术, 131-17719)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:400. Free Radic Biol Med (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:300
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:300. Glia (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1a
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图 1a). Nat Neurosci (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:1000
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样品上浓度为1:1000. Neuroscience (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; ready-to-use
赛默飞世尔 GFAP抗体(LabVision, RB-087-R7)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为ready-to-use. Nutr Neurosci (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:500
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500. Genes Cancer (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 人类; 1:1000
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫细胞化学在人类样品上浓度为1:1000. J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 GFAP抗体(Lab Vision, RB-087-R7)被用于被用于免疫组化-石蜡切片在人类样品上. Korean J Parasitol (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛默飞世尔 GFAP抗体(thermo, pa3-16727)被用于被用于免疫印迹在大鼠样品上. Biochim Biophys Acta (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:1000; 图 2
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 2). Stroke (2015) ncbi
小鼠 单克隆(S.880.0)
  • immunohistochemistry - free floating section; 小鼠; 1:1000
赛默飞世尔 GFAP抗体(Millipore, MA5-15086)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. Curr Gene Ther (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样品上浓度为1:200. Acta Neuropathol (2015) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化-石蜡切片; 小鼠; 图 5
赛默飞世尔 GFAP抗体(Thermo, ASTRO6)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 5). PLoS ONE (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 图 s1c
赛默飞世尔 GFAP抗体(生活技术, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 s1c). EMBO Mol Med (2015) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化-石蜡切片; 大鼠
赛默飞世尔 GFAP抗体(Lab Vision, MS-1376-P)被用于被用于免疫组化-石蜡切片在大鼠样品上. Int J Stem Cells (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图 5
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 5). PLoS ONE (2014) ncbi
小鼠 单克隆(131-17719)
  • immunohistochemistry - free floating section; 小鼠; 1:600
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:600. Cereb Cortex (2015) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-冰冻切片; 小鼠; 5 ug/ml
赛默飞世尔 GFAP抗体(Invitrogen, A21294)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为5 ug/ml. J Virol (2014) ncbi
小鼠 单克隆(131-17719)
  • 免疫细胞化学; 小鼠; 1:400; 图 2
赛默飞世尔 GFAP抗体(生活技术, A21282)被用于被用于免疫细胞化学在小鼠样品上浓度为1:400 (图 2). J Neuroinflammation (2014) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 大鼠; 1:5000
赛默飞世尔 GFAP抗体(ThermoScientific, PA3-16727)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:5000. Pain (2014) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-石蜡切片; 人类; 图 8
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于被用于免疫组化-石蜡切片在人类样品上 (图 8). J Exp Med (2014) ncbi
小鼠 单克隆(S.880.0)
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔 GFAP抗体(Thermo Sci., MA5-15086)被用于被用于免疫印迹在小鼠样品上浓度为1:2000. J Neurosci Res (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图 s1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 s1). Stem Cells Dev (2014) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-冰冻切片; 大鼠; 1:200
赛默飞世尔 GFAP抗体(生活技术, 131-17719)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200. Mar Drugs (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠
赛默飞世尔 GFAP抗体(Neomarkers, RB-087)被用于被用于免疫组化在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:500
赛默飞世尔 GFAP抗体(Thermo Scientific, PA1-9565)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:500. Acta Histochem (2014) ncbi
小鼠 单克隆(GFA-02)
  • 流式细胞仪; 小鼠
赛默飞世尔 GFAP抗体(Pierce, MA1-35376)被用于被用于流式细胞仪在小鼠样品上. Sci Rep (2014) ncbi
大鼠 单克隆(2.2B10)
赛默飞世尔 GFAP抗体(Invitrogen, 12-0300)被用于. J Immunol (2014) ncbi
小鼠 单克隆(131-17719)
  • 免疫印迹; 大鼠
赛默飞世尔 GFAP抗体(生活技术, A-21282)被用于被用于免疫印迹在大鼠样品上. Neurobiol Aging (2014) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化; Styela clava; 1:500
赛默飞世尔 GFAP抗体(Invitrogen, A-21282)被用于被用于免疫组化在Styela clava样品上浓度为1:500. Acta Biomater (2014) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 4
赛默飞世尔 GFAP抗体(Life Technologies Corporation, 131-17719)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200 (图 4). J Pain (2013) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:500
赛默飞世尔 GFAP抗体(Thermo Fisher Scientific , PA1-10004)被用于被用于免疫组化在小鼠样品上浓度为1:500. Genes Brain Behav (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫印迹; 小鼠
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样品上 和 被用于免疫印迹在小鼠样品上. Genes Cells (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 GFAP抗体(生活技术, 13-0300)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Exp Neurol (2013) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化; 大鼠; 1:500; 图 3
赛默飞世尔 GFAP抗体(Invitrogen, A-21282)被用于被用于免疫组化在大鼠样品上浓度为1:500 (图 3). Biomaterials (2013) ncbi
小鼠 单克隆(131-17719)
  • 免疫印迹; 人类; 1:2000
赛默飞世尔 GFAP抗体(Invitrogen, A-21282)被用于被用于免疫印迹在人类样品上浓度为1:2000. J Neurochem (2013) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 GFAP抗体(Invitrogen, A-21295)被用于被用于免疫组化-石蜡切片在小鼠样品上. Invest Ophthalmol Vis Sci (2013) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:50 (图 1). Neurobiol Dis (2013) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 图 5
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 5). J Virol (2013) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化; 大鼠; 1:200
赛默飞世尔 GFAP抗体(分子探针, 131-17719)被用于被用于免疫组化在大鼠样品上浓度为1:200. Mar Drugs (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图 1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 1). PLoS ONE (2012) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200
赛默飞世尔 GFAP抗体(Neomarkers, RB-087-A1)被用于被用于免疫组化在小鼠样品上浓度为1:200. PLoS ONE (2012) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-冰冻切片; 小鼠; 图 5
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 5). Clin Cancer Res (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:250; 图 2
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于被用于免疫组化在小鼠样品上浓度为1:250 (图 2). Endocrinology (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 s1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:250 (图 s1). Neurosci Lett (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 2
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 2) 和 被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 (图 2). Neuropathol Appl Neurobiol (2013) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 2). J Neuroimmunol (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 大鼠; 图 5
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在大鼠样品上 (图 5). Adv Funct Mater (2011) ncbi
小鼠 单克隆(131-17719)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于被用于流式细胞仪在小鼠样品上 (图 3). J Neuroinflammation (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 图 5
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 5). Am J Pathol (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 人类; 1:200; 图 4
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在人类样品上浓度为1:200 (图 4). Biomaterials (2011) ncbi
小鼠 单克隆(131-17719)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 GFAP抗体(Invitrogen, clone 131?C17719)被用于被用于流式细胞仪在小鼠样品上 (图 3). J Immunol (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 人类; 1:400
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于免疫组化在人类样品上浓度为1:400. Am J Pathol (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 大鼠; 1:200; 图 7
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在大鼠样品上浓度为1:200 (图 7). Acta Biomater (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 图 5
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 5). J Virol (2011) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-冰冻切片; 小鼠; 图 1
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 1). PLoS ONE (2010) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化; 猕猴; 1:500
赛默飞世尔 GFAP抗体(Invitrogen, A21282)被用于被用于免疫组化在猕猴样品上浓度为1:500. Toxicol Appl Pharmacol (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫印迹; 小鼠; 图 s1
赛默飞世尔 GFAP抗体(Zymed, 2.2B10)被用于被用于免疫印迹在小鼠样品上 (图 s1). Biol Psychiatry (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:100; 图 1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 1). Glia (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 大鼠; 1:1000; 图 2
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于免疫组化在大鼠样品上浓度为1:1000 (图 2). J Comp Neurol (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图 s4
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 s4). Pigment Cell Melanoma Res (2010) ncbi
小鼠 单克隆(131-17719)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于被用于流式细胞仪在小鼠样品上 (图 5). Virology (2010) ncbi
小鼠 单克隆(131-17719)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 GFAP抗体(Invitrogen, A-21294)被用于被用于流式细胞仪在小鼠样品上 (图 2). J Neurosci Methods (2010) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-冰冻切片; 小鼠; 图 3
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 3). Neurosci Lett (2010) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-冰冻切片; 小鼠; 1:600
赛默飞世尔 GFAP抗体(Invitrogen, A-21282)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:600. J Comp Neurol (2010) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于被用于免疫组化-冰冻切片在小鼠样品上. ASN Neuro (2009) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于被用于免疫组化-冰冻切片在小鼠样品上. J Neuroimmunol (2009) ncbi
小鼠 单克隆(131-17719)
  • 免疫细胞化学; 小鼠; 1:200; 图 4
赛默飞世尔 GFAP抗体(分子探针, A21282)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200 (图 4). PLoS ONE (2009) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 1
赛默飞世尔 GFAP抗体(Invitrogen, A21282)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500 (图 1). Neurobiol Dis (2009) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-冰冻切片; 小鼠; 5 ug/ml; 图 10
赛默飞世尔 GFAP抗体(Invitrogen, A21294)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为5 ug/ml (图 10). J Immunol (2009) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫细胞化学; 小鼠
赛默飞世尔 GFAP抗体(Zymed/Invitrogen, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样品上 和 被用于免疫细胞化学在小鼠样品上. J Neurosci (2008) ncbi
小鼠 单克隆(131-17719)
  • immunohistochemistry - free floating section; 小鼠; 1:500
  • 免疫细胞化学; 小鼠; 1:500
赛默飞世尔 GFAP抗体(分子探针, A-21282)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500 和 被用于免疫细胞化学在小鼠样品上浓度为1:500. J Comp Neurol (2009) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-冰冻切片; 小鼠; 图 1
  • 免疫组化-冰冻切片; 人类; 图 2
赛默飞世尔 GFAP抗体(分子探针, 131-17719)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 1) 和 被用于免疫组化-冰冻切片在人类样品上 (图 2). Invest Ophthalmol Vis Sci (2008) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 人类; 1:100-1:200
  • 免疫组化; Domestic guinea pig; 1:100-1:200
赛默飞世尔 GFAP抗体(Zytomed, 13-0300)被用于被用于免疫组化在人类样品上浓度为1:100-1:200 和 被用于免疫组化在Domestic guinea pig样品上浓度为1:100-1:200. J Comp Neurol (2008) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-冰冻切片; 小鼠; 1:200
赛默飞世尔 GFAP抗体(Invitrogen, A-21294)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200. J Nucl Med (2007) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 8
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于免疫组化在小鼠样品上 (图 8). J Virol (2007) ncbi
大鼠 单克隆(2.2B10)
  • immunohistochemistry - free floating section; 小鼠; 1:3000; 表 2
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:3000 (表 2). Glia (2006) ncbi
大鼠 单克隆(2.2B10)
  • 免疫沉淀; 小鼠
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于免疫沉淀在小鼠样品上. J Comp Neurol (2005) ncbi
大鼠 单克隆(2.2B10)
  • immunohistochemistry - free floating section; 小鼠; 1:3000; 表 1
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:3000 (表 1). Exp Neurol (2004) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:10,000; 图 1
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于免疫组化在小鼠样品上浓度为1:10,000 (图 1) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 1). Glia (2003) ncbi
大鼠 单克隆(2.2B10)
  • immunohistochemistry - free floating section; 小鼠; 1:10000
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:10000 和 被用于免疫印迹在小鼠样品上浓度为1:1000. Oncogene (2002) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:2; 图 3
赛默飞世尔 GFAP抗体(Zymed, 2.2B10)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:2 (图 3). J Neurosci Res (2002) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:100
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于免疫组化在小鼠样品上浓度为1:100. J Neurosci (1999) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 小鼠; 图 3
赛默飞世尔 GFAP抗体(Zymed, 2.2B10)被用于被用于免疫细胞化学在小鼠样品上 (图 3). Neuroreport (1998) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; scFv; 1:50; 图 6
赛默飞世尔 GFAP抗体(Zymed, clone 2.2B10(1))被用于被用于免疫组化-冰冻切片在scFv样品上浓度为1:50 (图 6). J Neuropathol Exp Neurol (1996) ncbi
小鼠 单克隆(131-17719)
  • 流式细胞仪; 小鼠
  • 免疫组化; 小鼠
赛默飞世尔 GFAP抗体(noco, noca)被用于被用于流式细胞仪在小鼠样品上 和 被用于免疫组化在小鼠样品上. J Neurosci (1996) ncbi
圣克鲁斯生物技术
小鼠 单克隆(F-7)
  • 免疫组化-石蜡切片; 小鼠; 图 3j
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-166458)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 3j). Biomed Rep (2017) ncbi
小鼠 单克隆(2E1)
  • 免疫印迹; 小鼠; 图 5d
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-33673)被用于被用于免疫印迹在小鼠样品上 (图 5d). Sci Rep (2017) ncbi
小鼠 单克隆(52)
  • 免疫组化; 大鼠; 1:1000; 图 3a
圣克鲁斯生物技术 GFAP抗体(Santa Cruz Biotechnology, sc-135921)被用于被用于免疫组化在大鼠样品上浓度为1:1000 (图 3a). Mol Med Rep (2017) ncbi
小鼠 单克隆(2E1)
  • 免疫印迹; 人类; 图 s1d
圣克鲁斯生物技术 GFAP抗体(Santa Cruz Biotechnology, sc-33673)被用于被用于免疫印迹在人类样品上 (图 s1d). Oncotarget (2016) ncbi
小鼠 单克隆(2E1)
  • 免疫组化; 小鼠; 1:50; 图 4a
  • 免疫印迹; 小鼠; 1:500; 图 9
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-33673)被用于被用于免疫组化在小鼠样品上浓度为1:50 (图 4a) 和 被用于免疫印迹在小鼠样品上浓度为1:500 (图 9). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(F-7)
  • 免疫组化-石蜡切片; 小鼠; 图 s4f
圣克鲁斯生物技术 GFAP抗体(Santa Cruz Biotech, sc-166458)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 s4f). Nat Biotechnol (2016) ncbi
小鼠 单克隆(GA-5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1
圣克鲁斯生物技术 GFAP抗体(Santa Cruz Biotechnology, sc-58766)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 1). Transl Psychiatry (2016) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4n
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-33673)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 4n). Exp Neurol (2016) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3
  • 免疫印迹; 小鼠; 1:200; 图 3
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-33673)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图 3) 和 被用于免疫印迹在小鼠样品上浓度为1:200 (图 3). Transl Psychiatry (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫印迹; 小鼠; 1:1000; 图 2
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-65343)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 2). Neuron (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫印迹; 狗; 1:1000; 图 6
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-65343)被用于被用于免疫印迹在狗样品上浓度为1:1000 (图 6). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 7a
圣克鲁斯生物技术 GFAP抗体(SantaCruz, sc-33673)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:500 (图 7a). Toxicology (2016) ncbi
小鼠 单克隆(GF5)
  • 免疫组化; 小鼠; 1:200
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-51908)被用于被用于免疫组化在小鼠样品上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫印迹; 大鼠; 图 7
圣克鲁斯生物技术 GFAP抗体(santa Cruz, sc-33673)被用于被用于免疫印迹在大鼠样品上 (图 7). Int J Mol Med (2015) ncbi
小鼠 单克隆(GA-5)
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, G3893)被用于被用于免疫细胞化学在小鼠样品上. J Clin Invest (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-石蜡切片; 小鼠; 1:300
  • 免疫印迹; 小鼠; 1:400
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-33673)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:300 和 被用于免疫印迹在小鼠样品上浓度为1:400. Neurobiol Aging (2015) ncbi
小鼠 单克隆(2E1)
  • immunohistochemistry - free floating section; 大鼠; 1:300; 图 7a
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-33673)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:300 (图 7a). Restor Neurol Neurosci (2015) ncbi
小鼠 单克隆(GA-5)
  • 免疫细胞化学; 大鼠; 1:200
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-58766)被用于被用于免疫细胞化学在大鼠样品上浓度为1:200. J Neuroinflammation (2014) ncbi
小鼠 单克隆(F-7)
  • 免疫细胞化学; 大鼠; 1:200
圣克鲁斯生物技术 GFAP抗体(Santa Cruz Biotechnology, sc-166458)被用于被用于免疫细胞化学在大鼠样品上浓度为1:200. Mol Cell Biol (2014) ncbi
小鼠 单克隆(2E1)
  • 免疫细胞化学; 大鼠; 1:300
  • 免疫印迹; 大鼠; 1:400
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-33673)被用于被用于免疫细胞化学在大鼠样品上浓度为1:300 和 被用于免疫印迹在大鼠样品上浓度为1:400. Cell Mol Neurobiol (2014) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-冰冻切片; 人类; 1:300; 图 5
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-33673)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:300 (图 5). Brain Struct Funct (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫组化; 人类
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc33673)被用于被用于免疫组化在人类样品上. Mol Psychiatry (2013) ncbi
小鼠 单克隆(F-2)
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术 GFAP抗体(Santa Cruz Biotechnology, sc-166481)被用于被用于免疫细胞化学在小鼠样品上. Mediators Inflamm (2012) ncbi
BioLegend
小鼠 单克隆(SMI 25)
  • 免疫细胞化学; 小鼠; 1:400; 表 1
  • 免疫印迹; 小鼠; 1:5000; 表 1
  • 免疫细胞化学; 人类; 1:400; 表 1
  • 免疫印迹; 人类; 1:5000; 表 1
BioLegend GFAP抗体(BioLegend, SMI-25)被用于被用于免疫细胞化学在小鼠样品上浓度为1:400 (表 1), 被用于免疫印迹在小鼠样品上浓度为1:5000 (表 1), 被用于免疫细胞化学在人类样品上浓度为1:400 (表 1) 和 被用于免疫印迹在人类样品上浓度为1:5000 (表 1). PLoS ONE (2017) ncbi
小鼠 单克隆(SMI 24)
  • 免疫细胞化学; 小鼠; 1:400; 表 1
  • 免疫印迹; 小鼠; 1:5000; 表 1
  • 免疫细胞化学; 人类; 1:400; 表 1
  • 免疫印迹; 人类; 1:5000; 表 1
BioLegend GFAP抗体(BioLegend, SMI-24)被用于被用于免疫细胞化学在小鼠样品上浓度为1:400 (表 1), 被用于免疫印迹在小鼠样品上浓度为1:5000 (表 1), 被用于免疫细胞化学在人类样品上浓度为1:400 (表 1) 和 被用于免疫印迹在人类样品上浓度为1:5000 (表 1). PLoS ONE (2017) ncbi
小鼠 单克隆(SMI 21)
  • 免疫细胞化学; 小鼠; 1:400; 表 1
  • 免疫印迹; 小鼠; 1:5000; 表 1
  • 免疫细胞化学; 人类; 1:400; 表 1
  • 免疫印迹; 人类; 1:5000; 表 1
BioLegend GFAP抗体(BioLegend, SMI-21)被用于被用于免疫细胞化学在小鼠样品上浓度为1:400 (表 1), 被用于免疫印迹在小鼠样品上浓度为1:5000 (表 1), 被用于免疫细胞化学在人类样品上浓度为1:400 (表 1) 和 被用于免疫印迹在人类样品上浓度为1:5000 (表 1). PLoS ONE (2017) ncbi
小鼠 单克隆(SMI 23)
  • 免疫细胞化学; 人类; 1:400; 表 1
  • 免疫印迹; 人类; 1:5000; 表 1
  • 免疫细胞化学; 小鼠; 1:400; 表 1
  • 免疫印迹; 小鼠; 1:5000; 表 1
BioLegend GFAP抗体(BioLegend, SMI-23)被用于被用于免疫细胞化学在人类样品上浓度为1:400 (表 1), 被用于免疫印迹在人类样品上浓度为1:5000 (表 1), 被用于免疫细胞化学在小鼠样品上浓度为1:400 (表 1) 和 被用于免疫印迹在小鼠样品上浓度为1:5000 (表 1). PLoS ONE (2017) ncbi
兔 多克隆(Poly28400)
  • 免疫印迹; 人类; 1:1000; 图 6h
BioLegend GFAP抗体(Covance, PRB-571C)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 6h). Nat Commun (2017) ncbi
小鼠 单克隆(SMI 21)
  • 免疫印迹; 人类; 图 3a
BioLegend GFAP抗体(Covance, SMI-21R)被用于被用于免疫印迹在人类样品上 (图 3a). JCI Insight (2017) ncbi
小鼠 单克隆(SMI 21)
  • 免疫组化; 小鼠; 1:1000; 图 s4c
BioLegend GFAP抗体(Covance, SMI21)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 s4c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(SMI 25)
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 4
BioLegend GFAP抗体(Covance, SMI-25R)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:2000 (图 4). Mol Neurodegener (2016) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化; 小鼠; 图 st1
BioLegend GFAP抗体(BioLegend, 835301)被用于被用于免疫组化在小鼠样品上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(SMI 21)
  • 免疫组化; 小鼠; 图 st1
BioLegend GFAP抗体(BioLegend, 837201)被用于被用于免疫组化在小鼠样品上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(SMI 26)
  • 免疫组化; 小鼠; 1:1000; 图 1
BioLegend GFAP抗体(Sternberger Monoclonals, SMI-26)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 1). J Proteome Res (2016) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化; 小鼠; 图 1
BioLegend GFAP抗体(Covance, SMI-22R-100)被用于被用于免疫组化在小鼠样品上 (图 1). Mol Biol Cell (2015) ncbi
小鼠 单克隆(SMI 22)
  • 免疫印迹; 小鼠
BioLegend GFAP抗体(Covance, SMI-22R)被用于被用于免疫印迹在小鼠样品上. J Vis Exp (2014) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化; 大鼠; 1:1000
BioLegend GFAP抗体(Covance, SMI-22R)被用于被用于免疫组化在大鼠样品上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(SMI 21)
  • 免疫细胞化学; 人类; 1:000; 图 4
BioLegend GFAP抗体(Covance, SMI21)被用于被用于免疫细胞化学在人类样品上浓度为1:000 (图 4). J Neurosci (2012) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化-石蜡切片; 人类; 1:3000
BioLegend GFAP抗体(Sternberger Monoclonals, SMI 22)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:3000. J Comp Neurol (2012) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化; 大鼠; 1:1,000
BioLegend GFAP抗体(Sternberger Monoclonals, SMI 22)被用于被用于免疫组化在大鼠样品上浓度为1:1,000. J Comp Neurol (2006) ncbi
Synaptic Systems
豚鼠 多克隆(/)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s3b
Synaptic Systems GFAP抗体(Synaptic Systems, 173 004)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图 s3b). Cell (2018) ncbi
豚鼠 多克隆(/)
  • 免疫组化; 小鼠; 图 5d
  • 免疫印迹; 小鼠; 图 5e
Synaptic Systems GFAP抗体(Synaptic systems, 173004)被用于被用于免疫组化在小鼠样品上 (图 5d) 和 被用于免疫印迹在小鼠样品上 (图 5e). Glia (2017) ncbi
小鼠 单克隆(134B1)
  • 免疫细胞化学; 小鼠; 1:2000; 图 7
Synaptic Systems GFAP抗体(Synaptic Systems, 173011)被用于被用于免疫细胞化学在小鼠样品上浓度为1:2000 (图 7). Histochem Cell Biol (2016) ncbi
豚鼠 多克隆(/)
  • immunohistochemistry - free floating section; 人类; 1:500; 图 1
Synaptic Systems GFAP抗体(SYnaptic SYstems, 173 004)被用于被用于immunohistochemistry - free floating section在人类样品上浓度为1:500 (图 1). Sci Rep (2016) ncbi
豚鼠 多克隆(/)
  • 免疫组化; 小鼠; 1:500; 图 3
Synaptic Systems GFAP抗体(Synaptic Systems, 173 004)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 3). Nature (2016) ncbi
小鼠 单克隆(134B1)
  • 免疫组化; 小鼠; 图 6
  • 免疫组化; 人类; 图 6
Synaptic Systems GFAP抗体(Synaptic Systems, 173011)被用于被用于免疫组化在小鼠样品上 (图 6) 和 被用于免疫组化在人类样品上 (图 6). Stem Cell Res Ther (2015) ncbi
EnCor Biotechnology
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 表 2
EnCor Biotechnology GFAP抗体(Encore, RPCA-GFAP)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (表 2). Glia (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 5a
EnCor Biotechnology GFAP抗体(Encor, RPCA-GFAP)被用于被用于免疫细胞化学在小鼠样品上 (图 5a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; equine; 图 3
EnCor Biotechnology GFAP抗体(EnCor-Biotechnology, 5C10)被用于被用于免疫组化-石蜡切片在equine样品上 (图 3). Peerj (2016) ncbi
小鼠 单克隆
  • immunohistochemistry - free floating section; 大鼠; 1:1000; 图 2
EnCor Biotechnology GFAP抗体(EnCor Biotechnology, MCA-5C10)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000 (图 2). Sci Rep (2015) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:1000
EnCor Biotechnology GFAP抗体(Encor, CPCA-GFAP)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:1000. Exp Neurol (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠; 1:5000
EnCor Biotechnology GFAP抗体(EnCor Biotechnology Inc, MCA5C10)被用于被用于免疫印迹在大鼠样品上浓度为1:5000. J Neurochem (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:12000
EnCor Biotechnology GFAP抗体(Encor, RPCA-GFAP)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:12000. J Mol Neurosci (2013) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:10000
EnCor Biotechnology GFAP抗体(Encore, RPCA-GFAP)被用于被用于免疫组化在小鼠样品上浓度为1:10000. Glia (2012) ncbi
武汉三鹰
兔 多克隆
  • 免疫组化; 小鼠; 图 4
武汉三鹰 GFAP抗体(Proteintech, 16825-1-AP)被用于被用于免疫组化在小鼠样品上 (图 4). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3a
武汉三鹰 GFAP抗体(ProteinTech, 16825-1-AP)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 3a). Biol Cell (2016) ncbi
小鼠 单克隆(4B2E10)
  • 免疫细胞化学; 大鼠; 1:500
武汉三鹰 GFAP抗体(Proteintech, 60190-1-Ig)被用于被用于免疫细胞化学在大鼠样品上浓度为1:500. Mol Brain (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200
武汉三鹰 GFAP抗体(Proteintech Group, 16825-1-AP)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Springerplus (2015) ncbi
小鼠 单克隆(4B2E10)
  • 免疫组化-石蜡切片; 人类; 图 1
武汉三鹰 GFAP抗体(Proteintech, 60190)被用于被用于免疫组化-石蜡切片在人类样品上 (图 1). In Vitro Cell Dev Biol Anim (2015) ncbi
小鼠 单克隆(4B2E10)
  • 免疫印迹; 人类
武汉三鹰 GFAP抗体(ProteinTech Group, 60190-1-Ig)被用于被用于免疫印迹在人类样品上. Carcinogenesis (2014) ncbi
Novus Biologicals
小鼠 单克隆(5c10)
  • immunohistochemistry - free floating section; 小鼠; 1:1000; 图 7c
Novus Biologicals GFAP抗体(Novus Biologicals, NBP1-05197)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000 (图 7c). J Comp Neurol (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4A
Novus Biologicals GFAP抗体(Novus Biologic, NB300-141)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 4A). Sci Rep (2015) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(GF-05)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 4b
伯乐(Bio-Rad)公司 GFAP抗体(AbD Serotec, 4650-0309)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:400 (图 4b). Front Neuroanat (2017) ncbi
小鼠 单克隆(GF-05)
  • 免疫组化-冰冻切片; African green monkey; 1:2000
伯乐(Bio-Rad)公司 GFAP抗体(生物合成, 4650-0309)被用于被用于免疫组化-冰冻切片在African green monkey样品上浓度为1:2000. J Comp Neurol (2009) ncbi
北京傲锐东源
小鼠 单克隆(OTI2C4)
  • 免疫组化; 大鼠; 1:100; 图 6
北京傲锐东源 GFAP抗体(Golden Bridge, TA500335)被用于被用于免疫组化在大鼠样品上浓度为1:100 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(OTI4C10)
  • 免疫组化; 人类; 图 1d
北京傲锐东源 GFAP抗体(ZSGB-BIO, TA500336)被用于被用于免疫组化在人类样品上 (图 1d). J Neuroinflammation (2015) ncbi
安迪生物R&D
羊 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 2b
安迪生物R&D GFAP抗体(R&D Systems, AF2594)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500 (图 2b). J Pineal Res (2017) ncbi
Bioss
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 1
Bioss GFAP抗体(Beijing Biosynthesis Biotechnology, bs-0199R)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 (图 1). Neural Regen Res (2012) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(6F2)
  • 免疫组化-石蜡切片; 小鼠; 图 s4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 s4). Cell Mol Life Sci (2018) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 8f
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 8f). J Neurosci (2018) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 s5). Nat Neurosci (2018) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 1d
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上 (图 1d). J Clin Invest (2017) ncbi
小鼠 单克隆(6F2)
  • 免疫细胞化学; 小鼠; 1:100; 表 1
  • 免疫印迹; 小鼠; 1:1000; 表 1
  • 免疫细胞化学; 人类; 1:100; 表 1
  • 免疫印迹; 人类; 1:1000; 表 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, 6F2)被用于被用于免疫细胞化学在小鼠样品上浓度为1:100 (表 1), 被用于免疫印迹在小鼠样品上浓度为1:1000 (表 1), 被用于免疫细胞化学在人类样品上浓度为1:100 (表 1) 和 被用于免疫印迹在人类样品上浓度为1:1000 (表 1). PLoS ONE (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 8a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图 8a). EMBO Mol Med (2017) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:100; 图 1g
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在人类样品上浓度为1:100 (图 1g). Stem Cell Res Ther (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:5000; 图 4e
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:5000 (图 4e). Acta Neuropathol (2017) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 鸡; 1:500; 图 5a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z033)被用于被用于免疫组化-冰冻切片在鸡样品上浓度为1:500 (图 5a). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫组化; sea lamprey; 1:400; 图 2c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在sea lamprey样品上浓度为1:400 (图 2c). Nature (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:500. Front Cell Neurosci (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 3e
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200 (图 3e). Stem Cell Reports (2017) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s4b
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 s4b). Neuron (2017) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 1c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-石蜡切片; 狗; 1:50
  • 免疫组化-石蜡切片; 大鼠; 1:50
  • 免疫组化; 大鼠; 图 107
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于被用于免疫组化-石蜡切片在狗样品上浓度为1:50, 被用于免疫组化-石蜡切片在大鼠样品上浓度为1:50 和 被用于免疫组化在大鼠样品上 (图 107). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, 6F2)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图 1a). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200; 图 3e
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 3e). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1b
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 1b). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:300; 图 5a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z033401)被用于被用于免疫组化在小鼠样品上浓度为1:300 (图 5a). PLoS ONE (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3d
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0344)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图 3d). PLoS ONE (2017) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 6c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 6c). Dis Model Mech (2017) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 1f
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:5000 (图 1f). Nature (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:1500; 图 s4a
  • 免疫组化-冰冻切片; 小鼠; 1:1500; 图 1c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:1500 (图 s4a) 和 被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1500 (图 1c). Transl Res (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3h
  • 免疫细胞化学; 小鼠; 图 4b
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, ZO334)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 3h) 和 被用于免疫细胞化学在小鼠样品上 (图 4b). Mol Cell Biol (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 S1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500 (图 S1). Redox Biol (2017) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:1000; 图 5b
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000 (图 5b). Front Cell Neurosci (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 1e
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫印迹在大鼠样品上 (图 1e). Stem Cell Reports (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上 (图 6). Int J Mol Med (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:300; 图 5a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:300 (图 5a). Childs Nerv Syst (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 s1g
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在人类样品上 (图 s1g). Cell (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 s1f
  • 免疫印迹; 小鼠; 1:5000; 图 s1e
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:100 (图 s1f) 和 被用于免疫印迹在小鼠样品上浓度为1:5000 (图 s1e). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 斑马鱼; 1:1000; 图 3i
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在斑马鱼样品上浓度为1:1000 (图 3i). Dis Model Mech (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 1a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 1a). PLoS Genet (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 表 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (表 1). Brain Struct Funct (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2e
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫印迹在人类样品上 (图 2e). J Neuroinflammation (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200; 图 4a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 4a). MBio (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:400; 表 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:400 (表 2). Mol Neurobiol (2017) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:4000; 图 1d
  • 免疫组化; 小鼠; 1:500; 图 2c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:4000 (图 1d) 和 被用于免疫组化在小鼠样品上浓度为1:500 (图 2c). Brain (2017) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3d
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 3d). Nature (2016) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 大鼠; 1:1000; 表 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000 (表 2). Front Neurosci (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 5a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z334)被用于被用于免疫细胞化学在人类样品上 (图 5a). Mol Biol Cell (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:500; 表 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z033429-2)被用于被用于免疫细胞化学在大鼠样品上浓度为1:500 (表 1). Methods Mol Biol (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 2a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上 (图 2a). J Neurosci Res (2017) ncbi
小鼠 单克隆(6F2)
  • 免疫印迹; 小鼠; 1:2000; 图 4f
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, 6F2)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 4f). Glia (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:500; 表 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (表 2). Lab Chip (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 5c
  • 免疫印迹; 大鼠; 1:500; 图 5a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:500 (图 5c) 和 被用于免疫印迹在大鼠样品上浓度为1:500 (图 5a). Mol Pharm (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在小鼠样品上 (图 1). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:1000; 图 4a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在大鼠样品上浓度为1:1000 (图 4a). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上. Mol Cell Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 图 3a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上 (图 3a). Mol Neurobiol (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 s5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:1000 (图 s5). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 2c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 2c). Exp Neurol (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 图 S1d-f
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在人类样品上 (图 S1d-f). Mol Psychiatry (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 1a
  • 免疫组化; 人类; 1:1000; 图 4a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:2000 (图 1a) 和 被用于免疫组化在人类样品上浓度为1:1000 (图 4a). Glia (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:4000; 表 s4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:4000 (表 s4). Stem Cell Res (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:10,000; 图 7b
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:10,000 (图 7b). EMBO Mol Med (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:8000; 图 s5d
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:8000 (图 s5d). Nature (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 图 s1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在大鼠样品上 (图 s1). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图 5). elife (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 图 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在大鼠样品上 (图 1). J Alzheimers Dis (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 3). Acta Neuropathol Commun (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:5000; 图 3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z033429)被用于被用于免疫组化在小鼠样品上浓度为1:5000 (图 3). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:2000 (图 4). Mol Neurodegener (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2
  • 免疫印迹; 小鼠; 1:1000; 图 3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图 2) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 3). Mol Brain (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 2e
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200 (图 2e). J Neurochem (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 3c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:1000 (图 3c). Mol Ther (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 7
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cooperation, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 7). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:250 (图 5). Invest Ophthalmol Vis Sci (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s.8
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 s.8). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 3c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上 (图 3c). J Clin Invest (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 1b
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z03334)被用于被用于免疫细胞化学在小鼠样品上 (图 1b). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 3). J Mol Psychiatry (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:750
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:750. Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 图 3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于被用于免疫组化在大鼠样品上 (图 3). J Neuroinflammation (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:5000; 图 5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:5000 (图 5). Sci Rep (2016) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:5000; 图 7b
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:5000 (图 7b). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:100; 图 3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在大鼠样品上浓度为1:100 (图 3). Development (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200 (图 1). Cell Tissue Res (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 1). J Proteome Res (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上 (图 2). J Neuroinflammation (2016) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-石蜡切片; 人类; 1:40,000; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(dako, M-0761)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:40,000 (图 2). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 2). Mol Vis (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s6d
  • 免疫细胞化学; 小鼠; 1:4000; 图 1g
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 s6d) 和 被用于免疫细胞化学在小鼠样品上浓度为1:4000 (图 1g). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:40,000; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:40,000 (图 2). J Comp Pathol (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 6i
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 6i). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:200; 图 6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在大鼠样品上浓度为1:200 (图 6). Cell Death Dis (2016) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 大鼠; 1:5000; 图 3a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:5000 (图 3a). Endocrinology (2016) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-石蜡切片; 人类; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于被用于免疫组化-石蜡切片在人类样品上 (图 2). Breast Cancer Res (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 S2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DaKo, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 S2). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z 0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 5c). Am J Physiol Regul Integr Comp Physiol (2016) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 人类; 1:1000; 图 4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, z0334)被用于被用于immunohistochemistry - free floating section在人类样品上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:500; 图 6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500 (图 6). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上. Nature (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1g
  • 免疫细胞化学; 小鼠; 1:1000; 图 1l
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图 1g) 和 被用于免疫细胞化学在小鼠样品上浓度为1:1000 (图 1l). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:2000 (图 2). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s3c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 s3c). Science (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (图 5). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 表 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (表 1). Exp Neurol (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:3000; 图 5
  • 免疫细胞化学; 人类; 图 6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:3000 (图 5) 和 被用于免疫细胞化学在人类样品上 (图 6). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 2). Nat Commun (2016) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:200; 图 4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:200 (图 4). PLoS Pathog (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 斑马鱼; 1:100; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在斑马鱼样品上浓度为1:100 (图 2). Restor Neurol Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500; 图 s6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z-0334)被用于被用于免疫组化在大鼠样品上浓度为1:500 (图 s6). Acta Biomater (2016) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:500; 图 5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z-0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500 (图 5). Am J Pathol (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 s1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:5000 (图 s1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 羊; 1:1000; 图 5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-石蜡切片在羊样品上浓度为1:1000 (图 5). J Neuroinflammation (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫印迹在小鼠样品上浓度为1:5000 (图 2). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 3a). Nat Biotechnol (2016) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于被用于免疫组化在人类样品上浓度为1:200. Brain Tumor Pathol (2016) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 大鼠; 1:500; 图 8
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:500 (图 8). Exp Neurol (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:2000 (图 6). Neoplasia (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z033429)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 1c). Neurobiol Dis (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫印迹在小鼠样品上 (图 2). J Cell Biol (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上 (图 1). J Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 2). Stem Cell Reports (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 4). Dis Model Mech (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:250; 图 3
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:250 (图 3), 被用于免疫细胞化学在人类样品上 (图 1) 和 被用于免疫印迹在人类样品上 (图 1). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:500; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在人类样品上浓度为1:500 (图 2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 s1). Eur J Immunol (2016) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 人类; 1:200; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, 6 F2)被用于被用于免疫组化在人类样品上浓度为1:200 (图 2). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 人类; 1:50; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于被用于免疫组化在人类样品上浓度为1:50 (图 2). Brain (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:1000; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在人类样品上浓度为1:1000 (图 2). Brain (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 9
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500 (图 9). J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:4000; 图 3
  • 免疫印迹; 小鼠; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:4000 (图 3) 和 被用于免疫印迹在小鼠样品上浓度为1:2000. Brain (2016) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 图 4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上 (图 4). Front Cell Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500; 图 4b
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在大鼠样品上浓度为1:500 (图 4b). J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 斑马鱼; 1:500; 图 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, 20334)被用于被用于免疫组化在斑马鱼样品上浓度为1:500 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 人类; 1:2000; 图 3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, 6F2)被用于被用于免疫组化在人类样品上浓度为1:2000 (图 3). Acta Neuropathol Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 5a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫印迹在人类样品上浓度为1:10,000 (图 5a). Nat Cell Biol (2015) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 小鼠; 图 3c
  • 免疫印迹; 小鼠; 图 3a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于被用于免疫组化在小鼠样品上 (图 3c) 和 被用于免疫印迹在小鼠样品上 (图 3a). Mol Neurodegener (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:1000. Nat Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:3000; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:3000 (图 2). J Neuroinflammation (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, 20334)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 3). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(6F2)
  • 免疫细胞化学; 小鼠; 1:1000; 表 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dakocytomation, M0761)被用于被用于免疫细胞化学在小鼠样品上浓度为1:1000 (表 2). J Cell Physiol (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠
  • 免疫细胞化学; scFv
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫细胞化学在小鼠样品上 和 被用于免疫细胞化学在scFv样品上. Nature (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上 (图 6). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:4000; 图 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, N Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:4000 (图 1). ASN Neuro (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200 (图 1). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 s5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:1000 (图 s5). Development (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500 (图 5). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:1000. Methods (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 s4). Acta Neuropathol (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; scFv; 1:800
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在scFv样品上浓度为1:800. Acta Neuropathol Commun (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 5). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图 3a). Proc Natl Acad Sci U S A (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1 ug/ml; 图 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1 ug/ml (图 1). Nat Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在人类样品上. Mol Brain (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:1500; 图 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在人类样品上浓度为1:1500 (图 1). Mol Neurodegener (2015) ncbi
兔 多克隆
  • 免疫组化; 牛; 1:100; 图 6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在牛样品上浓度为1:100 (图 6). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 2). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫组化; 鸡; 1:2000; 图 8
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于被用于免疫组化在鸡样品上浓度为1:2000 (图 8). Exp Neurol (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在大鼠样品上. PLoS ONE (2015) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-石蜡切片; 人类; 1:5000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:5000. J Child Neurol (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 1
  • 免疫印迹; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上 (图 1) 和 被用于免疫印迹在小鼠样品上. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 斑马鱼; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在斑马鱼样品上浓度为1:200. Biol Open (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4,5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 4,5). J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 狗; 1:1000; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于被用于免疫组化在狗样品上浓度为1:1000 (图 2). PLoS ONE (2015) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:1000; 图 3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000 (图 3). Glia (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在人类样品上浓度为1:2000. Acta Neuropathol Commun (2015) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:500; 图 s14
  • 免疫细胞化学; 小鼠; 1:500; 图 s8
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500 (图 s14) 和 被用于免疫细胞化学在小鼠样品上浓度为1:500 (图 s8). Nat Med (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 表 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z 0334)被用于被用于免疫组化-石蜡切片在人类样品上 (表 2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 图 6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, z0334)被用于被用于免疫组化在大鼠样品上 (图 6). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:1000. J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 s5). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于被用于免疫组化在人类样品上 (图 2). J Neuroinflammation (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 3). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:1000 (图 3). Nat Protoc (2015) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 大鼠; 1:100000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:100000. J Comp Neurol (2015) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:400. Brain (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 s2). PLoS Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:30,000; 图 s3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫印迹在小鼠样品上浓度为1:30,000 (图 s3). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334l)被用于被用于免疫细胞化学在大鼠样品上浓度为1:1000. Mol Med Rep (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 7
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 7). J Neuroinflammation (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在人类样品上 (图 1). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上. Glia (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:10,000; 图 5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:10,000 (图 5). J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:1600
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在大鼠样品上浓度为1:1600. Tissue Eng Part A (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:10000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:10000. J Neuroinflammation (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:500. J Neurosci (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:5000; 图 1h
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:5000 (图 1h). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:400; 图 6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, Z0334)被用于被用于免疫组化在人类样品上浓度为1:400 (图 6). Hum Mol Genet (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000
  • 免疫印迹; 小鼠; 1:50000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:2000 和 被用于免疫印迹在小鼠样品上浓度为1:50000. J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:10,000; 图 5a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在人类样品上浓度为1:10,000 (图 5a). Front Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z 0334)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500. Exp Eye Res (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z033429-2)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000. Eur J Neurosci (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:2000
  • 免疫组化; 小鼠; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:2000 和 被用于免疫组化在小鼠样品上浓度为1:2000. Neurobiol Aging (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400. Brain (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:200 (图 4). Onco Targets Ther (2015) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 2). Onco Targets Ther (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 7
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, ZO334)被用于被用于免疫组化在小鼠样品上 (图 7). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:250
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:250. J Neurochem (2015) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:1800
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dakopatts, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1800. Glia (2015) ncbi
兔 多克隆
  • 免疫沉淀; 猪; 图 3
  • 免疫印迹; 猪; 图 1d,3
  • 免疫沉淀; 人类; 图 3
  • 免疫印迹; 人类; 图 1c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫沉淀在猪样品上 (图 3), 被用于免疫印迹在猪样品上 (图 1d,3), 被用于免疫沉淀在人类样品上 (图 3) 和 被用于免疫印迹在人类样品上 (图 1c). PLoS ONE (2015) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 小鼠; 1:200; 图 8
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, M0761)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 8). elife (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 4). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 斑马鱼; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在斑马鱼样品上浓度为1:1000. Mol Cancer (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 s5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上 (图 s5). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:1000. Cell Death Dis (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:20,000; 图 5h
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:20,000 (图 5h). Mol Cell Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:5000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:5000. Biomaterials (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:750
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:750. Exp Neurol (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:200. J Stroke Cerebrovasc Dis (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 s3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上 (图 s3). Cancer Cell (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:100
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dakocytomation, Z0334)被用于被用于免疫组化在大鼠样品上浓度为1:100. J Cell Mol Med (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:100
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:100. Ann Clin Transl Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 s6). Autophagy (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:400. J Neuroinflammation (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:1000. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:1000; 表 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, 20334)被用于被用于免疫细胞化学在人类样品上浓度为1:1000 (表 1). Acta Biomater (2015) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 表 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dakopatts, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上 (表 1). Brain Behav Immun (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:1000. Dev Neurobiol (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图 1). Neuropathology (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 s4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:2000 (图 s4). Nat Med (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, 70334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图 3). EMBO Mol Med (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:2000. Front Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Comp Neurol (2015) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:15000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:15000. Cereb Cortex (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:1000; 图 3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在大鼠样品上浓度为1:1000 (图 3). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:600
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:600. Glia (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上. Neuropathol Appl Neurobiol (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:800
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z 0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:800. PLoS ONE (2014) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 大鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:500. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:500; 图 4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于被用于免疫组化在人类样品上浓度为1:500 (图 4). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:600; 图 4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫印迹在小鼠样品上浓度为1:600 (图 4). Mol Vis (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500. J Biol Chem (2014) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 人类; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在人类样品上浓度为1:2000. Brain Pathol (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:2000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 7c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:5000 (图 7c). Dev Dyn (2015) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, 6F2)被用于被用于免疫组化在人类样品上浓度为1:200. Head Neck Pathol (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:250
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在大鼠样品上浓度为1:250. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫印迹在人类样品上浓度为1:1000. Stem Cell Rev (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫印迹在小鼠样品上浓度为1:400. J Neurotrauma (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. Eur J Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化; 斑马鱼; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在斑马鱼样品上浓度为1:2000. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 1). Nat Commun (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:400. Invest Ophthalmol Vis Sci (2014) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于被用于免疫组化在人类样品上浓度为1:200. Brain Pathol (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:500. Int J Dev Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400 (图 1). J Neurochem (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Immunol (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; scFv; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在scFv样品上浓度为1:400. Nat Neurosci (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:500
  • 免疫印迹; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500 和 被用于免疫印迹在小鼠样品上浓度为1:1000. Glia (2014) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Corporation, Z0334)被用于被用于免疫组化在人类样品上浓度为1:500. Ann Neurol (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 3a
  • 免疫印迹; 小鼠; 1:1000; 图 5c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在小鼠样品上 (图 3a) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 5c). J Cell Mol Med (2014) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, M0761)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Ann Neurol (2014) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:250
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:250. Front Cell Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. Glia (2014) ncbi
小鼠 单克隆(6F2)
  • 免疫细胞化学; 人类
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于被用于免疫细胞化学在人类样品上. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:10000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:10000. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:20,000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:20,000. J Comp Neurol (2014) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 人类; 1:500
  • immunohistochemistry - free floating section; 猕猴; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在人类样品上浓度为1:500 和 被用于immunohistochemistry - free floating section在猕猴样品上浓度为1:500. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:1 000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:1 000. Cell Res (2014) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在大鼠样品上浓度为1:500. Hum Gene Ther (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:3000
  • 免疫组化-石蜡切片; 大鼠; 1:3000
  • 免疫组化-石蜡切片; 人类; 1:3000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:3000, 被用于免疫组化-石蜡切片在大鼠样品上浓度为1:3000 和 被用于免疫组化-石蜡切片在人类样品上浓度为1:3000. Acta Neuropathol (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上. J Thromb Haemost (2014) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在大鼠样品上浓度为1:500. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:1000 . J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. J Neurosci Methods (2014) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, 6F2)被用于被用于免疫组化在人类样品上. Histol Histopathol (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-石蜡切片在大鼠样品上. Mol Cancer Res (2014) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500. Glia (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (图 4). Acta Neuropathol Commun (2014) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-石蜡切片; 兔; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, 6F2)被用于被用于免疫组化-石蜡切片在兔样品上浓度为1:200. Biomaterials (2014) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 兔
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, 6F2)被用于被用于免疫组化在兔样品上. Neuropathology (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 7
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 7). PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:15,000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在人类样品上浓度为1:15,000. Neurobiol Aging (2014) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, 6F2)被用于被用于免疫组化-石蜡切片在人类样品上. Oncol Lett (2014) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. Acta Neuropathol Commun (2013) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在大鼠样品上浓度为1:1000. J Neurochem (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:700
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在大鼠样品上浓度为1:700. Biomaterials (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200. Genesis (2014) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上. J Neurosci (2013) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 狗; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于被用于免疫组化-冰冻切片在狗样品上浓度为1:400. Gene Ther (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:2000. Stem Cells Dev (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:1000. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:400. FASEB J (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:4000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:4000. Dev Neurobiol (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:500. Nat Neurosci (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 猪; 1:1500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于被用于免疫组化-石蜡切片在猪样品上浓度为1:1500. Toxicon (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 猪; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫细胞化学在猪样品上浓度为1:1000. Cell Reprogram (2013) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
  • 免疫印迹; 小鼠; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:1000 和 被用于免疫印迹在小鼠样品上浓度为1:2000. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100. Exp Neurol (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500. Methods Mol Biol (2013) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-石蜡切片; 小鼠; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, M0761)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200. J Neurosci (2013) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; lowland gorilla; 1:400
  • 免疫组化; lowland gorilla; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在lowland gorilla样品上浓度为1:400 和 被用于免疫组化在lowland gorilla样品上浓度为1:400. J Comp Neurol (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1,500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:1,500. Ann Neurol (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于被用于免疫细胞化学在小鼠样品上. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000
  • 免疫细胞化学; 人类; 1:1000
  • 免疫印迹; 人类; 1:5000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:1000, 被用于免疫细胞化学在人类样品上浓度为1:1000 和 被用于免疫印迹在人类样品上浓度为1:5000. Oncotarget (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
  • 免疫组化-冰冻切片; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在人类样品上 和 被用于免疫组化-冰冻切片在小鼠样品上. Glia (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500
  • 免疫细胞化学; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 和 被用于免疫细胞化学在小鼠样品上. Glia (2013) ncbi
兔 多克隆
  • 免疫组化; smaller spotted catshark; 1:300
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在smaller spotted catshark样品上浓度为1:300. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上. Nature (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫细胞化学在人类样品上. Cancer Res (2013) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, M0761)被用于被用于免疫组化在小鼠样品上. Cancer Res (2013) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:1,000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在人类样品上浓度为1:1,000. J Cereb Blood Flow Metab (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, Z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:2000. Cytotherapy (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2,000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z 0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:2,000. J Comp Neurol (2013) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:4000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在人类样品上浓度为1:4000. Mol Brain (2013) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:3000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在大鼠样品上浓度为1:3000. Br J Pharmacol (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:1000. Stem Cell Rev (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200
  • 免疫细胞化学; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 和 被用于免疫细胞化学在小鼠样品上. EMBO J (2013) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 大鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Schweiz, Z0334)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000. Hum Gene Ther (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:3,000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:3,000. Acta Neuropathol (2013) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 人类; 0.73 ug/ml
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在人类样品上浓度为0.73 ug/ml. Neuropathol Appl Neurobiol (2014) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 人类; 1:5000
  • 免疫细胞化学; 人类; 1:5000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在人类样品上浓度为1:5000 和 被用于免疫细胞化学在人类样品上浓度为1:5000. Glia (2013) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠
  • 免疫细胞化学; 小鼠; 1:100
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上 和 被用于免疫细胞化学在小鼠样品上浓度为1:100. Neurosci Bull (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:10:000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:10:000. Cell Cycle (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:500. Am J Pathol (2013) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 图 8a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上 (图 8a). Biofabrication (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; smaller spotted catshark; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z 0334)被用于被用于免疫组化-石蜡切片在smaller spotted catshark样品上浓度为1:500. Brain Struct Funct (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:1000. PLoS ONE (2012) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:2,000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于被用于免疫细胞化学在人类样品上浓度为1:2,000. Stem Cells Transl Med (2012) ncbi
兔 多克隆
  • 免疫细胞化学; Burton's mouthbrooder; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫细胞化学在Burton's mouthbrooder样品上浓度为1:500. J Neurosci Methods (2013) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dakopatts, Z-0334)被用于被用于免疫组化在大鼠样品上浓度为1:500. Gene Ther (2013) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-石蜡切片; 小鼠; 1:5000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:5000. PLoS ONE (2012) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:500 (图 2). J Tissue Eng Regen Med (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z-0334)被用于被用于免疫组化在大鼠样品上浓度为1:2000. J Comp Neurol (2013) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 羊; 1:10000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于被用于免疫组化-冰冻切片在羊样品上浓度为1:10000. J Comp Neurol (2013) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000
  • 免疫印迹; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 和 被用于免疫印迹在小鼠样品上. J Neurosci (2012) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 5b
  • 免疫印迹; 小鼠; 1:1000; 图 5d
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:1000 (图 5b) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 5d). PLoS ONE (2012) ncbi
兔 多克隆
  • 免疫细胞化学; 斑马鱼
  • 免疫印迹; 斑马鱼
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在斑马鱼样品上 和 被用于免疫印迹在斑马鱼样品上. Nucleic Acids Res (2012) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:1000. J Comp Neurol (2012) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:1500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在大鼠样品上浓度为1:1500. Brain (2012) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. J Comp Neurol (2011) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:40000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:40000. J Comp Neurol (2011) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 人类
  • 免疫组化-石蜡切片; 人类
  • 免疫组化-冰冻切片; African green monkey
  • 免疫组化-石蜡切片; African green monkey
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在人类样品上, 被用于免疫组化-石蜡切片在人类样品上, 被用于免疫组化-冰冻切片在African green monkey样品上 和 被用于免疫组化-石蜡切片在African green monkey样品上. J Comp Neurol (2011) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:5000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z-0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:5000. J Comp Neurol (2011) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3
  • 免疫组化; 小鼠; 1:100; 图 6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 3) 和 被用于免疫组化在小鼠样品上浓度为1:100 (图 6). J Neuroinflammation (2010) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 斑马鱼; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在斑马鱼样品上浓度为1:500. J Comp Neurol (2010) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:30000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:30000. J Comp Neurol (2010) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:250. J Comp Neurol (2010) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:250. J Comp Neurol (2010) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; common canary; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于immunohistochemistry - free floating section在common canary样品上浓度为1:500. J Comp Neurol (2010) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500. J Comp Neurol (2010) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:2500. J Comp Neurol (2010) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:20,000; 表 2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z 0334)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:20,000 (表 2). PLoS ONE (2009) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, Z0334)被用于被用于免疫细胞化学在小鼠样品上浓度为1:400. J Comp Neurol (2009) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500. J Comp Neurol (2009) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 人类; 1:2000
  • 免疫细胞化学; 人类; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:2000 和 被用于免疫细胞化学在人类样品上浓度为1:2000. J Comp Neurol (2009) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; African green monkey; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在African green monkey样品上浓度为1:2000. J Comp Neurol (2009) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, Z0334)被用于被用于免疫组化在小鼠样品上浓度为1:1000. J Comp Neurol (2009) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:100
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:100. J Comp Neurol (2009) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:500; 图 3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于被用于免疫细胞化学在大鼠样品上浓度为1:500 (图 3). Exp Neurol (2009) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:1,000
  • 免疫细胞化学; 小鼠; 1:1,000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1,000 和 被用于免疫细胞化学在小鼠样品上浓度为1:1,000. J Comp Neurol (2009) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 大鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:500. J Comp Neurol (2008) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:4000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:4000. J Comp Neurol (2008) ncbi
兔 多克隆
  • 免疫组化; Domestic guinea pig; 1:200
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化在Domestic guinea pig样品上浓度为1:200 和 被用于免疫组化在人类样品上浓度为1:200. J Comp Neurol (2008) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. J Comp Neurol (2008) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 小鼠; 1:3000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于被用于免疫组化在小鼠样品上浓度为1:3000. J Comp Neurol (2006) ncbi
默克密理博中国
小鼠 单克隆(GA5)
  • immunohistochemistry - free floating section; 小鼠; 1:500; 图 1a
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500 (图 1a). Nat Med (2018) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s2k
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图 s2k). Cell (2018) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:4000; 表 1
  • 免疫组化-石蜡切片; 小鼠; 1:4000; 图 st2
  • 免疫细胞化学; 小鼠; 1:100; 图 st2
  • 免疫印迹; 小鼠; 1:1000; 图 st2
默克密理博中国 GFAP抗体(Millipore, ab5804)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:4000 (表 1), 被用于免疫组化-石蜡切片在小鼠样品上浓度为1:4000 (图 st2), 被用于免疫细胞化学在小鼠样品上浓度为1:100 (图 st2) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 st2). Gastroenterology (2017) ncbi
小鼠 单克隆(GA5)
  • immunohistochemistry - free floating section; 小鼠; 1:1000; 图 2c
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000 (图 2c). J Neurosci (2017) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:600; 图 2d
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于被用于免疫组化在小鼠样品上浓度为1:600 (图 2d). Science (2017) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:500; 表 s1
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (表 s1). Stem Cell Reports (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; Domestic guinea pig; 1:200; 图 2c
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化在Domestic guinea pig样品上浓度为1:200 (图 2c). Dev Growth Differ (2017) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2a
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 2a). Biochem Biophys Res Commun (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:500; 表 2
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于免疫组化在小鼠样品上浓度为1:500 (表 2). J Neurosci Res (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠; 1:1000; 图 7e
默克密理博中国 GFAP抗体(Millipore Bioscience, MAB360)被用于被用于免疫细胞化学在小鼠样品上浓度为1:1000 (图 7e). Front Cell Neurosci (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 图 2d
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫印迹在小鼠样品上 (图 2d). Stem Cells Int (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:5000; 表 1
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于免疫组化在大鼠样品上浓度为1:5000 (表 1). Front Cell Neurosci (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 小鼠; 图 1c
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 1c). Nat Commun (2017) ncbi
小鼠 单克隆(GA5)
  • immunohistochemistry - free floating section; 小鼠; 1:250; 图 1b
  • 免疫组化; 小鼠; 图 1b
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:250 (图 1b) 和 被用于免疫组化在小鼠样品上 (图 1b). Neuron (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3a,3b,3c
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 3a,3b,3c). J Neuroinflammation (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 5d
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:1000 (图 5d). Nature (2017) ncbi
兔 单克隆(EPR1034Y)
  • immunohistochemistry - free floating section; 人类; 图 s27
默克密理博中国 GFAP抗体(Millipore, 04-1062)被用于被用于immunohistochemistry - free floating section在人类样品上 (图 s27). Hum Mol Genet (2017) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 1c
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 1b
默克密理博中国 GFAP抗体(EMD Millipore, AB5541)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:2000 (图 1c) 和 被用于免疫组化-石蜡切片在人类样品上浓度为1:2000 (图 1b). J Exp Med (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 1:200; 图 4o
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫细胞化学在人类样品上浓度为1:200 (图 4o). Int J Mol Med (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3f
默克密理博中国 GFAP抗体(Chemicon, AB5804)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 3f). Aging (Albany NY) (2016) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 4a
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 4a). J Exp Med (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 7c
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:400 (图 7c). J Mol Neurosci (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 3a
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (图 3a). J Neurosci Res (2017) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 5a
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:300 (图 5a). EMBO Mol Med (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; baboons; 1:300; 图 4
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化-石蜡切片在baboons样品上浓度为1:300 (图 4). Biol Res (2016) ncbi
小鼠 单克隆(GA5)
  • immunohistochemistry - free floating section; 大鼠; 1:1000; 表 2
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000 (表 2). Front Neurosci (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 7
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 7). J Neurosci (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:10,000; 图 s2d
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化在大鼠样品上浓度为1:10,000 (图 s2d). Brain Behav Immun (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:50; 图 2d
默克密理博中国 GFAP抗体(Millipore, MAB 360)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:50 (图 2d). BMC Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1500; 图 1g
  • 免疫印迹; 小鼠; 1:6000; 图 4a
默克密理博中国 GFAP抗体(Millipore, Ab5804)被用于被用于免疫组化在小鼠样品上浓度为1:1500 (图 1g) 和 被用于免疫印迹在小鼠样品上浓度为1:6000 (图 4a). J Huntingtons Dis (2016) ncbi
大鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 7h
默克密理博中国 GFAP抗体(Calbiochem, 345860)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 7h). J Comp Neurol (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 小鼠; 图 4
默克密理博中国 GFAP抗体(EMD Millipore, MAB3402)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 4). elife (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:100; 图 6a
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于免疫组化在大鼠样品上浓度为1:100 (图 6a). Br J Pharmacol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 5
  • 免疫印迹; 大鼠; 1:2500
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:100 (图 5) 和 被用于免疫印迹在大鼠样品上浓度为1:2500. Mol Genet Metab (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2e
  • 免疫印迹; 小鼠; 1:2000; 图 1b
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图 2e) 和 被用于免疫印迹在小鼠样品上浓度为1:2000 (图 1b). Neuropharmacology (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 图 2
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化在小鼠样品上 (图 2). Redox Biol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 3g
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200 (图 3g). J Headache Pain (2016) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 5e
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 5e). Nat Commun (2016) ncbi
小鼠 单克隆
  • 免疫细胞化学; 大鼠; 1:500; 图 5
默克密理博中国 GFAP抗体(Millipore, MAB5628)被用于被用于免疫细胞化学在大鼠样品上浓度为1:500 (图 5). Exp Ther Med (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:5000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化在大鼠样品上浓度为1:5000. Neuroscience (2016) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 鸡; 1:400; 图 2
默克密理博中国 GFAP抗体(Calbiochem, IF03L)被用于被用于免疫组化-冰冻切片在鸡样品上浓度为1:400 (图 2). BMC Biol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠; 1:500; 图 3d
  • 免疫印迹; 小鼠; 1:1000; 图 3f
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500 (图 3d) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 3f). Development (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 3d
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500 (图 3d). Development (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 图 2-s1
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于被用于免疫组化在小鼠样品上 (图 2-s1). elife (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5b
  • 免疫印迹; 小鼠; 1:1000; 图 6a
默克密理博中国 GFAP抗体(EMD Millipore, MAB360)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 5b) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 6a). J Comp Neurol (2017) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:1500; 图 4b
  • 免疫印迹; 小鼠; 1:6000; 图 5a
默克密理博中国 GFAP抗体(Millipore, Ab5804)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1500 (图 4b) 和 被用于免疫印迹在小鼠样品上浓度为1:6000 (图 5a). J Huntingtons Dis (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3
  • 免疫印迹; 小鼠; 1:1000; 图 6
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 3) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 6). Nat Neurosci (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:50; 图 2
默克密理博中国 GFAP抗体(Millipore, MAB3402x)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:50 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 小鼠; 1:800; 图 6
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:800 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 1d
默克密理博中国 GFAP抗体(Millipore, Mab3402)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 (图 1d). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(GA5)
  • immunohistochemistry - free floating section; 小鼠; 1:1000; 图 4g
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000 (图 4g). Front Neurosci (2016) ncbi
小鼠 单克隆(GA5)
  • immunohistochemistry - free floating section; 大鼠; 1:1200; 图 3
默克密理博中国 GFAP抗体(millipore, MAB360)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1200 (图 3). J Neurochem (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 1:800; 图 3
默克密理博中国 GFAP抗体(Merck Millipore, MAB360)被用于被用于免疫细胞化学在人类样品上浓度为1:800 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:2000; 图 s6
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 s6). Sci Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:5000; 图 1
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫印迹在小鼠样品上浓度为1:5000 (图 1). Glia (2016) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 1). Glia (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:400; 图 7j
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:400 (图 7j). Mol Ther Methods Clin Dev (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4
默克密理博中国 GFAP抗体(EMD Millipore, MAB3402)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 4). J Clin Invest (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4
默克密理博中国 GFAP抗体(EMD Millipore, AB5804)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图 4). J Clin Invest (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:100; 图 2b
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化在大鼠样品上浓度为1:100 (图 2b). Sci Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠; 1:200
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200. Nat Commun (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1g
  • 免疫细胞化学; 小鼠; 1:1000; 图 1l
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图 1g) 和 被用于免疫细胞化学在小鼠样品上浓度为1:1000 (图 1l). Nat Commun (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 大鼠; 1:500; 图 5
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫细胞化学在大鼠样品上浓度为1:500 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠; 图 3e
  • 免疫印迹; 小鼠; 图 3c-d
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫细胞化学在小鼠样品上 (图 3e) 和 被用于免疫印迹在小鼠样品上 (图 3c-d). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图 3). EMBO Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:1000; 图 1
默克密理博中国 GFAP抗体(Millipore, MAB3402X)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 1). Front Mol Neurosci (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 大鼠; 1:200; 图 6
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于免疫细胞化学在大鼠样品上浓度为1:200 (图 6). J Mater Sci Mater Med (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 大鼠; 图 1
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫细胞化学在大鼠样品上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 人类; 图 2
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫印迹在人类样品上 (图 2). Stem Cells Int (2016) ncbi
小鼠 单克隆(GA5)
  • immunohistochemistry - free floating section; 大鼠; 1:1000; 图 6
  • 免疫印迹; 大鼠; 1:400; 图 6
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000 (图 6) 和 被用于免疫印迹在大鼠样品上浓度为1:400 (图 6). Exp Neurol (2016) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3
默克密理博中国 GFAP抗体(Millipore, IF03L)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 3). Neuropathol Appl Neurobiol (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:800; 图 4a
  • 免疫印迹; 大鼠; 1:60,000; 图 2b
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:800 (图 4a) 和 被用于免疫印迹在大鼠样品上浓度为1:60,000 (图 2b). Neuroscience (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 图 1
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 1). J Neurosci (2016) ncbi
鸡 多克隆
  • 免疫组化; 人类; 1:100; 图 1
  • 免疫组化; 小鼠; 1:100; 图 s4
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于被用于免疫组化在人类样品上浓度为1:100 (图 1) 和 被用于免疫组化在小鼠样品上浓度为1:100 (图 s4). Nat Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 5
默克密理博中国 GFAP抗体(Chemicon, AB5804)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000 (图 5). Ann Anat (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 大鼠; 图 5
默克密理博中国 GFAP抗体(Merck KGaA, MAB360)被用于被用于免疫组化-石蜡切片在大鼠样品上 (图 5). BMC Neurosci (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 3
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于被用于免疫细胞化学在小鼠样品上浓度为1:1000 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫细胞化学在小鼠样品上浓度为1:1000. Nat Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; tiger salamander; 1:400; 图 7
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于被用于免疫组化在tiger salamander样品上浓度为1:400 (图 7). elife (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 1:400; 图 6
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫细胞化学在人类样品上浓度为1:400 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 1:500; 图 2
默克密理博中国 GFAP抗体(Chemicon-Millipore, MAB 360)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • immunohistochemistry - free floating section; 小鼠; 1:5000; 图 7
默克密理博中国 GFAP抗体(millipore, MAB3402)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:5000 (图 7). Anesthesiology (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:4000; 图 2
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:4000 (图 2). Mol Brain (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:500; 图 5
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于被用于免疫细胞化学在大鼠样品上浓度为1:500 (图 5). Tissue Eng Part A (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:500; 图 2
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 2). Int J Dev Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 图 1
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫细胞化学在人类样品上 (图 1). Stem Cells Dev (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 人类; 1:500
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500. Glia (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 图 3
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 3). J Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:100
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化在小鼠样品上浓度为1:100. Eur J Neurosci (2015) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:250
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于被用于免疫组化在小鼠样品上浓度为1:250. Front Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 1:500; 图 s13
默克密理博中国 GFAP抗体(Millipore, MAB 360)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 s13). PLoS Biol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:5000
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于被用于免疫组化在大鼠样品上浓度为1:5000 和 被用于免疫印迹在大鼠样品上浓度为1:1000. Neuroscience (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:30000; 图 1
默克密理博中国 GFAP抗体(Millipore, MAB5628)被用于被用于免疫印迹在小鼠样品上浓度为1:30000 (图 1). Glia (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于被用于免疫组化在大鼠样品上. CNS Neurosci Ther (2015) ncbi
鸡 多克隆
  • 免疫组化; scFv; 1:1000
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于被用于免疫组化在scFv样品上浓度为1:1000. Glia (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 人类; 图 2
默克密理博中国 GFAP抗体(Millipore, MAB 360)被用于被用于免疫组化-石蜡切片在人类样品上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫细胞化学在小鼠样品上浓度为1:1000. J Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:500; 图 s2b
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 s2b). Nature (2015) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 人类; 图 2
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于被用于免疫组化-石蜡切片在人类样品上 (图 2). Brain Pathol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:200
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200 和 被用于免疫印迹在大鼠样品上浓度为1:1000. Brain Inj (2015) ncbi
兔 多克隆
  • 免疫组化; 人类
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于被用于免疫组化在人类样品上. J Neuroinflammation (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 大鼠; 1:200; 图 s1
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于被用于免疫细胞化学在大鼠样品上浓度为1:200 (图 s1). PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 大鼠; 1:100
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫细胞化学在大鼠样品上浓度为1:100. J Cell Physiol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 3a
默克密理博中国 GFAP抗体(Millipore, AD5804)被用于被用于免疫印迹在小鼠样品上浓度为1:5000 (图 3a). Mol Psychiatry (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 图 10
默克密理博中国 GFAP抗体(EMD Millipore, mab3402)被用于被用于免疫组化在小鼠样品上 (图 10). Mol Cell Biol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 人类; 1:200; 图 1
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于免疫组化在人类样品上浓度为1:200 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠; 1:400; 表 1
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫细胞化学在小鼠样品上浓度为1:400 (表 1). Cell Transplant (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:1000; 图 3
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于免疫组化在大鼠样品上浓度为1:1000 (图 3). Front Cell Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 图 S4
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于被用于免疫组化-石蜡切片在人类样品上 (图 S4). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s7
默克密理博中国 GFAP抗体(millipore, AB5804)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 s7). Nat Med (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:200
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于免疫组化在大鼠样品上浓度为1:200. Biomaterials (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 图 4
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化在小鼠样品上 (图 4). J Neuroinflammation (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:200
默克密理博中国 GFAP抗体(EMD Millipore, MAB3402)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200. J Neuroinflammation (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:400
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化在小鼠样品上浓度为1:400. Neuroimage (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:1000; 图 5P
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 5P). J Neurochem (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 大鼠; 1:200; 图 s4
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫细胞化学在大鼠样品上浓度为1:200 (图 s4). Nat Commun (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 1:500; 图 2
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 2). Int J Oncol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化在大鼠样品上浓度为1:1000. Neurobiol Dis (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:500
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于被用于免疫细胞化学在人类样品上浓度为1:500. Brain Pathol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 小鼠
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化-石蜡切片在小鼠样品上. EMBO Mol Med (2015) ncbi
兔 多克隆
  • 其他; 大鼠; 1:200; 图 1g
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于被用于其他在大鼠样品上浓度为1:200 (图 1g). PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 人类; 1:400
  • 免疫组化-石蜡切片; 小鼠; 1:400
默克密理博中国 GFAP抗体(Millipore, MAB 360)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:400 和 被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400. Brain (2015) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于被用于免疫细胞化学在人类样品上. Tissue Eng Part A (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 7
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 7). Nat Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:100
默克密理博中国 GFAP抗体(Millipore Corporation, Mab360)被用于被用于免疫组化在小鼠样品上浓度为1:100. J Neurochem (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于被用于免疫组化在小鼠样品上浓度为1:1000. Surg Neurol Int (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 大鼠; 1:400
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:400 和 被用于免疫印迹在大鼠样品上浓度为1:1000. Mol Neurobiol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5
  • 免疫细胞化学; 小鼠; 1:500; 图 4
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 5) 和 被用于免疫细胞化学在小鼠样品上浓度为1:500 (图 4). Development (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB3402X)被用于被用于免疫细胞化学在大鼠样品上浓度为1:1000. Toxicol In Vitro (2015) ncbi
小鼠 单克隆
  • 免疫细胞化学; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB3402C3)被用于被用于免疫细胞化学在大鼠样品上浓度为1:1000. Toxicol In Vitro (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:500
  • 免疫组化; 大鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化在小鼠样品上浓度为1:500 和 被用于免疫组化在大鼠样品上浓度为1:500. Neurobiol Dis (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 大鼠; 1:500; 图 2a
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于被用于免疫细胞化学在大鼠样品上浓度为1:500 (图 2a). J Neurosci Res (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:4000
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:4000. Front Neural Circuits (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:100
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化在小鼠样品上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:1000
默克密理博中国 GFAP抗体(EMD Millipore, MAB360)被用于被用于免疫组化在大鼠样品上浓度为1:1000. Free Radic Biol Med (2015) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:2000
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于被用于免疫组化在小鼠样品上浓度为1:2000. Mol Cell Neurosci (2014) ncbi
兔 单克隆(EP672Y)
  • 免疫组化-石蜡切片; 人类; 1:500
默克密理博中国 GFAP抗体(Millipore, 04-1031)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500. Acta Neuropathol Commun (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 小鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500. Cell Tissue Res (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:2000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:2000. Front Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 小鼠; 1:25,000; 图 s3
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:25,000 (图 s3). Hum Mol Genet (2015) ncbi
小鼠 单克隆(GA5)
  • immunohistochemistry - free floating section; 小鼠; 1:100
默克密理博中国 GFAP抗体(Millipore, MAB 360)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:100. Cereb Cortex (2015) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 猕猴; 1:1600
默克密理博中国 GFAP抗体(Millipore, #AB5804)被用于被用于immunohistochemistry - free floating section在猕猴样品上浓度为1:1600. J Comp Neurol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 人类; 1:1000
默克密理博中国 GFAP抗体(EMD Millipore, MAB360)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:1000. J Comp Neurol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:100
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化在大鼠样品上浓度为1:100. Toxicol Sci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 小鼠
默克密理博中国 GFAP抗体(MIllipore, GA5)被用于被用于免疫组化-石蜡切片在小鼠样品上. J Neurosci Res (2015) ncbi
小鼠 单克隆(GA5)
  • immunohistochemistry - free floating section; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000. Neuroscience (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 大鼠
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫细胞化学在大鼠样品上. PLoS ONE (2014) ncbi
鸡 多克隆
  • 免疫组化; 人类; 1:1000
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于被用于免疫组化在人类样品上浓度为1:1000. Neuroscience (2014) ncbi
小鼠 单克隆
  • 免疫细胞化学; 大鼠; 图 2b
默克密理博中国 GFAP抗体(Calbiochem, IF03L)被用于被用于免疫细胞化学在大鼠样品上 (图 2b). Exp Neurol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 1:500; 图 1b
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 1b). J Cell Biochem (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:200
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200. J Anat (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:10,000; 图 2
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫印迹在小鼠样品上浓度为1:10,000 (图 2). Front Cell Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化在大鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:200
  • 免疫印迹; 大鼠
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200 和 被用于免疫印迹在大鼠样品上. Brain Behav Immun (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:200; 图 6
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化在大鼠样品上浓度为1:200 (图 6). Stem Cells (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:500
默克密理博中国 GFAP抗体(Chemicon, AB5804)被用于被用于免疫细胞化学在人类样品上浓度为1:500. Biomed Res Int (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 人类; 1:200
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Acta Neuropathol (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:1000; 图 2
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 2). Nat Med (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. J Neurosci Res (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:200; 图  4
默克密理博中国 GFAP抗体(Chemicon/Millipore, MAB360)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图  4). Pharmacol Biochem Behav (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 斑马鱼; 1:100; 图 3
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化在斑马鱼样品上浓度为1:100 (图 3). Neuroscience (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠; 1:100
默克密理博中国 GFAP抗体(Merck Millipore, MAB360)被用于被用于免疫细胞化学在小鼠样品上浓度为1:100. Int J Dev Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:5000
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于免疫印迹在小鼠样品上浓度为1:5000. Neuroscience (2014) ncbi
小鼠 单克隆(GA5)
  • immunohistochemistry - free floating section; 大鼠; 1:1000; 图 5
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000 (图 5). Brain Struct Funct (2015) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 1
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于被用于免疫细胞化学在小鼠样品上浓度为1:1000 (图 1). Nat Commun (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 大鼠; 1:100
  • 免疫组化; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:100
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫细胞化学在大鼠样品上浓度为1:100, 被用于免疫组化在大鼠样品上浓度为1:100 和 被用于免疫印迹在大鼠样品上浓度为1:100. J Neuroinflammation (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:400
默克密理博中国 GFAP抗体(Millipore, Mab360)被用于被用于免疫组化在小鼠样品上浓度为1:400. Int J Dev Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:4000
默克密理博中国 GFAP抗体(Millepore, AB5804)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:4000. Environ Health Perspect (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于被用于免疫印迹在大鼠样品上浓度为1:1000. Mol Pain (2014) ncbi
小鼠 单克隆(GA5)
  • immunohistochemistry - free floating section; 小鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. Cell Tissue Res (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; common platanna; 1:400
默克密理博中国 GFAP抗体(Milipore, MAB360)被用于被用于免疫细胞化学在common platanna样品上浓度为1:400. Gen Comp Endocrinol (2014) ncbi
小鼠 单克隆(GA5)
  • immunohistochemistry - free floating section; 大鼠; 1:1000
默克密理博中国 GFAP抗体(EMD Millipore, mAb360)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000. J Biol Chem (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:1000. J Histochem Cytochem (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫细胞化学在小鼠样品上浓度为1:1000. Mol Cell Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:10000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫印迹在小鼠样品上浓度为1:10000. Front Integr Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
  • 免疫印迹; 小鼠; 1:3000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 和 被用于免疫印迹在小鼠样品上浓度为1:3000. J Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化在小鼠样品上浓度为1:500. J Neurochem (2014) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 大鼠; 1:2000; 图 12.33.4.
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:2000 (图 12.33.4.). Curr Protoc Cytom (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于免疫组化在大鼠样品上浓度为1:500. Neuroscience (2014) ncbi
小鼠 单克隆(GA5)
  • immunohistochemistry - free floating section; 猕猴; 1:500
  • immunohistochemistry - free floating section; 人类; 1:500
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于被用于immunohistochemistry - free floating section在猕猴样品上浓度为1:500 和 被用于immunohistochemistry - free floating section在人类样品上浓度为1:500. J Comp Neurol (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫印迹在大鼠样品上浓度为1:1000. Glia (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. Glia (2014) ncbi
鸡 多克隆
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于被用于免疫组化在小鼠样品上 和 被用于免疫印迹在小鼠样品上. J Neuroinflammation (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 小鼠
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化-石蜡切片在小鼠样品上. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化在小鼠样品上浓度为1:500. J Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 大鼠; 1:1000
  • 免疫组化; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Chemicon International, MAB360)被用于被用于免疫细胞化学在大鼠样品上浓度为1:1000 和 被用于免疫组化在大鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠
默克密理博中国 GFAP抗体(Chemicon International, MAB360)被用于被用于免疫组化-冰冻切片在小鼠样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:10000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化在小鼠样品上浓度为1:10000. Cell Mol Neurobiol (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于被用于免疫组化在小鼠样品上. J Vis Exp (2014) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:500
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于被用于免疫组化在人类样品上浓度为1:500. Cancer Res (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; African green monkey; 1:100000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化在African green monkey样品上浓度为1:100000. Mol Ther (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠; 1:200
  • 免疫组化; 小鼠; 1:200
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200 和 被用于免疫组化在小鼠样品上浓度为1:200. Stem Cells Dev (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:200
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化在大鼠样品上浓度为1:200. Exp Eye Res (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
  • 免疫组化; 人类; 1:400
默克密理博中国 GFAP抗体(Chemicon, AB5804)被用于被用于免疫细胞化学在人类样品上 和 被用于免疫组化在人类样品上浓度为1:400. J Cell Mol Med (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:400
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:400. J Virol (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类
  • 免疫细胞化学; 大鼠
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫细胞化学在人类样品上 和 被用于免疫细胞化学在大鼠样品上. J Mol Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:200; 图 2, 3
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 2, 3). Development (2014) ncbi
兔 多克隆
  • 免疫组化; 大鼠
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于被用于免疫组化在大鼠样品上. J Cereb Blood Flow Metab (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图 2). Development (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:1500
默克密理博中国 GFAP抗体(Chemicon International, GA5)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1500. Acta Neuropathol Commun (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于免疫细胞化学在小鼠样品上. Anal Chem (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化在小鼠样品上浓度为1:500. PLoS ONE (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 大鼠; 1:200
默克密理博中国 GFAP抗体(Millipore, GA5)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:200. Toxicol Lett (2014) ncbi
小鼠 单克隆(GA5)
  • immunohistochemistry - free floating section; 小鼠
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于immunohistochemistry - free floating section在小鼠样品上. J Neurosci (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:100
默克密理博中国 GFAP抗体(Chemicon, AB5804)被用于被用于免疫细胞化学在人类样品上浓度为1:100. Cytotechnology (2014) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:500. J Neuroinflammation (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫细胞化学在人类样品上. elife (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 狗
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫细胞化学在狗样品上. Methods Mol Biol (2013) ncbi
小鼠 单克隆(GA5)
  • immunohistochemistry - free floating section; 小鼠; 1:4000
  • 免疫印迹; 小鼠
  • immunohistochemistry - free floating section; 大鼠; 1:4000
  • 免疫印迹; 大鼠
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:4000, 被用于免疫印迹在小鼠样品上, 被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:4000 和 被用于免疫印迹在大鼠样品上. Mol Neurobiol (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:100
  • 免疫组化-冰冻切片; 大鼠
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 和 被用于免疫组化-冰冻切片在大鼠样品上. Anesthesiology (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 猕猴; 1:2000
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于被用于免疫组化-冰冻切片在猕猴样品上浓度为1:2000. Neuroscience (2013) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:400
默克密理博中国 GFAP抗体(Chemicon, AB5804)被用于被用于免疫组化在大鼠样品上浓度为1:400. Cereb Cortex (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:2500; 图 6
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫印迹在小鼠样品上浓度为1:2500 (图 6). ASN Neuro (2013) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:600
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:600. J Comp Neurol (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 大鼠; 1:500
  • 免疫组化; 大鼠; 1:500
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫细胞化学在大鼠样品上浓度为1:500, 被用于免疫组化在大鼠样品上浓度为1:500 和 被用于免疫印迹在大鼠样品上浓度为1:1000. Biomaterials (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 人类; 1:200
  • 免疫印迹; 人类; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化在人类样品上浓度为1:200 和 被用于免疫印迹在人类样品上浓度为1:1000. Neuro Oncol (2013) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 人类; 1:75
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:75. Cell Tissue Res (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000
默克密理博中国 GFAP抗体(Millipore, ab5804)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:1000. Neuroscience (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 人类; 1 ug/ml
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1 ug/ml. Neuropathol Appl Neurobiol (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; African green monkey; 1:100000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在African green monkey样品上浓度为1:100000. Hum Gene Ther (2013) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500. J Neurotrauma (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 大鼠; 1:800
  • 免疫印迹; 大鼠; 1:60000
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:800 和 被用于免疫印迹在大鼠样品上浓度为1:60000. J Neurotrauma (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:200
默克密理博中国 GFAP抗体(Millipore Corporation, GA5)被用于被用于免疫组化在小鼠样品上浓度为1:200. Reprod Toxicol (2013) ncbi
小鼠 单克隆(GA5)
  • immunohistochemistry - free floating section; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000. J Neuroinflammation (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫细胞化学在小鼠样品上. Neurobiol Dis (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:300
默克密理博中国 GFAP抗体(Millipore, GA5)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:300. J Neurosci (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 大鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:500. PLoS ONE (2012) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 狗; 1:200
  • 免疫细胞化学; 狗; 1:200
默克密理博中国 GFAP抗体(Chemicon, AB5804)被用于被用于免疫组化-冰冻切片在狗样品上浓度为1:200 和 被用于免疫细胞化学在狗样品上浓度为1:200. Histochem Cell Biol (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 猕猴; 1:500
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于被用于免疫细胞化学在猕猴样品上浓度为1:500. Stem Cells Dev (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 1:800
  • 免疫组化; 人类; 1:800
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫细胞化学在人类样品上浓度为1:800 和 被用于免疫组化在人类样品上浓度为1:800. Gene Ther (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 大鼠; 1:800
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:800. Cell Mol Neurobiol (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:5000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:5000. J Neuroinflammation (2012) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 6). PLoS ONE (2011) ncbi
鸡 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:2000
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:2000. J Comp Neurol (2012) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于免疫组化在大鼠样品上浓度为1:1000. Brain (2012) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:500
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500. Exp Neurol (2011) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:2000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:2000. J Comp Neurol (2011) ncbi
鸡 多克隆
  • 免疫细胞化学; African green monkey
  • 免疫细胞化学; 人类
默克密理博中国 GFAP抗体(Chemicon, AB5541)被用于被用于免疫细胞化学在African green monkey样品上 和 被用于免疫细胞化学在人类样品上. J Comp Neurol (2011) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:2000
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:2000. J Comp Neurol (2011) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 人类; 1:2000
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:2000. J Comp Neurol (2009) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 人类; 1:750
默克密理博中国 GFAP抗体(Chemicon, AB9598)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:750. J Comp Neurol (2009) ncbi
兔 多克隆
  • 免疫组化; Trachemys dorbigni; 1:500
默克密理博中国 GFAP抗体(Chemicon, AB 5804)被用于被用于免疫组化在Trachemys dorbigni样品上浓度为1:500. J Comp Neurol (2009) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:2000
默克密理博中国 GFAP抗体(Chemicon / Millipore, AB5804)被用于被用于免疫组化在大鼠样品上浓度为1:2000. J Comp Neurol (2008) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Comp Neurol (2008) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000
默克密理博中国 GFAP抗体(Chemicon, AB5804)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Comp Neurol (2008) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:1,000
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于被用于免疫组化在小鼠样品上浓度为1:1,000. J Comp Neurol (2008) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 小鼠; 1:2,000
  • 免疫细胞化学; 小鼠; 1:2,000
  • 免疫印迹; 小鼠; 1:30,000
默克密理博中国 GFAP抗体(Chemicon, MAB 3402)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:2,000, 被用于免疫细胞化学在小鼠样品上浓度为1:2,000 和 被用于免疫印迹在小鼠样品上浓度为1:30,000. J Comp Neurol (2007) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 鸡; 1:400
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于被用于免疫组化在鸡样品上浓度为1:400. J Comp Neurol (2007) ncbi
小鼠 单克隆(GA5)
  • immunohistochemistry - free floating section; 小鼠; 1:2,500
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:2,500. J Comp Neurol (2006) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:200
  • 免疫组化; 小鼠; 1:200
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于被用于免疫组化在大鼠样品上浓度为1:200 和 被用于免疫组化在小鼠样品上浓度为1:200. J Comp Neurol (2006) ncbi
西格玛奥德里奇
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 大鼠; 1:400; 图 3f
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:400 (图 3f). Mol Neurobiol (2018) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1b
  • 免疫组化; 小鼠; 图 s3d
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G9269)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 1b) 和 被用于免疫组化在小鼠样品上 (图 s3d). Science (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4c
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, C9205)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 4c). Front Mol Neurosci (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; jirds; 1:400; 表 1
西格玛奥德里奇 GFAP抗体(Sigma, G-3893)被用于被用于免疫组化在jirds样品上浓度为1:400 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 人类; 1:400
  • 免疫细胞化学; 人类; 1:400; 图 e1b
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:400 和 被用于免疫细胞化学在人类样品上浓度为1:400 (图 e1b). Nature (2017) ncbi
小鼠 单克隆(G-A-5)
  • immunohistochemistry - free floating section; 小鼠; 图 2a
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于immunohistochemistry - free floating section在小鼠样品上 (图 2a). Sci Rep (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 8f
  • 免疫组化; 小鼠; 1:1000; 图 5c
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (图 8f) 和 被用于免疫组化在小鼠样品上浓度为1:1000 (图 5c). Acta Neuropathol Commun (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:500; 图 6
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, C9205)被用于被用于免疫组化在大鼠样品上浓度为1:500 (图 6). PLoS ONE (2017) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 图 1k
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于被用于immunohistochemistry - free floating section在小鼠样品上 (图 1k). Front Neurosci (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:200; 图 8i
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 8i). Sci Rep (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:400; 图 3c
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样品上浓度为1:400 (图 3c). Front Aging Neurosci (2017) ncbi
小鼠 单克隆(G-A-5)
  • immunohistochemistry - free floating section; 小鼠; 1:1000; 图 4f
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000 (图 4f). FASEB J (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1a
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图 1a). Nat Commun (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1D
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 1D). elife (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 小鼠; 1:200; 图 42
西格玛奥德里奇 GFAP抗体(Sigma, C9205)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200 (图 42). Neural Regen Res (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 5d
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:1000 (图 5d). Nature (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
西格玛奥德里奇 GFAP抗体(Sigma, G3896)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 1). Int J Mol Sci (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 图 s2d
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样品上 (图 s2d). Cell Stem Cell (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2k
西格玛奥德里奇 GFAP抗体(Sigma, C9205)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图 2k). Oncotarget (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 小鼠; 图 5a
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 5a). Hum Mol Genet (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:400; 图 5
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在大鼠样品上浓度为1:400 (图 5). Front Cell Neurosci (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 2f
  • 免疫印迹; 人类; 图 2c
西格玛奥德里奇 GFAP抗体(Sigma, SAB43000647)被用于被用于免疫细胞化学在人类样品上 (图 2f) 和 被用于免疫印迹在人类样品上 (图 2c). Cell Chem Biol (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 表 1
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (表 1). elife (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 小鼠; 1:300; 图 s2a
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫细胞化学在小鼠样品上浓度为1:300 (图 s2a). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化; 斑马鱼; 1:1000; 图 s3b
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于被用于免疫组化在斑马鱼样品上浓度为1:1000 (图 s3b). Science (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:500; 图 4c
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在大鼠样品上浓度为1:500 (图 4c). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化; African green monkey; 1:2000; 图 5
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于被用于免疫组化在African green monkey样品上浓度为1:2000 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 大鼠; 1:10,000; 图 2f
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫细胞化学在大鼠样品上浓度为1:10,000 (图 2f). Mol Pharm (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:2000; 图 2c
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在大鼠样品上浓度为1:2000 (图 2c). Brain Struct Funct (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 大鼠; 图 3
西格玛奥德里奇 GFAP抗体(Sigma, C9205)被用于被用于免疫组化-冰冻切片在大鼠样品上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; Japanese firebelly newt; 1:600; 图 3f
西格玛奥德里奇 GFAP抗体(Sigma, C9205)被用于被用于免疫组化-冰冻切片在Japanese firebelly newt样品上浓度为1:600 (图 3f). Sci Rep (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2e
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 2e). Neurobiol Aging (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; Gallotia galloti; 1:500; 图 1i
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化在Gallotia galloti样品上浓度为1:500 (图 1i). J Comp Neurol (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图 4a
  • 免疫印迹; 小鼠; 1:500; 图 1a
  • 免疫组化; 人类; 1:500; 图 7c
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 4a), 被用于免疫印迹在小鼠样品上浓度为1:500 (图 1a) 和 被用于免疫组化在人类样品上浓度为1:500 (图 7c). Neuroscience (2016) ncbi
小鼠 单克隆(G-A-5)
  • immunohistochemistry - free floating section; 小鼠; 1:500; 图 4d
  • 免疫印迹; 小鼠; 1:2000; 图 6c
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500 (图 4d) 和 被用于免疫印迹在小鼠样品上浓度为1:2000 (图 6c). Dis Model Mech (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s6
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图 s6). Cell Death Dis (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000; 图 2
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 2). Front Neurosci (2016) ncbi
小鼠 单克隆
  • 免疫细胞化学; 小鼠; 1:4000; 图 5a
西格玛奥德里奇 GFAP抗体(Sigma, SAB1405864)被用于被用于免疫细胞化学在小鼠样品上浓度为1:4000 (图 5a). Mol Med Rep (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:500; 图 3e
西格玛奥德里奇 GFAP抗体(SIGMA, G6171)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 3e). Science (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000; 图 5a
西格玛奥德里奇 GFAP抗体(Sigma, G 3893)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 5a). Brain (2016) ncbi
小鼠 单克隆(GFAP-B4)
  • 免疫组化; 小鼠; 1:400; 图 s4
西格玛奥德里奇 GFAP抗体(Sigma, SAB4100002)被用于被用于免疫组化在小鼠样品上浓度为1:400 (图 s4). Science (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 大鼠
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫细胞化学在大鼠样品上. ACS Nano (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000; 图 1
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 1). elife (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 大鼠; 图 1a
  • 免疫印迹; 大鼠; 图 4a
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在大鼠样品上 (图 1a) 和 被用于免疫印迹在大鼠样品上 (图 4a). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000; 图 4
西格玛奥德里奇 GFAP抗体(Sigma, G6171)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 4). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000; 图 1
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 1). J Proteome Res (2016) ncbi
小鼠 单克隆(G-A-5)
  • immunohistochemistry - free floating section; 小鼠; 1:500; 图 s2
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500 (图 s2). Nat Commun (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:100; 图 6
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在大鼠样品上浓度为1:100 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 图 1e, 1f. 1g, 1h
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化在小鼠样品上 (图 1e, 1f. 1g, 1h). Sci Rep (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:100; 表 2
西格玛奥德里奇 GFAP抗体(Sigma, C9205)被用于被用于免疫组化在大鼠样品上浓度为1:100 (表 2). Front Neurosci (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 2a
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于被用于免疫印迹在大鼠样品上 (图 2a). Sci Rep (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:500; 图 s1
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 s1). Nat Commun (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 6
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 6). Neurobiol Dis (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000; 图 6b
西格玛奥德里奇 GFAP抗体(Sigma, C9205)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 6b). J Neuropathol Exp Neurol (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4
  • 免疫印迹; 小鼠; 1:1000; 图 4
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 4) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 4). Nat Commun (2016) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 s4
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, SAB2500462)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 s4). Nat Commun (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 图 5c
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样品上 (图 5c). J Mol Neurosci (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 小鼠; 图 5b
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 5b). Sci Rep (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:500; 图 7
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 7). Acta Neuropathol Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于被用于免疫印迹在小鼠样品上 (图 3). J Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 1
西格玛奥德里奇 GFAP抗体(Sigma Aldrich, G4546)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200 (图 1). Am J Physiol Heart Circ Physiol (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 人类; 图 s1
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫细胞化学在人类样品上 (图 s1). F1000Res (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 大鼠; 1:500; 图 s2
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫细胞化学在大鼠样品上浓度为1:500 (图 s2). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 小鼠; 图 6
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫印迹在小鼠样品上 (图 6). elife (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:10,000; 图 s4
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化在小鼠样品上浓度为1:10,000 (图 s4). Front Mol Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 小鼠; 1:400; 图 4d
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫细胞化学在小鼠样品上浓度为1:400 (图 4d). Stem Cells Int (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 人类; 1:1000; 表 1
西格玛奥德里奇 GFAP抗体(Sigma, C9205)被用于被用于免疫细胞化学在人类样品上浓度为1:1000 (表 1). Exp Eye Res (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:2000; 图 3a
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在大鼠样品上浓度为1:2000 (图 3a). Gene Ther (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:100; 图 8
西格玛奥德里奇 GFAP抗体(Sigma, G6171)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 8). Sci Rep (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 大鼠; 1:200; 图 2
  • 免疫印迹; 大鼠; 1:1000; 图 3
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫细胞化学在大鼠样品上浓度为1:200 (图 2) 和 被用于免疫印迹在大鼠样品上浓度为1:1000 (图 3). Brain Behav (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 5
西格玛奥德里奇 GFAP抗体(sigma-Adrich, 4546)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 5). Mol Vis (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 图 1c, 1d
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化在小鼠样品上 (图 1c, 1d). J Virol (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 1
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于被用于免疫细胞化学在小鼠样品上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 小鼠; 1:1000; 图 5
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 5). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:400; 图 5e
西格玛奥德里奇 GFAP抗体(Sigma, G4546)被用于被用于免疫组化在小鼠样品上浓度为1:400 (图 5e). Sci Rep (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000; 图 6
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5a
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图 5a). J Neuroinflammation (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:500; 图 6
西格玛奥德里奇 GFAP抗体(Sigma, G 3893)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 6). Neuropharmacology (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:3000; 图 1
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化在小鼠样品上浓度为1:3000 (图 1). Dis Model Mech (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 图 5
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于被用于免疫细胞化学在大鼠样品上 (图 5). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 图 6
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, C9205)被用于被用于免疫组化在大鼠样品上 (图 6). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 图 7
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 7). J Neurosci Res (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 4f
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200 (图 4f). Mol Med Rep (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 小鼠; 1:500; 表 1
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500 (表 1). J Neurosci Res (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma Aldrich, G9269)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. Glia (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 小鼠; 1:500; 图 1
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500 (图 1). BMC Biol (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:800; 图 5
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, C9205)被用于被用于免疫组化在小鼠样品上浓度为1:800 (图 5). J Clin Invest (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 3). Oxid Med Cell Longev (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 羊; 1:500; 图 2
西格玛奥德里奇 GFAP抗体(Sigma, C9205)被用于被用于免疫细胞化学在羊样品上浓度为1:500 (图 2). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, cat# G3893)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. EMBO J (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 大鼠; 1:200
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫细胞化学在大鼠样品上浓度为1:200. Cell J (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样品上浓度为1:1000. J Neuroimmunol (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 大鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma, G389)被用于被用于免疫印迹在大鼠样品上浓度为1:400. J Proteome Res (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫印迹在小鼠样品上浓度为1:500. PLoS ONE (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:400; 表 2
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样品上浓度为1:400 (表 2). Eur J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; scFv; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于被用于免疫组化在scFv样品上浓度为1:1000. Glia (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:200; 图 1
西格玛奥德里奇 GFAP抗体(Sigma, G4546)被用于被用于免疫细胞化学在大鼠样品上浓度为1:200 (图 1). Front Neuroanat (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 大鼠; 1:600; 图 1
西格玛奥德里奇 GFAP抗体(Sigma, G393)被用于被用于免疫细胞化学在大鼠样品上浓度为1:600 (图 1). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, C9205)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:5000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G9269)被用于被用于免疫印迹在大鼠样品上浓度为1:5000. J Neurochem (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 人类; 图 5
西格玛奥德里奇 GFAP抗体(Sigma, G-A-5)被用于被用于免疫组化在人类样品上 (图 5). J Neuroinflammation (2015) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, SAB2500462)被用于被用于免疫组化在小鼠样品上浓度为1:1000. J Immunol (2015) ncbi
小鼠 单克隆(GFAP-B4)
  • 免疫细胞化学; 人类; 图 7
西格玛奥德里奇 GFAP抗体(Sigma, SAB4100002)被用于被用于免疫细胞化学在人类样品上 (图 7). Sci Rep (2015) ncbi
小鼠 单克隆(G-A-5)
西格玛奥德里奇 GFAP抗体(Sigma, G-A-5)被用于. Am J Pathol (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G926)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图 4). Brain (2015) ncbi
小鼠 单克隆(G-A-5)
  • immunohistochemistry - free floating section; 小鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma, G-A-5)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. Cell Tissue Res (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 大鼠; 1:200
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫细胞化学在大鼠样品上浓度为1:200. J Mol Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • immunohistochemistry - free floating section; 大鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G-3893)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:400. Mol Neurobiol (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 s4d
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G9269)被用于被用于免疫细胞化学在人类样品上 (图 s4d). Oncotarget (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 小鼠; 图 6
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 6). Sci Rep (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 人类; 1:250; 图 3d
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫细胞化学在人类样品上浓度为1:250 (图 3d). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图 4
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G-9269)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 4). Amyotroph Lateral Scler Frontotemporal Degener (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G9269)被用于被用于免疫印迹在小鼠样品上 (图 1). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, C9205)被用于被用于免疫组化在大鼠样品上浓度为1:1000. Front Mol Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s2
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图 s2). Stem Cell Reports (2015) ncbi
兔 多克隆
  • 流式细胞仪; 大鼠; 图 s4a
  • 免疫细胞化学; 大鼠; 1:250; 图 s3a
  • 免疫印迹; 大鼠; 图 2f
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于被用于流式细胞仪在大鼠样品上 (图 s4a), 被用于免疫细胞化学在大鼠样品上浓度为1:250 (图 s3a) 和 被用于免疫印迹在大鼠样品上 (图 2f). Cell Death Differ (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 4g
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000 (图 4g). BMC Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在大鼠样品上浓度为1:500. Front Cell Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在大鼠样品上. Brain Struct Funct (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; medaka; 1:1000; 图 2
  • 免疫印迹; medaka; 1:1000; 图 2
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化在medaka样品上浓度为1:1000 (图 2) 和 被用于免疫印迹在medaka样品上浓度为1:1000 (图 2). PLoS Genet (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. Neuroscience (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 人类; 1:1000; 图 1
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫细胞化学在人类样品上浓度为1:1000 (图 1). J Immunol (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. J Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. J Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:2000; 图 5
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化在大鼠样品上浓度为1:2000 (图 5). Neuroscience (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 大鼠
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫细胞化学在大鼠样品上. Brain Behav (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 小鼠; 1:200; 图 s4
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200 (图 s4). Sci Rep (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G 3893)被用于被用于免疫组化在小鼠样品上浓度为1:500. Neuropharmacology (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 4
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:400 (图 4). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3
  • 免疫印迹; 小鼠; 1:3000; 图 s2
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G9269)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 3) 和 被用于免疫印迹在小鼠样品上浓度为1:3000 (图 s2). Nat Neurosci (2015) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:200
  • 酶联免疫吸附测定; 大鼠
  • 免疫印迹; 大鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma Chemical, G9269)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:200, 被用于酶联免疫吸附测定在大鼠样品上 和 被用于免疫印迹在大鼠样品上浓度为1:1000. Mol Neurobiol (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 人类; 1:5000
西格玛奥德里奇 GFAP抗体(SIGMA, G3893)被用于被用于免疫细胞化学在人类样品上浓度为1:5000. J Cell Physiol (2015) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 大鼠; 0.1 ug/ul
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G9269)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为0.1 ug/ul. J Comp Neurol (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 小鼠; 1:500
  • 免疫细胞化学; 人类; 1:500
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500 和 被用于免疫细胞化学在人类样品上浓度为1:500. Cell Biol Int Rep (2010) (2013) ncbi
小鼠 单克隆(G-A-5)
  • proximity ligation assay; 大鼠; 1:500; 图 5i
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 5a
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于proximity ligation assay在大鼠样品上浓度为1:500 (图 5i) 和 被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500 (图 5a). Exp Eye Res (2015) ncbi
兔 多克隆
  • 免疫组化; Styela plicata; 1:100
  • 免疫印迹; Styela plicata; 1:5000
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于被用于免疫组化在Styela plicata样品上浓度为1:100 和 被用于免疫印迹在Styela plicata样品上浓度为1:5000. Dev Neurobiol (2015) ncbi
小鼠 单克隆(G-A-5)
  • immunohistochemistry - free floating section; 大鼠; 1:1000
西格玛奥德里奇 GFAP抗体(SIGMA, G3893)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000. Neuroscience (2015) ncbi
小鼠 单克隆(G-A-5)
  • immunohistochemistry - free floating section; 小鼠; 1:5000; 表 1
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:5000 (表 1). Brain Behav Immun (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样品上浓度为1:400. Front Behav Neurosci (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 4). J Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:2000
  • 免疫印迹; 大鼠; 1:4000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G9269)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:2000 和 被用于免疫印迹在大鼠样品上浓度为1:4000. Adv Alzheimer Dis (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:2000; 图 4
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在大鼠样品上浓度为1:2000 (图 4). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G9269)被用于被用于免疫组化在小鼠样品上浓度为1:500. ASN Neuro (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 大鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G-3893)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. J Neurosci (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 人类
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫细胞化学在人类样品上. Neuroscience (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:5000
西格玛奥德里奇 GFAP抗体(Sigma Aldrich, G3893)被用于被用于免疫组化在大鼠样品上浓度为1:5000. Gene Ther (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 人类; 1:3000
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫细胞化学在人类样品上浓度为1:3000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:600
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于被用于免疫细胞化学在大鼠样品上浓度为1:600. J Neuroinflammation (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 大鼠; 1:600
西格玛奥德里奇 GFAP抗体(Sigma, G6171)被用于被用于免疫细胞化学在大鼠样品上浓度为1:600. J Neuroinflammation (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 人类; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:1000. J Comp Neurol (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:100
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G6171)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100. Neurobiol Aging (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 大鼠
  • 免疫组化-冰冻切片; 人类
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在大鼠样品上 和 被用于免疫组化-冰冻切片在人类样品上. Ann Neurol (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 人类; 1:400
西格玛奥德里奇 GFAP抗体(Sigma, C9205)被用于被用于免疫细胞化学在人类样品上浓度为1:400. J Biol Chem (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 小鼠; 1:2000; 图 4
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫细胞化学在小鼠样品上浓度为1:2000 (图 4). Stem Cells Dev (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 人类; 1:500
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, Clone G-A-5)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500. J Immunol (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 人类; 1:1000
  • 免疫组化; 大鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在人类样品上浓度为1:1000 和 被用于免疫组化在大鼠样品上浓度为1:1000. Int J Clin Exp Pathol (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1600
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样品上浓度为1:1600. J Chem Neuroanat (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Neurosci (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 人类; 1:5000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:5000. J Chem Neuroanat (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Neurobiol Dis (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于被用于免疫组化在小鼠样品上浓度为1:500. Cereb Cortex (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:20
  • 免疫组化-冰冻切片; 大鼠; 1:20
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:20 和 被用于免疫组化-冰冻切片在大鼠样品上浓度为1:20. Neuroscience (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 人类; 1:600
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫细胞化学在人类样品上浓度为1:600. J Vis Exp (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000; 图 s7
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 s7). Nat Neurosci (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 人类; 1:1000; 图 2b3
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在人类样品上浓度为1:1000 (图 2b3). J Mol Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:1000; 图 2b3
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于被用于免疫组化在人类样品上浓度为1:1000 (图 2b3). J Mol Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:400. J Alzheimers Dis (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 大鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G-3893)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. Exp Neurol (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠
西格玛奥德里奇 GFAP抗体(Sigma, G-3893)被用于被用于免疫组化在大鼠样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 大鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G6171)被用于被用于免疫细胞化学在大鼠样品上浓度为1:500. Neuroscience (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:2000; 图 4a
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样品上浓度为1:2000 (图 4a). Nat Neurosci (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 猪; 1:400
  • 免疫组化; 兔
  • 免疫组化; 大鼠
  • 免疫组化; 人类; 1:400
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在猪样品上浓度为1:400, 被用于免疫组化在兔样品上, 被用于免疫组化在大鼠样品上 和 被用于免疫组化在人类样品上浓度为1:400. Exp Eye Res (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G9269)被用于被用于免疫组化在小鼠样品上浓度为1:200. Exp Neurol (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 人类; 1:400
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫细胞化学在人类样品上浓度为1:400. J Proteomics (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图 2). Brain Struct Funct (2015) ncbi
小鼠 单克隆(G-A-5)
  • immunohistochemistry - free floating section; 小鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. Front Neurosci (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma-aldrich, G3893)被用于被用于免疫组化在小鼠样品上浓度为1:1000. Stem Cells (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 人类; 1:15,000
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在人类样品上浓度为1:15,000. Neurobiol Aging (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; Apteronotus leptorhynchus; 图 3
西格玛奥德里奇 GFAP抗体(Sigma, G-A-5)被用于被用于免疫组化在Apteronotus leptorhynchus样品上 (图 3). Dev Neurobiol (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 大鼠; 1:2000
  • 免疫印迹; 大鼠; 1:2000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G6171)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:2000 和 被用于免疫印迹在大鼠样品上浓度为1:2000. J Neurol Sci (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:100
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样品上浓度为1:100. Glia (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 大鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500. Acta Neuropathol Commun (2013) ncbi
小鼠 单克隆(G-A-5)
  • immunohistochemistry - free floating section; 小鼠; 1:1000
  • immunohistochemistry - free floating section; 人类; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000 和 被用于immunohistochemistry - free floating section在人类样品上浓度为1:1000. Acta Neuropathol Commun (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在小鼠样品上. Acta Neuropathol Commun (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 人类
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫印迹在人类样品上. PLoS ONE (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:50000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G6171)被用于被用于免疫组化在小鼠样品上浓度为1:50000. Hippocampus (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样品上浓度为1:500. J Neurosci (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化在小鼠样品上浓度为1:500. Nat Neurosci (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000
  • 免疫印迹; 小鼠; 1:2000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化在小鼠样品上浓度为1:1000 和 被用于免疫印迹在小鼠样品上浓度为1:2000. J Comp Neurol (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 小鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫细胞化学在小鼠样品上浓度为1:400. Nat Med (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 小鼠
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫印迹在小鼠样品上. J Neurosci (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 猕猴; 1:200
西格玛奥德里奇 GFAP抗体(Sigma, GA5)被用于被用于免疫组化-冰冻切片在猕猴样品上浓度为1:200. J Neuroinflammation (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 小鼠; 1:500
  • 免疫细胞化学; 小鼠
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 和 被用于免疫细胞化学在小鼠样品上. Glia (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:800
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:800. PLoS ONE (2013) ncbi
小鼠 单克隆(G-A-5)
  • immunohistochemistry - free floating section; 人类; 1:20,000
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于immunohistochemistry - free floating section在人类样品上浓度为1:20,000. J Chem Neuroanat (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma, G 3893)被用于被用于免疫组化在小鼠样品上浓度为1:400. J Comp Neurol (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 小鼠; 1:800; 图 7
西格玛奥德里奇 GFAP抗体(Sigma, C9205)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:800 (图 7). PLoS ONE (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, GA5)被用于被用于免疫组化在大鼠样品上. J Neurosci (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫细胞化学在小鼠样品上. EMBO J (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 猪
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-石蜡切片在猪样品上. Reprod Sci (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 人类; 1:75
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:75. Cell Tissue Res (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 人类; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, GA5)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:1000. Dev Neurosci (2013) ncbi
小鼠 单克隆(G-A-5)
  • immunohistochemistry - free floating section; 人类; 1:5000
  • 免疫细胞化学; 人类; 1:5000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于immunohistochemistry - free floating section在人类样品上浓度为1:5000 和 被用于免疫细胞化学在人类样品上浓度为1:5000. Glia (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 兔
  • 免疫印迹; 兔
  • 免疫组化-冰冻切片; 人类
西格玛奥德里奇 GFAP抗体(Sigma, G6171)被用于被用于免疫组化-冰冻切片在兔样品上, 被用于免疫印迹在兔样品上 和 被用于免疫组化-冰冻切片在人类样品上. Exp Neurol (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:5000
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:5000. Neuroscience (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 大鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:400. J Histochem Cytochem (2012) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. J Neurosci (2012) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:400. J Comp Neurol (2011) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 人类
  • 免疫组化-石蜡切片; 人类
  • 免疫组化-冰冻切片; African green monkey
  • 免疫组化-石蜡切片; African green monkey
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-冰冻切片在人类样品上, 被用于免疫组化-石蜡切片在人类样品上, 被用于免疫组化-冰冻切片在African green monkey样品上 和 被用于免疫组化-石蜡切片在African green monkey样品上. J Comp Neurol (2011) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; African green monkey; 1:100
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在African green monkey样品上浓度为1:100. J Comp Neurol (2011) ncbi
小鼠 单克隆(G-A-5)
  • immunohistochemistry - free floating section; 小鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:400. J Comp Neurol (2010) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 斑马鱼; 1:100
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在斑马鱼样品上浓度为1:100. J Comp Neurol (2010) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:2000; 图 2
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样品上浓度为1:2000 (图 2). Neuroscience (2010) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; Trachemys dorbigni; 1:500
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化在Trachemys dorbigni样品上浓度为1:500. J Comp Neurol (2009) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. J Comp Neurol (2009) ncbi
小鼠 单克隆(G-A-5)
  • immunohistochemistry - free floating section; 大鼠; 1:2500
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:2500. J Comp Neurol (2009) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化在小鼠样品上浓度为1:400. J Comp Neurol (2009) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 大鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500. J Comp Neurol (2008) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:300
  • 免疫细胞化学; 小鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:300 和 被用于免疫细胞化学在小鼠样品上浓度为1:1000. J Comp Neurol (2008) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 大鼠
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在大鼠样品上. J Comp Neurol (2008) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 斑马鱼; 1:100
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在斑马鱼样品上浓度为1:100. J Comp Neurol (2008) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 大鼠; 1:600
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:600. J Comp Neurol (2008) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在小鼠样品上. J Comp Neurol (2007) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1,000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G-3893)被用于被用于免疫组化在小鼠样品上浓度为1:1,000. J Comp Neurol (2007) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:300
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样品上浓度为1:300. J Comp Neurol (2007) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 小鼠; 1:200
  • 免疫组化-石蜡切片; 大鼠; 1:200
  • 免疫组化-石蜡切片; 人类; 1:200
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200, 被用于免疫组化-石蜡切片在大鼠样品上浓度为1:200 和 被用于免疫组化-石蜡切片在人类样品上浓度为1:200. J Comp Neurol (2007) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:400
  • 免疫组化; 小鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于被用于免疫组化在大鼠样品上浓度为1:400 和 被用于免疫组化在小鼠样品上浓度为1:400. J Comp Neurol (2006) ncbi
小鼠 单克隆(G-A-5)
  • immunohistochemistry - free floating section; 大鼠; 1:5000
西格玛奥德里奇 GFAP抗体(Sigma, GA5)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:5000. J Comp Neurol (2005) ncbi
赛信通(上海)生物试剂有限公司
兔 单克隆(D1F4Q)
  • 免疫组化-冰冻切片; 小鼠; 图 1g
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 12389)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 1g). Cell (2017) ncbi
兔 单克隆(D1F4Q)
  • 免疫组化-冰冻切片; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 12389)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 4a). Epilepsia (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 图 3c
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, GA5)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 3c) 和 被用于免疫印迹在小鼠样品上 (图 1a). J Neurosci (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:300; 图 2j
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:300 (图 2j). J Pain (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于被用于免疫印迹在小鼠样品上 (图 1c). Redox Biol (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 狗; 1:2500; 图 st8
  • 免疫组化-石蜡切片; 狗; 1:2500; 图 st8
  • 免疫组化-冰冻切片; 大鼠; 1:2500; 图 st8
  • 免疫组化-石蜡切片; 大鼠; 1:2500; 图 st8
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, 3670)被用于被用于免疫组化-冰冻切片在狗样品上浓度为1:2500 (图 st8), 被用于免疫组化-石蜡切片在狗样品上浓度为1:2500 (图 st8), 被用于免疫组化-冰冻切片在大鼠样品上浓度为1:2500 (图 st8) 和 被用于免疫组化-石蜡切片在大鼠样品上浓度为1:2500 (图 st8). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 7b). PLoS ONE (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 图 3gb
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于被用于免疫细胞化学在人类样品上 (图 3gb) 和 被用于免疫印迹在人类样品上 (图 3a). Mol Oncol (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:100; 图 1d
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 1d). Nat Commun (2017) ncbi
兔 单克隆(D1F4Q)
  • 免疫印迹; 小鼠; 1:2000; 图 s2b
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 12389)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 s2b). J Exp Med (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 人类; 表 4
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell signaling, 3670)被用于被用于免疫印迹在人类样品上 (表 4). Transl Psychiatry (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:250; 图 s5b
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670P)被用于被用于免疫组化在小鼠样品上浓度为1:250 (图 s5b). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(GA5)
  • immunohistochemistry - free floating section; 小鼠; 1:400; 图 s5
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:400 (图 s5). PLoS Genet (2016) ncbi
兔 单克隆(D1F4Q)
  • 免疫细胞化学; 人类; 图 6b
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 12389)被用于被用于免疫细胞化学在人类样品上 (图 6b). Oncogene (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2c
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670S)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 2c). Neurobiol Dis (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s1a
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图 s1a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signalling, 8152)被用于被用于免疫组化在小鼠样品上 (图 st1). Nat Biotechnol (2016) ncbi
兔 单克隆(D1F4Q)
  • 免疫组化; 小鼠; 1:200; 图 S1c
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 12389)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 S1c). Nat Neurosci (2016) ncbi
兔 单克隆(D1F4Q)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 12389)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 5). Invest Ophthalmol Vis Sci (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:200; 图 8
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signalling, 36705)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 8). Hum Mol Genet (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 1:500; 图 s1
  • 免疫印迹; 人类; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell signaling, 3670)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 s1) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 s1). Mol Cell Endocrinol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 人类; 图 1
赛信通(上海)生物试剂有限公司 GFAP抗体(cell signalling, GA5)被用于被用于免疫组化-石蜡切片在人类样品上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:1000; 图 1
  • 免疫印迹; 小鼠; 1:500; 图 2
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, GA5)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 1) 和 被用于免疫印迹在小鼠样品上浓度为1:500 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 图 3
  • 免疫印迹; 大鼠; 图 7
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670S)被用于被用于免疫组化-冰冻切片在大鼠样品上 (图 3) 和 被用于免疫印迹在大鼠样品上 (图 7). J Neurosci (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:2000; 图 1s2
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signalling, 3670)被用于被用于免疫组化在小鼠样品上浓度为1:2000 (图 1s2). elife (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:1000; 图 3b
  • 免疫印迹; 小鼠; 1:2000; 图 3c
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 3b) 和 被用于免疫印迹在小鼠样品上浓度为1:2000 (图 3c). Am J Pathol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s22
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signalling, 3670)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 s22). Nat Biotechnol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 1:100; 图 4
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 4). Nature (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 图 3e
  • 免疫印迹; 大鼠; 1:1000; 图 3i
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于被用于免疫组化在大鼠样品上 (图 3e) 和 被用于免疫印迹在大鼠样品上浓度为1:1000 (图 3i). Int J Mol Med (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, 3670)被用于被用于免疫印迹在小鼠样品上浓度为1:500. FASEB J (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 GFAP抗体(CST, 3670)被用于被用于免疫印迹在人类样品上浓度为1:1000. Mol Brain (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 5c). Mol Cancer (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 大鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 4a). BMC Complement Altern Med (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signalling Technology, 3670S)被用于被用于免疫细胞化学在小鼠样品上. Neuromolecular Med (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 大鼠; 图 4h
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, 3657)被用于被用于免疫细胞化学在大鼠样品上 (图 4h). J Cell Biol (2015) ncbi
小鼠 单克隆(GA5)
  • immunohistochemistry - free floating section; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670S)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500. Mol Neurobiol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 图 7c
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, 3670)被用于被用于免疫组化在小鼠样品上 (图 7c) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 7a). PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠; 1:300; 图 5
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, GA5)被用于被用于免疫细胞化学在小鼠样品上浓度为1:300 (图 5). Cereb Cortex (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, clone GA5)被用于被用于免疫印迹在大鼠样品上. PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • 流式细胞仪; 小鼠; 1:500; 图 s2
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, 3670)被用于被用于流式细胞仪在小鼠样品上浓度为1:500 (图 s2) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 s2). Nat Commun (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:200
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, GA5)被用于被用于免疫组化在大鼠样品上浓度为1:200. Exp Mol Pathol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, 3655)被用于被用于免疫组化在小鼠样品上浓度为1:100. J Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 3
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:100 (图 3). Int J Oral Maxillofac Surg (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, #3670)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200. Neurochem Int (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:300
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, 3670S)被用于被用于免疫组化在小鼠样品上浓度为1:300. Mol Neurobiol (2014) ncbi
Takara Bio Clontech
小鼠 单克隆(STEM123)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 s5a
Takara Bio Clontech GFAP抗体(Clontech, Y40420)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:500 (图 s5a). Transl Res (2017) ncbi
碧迪BD
小鼠 单克隆(2E1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 st8
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 st8
  • 免疫组化-石蜡切片; 狗; 1:100; 图 st8
碧迪BD GFAP抗体(BD Biosciences, 556329)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 st8), 被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 (图 st8) 和 被用于免疫组化-石蜡切片在狗样品上浓度为1:100 (图 st8). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(4A11)
  • 免疫印迹; 大鼠; 1:1000; 图 5c
碧迪BD GFAP抗体(BD Pharmingen, 556327)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 5c). Pharmacol Biochem Behav (2017) ncbi
小鼠 单克隆(1B4)
  • 免疫细胞化学; 人类; 1:100; 图 s8
碧迪BD GFAP抗体(BD Biosciences, 561483)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 s8). Nat Commun (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫组化; 大鼠; 1:2000; 图 3
  • 免疫印迹; 大鼠; 1:2000; 图 3
碧迪BD GFAP抗体(BD, 556327)被用于被用于免疫组化在大鼠样品上浓度为1:2000 (图 3) 和 被用于免疫印迹在大鼠样品上浓度为1:2000 (图 3). Alzheimers Res Ther (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫组化; 小鼠; 1:2000; 图 3
碧迪BD GFAP抗体(BD Pharmigen, 556327)被用于被用于免疫组化在小鼠样品上浓度为1:2000 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(1B4)
  • 流式细胞仪; 小鼠; 1:50; 图 4
碧迪BD GFAP抗体(BD Biosciences, 561483)被用于被用于流式细胞仪在小鼠样品上浓度为1:50 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫印迹; 人类; 1:500; 图 6
碧迪BD GFAP抗体(BD Pharmingen, 556330)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 6). Glia (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-石蜡切片; 小鼠; 0.01 ug/ml; 图 4
碧迪BD GFAP抗体(BD Biosciences, 556330)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为0.01 ug/ml (图 4). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(1B4)
  • 流式细胞仪; 小鼠; 图 4, 7
碧迪BD GFAP抗体(BD Pharmingen, 561483)被用于被用于流式细胞仪在小鼠样品上 (图 4, 7). Nat Neurosci (2016) ncbi
小鼠 单克隆(2E1)
  • 免疫组化; 小鼠; 1:1000; 图 5
碧迪BD GFAP抗体(BD Pharmingen, 556329)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 5). Eneuro (2015) ncbi
小鼠 单克隆(1B4)
  • 流式细胞仪; 人类; 图 4
碧迪BD GFAP抗体(Becton-Dickinson, 561449)被用于被用于流式细胞仪在人类样品上 (图 4). Int J Oncol (2015) ncbi
小鼠 单克隆(1B4)
  • 免疫细胞化学; 小鼠; 图 2a
碧迪BD GFAP抗体(BD Biosciences, 1B4)被用于被用于免疫细胞化学在小鼠样品上 (图 2a). Hepatology (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫组化; 大鼠
碧迪BD GFAP抗体(BD Pharmagen, Clon 4a11, Ref. 55632)被用于被用于免疫组化在大鼠样品上. J Neuroendocrinol (2015) ncbi
小鼠 单克隆(4A11)
  • 免疫组化; 小鼠; 1:200; 图 8
碧迪BD GFAP抗体(BD Biosciences, 556330)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 8). Neurotherapeutics (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-冰冻切片; 大鼠; 1:1000
碧迪BD GFAP抗体(BD Pharmingen, 55632)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. Mol Neurobiol (2015) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-冰冻切片; 大鼠; 1:1000
碧迪BD GFAP抗体(BD Pharmingen, 55632)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. Mol Neurobiol (2015) ncbi
小鼠 单克隆(52/GFAP)
  • 免疫细胞化学; 大鼠; 1:500; 图 11
碧迪BD GFAP抗体(BD Biosciences, 610565)被用于被用于免疫细胞化学在大鼠样品上浓度为1:500 (图 11). Pain (2014) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-冰冻切片; 大鼠; 1:200
碧迪BD GFAP抗体(BD Pharmigen, 556327)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200. J Comp Neurol (2010) ncbi
Neuromab
小鼠 单克隆(N206A/8)
  • 免疫印迹; 人类; 图 s4a
Neuromab GFAP抗体(NeuroMab, 75-240)被用于被用于免疫印迹在人类样品上 (图 s4a). Cell (2017) ncbi
小鼠 单克隆(N206A/8)
  • 免疫细胞化学; 人类; 1:100; 图 s1
Neuromab GFAP抗体(Neuromab, 75-240)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 s1). Nat Neurosci (2016) ncbi
小鼠 单克隆(N206A/8)
  • 免疫细胞化学; 小鼠; 图 s5
Neuromab GFAP抗体(NeuroMab, N206A/8)被用于被用于免疫细胞化学在小鼠样品上 (图 s5). elife (2016) ncbi
小鼠 单克隆(N206A/8)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5
Neuromab GFAP抗体(NeuroMab, N206A/8)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 5). Brain Behav (2015) ncbi
小鼠 单克隆(N206A/8)
  • 免疫印迹; 大鼠; 1:6000; 图 7
Neuromab GFAP抗体(Neuromab, 75?C240)被用于被用于免疫印迹在大鼠样品上浓度为1:6000 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(N206A/8)
  • 免疫印迹; 大鼠; 2.08 ug/ml
Neuromab GFAP抗体(UC Davis / NIH NeuroMab Facility, N206A/8)被用于被用于免疫印迹在大鼠样品上浓度为2.08 ug/ml. J Comp Neurol (2014) ncbi
徕卡显微系统(上海)贸易有限公司
小鼠 单克隆
  • 免疫印迹; 小鼠
徕卡显微系统(上海)贸易有限公司 GFAP抗体(Novocastra/Leica, GFAP-GA5)被用于被用于免疫印迹在小鼠样品上. Prog Neuropsychopharmacol Biol Psychiatry (2015) ncbi
BioLogo
小鼠 单克隆(MIG-G2)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
BioLogo GFAP抗体(Biologo, GF500)被用于被用于免疫细胞化学在人类样品上 和 被用于免疫印迹在人类样品上. Bone (2006) ncbi
文章列表
  1. Massaro G, Mattar C, Wong A, Sirka E, Buckley S, Herbert B, et al. Fetal gene therapy for neurodegenerative disease of infants. Nat Med. 2018;24:1317-1323 pubmed 出版商
  2. Sato J, Horibe S, Kawauchi S, Sasaki N, Hirata K, Rikitake Y. Involvement of aquaporin-4 in laminin-enhanced process formation of mouse astrocytes in 2D culture: Roles of dystroglycan and ?-syntrophin in aquaporin-4 expression. J Neurochem. 2018;: pubmed 出版商
  3. Liu J, Modo M. Quantification of the Extracellular Matrix Molecule Thrombospondin 1 and Its Pericellular Association in the Brain Using a Semiautomated Computerized Approach. J Histochem Cytochem. 2018;66:643-662 pubmed 出版商
  4. Kim J, Choi Y, Ahn M, Jung K, Shin T. Olfactory Dysfunction in Autoimmune Central Nervous System Neuroinflammation. Mol Neurobiol. 2018;55:8499-8508 pubmed 出版商
  5. Seipold L, Altmeppen H, Koudelka T, Tholey A, Kaspárek P, Sedlacek R, et al. In vivo regulation of the A disintegrin and metalloproteinase 10 (ADAM10) by the tetraspanin 15. Cell Mol Life Sci. 2018;75:3251-3267 pubmed 出版商
  6. Dias D, Kim H, Holl D, Werne Solnestam B, Lundeberg J, Carlén M, et al. Reducing Pericyte-Derived Scarring Promotes Recovery after Spinal Cord Injury. Cell. 2018;173:153-165.e22 pubmed 出版商
  7. Kuliyev E, Gingras S, Guy C, Howell S, Vogel P, Pelletier S. Overlapping Role of SCYL1 and SCYL3 in Maintaining Motor Neuron Viability. J Neurosci. 2018;: pubmed 出版商
  8. Gstrein T, Edwards A, Přistoupilová A, Leca I, Breuss M, Pilat Carotta S, et al. Mutations in Vps15 perturb neuronal migration in mice and are associated with neurodevelopmental disease in humans. Nat Neurosci. 2018;21:207-217 pubmed 出版商
  9. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, et al. Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell. 2017;: pubmed 出版商
  10. Watanabe Matsumoto S, Moriwaki Y, Okuda T, Ohara S, Yamanaka K, Abe Y, et al. Dissociation of blood-brain barrier disruption and disease manifestation in an aquaporin-4-deficient mouse model of amyotrophic lateral sclerosis. Neurosci Res. 2018;133:48-57 pubmed 出版商
  11. Zou J, Zhang B, Gutmann D, Wong M. Postnatal reduction of tuberous sclerosis complex 1 expression in astrocytes and neurons causes seizures in an age-dependent manner. Epilepsia. 2017;58:2053-2063 pubmed 出版商
  12. Brown I, Gulbransen B. The antioxidant glutathione protects against enteric neuron death in situ, but its depletion is protective during colitis. Am J Physiol Gastrointest Liver Physiol. 2017;:ajpgi.00165.2017 pubmed 出版商
  13. Sundaresan S, Meininger C, Kang A, Photenhauer A, Hayes M, Sahoo N, et al. Gastrin Induces Nuclear Export and Proteasome Degradation of Menin in Enteric Glial Cells. Gastroenterology. 2017;153:1555-1567.e15 pubmed 出版商
  14. Zhao T, Hong Y, Yin P, Li S, Li X. Differential HspBP1 expression accounts for the greater vulnerability of neurons than astrocytes to misfolded proteins. Proc Natl Acad Sci U S A. 2017;114:E7803-E7811 pubmed 出版商
  15. Salazar S, Gallardo C, Kaufman A, Herber C, Haas L, Robinson S, et al. Conditional Deletion of Prnp Rescues Behavioral and Synaptic Deficits after Disease Onset in Transgenic Alzheimer's Disease. J Neurosci. 2017;37:9207-9221 pubmed 出版商
  16. Bayguinov P, Ma Y, Gao Y, Zhao X, Jackson M. Imaging Voltage in Genetically Defined Neuronal Subpopulations with a Cre Recombinase-Targeted Hybrid Voltage Sensor. J Neurosci. 2017;37:9305-9319 pubmed 出版商
  17. Yang Y, Yang S, Guo J, Cui Y, Tang B, Li X, et al. Synergistic Toxicity of Polyglutamine-Expanded TATA-Binding Protein in Glia and Neuronal Cells: Therapeutic Implications for Spinocerebellar Ataxia 17. J Neurosci. 2017;37:9101-9115 pubmed 出版商
  18. Kim J, Kim Y, Kim J, Park D, Bae H, Lee D, et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest. 2017;127:3441-3461 pubmed 出版商
  19. Piwecka M, Glažar P, Hernández Miranda L, Memczak S, Wolf S, Rybak Wolf A, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science. 2017;357: pubmed 出版商
  20. Lin N, Messing A, Perng M. Characterization of a panel of monoclonal antibodies recognizing specific epitopes on GFAP. PLoS ONE. 2017;12:e0180694 pubmed 出版商
  21. Filice F, Celio M, Babalian A, Blum W, Szabolcsi V. Parvalbumin-expressing ependymal cells in rostral lateral ventricle wall adhesions contribute to aging-related ventricle stenosis in mice. J Comp Neurol. 2017;525:3266-3285 pubmed 出版商
  22. Paul A, Chaker Z, Doetsch F. Hypothalamic regulation of regionally distinct adult neural stem cells and neurogenesis. Science. 2017;356:1383-1386 pubmed 出版商
  23. Yasui T, Uezono N, Nakashima H, Noguchi H, Matsuda T, Noda Andoh T, et al. Hypoxia Epigenetically Confers Astrocytic Differentiation Potential on Human Pluripotent Cell-Derived Neural Precursor Cells. Stem Cell Reports. 2017;8:1743-1756 pubmed 出版商
  24. Ding M, Weng C, Fan S, Cao Q, Lu Z. Purkinje Cell Degeneration and Motor Coordination Deficits in a New Mouse Model of Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay. Front Mol Neurosci. 2017;10:121 pubmed 出版商
  25. Hatakeyama J, Sato H, Shimamura K. Developing guinea pig brain as a model for cortical folding. Dev Growth Differ. 2017;59:286-301 pubmed 出版商
  26. Shi Y, Ping Y, Zhou W, He Z, Chen C, Bian B, et al. Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth. Nat Commun. 2017;8:15080 pubmed 出版商
  27. Hammoum I, Benlarbi M, Dellaa A, Szabó K, Dékány B, Csaba D, et al. Study of retinal neurodegeneration and maculopathy in diabetic Meriones shawi: A particular animal model with human-like macula. J Comp Neurol. 2017;525:2890-2914 pubmed 出版商
  28. Jung J, Kim L, Wang X, Wu Q, Sanvoranart T, Hubert C, et al. Nicotinamide metabolism regulates glioblastoma stem cell maintenance. JCI Insight. 2017;2: pubmed 出版商
  29. Feldner A, Adam M, Tetzlaff F, Moll I, Komljenovic D, Sahm F, et al. Loss of Mpdz impairs ependymal cell integrity leading to perinatal-onset hydrocephalus in mice. EMBO Mol Med. 2017;9:890-905 pubmed 出版商
  30. Quadrato G, Nguyen T, Macosko E, Sherwood J, Min Yang S, Berger D, et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 2017;545:48-53 pubmed 出版商
  31. Mendivil Perez M, Soto Mercado V, Guerra Librero A, Fernandez Gil B, Florido J, Shen Y, et al. Melatonin enhances neural stem cell differentiation and engraftment by increasing mitochondrial function. J Pineal Res. 2017;63: pubmed 出版商
  32. Dwyer C, Scudder S, Lin Y, Dozier L, Phan D, Allen N, et al. Neurodevelopmental Changes in Excitatory Synaptic Structure and Function in the Cerebral Cortex of Sanfilippo Syndrome IIIA Mice. Sci Rep. 2017;7:46576 pubmed 出版商
  33. Hou J, Xue J, Lee M, Sung C. Ginsenoside Rd as a potential neuroprotective agent prevents trimethyltin injury. Biomed Rep. 2017;6:435-440 pubmed 出版商
  34. Iglesia R, Prado M, Cruz L, Martins V, Santos T, Lopes M. Engagement of cellular prion protein with the co-chaperone Hsp70/90 organizing protein regulates the proliferation of glioblastoma stem-like cells. Stem Cell Res Ther. 2017;8:76 pubmed 出版商
  35. Schludi M, Becker L, Garrett L, Gendron T, Zhou Q, Schreiber F, et al. Spinal poly-GA inclusions in a C9orf72 mouse model trigger motor deficits and inflammation without neuron loss. Acta Neuropathol. 2017;134:241-254 pubmed 出版商
  36. Wizeman J, Mohan R. Expression of peptidylarginine deiminase 4 in an alkali injury model of retinal gliosis. Biochem Biophys Res Commun. 2017;487:134-139 pubmed 出版商
  37. Li J, Barrero C, Merali S, Pratico D. Five lipoxygenase hypomethylation mediates the homocysteine effect on Alzheimer's phenotype. Sci Rep. 2017;7:46002 pubmed 出版商
  38. Theofilas P, Steinhäuser C, Theis M, Derouiche A. Morphological study of a connexin 43-GFP reporter mouse highlights glial heterogeneity, amacrine cells, and olfactory ensheathing cells. J Neurosci Res. 2017;95:2182-2194 pubmed 出版商
  39. Sosunov A, McKhann G, Goldman J. The origin of Rosenthal fibers and their contributions to astrocyte pathology in Alexander disease. Acta Neuropathol Commun. 2017;5:27 pubmed 出版商
  40. Connolly N, Stokum J, Schneider C, Ozawa T, Xu S, Galisteo R, et al. Genetically engineered rat gliomas: PDGF-driven tumor initiation and progression in tv-a transgenic rats recreate key features of human brain cancer. PLoS ONE. 2017;12:e0174557 pubmed 出版商
  41. Bryukhovetskiy I, Lyakhova I, Mischenko P, Milkina E, Zaitsev S, Khotimchenko Y, et al. Alkaloids of fascaplysin are effective conventional chemotherapeutic drugs, inhibiting the proliferation of C6 glioma cells and causing their death in vitro. Oncol Lett. 2017;13:738-746 pubmed 出版商
  42. Barlow Anacker A, Fu M, Erickson C, Bertocchini F, Gosain A. Neural Crest Cells Contribute an Astrocyte-like Glial Population to the Spleen. Sci Rep. 2017;7:45645 pubmed 出版商
  43. Jin X, Yu Z, Chen F, Lu G, Ding X, Xie L, et al. Neuronal Nitric Oxide Synthase in Neural Stem Cells Induces Neuronal Fate Commitment via the Inhibition of Histone Deacetylase 2. Front Cell Neurosci. 2017;11:66 pubmed 出版商
  44. Yungher B, Ribeiro M, Park K. Regenerative Responses and Axon Pathfinding of Retinal Ganglion Cells in Chronically Injured Mice. Invest Ophthalmol Vis Sci. 2017;58:1743-1750 pubmed 出版商
  45. Zhou Y, Chen S, Liu D, Manyande A, Zhang W, Yang S, et al. The Role of Spinal GABAB Receptors in Cancer-Induced Bone Pain in Rats. J Pain. 2017;18:933-946 pubmed 出版商
  46. Green S, Uy B, Bronner M. Ancient evolutionary origin of vertebrate enteric neurons from trunk-derived neural crest. Nature. 2017;544:88-91 pubmed 出版商
  47. Po A, Begalli F, Abballe L, Alfano V, Besharat Z, Catanzaro G, et al. ?-Arrestin1/miR-326 Transcription Unit Is Epigenetically Regulated in Neural Stem Cells Where It Controls Stemness and Growth Arrest. Stem Cells Int. 2017;2017:5274171 pubmed 出版商
  48. Huang H, Liu Y, Wang L, Li W. Age-related macular degeneration phenotypes are associated with increased tumor necrosis-alpha and subretinal immune cells in aged Cxcr5 knockout mice. PLoS ONE. 2017;12:e0173716 pubmed 出版商
  49. Jongbloets B, Lemstra S, Schellino R, Broekhoven M, Parkash J, Hellemons A, et al. Stage-specific functions of Semaphorin7A during adult hippocampal neurogenesis rely on distinct receptors. Nat Commun. 2017;8:14666 pubmed 出版商
  50. Hao M, Capoccia E, Cirillo C, Boesmans W, Vanden Berghe P. Arundic Acid Prevents Developmental Upregulation of S100B Expression and Inhibits Enteric Glial Development. Front Cell Neurosci. 2017;11:42 pubmed 出版商
  51. Kim J, Hyun H, Min S, Kang T. Sustained HSP25 Expression Induces Clasmatodendrosis via ER Stress in the Rat Hippocampus. Front Cell Neurosci. 2017;11:47 pubmed 出版商
  52. Itakura G, Kawabata S, Ando M, Nishiyama Y, Sugai K, Ozaki M, et al. Fail-Safe System against Potential Tumorigenicity after Transplantation of iPSC Derivatives. Stem Cell Reports. 2017;8:673-684 pubmed 出版商
  53. Gardenal E, Chiarini A, Armato U, Dal Pra I, Verkhratsky A, Rodriguez J. Increased Calcium-Sensing Receptor Immunoreactivity in the Hippocampus of a Triple Transgenic Mouse Model of Alzheimer's Disease. Front Neurosci. 2017;11:81 pubmed 出版商
  54. Ehrlich M, Mozafari S, Glatza M, Starost L, Velychko S, Hallmann A, et al. Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors. Proc Natl Acad Sci U S A. 2017;114:E2243-E2252 pubmed 出版商
  55. Pignataro D, Sucunza D, Vanrell L, Lopez Franco E, Dopeso Reyes I, Vales A, et al. Adeno-Associated Viral Vectors Serotype 8 for Cell-Specific Delivery of Therapeutic Genes in the Central Nervous System. Front Neuroanat. 2017;11:2 pubmed 出版商
  56. Cao M, Wu Y, Ashrafi G, McCartney A, Wheeler H, Bushong E, et al. Parkinson Sac Domain Mutation in Synaptojanin 1 Impairs Clathrin Uncoating at Synapses and Triggers Dystrophic Changes in Dopaminergic Axons. Neuron. 2017;93:882-896.e5 pubmed 出版商
  57. Aragon M, Topper L, Tyler C, Sanchez B, Zychowski K, Young T, et al. Serum-borne bioactivity caused by pulmonary multiwalled carbon nanotubes induces neuroinflammation via blood-brain barrier impairment. Proc Natl Acad Sci U S A. 2017;114:E1968-E1976 pubmed 出版商
  58. Prasad S, Sajja R, Kaisar M, Park J, Villalba H, Liles T, et al. Role of Nrf2 and protective effects of Metformin against tobacco smoke-induced cerebrovascular toxicity. Redox Biol. 2017;12:58-69 pubmed 出版商
  59. Subashini C, Dhanesh S, Chen C, Riya P, Meera V, Divya T, et al. Wnt5a is a crucial regulator of neurogenesis during cerebellum development. Sci Rep. 2017;7:42523 pubmed 出版商
  60. Benford H, Bolborea M, Pollatzek E, Lossow K, Hermans Borgmeyer I, Liu B, et al. A sweet taste receptor-dependent mechanism of glucosensing in hypothalamic tanycytes. Glia. 2017;65:773-789 pubmed 出版商
  61. Zheng T, Pu J, Chen Y, Mao Y, Guo Z, Pan H, et al. Plasma Exosomes Spread and Cluster Around ?-Amyloid Plaques in an Animal Model of Alzheimer's Disease. Front Aging Neurosci. 2017;9:12 pubmed 出版商
  62. Kuipers H, Yoon J, van Horssen J, Han M, Bollyky P, Palmer T, et al. Phosphorylation of αB-crystallin supports reactive astrogliosis in demyelination. Proc Natl Acad Sci U S A. 2017;114:E1745-E1754 pubmed 出版商
  63. Qian Q, Liu Q, Zhou D, Pan H, Liu Z, He F, et al. Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway. FASEB J. 2017;31:2104-2113 pubmed 出版商
  64. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  65. Barca Mayo O, Pons Espinal M, Follert P, Armirotti A, Berdondini L, De Pietri Tonelli D. Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling. Nat Commun. 2017;8:14336 pubmed 出版商
  66. Delhove J, Buckley S, Perocheau D, Karda R, Arbuthnot P, Henderson N, et al. Longitudinal in vivo bioimaging of hepatocyte transcription factor activity following cholestatic liver injury in mice. Sci Rep. 2017;7:41874 pubmed 出版商
  67. Lim E, Nakanishi S, Hoghooghi V, Eaton S, Palmer A, Frederick A, et al. AlphaB-crystallin regulates remyelination after peripheral nerve injury. Proc Natl Acad Sci U S A. 2017;114:E1707-E1716 pubmed 出版商
  68. Grove M, Kim H, Santerre M, Krupka A, Han S, Zhai J, et al. YAP/TAZ initiate and maintain Schwann cell myelination. elife. 2017;6: pubmed 出版商
  69. Weng C, Ding M, Chang L, Ren M, Zhang H, Lu Z, et al. Ankfy1 is dispensable for neural stem/precursor cell development. Neural Regen Res. 2016;11:1804-1809 pubmed 出版商
  70. Stayte S, Rentsch P, Tröscher A, Bamberger M, Li K, Vissel B. Activin A Inhibits MPTP and LPS-Induced Increases in Inflammatory Cell Populations and Loss of Dopamine Neurons in the Mouse Midbrain In Vivo. PLoS ONE. 2017;12:e0167211 pubmed 出版商
  71. Berghoff S, Gerndt N, Winchenbach J, Stumpf S, Hosang L, Odoardi F, et al. Dietary cholesterol promotes repair of demyelinated lesions in the adult brain. Nat Commun. 2017;8:14241 pubmed 出版商
  72. Guimarães Camboa N, Cattaneo P, Sun Y, Moore Morris T, Gu Y, Dalton N, et al. Pericytes of Multiple Organs Do Not Behave as Mesenchymal Stem Cells In Vivo. Cell Stem Cell. 2017;20:345-359.e5 pubmed 出版商
  73. Tufail Y, Cook D, Fourgeaud L, Powers C, Merten K, Clark C, et al. Phosphatidylserine Exposure Controls Viral Innate Immune Responses by Microglia. Neuron. 2017;93:574-586.e8 pubmed 出版商
  74. Huang Y, Zhou B, Wernig M, Sudhof T. ApoE2, ApoE3, and ApoE4 Differentially Stimulate APP Transcription and A? Secretion. Cell. 2017;168:427-441.e21 pubmed 出版商
  75. Marigil M, Martinez Vélez N, Dominguez P, Idoate M, Xipell E, Patino Garcia A, et al. Development of a DIPG Orthotopic Model in Mice Using an Implantable Guide-Screw System. PLoS ONE. 2017;12:e0170501 pubmed 出版商
  76. Zhao L, Li J, Fu Y, Zhang M, Wang B, Ouellette J, et al. Photoreceptor protection via blockade of BET epigenetic readers in a murine model of inherited retinal degeneration. J Neuroinflammation. 2017;14:14 pubmed 出版商
  77. Mellott T, Huleatt O, Shade B, Pender S, Liu Y, Slack B, et al. Perinatal Choline Supplementation Reduces Amyloidosis and Increases Choline Acetyltransferase Expression in the Hippocampus of the APPswePS1dE9 Alzheimer's Disease Model Mice. PLoS ONE. 2017;12:e0170450 pubmed 出版商
  78. Cho K, Yoon D, Qiu S, Danziger Z, Grill W, Wetsel W, et al. Loss of Ranbp2 in motoneurons causes disruption of nucleocytoplasmic and chemokine signaling, proteostasis of hnRNPH3 and Mmp28, and development of amyotrophic lateral sclerosis-like syndromes. Dis Model Mech. 2017;10:559-579 pubmed 出版商
  79. Zhang C, Mukherjee S, Tucker Burden C, Ross J, Chau M, Kong J, et al. TRIM8 regulates stemness in glioblastoma through PIAS3-STAT3. Mol Oncol. 2017;11:280-294 pubmed 出版商
  80. Liddelow S, Guttenplan K, Clarke L, Bennett F, Bohlen C, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541:481-487 pubmed 出版商
  81. Rotoli D, Pérez Rodríguez N, Morales M, Maeso M, Avila J, Mobasheri A, et al. IQGAP1 in Podosomes/Invadosomes Is Involved in the Progression of Glioblastoma Multiforme Depending on the Tumor Status. Int J Mol Sci. 2017;18: pubmed 出版商
  82. Kang Y, Balter B, Csizmadia E, Haas B, Sharma H, Bronson R, et al. Contribution of classical end-joining to PTEN inactivation in p53-mediated glioblastoma formation and drug-resistant survival. Nat Commun. 2017;8:14013 pubmed 出版商
  83. Zhu J, Cifuentes H, Reynolds J, Lamba D. Immunosuppression via Loss of IL2rγ Enhances Long-Term Functional Integration of hESC-Derived Photoreceptors in the Mouse Retina. Cell Stem Cell. 2017;20:374-384.e5 pubmed 出版商
  84. Behm M, Wahlstedt H, Widmark A, Eriksson M, Ohman M. Accumulation of nuclear ADAR2 regulates adenosine-to-inosine RNA editing during neuronal development. J Cell Sci. 2017;130:745-753 pubmed 出版商
  85. Lee I, Koo K, Jung K, Kim M, Kim I, Hwang K, et al. Neurogenin-2-transduced human neural progenitor cells attenuate neonatal hypoxic-ischemic brain injury. Transl Res. 2017;183:121-136.e9 pubmed 出版商
  86. Tanaka Y, Suzuki G, Matsuwaki T, Hosokawa M, Serrano G, Beach T, et al. Progranulin regulates lysosomal function and biogenesis through acidification of lysosomes. Hum Mol Genet. 2017;26:969-988 pubmed 出版商
  87. Ellman D, Degn M, Lund M, Clausen B, Novrup H, Flæng S, et al. Genetic Ablation of Soluble TNF Does Not Affect Lesion Size and Functional Recovery after Moderate Spinal Cord Injury in Mice. Mediators Inflamm. 2016;2016:2684098 pubmed 出版商
  88. Yamauchi T, Nishiyama M, Moroishi T, Kawamura A, Nakayama K. FBXL5 Inactivation in Mouse Brain Induces Aberrant Proliferation of Neural Stem Progenitor Cells. Mol Cell Biol. 2017;37: pubmed 出版商
  89. Redmann M, Wani W, Volpicelli Daley L, Darley Usmar V, Zhang J. Trehalose does not improve neuronal survival on exposure to alpha-synuclein pre-formed fibrils. Redox Biol. 2017;11:429-437 pubmed 出版商
  90. Walrave L, Vinken M, Albertini G, De Bundel D, Leybaert L, Smolders I. Inhibition of Connexin43 Hemichannels Impairs Spatial Short-Term Memory without Affecting Spatial Working Memory. Front Cell Neurosci. 2016;10:288 pubmed 出版商
  91. Chiang Y, Wu Y, Chi S. Interleukin-1β secreted from betanodavirus-infected microglia caused the death of neurons in giant grouper brains. Dev Comp Immunol. 2017;70:19-26 pubmed 出版商
  92. Kim J, Lee J, Sun W. Isolation and Culture of Adult Neural Stem Cells from the Mouse Subcallosal Zone. J Vis Exp. 2016;: pubmed 出版商
  93. Zhao B, Pan Y, Xu H, Song X. Hyperbaric oxygen attenuates neuropathic pain and reverses inflammatory signaling likely via the Kindlin-1/Wnt-10a signaling pathway in the chronic pain injury model in rats. J Headache Pain. 2017;18:1 pubmed 出版商
  94. Li S, Zang Z, He J, Chen X, Yu S, Pei Y, et al. Expression of pannexin 1 and 2 in cortical lesions from intractable epilepsy patients with focal cortical dysplasia. Oncotarget. 2017;8:6883-6895 pubmed 出版商
  95. Sha L, Wang X, Li J, Shi X, Wu L, Shen Y, et al. Pharmacologic inhibition of Hsp90 to prevent GLT-1 degradation as an effective therapy for epilepsy. J Exp Med. 2017;214:547-563 pubmed 出版商
  96. Park S, Yoon S, Kang M, Lee Y, Jung S, Han J. Hippocalcin Promotes Neuronal Differentiation and Inhibits Astrocytic Differentiation in Neural Stem Cells. Stem Cell Reports. 2017;8:95-111 pubmed 出版商
  97. Kemp K, Cerminara N, Hares K, Redondo J, Cook A, Haynes H, et al. Cytokine therapy-mediated neuroprotection in a Friedreich's ataxia mouse model. Ann Neurol. 2017;81:212-226 pubmed 出版商
  98. Hooper A, Alamilla J, Venier R, Gillespie D, Igdoura S. Neuronal pentraxin 1 depletion delays neurodegeneration and extends life in Sandhoff disease mice. Hum Mol Genet. 2017;26:661-673 pubmed 出版商
  99. Park T, Ryu Y, Park H, Kim J, Go J, Noh J, et al. Humulus japonicus inhibits the progression of Alzheimer's disease in a APP/PS1 transgenic mouse model. Int J Mol Med. 2017;39:21-30 pubmed 出版商
  100. Liu W, Sun Y, He Y, Zhang H, Zheng Y, Yao Y, et al. IL-1? impedes the chondrogenic differentiation of synovial fluid mesenchymal stem cells in the human temporomandibular joint. Int J Mol Med. 2017;39:317-326 pubmed 出版商
  101. Koukouli F, Rooy M, Maskos U. Early and progressive deficit of neuronal activity patterns in a model of local amyloid pathology in mouse prefrontal cortex. Aging (Albany NY). 2016;8:3430-3449 pubmed 出版商
  102. Li M, Li Z, Yao Y, Jin W, Wood K, Liu Q, et al. Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci U S A. 2017;114:E396-E405 pubmed 出版商
  103. Gadani S, Smirnov I, Smith A, Overall C, Kipnis J. Characterization of meningeal type 2 innate lymphocytes and their response to CNS injury. J Exp Med. 2017;214:285-296 pubmed 出版商
  104. Garcia C, Catalão C, Machado H, Júnior I, Romeiro T, Peixoto Santos J, et al. Edaravone reduces astrogliosis and apoptosis in young rats with kaolin-induced hydrocephalus. Childs Nerv Syst. 2017;33:419-428 pubmed 出版商
  105. Ang Y, Rivas R, Ribeiro A, Srivas R, Rivera J, Stone N, et al. Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis. Cell. 2016;167:1734-1749.e22 pubmed 出版商
  106. Perland E, Hellsten S, Lekholm E, Eriksson M, Arapi V, Fredriksson R. The Novel Membrane-Bound Proteins MFSD1 and MFSD3 are Putative SLC Transporters Affected by Altered Nutrient Intake. J Mol Neurosci. 2017;61:199-214 pubmed 出版商
  107. Sun C, Zhang J, Chen L, Liu T, Xu G, Li C, et al. IL-17 contributed to the neuropathic pain following peripheral nerve injury by promoting astrocyte proliferation and secretion of proinflammatory cytokines. Mol Med Rep. 2017;15:89-96 pubmed 出版商
  108. Lopes M, Leal R, Guarnieri R, Schwarzbold M, Hoeller A, Diaz A, et al. A single high dose of dexamethasone affects the phosphorylation state of glutamate AMPA receptors in the human limbic system. Transl Psychiatry. 2016;6:e986 pubmed 出版商
  109. Gray J, Rubin T, Kogan J, Marrocco J, Weidmann J, Lindkvist S, et al. Translational profiling of stress-induced neuroplasticity in the CA3 pyramidal neurons of BDNF Val66Met mice. Mol Psychiatry. 2018;23:904-913 pubmed 出版商
  110. Wang A, Jensen E, Rexach J, Vinters H, Hsieh Wilson L. Loss of O-GlcNAc glycosylation in forebrain excitatory neurons induces neurodegeneration. Proc Natl Acad Sci U S A. 2016;113:15120-15125 pubmed 出版商
  111. Kim B, Shin H, Goto J, Carp R, Choi E, Kim Y. Cellular Prion Protein Combined with Galectin-3 and -6 Affects the Infectivity Titer of an Endogenous Retrovirus Assayed in Hippocampal Neuronal Cells. PLoS ONE. 2016;11:e0167293 pubmed 出版商
  112. Mayrhofer M, Gourain V, Reischl M, Affaticati P, Jenett A, Joly J, et al. A novel brain tumour model in zebrafish reveals the role of YAP activation in MAPK- and PI3K-induced malignant growth. Dis Model Mech. 2017;10:15-28 pubmed 出版商
  113. Nagahara Y, Shimazawa M, Ohuchi K, Ito J, Takahashi H, Tsuruma K, et al. GPNMB ameliorates mutant TDP-43-induced motor neuron cell death. J Neurosci Res. 2017;95:1647-1665 pubmed 出版商
  114. Wang S, Jacquemyn J, Murru S, Martinelli P, Barth E, Langer T, et al. The Mitochondrial m-AAA Protease Prevents Demyelination and Hair Greying. PLoS Genet. 2016;12:e1006463 pubmed 出版商
  115. Retallack H, Di Lullo E, Arias C, Knopp K, Laurie M, Sandoval Espinosa C, et al. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc Natl Acad Sci U S A. 2016;113:14408-14413 pubmed
  116. Ji B, Kaneko H, Minamimoto T, Inoue H, Takeuchi H, Kumata K, et al. Multimodal Imaging for DREADD-Expressing Neurons in Living Brain and Their Application to Implantation of iPSC-Derived Neural Progenitors. J Neurosci. 2016;36:11544-11558 pubmed
  117. Marco E, Ballesta J, Irala C, Hernández M, Serrano M, Mela V, et al. Sex-dependent influence of chronic mild stress (CMS) on voluntary alcohol consumption; study of neurobiological consequences. Pharmacol Biochem Behav. 2017;152:68-80 pubmed 出版商
  118. Hurtado Alvarado G, Dominguez Salazar E, Velazquez Moctezuma J, Gómez González B. A2A Adenosine Receptor Antagonism Reverts the Blood-Brain Barrier Dysfunction Induced by Sleep Restriction. PLoS ONE. 2016;11:e0167236 pubmed 出版商
  119. Song D, Wilson B, Zhao L, Bhuyan R, Bandyopadhyay M, Lyubarsky A, et al. Retinal Pre-Conditioning by CD59a Knockout Protects against Light-Induced Photoreceptor Degeneration. PLoS ONE. 2016;11:e0166348 pubmed 出版商
  120. Sareddy G, Viswanadhapalli S, Surapaneni P, Suzuki T, Brenner A, Vadlamudi R. Novel KDM1A inhibitors induce differentiation and apoptosis of glioma stem cells via unfolded protein response pathway. Oncogene. 2017;36:2423-2434 pubmed 出版商
  121. Schober A, Gagarkin D, Chen Y, Gao G, Jacobson L, Mongin A. Recombinant Adeno-Associated Virus Serotype 6 (rAAV6) Potently and Preferentially Transduces Rat Astrocytes In vitro and In vivo. Front Cell Neurosci. 2016;10:262 pubmed
  122. FINAN G, Realubit R, Chung S, Lutjohann D, Wang N, Cirrito J, et al. Bioactive Compound Screen for Pharmacological Enhancers of Apolipoprotein E in Primary Human Astrocytes. Cell Chem Biol. 2016;23:1526-1538 pubmed 出版商
  123. Fraser J, Essebier A, Gronostajski R, Boden M, Wainwright B, Harvey T, et al. Cell-type-specific expression of NFIX in the developing and adult cerebellum. Brain Struct Funct. 2017;222:2251-2270 pubmed 出版商
  124. López de Maturana R, Lang V, Zubiarrain A, Sousa A, Vázquez N, Gorostidi A, et al. Mutations in LRRK2 impair NF-κB pathway in iPSC-derived neurons. J Neuroinflammation. 2016;13:295 pubmed
  125. Mildner A, Huang H, Radke J, Stenzel W, Priller J. P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia. 2017;65:375-387 pubmed 出版商
  126. Lajko M, Cardona H, Taylor J, Shah R, Farrow K, Fawzi A. Hyperoxia-Induced Proliferative Retinopathy: Early Interruption of Retinal Vascular Development with Severe and Irreversible Neurovascular Disruption. PLoS ONE. 2016;11:e0166886 pubmed 出版商
  127. Yang S, Lee D, Shin J, Lee S, Baek S, Kim J, et al. Nec-1 alleviates cognitive impairment with reduction of Aβ and tau abnormalities in APP/PS1 mice. EMBO Mol Med. 2017;9:61-77 pubmed 出版商
  128. Hübner N, Mechling A, Lee H, Reisert M, Bienert T, Hennig J, et al. The connectomics of brain demyelination: Functional and structural patterns in the cuprizone mouse model. Neuroimage. 2017;146:1-18 pubmed 出版商
  129. Hidano S, Randall L, Dawson L, Dietrich H, Konradt C, Klover P, et al. STAT1 Signaling in Astrocytes Is Essential for Control of Infection in the Central Nervous System. MBio. 2016;7: pubmed 出版商
  130. Lacaille H, Duterte Boucher D, Vaudry H, Zerdoumi Y, Flaman J, Hashimoto H, et al. PACAP Protects the Adolescent and Adult Mice Brain from Ethanol Toxicity and Modulates Distinct Sets of Genes Regulating Similar Networks. Mol Neurobiol. 2017;54:7534-7548 pubmed 出版商
  131. Zha J, Liu X, Zhu J, Liu S, Lu S, Xu P, et al. A scFv antibody targeting common oligomeric epitope has potential for treating several amyloidoses. Sci Rep. 2016;6:36631 pubmed 出版商
  132. Bassett E, Tokarew N, Allemano E, Mazerolle C, Morin K, Mears A, et al. Norrin/Frizzled4 signalling in the preneoplastic niche blocks medulloblastoma initiation. elife. 2016;5: pubmed 出版商
  133. Pérez Ibave D, González Alvarez R, de La Luz Martinez Fierro M, Ruiz Ayma G, Luna Muñoz M, Martínez de Villarreal L, et al. Olfactomedin-like 2 A and B (OLFML2A and OLFML2B) expression profile in primates (human and baboon). Biol Res. 2016;49:44 pubmed
  134. Laurent C, Dorothee G, Hunot S, Martin E, Monnet Y, Duchamp M, et al. Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy. Brain. 2017;140:184-200 pubmed 出版商
  135. Fröhlich D, Suchowerska A, Spencer Z, von Jonquieres G, Klugmann C, Bongers A, et al. In vivocharacterization of the aspartyl-tRNA synthetase DARS: Homing in on the leukodystrophy HBSL. Neurobiol Dis. 2017;97:24-35 pubmed 出版商
  136. Roche S, Wyse Jackson A, Gomez Vicente V, Lax P, Ruiz Lopez A, Byrne A, et al. Progesterone Attenuates Microglial-Driven Retinal Degeneration and Stimulates Protective Fractalkine-CX3CR1 Signaling. PLoS ONE. 2016;11:e0165197 pubmed 出版商
  137. Mokalled M, Patra C, Dickson A, Endo T, Stainier D, Poss K. Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish. Science. 2016;354:630-634 pubmed
  138. Healy S, McMahon J, Owens P, FitzGerald U. Significant glial alterations in response to iron loading in a novel organotypic hippocampal slice culture model. Sci Rep. 2016;6:36410 pubmed 出版商
  139. Tirosh I, Venteicher A, Hebert C, Escalante L, Patel A, Yizhak K, et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature. 2016;539:309-313 pubmed 出版商
  140. Shepherd D, Tsai S, O Brien T, Farrer R, Kartje G. Anti-Nogo-A Immunotherapy Does Not Alter Hippocampal Neurogenesis after Stroke in Adult Rats. Front Neurosci. 2016;10:467 pubmed
  141. Lin N, Huang Y, Opal P, Goldman R, Messing A, Perng M. The role of gigaxonin in the degradation of the glial-specific intermediate filament protein GFAP. Mol Biol Cell. 2016;27:3980-3990 pubmed
  142. Yu W, Parakramaweera R, Teng S, Gowda M, Sharad Y, Thakker Varia S, et al. Oxidation of KCNB1 Potassium Channels Causes Neurotoxicity and Cognitive Impairment in a Mouse Model of Traumatic Brain Injury. J Neurosci. 2016;36:11084-11096 pubmed
  143. Syed Y, Abdulla S, Kotter M. Studying the Effects of Semaphorins on Oligodendrocyte Lineage Cells. Methods Mol Biol. 2017;1493:363-378 pubmed
  144. Giannakopoulou A, Lyras G, Grigoriadis N. Long-term effects of autoimmune CNS inflammation on adult hippocampal neurogenesis. J Neurosci Res. 2017;95:1446-1458 pubmed 出版商
  145. Menzel L, Kleber L, Friedrich C, Hummel R, Dangel L, Winter J, et al. Progranulin protects against exaggerated axonal injury and astrogliosis following traumatic brain injury. Glia. 2017;65:278-292 pubmed 出版商
  146. Zukor K, Wang H, Hurst B, Siddharthan V, van Wettere A, Pilowsky P, et al. Phrenic nerve deficits and neurological immunopathology associated with acute West Nile virus infection in mice and hamsters. J Neurovirol. 2017;23:186-204 pubmed 出版商
  147. Nguyen H, Kirkton R, Bursac N. Engineering prokaryotic channels for control of mammalian tissue excitability. Nat Commun. 2016;7:13132 pubmed 出版商
  148. Bryukhovetskiy I, Dyuizen I, Shevchenko V, Bryukhovetskiy A, Mischenko P, Milkina E, et al. Hematopoietic stem cells as a tool for the treatment of glioblastoma multiforme. Mol Med Rep. 2016;14:4511-4520 pubmed 出版商
  149. He Q, Xiong L, Liu F, He X, Feng G, Shang F, et al. MicroRNA-127 targeting of mitoNEET inhibits neurite outgrowth, induces cell apoptosis and contributes to physiological dysfunction after spinal cord transection. Sci Rep. 2016;6:35205 pubmed 出版商
  150. Teo J, Morris M, Jones N. Maternal obesity increases inflammation and exacerbates damage following neonatal hypoxic-ischaemic brain injury in rats. Brain Behav Immun. 2017;63:186-196 pubmed 出版商
  151. Koyanagi S, Kusunose N, Taniguchi M, Akamine T, Kanado Y, Ozono Y, et al. Glucocorticoid regulation of ATP release from spinal astrocytes underlies diurnal exacerbation of neuropathic mechanical allodynia. Nat Commun. 2016;7:13102 pubmed 出版商
  152. Huang L, Cao W, Deng Y, Zhu G, Han Y, Zeng H. Hypertonic saline alleviates experimentally induced cerebral oedema through suppression of vascular endothelial growth factor and its receptor VEGFR2 expression in astrocytes. BMC Neurosci. 2016;17:64 pubmed
  153. Alvarez Saavedra M, De Repentigny Y, Yang D, O Meara R, Yan K, Hashem L, et al. Voluntary Running Triggers VGF-Mediated Oligodendrogenesis to Prolong the Lifespan of Snf2h-Null Ataxic Mice. Cell Rep. 2016;17:862-875 pubmed 出版商
  154. He J, Xiang Z, Zhu X, Ai Z, Shen J, Huang T, et al. Neuroprotective Effects of 7, 8-dihydroxyflavone on Midbrain Dopaminergic Neurons in MPP+-treated Monkeys. Sci Rep. 2016;6:34339 pubmed 出版商
  155. Hofmann K, Lamberz C, Piotrowitz K, Offermann N, But D, Scheller A, et al. Tanycytes and a differential fatty acid metabolism in the hypothalamus. Glia. 2017;65:231-249 pubmed 出版商
  156. Kilic O, Pamies D, Lavell E, Schiapparelli P, Feng Y, Hartung T, et al. Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis. Lab Chip. 2016;16:4152-4162 pubmed
  157. Mendonça M, Soares E, de Jesus M, Ceragioli H, Batista Ã, Nyúl Tóth Ã, et al. PEGylation of Reduced Graphene Oxide Induces Toxicity in Cells of the Blood-Brain Barrier: An in Vitro and in Vivo Study. Mol Pharm. 2016;13:3913-3924 pubmed
  158. Wizeman J, Nicholas A, Ishigami A, Mohan R. Citrullination of glial intermediate filaments is an early response in retinal injury. Mol Vis. 2016;22:1137-1155 pubmed
  159. Khoutorsky A, Sorge R, Prager Khoutorsky M, Pawlowski S, Longo G, Jafarnejad S, et al. eIF2? phosphorylation controls thermal nociception. Proc Natl Acad Sci U S A. 2016;113:11949-11954 pubmed
  160. Vodicka P, Chase K, Iuliano M, Tousley A, Valentine D, Sapp E, et al. Autophagy Activation by Transcription Factor EB (TFEB) in Striatum of HDQ175/Q7 Mice. J Huntingtons Dis. 2016;5:249-260 pubmed
  161. Yamanaka T, Tosaki A, Miyazaki H, Kurosawa M, Koike M, Uchiyama Y, et al. Differential roles of NF-Y transcription factor in ER chaperone expression and neuronal maintenance in the CNS. Sci Rep. 2016;6:34575 pubmed 出版商
  162. Abolpour Mofrad S, Kuenzel K, Friedrich O, Gilbert D. Optimizing neuronal differentiation of human pluripotent NT2 stem cells in monolayer cultures. Dev Growth Differ. 2016;58:664-676 pubmed 出版商
  163. Sadick J, Boutin M, Hoffman Kim D, Darling E. Protein characterization of intracellular target-sorted, formalin-fixed cell subpopulations. Sci Rep. 2016;6:33999 pubmed 出版商
  164. Fogarty L, Song B, Suppiah Y, Hasan S, Martin H, Hogan S, et al. Bcl-xL dependency coincides with the onset of neurogenesis in the developing mammalian spinal cord. Mol Cell Neurosci. 2016;77:34-46 pubmed 出版商
  165. Biró L, Toth M, Sipos E, Bruzsik B, Tulogdi A, Bendahan S, et al. Structural and functional alterations in the prefrontal cortex after post-weaning social isolation: relationship with species-typical and deviant aggression. Brain Struct Funct. 2017;222:1861-1875 pubmed 出版商
  166. Cóppola Segovia V, Cavarsan C, Maia F, Ferraz A, Nakao L, Lima M, et al. ER Stress Induced by Tunicamycin Triggers ?-Synuclein Oligomerization, Dopaminergic Neurons Death and Locomotor Impairment: a New Model of Parkinson's Disease. Mol Neurobiol. 2017;54:5798-5806 pubmed 出版商
  167. Bednarczyk J, Dębski K, Bot A, Lukasiuk K. MBD3 expression and DNA binding patterns are altered in a rat model of temporal lobe epilepsy. Sci Rep. 2016;6:33736 pubmed 出版商
  168. Lizen B, Hutlet B, Bissen D, Sauvegarde D, Hermant M, Ahn M, et al. HOXA5 localization in postnatal and adult mouse brain is suggestive of regulatory roles in postmitotic neurons. J Comp Neurol. 2017;525:1155-1175 pubmed 出版商
  169. Dragich J, Kuwajima T, Hirose Ikeda M, Yoon M, Eenjes E, Bosco J, et al. Autophagy linked FYVE (Alfy/WDFY3) is required for establishing neuronal connectivity in the mammalian brain. elife. 2016;5: pubmed 出版商
  170. Draheim T, Liessem A, Scheld M, Wilms F, Weißflog M, Denecke B, et al. Activation of the astrocytic Nrf2/ARE system ameliorates the formation of demyelinating lesions in a multiple sclerosis animal model. Glia. 2016;64:2219-2230 pubmed 出版商
  171. Casco Robles M, Islam M, Inami W, Tanaka H, Kunahong A, Yasumuro H, et al. Turning the fate of reprogramming cells from retinal disorder to regeneration by Pax6 in newts. Sci Rep. 2016;6:33761 pubmed 出版商
  172. Lauritzen K, Hasan Olive M, Regnell C, Kleppa L, Scheibye Knudsen M, Gjedde A, et al. A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain. Neurobiol Aging. 2016;48:34-47 pubmed 出版商
  173. Torres A, Vargas Y, Uribe D, Jaramillo C, Gleisner A, Salazar Onfray F, et al. Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells. Oncotarget. 2016;7:67373-67386 pubmed 出版商
  174. Chen P, Qin L, Li G, Tellides G, Simons M. Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGF?)-dependent smooth muscle cell phenotype modulation. Sci Rep. 2016;6:33407 pubmed 出版商
  175. Kuan W, Bennett N, He X, Skepper J, Martynyuk N, Wijeyekoon R, et al. ?-Synuclein pre-formed fibrils impair tight junction protein expression without affecting cerebral endothelial cell function. Exp Neurol. 2016;285:72-81 pubmed 出版商
  176. Zhang S, Wang P, Ren L, Hu C, Bi J. Protective effect of melatonin on soluble A?1-42-induced memory impairment, astrogliosis, and synaptic dysfunction via the Musashi1/Notch1/Hes1 signaling pathway in the rat hippocampus. Alzheimers Res Ther. 2016;8:40 pubmed 出版商
  177. Pérez Cañamás A, Benvegnù S, Rueda C, Rábano A, Satrústegui J, Ledesma M. Sphingomyelin-induced inhibition of the plasma membrane calcium ATPase causes neurodegeneration in type A Niemann-Pick disease. Mol Psychiatry. 2017;22:711-723 pubmed 出版商
  178. Lang D, Romero Alemán M, Dobson B, Santos E, Monzon Mayor M. Nogo-A does not inhibit retinal axon regeneration in the lizard Gallotia galloti. J Comp Neurol. 2017;525:936-954 pubmed 出版商
  179. Jansen A, van Hal M, Op den Kelder I, Meier R, de Ruiter A, Schut M, et al. Frequency of nuclear mutant huntingtin inclusion formation in neurons and glia is cell-type-specific. Glia. 2017;65:50-61 pubmed 出版商
  180. Zhang L, Hua Q, Tang K, Shi C, Xie X, Zhang R. CXCR4 activation promotes differentiation of human embryonic stem cells to neural stem cells. Neuroscience. 2016;337:88-97 pubmed 出版商
  181. Alomar F, Singh J, Jang H, Rozanzki G, Shao C, Padanilam B, et al. Smooth muscle-generated methylglyoxal impairs endothelial cell-mediated vasodilatation of cerebral microvessels in type 1 diabetic rats. Br J Pharmacol. 2016;173:3307-3326 pubmed 出版商
  182. Bryukhovetskiy I, Manzhulo I, Mischenko P, Milkina E, Dyuizen I, Bryukhovetskiy A, et al. Cancer stem cells and microglia in the processes of glioblastoma multiforme invasive growth. Oncol Lett. 2016;12:1721-1728 pubmed
  183. Cudré Cung H, Zavadakova P, Do Vale Pereira S, Remacle N, Henry H, Ivanisevic J, et al. Ammonium accumulation is a primary effect of 2-methylcitrate exposure in an in vitro model for brain damage in methylmalonic aciduria. Mol Genet Metab. 2016;119:57-67 pubmed 出版商
  184. Hansen S, Stummann T, Borland H, Hasholt L, Tumer Z, Nielsen J, et al. Induced pluripotent stem cell - derived neurons for the study of spinocerebellar ataxia type 3. Stem Cell Res. 2016;17:306-317 pubmed 出版商
  185. Balusu S, Van Wonterghem E, De Rycke R, Raemdonck K, Stremersch S, Gevaert K, et al. Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles. EMBO Mol Med. 2016;8:1162-1183 pubmed 出版商
  186. Griffith C, Xie M, Qiu W, Sharp A, Ma C, Pan A, et al. Aberrant expression of the pore-forming KATP channel subunit Kir6.2 in hippocampal reactive astrocytes in the 3xTg-AD mouse model and human Alzheimer's disease. Neuroscience. 2016;336:81-101 pubmed 出版商
  187. Caporali P, Bruno F, Palladino G, Dragotto J, Petrosini L, Mangia F, et al. Developmental delay in motor skill acquisition in Niemann-Pick C1 mice reveals abnormal cerebellar morphogenesis. Acta Neuropathol Commun. 2016;4:94 pubmed 出版商
  188. Barron A, Tokunaga M, Zhang M, Ji B, Suhara T, Higuchi M. Assessment of neuroinflammation in a mouse model of obesity and β-amyloidosis using PET. J Neuroinflammation. 2016;13:221 pubmed 出版商
  189. Choi S, Roh D, Yoon S, Kwon S, Choi H, Han H, et al. Astrocyte sigma-1 receptors modulate connexin 43 expression leading to the induction of below-level mechanical allodynia in spinal cord injured mice. Neuropharmacology. 2016;111:34-46 pubmed 出版商
  190. Du R, Wu F, Lu M, Shu X, Ding J, Wu G, et al. Uncoupling protein 2 modulation of the NLRP3 inflammasome in astrocytes and its implications in depression. Redox Biol. 2016;9:178-187 pubmed 出版商
  191. Cheng Z, Zhu W, Cao K, Wu F, Li J, Wang G, et al. Anti-Inflammatory Mechanism of Neural Stem Cell Transplantation in Spinal Cord Injury. Int J Mol Sci. 2016;17: pubmed 出版商
  192. Vermeij W, Dollé M, Reiling E, Jaarsma D, Payan Gomez C, Bombardieri C, et al. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice. Nature. 2016;537:427-431 pubmed 出版商
  193. Dhillon R, Parker J, Syed Y, Edgley S, Young A, Fawcett J, et al. Axonal plasticity underpins the functional recovery following surgical decompression in a rat model of cervical spondylotic myelopathy. Acta Neuropathol Commun. 2016;4:89 pubmed 出版商
  194. Hillis J, Davies J, Mundim M, Al Dalahmah O, Szele F. Cuprizone demyelination induces a unique inflammatory response in the subventricular zone. J Neuroinflammation. 2016;13:190 pubmed 出版商
  195. Andersen N, Srinivas S, Piñero G, Monje P. A rapid and versatile method for the isolation, purification and cryogenic storage of Schwann cells from adult rodent nerves. Sci Rep. 2016;6:31781 pubmed 出版商
  196. Chen N, Chen W, Sung C, Lu C, Chen C, Hung H, et al. Contributions of p38 and ERK to the antinociceptive effects of TGF-?1 in chronic constriction injury-induced neuropathic rats. J Headache Pain. 2016;17:72 pubmed 出版商
  197. Badea A, Kane L, Anderson R, Qi Y, Foster M, Cofer G, et al. The fornix provides multiple biomarkers to characterize circuit disruption in a mouse model of Alzheimer's disease. Neuroimage. 2016;142:498-511 pubmed 出版商
  198. Ju X, Hou Q, Sheng A, Wu K, Zhou Y, Jin Y, et al. The hominoid-specific gene TBC1D3 promotes generation of basal neural progenitors and induces cortical folding in mice. elife. 2016;5: pubmed 出版商
  199. Li Y, Chang L, Song Y, Gao X, Roselli F, Liu J, et al. Astrocytic GluN2A and GluN2B Oppose the Synaptotoxic Effects of Amyloid-?1-40 in Hippocampal Cells. J Alzheimers Dis. 2016;54:135-48 pubmed 出版商
  200. Wolf H, Damme M, Stroobants S, D Hooge R, Beck H, Hermans Borgmeyer I, et al. A mouse model for fucosidosis recapitulates storage pathology and neurological features of the milder form of the human disease. Dis Model Mech. 2016;9:1015-28 pubmed 出版商
  201. Saggu R, Schumacher T, Gerich F, Rakers C, Tai K, Delekate A, et al. Astroglial NF-kB contributes to white matter damage and cognitive impairment in a mouse model of vascular dementia. Acta Neuropathol Commun. 2016;4:76 pubmed 出版商
  202. Westbroek W, Nguyen M, Siebert M, Lindstrom T, Burnett R, Aflaki E, et al. A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease. Dis Model Mech. 2016;9:769-78 pubmed 出版商
  203. Ellett L, Hung L, Munckton R, Sherratt N, Culvenor J, Grubman A, et al. Restoration of intestinal function in an MPTP model of Parkinson's Disease. Sci Rep. 2016;6:30269 pubmed 出版商
  204. Palibrk V, Suganthan R, Scheffler K, Wang W, BjørÃ¥s M, Bøe S. PML regulates neuroprotective innate immunity and neuroblast commitment in a hypoxic-ischemic encephalopathy model. Cell Death Dis. 2016;7:e2320 pubmed 出版商
  205. Alves S, Marais T, Biferi M, Furling D, Marinello M, El Hachimi K, et al. Lentiviral vector-mediated overexpression of mutant ataxin-7 recapitulates SCA7 pathology and promotes accumulation of the FUS/TLS and MBNL1 RNA-binding proteins. Mol Neurodegener. 2016;11:58 pubmed 出版商
  206. Pang J, Wu Y, Peng J, Yang P, Kuai L, Qin X, et al. Potential implications of Apolipoprotein E in early brain injury after experimental subarachnoid hemorrhage: Involvement in the modulation of blood-brain barrier integrity. Oncotarget. 2016;7:56030-56044 pubmed 出版商
  207. Choi M, Ahn S, Yang E, Kim H, Chong Y, Kim H. Hippocampus-based contextual memory alters the morphological characteristics of astrocytes in the dentate gyrus. Mol Brain. 2016;9:72 pubmed 出版商
  208. Thomsen M, Birkelund S, Burkhart A, Stensballe A, Moos T. Synthesis and deposition of basement membrane proteins by primary brain capillary endothelial cells in a murine model of the blood-brain barrier. J Neurochem. 2017;140:741-754 pubmed 出版商
  209. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  210. Yim N, Ryu S, Choi K, Lee K, Lee S, Choi H, et al. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module. Nat Commun. 2016;7:12277 pubmed 出版商
  211. Tian J, Chen W, Cui J, Wang H, Chao C, Lu Z, et al. Effect of Lycium bararum polysaccharides on methylmercury-induced abnormal differentiation of hippocampal stem cells. Exp Ther Med. 2016;12:683-689 pubmed
  212. Senzacqua M, Severi I, Perugini J, Acciarini S, Cinti S, Giordano A. Action of Administered Ciliary Neurotrophic Factor on the Mouse Dorsal Vagal Complex. Front Neurosci. 2016;10:289 pubmed 出版商
  213. Murlidharan G, Sakamoto K, Rao L, Corriher T, Wang D, Gao G, et al. CNS-restricted Transduction and CRISPR/Cas9-mediated Gene Deletion with an Engineered AAV Vector. Mol Ther Nucleic Acids. 2016;5:e338 pubmed 出版商
  214. Ding Y, Zhang Z, Ma J, Xia H, Wang Y, Liu Y, et al. Directed differentiation of postnatal hippocampal neural stem cells generates nuclear receptor related?1 protein? and tyrosine hydroxylase?expressing cells. Mol Med Rep. 2016;14:1993-9 pubmed 出版商
  215. Li H, Li H, Hao Y, Jiao Y, Li Z, Yue H, et al. Differential long non?coding RNA and mRNA expression in differentiated human glioblastoma stem cells. Mol Med Rep. 2016;14:2067-76 pubmed 出版商
  216. Nott A, Cheng J, Gao F, Lin Y, Gjoneska E, Ko T, et al. Histone deacetylase 3 associates with MeCP2 to regulate FOXO and social behavior. Nat Neurosci. 2016;19:1497-1505 pubmed 出版商
  217. Urbán N, van den Berg D, Forget A, Andersen J, Demmers J, Hunt C, et al. Return to quiescence of mouse neural stem cells by degradation of a proactivation protein. Science. 2016;353:292-5 pubmed 出版商
  218. Achuta V, Grym H, Putkonen N, Louhivuori V, Kärkkäinen V, Koistinaho J, et al. Metabotropic glutamate receptor 5 responses dictate differentiation of neural progenitors to NMDA-responsive cells in fragile X syndrome. Dev Neurobiol. 2017;77:438-453 pubmed 出版商
  219. Akopian A, Kumar S, Ramakrishnan H, Viswanathan S, Bloomfield S. Amacrine cells coupled to ganglion cells via gap junctions are highly vulnerable in glaucomatous mouse retinas. J Comp Neurol. 2016;: pubmed 出版商
  220. Walker W, Oehler A, Edinger A, Wagner K, Gunn T. Oligodendroglial deletion of ESCRT-I component TSG101 causes spongiform encephalopathy. Biol Cell. 2016;108:324-337 pubmed 出版商
  221. Osman E, Washington C, Kaifer K, Mazzasette C, Patitucci T, Florea K, et al. Optimization of Morpholino Antisense Oligonucleotides Targeting the Intronic Repressor Element1 in Spinal Muscular Atrophy. Mol Ther. 2016;24:1592-601 pubmed 出版商
  222. Duggett N, Griffiths L, McKenna O, De Santis V, Yongsanguanchai N, Mokori E, et al. Oxidative stress in the development, maintenance and resolution of paclitaxel-induced painful neuropathy. Neuroscience. 2016;333:13-26 pubmed 出版商
  223. Peretz Y, Eren N, Kohl A, Hen G, Yaniv K, Weisinger K, et al. A new role of hindbrain boundaries as pools of neural stem/progenitor cells regulated by Sox2. BMC Biol. 2016;14:57 pubmed 出版商
  224. Huang Z, Hu J, Pan J, Wang Y, Hu G, Zhou J, et al. YAP stabilizes SMAD1 and promotes BMP2-induced neocortical astrocytic differentiation. Development. 2016;143:2398-409 pubmed 出版商
  225. Liu S, Li Q, Zhang M, Mao Ying Q, Hu L, Wu G, et al. Curcumin ameliorates neuropathic pain by down-regulating spinal IL-1β via suppressing astroglial NALP1 inflammasome and JAK2-STAT3 signalling. Sci Rep. 2016;6:28956 pubmed 出版商
  226. Forsberg D, Horn Z, Tserga E, Smedler E, Silberberg G, Shvarev Y, et al. CO2-evoked release of PGE2 modulates sighs and inspiration as demonstrated in brainstem organotypic culture. elife. 2016;5: pubmed 出版商
  227. Tillberg P, Chen F, Piatkevich K, Zhao Y, Yu C, English B, et al. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat Biotechnol. 2016;34:987-92 pubmed 出版商
  228. Li T, Braunstein K, Zhang J, Lau A, Sibener L, Deeble C, et al. The neuritic plaque facilitates pathological conversion of tau in an Alzheimer's disease mouse model. Nat Commun. 2016;7:12082 pubmed 出版商
  229. Shiihashi G, Ito D, Yagi T, Nihei Y, Ebine T, Suzuki N. Mislocated FUS is sufficient for gain-of-toxic-function amyotrophic lateral sclerosis phenotypes in mice. Brain. 2016;139:2380-94 pubmed 出版商
  230. Su X, Tan Q, Parikh B, Tan A, Mehta M, Sia Wey Y, et al. Characterization of Fatty Acid Binding Protein 7 (FABP7) in the Murine Retina. Invest Ophthalmol Vis Sci. 2016;57:3397-408 pubmed 出版商
  231. Neves J, Zhu J, Sousa Victor P, Konjikusic M, Riley R, Chew S, et al. Immune modulation by MANF promotes tissue repair and regenerative success in the retina. Science. 2016;353:aaf3646 pubmed 出版商
  232. Bramini M, Sacchetti S, Armirotti A, Rocchi A, Vazquez E, León Castellanos V, et al. Graphene Oxide Nanosheets Disrupt Lipid Composition, Ca(2+) Homeostasis, and Synaptic Transmission in Primary Cortical Neurons. ACS Nano. 2016;10:7154-71 pubmed 出版商
  233. Mann A, Scodeller P, Hussain S, Joo J, Kwon E, Braun G, et al. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries. Nat Commun. 2016;7:11980 pubmed 出版商
  234. Park K, Luo X, Mooney S, Yungher B, Belin S, Wang C, et al. Retinal ganglion cell survival and axon regeneration after optic nerve injury in naked mole-rats. J Comp Neurol. 2017;525:380-388 pubmed 出版商
  235. Krusche B, Ottone C, Clements M, Johnstone E, Goetsch K, Lieven H, et al. EphrinB2 drives perivascular invasion and proliferation of glioblastoma stem-like cells. elife. 2016;5: pubmed 出版商
  236. Brahmachari S, Ge P, Lee S, Kim D, Karuppagounder S, Kumar M, et al. Activation of tyrosine kinase c-Abl contributes to ?-synuclein-induced neurodegeneration. J Clin Invest. 2016;126:2970-88 pubmed 出版商
  237. Schmitt D, Funk N, Blum R, Asan E, Andersen L, Rülicke T, et al. Initial characterization of a Syap1 knock-out mouse and distribution of Syap1 in mouse brain and cultured motoneurons. Histochem Cell Biol. 2016;146:489-512 pubmed 出版商
  238. Mavlyutov T, Duellman T, Kim H, Epstein M, Leese C, Davletov B, et al. Sigma-1 receptor expression in the dorsal root ganglion: Reexamination using a highly specific antibody. Neuroscience. 2016;331:148-57 pubmed 出版商
  239. Yoo S, Motari M, Schnaar R. Agenesis of the corpus callosum in Nogo receptor deficient mice. J Comp Neurol. 2017;525:291-301 pubmed 出版商
  240. Vasek M, Garber C, Dorsey D, Durrant D, Bollman B, Soung A, et al. A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature. 2016;534:538-43 pubmed 出版商
  241. Velandia Romero M, Calderón Peláez M, Castellanos J. In Vitro Infection with Dengue Virus Induces Changes in the Structure and Function of the Mouse Brain Endothelium. PLoS ONE. 2016;11:e0157786 pubmed 出版商
  242. Folmsbee S, Wilcox D, Tyberghein K, De Bleser P, Tourtellotte W, van Hengel J, et al. ?T-catenin in restricted brain cell types and its potential connection to autism. J Mol Psychiatry. 2016;4:2 pubmed 出版商
  243. Vernay A, Therreau L, Blot B, Risson V, Dirrig Grosch S, Waegaert R, et al. A transgenic mouse expressing CHMP2Bintron5 mutant in neurons develops histological and behavioural features of amyotrophic lateral sclerosis and frontotemporal dementia. Hum Mol Genet. 2016;25:3341-3360 pubmed 出版商
  244. Ure K, Lu H, Wang W, Ito Ishida A, Wu Z, He L, et al. Restoration of Mecp2 expression in GABAergic neurons is sufficient to rescue multiple disease features in a mouse model of Rett syndrome. elife. 2016;5: pubmed 出版商
  245. Vodicka P, Chase K, Iuliano M, Valentine D, Sapp E, Lu B, et al. Effects of Exogenous NUB1 Expression in the Striatum of HDQ175/Q7 Mice. J Huntingtons Dis. 2016;5:163-74 pubmed 出版商
  246. Villarreal A, Rosciszewski G, Murta V, Cadena V, Usach V, Dodes Traian M, et al. Isolation and Characterization of Ischemia-Derived Astrocytes (IDAs) with Ability to Transactivate Quiescent Astrocytes. Front Cell Neurosci. 2016;10:139 pubmed 出版商
  247. Jones K, Han J, Debruyne J, Philpot B. Persistent neuronal Ube3a expression in the suprachiasmatic nucleus of Angelman syndrome model mice. Sci Rep. 2016;6:28238 pubmed 出版商
  248. Zhai W, Chen D, Shen H, Chen Z, Li H, Yu Z, et al. A1 adenosine receptor attenuates intracerebral hemorrhage-induced secondary brain injury in rats by activating the P38-MAPKAP2-Hsp27 pathway. Mol Brain. 2016;9:66 pubmed 出版商
  249. Cerman E, Akkoç T, Eraslan M, Sahin O, Ozkara S, Vardar Aker F, et al. Retinal Electrophysiological Effects of Intravitreal Bone Marrow Derived Mesenchymal Stem Cells in Streptozotocin Induced Diabetic Rats. PLoS ONE. 2016;11:e0156495 pubmed 出版商
  250. Choi Y, Lee B, Hansen K, Aten S, Horning P, Wheaton K, et al. Status epilepticus stimulates NDEL1 expression via the CREB/CRE pathway in the adult mouse brain. Neuroscience. 2016;331:1-12 pubmed 出版商
  251. Pellegrini C, Fornai M, Colucci R, Tirotta E, Blandini F, Levandis G, et al. Alteration of colonic excitatory tachykininergic motility and enteric inflammation following dopaminergic nigrostriatal neurodegeneration. J Neuroinflammation. 2016;13:146 pubmed 出版商
  252. Hutchinson E, Schwerin S, Radomski K, Irfanoglu M, Juliano S, Pierpaoli C. Quantitative MRI and DTI Abnormalities During the Acute Period Following CCI in the Ferret. Shock. 2016;46:167-76 pubmed 出版商
  253. Sun X, Li L, Liu F, Huang Z, Bean J, Jiao H, et al. Lrp4 in astrocytes modulates glutamatergic transmission. Nat Neurosci. 2016;19:1010-8 pubmed 出版商
  254. Kizuka Y, Nakano M, Miura Y, Taniguchi N. Epigenetic regulation of neural N-glycomics. Proteomics. 2016;16:2854-2863 pubmed 出版商
  255. Xu Y, Liu J, He M, Liu R, Belegu V, Dai P, et al. Mechanisms of PDGF siRNA-mediated inhibition of bone cancer pain in the spinal cord. Sci Rep. 2016;6:27512 pubmed 出版商
  256. Auderset L, Cullen C, Young K. Low Density Lipoprotein-Receptor Related Protein 1 Is Differentially Expressed by Neuronal and Glial Populations in the Developing and Mature Mouse Central Nervous System. PLoS ONE. 2016;11:e0155878 pubmed 出版商
  257. Perland E, Lekholm E, Eriksson M, Bagchi S, Arapi V, Fredriksson R. The Putative SLC Transporters Mfsd5 and Mfsd11 Are Abundantly Expressed in the Mouse Brain and Have a Potential Role in Energy Homeostasis. PLoS ONE. 2016;11:e0156912 pubmed 出版商
  258. Morisaki Y, Niikura M, Watanabe M, Onishi K, Tanabe S, Moriwaki Y, et al. Selective Expression of Osteopontin in ALS-resistant Motor Neurons is a Critical Determinant of Late Phase Neurodegeneration Mediated by Matrix Metalloproteinase-9. Sci Rep. 2016;6:27354 pubmed 出版商
  259. Ávila Rodriguez M, Garcia Segura L, Hidalgo Lanussa O, Baez E, Gonzalez J, Barreto G. Tibolone protects astrocytic cells from glucose deprivation through a mechanism involving estrogen receptor beta and the upregulation of neuroglobin expression. Mol Cell Endocrinol. 2016;433:35-46 pubmed 出版商
  260. Ko A, Hyun H, Min S, Kim J. The Differential DRP1 Phosphorylation and Mitochondrial Dynamics in the Regional Specific Astroglial Death Induced by Status Epilepticus. Front Cell Neurosci. 2016;10:124 pubmed 出版商
  261. Figueres Oñate M, López Mascaraque L. Adult Olfactory Bulb Interneuron Phenotypes Identified by Targeting Embryonic and Postnatal Neural Progenitors. Front Neurosci. 2016;10:194 pubmed 出版商
  262. Hayashi Y, Morinaga S, Zhang J, Satoh Y, Meredith A, Nakata T, et al. BK channels in microglia are required for morphine-induced hyperalgesia. Nat Commun. 2016;7:11697 pubmed 出版商
  263. Singh V, Singh M, Gorantla S, Poluektova L, Maggirwar S. Smoothened Agonist Reduces Human Immunodeficiency Virus Type-1-Induced Blood-Brain Barrier Breakdown in Humanized Mice. Sci Rep. 2016;6:26876 pubmed 出版商
  264. Morales I, Sánchez A, Rodriguez Sabate C, Rodriguez M. The astrocytic response to the dopaminergic denervation of the striatum. J Neurochem. 2016;139:81-95 pubmed 出版商
  265. Vilmont V, Cadot B, Ouanounou G, Gomes E. A system for studying mechanisms of neuromuscular junction development and maintenance. Development. 2016;143:2464-77 pubmed 出版商
  266. Rodríguez Jiménez F, Alastrue A, Stojkovic M, Erceg S, Moreno Manzano V. Connexin 50 modulates Sox2 expression in spinal-cord-derived ependymal stem/progenitor cells. Cell Tissue Res. 2016;365:295-307 pubmed 出版商
  267. Agostoni E, Michelazzi S, Maurutto M, Carnemolla A, Ciani Y, Vatta P, et al. Effects of Pin1 Loss in Hdh(Q111) Knock-in Mice. Front Cell Neurosci. 2016;10:110 pubmed 出版商
  268. Reinhard J, Kriz A, Galic M, Angliker N, Rajalu M, Vogt K, et al. The calcium sensor Copine-6 regulates spine structural plasticity and learning and memory. Nat Commun. 2016;7:11613 pubmed 出版商
  269. Heaven M, Flint D, Randall S, Sosunov A, Wilson L, Barnes S, et al. Composition of Rosenthal Fibers, the Protein Aggregate Hallmark of Alexander Disease. J Proteome Res. 2016;15:2265-82 pubmed 出版商
  270. Marignier R, Ruiz A, Cavagna S, Nicole A, Watrin C, Touret M, et al. Neuromyelitis optica study model based on chronic infusion of autoantibodies in rat cerebrospinal fluid. J Neuroinflammation. 2016;13:111 pubmed 出版商
  271. Wharton K, Quigley C, Themeles M, Dunstan R, Doyle K, Cahir McFarland E, et al. JC Polyomavirus Abundance and Distribution in Progressive Multifocal Leukoencephalopathy (PML) Brain Tissue Implicates Myelin Sheath in Intracerebral Dissemination of Infection. PLoS ONE. 2016;11:e0155897 pubmed 出版商
  272. Kobayashi Y, Yoshida S, Zhou Y, Nakama T, Ishikawa K, Arima M, et al. Tenascin-C promotes angiogenesis in fibrovascular membranes in eyes with proliferative diabetic retinopathy. Mol Vis. 2016;22:436-45 pubmed
  273. Oishi S, Premarathne S, Harvey T, Iyer S, Dixon C, Alexander S, et al. Usp9x-deficiency disrupts the morphological development of the postnatal hippocampal dentate gyrus. Sci Rep. 2016;6:25783 pubmed 出版商
  274. He J, Zhou R, Wu Z, Carrasco M, Kurshan P, Farley J, et al. Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proc Natl Acad Sci U S A. 2016;113:6029-34 pubmed 出版商
  275. Miyawaki S, Kawamura Y, Oiwa Y, Shimizu A, Hachiya T, Bono H, et al. Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nat Commun. 2016;7:11471 pubmed 出版商
  276. Finnie J, Blumbergs P, Manavis J. Temporal Sequence of Autolysis in the Cerebellar Cortex of the Mouse. J Comp Pathol. 2016;154:323-8 pubmed 出版商
  277. Hochmeister S, Engel O, Adzemovic M, Pekar T, Kendlbacher P, Zeitelhofer M, et al. Lipocalin-2 as an Infection-Related Biomarker to Predict Clinical Outcome in Ischemic Stroke. PLoS ONE. 2016;11:e0154797 pubmed 出版商
  278. Zhang N, Chen B, Wang W, Chen C, Kang J, Deng S, et al. Isolation, characterization and multi-lineage differentiation of stem cells from human exfoliated deciduous teeth. Mol Med Rep. 2016;14:95-102 pubmed 出版商
  279. Foxton R, Osborne A, Martin K, Ng Y, Shima D. Distal retinal ganglion cell axon transport loss and activation of p38 MAPK stress pathway following VEGF-A antagonism. Cell Death Dis. 2016;7:e2212 pubmed 出版商
  280. Rosiak K, Smolarz M, Stec W, Peciak J, Grzela D, Winiecka Klimek M, et al. IDH1R132H in Neural Stem Cells: Differentiation Impaired by Increased Apoptosis. PLoS ONE. 2016;11:e0154726 pubmed 出版商
  281. Mohr M, Garcia F, Doncarlos L, Sisk C. Neurons and Glial Cells Are Added to the Female Rat Anteroventral Periventricular Nucleus During Puberty. Endocrinology. 2016;157:2393-402 pubmed 出版商
  282. Szalay G, Martinecz B, Lénárt N, Kornyei Z, Orsolits B, Judák L, et al. Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun. 2016;7:11499 pubmed 出版商
  283. Yang Y, Fang J, Li D, Wang L, Ji N, Zhang J. Recurrent intracranial neurenteric cyst with malignant transformation: A case report and literature review. Oncol Lett. 2016;11:3395-3402 pubmed
  284. Duchnowska R, Pęksa R, Radecka B, Mandat T, Trojanowski T, Jarosz B, et al. Immune response in breast cancer brain metastases and their microenvironment: the role of the PD-1/PD-L axis. Breast Cancer Res. 2016;18:43 pubmed 出版商
  285. Tong H, Kang W, Davy P, Shi Y, Sun S, Allsopp R, et al. Monocyte Trafficking, Engraftment, and Delivery of Nanoparticles and an Exogenous Gene into the Acutely Inflamed Brain Tissue - Evaluations on Monocyte-Based Delivery System for the Central Nervous System. PLoS ONE. 2016;11:e0154022 pubmed 出版商
  286. Ren M, Du C, Herrero Acero E, Tang Schomer M, Ozkucur N. A biofidelic 3D culture model to study the development of brain cellular systems. Sci Rep. 2016;6:24953 pubmed 出版商
  287. Xue Y, Qian H, Hu J, Zhou B, Zhou Y, Hu X, et al. Sequential regulatory loops as key gatekeepers for neuronal reprogramming in human cells. Nat Neurosci. 2016;19:807-15 pubmed 出版商
  288. Funk L, Hackett A, Bunge M, Lee J. Tumor necrosis factor superfamily member APRIL contributes to fibrotic scar formation after spinal cord injury. J Neuroinflammation. 2016;13:87 pubmed 出版商
  289. Srinivasan K, Friedman B, Larson J, Lauffer B, Goldstein L, Appling L, et al. Untangling the brain's neuroinflammatory and neurodegenerative transcriptional responses. Nat Commun. 2016;7:11295 pubmed 出版商
  290. Anesten F, Holt M, Schéle E, Pálsdóttir V, Reimann F, Gribble F, et al. Preproglucagon neurons in the hindbrain have IL-6 receptor-α and show Ca2+ influx in response to IL-6. Am J Physiol Regul Integr Comp Physiol. 2016;311:R115-23 pubmed 出版商
  291. Bouvier D, Jones E, Quesseveur G, Davoli M, A Ferreira T, Quirion R, et al. High Resolution Dissection of Reactive Glial Nets in Alzheimer's Disease. Sci Rep. 2016;6:24544 pubmed 出版商
  292. Almad A, Doreswamy A, Gross S, Richard J, Huo Y, Haughey N, et al. Connexin 43 in astrocytes contributes to motor neuron toxicity in amyotrophic lateral sclerosis. Glia. 2016;64:1154-69 pubmed 出版商
  293. Basrai H, Christie K, Turbic A, Bye N, Turnley A. Suppressor of Cytokine Signaling-2 (SOCS2) Regulates the Microglial Response and Improves Functional Outcome after Traumatic Brain Injury in Mice. PLoS ONE. 2016;11:e0153418 pubmed 出版商
  294. Chtarto A, Humbert Claude M, Bockstael O, Das A, Boutry S, Breger L, et al. A regulatable AAV vector mediating GDNF biological effects at clinically-approved sub-antimicrobial doxycycline doses. Mol Ther Methods Clin Dev. 2016;5:16027 pubmed 出版商
  295. Hamanoue M, Morioka K, Ohsawa I, Ohsawa K, Kobayashi M, Tsuburaya K, et al. Cell-permeable p38?MAP kinase promotes migration of adult neural stem/progenitor cells. Sci Rep. 2016;6:24279 pubmed 出版商
  296. Vasilev D, Dubrovskaya N, Tumanova N, Zhuravin I. Prenatal Hypoxia in Different Periods of Embryogenesis Differentially Affects Cell Migration, Neuronal Plasticity, and Rat Behavior in Postnatal Ontogenesis. Front Neurosci. 2016;10:126 pubmed 出版商
  297. Kim S, Hayashi H, Ishikawa T, Shibata K, Shigetomi E, Shinozaki Y, et al. Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain. J Clin Invest. 2016;126:1983-97 pubmed 出版商
  298. Isotani A, Yamagata K, Okabe M, Ikawa M. Generation of Hprt-disrupted rat through mouse?rat ES chimeras. Sci Rep. 2016;6:24215 pubmed 出版商
  299. Fourgeaud L, Traves P, Tufail Y, Leal Bailey H, Lew E, Burrola P, et al. TAM receptors regulate multiple features of microglial physiology. Nature. 2016;532:240-244 pubmed 出版商
  300. Bubenheimer R, Brown I, Fried D, McClain J, Gulbransen B. Sirtuin-3 Is Expressed by Enteric Neurons but It Does not Play a Major Role in Their Regulation of Oxidative Stress. Front Cell Neurosci. 2016;10:73 pubmed 出版商
  301. Du C, Duan Y, Wei W, Cai Y, Chai H, Lv J, et al. Kappa opioid receptor activation alleviates experimental autoimmune encephalomyelitis and promotes oligodendrocyte-mediated remyelination. Nat Commun. 2016;7:11120 pubmed 出版商
  302. Fuente Martín E, García Cáceres C, Argente Arizón P, Diaz F, Granado M, Freire Regatillo A, et al. Ghrelin Regulates Glucose and Glutamate Transporters in Hypothalamic Astrocytes. Sci Rep. 2016;6:23673 pubmed 出版商
  303. Fujiwara K, Fujita Y, Kasai A, Onaka Y, Hashimoto H, Okada H, et al. Deletion of JMJD2B in neurons leads to defective spine maturation, hyperactive behavior and memory deficits in mouse. Transl Psychiatry. 2016;6:e766 pubmed 出版商
  304. Chen C, Liu Y, Hua M, Li X, Ji C, Ma D. Neuropathy correlated with imbalanced Foxp3/IL-17 in bone marrow microenvironment of patients with acute myeloid leukemia. Oncotarget. 2016;7:24455-65 pubmed 出版商
  305. Nagao M, Ogata T, Sawada Y, Gotoh Y. Zbtb20 promotes astrocytogenesis during neocortical development. Nat Commun. 2016;7:11102 pubmed 出版商
  306. Monai H, Ohkura M, Tanaka M, Oe Y, Konno A, Hirai H, et al. Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nat Commun. 2016;7:11100 pubmed 出版商
  307. Yousuf M, Tan C, Torres Altoro M, Lu F, Plautz E, Zhang S, et al. Involvement of aberrant cyclin-dependent kinase 5/p25 activity in experimental traumatic brain injury. J Neurochem. 2016;138:317-27 pubmed 出版商
  308. Cui Y, Han J, Xiao Z, Chen T, Wang B, Chen B, et al. The miR-20-Rest-Wnt signaling axis regulates neural progenitor cell differentiation. Sci Rep. 2016;6:23300 pubmed 出版商
  309. Smeester B, O Brien E, Michlitsch K, Lee J, Beitz A. The relationship of bone-tumor-induced spinal cord astrocyte activation and aromatase expression to mechanical hyperalgesia and cold hypersensitivity in intact female and ovariectomized mice. Neuroscience. 2016;324:344-54 pubmed 出版商
  310. O Rourke J, Bogdanik L, Yáñez A, Lall D, Wolf A, Muhammad A, et al. C9orf72 is required for proper macrophage and microglial function in mice. Science. 2016;351:1324-9 pubmed 出版商
  311. Anastasiadou S, Knöll B. The multiple sclerosis drug fingolimod (FTY720) stimulates neuronal gene expression, axonal growth and regeneration. Exp Neurol. 2016;279:243-260 pubmed 出版商
  312. Linkus B, Wiesner D, Meßner M, Karabatsiakis A, Scheffold A, Rudolph K, et al. Telomere shortening leads to earlier age of onset in ALS mice. Aging (Albany NY). 2016;8:382-93 pubmed
  313. Jennewein L, Ronellenfitsch M, Antonietti P, Ilina E, Jung J, Stadel D, et al. Diagnostic and clinical relevance of the autophago-lysosomal network in human gliomas. Oncotarget. 2016;7:20016-32 pubmed 出版商
  314. Zhao C, Deng Y, Liu L, Yu K, Zhang L, Wang H, et al. Dual regulatory switch through interactions of Tcf7l2/Tcf4 with stage-specific partners propels oligodendroglial maturation. Nat Commun. 2016;7:10883 pubmed 出版商
  315. Ramani M, Mylvaganam S, Krawczyk M, Wang L, Zoidl C, Brien J, et al. Differential expression of astrocytic connexins in a mouse model of prenatal alcohol exposure. Neurobiol Dis. 2016;91:83-93 pubmed 出版商
  316. Wang G, Liu X, Gaertig M, Li S, Li X. Ablation of huntingtin in adult neurons is nondeleterious but its depletion in young mice causes acute pancreatitis. Proc Natl Acad Sci U S A. 2016;113:3359-64 pubmed 出版商
  317. Yang P, Leu D, Ye K, Srinivasan C, Fike J, Huang T. Cognitive impairments following cranial irradiation can be mitigated by treatment with a tropomyosin receptor kinase B agonist. Exp Neurol. 2016;279:178-186 pubmed 出版商
  318. Loewen J, Barker Haliski M, Dahle E, White H, Wilcox K. Neuronal Injury, Gliosis, and Glial Proliferation in Two Models of Temporal Lobe Epilepsy. J Neuropathol Exp Neurol. 2016;75:366-78 pubmed 出版商
  319. Wang W, Jossin Y, Chai G, Lien W, Tissir F, Goffinet A. Feedback regulation of apical progenitor fate by immature neurons through Wnt7-Celsr3-Fzd3 signalling. Nat Commun. 2016;7:10936 pubmed 出版商
  320. Xu A, Zheng G, Wang Z, Chen X, Jiang Q. Neuroprotective effects of Ilexonin A following transient focal cerebral ischemia in rats. Mol Med Rep. 2016;13:2957-66 pubmed 出版商
  321. Maeda S, Djukic B, Taneja P, Yu G, Lo I, Davis A, et al. Expression of A152T human tau causes age-dependent neuronal dysfunction and loss in transgenic mice. EMBO Rep. 2016;17:530-51 pubmed 出版商
  322. Kabra D, Pfuhlmann K, García Cáceres C, Schriever S, Casquero García V, Kebede A, et al. Hypothalamic leptin action is mediated by histone deacetylase 5. Nat Commun. 2016;7:10782 pubmed 出版商
  323. Fonseca M, Chu S, Pierce A, Brubaker W, Hauhart R, Mastroeni D, et al. Analysis of the Putative Role of CR1 in Alzheimer's Disease: Genetic Association, Expression and Function. PLoS ONE. 2016;11:e0149792 pubmed 出版商
  324. Ma Y, Matsuwaki T, Yamanouchi K, Nishihara M. Glucocorticoids Suppress the Protective Effect of Cyclooxygenase-2-Related Signaling on Hippocampal Neurogenesis Under Acute Immune Stress. Mol Neurobiol. 2017;54:1953-1966 pubmed 出版商
  325. Matsumoto M, Nakamachi T, Watanabe J, Sugiyama K, Ohtaki H, Murai N, et al. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Is Involved in Adult Mouse Hippocampal Neurogenesis After Stroke. J Mol Neurosci. 2016;59:270-9 pubmed 出版商
  326. Yufune S, Satoh Y, Akai R, Yoshinaga Y, Kobayashi Y, Endo S, et al. Suppression of ERK phosphorylation through oxidative stress is involved in the mechanism underlying sevoflurane-induced toxicity in the developing brain. Sci Rep. 2016;6:21859 pubmed 出版商
  327. McNally A, Poplawski S, Mayweather B, White K, Abel T. Characterization of a Novel Chromatin Sorting Tool Reveals Importance of Histone Variant H3.3 in Contextual Fear Memory and Motor Learning. Front Mol Neurosci. 2016;9:11 pubmed 出版商
  328. Hinrich A, Jodelka F, Chang J, Brutman D, Bruno A, Briggs C, et al. Therapeutic correction of ApoER2 splicing in Alzheimer's disease mice using antisense oligonucleotides. EMBO Mol Med. 2016;8:328-45 pubmed 出版商
  329. Sancho Martinez I, Nivet E, Xia Y, Hishida T, Aguirre A, Ocampo A, et al. Establishment of human iPSC-based models for the study and targeting of glioma initiating cells. Nat Commun. 2016;7:10743 pubmed 出版商
  330. Cabral C, Tuladhar S, Dietrich H, Nguyen E, MacDonald W, Trivedi T, et al. Neurons are the Primary Target Cell for the Brain-Tropic Intracellular Parasite Toxoplasma gondii. PLoS Pathog. 2016;12:e1005447 pubmed 出版商
  331. Li X, Yuan Z, Wei X, Li H, Zhao G, Miao J, et al. Application potential of bone marrow mesenchymal stem cell (BMSCs) based tissue-engineering for spinal cord defect repair in rat fetuses with spina bifida aperta. J Mater Sci Mater Med. 2016;27:77 pubmed 出版商
  332. Liu R, Li S, Garcia E, Glubrecht D, Poon H, Easaw J, et al. Association between cytoplasmic CRABP2, altered retinoic acid signaling, and poor prognosis in glioblastoma. Glia. 2016;64:963-76 pubmed 出版商
  333. Ma Y, Guo H, Zhang L, Tao L, Yin A, Liu Z, et al. Estrogen replacement therapy-induced neuroprotection against brain ischemia-reperfusion injury involves the activation of astrocytes via estrogen receptor β. Sci Rep. 2016;6:21467 pubmed 出版商
  334. Lasiene J, Komine O, Fujimori Tonou N, Powers B, Endo F, Watanabe S, et al. Neuregulin 1 confers neuroprotection in SOD1-linked amyotrophic lateral sclerosis mice via restoration of C-boutons of spinal motor neurons. Acta Neuropathol Commun. 2016;4:15 pubmed 出版商
  335. Chen T, Yu Y, Hu C, Schachner M. L1.2, the zebrafish paralog of L1.1 and ortholog of the mammalian cell adhesion molecule L1 contributes to spinal cord regeneration in adult zebrafish. Restor Neurol Neurosci. 2016;34:325-35 pubmed 出版商
  336. Zhang Q, Gao X, Li C, Feliciano C, Wang D, Zhou D, et al. Impaired Dendritic Development and Memory in Sorbs2 Knock-Out Mice. J Neurosci. 2016;36:2247-60 pubmed 出版商
  337. Collazos Castro J, García Rama C, Alves Sampaio A. Glial progenitor cell migration promotes CNS axon growth on functionalized electroconducting microfibers. Acta Biomater. 2016;35:42-56 pubmed 出版商
  338. Zhang W, Kim P, Chen Z, Lokman H, Qiu L, Zhang K, et al. MiRNA-128 regulates the proliferation and neurogenesis of neural precursors by targeting PCM1 in the developing cortex. elife. 2016;5: pubmed 出版商
  339. Zhu Y, Gao W, Zhang Y, Jia F, Zhang H, Liu Y, et al. Astrocyte-derived phosphatidic acid promotes dendritic branching. Sci Rep. 2016;6:21096 pubmed 出版商
  340. Catanzaro G, Besharat Z, Garg N, Ronci M, Pieroni L, Miele E, et al. MicroRNAs-Proteomic Networks Characterizing Human Medulloblastoma-SLCs. Stem Cells Int. 2016;2016:2683042 pubmed 出版商
  341. Merdzo I, Rutkai I, Tokés T, Sure V, Katakam P, Busija D. The mitochondrial function of the cerebral vasculature in insulin-resistant Zucker obese rats. Am J Physiol Heart Circ Physiol. 2016;310:H830-8 pubmed 出版商
  342. Sreekanthreddy P, Gromnicova R, Davies H, Phillips J, Romero I, Male D. A three-dimensional model of the human blood-brain barrier to analyse the transport of nanoparticles and astrocyte/endothelial interactions. F1000Res. 2015;4:1279 pubmed 出版商
  343. Liu B, Ma A, Zhang F, Wang Y, Li Z, Li Q, et al. MAZ mediates the cross-talk between CT-1 and NOTCH1 signaling during gliogenesis. Sci Rep. 2016;6:21534 pubmed 出版商
  344. Lauretti E, Di Meco A, Merali S, Praticò D. Chronic behavioral stress exaggerates motor deficit and neuroinflammation in the MPTP mouse model of Parkinson's disease. Transl Psychiatry. 2016;6:e733 pubmed 出版商
  345. Winston C, Noël A, Neustadtl A, Parsadanian M, Barton D, Chellappa D, et al. Dendritic Spine Loss and Chronic White Matter Inflammation in a Mouse Model of Highly Repetitive Head Trauma. Am J Pathol. 2016;186:552-67 pubmed 出版商
  346. Delcambre G, Liu J, Herrington J, Vallario K, Long M. Immunohistochemistry for the detection of neural and inflammatory cells in equine brain tissue. Peerj. 2016;4:e1601 pubmed 出版商
  347. Li Y, Liu J, Gao D, Wei J, Yuan H, Niu X, et al. Age-related changes in hypertensive brain damage in the hippocampi of spontaneously hypertensive rats. Mol Med Rep. 2016;13:2552-60 pubmed 出版商
  348. Furman J, Sompol P, Kraner S, Pleiss M, Putman E, Dunkerson J, et al. Blockade of Astrocytic Calcineurin/NFAT Signaling Helps to Normalize Hippocampal Synaptic Function and Plasticity in a Rat Model of Traumatic Brain Injury. J Neurosci. 2016;36:1502-15 pubmed 出版商
  349. Sharma A, Lyashchenko A, Lu L, Nasrabady S, Elmaleh M, Mendelsohn M, et al. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function. Nat Commun. 2016;7:10465 pubmed 出版商
  350. Ophelders D, Gussenhoven R, Lammens M, Küsters B, Kemp M, Newnham J, et al. Neuroinflammation and structural injury of the fetal ovine brain following intra-amniotic Candida albicans exposure. J Neuroinflammation. 2016;13:29 pubmed 出版商
  351. Wang C, Zhang F, Jiang S, Siedlak S, Shen L, Perry G, et al. Estrogen receptor-? is localized to neurofibrillary tangles in Alzheimer's disease. Sci Rep. 2016;6:20352 pubmed 出版商
  352. Schoen M, Reichel J, Demestre M, Putz S, Deshpande D, Proepper C, et al. Super-Resolution Microscopy Reveals Presynaptic Localization of the ALS/FTD Related Protein FUS in Hippocampal Neurons. Front Cell Neurosci. 2015;9:496 pubmed 出版商
  353. Li H, Ruberu K, Karl T, Garner B. Cerebral Apolipoprotein-D Is Hypoglycosylated Compared to Peripheral Tissues and Is Variably Expressed in Mouse and Human Brain Regions. PLoS ONE. 2016;11:e0148238 pubmed 出版商
  354. Deverman B, Pravdo P, Simpson B, Kumar S, Chan K, Banerjee A, et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol. 2016;34:204-9 pubmed 出版商
  355. Okamoto S, Nitta M, Maruyama T, Sawada T, Komori T, Okada Y, et al. Bevacizumab changes vascular structure and modulates the expression of angiogenic factors in recurrent malignant gliomas. Brain Tumor Pathol. 2016;33:129-36 pubmed 出版商
  356. Tokuda E, Brännström T, Andersen P, Marklund S. Low autophagy capacity implicated in motor system vulnerability to mutant superoxide dismutase. Acta Neuropathol Commun. 2016;4:6 pubmed 出版商
  357. Lee Kubli C, Ingves M, Henry K, Shiao R, Collyer E, Tuszynski M, et al. Analysis of the behavioral, cellular and molecular characteristics of pain in severe rodent spinal cord injury. Exp Neurol. 2016;278:91-104 pubmed 出版商
  358. Misuraca K, Hu G, Barton K, Chung A, Becher O. A Novel Mouse Model of Diffuse Intrinsic Pontine Glioma Initiated in Pax3-Expressing Cells. Neoplasia. 2016;18:60-70 pubmed 出版商
  359. Hackett A, Lee D, Dawood A, Rodriguez M, Funk L, Tsoulfas P, et al. STAT3 and SOCS3 regulate NG2 cell proliferation and differentiation after contusive spinal cord injury. Neurobiol Dis. 2016;89:10-22 pubmed 出版商
  360. Kuhn P, Colombo A, Schusser B, Dreymueller D, Wetzel S, Schepers U, et al. Systematic substrate identification indicates a central role for the metalloprotease ADAM10 in axon targeting and synapse function. elife. 2016;5: pubmed 出版商
  361. Watanabe Y, Müller M, von Engelhardt J, Sprengel R, Seeburg P, Monyer H. Age-Dependent Degeneration of Mature Dentate Gyrus Granule Cells Following NMDA Receptor Ablation. Front Mol Neurosci. 2015;8:87 pubmed 出版商
  362. Kovacs G, Szabo V, Pirity M. Absence of Rybp Compromises Neural Differentiation of Embryonic Stem Cells. Stem Cells Int. 2016;2016:4034620 pubmed 出版商
  363. Kuipers H, Rieck M, Gurevich I, Nagy N, Butte M, Negrin R, et al. Hyaluronan synthesis is necessary for autoreactive T-cell trafficking, activation, and Th1 polarization. Proc Natl Acad Sci U S A. 2016;113:1339-44 pubmed 出版商
  364. Hares K, Redondo J, Kemp K, Rice C, Scolding N, Wilkins A. Axonal motor protein KIF5A and associated cargo deficits in multiple sclerosis lesional and normal-appearing white matter. Neuropathol Appl Neurobiol. 2017;43:227-241 pubmed 出版商
  365. Korwitz A, Merkwirth C, Richter Dennerlein R, Tröder S, Sprenger H, Quirós P, et al. Loss of OMA1 delays neurodegeneration by preventing stress-induced OPA1 processing in mitochondria. J Cell Biol. 2016;212:157-66 pubmed 出版商
  366. Kang S, Murphy R, Hwang S, Lee S, Harburg D, Krueger N, et al. Bioresorbable silicon electronic sensors for the brain. Nature. 2016;530:71-6 pubmed 出版商
  367. Brown I, McClain J, Watson R, Patel B, Gulbransen B. Enteric glia mediate neuron death in colitis through purinergic pathways that require connexin-43 and nitric oxide. Cell Mol Gastroenterol Hepatol. 2016;2:77-91 pubmed
  368. de Souza C, Nivison Smith L, Christie D, Polkinghorne P, McGhee C, Kalloniatis M, et al. Macromolecular markers in normal human retina and applications to human retinal disease. Exp Eye Res. 2016;150:135-48 pubmed 出版商
  369. Najafi E, Stoodley M, Bilston L, Hemley S. Inwardly rectifying potassium channel 4.1 expression in post-traumatic syringomyelia. Neuroscience. 2016;317:23-35 pubmed 出版商
  370. Yuan P, Grutzendler J. Attenuation of β-Amyloid Deposition and Neurotoxicity by Chemogenetic Modulation of Neural Activity. J Neurosci. 2016;36:632-41 pubmed 出版商
  371. Lian H, Litvinchuk A, Chiang A, Aithmitti N, Jankowsky J, Zheng H. Astrocyte-Microglia Cross Talk through Complement Activation Modulates Amyloid Pathology in Mouse Models of Alzheimer's Disease. J Neurosci. 2016;36:577-89 pubmed 出版商
  372. Kanda H, Kanao M, Liu S, Yi H, Iida T, Levitt R, et al. HSV vector-mediated GAD67 suppresses neuropathic pain induced by perineural HIV gp120 in rats through inhibition of ROS and Wnt5a. Gene Ther. 2016;23:340-8 pubmed 出版商
  373. Liu Q, Sanai N, Jin W, La Cava A, Van Kaer L, Shi F. Neural stem cells sustain natural killer cells that dictate recovery from brain inflammation. Nat Neurosci. 2016;19:243-52 pubmed 出版商
  374. Ruegsegger C, Stucki D, Steiner S, Angliker N, Radecke J, Keller E, et al. Impaired mTORC1-Dependent Expression of Homer-3 Influences SCA1 Pathophysiology. Neuron. 2016;89:129-46 pubmed 出版商
  375. Vacca V, Marinelli S, Pieroni L, Urbani A, Luvisetto S, Pavone F. 17beta-estradiol counteracts neuropathic pain: a behavioural, immunohistochemical, and proteomic investigation on sex-related differences in mice. Sci Rep. 2016;6:18980 pubmed 出版商
  376. Kawabata S, Takano M, Numasawa Kuroiwa Y, Itakura G, Kobayashi Y, Nishiyama Y, et al. Grafted Human iPS Cell-Derived Oligodendrocyte Precursor Cells Contribute to Robust Remyelination of Demyelinated Axons after Spinal Cord Injury. Stem Cell Reports. 2016;6:1-8 pubmed 出版商
  377. Sandoval Hernández A, Buitrago L, Moreno H, Cardona Gómez G, Arboleda G. Role of Liver X Receptor in AD Pathophysiology. PLoS ONE. 2015;10:e0145467 pubmed 出版商
  378. Choudhury S, Harris A, Cabral D, Keeler A, Sapp E, Ferreira J, et al. Widespread Central Nervous System Gene Transfer and Silencing After Systemic Delivery of Novel AAV-AS Vector. Mol Ther. 2016;24:726-35 pubmed 出版商
  379. Benedykcinska A, Ferreira A, Lau J, Broni J, Richard Loendt A, Henriquez N, et al. Generation of brain tumours in mice by Cre-mediated recombination of neural progenitors in situ with the tamoxifen metabolite endoxifen. Dis Model Mech. 2016;9:211-20 pubmed 出版商
  380. Abdel Hamid A, Firgany A, Ali E. Effect of memantine: A NMDA receptor blocker, on ethambutol-induced retinal injury. Ann Anat. 2016;204:86-92 pubmed 出版商
  381. Platt T, Beckett T, Kohler K, Niedowicz D, Murphy M. Obesity, diabetes, and leptin resistance promote tau pathology in a mouse model of disease. Neuroscience. 2016;315:162-74 pubmed 出版商
  382. Joseph J, van Roosmalen I, Busschers E, Tomar T, Conroy S, Eggens Meijer E, et al. Serum-Induced Differentiation of Glioblastoma Neurospheres Leads to Enhanced Migration/Invasion Capacity That Is Associated with Increased MMP9. PLoS ONE. 2015;10:e0145393 pubmed 出版商
  383. He G, Xu W, Li J, Li S, Liu B, Tan X, et al. Huwe1 interacts with Gadd45b under oxygen-glucose deprivation and reperfusion injury in primary Rat cortical neuronal cells. Mol Brain. 2015;8:88 pubmed 出版商
  384. Müller A, Stellmacher A, Freitag C, Landgraf P, Dieterich D. Monitoring Astrocytic Proteome Dynamics by Cell Type-Specific Protein Labeling. PLoS ONE. 2015;10:e0145451 pubmed 出版商
  385. Sharpe M, Baskin D. Monoamine oxidase B levels are highly expressed in human gliomas and are correlated with the expression of HiF-1α and with transcription factors Sp1 and Sp3. Oncotarget. 2016;7:3379-93 pubmed 出版商
  386. Janmaat C, de Rooij K, Locher H, de Groot S, de Groot J, Frijns J, et al. Human Dermal Fibroblasts Demonstrate Positive Immunostaining for Neuron- and Glia- Specific Proteins. PLoS ONE. 2015;10:e0145235 pubmed 出版商
  387. Khoutorsky A, Bonin R, Sorge R, Gkogkas C, Pawlowski S, Jafarnejad S, et al. Translational control of nociception via 4E-binding protein 1. elife. 2015;4: pubmed 出版商
  388. Slowicka K, Vereecke L, Mc Guire C, Sze M, Maelfait J, Kolpe A, et al. Optineurin deficiency in mice is associated with increased sensitivity to Salmonella but does not affect proinflammatory NF-κB signaling. Eur J Immunol. 2016;46:971-80 pubmed 出版商
  389. Gilkes J, Bloom M, Heldermon C. Mucopolysaccharidosis IIIB confers enhanced neonatal intracranial transduction by AAV8 but not by 5, 9 or rh10. Gene Ther. 2016;23:263-71 pubmed 出版商
  390. Pages M, Lacroix L, Tauziède Espariat A, Castel D, Daudigeos Dubus E, Ridola V, et al. Papillary glioneuronal tumors: histological and molecular characteristics and diagnostic value of SLC44A1-PRKCA fusion. Acta Neuropathol Commun. 2015;3:85 pubmed 出版商
  391. Hristova M, Rocha Ferreira E, Fontana X, Thei L, Buckle R, Christou M, et al. Inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) reduces neonatal hypoxic-ischaemic brain damage. J Neurochem. 2016;136:981-94 pubmed 出版商
  392. Chen A, Akinyemi R, Hase Y, Firbank M, Ndung u M, Foster V, et al. Frontal white matter hyperintensities, clasmatodendrosis and gliovascular abnormalities in ageing and post-stroke dementia. Brain. 2016;139:242-58 pubmed 出版商
  393. Haas L, Salazar S, Kostylev M, Um J, Kaufman A, Strittmatter S. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer's disease. Brain. 2016;139:526-46 pubmed 出版商
  394. Chao C, Kan D, Lo T, Lu K, Chien C. Induction of neural differentiation in rat C6 glioma cells with taxol. Brain Behav. 2015;5:e00414 pubmed 出版商
  395. Pak J, Lee E, CRAFT C. The retinal phenotype of Grk1-/- is compromised by a Crb1 rd8 mutation. Mol Vis. 2015;21:1281-94 pubmed
  396. Bean L, Kumar A, Rani A, Guidi M, Rosario A, Cruz P, et al. Re-Opening the Critical Window for Estrogen Therapy. J Neurosci. 2015;35:16077-93 pubmed 出版商
  397. Müller Schiffmann A, Herring A, Abdel Hafiz L, Chepkova A, Schäble S, Wedel D, et al. Amyloid-β dimers in the absence of plaque pathology impair learning and synaptic plasticity. Brain. 2016;139:509-25 pubmed 出版商
  398. Higuchi A, Kao S, Ling Q, Chen Y, Li H, Alarfaj A, et al. Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity. Sci Rep. 2015;5:18136 pubmed 出版商
  399. Pfefferkorn C, Kallfass C, Lienenklaus S, Spanier J, Kalinke U, Rieder M, et al. Abortively Infected Astrocytes Appear To Represent the Main Source of Interferon Beta in the Virus-Infected Brain. J Virol. 2016;90:2031-8 pubmed 出版商
  400. Stefanitsch C, Lawrence A, Olverling A, Nilsson I, Fredriksson L. tPA Deficiency in Mice Leads to Rearrangement in the Cerebrovascular Tree and Cerebroventricular Malformations. Front Cell Neurosci. 2015;9:456 pubmed 出版商
  401. Frankowski J, Demars K, Ahmad A, Hawkins K, Yang C, Leclerc J, et al. Detrimental role of the EP1 prostanoid receptor in blood-brain barrier damage following experimental ischemic stroke. Sci Rep. 2015;5:17956 pubmed 出版商
  402. Scandaglia M, Benito E, Morenilla Palao C, Fiorenza A, Del Blanco B, Coca Y, et al. Fine-tuned SRF activity controls asymmetrical neuronal outgrowth: implications for cortical migration, neural tissue lamination and circuit assembly. Sci Rep. 2015;5:17470 pubmed 出版商
  403. Hashimoto M, Murata K, Ishida J, Kanou A, Kasuya Y, Fukamizu A. Severe Hypomyelination and Developmental Defects Are Caused in Mice Lacking Protein Arginine Methyltransferase 1 (PRMT1) in the Central Nervous System. J Biol Chem. 2016;291:2237-45 pubmed 出版商
  404. Jimenez Mateos E, Arribas Blázquez M, Sanz Rodriguez A, Concannon C, Olivos Ore L, Reschke C, et al. microRNA targeting of the P2X7 purinoceptor opposes a contralateral epileptogenic focus in the hippocampus. Sci Rep. 2015;5:17486 pubmed 出版商
  405. Stephen T, Higgs N, Sheehan D, Al Awabdh S, López Doménech G, Arancibia Carcamo I, et al. Miro1 Regulates Activity-Driven Positioning of Mitochondria within Astrocytic Processes Apposed to Synapses to Regulate Intracellular Calcium Signaling. J Neurosci. 2015;35:15996-6011 pubmed 出版商
  406. Hui S, Nag T, Ghosh S. Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish. PLoS ONE. 2015;10:e0143595 pubmed 出版商
  407. Kim Y, Jo S, Kim W, Kweon O. Antioxidant and anti-inflammatory effects of intravenously injected adipose derived mesenchymal stem cells in dogs with acute spinal cord injury. Stem Cell Res Ther. 2015;6:229 pubmed 出版商
  408. Benítez B, Cairns N, Schmidt R, Morris J, Norton J, Cruchaga C, et al. Clinically early-stage CSPα mutation carrier exhibits remarkable terminal stage neuronal pathology with minimal evidence of synaptic loss. Acta Neuropathol Commun. 2015;3:73 pubmed 出版商
  409. Fang M, Yuan Y, Rangarajan P, Lu J, Wu Y, Wang H, et al. Scutellarin regulates microglia-mediated TNC1 astrocytic reaction and astrogliosis in cerebral ischemia in the adult rats. BMC Neurosci. 2015;16:84 pubmed 出版商
  410. Grishchuk Y, Stember K, Matsunaga A, Olivares A, CRUZ N, King V, et al. Retinal Dystrophy and Optic Nerve Pathology in the Mouse Model of Mucolipidosis IV. Am J Pathol. 2016;186:199-209 pubmed 出版商
  411. Zhang L, Mabwi H, Palange N, Jia R, Ma J, Bah F, et al. Expression Patterns and Potential Biological Roles of Dip2a. PLoS ONE. 2015;10:e0143284 pubmed 出版商
  412. Urraca N, Memon R, El Iyachi I, Goorha S, Valdez C, Tran Q, et al. Characterization of neurons from immortalized dental pulp stem cells for the study of neurogenetic disorders. Stem Cell Res. 2015;15:722-730 pubmed 出版商
  413. Dahlke C, Saberi D, Ott B, Brand Saberi B, Schmitt John T, Theiss C. Inflammation and neuronal death in the motor cortex of the wobbler mouse, an ALS animal model. J Neuroinflammation. 2015;12:215 pubmed 出版商
  414. Tardito S, Oudin A, Ahmed S, Fack F, Keunen O, Zheng L, et al. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat Cell Biol. 2015;17:1556-68 pubmed 出版商
  415. Tapia Rojas C, Lindsay C, Montecinos Oliva C, Arrázola M, Retamales R, Bunout D, et al. Is L-methionine a trigger factor for Alzheimer's-like neurodegeneration?: Changes in Aβ oligomers, tau phosphorylation, synaptic proteins, Wnt signaling and behavioral impairment in wild-type mice. Mol Neurodegener. 2015;10:62 pubmed 出版商
  416. Beaudet M, Yang Q, Cadau S, Blais M, Bellenfant S, Gros Louis F, et al. High yield extraction of pure spinal motor neurons, astrocytes and microglia from single embryo and adult mouse spinal cord. Sci Rep. 2015;5:16763 pubmed 出版商
  417. Mircsof D, Langouët M, Rio M, Moutton S, Siquier Pernet K, Bole Feysot C, et al. Mutations in NONO lead to syndromic intellectual disability and inhibitory synaptic defects. Nat Neurosci. 2015;18:1731-6 pubmed 出版商
  418. Rodrigo Albors A, Tazaki A, Rost F, Nowoshilow S, Chara O, Tanaka E. Planar cell polarity-mediated induction of neural stem cell expansion during axolotl spinal cord regeneration. elife. 2015;4:e10230 pubmed 出版商
  419. Cook Snyder D, Jones A, Reijmers L. A retrograde adeno-associated virus for collecting ribosome-bound mRNA from anatomically defined projection neurons. Front Mol Neurosci. 2015;8:56 pubmed 出版商
  420. Park S, Brenner D, Shin G, Morgan C, Copits B, Chung H, et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat Biotechnol. 2015;33:1280-1286 pubmed 出版商
  421. Sabogal Guáqueta A, Osorio E, Cardona Gómez G. Linalool reverses neuropathological and behavioral impairments in old triple transgenic Alzheimer's mice. Neuropharmacology. 2016;102:111-20 pubmed 出版商
  422. Cherry J, Olschowka J, O Banion M. Arginase 1+ microglia reduce Aβ plaque deposition during IL-1β-dependent neuroinflammation. J Neuroinflammation. 2015;12:203 pubmed 出版商
  423. Winiecka Klimek M, Smolarz M, Walczak M, Zieba J, Hulas Bigoszewska K, Kmieciak B, et al. SOX2 and SOX2-MYC Reprogramming Process of Fibroblasts to the Neural Stem Cells Compromised by Senescence. PLoS ONE. 2015;10:e0141688 pubmed 出版商
  424. Neirinckx V, Agirman G, Coste C, Marquet A, Dion V, Rogister B, et al. Adult bone marrow mesenchymal and neural crest stem cells are chemoattractive and accelerate motor recovery in a mouse model of spinal cord injury. Stem Cell Res Ther. 2015;6:211 pubmed 出版商
  425. Li Y, Adomat H, Guns E, Hojabrpour P, Duronio V, Curran T, et al. Identification of a Hematopoietic Cell Dedifferentiation-Inducing Factor. J Cell Physiol. 2016;231:1350-63 pubmed 出版商
  426. Bonaventura G, Chamayou S, Liprino A, Guglielmino A, Fichera M, Caruso M, et al. Different Tissue-Derived Stem Cells: A Comparison of Neural Differentiation Capability. PLoS ONE. 2015;10:e0140790 pubmed 出版商
  427. Pacey L, Guan S, Tharmalingam S, Thomsen C, Hampson D. Persistent astrocyte activation in the fragile X mouse cerebellum. Brain Behav. 2015;5:e00400 pubmed 出版商
  428. Sikora J, Leddy J, Gulinello M, Walkley S. X-linked Christianson syndrome: heterozygous female Slc9a6 knockout mice develop mosaic neuropathological changes and related behavioral abnormalities. Dis Model Mech. 2016;9:13-23 pubmed 出版商
  429. Wang S, Hsu J, Ko C, Chiu N, Kan W, Lai M, et al. Astrocytic CCAAT/Enhancer-Binding Protein Delta Contributes to Glial Scar Formation and Impairs Functional Recovery After Spinal Cord Injury. Mol Neurobiol. 2016;53:5912-5927 pubmed 出版商
  430. Matschke V, Theiss C, Hollmann M, Schulze Bahr E, Lang F, Seebohm G, et al. NDRG2 phosphorylation provides negative feedback for SGK1-dependent regulation of a kainate receptor in astrocytes. Front Cell Neurosci. 2015;9:387 pubmed 出版商
  431. Tajerian M, Leu D, Yang P, Huang T, Kingery W, Clark J. Differential Efficacy of Ketamine in the Acute versus Chronic Stages of Complex Regional Pain Syndrome in Mice. Anesthesiology. 2015;123:1435-47 pubmed 出版商
  432. Zhang L, Zhang S, Yao J, Lowery F, Zhang Q, Huang W, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature. 2015;527:100-104 pubmed 出版商
  433. Baranowska Bosiacka I, Listos J, Gutowska I, Machoy MokrzyÅ„ska A, Kolasa WoÅ‚osiuk A, Tarnowski M, et al. Effects of perinatal exposure to lead (Pb) on purine receptor expression in the brain and gliosis in rats tolerant to morphine analgesia. Toxicology. 2016;339:19-33 pubmed 出版商
  434. Gu Y, Zhang Y, Bi Y, Liu J, Tan B, Gong M, et al. Mesenchymal stem cells suppress neuronal apoptosis and decrease IL-10 release via the TLR2/NFκB pathway in rats with hypoxic-ischemic brain damage. Mol Brain. 2015;8:65 pubmed 出版商
  435. Chang W, Chen M, Cheng I. Antroquinonol Lowers Brain Amyloid-β Levels and Improves Spatial Learning and Memory in a Transgenic Mouse Model of Alzheimer's Disease. Sci Rep. 2015;5:15067 pubmed 出版商
  436. Kizuka Y, Nakano M, Kitazume S, Saito T, Saido T, Taniguchi N. Bisecting GlcNAc modification stabilizes BACE1 protein under oxidative stress conditions. Biochem J. 2016;473:21-30 pubmed 出版商
  437. Hauser D, Primiani C, Langston R, Kumaran R, Cookson M. The Polg Mutator Phenotype Does Not Cause Dopaminergic Neurodegeneration in DJ-1-Deficient Mice. Eneuro. 2015;2: pubmed 出版商
  438. Suarez Mier G, Buckwalter M. Glial Fibrillary Acidic Protein-Expressing Glia in the Mouse Lung. ASN Neuro. 2015;7: pubmed 出版商
  439. Gautier H, Evans K, Volbracht K, James R, Sitnikov S, Lundgaard I, et al. Neuronal activity regulates remyelination via glutamate signalling to oligodendrocyte progenitors. Nat Commun. 2015;6:8518 pubmed 出版商
  440. Ko A, Hyun H, Min S, Kim J, Kang T. Endothelin-1 induces LIMK2-mediated programmed necrotic neuronal death independent of NOS activity. Mol Brain. 2015;8:58 pubmed 出版商
  441. Stokum J, Mehta R, Ivanova S, Yu E, Gerzanich V, Simard J. Heterogeneity of aquaporin-4 localization and expression after focal cerebral ischemia underlies differences in white versus grey matter swelling. Acta Neuropathol Commun. 2015;3:61 pubmed 出版商
  442. Struzyna L, Wolf J, Mietus C, Adewole D, Chen H, Smith D, et al. Rebuilding Brain Circuitry with Living Micro-Tissue Engineered Neural Networks. Tissue Eng Part A. 2015;21:2744-56 pubmed 出版商
  443. Chen F, Rosiene J, Che A, Becker A, LoTurco J. Tracking and transforming neocortical progenitors by CRISPR/Cas9 gene targeting and piggyBac transposase lineage labeling. Development. 2015;142:3601-11 pubmed 出版商
  444. Watamura N, Toba J, Yoshii A, Nikkuni M, Ohshima T. Colocalization of phosphorylated forms of WAVE1, CRMP2, and tau in Alzheimer's disease model mice: Involvement of Cdk5 phosphorylation and the effect of ATRA treatment. J Neurosci Res. 2016;94:15-26 pubmed 出版商
  445. Werner A, Iwasaki S, McGourty C, Medina Ruiz S, Teerikorpi N, Fedrigo I, et al. Cell-fate determination by ubiquitin-dependent regulation of translation. Nature. 2015;525:523-7 pubmed 出版商
  446. Wu H, Yang S, Dai J, Qiu Y, Miao Y, Zhang X. Combination of early and delayed ischemic postconditioning enhances brain-derived neurotrophic factor production by upregulating the ERK-CREB pathway in rats with focal ischemia. Mol Med Rep. 2015;12:6427-34 pubmed 出版商
  447. Yamamuro S, Sano E, Okamoto Y, Ochiai Y, Ohta T, Ogino A, et al. Antitumorigenic effect of interferon-β by inhibition of undifferentiated glioblastoma cells. Int J Oncol. 2015;47:1647-54 pubmed 出版商
  448. Hakanen J, Salminen M. Defects in neural guidepost structures and failure to remove leptomeningeal cells from the septal midline behind the interhemispheric fusion defects in Netrin1 deficient mice. Int J Dev Neurosci. 2015;47:206-15 pubmed 出版商
  449. Sun Y, Ju M, Lin Z, Fredrick T, Evans L, Tian K, et al. SOCS3 in retinal neurons and glial cells suppresses VEGF signaling to prevent pathological neovascular growth. Sci Signal. 2015;8:ra94 pubmed 出版商
  450. Hua Z, Emiliani F, Nathans J. Rac1 plays an essential role in axon growth and guidance and in neuronal survival in the central and peripheral nervous systems. Neural Dev. 2015;10:21 pubmed 出版商
  451. Cheng C, Lin C, Lee M, Tsai M, Huang W, Huang M, et al. Local Delivery of High-Dose Chondroitinase ABC in the Sub-Acute Stage Promotes Axonal Outgrowth and Functional Recovery after Complete Spinal Cord Transection. PLoS ONE. 2015;10:e0138705 pubmed 出版商
  452. Telias M, Mayshar Y, Amit A, Ben Yosef D. Molecular mechanisms regulating impaired neurogenesis of fragile X syndrome human embryonic stem cells. Stem Cells Dev. 2015;24:2353-65 pubmed 出版商
  453. Hirata H, Umemori J, Yoshioka H, Koide T, Watanabe K, Shimoda Y. Cell adhesion molecule contactin-associated protein 3 is expressed in the mouse basal ganglia during early postnatal stages. J Neurosci Res. 2016;94:74-89 pubmed 出版商
  454. Ahn S, Kim T, Kim K, Chung S. Differentiation of human pluripotent stem cells into Medial Ganglionic Eminence vs. Caudal Ganglionic Eminence cells. Methods. 2016;101:103-12 pubmed 出版商
  455. Chen H, Sun Y, Lai L, Wu H, Xiao Y, Ming B, et al. Interleukin-33 is released in spinal cord and suppresses experimental autoimmune encephalomyelitis in mice. Neuroscience. 2015;308:157-68 pubmed 出版商
  456. Clayton E, Mizielinska S, Edgar J, Nielsen T, Marshall S, Norona F, et al. Frontotemporal dementia caused by CHMP2B mutation is characterised by neuronal lysosomal storage pathology. Acta Neuropathol. 2015;130:511-23 pubmed 出版商
  457. Liu S, Mi W, Li Q, Zhang M, Han P, Hu S, et al. Spinal IL-33/ST2 Signaling Contributes to Neuropathic Pain via Neuronal CaMKII-CREB and Astroglial JAK2-STAT3 Cascades in Mice. Anesthesiology. 2015;123:1154-69 pubmed 出版商
  458. James R, Hillis J, Adorján I, Gration B, Mundim M, Iqbal A, et al. Loss of galectin-3 decreases the number of immune cells in the subventricular zone and restores proliferation in a viral model of multiple sclerosis. Glia. 2016;64:105-21 pubmed 出版商
  459. Henstridge C, Jackson R, Kim J, Herrmann A, Wright A, Harris S, et al. Post-mortem brain analyses of the Lothian Birth Cohort 1936: extending lifetime cognitive and brain phenotyping to the level of the synapse. Acta Neuropathol Commun. 2015;3:53 pubmed 出版商
  460. Zehendner C, Sebastiani A, Hugonnet A, Bischoff F, Luhmann H, Thal S. Traumatic brain injury results in rapid pericyte loss followed by reactive pericytosis in the cerebral cortex. Sci Rep. 2015;5:13497 pubmed 出版商
  461. Chen B, Tao J, Lin Y, Lin R, Liu W, Chen L. Electro-acupuncture exerts beneficial effects against cerebral ischemia and promotes the proliferation of neural progenitor cells in the cortical peri-infarct area through the Wnt/β-catenin signaling pathway. Int J Mol Med. 2015;36:1215-22 pubmed 出版商
  462. Prusiner S, Woerman A, Mordes D, Watts J, Rampersaud R, Berry D, et al. Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci U S A. 2015;112:E5308-17 pubmed 出版商
  463. Rolyan H, Tyurina Y, Hernandez M, Amoscato A, Sparvero L, Nmezi B, et al. Defects of Lipid Synthesis Are Linked to the Age-Dependent Demyelination Caused by Lamin B1 Overexpression. J Neurosci. 2015;35:12002-17 pubmed 出版商
  464. Zarpelon A, Rodrigues F, Lopes A, Souza G, Carvalho T, Pinto L, et al. Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain. FASEB J. 2016;30:54-65 pubmed 出版商
  465. Huang Y, Tiao M, Huang L, Chuang J, Kuo K, Yang Y, et al. Activation of Mir-29a in Activated Hepatic Stellate Cells Modulates Its Profibrogenic Phenotype through Inhibition of Histone Deacetylases 4. PLoS ONE. 2015;10:e0136453 pubmed 出版商
  466. Bellesi M, de Vivo L, Tononi G, Cirelli C. Effects of sleep and wake on astrocytes: clues from molecular and ultrastructural studies. BMC Biol. 2015;13:66 pubmed 出版商
  467. Koch S, Tsai Y, Duong J, Wu W, Hsu C, Wu W, et al. Halting progressive neurodegeneration in advanced retinitis pigmentosa. J Clin Invest. 2015;125:3704-13 pubmed 出版商
  468. Korb E, Herre M, Zucker Scharff I, Darnell R, Allis C. BET protein Brd4 activates transcription in neurons and BET inhibitor Jq1 blocks memory in mice. Nat Neurosci. 2015;18:1464-73 pubmed 出版商
  469. Izuo N, Nojiri H, Uchiyama S, Noda Y, Kawakami S, Kojima S, et al. Brain-Specific Superoxide Dismutase 2 Deficiency Causes Perinatal Death with Spongiform Encephalopathy in Mice. Oxid Med Cell Longev. 2015;2015:238914 pubmed 出版商
  470. Cao M, Cortes M, Moore C, Leong S, Durosier L, Burns P, et al. Fetal microglial phenotype in vitro carries memory of prior in vivo exposure to inflammation. Front Cell Neurosci. 2015;9:294 pubmed 出版商
  471. Garwood C, Ratcliffe L, Morgan S, Simpson J, Owens H, Vazquez Villaseñor I, et al. Insulin and IGF1 signalling pathways in human astrocytes in vitro and in vivo; characterisation, subcellular localisation and modulation of the receptors. Mol Brain. 2015;8:51 pubmed 出版商
  472. Angliker N, Burri M, Zaichuk M, Fritschy J, Rüegg M. mTORC1 and mTORC2 have largely distinct functions in Purkinje cells. Eur J Neurosci. 2015;42:2595-612 pubmed 出版商
  473. Lee I, Jung K, Kim I, Lee H, Kim M, Yun S, et al. Human neural stem cells alleviate Alzheimer-like pathology in a mouse model. Mol Neurodegener. 2015;10:38 pubmed 出版商
  474. Mughal A, Grieg Z, Skjellegrind H, Fayzullin A, Lamkhannat M, Joel M, et al. Knockdown of NAT12/NAA30 reduces tumorigenic features of glioblastoma-initiating cells. Mol Cancer. 2015;14:160 pubmed 出版商
  475. Shimada M, Dumitrache L, Russell H, McKinnon P. Polynucleotide kinase-phosphatase enables neurogenesis via multiple DNA repair pathways to maintain genome stability. EMBO J. 2015;34:2465-80 pubmed 出版商
  476. Khadem F, Gao X, Mou Z, Jia P, Movassagh H, Onyilagha C, et al. Hepatic stellate cells regulate liver immunity to visceral leishmaniasis through P110δ-dependent induction and expansion of regulatory T cells in mice. Hepatology. 2016;63:620-32 pubmed 出版商
  477. Kawaguchi T, Tsukiyama T, Kimura K, Matsuyama S, Minami N, Yamada M, et al. Generation of Naïve Bovine Induced Pluripotent Stem Cells Using PiggyBac Transposition of Doxycycline-Inducible Transcription Factors. PLoS ONE. 2015;10:e0135403 pubmed 出版商
  478. Baruch K, Rosenzweig N, Kertser A, Deczkowska A, Sharif A, Spinrad A, et al. Breaking immune tolerance by targeting Foxp3(+) regulatory T cells mitigates Alzheimer's disease pathology. Nat Commun. 2015;6:7967 pubmed 出版商
  479. Fredriksson L, Stevenson T, Su E, Ragsdale M, Moore S, Craciun S, et al. Identification of a neurovascular signaling pathway regulating seizures in mice. Ann Clin Transl Neurol. 2015;2:722-38 pubmed 出版商
  480. Gallina D, Zelinka C, Cebulla C, Fischer A. Activation of glucocorticoid receptors in Müller glia is protective to retinal neurons and suppresses microglial reactivity. Exp Neurol. 2015;273:114-25 pubmed 出版商
  481. Meadowcroft M, Connor J, Yang Q. Cortical iron regulation and inflammatory response in Alzheimer's disease and APPSWE/PS1ΔE9 mice: a histological perspective. Front Neurosci. 2015;9:255 pubmed 出版商
  482. Qiu H, Xu Y, Jin G, Yang J, Liu M, Li S, et al. Koumine enhances spinal cord 3α-hydroxysteroid oxidoreductase expression and activity in a rat model of neuropathic pain. Mol Pain. 2015;11:46 pubmed 出版商
  483. Wong F, Fei J, Mora Bermúdez F, Taverna E, Haffner C, Fu J, et al. Sustained Pax6 Expression Generates Primate-like Basal Radial Glia in Developing Mouse Neocortex. PLoS Biol. 2015;13:e1002217 pubmed 出版商
  484. Galbavy W, Kaczocha M, Puopolo M, Liu L, Rebecchi M. Neuroimmune and Neuropathic Responses of Spinal Cord and Dorsal Root Ganglia in Middle Age. PLoS ONE. 2015;10:e0134394 pubmed 出版商
  485. Thomsen L, Burkhart A, Moos T. A Triple Culture Model of the Blood-Brain Barrier Using Porcine Brain Endothelial cells, Astrocytes and Pericytes. PLoS ONE. 2015;10:e0134765 pubmed 出版商
  486. Kim K, Byeon G, Kim H, Baek S, Shin S, Koo S. Mechanical Antiallodynic Effect of Intrathecal Nefopam in a Rat Neuropathic Pain Model. J Korean Med Sci. 2015;30:1189-96 pubmed 出版商
  487. Lechpammer M, Wintermark P, Merry K, Jackson M, Jantzie L, Jensen F. Dysregulation of FMRP/mTOR Signaling Cascade in Hypoxic-Ischemic Injury of Premature Human Brain. J Child Neurol. 2016;31:426-32 pubmed 出版商
  488. Kim J, Ko A, Hyun H, Kang T. ETB receptor-mediated MMP-9 activation induces vasogenic edema via ZO-1 protein degradation following status epilepticus. Neuroscience. 2015;304:355-67 pubmed 出版商
  489. Lutzenberger M, Burwinkel M, Riemer C, Bode V, Baier M. Ablation of CCAAT/Enhancer-Binding Protein Delta (C/EBPD): Increased Plaque Burden in a Murine Alzheimer's Disease Model. PLoS ONE. 2015;10:e0134228 pubmed 出版商
  490. Zhang P, Ha T, Larouche M, Swanson D, Goldowitz D. Kruppel-Like Factor 4 Regulates Granule Cell Pax6 Expression and Cell Proliferation in Early Cerebellar Development. PLoS ONE. 2015;10:e0134390 pubmed 出版商
  491. Miyamoto Y, Torii T, Takada S, Ohno N, Saitoh Y, Nakamura K, et al. Involvement of the Tyro3 receptor and its intracellular partner Fyn signaling in Schwann cell myelination. Mol Biol Cell. 2015;26:3489-503 pubmed 出版商
  492. Hassanzadeh K, Nikzaban M, Moloudi M, Izadpanah E. Effect of selegiline on neural stem cells differentiation: a possible role for neurotrophic factors. Iran J Basic Med Sci. 2015;18:549-54 pubmed
  493. Cortés Campos C, Letelier J, Ceriani R, Whitlock K. Zebrafish adult-derived hypothalamic neurospheres generate gonadotropin-releasing hormone (GnRH) neurons. Biol Open. 2015;4:1077-86 pubmed 出版商
  494. Ishikawa M, Ohnishi H, Skerleva D, Sakamoto T, Yamamoto N, Hotta A, et al. Transplantation of neurons derived from human iPS cells cultured on collagen matrix into guinea-pig cochleae. J Tissue Eng Regen Med. 2017;11:1766-1778 pubmed 出版商
  495. Gingras S, Earls L, Howell S, Smeyne R, Zakharenko S, Pelletier S. SCYL2 Protects CA3 Pyramidal Neurons from Excitotoxicity during Functional Maturation of the Mouse Hippocampus. J Neurosci. 2015;35:10510-22 pubmed 出版商
  496. Mohammadi A, Attari F, Babapour V, Hassani S, Masoudi N, Shahverdi A, et al. Generation of Rat Embryonic Germ Cells via Inhibition of TGFß and MEK Pathways. Cell J. 2015;17:288-95 pubmed
  497. Alme M, Nystad A, Bø L, Myhr K, Vedeler C, Wergeland S, et al. Fingolimod does not enhance cerebellar remyelination in the cuprizone model. J Neuroimmunol. 2015;285:180-6 pubmed 出版商
  498. Kegler K, Spitzbarth I, Imbschweiler I, Wewetzer K, Baumgärtner W, Seehusen F. Contribution of Schwann Cells to Remyelination in a Naturally Occurring Canine Model of CNS Neuroinflammation. PLoS ONE. 2015;10:e0133916 pubmed 出版商
  499. Minkel H, Anwer T, Arps K, Brenner M, Olsen M. Elevated GFAP induces astrocyte dysfunction in caudal brain regions: A potential mechanism for hindbrain involved symptoms in type II Alexander disease. Glia. 2015;63:2285-97 pubmed 出版商
  500. Chen W, Chen C, Chen N, Sung C, Wen Z. Neuroprotective Effects of Direct Intrathecal Administration of Granulocyte Colony-Stimulating Factor in Rats with Spinal Cord Injury. CNS Neurosci Ther. 2015;21:698-707 pubmed 出版商
  501. Stiess M, Wegehingel S, Nguyen C, Nickel W, Bradke F, Cambridge S. A Dual SILAC Proteomic Labeling Strategy for Quantifying Constitutive and Cell-Cell Induced Protein Secretion. J Proteome Res. 2015;14:3229-38 pubmed 出版商
  502. Cheng C, Lin J, Tang N, Kao S, Hsieh C. Electroacupuncture at different frequencies (5Hz and 25Hz) ameliorates cerebral ischemia-reperfusion injury in rats: possible involvement of p38 MAPK-mediated anti-apoptotic signaling pathways. BMC Complement Altern Med. 2015;15:241 pubmed 出版商
  503. Chen Y, Huang W, Séjourné J, Clipperton Allen A, Page D. Pten Mutations Alter Brain Growth Trajectory and Allocation of Cell Types through Elevated β-Catenin Signaling. J Neurosci. 2015;35:10252-67 pubmed 出版商
  504. Chugh D, Ali I, Bakochi A, Bahonjic E, Etholm L, Ekdahl C. Alterations in Brain Inflammation, Synaptic Proteins, and Adult Hippocampal Neurogenesis during Epileptogenesis in Mice Lacking Synapsin2. PLoS ONE. 2015;10:e0132366 pubmed 出版商
  505. Song C, Wang J, Mo C, Mu S, Jiang X, Li X, et al. Use of Ferritin Expression, Regulated by Neural Cell-Specific Promoters in Human Adipose Tissue-Derived Mesenchymal Stem Cells, to Monitor Differentiation with Magnetic Resonance Imaging In Vitro. PLoS ONE. 2015;10:e0132480 pubmed 出版商
  506. Michinaga S, Seno N, Fuka M, Yamamoto Y, Minami S, Kimura A, et al. Improvement of cold injury-induced mouse brain edema by endothelin ETB antagonists is accompanied by decreases in matrixmetalloproteinase 9 and vascular endothelial growth factor-A. Eur J Neurosci. 2015;42:2356-70 pubmed 出版商
  507. Gorojod R, Alaimo A, Porte Alcon S, Pomilio C, Saravia F, Kotler M. The autophagic- lysosomal pathway determines the fate of glial cells under manganese- induced oxidative stress conditions. Free Radic Biol Med. 2015;87:237-51 pubmed 出版商
  508. Ziskin J, Greicius M, Zhu W, Okumu A, Adams C, Plowey E. Neuropathologic analysis of Tyr69His TTR variant meningovascular amyloidosis with dementia. Acta Neuropathol Commun. 2015;3:43 pubmed 出版商
  509. Smith L, He Y, Park J, Bieri G, Snethlage C, Lin K, et al. β2-microglobulin is a systemic pro-aging factor that impairs cognitive function and neurogenesis. Nat Med. 2015;21:932-7 pubmed 出版商
  510. Puntambekar S, Hinton D, Yin X, Savarin C, Bergmann C, Trapp B, et al. Interleukin-10 is a critical regulator of white matter lesion containment following viral induced demyelination. Glia. 2015;63:2106-2120 pubmed 出版商
  511. Schachtrup C, Ryu J, Mammadzada K, Khan A, Carlton P, Perez A, et al. Nuclear pore complex remodeling by p75(NTR) cleavage controls TGF-β signaling and astrocyte functions. Nat Neurosci. 2015;18:1077-80 pubmed 出版商
  512. Rao M, Nelms B, Dong L, Salinas Rios V, Rutlin M, Gershon M, et al. Enteric glia express proteolipid protein 1 and are a transcriptionally unique population of glia in the mammalian nervous system. Glia. 2015;63:2040-2057 pubmed 出版商
  513. Hradsky J, Bernstein H, Marunde M, Mikhaylova M, Kreutz M. Alternative splicing, expression and cellular localization of Calneuron-1 in the rat and human brain. J Histochem Cytochem. 2015;63:793-804 pubmed 出版商
  514. Noell S, Fallier Becker P, Mack A, Hoffmeister M, Beschorner R, Ritz R. Water Channels Aquaporin 4 and -1 Expression in Subependymoma Depends on the Localization of the Tumors. PLoS ONE. 2015;10:e0131367 pubmed 出版商
  515. Sáez J, Gómez A, Barrios Ã, Parada G, Galdames L, González M, et al. Decreased Expression of CoREST1 and CoREST2 Together with LSD1 and HDAC1/2 during Neuronal Differentiation. PLoS ONE. 2015;10:e0131760 pubmed 出版商
  516. Liu Y, Miao Q, Yuan J, Han S, Zhang P, Li S, et al. Ascl1 Converts Dorsal Midbrain Astrocytes into Functional Neurons In Vivo. J Neurosci. 2015;35:9336-55 pubmed 出版商
  517. Cases O, Joseph A, Obry A, Santin M, Ben Yacoub S, Pâques M, et al. Foxg1-Cre Mediated Lrp2 Inactivation in the Developing Mouse Neural Retina, Ciliary and Retinal Pigment Epithelia Models Congenital High Myopia. PLoS ONE. 2015;10:e0129518 pubmed 出版商
  518. Alghamdi B, Fern R. Phenotype overlap in glial cell populations: astroglia, oligodendroglia and NG-2(+) cells. Front Neuroanat. 2015;9:49 pubmed 出版商
  519. Rojas F, Gonzalez D, Cortes N, Ampuero E, Hernández D, Fritz E, et al. Reactive oxygen species trigger motoneuron death in non-cell-autonomous models of ALS through activation of c-Abl signaling. Front Cell Neurosci. 2015;9:203 pubmed 出版商
  520. Kapuralin K, Ćurlin M, Mitrečić D, Kosi N, Schwarzer C, Glavan G, et al. STAM2, a member of the endosome-associated complex ESCRT-0 is highly expressed in neurons. Mol Cell Neurosci. 2015;67:104-15 pubmed 出版商
  521. Rolón Reyes K, Kucheryavykh Y, Cubano L, Inyushin M, Skatchkov S, Eaton M, et al. Microglia Activate Migration of Glioma Cells through a Pyk2 Intracellular Pathway. PLoS ONE. 2015;10:e0131059 pubmed 出版商
  522. Attardo A, Fitzgerald J, Schnitzer M. Impermanence of dendritic spines in live adult CA1 hippocampus. Nature. 2015;523:592-6 pubmed 出版商
  523. Cook T, Hoekstra J, Eaton D, Zhang J. Mortalin is Expressed by Astrocytes and Decreased in the Midbrain of Parkinson's Disease Patients. Brain Pathol. 2016;26:75-81 pubmed 出版商
  524. Kwon J, NABINGER S, Vega Z, Sahu S, Alluri R, Abdul Sater Z, et al. Pathophysiological role of microRNA-29 in pancreatic cancer stroma. Sci Rep. 2015;5:11450 pubmed 出版商
  525. Chounlamountry K, Boyer B, Pénalba V, François Bellan A, Bosler O, Kessler J, et al. Remodeling of glial coverage of glutamatergic synapses in the rat nucleus tractus solitarii after ozone inhalation. J Neurochem. 2015;134:857-64 pubmed 出版商
  526. Tang H, Hua F, Wang J, Yousuf S, Atif F, Sayeed I, et al. Progesterone and vitamin D combination therapy modulates inflammatory response after traumatic brain injury. Brain Inj. 2015;:1-10 pubmed
  527. Perriard G, Mathias A, Enz L, Canales M, Schluep M, Gentner M, et al. Interleukin-22 is increased in multiple sclerosis patients and targets astrocytes. J Neuroinflammation. 2015;12:119 pubmed 出版商
  528. O Brien E, Smeester B, Michlitsch K, Lee J, Beitz A. Colocalization of aromatase in spinal cord astrocytes: differences in expression and relationship to mechanical and thermal hyperalgesia in murine models of a painful and a non-painful bone tumor. Neuroscience. 2015;301:235-45 pubmed 出版商
  529. Evonuk K, Baker B, Doyle R, Moseley C, Sestero C, Johnston B, et al. Inhibition of System Xc(-) Transporter Attenuates Autoimmune Inflammatory Demyelination. J Immunol. 2015;195:450-463 pubmed 出版商
  530. Laclef C, Anselme I, Besse L, Catala M, Palmyre A, Baas D, et al. The role of primary cilia in corpus callosum formation is mediated by production of the Gli3 repressor. Hum Mol Genet. 2015;24:4997-5014 pubmed 出版商
  531. Zuckermann M, Hovestadt V, Knobbe Thomsen C, Zapatka M, Northcott P, Schramm K, et al. Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nat Commun. 2015;6:7391 pubmed 出版商
  532. Balzamino B, Esposito G, Marino R, Keller F, Micera A. NGF Expression in Reelin-Deprived Retinal Cells: A Potential Neuroprotective Effect. Neuromolecular Med. 2015;17:314-25 pubmed 出版商
  533. Götze S, Schumacher E, Kordes C, Häussinger D. Epigenetic Changes during Hepatic Stellate Cell Activation. PLoS ONE. 2015;10:e0128745 pubmed 出版商
  534. Tang N, Lyu D, Liu T, Chen F, Jing S, Hao T, et al. Different Effects of p52SHC1 and p52SHC3 on the Cell Cycle of Neurons and Neural Stem Cells. J Cell Physiol. 2016;231:172-80 pubmed 出版商
  535. Cimmino F, Pezone L, Avitabile M, Acierno G, Andolfo I, Capasso M, et al. Inhibition of hypoxia inducible factors combined with all-trans retinoic acid treatment enhances glial transdifferentiation of neuroblastoma cells. Sci Rep. 2015;5:11158 pubmed 出版商
  536. Haley S, O Hara B, Nelson C, Brittingham F, Henriksen K, Stopa E, et al. Human polyomavirus receptor distribution in brain parenchyma contrasts with receptor distribution in kidney and choroid plexus. Am J Pathol. 2015;185:2246-58 pubmed 出版商
  537. Jiang J, Zhang Z, Yuan X, Poo M. Spatiotemporal dynamics of traction forces show three contraction centers in migratory neurons. J Cell Biol. 2015;209:759-74 pubmed 出版商
  538. Currais A, Farrokhi C, Dargusch R, Goujon Svrzic M, Maher P. Dietary glycemic index modulates the behavioral and biochemical abnormalities associated with autism spectrum disorder. Mol Psychiatry. 2016;21:426-36 pubmed 出版商
  539. Du M, Otalora L, Martin A, Moiseyev G, Vanlandingham P, Wang Q, et al. Transgenic Mice Overexpressing Serum Retinol-Binding Protein Develop Progressive Retinal Degeneration through a Retinoid-Independent Mechanism. Mol Cell Biol. 2015;35:2771-89 pubmed 出版商
  540. Hoeber J, Trolle C, König N, Du Z, Gallo A, Hermans E, et al. Human Embryonic Stem Cell-Derived Progenitors Assist Functional Sensory Axon Regeneration after Dorsal Root Avulsion Injury. Sci Rep. 2015;5:10666 pubmed 出版商
  541. Guo Y, Wang D, Qiao T, Yang C, Su Q, Gao G, et al. A Single Injection of Recombinant Adeno-Associated Virus into the Lumbar Cistern Delivers Transgene Expression Throughout the Whole Spinal Cord. Mol Neurobiol. 2016;53:3235-3248 pubmed 出版商
  542. Koronyo Y, Salumbides B, Sheyn J, Pelissier L, Li S, Ljubimov V, et al. Therapeutic effects of glatiramer acetate and grafted CD115⁺ monocytes in a mouse model of Alzheimer's disease. Brain. 2015;138:2399-422 pubmed 出版商
  543. Kaja S, Payne A, Naumchuk Y, Levy D, Zaidi D, Altman A, et al. Plate reader-based cell viability assays for glioprotection using primary rat optic nerve head astrocytes. Exp Eye Res. 2015;138:159-66 pubmed 出版商
  544. Morita S, Furube E, Mannari T, Okuda H, Tatsumi K, Wanaka A, et al. Heterogeneous vascular permeability and alternative diffusion barrier in sensory circumventricular organs of adult mouse brain. Cell Tissue Res. 2016;363:497-511 pubmed 出版商
  545. Chen Y, Zhang J, Shen L, Qi Q, Cheng X, Zhong Z, et al. Schwann cells induce Proliferation and Migration of Oligodendrocyte Precursor Cells Through Secretion of PDGF-AA and FGF-2. J Mol Neurosci. 2015;56:999-1008 pubmed 出版商
  546. Keller B, García Sevilla J. Regulation of hippocampal Fas receptor and death-inducing signaling complex after kainic acid treatment in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2015;63:54-62 pubmed 出版商
  547. Zhu S, Wang H, Ding S. Reprogramming fibroblasts toward cardiomyocytes, neural stem cells and hepatocytes by cell activation and signaling-directed lineage conversion. Nat Protoc. 2015;10:959-73 pubmed 出版商
  548. Requejo C, Ruiz Ortega J, Bengoetxea H, Garcia Blanco A, Herrán E, Aristieta A, et al. Topographical Distribution of Morphological Changes in a Partial Model of Parkinson's Disease--Effects of Nanoencapsulated Neurotrophic Factors Administration. Mol Neurobiol. 2015;52:846-58 pubmed 出版商
  549. Di Cristofori A, Ferrero S, Bertolini I, Gaudioso G, Russo M, Berno V, et al. The vacuolar H+ ATPase is a novel therapeutic target for glioblastoma. Oncotarget. 2015;6:17514-31 pubmed
  550. Stensrud M, Sogn C, Gundersen V. Immunogold characteristics of VGLUT3-positive GABAergic nerve terminals suggest corelease of glutamate. J Comp Neurol. 2015;523:2698-713 pubmed 出版商
  551. Sonneville R, Derese I, Marques M, Langouche L, Derde S, Chatre L, et al. Neuropathological Correlates of Hyperglycemia During Prolonged Polymicrobial Sepsis in Mice. Shock. 2015;44:245-51 pubmed 出版商
  552. Ozacmak V, Sayan Ozacmak H, Barut F. Chronic treatment with resveratrol, a natural polyphenol found in grapes, alleviates oxidative stress and apoptotic cell death in ovariectomized female rats subjected to chronic cerebral hypoperfusion. Nutr Neurosci. 2016;19:176-86 pubmed 出版商
  553. Yousef H, Conboy M, Morgenthaler A, Schlesinger C, Bugaj L, Paliwal P, et al. Systemic attenuation of the TGF-β pathway by a single drug simultaneously rejuvenates hippocampal neurogenesis and myogenesis in the same old mammal. Oncotarget. 2015;6:11959-78 pubmed
  554. Pei L, Wang S, Jin H, Bi L, Wei N, Yan H, et al. A Novel Mechanism of Spine Damages in Stroke via DAPK1 and Tau. Cereb Cortex. 2015;25:4559-71 pubmed 出版商
  555. Yufune S, Satoh Y, Takamatsu I, Ohta H, Kobayashi Y, Takaenoki Y, et al. Transient Blockade of ERK Phosphorylation in the Critical Period Causes Autistic Phenotypes as an Adult in Mice. Sci Rep. 2015;5:10252 pubmed 出版商
  556. Bhatt D, Puig K, Gorr M, Wold L, Combs C. A pilot study to assess effects of long-term inhalation of airborne particulate matter on early Alzheimer-like changes in the mouse brain. PLoS ONE. 2015;10:e0127102 pubmed 出版商
  557. Wilkinson D, Bethell G, Shukla R, Kenny S, Edgar D. Isolation of Enteric Nervous System Progenitor Cells from the Aganglionic Gut of Patients with Hirschsprung's Disease. PLoS ONE. 2015;10:e0125724 pubmed 出版商
  558. Robinson H, Deykin A, Bronovitsky E, Ovchinnikov R, Ustyugov A, Shelkovnikova T, et al. Early lethality and neuronal proteinopathy in mice expressing cytoplasm-targeted FUS that lacks the RNA recognition motif. Amyotroph Lateral Scler Frontotemporal Degener. 2015;16:402-9 pubmed 出版商
  559. Mao M, Montgomery J, Kubke M, Thorne P. The Structural Development of the Mouse Dorsal Cochlear Nucleus. J Assoc Res Otolaryngol. 2015;16:473-86 pubmed 出版商
  560. Wang D, Kinoshita Y, Kinoshita C, Uo T, Sopher B, Cudaback E, et al. Loss of endophilin-B1 exacerbates Alzheimer's disease pathology. Brain. 2015;138:2005-19 pubmed 出版商
  561. López Gallardo M, Antón Fernández A, Llorente R, Mela V, Llorente Berzal A, Prada C, et al. Neonatal Treatment with a Pegylated Leptin Antagonist Induces Sexually Dimorphic Effects on Neurones and Glial Cells, and on Markers of Synaptic Plasticity in the Developing Rat Hippocampal Formation. J Neuroendocrinol. 2015;27:658-69 pubmed 出版商
  562. Bedogni F, Cobolli Gigli C, Pozzi D, Rossi R, Scaramuzza L, Rossetti G, et al. Defects During Mecp2 Null Embryonic Cortex Development Precede the Onset of Overt Neurological Symptoms. Cereb Cortex. 2016;26:2517-2529 pubmed 出版商
  563. Zhou F, Gao S, Wang L, Sun C, Chen L, Yuan P, et al. Human adipose-derived stem cells partially rescue the stroke syndromes by promoting spatial learning and memory in mouse middle cerebral artery occlusion model. Stem Cell Res Ther. 2015;6:92 pubmed 出版商
  564. Terzic D, Maxon J, Krevitt L, DiBartolomeo C, Goyal T, Low W, et al. Directed Differentiation of Oligodendrocyte Progenitor Cells From Mouse Induced Pluripotent Stem Cells. Cell Transplant. 2016;25:411-24 pubmed 出版商
  565. van Wyk M, Pielecka Fortuna J, Löwel S, Kleinlogel S. Restoring the ON Switch in Blind Retinas: Opto-mGluR6, a Next-Generation, Cell-Tailored Optogenetic Tool. PLoS Biol. 2015;13:e1002143 pubmed 出版商
  566. Liu P, Paulson J, Forster C, Shapiro S, Ashe K, Zahs K. Characterization of a Novel Mouse Model of Alzheimer's Disease--Amyloid Pathology and Unique β-Amyloid Oligomer Profile. PLoS ONE. 2015;10:e0126317 pubmed 出版商
  567. Yamagishi S, Yamada K, Sawada M, Nakano S, Mori N, Sawamoto K, et al. Netrin-5 is highly expressed in neurogenic regions of the adult brain. Front Cell Neurosci. 2015;9:146 pubmed 出版商
  568. Milenkovic A, Brandl C, Milenkovic V, Jendryke T, Sirianant L, Wanitchakool P, et al. Bestrophin 1 is indispensable for volume regulation in human retinal pigment epithelium cells. Proc Natl Acad Sci U S A. 2015;112:E2630-9 pubmed 出版商
  569. Liu R, Wang Z, Gou L, Xu H. A cortical astrocyte subpopulation inhibits axon growth in vitro and in vivo. Mol Med Rep. 2015;12:2598-606 pubmed 出版商
  570. Gee J, Gibbons M, Taheri M, Palumbos S, Morris S, Smeal R, et al. Imaging activity in astrocytes and neurons with genetically encoded calcium indicators following in utero electroporation. Front Mol Neurosci. 2015;8:10 pubmed 出版商
  571. Cardoso F, Herz J, Fernandes A, Rocha J, Sepodes B, Brito M, et al. Systemic inflammation in early neonatal mice induces transient and lasting neurodegenerative effects. J Neuroinflammation. 2015;12:82 pubmed 出版商
  572. Niu W, Zang T, Smith D, Vue T, Zou Y, Bachoo R, et al. SOX2 reprograms resident astrocytes into neural progenitors in the adult brain. Stem Cell Reports. 2015;4:780-94 pubmed 出版商
  573. Luo X, Fan Y, Park I, He J. Exosomes are unlikely involved in intercellular Nef transfer. PLoS ONE. 2015;10:e0124436 pubmed 出版商
  574. Tate C, Mc Entire J, Pallini R, Vakana E, Wyss L, Blosser W, et al. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology. PLoS ONE. 2015;10:e0125697 pubmed 出版商
  575. Vicuña L, Strochlic D, Latremoliere A, Bali K, Simonetti M, Husainie D, et al. The serine protease inhibitor SerpinA3N attenuates neuropathic pain by inhibiting T cell-derived leukocyte elastase. Nat Med. 2015;21:518-23 pubmed 出版商
  576. Theotokis P, Kleopa K, Touloumi O, Lagoudaki R, Lourbopoulos A, Nousiopoulou E, et al. Connexin43 and connexin47 alterations after neural precursor cells transplantation in experimental autoimmune encephalomyelitis. Glia. 2015;63:1772-83 pubmed 出版商
  577. Jimenez Blasco D, Santofimia Castaño P, Gonzalez A, Almeida A, Bolaños J. Astrocyte NMDA receptors' activity sustains neuronal survival through a Cdk5-Nrf2 pathway. Cell Death Differ. 2015;22:1877-89 pubmed 出版商
  578. Webster S, Van Eldik L, Watterson D, Bachstetter A. Closed head injury in an age-related Alzheimer mouse model leads to an altered neuroinflammatory response and persistent cognitive impairment. J Neurosci. 2015;35:6554-69 pubmed 出版商
  579. Raha Chowdhury R, Raha A, Forostyak S, Zhao J, Stott S, Bomford A. Expression and cellular localization of hepcidin mRNA and protein in normal rat brain. BMC Neurosci. 2015;16:24 pubmed 出版商
  580. Hakim J, Esmaeili Rad M, Grahn P, Chen B, Knight A, Schmeichel A, et al. Positively Charged Oligo[Poly(Ethylene Glycol) Fumarate] Scaffold Implantation Results in a Permissive Lesion Environment after Spinal Cord Injury in Rat. Tissue Eng Part A. 2015;21:2099-114 pubmed 出版商
  581. Chen W, Huang S, Liao C, Sung C, Chen J, Wen Z. The use of the antimicrobial peptide piscidin (PCD)-1 as a novel anti-nociceptive agent. Biomaterials. 2015;53:1-11 pubmed 出版商
  582. Sheean R, Weston R, Perera N, D Amico A, Nutt S, Turner B. Effect of thymic stimulation of CD4+ T cell expansion on disease onset and progression in mutant SOD1 mice. J Neuroinflammation. 2015;12:40 pubmed 出版商
  583. Huang S, Sung C, Chen W, Chen C, Feng C, Yang S, et al. Involvement of phosphatase and tensin homolog deleted from chromosome 10 in rodent model of neuropathic pain. J Neuroinflammation. 2015;12:59 pubmed 出版商
  584. Zhang Z, Liu Y, Huang Q, Wang H, Song Y, Xu Z, et al. Nuclear factor-κB activation in perihematomal brain tissue correlates with outcome in patients with intracerebral hemorrhage. J Neuroinflammation. 2015;12:53 pubmed 出版商
  585. Bachstetter A, Webster S, Goulding D, Morton J, Watterson D, Van Eldik L. Attenuation of traumatic brain injury-induced cognitive impairment in mice by targeting increased cytokine levels with a small molecule experimental therapeutic. J Neuroinflammation. 2015;12:69 pubmed 出版商
  586. Miller N, Feng Z, Edens B, Yang B, Shi H, Sze C, et al. Non-aggregating tau phosphorylation by cyclin-dependent kinase 5 contributes to motor neuron degeneration in spinal muscular atrophy. J Neurosci. 2015;35:6038-50 pubmed 出版商
  587. Deleyrolle L, Sabourin J, Rothhut B, Fujita H, Guichet P, Teigell M, et al. OCAM regulates embryonic spinal cord stem cell proliferation by modulating ErbB2 receptor. PLoS ONE. 2015;10:e0122337 pubmed 出版商
  588. Orije J, Kara F, Guglielmetti C, Praet J, Van der Linden A, Ponsaerts P, et al. Longitudinal monitoring of metabolic alterations in cuprizone mouse model of multiple sclerosis using 1H-magnetic resonance spectroscopy. Neuroimage. 2015;114:128-35 pubmed 出版商
  589. Rivera P, Bindila L, Pastor A, Pérez Martín M, Pavón F, Serrano A, et al. Pharmacological blockade of the fatty acid amide hydrolase (FAAH) alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothalamus and striatum in a negative energy context. Front Cell Neurosci. 2015;9:98 pubmed 出版商
  590. Watzlawik J, Kahoud R, Ng S, Painter M, Papke L, Zoecklein L, et al. Polysialic acid as an antigen for monoclonal antibody HIgM12 to treat multiple sclerosis and other neurodegenerative disorders. J Neurochem. 2015;134:865-78 pubmed 出版商
  591. Scofield M, Boger H, Smith R, Li H, Haydon P, Kalivas P. Gq-DREADD Selectively Initiates Glial Glutamate Release and Inhibits Cue-induced Cocaine Seeking. Biol Psychiatry. 2015;78:441-51 pubmed 出版商
  592. Guyenet S, Mookerjee S, Lin A, Custer S, Chen S, Sopher B, et al. Proteolytic cleavage of ataxin-7 promotes SCA7 retinal degeneration and neurological dysfunction. Hum Mol Genet. 2015;24:3908-17 pubmed 出版商
  593. Gu Q, Yu D, Hu Z, Liu X, Yang Y, Luo Y, et al. miR-26a and miR-384-5p are required for LTP maintenance and spine enlargement. Nat Commun. 2015;6:6789 pubmed 出版商
  594. Kett L, Stiller B, Bernath M, Tasset I, Blesa J, Jackson Lewis V, et al. α-Synuclein-independent histopathological and motor deficits in mice lacking the endolysosomal Parkinsonism protein Atp13a2. J Neurosci. 2015;35:5724-42 pubmed 出版商
  595. Brøchner C, Holst C, MøllgÃ¥rd K. Outer brain barriers in rat and human development. Front Neurosci. 2015;9:75 pubmed 出版商
  596. Samhan Arias A, López Sánchez C, Marques da Silva D, Lagoa R, García López V, García Martínez V, et al. High expression of cytochrome b 5 reductase isoform 3/cytochrome b 5 system in the cerebellum and pyramidal neurons of adult rat brain. Brain Struct Funct. 2016;221:2147-62 pubmed 出版商
  597. Frank C, Liu F, Wijayatunge R, Song L, Biegler M, Yang M, et al. Regulation of chromatin accessibility and Zic binding at enhancers in the developing cerebellum. Nat Neurosci. 2015;18:647-56 pubmed 出版商
  598. Sánchez Farías N, Candal E. Doublecortin is widely expressed in the developing and adult retina of sharks. Exp Eye Res. 2015;134:90-100 pubmed 出版商
  599. Leclerc J, Lampert A, Diller M, Doré S. Genetic deletion of the prostaglandin E2 E prostanoid receptor subtype 3 improves anatomical and functional outcomes after intracerebral hemorrhage. Eur J Neurosci. 2015;41:1381-91 pubmed 出版商
  600. Kubelt C, Hattermann K, Sebens S, Mehdorn H, Held Feindt J. Epithelial-to-mesenchymal transition in paired human primary and recurrent glioblastomas. Int J Oncol. 2015;46:2515-25 pubmed 出版商
  601. Isaev D, Lushnikova I, Lunko O, Zapukhliak O, Maximyuk O, Romanov A, et al. Contribution of protease-activated receptor 1 in status epilepticus-induced epileptogenesis. Neurobiol Dis. 2015;78:68-76 pubmed 出版商
  602. Uemura N, Koike M, Ansai S, Kinoshita M, Ishikawa Fujiwara T, Matsui H, et al. Viable neuronopathic Gaucher disease model in Medaka (Oryzias latipes) displays axonal accumulation of alpha-synuclein. PLoS Genet. 2015;11:e1005065 pubmed 出版商
  603. Dissing Olesen L, MacVicar B. Fixation and Immunolabeling of Brain Slices: SNAPSHOT Method. Curr Protoc Neurosci. 2015;71:1.23.1-12 pubmed 出版商
  604. Fausther M, Goree J, Lavoie Ã, Graham A, Sévigny J, Dranoff J. Establishment and characterization of rat portal myofibroblast cell lines. PLoS ONE. 2015;10:e0121161 pubmed 出版商
  605. Shin C, Grossmann A, Holmen S, Robinson J. The BRAF kinase domain promotes the development of gliomas in vivo. Genes Cancer. 2015;6:9-18 pubmed
  606. Leung B, Balleine B. Ventral pallidal projections to mediodorsal thalamus and ventral tegmental area play distinct roles in outcome-specific Pavlovian-instrumental transfer. J Neurosci. 2015;35:4953-64 pubmed 出版商
  607. Videla Richardson G, Garcia C, Roisman A, Slavutsky I, Fernandez Espinosa D, Romorini L, et al. Specific Preferences in Lineage Choice and Phenotypic Plasticity of Glioma Stem Cells Under BMP4 and Noggin Influence. Brain Pathol. 2016;26:43-61 pubmed 出版商
  608. Luna Sánchez M, Díaz Casado E, Barca E, Tejada M, Montilla García Ã, Cobos E, et al. The clinical heterogeneity of coenzyme Q10 deficiency results from genotypic differences in the Coq9 gene. EMBO Mol Med. 2015;7:670-87 pubmed 出版商
  609. Smeyne M, Sladen P, Jiao Y, Dragatsis I, Smeyne R. HIF1α is necessary for exercise-induced neuroprotection while HIF2α is needed for dopaminergic neuron survival in the substantia nigra pars compacta. Neuroscience. 2015;295:23-38 pubmed 出版商
  610. Koh H, Chang C, Jeon S, Yoon H, Ahn Y, Kim H, et al. The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia. Nat Commun. 2015;6:6340 pubmed 出版商
  611. Chen L, Ma S, Zhang P, Fan Z, Xiong M, Cheng G, et al. Neuroprotective effects of oligodendrocyte progenitor cell transplantation in premature rat brain following hypoxic-ischemic injury. PLoS ONE. 2015;10:e0115997 pubmed 出版商
  612. Crouch E, Liu C, Silva Vargas V, Doetsch F. Regional and stage-specific effects of prospectively purified vascular cells on the adult V-SVZ neural stem cell lineage. J Neurosci. 2015;35:4528-39 pubmed 出版商
  613. Li H, Ruberu K, Muñoz S, Jenner A, Spiro A, Zhao H, et al. Apolipoprotein D modulates amyloid pathology in APP/PS1 Alzheimer's disease mice. Neurobiol Aging. 2015;36:1820-33 pubmed 出版商
  614. Liang Y, Sun H, Yu L, He B, Xie Y. Scorpion ethanol extract and valproic acid effects on hippocampal glial fibrillary acidic protein expression in a rat model of chronic-kindling epilepsy induced by lithium chloride-pilocarpine. Neural Regen Res. 2012;7:426-33 pubmed 出版商
  615. Filipcik P, Cente M, Zilka N, Smolek T, Hanes J, Kučerák J, et al. Intraneuronal accumulation of misfolded tau protein induces overexpression of Hsp27 in activated astrocytes. Biochim Biophys Acta. 2015;1852:1219-29 pubmed 出版商
  616. Matsushita T, Lankford K, Arroyo E, Sasaki M, Neyazi M, Radtke C, et al. Diffuse and persistent blood-spinal cord barrier disruption after contusive spinal cord injury rapidly recovers following intravenous infusion of bone marrow mesenchymal stem cells. Exp Neurol. 2015;267:152-64 pubmed 出版商
  617. Cuadrado E, Michailidou I, van Bodegraven E, Jansen M, Sluijs J, Geerts D, et al. Phenotypic variation in Aicardi-Goutières syndrome explained by cell-specific IFN-stimulated gene response and cytokine release. J Immunol. 2015;194:3623-33 pubmed 出版商
  618. Bedner P, Dupper A, Hüttmann K, Muller J, Herde M, Dublin P, et al. Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain. 2015;138:1208-22 pubmed 出版商
  619. Boulay A, Mazeraud A, Cisternino S, Saubaméa B, Mailly P, Jourdren L, et al. Immune quiescence of the brain is set by astroglial connexin 43. J Neurosci. 2015;35:4427-39 pubmed 出版商
  620. Tokuda E, Watanabe S, Okawa E, Ono S. Regulation of Intracellular Copper by Induction of Endogenous Metallothioneins Improves the Disease Course in a Mouse Model of Amyotrophic Lateral Sclerosis. Neurotherapeutics. 2015;12:461-76 pubmed 出版商
  621. Mellott A, Devarajan K, Shinogle H, Moore D, Talata Z, Laurence J, et al. Nonviral Reprogramming of Human Wharton's Jelly Cells Reveals Differences Between ATOH1 Homologues. Tissue Eng Part A. 2015;21:1795-809 pubmed 出版商
  622. Ling G, Liu Y, Ke Y, Chen L, Jiang X, Jiang C, et al. All-trans retinoic acid impairs the vasculogenic mimicry formation ability of U87 stem-like cells through promoting differentiation. Mol Med Rep. 2015;12:165-72 pubmed 出版商
  623. Tennakoon A, Izawa T, Wijesundera K, Katou Ichikawa C, Tanaka M, Golbar H, et al. Analysis of glial fibrillary acidic protein (GFAP)-expressing ductular cells in a rat liver cirrhosis model induced by repeated injections of thioacetamide (TAA). Exp Mol Pathol. 2015;98:476-85 pubmed 出版商
  624. Eid M, El Kowrany S, Othman A, El Gendy D, Saied E. Immunopathological changes in the brain of immunosuppressed mice experimentally infected with Toxocara canis. Korean J Parasitol. 2015;53:51-8 pubmed 出版商
  625. Chung S, Gillies M, Sugiyama Y, Zhu L, Lee S, Shen W. Profiling of microRNAs involved in retinal degeneration caused by selective Müller cell ablation. PLoS ONE. 2015;10:e0118949 pubmed 出版商
  626. Mellai M, Piazzi A, Casalone C, Grifoni S, Melcarne A, Annovazzi L, et al. Astroblastoma: beside being a tumor entity, an occasional phenotype of astrocytic gliomas?. Onco Targets Ther. 2015;8:451-60 pubmed 出版商
  627. Valapala M, Edwards M, Hose S, Hu J, Wawrousek E, Lutty G, et al. βA3/A1-crystallin is a critical mediator of STAT3 signaling in optic nerve astrocytes. Sci Rep. 2015;5:8755 pubmed 出版商
  628. Romero J, Hanschmann E, Gellert M, Eitner S, Holubiec M, Blanco Calvo E, et al. Thioredoxin 1 and glutaredoxin 2 contribute to maintain the phenotype and integrity of neurons following perinatal asphyxia. Biochim Biophys Acta. 2015;1850:1274-85 pubmed 出版商
  629. Nakadate K. Developmental changes in the flotillin-1 expression pattern of the rat visual cortex. Neuroscience. 2015;292:101-11 pubmed 出版商
  630. Özkucur N, Quinn K, Pang J, DU C, Georgakoudi I, Miller E, et al. Membrane potential depolarization causes alterations in neuron arrangement and connectivity in cocultures. Brain Behav. 2015;5:24-38 pubmed 出版商
  631. Kawabori M, Kacimi R, Kauppinen T, Calosing C, Kim J, Hsieh C, et al. Triggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke. J Neurosci. 2015;35:3384-96 pubmed 出版商
  632. Campbell J, Miller D, Cundiff D, Feng Q, Litofsky N. Neural stem/progenitor cells react to non-glial cns neoplasms. Springerplus. 2015;4:53 pubmed 出版商
  633. Trylcova J, Busek P, Smetana K, Balaziova E, Dvořánková B, Mifková A, et al. Effect of cancer-associated fibroblasts on the migration of glioma cells in vitro. Tumour Biol. 2015;36:5873-9 pubmed 出版商
  634. Kaufman A, Salazar S, Haas L, Yang J, Kostylev M, Jeng A, et al. Fyn inhibition rescues established memory and synapse loss in Alzheimer mice. Ann Neurol. 2015;77:953-71 pubmed 出版商
  635. Zhu L, Shen W, Lyons B, Wang Y, Zhou F, Gillies M. Dysregulation of inter-photoreceptor retinoid-binding protein (IRBP) after induced Müller cell disruption. J Neurochem. 2015;133:909-18 pubmed 出版商
  636. Villacampa N, Almolda B, Vilella A, Campbell I, González B, Castellano B. Astrocyte-targeted production of IL-10 induces changes in microglial reactivity and reduces motor neuron death after facial nerve axotomy. Glia. 2015;63:1166-84 pubmed 出版商
  637. Chen Roetling J, Song W, Schipper H, Regan C, Regan R. Astrocyte overexpression of heme oxygenase-1 improves outcome after intracerebral hemorrhage. Stroke. 2015;46:1093-8 pubmed 出版商
  638. Xu H, Rösler T, Carlsson T, de Andrade A, Fiala O, Höllerhage M, et al. Tau silencing by siRNA in the P301S mouse model of tauopathy. Curr Gene Ther. 2014;14:343-51 pubmed
  639. Arulmoli J, Pathak M, McDonnell L, Nourse J, Tombola F, Earthman J, et al. Static stretch affects neural stem cell differentiation in an extracellular matrix-dependent manner. Sci Rep. 2015;5:8499 pubmed 出版商
  640. Sabogal Guáqueta A, Muñoz Manco J, Ramírez Pineda J, Lamprea Rodriguez M, Osorio E, Cardona Gómez G. The flavonoid quercetin ameliorates Alzheimer's disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer's disease model mice. Neuropharmacology. 2015;93:134-45 pubmed 出版商
  641. Porquet D, Andrés Benito P, Griñán Ferré C, Camins A, Ferrer I, Canudas A, et al. Amyloid and tau pathology of familial Alzheimer's disease APP/PS1 mouse model in a senescence phenotype background (SAMP8). Age (Dordr). 2015;37:9747 pubmed 出版商
  642. Betzer C, Movius A, Shi M, Gai W, Zhang J, Jensen P. Identification of synaptosomal proteins binding to monomeric and oligomeric α-synuclein. PLoS ONE. 2015;10:e0116473 pubmed 出版商
  643. Altmeppen H, Prox J, Krasemann S, Puig B, Kruszewski K, Dohler F, et al. The sheddase ADAM10 is a potent modulator of prion disease. elife. 2015;4: pubmed 出版商
  644. Nagai J, Kitamura Y, Owada K, Yamashita N, Takei K, Goshima Y, et al. Crmp4 deletion promotes recovery from spinal cord injury by neuroprotection and limited scar formation. Sci Rep. 2015;5:8269 pubmed 出版商
  645. Ju B, Chen W, Orr B, Spitsbergen J, Jia S, Eden C, et al. Oncogenic KRAS promotes malignant brain tumors in zebrafish. Mol Cancer. 2015;14:18 pubmed 出版商
  646. Spilsbury A, Miwa S, Attems J, Saretzki G. The role of telomerase protein TERT in Alzheimer's disease and in tau-related pathology in vitro. J Neurosci. 2015;35:1659-74 pubmed 出版商
  647. Cantoni C, Bollman B, Licastro D, Xie M, Mikesell R, Schmidt R, et al. TREM2 regulates microglial cell activation in response to demyelination in vivo. Acta Neuropathol. 2015;129:429-47 pubmed 出版商
  648. Condello C, Yuan P, Schain A, Grutzendler J. Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques. Nat Commun. 2015;6:6176 pubmed 出版商
  649. Li W, Garringer H, GOODWIN C, Richine B, Acton A, Vanduyn N, et al. Systemic and cerebral iron homeostasis in ferritin knock-out mice. PLoS ONE. 2015;10:e0117435 pubmed 出版商
  650. Oka Y, Ye M, Zuker C. Thirst driving and suppressing signals encoded by distinct neural populations in the brain. Nature. 2015;520:349-52 pubmed 出版商
  651. Orr A, Hsiao E, Wang M, Ho K, Kim D, Wang X, et al. Astrocytic adenosine receptor A2A and Gs-coupled signaling regulate memory. Nat Neurosci. 2015;18:423-34 pubmed 出版商
  652. Fong M, Zhou W, Liu L, Alontaga A, Chandra M, Ashby J, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol. 2015;17:183-94 pubmed 出版商
  653. Xue T, Wei L, Zha D, Qiao L, Lu L, Chen F, et al. Exposure to acoustic stimuli promotes the development and differentiation of neural stem cells from the cochlear nuclei through the clusterin pathway. Int J Mol Med. 2015;35:637-44 pubmed 出版商
  654. Pantazopoulos H, Markota M, Jaquet F, Ghosh D, Wallin A, Santos A, et al. Aggrecan and chondroitin-6-sulfate abnormalities in schizophrenia and bipolar disorder: a postmortem study on the amygdala. Transl Psychiatry. 2015;5:e496 pubmed 出版商
  655. Bouyakdan K, Taïb B, Budry L, Zhao S, Rodaros D, Neess D, et al. A novel role for central ACBP/DBI as a regulator of long-chain fatty acid metabolism in astrocytes. J Neurochem. 2015;133:253-65 pubmed 出版商
  656. Petraglia A, Plog B, Dayawansa S, Dashnaw M, Czerniecka K, Walker C, et al. The pathophysiology underlying repetitive mild traumatic brain injury in a novel mouse model of chronic traumatic encephalopathy. Surg Neurol Int. 2014;5:184 pubmed 出版商
  657. Kizuka Y, Kitazume S, Fujinawa R, Saito T, Iwata N, Saido T, et al. An aberrant sugar modification of BACE1 blocks its lysosomal targeting in Alzheimer's disease. EMBO Mol Med. 2015;7:175-89 pubmed 出版商
  658. Benskey M, Kuhn N, Galligan J, García J, Boye S, Hauswirth W, et al. Targeted gene delivery to the enteric nervous system using AAV: a comparison across serotypes and capsid mutants. Mol Ther. 2015;23:488-500 pubmed 出版商
  659. Nakayama D, Iwata H, Teshirogi C, Ikegaya Y, Matsuki N, Nomura H. Long-delayed expression of the immediate early gene Arc/Arg3.1 refines neuronal circuits to perpetuate fear memory. J Neurosci. 2015;35:819-30 pubmed 出版商
  660. Maurya S, Mishra J, Abbas S, Bandyopadhyay S. Cypermethrin Stimulates GSK3β-Dependent Aβ and p-tau Proteins and Cognitive Loss in Young Rats: Reduced HB-EGF Signaling and Downstream Neuroinflammation as Critical Regulators. Mol Neurobiol. 2016;53:968-82 pubmed 出版商
  661. Long P, Tighe S, Driscoll H, Fortner K, Viapiano M, Jaworski D. Acetate supplementation as a means of inducing glioblastoma stem-like cell growth arrest. J Cell Physiol. 2015;230:1929-43 pubmed 出版商
  662. Liu S, Sarkar C, Dinizo M, Faden A, Koh E, Lipinski M, et al. Disrupted autophagy after spinal cord injury is associated with ER stress and neuronal cell death. Cell Death Dis. 2015;6:e1582 pubmed 出版商
  663. Sathyamurthy A, Yin D, Barik A, Shen C, Bean J, Figueiredo D, et al. ERBB3-mediated regulation of Bergmann glia proliferation in cerebellar lamination. Development. 2015;142:522-32 pubmed 出版商
  664. Matsuzaki K, Katakura M, Inoue T, Hara T, Hashimoto M, Shido O. Aging attenuates acquired heat tolerance and hypothalamic neurogenesis in rats. J Comp Neurol. 2015;523:1190-201 pubmed 出版商
  665. Dixon A, Philbert M. Morphometric assessment of toxicant induced neuronal degeneration in full and restricted contact co-cultures of embryonic cortical rat neurons and astrocytes: using m-Dinitrobezene as a model neurotoxicant. Toxicol In Vitro. 2015;29:564-74 pubmed 出版商
  666. Tian H, Wang L, Cai R, Zheng L, Guo L. Identification of protein network alterations upon retinal ischemia-reperfusion injury by quantitative proteomics using a Rattus norvegicus model. PLoS ONE. 2014;9:e116453 pubmed 出版商
  667. Gaudet A, Sweet D, Polinski N, Guan Z, Popovich P. Galectin-1 in injured rat spinal cord: implications for macrophage phagocytosis and neural repair. Mol Cell Neurosci. 2015;64:84-94 pubmed 出版商
  668. Gällentoft L, Pettersson L, Danielsen N, Schouenborg J, Prinz C, Linsmeier C. Size-dependent long-term tissue response to biostable nanowires in the brain. Biomaterials. 2015;42:172-83 pubmed 出版商
  669. Hollis E, Ishiko N, Tolentino K, Doherty E, Rodríguez M, Calcutt N, et al. A novel and robust conditioning lesion induced by ethidium bromide. Exp Neurol. 2015;265:30-9 pubmed 出版商
  670. Yao P, Kang D, Wang X, Lin R, Ye Z. Cell-density-dependent manifestation of partial characteristics for neuronal precursors in a newly established human gliosarcoma cell line. In Vitro Cell Dev Biol Anim. 2015;51:345-52 pubmed 出版商
  671. Yousef H, Morgenthaler A, Schlesinger C, Bugaj L, Conboy I, Schaffer D. Age-Associated Increase in BMP Signaling Inhibits Hippocampal Neurogenesis. Stem Cells. 2015;33:1577-88 pubmed 出版商
  672. Kono S, Kurata T, Sato K, Omote Y, Hishikawa N, Yamashita T, et al. Neurovascular protection by telmisartan via reducing neuroinflammation in stroke-resistant spontaneously hypertensive rat brain after ischemic stroke. J Stroke Cerebrovasc Dis. 2015;24:537-47 pubmed 出版商
  673. Hill R, Kuijper S, Lindsey J, Petrie K, Schwalbe E, Barker K, et al. Combined MYC and P53 defects emerge at medulloblastoma relapse and define rapidly progressive, therapeutically targetable disease. Cancer Cell. 2015;27:72-84 pubmed 出版商
  674. Ippolito C, Segnani C, Errede M, Virgintino D, Colucci R, Fornai M, et al. An integrated assessment of histopathological changes of the enteric neuromuscular compartment in experimental colitis. J Cell Mol Med. 2015;19:485-500 pubmed 出版商
  675. Wan C, O Carroll S, Kim S, Green C, Nicholson L. Spatiotemporal changes in Cx30 and Cx43 expression during neuronal differentiation of P19 EC and NT2/D1 cells. Cell Biol Int Rep (2010). 2013;20:13-23 pubmed
  676. Caminos E, Vaquero C, Martinez Galan J. Relationship between rat retinal degeneration and potassium channel KCNQ5 expression. Exp Eye Res. 2015;131:1-11 pubmed 出版商
  677. Li Y, Korgaonkar A, Swietek B, Wang J, Elgammal F, Elkabes S, et al. Toll-like receptor 4 enhancement of non-NMDA synaptic currents increases dentate excitability after brain injury. Neurobiol Dis. 2015;74:240-53 pubmed 出版商
  678. Okusa C, Oeschger F, Ginet V, Wang W, Hoerder Suabedissen A, Matsuyama T, et al. Subplate in a rat model of preterm hypoxia-ischemia. Ann Clin Transl Neurol. 2014;1:679-91 pubmed 出版商
  679. Zhu Y, Soderblom C, Trojanowsky M, Lee D, Lee J. Fibronectin Matrix Assembly after Spinal Cord Injury. J Neurotrauma. 2015;32:1158-67 pubmed 出版商
  680. Knerlich Lukoschus F, Krossa S, Krause J, Mehdorn H, Scheidig A, Held Feindt J. Impact of chemokines on the properties of spinal cord-derived neural progenitor cells in a rat spinal cord lesion model. J Neurosci Res. 2015;93:562-71 pubmed 出版商
  681. Maltecca F, Baseggio E, Consolato F, Mazza D, Podini P, Young S, et al. Purkinje neuron Ca2+ influx reduction rescues ataxia in SCA28 model. J Clin Invest. 2015;125:263-74 pubmed 出版商
  682. Medina B, Santos de Abreu I, Cavalcante L, Silva W, da Fonseca R, Allodi S, et al. 3-acetylpyridine-induced degeneration in the adult ascidian neural complex: Reactive and regenerative changes in glia and blood cells. Dev Neurobiol. 2015;75:877-93 pubmed 出版商
  683. Sarkar C, Zhao Z, Aungst S, Sabirzhanov B, Faden A, Lipinski M. Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury. Autophagy. 2014;10:2208-22 pubmed 出版商
  684. Yin J, Wu H, Dong Y, Zhang T, Wang J, Zhang Y, et al. Neurochemical properties of BDNF-containing neurons projecting to rostral ventromedial medulla in the ventrolateral periaqueductal gray. Front Neural Circuits. 2014;8:137 pubmed 出版商
  685. Kamel Ismail Z, Morcos M, Eldin Mohammad M, Gamal Aboulkhair A. Enhancement of Neural Stem Cells after Induction of Depression in Male Albino Rats (A histological & Immunohistochemical Study). Int J Stem Cells. 2014;7:70-8 pubmed 出版商
  686. Bricker Anthony C, Hines Beard J, D Surney L, Rex T. Exacerbation of blast-induced ocular trauma by an immune response. J Neuroinflammation. 2014;11:192 pubmed 出版商
  687. Cui W, Mizukami H, Yanagisawa M, Aida T, Nomura M, Isomura Y, et al. Glial dysfunction in the mouse habenula causes depressive-like behaviors and sleep disturbance. J Neurosci. 2014;34:16273-85 pubmed 出版商
  688. Zille M, Riabinska A, Terzi M, Balkaya M, Prinz V, Schmerl B, et al. Influence of pigment epithelium-derived factor on outcome after striatal cerebral ischemia in the mouse. PLoS ONE. 2014;9:e114595 pubmed 出版商
  689. Johnstone S, Liley M, Dalby M, Barnett S. Comparison of human olfactory and skeletal MSCs using osteogenic nanotopography to demonstrate bone-specific bioactivity of the surfaces. Acta Biomater. 2015;13:266-76 pubmed 出版商
  690. Lazarus R, Buonora J, Jacobowitz D, Mueller G. Protein carbonylation after traumatic brain injury: cell specificity, regional susceptibility, and gender differences. Free Radic Biol Med. 2015;78:89-100 pubmed 出版商
  691. Zhu Y, Soderblom C, Krishnan V, Ashbaugh J, Bethea J, Lee J. Hematogenous macrophage depletion reduces the fibrotic scar and increases axonal growth after spinal cord injury. Neurobiol Dis. 2015;74:114-25 pubmed 出版商
  692. Ceber M, Mihmanli A, Kilic U, Sener U, Yuksek A, Durak M, et al. Changes in expression of Slit1 and its receptor Robo2 in trigeminal ganglion and inferior alveolar nerve following inferior alveolar nerve axotomy in adult rats: a pilot study. Int J Oral Maxillofac Surg. 2015;44:518-27 pubmed 出版商
  693. Lauretti E, di Meco A, Chu J, Praticò D. Modulation of AD neuropathology and memory impairments by the isoprostane F2α is mediated by the thromboxane receptor. Neurobiol Aging. 2015;36:812-20 pubmed 出版商
  694. Paniagua Torija B, Arevalo Martin A, Molina Holgado E, Molina Holgado F, Garcia Ovejero D. Spinal cord injury induces a long-lasting upregulation of interleukin-1β in astrocytes around the central canal. Neuroscience. 2015;284:283-9 pubmed 出版商
  695. Almolda B, de Labra C, Barrera I, Gruart A, Delgado Garcia J, Villacampa N, et al. Alterations in microglial phenotype and hippocampal neuronal function in transgenic mice with astrocyte-targeted production of interleukin-10. Brain Behav Immun. 2015;45:80-97 pubmed 出版商
  696. Hohsfield L, Daschil N, Orädd G, Strömberg I, Humpel C. Vascular pathology of 20-month-old hypercholesterolemia mice in comparison to triple-transgenic and APPSwDI Alzheimer's disease mouse models. Mol Cell Neurosci. 2014;63:83-95 pubmed
  697. Vergaño Vera E, Díaz Guerra E, Rodríguez Traver E, Méndez Gómez H, Solís Ã, Pignatelli J, et al. Nurr1 blocks the mitogenic effect of FGF-2 and EGF, inducing olfactory bulb neural stem cells to adopt dopaminergic and dopaminergic-GABAergic neuronal phenotypes. Dev Neurobiol. 2015;75:823-41 pubmed 出版商
  698. Inose Y, Kato Y, Kitagawa K, Uchiyama S, Shibata N. Activated microglia in ischemic stroke penumbra upregulate MCP-1 and CCR2 expression in response to lysophosphatidylcholine derived from adjacent neurons and astrocytes. Neuropathology. 2015;35:209-23 pubmed 出版商
  699. Petravicz J, Boyt K, McCarthy K. Astrocyte IP3R2-dependent Ca(2+) signaling is not a major modulator of neuronal pathways governing behavior. Front Behav Neurosci. 2014;8:384 pubmed 出版商
  700. Ryu J, Horkayne Szakaly I, Xu L, Pletnikova O, Leri F, Eberhart C, et al. The problem of axonal injury in the brains of veterans with histories of blast exposure. Acta Neuropathol Commun. 2014;2:153 pubmed 出版商
  701. Sharaf A, Rahhal B, Spittau B, Roussa E. Localization of reelin signaling pathway components in murine midbrain and striatum. Cell Tissue Res. 2015;359:393-407 pubmed 出版商
  702. Wu C, Hung T, Chen C, Ke C, Lee C, Wang P, et al. Post-injury treatment with 7,8-dihydroxyflavone, a TrkB receptor agonist, protects against experimental traumatic brain injury via PI3K/Akt signaling. PLoS ONE. 2014;9:e113397 pubmed 出版商
  703. Gascon E, Lynch K, Ruan H, Almeida S, Verheyden J, Seeley W, et al. Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia. Nat Med. 2014;20:1444-51 pubmed 出版商
  704. Macías D, Fernández Agüera M, Bonilla Henao V, López Barneo J. Deletion of the von Hippel-Lindau gene causes sympathoadrenal cell death and impairs chemoreceptor-mediated adaptation to hypoxia. EMBO Mol Med. 2014;6:1577-92 pubmed 出版商
  705. Zhang J, Hu M, Teng Z, Tang Y, Chen C. Synaptic and cognitive improvements by inhibition of 2-AG metabolism are through upregulation of microRNA-188-3p in a mouse model of Alzheimer's disease. J Neurosci. 2014;34:14919-33 pubmed 出版商
  706. Pérez Alvarez M, Mateos L, Alonso A, Wandosell F. Estradiol and Progesterone Administration After pMCAO Stimulates the Neurological Recovery and Reduces the Detrimental Effect of Ischemia Mainly in Hippocampus. Mol Neurobiol. 2015;52:1690-1703 pubmed 出版商
  707. Nardai S, Dobolyi A, Pál G, Skopál J, Pintér N, Lakatos K, et al. Selegiline promotes NOTCH-JAGGED signaling in astrocytes of the peri-infarct region and improves the functional integrity of the neurovascular unit in a rat model of focal ischemia. Restor Neurol Neurosci. 2015;33:1-14 pubmed 出版商
  708. Deng X, Li M, Ai W, He L, Lu D, Patrylo P, et al. Lipolysaccharide-Induced Neuroinflammation Is Associated with Alzheimer-Like Amyloidogenic Axonal Pathology and Dendritic Degeneration in Rats. Adv Alzheimer Dis. 2014;3:78-93 pubmed
  709. Fuentes Santamaría V, Alvarado J, López Muñoz D, Melgar Rojas P, Gabaldón Ull M, Juiz J. Glia-related mechanisms in the anteroventral cochlear nucleus of the adult rat in response to unilateral conductive hearing loss. Front Neurosci. 2014;8:319 pubmed 出版商
  710. Levy C, Brooks J, Chen J, Su J, Fox M. Cell-specific and developmental expression of lectican-cleaving proteases in mouse hippocampus and neocortex. J Comp Neurol. 2015;523:629-48 pubmed 出版商
  711. Baek J, Schmidt E, Viceconte N, Strandgren C, Pernold K, Richard T, et al. Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior. Hum Mol Genet. 2015;24:1305-21 pubmed 出版商
  712. Heng Y, Zhou B, Harris L, Harvey T, Smith A, Horne E, et al. NFIX Regulates Proliferation and Migration Within the Murine SVZ Neurogenic Niche. Cereb Cortex. 2015;25:3758-78 pubmed 出版商
  713. Scholze A, Foo L, Mulinyawe S, Barres B. BMP signaling in astrocytes downregulates EGFR to modulate survival and maturation. PLoS ONE. 2014;9:e110668 pubmed 出版商
  714. Ribeiro Resende V, Araújo Gomes T, de Lima S, Nascimento Lima M, Bargas Rega M, Santiago M, et al. Mice lacking GD3 synthase display morphological abnormalities in the sciatic nerve and neuronal disturbances during peripheral nerve regeneration. PLoS ONE. 2014;9:e108919 pubmed 出版商
  715. Falcone C, Filippis C, Granzotto M, Mallamaci A. Emx2 expression levels in NSCs modulate astrogenesis rates by regulating EgfR and Fgf9. Glia. 2015;63:412-22 pubmed 出版商
  716. Chuang D, Cui J, Simonyi A, Engel V, Chen S, Fritsche K, et al. Dietary Sutherlandia and elderberry mitigate cerebral ischemia-induced neuronal damage and attenuate p47phox and phospho-ERK1/2 expression in microglial cells. ASN Neuro. 2014;6: pubmed 出版商
  717. Steward O, Sharp K, Yee K, Hatch M, Bonner J. Characterization of ectopic colonies that form in widespread areas of the nervous system with neural stem cell transplants into the site of a severe spinal cord injury. J Neurosci. 2014;34:14013-21 pubmed 出版商
  718. Mirabile I, Jat P, Brandner S, Collinge J. Identification of clinical target areas in the brainstem of prion-infected mice. Neuropathol Appl Neurobiol. 2015;41:613-30 pubmed 出版商
  719. McLean N, Popescu B, Gordon T, Zochodne D, Verge V. Delayed nerve stimulation promotes axon-protective neurofilament phosphorylation, accelerates immune cell clearance and enhances remyelination in vivo in focally demyelinated nerves. PLoS ONE. 2014;9:e110174 pubmed 出版商
  720. Stanton G, Kohler S, Boklweski J, Cameron J, Greenough W. Cytogenesis in the adult monkey motor cortex: perivascular NG2 cells are the major adult born cell type. J Comp Neurol. 2015;523:849-68 pubmed 出版商
  721. Tate M, Lindquist R, Nguyen T, Sanai N, Barkovich A, Huang E, et al. Postnatal growth of the human pons: a morphometric and immunohistochemical analysis. J Comp Neurol. 2015;523:449-62 pubmed 出版商
  722. Rutkowska A, Preuss I, Gessier F, Sailer A, Dev K. EBI2 regulates intracellular signaling and migration in human astrocyte. Glia. 2015;63:341-51 pubmed 出版商
  723. Forny Germano L, Lyra e Silva N, Batista A, Brito Moreira J, Gralle M, Boehnke S, et al. Alzheimer's disease-like pathology induced by amyloid-β oligomers in nonhuman primates. J Neurosci. 2014;34:13629-43 pubmed 出版商
  724. Ashok A, Rai N, Tripathi S, Bandyopadhyay S. Exposure to As-, Cd-, and Pb-mixture induces Aβ, amyloidogenic APP processing and cognitive impairments via oxidative stress-dependent neuroinflammation in young rats. Toxicol Sci. 2015;143:64-80 pubmed 出版商
  725. Kaneko M, Noguchi T, Ikegami S, Sakurai T, Kakita A, Toyoshima Y, et al. Zinc transporters ZnT3 and ZnT6 are downregulated in the spinal cords of patients with sporadic amyotrophic lateral sclerosis. J Neurosci Res. 2015;93:370-9 pubmed 出版商
  726. Libard S, Popova S, Amini R, Kärjä V, Pietiläinen T, Hämäläinen K, et al. Human cytomegalovirus tegument protein pp65 is detected in all intra- and extra-axial brain tumours independent of the tumour type or grade. PLoS ONE. 2014;9:e108861 pubmed 出版商
  727. Rajput P, Lyden P, Chen B, Lamb J, Pereira B, Lamb A, et al. Protease activated receptor-1 mediates cytotoxicity during ischemia using in vivo and in vitro models. Neuroscience. 2014;281:229-40 pubmed 出版商
  728. Pamies D, Bal Price A, Fabbri M, Gribaldo L, Scelfo B, Harris G, et al. Silencing of PNPLA6, the neuropathy target esterase (NTE) codifying gene, alters neurodifferentiation of human embryonal carcinoma stem cells (NT2). Neuroscience. 2014;281:54-67 pubmed 出版商
  729. Zhang J, Sun X, Zheng S, Liu X, Jin J, Ren Y, et al. Myelin basic protein induces neuron-specific toxicity by directly damaging the neuronal plasma membrane. PLoS ONE. 2014;9:e108646 pubmed 出版商
  730. Dharmarajan S, Gurel Z, Wang S, Sorenson C, Sheibani N, Belecky Adams T. Bone morphogenetic protein 7 regulates reactive gliosis in retinal astrocytes and Müller glia. Mol Vis. 2014;20:1085-108 pubmed
  731. Steffensen M, Fenger C, Christensen J, Jørgensen C, Bassi M, Christensen J, et al. Suppressors of cytokine signaling 1 and 3 are upregulated in brain resident cells in response to virus-induced inflammation of the central nervous system via at least two distinctive pathways. J Virol. 2014;88:14090-104 pubmed 出版商
  732. Bray A, Cevallos R, Gazarian K, Lamas M. Human dental pulp stem cells respond to cues from the rat retina and differentiate to express the retinal neuronal marker rhodopsin. Neuroscience. 2014;280:142-55 pubmed 出版商
  733. Perreten Lambert H, Zenger M, Azarias G, Chatton J, Magistretti P, Lengacher S. Control of mitochondrial pH by uncoupling protein 4 in astrocytes promotes neuronal survival. J Biol Chem. 2014;289:31014-28 pubmed 出版商
  734. Young D, Fong D, Lawlor P, Wu A, Mouravlev A, McRae M, et al. Adenosine kinase, glutamine synthetase and EAAT2 as gene therapy targets for temporal lobe epilepsy. Gene Ther. 2014;21:1029-40 pubmed 出版商
  735. Broom L, Jenner P, Rose S. Increased neurotrophic factor levels in ventral mesencephalic cultures do not explain the protective effect of osteopontin and the synthetic 15-mer RGD domain against MPP+ toxicity. Exp Neurol. 2015;263:1-7 pubmed 出版商
  736. Novrup H, Bracchi Ricard V, Ellman D, Ricard J, Jain A, Runko E, et al. Central but not systemic administration of XPro1595 is therapeutic following moderate spinal cord injury in mice. J Neuroinflammation. 2014;11:159 pubmed 出版商
  737. Chou C, Sinden J, Couraud P, Modo M. In vitro modeling of the neurovascular environment by coculturing adult human brain endothelial cells with human neural stem cells. PLoS ONE. 2014;9:e106346 pubmed 出版商
  738. Lue L, Schmitz C, Serrano G, Sue L, Beach T, Walker D. TREM2 Protein Expression Changes Correlate with Alzheimer's Disease Neurodegenerative Pathologies in Post-Mortem Temporal Cortices. Brain Pathol. 2015;25:469-80 pubmed 出版商
  739. Lee H, Kim K, Lim H, Choi M, Kim H, Ahn H, et al. Priming Wharton's jelly-derived mesenchymal stromal/stem cells with ROCK inhibitor improves recovery in an intracerebral hemorrhage model. J Cell Biochem. 2015;116:310-9 pubmed 出版商
  740. Holmberg Olausson K, Maire C, Haidar S, Ling J, Learner E, Nistér M, et al. Prominin-1 (CD133) defines both stem and non-stem cell populations in CNS development and gliomas. PLoS ONE. 2014;9:e106694 pubmed 出版商
  741. Berdugo Vega G, Arias Gil G, Rodriguez Niedenführ M, Davies D, Vázquez T, Pascual Font A. GFAP immunoreactivity within the rat nucleus ambiguus after laryngeal nerve injury. J Anat. 2014;225:492-501 pubmed 出版商
  742. Galán Arriero I, Avila Martin G, Ferrer Donato A, Gómez Soriano J, Bravo Esteban E, Taylor J. Oral administration of the p38α MAPK inhibitor, UR13870, inhibits affective pain behavior after spinal cord injury. Pain. 2014;155:2188-98 pubmed 出版商
  743. Garraway S, Woller S, Huie J, Hartman J, Hook M, Miranda R, et al. Peripheral noxious stimulation reduces withdrawal threshold to mechanical stimuli after spinal cord injury: role of tumor necrosis factor alpha and apoptosis. Pain. 2014;155:2344-59 pubmed 出版商
  744. Zou M, Luo H, Xiang M. Selective neuronal lineages derived from Dll4-expressing progenitors/precursors in the retina and spinal cord. Dev Dyn. 2015;244:86-97 pubmed 出版商
  745. Quintas C, Pinho D, Pereira C, Saraiva L, Gonçalves J, Queiroz G. Microglia P2Y₆ receptors mediate nitric oxide release and astrocyte apoptosis. J Neuroinflammation. 2014;11:141 pubmed 出版商
  746. Gruol D, Vo K, Bray J. Increased astrocyte expression of IL-6 or CCL2 in transgenic mice alters levels of hippocampal and cerebellar proteins. Front Cell Neurosci. 2014;8:234 pubmed 出版商
  747. Praet J, Santermans E, Reekmans K, De Vocht N, Le Blon D, Hoornaert C, et al. Histological characterization and quantification of cellular events following neural and fibroblast(-like) stem cell grafting in healthy and demyelinated CNS tissue. Methods Mol Biol. 2014;1213:265-83 pubmed 出版商
  748. Fu H, Yang T, Xiao W, Fan L, Wu Y, Terrando N, et al. Prolonged neuroinflammation after lipopolysaccharide exposure in aged rats. PLoS ONE. 2014;9:e106331 pubmed 出版商
  749. Lowe M, Faull R, Christie D, Waldvogel H. Distribution of the creatine transporter throughout the human brain reveals a spectrum of creatine transporter immunoreactivity. J Comp Neurol. 2015;523:699-725 pubmed 出版商
  750. Marinelli S, Eleuteri C, Vacca V, Strimpakos G, Mattei E, Severini C, et al. Effects of age-related loss of P/Q-type calcium channels in a mice model of peripheral nerve injury. Neurobiol Aging. 2015;36:352-64 pubmed 出版商
  751. Zang Y, Chen S, Liao G, Zhu H, Wei X, Cui Y, et al. Calpain-2 contributes to neuropathic pain following motor nerve injury via up-regulating interleukin-6 in DRG neurons. Brain Behav Immun. 2015;44:37-47 pubmed 出版商
  752. Ginet V, Pittet M, Rummel C, Osterheld M, Meuli R, Clarke P, et al. Dying neurons in thalamus of asphyxiated term newborns and rats are autophagic. Ann Neurol. 2014;76:695-711 pubmed 出版商
  753. Thompson L, Bauer J, Chiosea S, McHugh J, Seethala R, Miettinen M, et al. Canalicular adenoma: a clinicopathologic and immunohistochemical analysis of 67 cases with a review of the literature. Head Neck Pathol. 2015;9:181-95 pubmed 出版商
  754. Schneider Hohendorf T, Rossaint J, Mohan H, Böning D, Breuer J, Kuhlmann T, et al. VLA-4 blockade promotes differential routes into human CNS involving PSGL-1 rolling of T cells and MCAM-adhesion of TH17 cells. J Exp Med. 2014;211:1833-46 pubmed 出版商
  755. Chau M, Deveau T, Song M, Gu X, Chen D, Wei L. iPSC Transplantation increases regeneration and functional recovery after ischemic stroke in neonatal rats. Stem Cells. 2014;32:3075-87 pubmed 出版商
  756. Abazyan S, Yang E, Abazyan B, Xia M, Yang C, Rojas C, et al. Mutant disrupted-in-schizophrenia 1 in astrocytes: focus on glutamate metabolism. J Neurosci Res. 2014;92:1659-68 pubmed 出版商
  757. Rharass T, Lemcke H, Lantow M, Kuznetsov S, Weiss D, Panàkovà D. Ca2+-mediated mitochondrial reactive oxygen species metabolism augments Wnt/?-catenin pathway activation to facilitate cell differentiation. J Biol Chem. 2014;289:27937-51 pubmed 出版商
  758. Pereira T, Gärtner A, Amorim I, Almeida A, Caseiro A, Armada Da silva P, et al. Promoting nerve regeneration in a neurotmesis rat model using poly(DL-lactide-ε-caprolactone) membranes and mesenchymal stem cells from the Wharton's jelly: in vitro and in vivo analysis. Biomed Res Int. 2014;2014:302659 pubmed 出版商
  759. Shen W, Chung S, Irhimeh M, Li S, Lee S, Gillies M. Systemic administration of erythropoietin inhibits retinopathy in RCS rats. PLoS ONE. 2014;9:e104759 pubmed 出版商
  760. Curto G, Nieto Estévez V, Hurtado Chong A, Valero J, Gómez C, Alonso J, et al. Pax6 is essential for the maintenance and multi-lineage differentiation of neural stem cells, and for neuronal incorporation into the adult olfactory bulb. Stem Cells Dev. 2014;23:2813-30 pubmed 出版商
  761. Yarchoan M, Toledo J, Lee E, Arvanitakis Z, Kazi H, Han L, et al. Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer's disease and tauopathies. Acta Neuropathol. 2014;128:679-89 pubmed 出版商
  762. Jha B, Rao M, Malik N. Motor neuron differentiation from pluripotent stem cells and other intermediate proliferative precursors that can be discriminated by lineage specific reporters. Stem Cell Rev. 2015;11:194-204 pubmed 出版商
  763. Milesi S, Boussadia B, Plaud C, Catteau M, Rousset M, de Bock F, et al. Redistribution of PDGFR? cells and NG2DsRed pericytes at the cerebrovasculature after status epilepticus. Neurobiol Dis. 2014;71:151-8 pubmed 出版商
  764. Lööv C, Nadadhur A, Hillered L, Clausen F, Erlandsson A. Extracellular ezrin: a novel biomarker for traumatic brain injury. J Neurotrauma. 2015;32:244-51 pubmed 出版商
  765. Yan J, Zhang H, Yin Y, Li J, Tang Y, Purkayastha S, et al. Obesity- and aging-induced excess of central transforming growth factor-? potentiates diabetic development via an RNA stress response. Nat Med. 2014;20:1001-8 pubmed 出版商
  766. de Bock L, Somers K, Fraussen J, Hendriks J, van Horssen J, Rouwette M, et al. Sperm-associated antigen 16 is a novel target of the humoral autoimmune response in multiple sclerosis. J Immunol. 2014;193:2147-56 pubmed 出版商
  767. Kawase S, Kuwako K, Imai T, Renault Mihara F, Yaguchi K, Itohara S, et al. Regulatory factor X transcription factors control Musashi1 transcription in mouse neural stem/progenitor cells. Stem Cells Dev. 2014;23:2250-61 pubmed 出版商
  768. Hayakawa K, Okazaki R, Morioka K, Nakamura K, Tanaka S, Ogata T. Lipopolysaccharide preconditioning facilitates M2 activation of resident microglia after spinal cord injury. J Neurosci Res. 2014;92:1647-58 pubmed 出版商
  769. Forrest S, Osborne P, Keast J. Characterization of axons expressing the artemin receptor in the female rat urinary bladder: a comparison with other major neuronal populations. J Comp Neurol. 2014;522:3900-27 pubmed 出版商
  770. Syhr K, Kallenborn Gerhardt W, Lu R, Olbrich K, Schmitz K, Männich J, et al. Lack of effect of a P2Y6 receptor antagonist on neuropathic pain behavior in mice. Pharmacol Biochem Behav. 2014;124:389-95 pubmed 出版商
  771. Joly S, Jordi N, Schwab M, Pernet V. The Ephrin receptor EphA4 restricts axonal sprouting and enhances branching in the injured mouse optic nerve. Eur J Neurosci. 2014;40:3021-31 pubmed 出版商
  772. Makantasi P, Dermon C. Estradiol treatment decreases cell proliferation in the neurogenic zones of adult female zebrafish (Danio rerio) brain. Neuroscience. 2014;277:306-20 pubmed 出版商
  773. Vaidya A, Mao Z, Tian X, Spencer B, Seluanov A, Gorbunova V. Knock-in reporter mice demonstrate that DNA repair by non-homologous end joining declines with age. PLoS Genet. 2014;10:e1004511 pubmed 出版商
  774. Meng X, Wei D, Li J, Kang J, Wu C, Ma L, et al. Astrocytic expression of cannabinoid type 1 receptor in rat and human sclerotic hippocampi. Int J Clin Exp Pathol. 2014;7:2825-37 pubmed
  775. Bai Q, Parris R, Burton E. Different mechanisms regulate expression of zebrafish myelin protein zero (P0) in myelinating oligodendrocytes and its induction following axonal injury. J Biol Chem. 2014;289:24114-28 pubmed 出版商
  776. Dela Cruz J, Schmidt Kastner R, Stevens J, Steinbusch H, Rutten B. Differential distribution of hypoxia-inducible factor 1-beta (ARNT or ARNT2) in mouse substantia nigra and ventral tegmental area. J Chem Neuroanat. 2014;61-62:64-71 pubmed 出版商
  777. Torrado E, Gomes C, Santos G, Fernandes A, Brites D, Falcão A. Directing mouse embryonic neurosphere differentiation toward an enriched neuronal population. Int J Dev Neurosci. 2014;37:94-9 pubmed 出版商
  778. Tyzack G, Sitnikov S, Barson D, Adams Carr K, Lau N, Kwok J, et al. Astrocyte response to motor neuron injury promotes structural synaptic plasticity via STAT3-regulated TSP-1 expression. Nat Commun. 2014;5:4294 pubmed 出版商
  779. McKinstry S, Karadeniz Y, Worthington A, Hayrapetyan V, Ozlu M, Serafin Molina K, et al. Huntingtin is required for normal excitatory synapse development in cortical and striatal circuits. J Neurosci. 2014;34:9455-72 pubmed 出版商
  780. Aldrin Kirk P, Davidsson M, Holmqvist S, Li J, Bjorklund T. Novel AAV-based rat model of forebrain synucleinopathy shows extensive pathologies and progressive loss of cholinergic interneurons. PLoS ONE. 2014;9:e100869 pubmed 出版商
  781. Ho T, Vessey K, Fletcher E. Immunolocalization of the P2X4 receptor on neurons and glia in the mammalian retina. Neuroscience. 2014;277:55-71 pubmed 出版商
  782. Bricker Anthony C, Hines Beard J, Rex T. Molecular changes and vision loss in a mouse model of closed-globe blast trauma. Invest Ophthalmol Vis Sci. 2014;55:4853-62 pubmed 出版商
  783. Hagel C, Krasemann S, Löffler J, Puschel K, Magnus T, Glatzel M. Upregulation of Shiga toxin receptor CD77/Gb3 and interleukin-1? expression in the brain of EHEC patients with hemolytic uremic syndrome and neurologic symptoms. Brain Pathol. 2015;25:146-56 pubmed 出版商
  784. Wijayatunge R, Chen L, Cha Y, Zannas A, Frank C, West A. The histone lysine demethylase Kdm6b is required for activity-dependent preconditioning of hippocampal neuronal survival. Mol Cell Neurosci. 2014;61:187-200 pubmed 出版商
  785. Chen N, Huang S, Lu C, Chen C, Feng C, Chen C, et al. Flexibilide obtained from cultured soft coral has anti-neuroinflammatory and analgesic effects through the upregulation of spinal transforming growth factor-?1 in neuropathic rats. Mar Drugs. 2014;12:3792-817 pubmed 出版商
  786. Dowie M, Grimsey N, Hoffman T, Faull R, Glass M. Cannabinoid receptor CB2 is expressed on vascular cells, but not astroglial cells in the post-mortem human Huntington's disease brain. J Chem Neuroanat. 2014;59-60:62-71 pubmed 出版商
  787. Saab S, Buteau B, Leclère L, Bron A, Creuzot Garcher C, Bretillon L, et al. Involvement of plasmalogens in post-natal retinal vascular development. PLoS ONE. 2014;9:e101076 pubmed 出版商
  788. Yassa H. Age-related changes in the optic nerve of Sprague-Dawley rats: an ultrastructural and immunohistochemical study. Acta Histochem. 2014;116:1085-95 pubmed 出版商
  789. König H, Coughlan K, Kinsella S, Breen B, Prehn J. The BCL-2 family protein Bid is critical for pro-inflammatory signaling in astrocytes. Neurobiol Dis. 2014;70:99-107 pubmed 出版商
  790. Sandstrom R, Foret M, Grow D, Haugen E, Rhodes C, Cardona A, et al. Epigenetic regulation by chromatin activation mark H3K4me3 in primate progenitor cells within adult neurogenic niche. Sci Rep. 2014;4:5371 pubmed 出版商
  791. D cs K, Hegyi Z, Holl K, Kis G, Heged s K, Antal M. Selective axonal and glial distribution of monoacylglycerol lipase immunoreactivity in the superficial spinal dorsal horn of rodents. Brain Struct Funct. 2015;220:2625-37 pubmed 出版商
  792. Helms H, Hersom M, Kuhlmann L, Badolo L, Nielsen C, Brodin B. An electrically tight in vitro blood-brain barrier model displays net brain-to-blood efflux of substrates for the ABC transporters, P-gp, Bcrp and Mrp-1. AAPS J. 2014;16:1046-55 pubmed 出版商
  793. Vasistha N, García Moreno F, Arora S, Cheung A, Arnold S, Robertson E, et al. Cortical and Clonal Contribution of Tbr2 Expressing Progenitors in the Developing Mouse Brain. Cereb Cortex. 2015;25:3290-302 pubmed 出版商
  794. Wu Z, Guo Z, Gearing M, Chen G. Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzheimer's [corrected] disease model. Nat Commun. 2014;5:4159 pubmed 出版商
  795. Huang L, Zhu G, Deng Y, Jiang W, Fang M, Chen C, et al. Hypertonic saline alleviates cerebral edema by inhibiting microglia-derived TNF-? and IL-1?-induced Na-K-Cl Cotransporter up-regulation. J Neuroinflammation. 2014;11:102 pubmed 出版商
  796. Fallier Becker P, Vollmer J, Bauer H, Noell S, Wolburg H, Mack A. Onset of aquaporin-4 expression in the developing mouse brain. Int J Dev Neurosci. 2014;36:81-9 pubmed 出版商
  797. Inada C, Niu Y, Matsumoto K, Le X, Fujiwara H. Possible involvement of VEGF signaling system in rescuing effect of endogenous acetylcholine on NMDA-induced long-lasting hippocampal cell damage in organotypic hippocampal slice cultures. Neurochem Int. 2014;75:39-47 pubmed 出版商
  798. Bradford C, Ramos I, Cross A, Haddock G, McQuaid S, Nicholas A, et al. Localisation of citrullinated proteins in normal appearing white matter and lesions in the central nervous system in multiple sclerosis. J Neuroimmunol. 2014;273:85-95 pubmed 出版商
  799. Sajjan S, Holsinger R, Fok S, Ebrahimkhani S, Rollo J, Banati R, et al. Up-regulation of matrix metallopeptidase 12 in motor neurons undergoing synaptic stripping. Neuroscience. 2014;274:331-40 pubmed 出版商
  800. Eroglu B, Kimbler D, Pang J, Choi J, Moskophidis D, Yanasak N, et al. Therapeutic inducers of the HSP70/HSP110 protect mice against traumatic brain injury. J Neurochem. 2014;130:626-41 pubmed 出版商
  801. Allen J, Liu X, Pelkowski S, Palmer B, Conrad K, Oberdorster G, et al. Early postnatal exposure to ultrafine particulate matter air pollution: persistent ventriculomegaly, neurochemical disruption, and glial activation preferentially in male mice. Environ Health Perspect. 2014;122:939-45 pubmed 出版商
  802. Karow M, Schichor C, Beckervordersandforth R, Berninger B. Lineage-reprogramming of pericyte-derived cells of the adult human brain into induced neurons. J Vis Exp. 2014;: pubmed 出版商
  803. Barragán Iglesias P, Pineda Farias J, Cervantes Durán C, Bravo Hernández M, Rocha González H, Murbartián J, et al. Role of spinal P2Y6 and P2Y11 receptors in neuropathic pain in rats: possible involvement of glial cells. Mol Pain. 2014;10:29 pubmed 出版商
  804. Paez Gonzalez P, Asrican B, Rodriguez E, Kuo C. Identification of distinct ChAT? neurons and activity-dependent control of postnatal SVZ neurogenesis. Nat Neurosci. 2014;17:934-42 pubmed 出版商
  805. Zhu Z, Liu Y, Li K, Liu J, Wang H, Sun B, et al. Protein tyrosine phosphatase receptor U (PTPRU) is required for glioma growth and motility. Carcinogenesis. 2014;35:1901-10 pubmed 出版商
  806. Alvarez A, Field M, Bushnev S, Longo M, Sugaya K. The effects of histone deacetylase inhibitors on glioblastoma-derived stem cells. J Mol Neurosci. 2015;55:7-20 pubmed 出版商
  807. Cekanaviciute E, Dietrich H, Axtell R, Williams A, Egusquiza R, Wai K, et al. Astrocytic TGF-? signaling limits inflammation and reduces neuronal damage during central nervous system Toxoplasma infection. J Immunol. 2014;193:139-49 pubmed 出版商
  808. Kielar M, Tuy F, Bizzotto S, Lebrand C, de Juan Romero C, Poirier K, et al. Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human. Nat Neurosci. 2014;17:923-33 pubmed 出版商
  809. Cho S, Jeon J, Chun D, Yeo S, Kim I. Anoctamin 1 expression in the mouse auditory brainstem. Cell Tissue Res. 2014;357:563-9 pubmed 出版商
  810. Hamilton C, Navarro Martín L, Neufeld M, Basak A, Trudeau V. Early expression of aromatase and the membrane estrogen receptor GPER in neuromasts reveals a role for estrogens in the development of the frog lateral line system. Gen Comp Endocrinol. 2014;205:242-50 pubmed 出版商
  811. Singh R, Brewer M, Mashburn C, Lou D, Bondada V, Graham B, et al. Calpain 5 is highly expressed in the central nervous system (CNS), carries dual nuclear localization signals, and is associated with nuclear promyelocytic leukemia protein bodies. J Biol Chem. 2014;289:19383-94 pubmed 出版商
  812. Oklinski M, Lim J, Choi H, Oklinska P, Skowronski M, Kwon T. Immunolocalization of Water Channel Proteins AQP1 and AQP4 in Rat Spinal Cord. J Histochem Cytochem. 2014;62:598-611 pubmed 出版商
  813. Betts J, Schweimer J, Burnham K, Burnet P, Sharp T, Harrison P. D-amino acid oxidase is expressed in the ventral tegmental area and modulates cortical dopamine. Front Synaptic Neurosci. 2014;6:11 pubmed 出版商
  814. Chucair Elliott A, Conrady C, Zheng M, Kroll C, Lane T, Carr D. Microglia-induced IL-6 protects against neuronal loss following HSV-1 infection of neural progenitor cells. Glia. 2014;62:1418-34 pubmed 出版商
  815. Cicchetti F, Lacroix S, Cisbani G, Vallières N, Saint Pierre M, St Amour I, et al. Mutant huntingtin is present in neuronal grafts in Huntington disease patients. Ann Neurol. 2014;76:31-42 pubmed 出版商
  816. Bennett R, Brody D. Acute reduction of microglia does not alter axonal injury in a mouse model of repetitive concussive traumatic brain injury. J Neurotrauma. 2014;31:1647-63 pubmed 出版商
  817. Fu Y, Rusznák Z, Kwok J, Kim W, Paxinos G. Age-dependent alterations of the hippocampal cell composition and proliferative potential in the hA?PPSwInd-J20 mouse. J Alzheimers Dis. 2014;41:1177-92 pubmed 出版商
  818. Ho V, Dallalzadeh L, Karathanasis N, Keles M, Vangala S, Grogan T, et al. GluA2 mRNA distribution and regulation by miR-124 in hippocampal neurons. Mol Cell Neurosci. 2014;61:1-12 pubmed 出版商
  819. Schuster A, Klotz M, Schwab T, Di Liddo R, Bertalot T, Schrenk S, et al. Maintenance of the enteric stem cell niche by bacterial lipopolysaccharides? Evidence and perspectives. J Cell Mol Med. 2014;18:1429-43 pubmed 出版商
  820. Schirmer L, Srivastava R, Kalluri S, Böttinger S, Herwerth M, Carassiti D, et al. Differential loss of KIR4.1 immunoreactivity in multiple sclerosis lesions. Ann Neurol. 2014;75:810-28 pubmed 出版商
  821. Gruol D, Vo K, Bray J, Roberts A. CCL2-ethanol interactions and hippocampal synaptic protein expression in a transgenic mouse model. Front Integr Neurosci. 2014;8:29 pubmed 出版商
  822. Stein L, Wozniak D, Dearborn J, Kubota S, Apte R, Izumi Y, et al. Expression of Nampt in hippocampal and cortical excitatory neurons is critical for cognitive function. J Neurosci. 2014;34:5800-15 pubmed 出版商
  823. Sharp K, Yee K, Steward O. A re-assessment of long distance growth and connectivity of neural stem cells after severe spinal cord injury. Exp Neurol. 2014;257:186-204 pubmed 出版商
  824. Farioli Vecchioli S, Ceccarelli M, Saraulli D, Micheli L, Cannas S, D Alessandro F, et al. Tis21 is required for adult neurogenesis in the subventricular zone and for olfactory behavior regulating cyclins, BMP4, Hes1/5 and Ids. Front Cell Neurosci. 2014;8:98 pubmed 出版商
  825. Cekanaviciute E, Fathali N, Doyle K, Williams A, Han J, Buckwalter M. Astrocytic transforming growth factor-beta signaling reduces subacute neuroinflammation after stroke in mice. Glia. 2014;62:1227-40 pubmed 出版商
  826. Okuda H, Tatsumi K, Horii Hayashi N, Morita S, Okuda Yamamoto A, Imaizumi K, et al. OASIS regulates chondroitin 6-O-sulfotransferase 1 gene transcription in the injured adult mouse cerebral cortex. J Neurochem. 2014;130:612-25 pubmed 出版商
  827. Nguyen H, Nekanti U, Haus D, Funes G, Moreno D, Kamei N, et al. Induction of early neural precursors and derivation of tripotent neural stem cells from human pluripotent stem cells under xeno-free conditions. J Comp Neurol. 2014;522:2767-83 pubmed 出版商
  828. Tapias V, Greenamyre J. A rapid and sensitive automated image-based approach for in vitro and in vivo characterization of cell morphology and quantification of cell number and neurite architecture. Curr Protoc Cytom. 2014;68:12.33.1-22 pubmed 出版商
  829. Camós S, Gubern C, Sobrado M, Rodriguez R, Romera V, Moro M, et al. The high-mobility group I-Y transcription factor is involved in cerebral ischemia and modulates the expression of angiogenic proteins. Neuroscience. 2014;269:112-30 pubmed 出版商
  830. Eskilsson A, Tachikawa M, Hosoya K, Blomqvist A. Distribution of microsomal prostaglandin E synthase-1 in the mouse brain. J Comp Neurol. 2014;522:3229-44 pubmed 出版商
  831. Codeluppi S, Fernández Zafra T, Sandor K, Kjell J, Liu Q, Abrams M, et al. Interleukin-6 secretion by astrocytes is dynamically regulated by PI3K-mTOR-calcium signaling. PLoS ONE. 2014;9:e92649 pubmed 出版商
  832. Alarcón Aguilar A, Luna López A, Ventura Gallegos J, Lazzarini R, Galvan Arzate S, González Puertos V, et al. Primary cultured astrocytes from old rats are capable to activate the Nrf2 response against MPP+ toxicity after tBHQ pretreatment. Neurobiol Aging. 2014;35:1901-12 pubmed 出版商
  833. Hamity M, Walder R, Hammond D. Increased neuronal expression of neurokinin-1 receptor and stimulus-evoked internalization of the receptor in the rostral ventromedial medulla of the rat after peripheral inflammatory injury. J Comp Neurol. 2014;522:3037-51 pubmed 出版商
  834. Vessey K, Greferath U, Aplin F, Jobling A, Phipps J, Ho T, et al. Adenosine triphosphate-induced photoreceptor death and retinal remodeling in rats. J Comp Neurol. 2014;522:2928-50 pubmed 出版商
  835. Alfaro Cervello C, Cebrian Silla A, Soriano Navarro M, García Tárraga P, Matías Guiu J, Gomez Pinedo U, et al. The adult macaque spinal cord central canal zone contains proliferative cells and closely resembles the human. J Comp Neurol. 2014;522:1800-17 pubmed 出版商
  836. Cheng L, Hu W, Qiu B, Zhao J, Yu Y, Guan W, et al. Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Res. 2014;24:665-79 pubmed 出版商
  837. Lu Nguyen N, Broadstock M, Schliesser M, Bartholomae C, von Kalle C, Schmidt M, et al. Transgenic expression of human glial cell line-derived neurotrophic factor from integration-deficient lentiviral vectors is neuroprotective in a rodent model of Parkinson's disease. Hum Gene Ther. 2014;25:631-41 pubmed 出版商
  838. Schuh C, Wimmer I, Hametner S, Haider L, van Dam A, Liblau R, et al. Oxidative tissue injury in multiple sclerosis is only partly reflected in experimental disease models. Acta Neuropathol. 2014;128:247-66 pubmed 出版商
  839. Xu M, Yang L, Rong J, Ni Y, Gu W, Luo Y, et al. Inhibition of cysteine cathepsin B and L activation in astrocytes contributes to neuroprotection against cerebral ischemia via blocking the tBid-mitochondrial apoptotic signaling pathway. Glia. 2014;62:855-80 pubmed 出版商
  840. Hultman K, Cortes Canteli M, Bounoutas A, Richards A, Strickland S, Norris E. Plasmin deficiency leads to fibrin accumulation and a compromised inflammatory response in the mouse brain. J Thromb Haemost. 2014;12:701-12 pubmed 出版商
  841. Garbuzova Davis S, Haller E, Williams S, Haim E, Tajiri N, Hernandez Ontiveros D, et al. Compromised blood-brain barrier competence in remote brain areas in ischemic stroke rats at the chronic stage. J Comp Neurol. 2014;522:3120-37 pubmed 出版商
  842. Sareen D, Gowing G, Sahabian A, Staggenborg K, Paradis R, Avalos P, et al. Human induced pluripotent stem cells are a novel source of neural progenitor cells (iNPCs) that migrate and integrate in the rodent spinal cord. J Comp Neurol. 2014;522:2707-28 pubmed 出版商
  843. Tse K, Chow K, Leung W, Wong Y, Wise H. Lipopolysaccharide differentially modulates expression of cytokines and cyclooxygenases in dorsal root ganglion cells via Toll-like receptor-4 dependent pathways. Neuroscience. 2014;267:241-51 pubmed 出版商
  844. Deboer E, Azevedo R, Vega T, Brodkin J, Akamatsu W, Okano H, et al. Prenatal deletion of the RNA-binding protein HuD disrupts postnatal cortical circuit maturation and behavior. J Neurosci. 2014;34:3674-86 pubmed 出版商
  845. Niesman I, Schilling J, Shapiro L, Kellerhals S, Bonds J, Kleschevnikov A, et al. Traumatic brain injury enhances neuroinflammation and lesion volume in caveolin deficient mice. J Neuroinflammation. 2014;11:39 pubmed 出版商
  846. Pannasch U, Freche D, Dallérac G, Ghezali G, Escartin C, Ezan P, et al. Connexin 30 sets synaptic strength by controlling astroglial synapse invasion. Nat Neurosci. 2014;17:549-58 pubmed 出版商
  847. Alves J, Muir E, Andrews M, Ward A, Michelmore N, Dasgupta D, et al. AAV vector-mediated secretion of chondroitinase provides a sensitive tracer for axonal arborisations. J Neurosci Methods. 2014;227:107-20 pubmed 出版商
  848. García Corzo L, Luna Sánchez M, Doerrier C, Ortiz F, Escames G, Acuna Castroviejo D, et al. Ubiquinol-10 ameliorates mitochondrial encephalopathy associated with CoQ deficiency. Biochim Biophys Acta. 2014;1842:893-901 pubmed 出版商
  849. Toscano M, Butorano M, Cerase A, Miracco C. Correlative study of squash smear cytology with histopathology in a rare case of anaplastic giant cell ependymoma of the pineal. Histol Histopathol. 2014;29:1065-70 pubmed 出版商
  850. Balaratnasingam C, Kang M, Yu P, Chan G, Morgan W, Cringle S, et al. Comparative quantitative study of astrocytes and capillary distribution in optic nerve laminar regions. Exp Eye Res. 2014;121:11-22 pubmed 出版商
  851. Levy Barazany H, Barazany D, Puckett L, Blanga Kanfi S, Borenstein Auerbach N, Yang K, et al. Brain MRI of nasal MOG therapeutic effect in relapsing-progressive EAE. Exp Neurol. 2014;255:63-70 pubmed 出版商
  852. Fathi A, Hatami M, Vakilian H, Han C, Chen Y, Baharvand H, et al. Quantitative proteomics analysis highlights the role of redox hemostasis and energy metabolism in human embryonic stem cell differentiation to neural cells. J Proteomics. 2014;101:1-16 pubmed 出版商
  853. Haba R, Shintani N, Onaka Y, Kanoh T, Wang H, Takenaga R, et al. Central CRTH2, a second prostaglandin D2 receptor, mediates emotional impairment in the lipopolysaccharide and tumor-induced sickness behavior model. J Neurosci. 2014;34:2514-23 pubmed 出版商
  854. Fragoso Y, Stoney P, Shearer K, Sementilli A, Nanescu S, Sementilli P, et al. Expression in the human brain of retinoic acid induced 1, a protein associated with neurobehavioural disorders. Brain Struct Funct. 2015;220:1195-203 pubmed 出版商
  855. Chen F, Becker A, LoTurco J. Contribution of tumor heterogeneity in a new animal model of CNS tumors. Mol Cancer Res. 2014;12:742-53 pubmed 出版商
  856. McQueen J, Reimer M, Holland P, Manso Y, McLaughlin M, Fowler J, et al. Restoration of oligodendrocyte pools in a mouse model of chronic cerebral hypoperfusion. PLoS ONE. 2014;9:e87227 pubmed 出版商
  857. Deng Y, Xie D, Fang M, Zhu G, Chen C, Zeng H, et al. Astrocyte-derived proinflammatory cytokines induce hypomyelination in the periventricular white matter in the hypoxic neonatal brain. PLoS ONE. 2014;9:e87420 pubmed 出版商
  858. Talaverón R, Matarredona E, de la Cruz R, Macías D, Gálvez V, Pastor A. Implanted neural progenitor cells regulate glial reaction to brain injury and establish gap junctions with host glial cells. Glia. 2014;62:623-38 pubmed 出版商
  859. Karki P, Webb A, Smith K, Johnson J, Lee K, Son D, et al. Yin Yang 1 is a repressor of glutamate transporter EAAT2, and it mediates manganese-induced decrease of EAAT2 expression in astrocytes. Mol Cell Biol. 2014;34:1280-9 pubmed 出版商
  860. Potter K, Jorfi M, Householder K, Foster E, Weder C, Capadona J. Curcumin-releasing mechanically adaptive intracortical implants improve the proximal neuronal density and blood-brain barrier stability. Acta Biomater. 2014;10:2209-22 pubmed 出版商
  861. Hagiwara K, Obayashi T, Sakayori N, Yamanishi E, Hayashi R, Osumi N, et al. Molecular and cellular features of murine craniofacial and trunk neural crest cells as stem cell-like cells. PLoS ONE. 2014;9:e84072 pubmed 出版商
  862. Bodi I, Curran O, Selway R, Elwes R, Burrone J, Laxton R, et al. Two cases of multinodular and vacuolating neuronal tumour. Acta Neuropathol Commun. 2014;2:7 pubmed 出版商
  863. Liu Z, Yu N, Holz F, Yang F, Stanzel B. Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography. Biomaterials. 2014;35:2837-50 pubmed 出版商
  864. Balu D, Takagi S, Puhl M, Benneyworth M, Coyle J. D-serine and serine racemase are localized to neurons in the adult mouse and human forebrain. Cell Mol Neurobiol. 2014;34:419-35 pubmed 出版商
  865. Chou V, Ko N, Holman T, Manning Bog A. Gene-environment interaction models to unmask susceptibility mechanisms in Parkinson's disease. J Vis Exp. 2014;:e50960 pubmed 出版商
  866. Havrda M, Paolella B, Ran C, Jering K, Wray C, Sullivan J, et al. Id2 mediates oligodendrocyte precursor cell maturation arrest and is tumorigenic in a PDGF-rich microenvironment. Cancer Res. 2014;74:1822-32 pubmed 出版商
  867. Samaranch L, Sebastián W, Kells A, Salegio E, Heller G, Bringas J, et al. AAV9-mediated expression of a non-self protein in nonhuman primate central nervous system triggers widespread neuroinflammation driven by antigen-presenting cell transduction. Mol Ther. 2014;22:329-337 pubmed 出版商
  868. Severi I, Perugini J, Mondini E, Smorlesi A, Frontini A, Cinti S, et al. Opposite effects of a high-fat diet and calorie restriction on ciliary neurotrophic factor signaling in the mouse hypothalamus. Front Neurosci. 2013;7:263 pubmed 出版商
  869. Kesdangsakonwut S, Sunden Y, Aoshima K, Iwaki Y, Okumura M, Sawa H, et al. Survival of rabid rabbits after intrathecal immunization. Neuropathology. 2014;34:277-83 pubmed 出版商
  870. Ahn J, Jang J, Choi J, Lee J, Oh S, Lee J, et al. GSK3?, but not GSK3?, inhibits the neuronal differentiation of neural progenitor cells as a downstream target of mammalian target of rapamycin complex1. Stem Cells Dev. 2014;23:1121-33 pubmed 出版商
  871. Maire C, Ramkissoon S, Hayashi M, Haidar S, Ramkissoon L, diTomaso E, et al. Pten loss in Olig2 expressing neural progenitor cells and oligodendrocytes leads to interneuron dysplasia and leukodystrophy. Stem Cells. 2014;32:313-26 pubmed 出版商
  872. Yamanaka T, Tosaki A, Kurosawa M, Akimoto K, Hirose T, Ohno S, et al. Loss of aPKC? in differentiated neurons disrupts the polarity complex but does not induce obvious neuronal loss or disorientation in mouse brains. PLoS ONE. 2013;8:e84036 pubmed 出版商
  873. Coppieters N, Dieriks B, Lill C, Faull R, Curtis M, Dragunow M. Global changes in DNA methylation and hydroxymethylation in Alzheimer's disease human brain. Neurobiol Aging. 2014;35:1334-44 pubmed 出版商
  874. Matsumoto Y, Kanamori A, Nakamura M, Takahashi T, Nakashima I, Negi A. Sera from patients with seropositive neuromyelitis optica spectral disorders caused the degeneration of rodent optic nerve. Exp Eye Res. 2014;119:61-9 pubmed 出版商
  875. Zhou J, Lu P, Ren H, Zheng Z, Ji J, Liu H, et al. 17?-estradiol protects human eyelid-derived adipose stem cells against cytotoxicity and increases transplanted cell survival in spinal cord injury. J Cell Mol Med. 2014;18:326-43 pubmed 出版商
  876. Trabalza A, Eleftheriadou I, Sgourou A, Liao T, Patsali P, Lee H, et al. Enhanced central nervous system transduction with lentiviral vectors pseudotyped with RVG/HIV-1gp41 chimeric envelope glycoproteins. J Virol. 2014;88:2877-90 pubmed 出版商
  877. Muirhead G, Dev K. The expression of neuronal sorting nexin 8 (SNX8) exacerbates abnormal cholesterol levels. J Mol Neurosci. 2014;53:125-34 pubmed 出版商
  878. Ishida M, Iwai M, Yoshida K, Kagotani A, Okabe H. Signet-ring cell melanoma with sentinel lymph node metastasis: A case report with immunohistochemical analysis and review of the clinicopathological features. Oncol Lett. 2014;7:65-68 pubmed
  879. Di Giovannantonio L, Di Salvio M, Omodei D, Prakash N, Wurst W, Pierani A, et al. Otx2 cell-autonomously determines dorsal mesencephalon versus cerebellum fate independently of isthmic organizing activity. Development. 2014;141:377-88 pubmed 出版商
  880. Yousuf S, Sayeed I, Atif F, Tang H, Wang J, Stein D. Delayed progesterone treatment reduces brain infarction and improves functional outcomes after ischemic stroke: a time-window study in middle-aged rats. J Cereb Blood Flow Metab. 2014;34:297-306 pubmed 出版商
  881. Traniello I, Sîrbulescu R, Ilieş I, Zupanc G. Age-related changes in stem cell dynamics, neurogenesis, apoptosis, and gliosis in the adult brain: a novel teleost fish model of negligible senescence. Dev Neurobiol. 2014;74:514-30 pubmed 出版商
  882. Gao X, Zhang J, Zhang J, Zou H, Liu J. Identification of rat respiratory mucosa stem cells and comparison of the early neural differentiation potential with the bone marrow mesenchymal stem cells in vitro. Cell Mol Neurobiol. 2014;34:257-68 pubmed 出版商
  883. Nakajima T, Yanagihara M, Nishii H. Temporal and regional patterns of Smad activation in the rat hippocampus following global ischemia. J Neurol Sci. 2014;337:25-37 pubmed 出版商
  884. Chen N, Huang S, Chen W, Chen C, Lu C, Chen C, et al. TGF-?1 attenuates spinal neuroinflammation and the excitatory amino acid system in rats with neuropathic pain. J Pain. 2013;14:1671-85 pubmed 出版商
  885. Takano T, He W, Han X, Wang F, Xu Q, Wang X, et al. Rapid manifestation of reactive astrogliosis in acute hippocampal brain slices. Glia. 2014;62:78-95 pubmed 出版商
  886. Hoffmann S, Hos D, Küspert M, Lang R, Lovell Badge R, Wegner M, et al. Stem cell factor Sox2 and its close relative Sox3 have differentiation functions in oligodendrocytes. Development. 2014;141:39-50 pubmed 出版商
  887. Price M, Gong H, Parsons M, Kundert J, Reznikov L, Bernardinelli L, et al. Localization and behaviors in null mice suggest that ASIC1 and ASIC2 modulate responses to aversive stimuli. Genes Brain Behav. 2014;13:179-94 pubmed 出版商
  888. Wakatsuki S, Araki T, Sehara Fujisawa A. Neuregulin-1/glial growth factor stimulates Schwann cell migration by inducing ?5 ?1 integrin-ErbB2-focal adhesion kinase complex formation. Genes Cells. 2014;19:66-77 pubmed 出版商
  889. Judson M, Sosa Pagán J, Del Cid W, Han J, Philpot B. Allelic specificity of Ube3a expression in the mouse brain during postnatal development. J Comp Neurol. 2014;522:1874-96 pubmed 出版商
  890. Ní Fhlathartaigh M, McMahon J, Reynolds R, Connolly D, Higgins E, Counihan T, et al. Calreticulin and other components of endoplasmic reticulum stress in rat and human inflammatory demyelination. Acta Neuropathol Commun. 2013;1:37 pubmed 出版商
  891. Raha A, VAISHNAV R, FRIEDLAND R, Bomford A, Raha Chowdhury R. The systemic iron-regulatory proteins hepcidin and ferroportin are reduced in the brain in Alzheimer's disease. Acta Neuropathol Commun. 2013;1:55 pubmed 出版商
  892. Nguyen H, Ostendorf A, Satz J, Westra S, Ross Barta S, Campbell K, et al. Glial scaffold required for cerebellar granule cell migration is dependent on dystroglycan function as a receptor for basement membrane proteins. Acta Neuropathol Commun. 2013;1:58 pubmed 出版商
  893. ElAli A, Theriault P, Prefontaine P, Rivest S. Mild chronic cerebral hypoperfusion induces neurovascular dysfunction, triggering peripheral beta-amyloid brain entry and aggregation. Acta Neuropathol Commun. 2013;1:75 pubmed 出版商
  894. Mitchell K, Shah J, Tsytsikova L, Campbell A, Affram K, Symes A. LPS antagonism of TGF-? signaling results in prolonged survival and activation of rat primary microglia. J Neurochem. 2014;129:155-68 pubmed 出版商
  895. Zuidema J, Hyzinski García M, Van Vlasselaer K, Zaccor N, Plopper G, Mongin A, et al. Enhanced GLT-1 mediated glutamate uptake and migration of primary astrocytes directed by fibronectin-coated electrospun poly-L-lactic acid fibers. Biomaterials. 2014;35:1439-49 pubmed 出版商
  896. Nishizaki Y, Takagi T, Matsui F, Higashi Y. SIP1 expression patterns in brain investigated by generating a SIP1-EGFP reporter knock-in mouse. Genesis. 2014;52:56-67 pubmed 出版商
  897. Yan Y, Zhang J, Wang K, Xu Y, Ren K, Zhang B, et al. Significant reduction of the GLUT3 level, but not GLUT1 level, was observed in the brain tissues of several scrapie experimental animals and scrapie-infected cell lines. Mol Neurobiol. 2014;49:991-1004 pubmed 出版商
  898. Wang C, Klechikov A, Gharibyan A, Wärmländer S, Jarvet J, Zhao L, et al. The role of pro-inflammatory S100A9 in Alzheimer's disease amyloid-neuroinflammatory cascade. Acta Neuropathol. 2014;127:507-22 pubmed 出版商
  899. Lin C, Lee D, Chang H, Chiu I, Hsu C. Single-cell enzyme-free dissociation of neurospheres using a microfluidic chip. Anal Chem. 2013;85:11920-8 pubmed 出版商
  900. Hawkins K, Demars K, Singh J, Yang C, Cho H, Frankowski J, et al. Neurovascular protection by post-ischemic intravenous injections of the lipoxin A4 receptor agonist, BML-111, in a rat model of ischemic stroke. J Neurochem. 2014;129:130-42 pubmed 出版商
  901. Sanderson T, Mahapatra G, Pecina P, Ji Q, Yu K, Sinkler C, et al. Cytochrome C is tyrosine 97 phosphorylated by neuroprotective insulin treatment. PLoS ONE. 2013;8:e78627 pubmed 出版商
  902. Robins S, Trudel E, Rotondi O, Liu X, Djogo T, Kryzskaya D, et al. Evidence for NG2-glia derived, adult-born functional neurons in the hypothalamus. PLoS ONE. 2013;8:e78236 pubmed 出版商
  903. Danovi D, Folarin A, Gogolok S, Ender C, Elbatsh A, Engström P, et al. A high-content small molecule screen identifies sensitivity of glioblastoma stem cells to inhibition of polo-like kinase 1. PLoS ONE. 2013;8:e77053 pubmed 出版商
  904. Akane H, Shiraki A, Imatanaka N, Akahori Y, Itahashi M, Abe H, et al. Glycidol induces axonopathy and aberrations of hippocampal neurogenesis affecting late-stage differentiation by exposure to rats in a framework of 28-day toxicity study. Toxicol Lett. 2014;224:424-32 pubmed 出版商
  905. Petrova R, Garcia A, Joyner A. Titration of GLI3 repressor activity by sonic hedgehog signaling is critical for maintaining multiple adult neural stem cell and astrocyte functions. J Neurosci. 2013;33:17490-505 pubmed 出版商
  906. Feng N, Han Q, Li J, Wang S, Li H, Yao X, et al. Generation of highly purified neural stem cells from human adipose-derived mesenchymal stem cells by Sox1 activation. Stem Cells Dev. 2014;23:515-29 pubmed 出版商
  907. Swain G, Prociuk M, Bagel J, O DONNELL P, Berger K, Drobatz K, et al. Adeno-associated virus serotypes 9 and rh10 mediate strong neuronal transduction of the dog brain. Gene Ther. 2014;21:28-36 pubmed 出版商
  908. Yamada J, Jinno S. S100A6 (calcyclin) is a novel marker of neural stem cells and astrocyte precursors in the subgranular zone of the adult mouse hippocampus. Hippocampus. 2014;24:89-101 pubmed 出版商
  909. Wang H, Yang B, Qiu L, Yang C, Kramer J, Su Q, et al. Widespread spinal cord transduction by intrathecal injection of rAAV delivers efficacious RNAi therapy for amyotrophic lateral sclerosis. Hum Mol Genet. 2014;23:668-81 pubmed 出版商
  910. Wang L, Zhu H, Wu J, Li N, Hua J. Characterization of embryonic stem-like cells derived from HEK293T cells through miR302/367 expression and their potentiality to differentiate into germ-like cells. Cytotechnology. 2014;66:729-40 pubmed 出版商
  911. Dobolyi A, Ostergaard E, Bagó A, Doczi T, Palkovits M, Gal A, et al. Exclusive neuronal expression of SUCLA2 in the human brain. Brain Struct Funct. 2015;220:135-51 pubmed 出版商
  912. Momcilovic O, Liu Q, Swistowski A, Russo Tait T, Zhao Y, Rao M, et al. Genome wide profiling of dopaminergic neurons derived from human embryonic and induced pluripotent stem cells. Stem Cells Dev. 2014;23:406-20 pubmed 出版商
  913. Khalaf Nazzal R, Bruel Jungerman E, Rio J, Bureau J, Irinopoulou T, Sumia I, et al. Organelle and cellular abnormalities associated with hippocampal heterotopia in neonatal doublecortin knockout mice. PLoS ONE. 2013;8:e72622 pubmed 出版商
  914. Ishikawa K, Yoshida S, Nakao S, Nakama T, Kita T, Asato R, et al. Periostin promotes the generation of fibrous membranes in proliferative vitreoretinopathy. FASEB J. 2014;28:131-42 pubmed 出版商
  915. Savard A, Lavoie K, Brochu M, Grbic D, Lepage M, Gris D, et al. Involvement of neuronal IL-1? in acquired brain lesions in a rat model of neonatal encephalopathy. J Neuroinflammation. 2013;10:110 pubmed 出版商
  916. Bellesi M, Pfister Genskow M, Maret S, Keles S, Tononi G, Cirelli C. Effects of sleep and wake on oligodendrocytes and their precursors. J Neurosci. 2013;33:14288-300 pubmed 出版商
  917. Kotagiri P, Chance S, Szele F, Esiri M. Subventricular zone cytoarchitecture changes in autism. Dev Neurobiol. 2014;74:25-41 pubmed 出版商
  918. Viganò F, Mobius W, Gotz M, Dimou L. Transplantation reveals regional differences in oligodendrocyte differentiation in the adult brain. Nat Neurosci. 2013;16:1370-2 pubmed 出版商
  919. Cholich L, Marquez M, Pumarola I Batlle M, Gimeno E, Teibler G, Rios E, et al. Experimental intoxication of guinea pigs with Ipomoea carnea: behavioural and neuropathological alterations. Toxicon. 2013;76:28-36 pubmed 出版商
  920. Tucker B, Mullins R, Streb L, Anfinson K, Eyestone M, Kaalberg E, et al. Patient-specific iPSC-derived photoreceptor precursor cells as a means to investigate retinitis pigmentosa. elife. 2013;2:e00824 pubmed 出版商
  921. Tobias I, Brooks C, Teichroeb J, Betts D. Derivation and culture of canine embryonic stem cells. Methods Mol Biol. 2013;1074:69-83 pubmed 出版商
  922. Merres J, Höss J, Albrecht L, Kress E, Soehnlein O, Jansen S, et al. Role of the cathelicidin-related antimicrobial peptide in inflammation and mortality in a mouse model of bacterial meningitis. J Innate Immun. 2014;6:205-18 pubmed 出版商
  923. Lim J, McCullen S, Piedrahita J, Loboa E, Olby N. Alternating current electric fields of varying frequencies: effects on proliferation and differentiation of porcine neural progenitor cells. Cell Reprogram. 2013;15:405-12 pubmed 出版商
  924. Schreiner A, Durry S, Aida T, Stock M, Ruther U, Tanaka K, et al. Laminar and subcellular heterogeneity of GLAST and GLT-1 immunoreactivity in the developing postnatal mouse hippocampus. J Comp Neurol. 2014;522:204-24 pubmed 出版商
  925. Cops E, Sashindranath M, Daglas M, Short K, da Fonseca Pereira C, Pang T, et al. Tissue-type plasminogen activator is an extracellular mediator of Purkinje cell damage and altered gait. Exp Neurol. 2013;249:8-19 pubmed 出版商
  926. Azari H. Isolation and enrichment of defined neural cell populations from heterogeneous neural stem cell progeny. Methods Mol Biol. 2013;1059:95-106 pubmed 出版商
  927. Sun X, Chen B, Duan L, Xia Y, Luo Z, Wang J, et al. The proform of glia cell line-derived neurotrophic factor: a potentially biologically active protein. Mol Neurobiol. 2014;49:234-50 pubmed 出版商
  928. Bittner S, Ruck T, Schuhmann M, Herrmann A, Moha Ou Maati H, Bobak N, et al. Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med. 2013;19:1161-5 pubmed 出版商
  929. Gong N, Li X, Xiao Q, Wang Y. Identification of a novel spinal dorsal horn astroglial D-amino acid oxidase-hydrogen peroxide pathway involved in morphine antinociceptive tolerance. Anesthesiology. 2014;120:962-75 pubmed 出版商
  930. Prox J, Bernreuther C, Altmeppen H, Grendel J, Glatzel M, D Hooge R, et al. Postnatal disruption of the disintegrin/metalloproteinase ADAM10 in brain causes epileptic seizures, learning deficits, altered spine morphology, and defective synaptic functions. J Neurosci. 2013;33:12915-28, 12928a pubmed 出版商
  931. Sahu S, Kauser H, Ray K, Kishore K, Kumar S, Panjwani U. Caffeine and modafinil promote adult neuronal cell proliferation during 48 h of total sleep deprivation in rat dentate gyrus. Exp Neurol. 2013;248:470-81 pubmed 出版商
  932. Perez S, Raghanti M, Hof P, Kramer L, Ikonomovic M, Lacor P, et al. Alzheimer's disease pathology in the neocortex and hippocampus of the western lowland gorilla (Gorilla gorilla gorilla). J Comp Neurol. 2013;521:4318-38 pubmed 出版商
  933. Hametner S, Wimmer I, Haider L, Pfeifenbring S, Bruck W, Lassmann H. Iron and neurodegeneration in the multiple sclerosis brain. Ann Neurol. 2013;74:848-61 pubmed 出版商
  934. Ramesh G, Santana Gould L, Inglis F, England J, Philipp M. The Lyme disease spirochete Borrelia burgdorferi induces inflammation and apoptosis in cells from dorsal root ganglia. J Neuroinflammation. 2013;10:88 pubmed 出版商
  935. Stegeman S, Jolly L, Premarathne S, Gecz J, Richards L, Mackay Sim A, et al. Loss of Usp9x disrupts cortical architecture, hippocampal development and TGF?-mediated axonogenesis. PLoS ONE. 2013;8:e68287 pubmed 出版商
  936. Mao X, Hütt Cabezas M, Orr B, Weingart M, Taylor I, Rajan A, et al. LIN28A facilitates the transformation of human neural stem cells and promotes glioblastoma tumorigenesis through a pro-invasive genetic program. Oncotarget. 2013;4:1050-64 pubmed
  937. McGivern J, Patitucci T, Nord J, Barabas M, Stucky C, Ebert A. Spinal muscular atrophy astrocytes exhibit abnormal calcium regulation and reduced growth factor production. Glia. 2013;61:1418-1428 pubmed 出版商
  938. Ohlsson M, Nieto J, Christe K, Havton L. Long-term effects of a lumbosacral ventral root avulsion injury on axotomized motor neurons and avulsed ventral roots in a non-human primate model of cauda equina injury. Neuroscience. 2013;250:129-39 pubmed 出版商
  939. Brunne B, FRANCO S, Bouché E, Herz J, Howell B, Pahle J, et al. Role of the postnatal radial glial scaffold for the development of the dentate gyrus as revealed by Reelin signaling mutant mice. Glia. 2013;61:1347-63 pubmed 出版商
  940. Pose Méndez S, Candal E, Adrio F, Rodriguez Moldes I. Development of the cerebellar afferent system in the shark Scyliorhinus canicula: insights into the basal organization of precerebellar nuclei in gnathostomes. J Comp Neurol. 2014;522:131-68 pubmed 出版商
  941. Wang X, Hu J, She Y, Smith G, Xu X. Cortical PKC inhibition promotes axonal regeneration of the corticospinal tract and forelimb functional recovery after cervical dorsal spinal hemisection in adult rats. Cereb Cortex. 2014;24:3069-79 pubmed 出版商
  942. Otte D, Barcena de Arellano M, Bilkei Gorzo A, Albayram O, Imbeault S, Jeung H, et al. Effects of Chronic D-Serine Elevation on Animal Models of Depression and Anxiety-Related Behavior. PLoS ONE. 2013;8:e67131 pubmed 出版商
  943. Potter K, Buck A, Self W, Callanan M, Sunil S, Capadona J. The effect of resveratrol on neurodegeneration and blood brain barrier stability surrounding intracortical microelectrodes. Biomaterials. 2013;34:7001-15 pubmed 出版商
  944. Li H, Zhang N, Sun G, Ding S. Inhibition of the group I mGluRs reduces acute brain damage and improves long-term histological outcomes after photothrombosis-induced ischaemia. ASN Neuro. 2013;5:195-207 pubmed 出版商
  945. Dieriks B, Waldvogel H, Monzo H, Faull R, Curtis M. GABA(A) receptor characterization and subunit localization in the human sub-ventricular zone. J Chem Neuroanat. 2013;52:58-68 pubmed 出版商
  946. Mietzsch U, McKenna J, Reith R, Way S, Gambello M. Comparative analysis of Tsc1 and Tsc2 single and double radial glial cell mutants. J Comp Neurol. 2013;521:3817-31 pubmed 出版商
  947. Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature. 2013;498:492-6 pubmed 出版商
  948. Koval E, Shaner C, Zhang P, du Maine X, Fischer K, Tay J, et al. Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. Hum Mol Genet. 2013;22:4127-35 pubmed 出版商
  949. Natsume A, Ito M, Katsushima K, Ohka F, Hatanaka A, Shinjo K, et al. Chromatin regulator PRC2 is a key regulator of epigenetic plasticity in glioblastoma. Cancer Res. 2013;73:4559-70 pubmed 出版商
  950. Lowe M, Kim E, Faull R, Christie D, Waldvogel H. Dissociated expression of mitochondrial and cytosolic creatine kinases in the human brain: a new perspective on the role of creatine in brain energy metabolism. J Cereb Blood Flow Metab. 2013;33:1295-306 pubmed 出版商
  951. Prabhakar S, Goto J, Zhang X, Zuang X, Sena Esteves M, Bronson R, et al. Stochastic model of Tsc1 lesions in mouse brain. PLoS ONE. 2013;8:e64224 pubmed 出版商
  952. Liu Q, Pedersen O, Peng J, Couture L, Rao M, Zeng X. Optimizing dopaminergic differentiation of pluripotent stem cells for the manufacture of dopaminergic neurons for transplantation. Cytotherapy. 2013;15:999-1010 pubmed 出版商
  953. Li L, Ginet V, Liu X, Vergun O, Tuittila M, Mathieu M, et al. The nNOS-p38MAPK pathway is mediated by NOS1AP during neuronal death. J Neurosci. 2013;33:8185-201 pubmed 出版商
  954. Langlet F, Mullier A, Bouret S, Prevot V, Dehouck B. Tanycyte-like cells form a blood-cerebrospinal fluid barrier in the circumventricular organs of the mouse brain. J Comp Neurol. 2013;521:3389-405 pubmed 出版商
  955. Kao C, Hsu Y, Liu J, Lee D, Chung Y, Chiu I. The mood stabilizer valproate activates human FGF1 gene promoter through inhibiting HDAC and GSK-3 activities. J Neurochem. 2013;126:4-18 pubmed 出版商
  956. Higurashi N, Uchida T, Lossin C, Misumi Y, Okada Y, Akamatsu W, et al. A human Dravet syndrome model from patient induced pluripotent stem cells. Mol Brain. 2013;6:19 pubmed 出版商
  957. Medrano M, Gerrikagoitia I, Martinez Millan L, Mendiguren A, Pineda J. Functional and morphological characterization of glutamate transporters in the rat locus coeruleus. Br J Pharmacol. 2013;169:1781-94 pubmed 出版商
  958. Delli Carri A, Onorati M, Castiglioni V, Faedo A, Camnasio S, Toselli M, et al. Human pluripotent stem cell differentiation into authentic striatal projection neurons. Stem Cell Rev. 2013;9:461-74 pubmed 出版商
  959. Sparmann A, Xie Y, Verhoeven E, Vermeulen M, Lancini C, Gargiulo G, et al. The chromodomain helicase Chd4 is required for Polycomb-mediated inhibition of astroglial differentiation. EMBO J. 2013;32:1598-612 pubmed 出版商
  960. Bourque S, Kuny S, Reyes L, Davidge S, Sauve Y. Prenatal hypoxia is associated with long-term retinal dysfunction in rats. PLoS ONE. 2013;8:e61861 pubmed 出版商
  961. Löw K, Aebischer P, Schneider B. Direct and retrograde transduction of nigral neurons with AAV6, 8, and 9 and intraneuronal persistence of viral particles. Hum Gene Ther. 2013;24:613-29 pubmed 出版商
  962. Li X, Xiao Z, Han J, Chen L, Xiao H, Ma F, et al. Promotion of neuronal differentiation of neural progenitor cells by using EGFR antibody functionalized collagen scaffolds for spinal cord injury repair. Biomaterials. 2013;34:5107-16 pubmed 出版商
  963. Zemp F, Lun X, McKenzie B, Zhou H, Maxwell L, Sun B, et al. Treating brain tumor-initiating cells using a combination of myxoma virus and rapamycin. Neuro Oncol. 2013;15:904-20 pubmed 出版商
  964. Kelleher M, Hirst J, Palliser H. Changes in neuroactive steroid concentrations after preterm delivery in the Guinea pig. Reprod Sci. 2013;20:1365-75 pubmed 出版商
  965. Degerman E, Rauch U, Lindberg S, Caye Thomasen P, Hultgårdh A, Magnusson M. Expression of insulin signalling components in the sensory epithelium of the human saccule. Cell Tissue Res. 2013;352:469-78 pubmed 出版商
  966. Misu T, Hoftberger R, Fujihara K, Wimmer I, Takai Y, Nishiyama S, et al. Presence of six different lesion types suggests diverse mechanisms of tissue injury in neuromyelitis optica. Acta Neuropathol. 2013;125:815-27 pubmed 出版商
  967. Hannula M, Myöhänen T, Tenorio Laranga J, Mannisto P, Garcia Horsman J. Prolyl oligopeptidase colocalizes with ?-synuclein, ?-amyloid, tau protein and astroglia in the post-mortem brain samples with Parkinson's and Alzheimer's diseases. Neuroscience. 2013;242:140-50 pubmed 出版商
  968. Brana C, Frossard M, Pescini Gobert R, Martinier N, Boschert U, Seabrook T. Immunohistochemical detection of sphingosine-1-phosphate receptor 1 and 5 in human multiple sclerosis lesions. Neuropathol Appl Neurobiol. 2014;40:564-78 pubmed 出版商
  969. Vontell R, Supramaniam V, Thornton C, Wyatt Ashmead J, Mallard C, Gressens P, et al. Toll-like receptor 3 expression in glia and neurons alters in response to white matter injury in preterm infants. Dev Neurosci. 2013;35:130-9 pubmed 出版商
  970. Samaranch L, Salegio E, San Sebastián W, Kells A, Bringas J, Forsayeth J, et al. Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the cerebrospinal fluid of nonhuman primates. Hum Gene Ther. 2013;24:526-32 pubmed 出版商
  971. Harris N, Nogueira M, Verley D, Sutton R. Chondroitinase enhances cortical map plasticity and increases functionally active sprouting axons after brain injury. J Neurotrauma. 2013;30:1257-69 pubmed 出版商
  972. Chio C, Chang C, Wang C, Cheong C, Chao C, Cheng B, et al. Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-?. BMC Neurosci. 2013;14:33 pubmed 出版商
  973. Smith A, Gibbons H, Oldfield R, Bergin P, Mee E, Faull R, et al. The transcription factor PU.1 is critical for viability and function of human brain microglia. Glia. 2013;61:929-42 pubmed 出版商
  974. Vinukonda G, Zia M, Bhimavarapu B, Hu F, Feinberg M, Bokhari A, et al. Intraventricular hemorrhage induces deposition of proteoglycans in premature rabbits, but their in vivo degradation with chondroitinase does not restore myelination, ventricle size and neurological recovery. Exp Neurol. 2013;247:630-44 pubmed 出版商
  975. Bai L, Hecker J, Kerstetter A, Miller R. Myelin repair and functional recovery mediated by neural cell transplantation in a mouse model of multiple sclerosis. Neurosci Bull. 2013;29:239-50 pubmed 出版商
  976. Kim B, Zaveri H, Shchelochkov O, Yu Z, Hernandez Garcia A, Seymour M, et al. An allelic series of mice reveals a role for RERE in the development of multiple organs affected in chromosome 1p36 deletions. PLoS ONE. 2013;8:e57460 pubmed 出版商
  977. Hemley S, Bilston L, Cheng S, Chan J, Stoodley M. Aquaporin-4 expression in post-traumatic syringomyelia. J Neurotrauma. 2013;30:1457-67 pubmed 出版商
  978. Wang L, Ohishi T, Akane H, Shiraki A, Itahashi M, Mitsumori K, et al. Reversible effect of developmental exposure to chlorpyrifos on late-stage neurogenesis in the hippocampal dentate gyrus in mouse offspring. Reprod Toxicol. 2013;38:25-36 pubmed 出版商
  979. Yuan Y, Yeh L, Liu H, Yamanaka O, Hardie W, Kao W, et al. Targeted overexpression of TGF-? in the corneal epithelium of adult transgenic mice induces changes in anterior segment morphology and activates noncanonical Wnt signaling. Invest Ophthalmol Vis Sci. 2013;54:1829-37 pubmed 出版商
  980. Chapuis J, Hansmannel F, Gistelinck M, Mounier A, Van Cauwenberghe C, Kolen K, et al. Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Mol Psychiatry. 2013;18:1225-34 pubmed 出版商
  981. Karasinska J, de Haan W, Franciosi S, Ruddle P, Fan J, Kruit J, et al. ABCA1 influences neuroinflammation and neuronal death. Neurobiol Dis. 2013;54:445-55 pubmed 出版商
  982. Murakami K, Jiang Y, Tanaka T, Bando Y, Mitrovic B, Yoshida S. In vivo analysis of kallikrein-related peptidase 6 (KLK6) function in oligodendrocyte development and the expression of myelin proteins. Neuroscience. 2013;236:1-11 pubmed 出版商
  983. Hung Y, Lai M, Tseng Y, Chou C, Lin