这是一篇来自已证抗体库的有关人类 GFAP的综述,是根据1120篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合GFAP 抗体。
GFAP 同义词: ALXDRD; glial fibrillary acidic protein

艾博抗(上海)贸易有限公司
兔 多克隆
  • IHC-Free; 人类; 1:5000; 图4
  • IHC-Free; 小鼠; 1:5000; 图2
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于immunohistochemistry - free floating section在人类样品上浓度为1:5000 (图4) 和 在小鼠样品上浓度为1:5000 (图2). Neurosci Res (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:4000; 图4b
艾博抗(上海)贸易有限公司 GFAP抗体(Millipore, AB7260)被用于免疫印迹在小鼠样品上浓度为1:4000 (图4b). Biochem Biophys Res Commun (2017) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 1:50; 图1c
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫细胞化学在大鼠样品上浓度为1:50 (图1c). Oncol Lett (2017) ncbi
鸡 多克隆
  • 细胞化学; 小鼠; 1:1600; 图2a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫细胞化学在小鼠样品上浓度为1:1600 (图2a). Invest Ophthalmol Vis Sci (2017) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图1b
艾博抗(上海)贸易有限公司 GFAP抗体(Sigma, AB7260)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图1b). Nat Commun (2017) ncbi
鸡 多克隆
  • 免疫组化; 大鼠; 1:200; 图6
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化在大鼠样品上浓度为1:200 (图6). Glia (2017) ncbi
山羊 多克隆
  • IHC-Free; 小鼠; 1:1000; 图2a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000 (图2a). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:200; 图4a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化在大鼠样品上浓度为1:200 (图4a). J Headache Pain (2017) ncbi
兔 单克隆(EP672Y)
  • 免疫组化-P; 小鼠; 1:200; 图7f
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab33922)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图7f). Ann Neurol (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:500; 图1f
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化在人类样品上浓度为1:500 (图1f). Proc Natl Acad Sci U S A (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000; 图1c
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, AB7260)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图1c). Mol Psychiatry (2016) ncbi
鸡 多克隆
  • 免疫组化; 人类; 1:500; 图2d
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化在人类样品上浓度为1:500 (图2d). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(2A5)
  • IHC-Free; 大鼠; 1:2000; 图6
  • 免疫印迹; 大鼠; 1:1000; 图6
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4648)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:2000 (图6) 和 免疫印迹在大鼠样品上浓度为1:1000 (图6). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:200; 图1c
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图1c). PLoS ONE (2016) ncbi
小鼠 单克隆(2A5)
  • IHC-Free; 小鼠; 图2f
艾博抗(上海)贸易有限公司 GFAP抗体(abcam, ab4648)被用于immunohistochemistry - free floating section在小鼠样品上 (图2f). Neuroimage (2016) ncbi
山羊 多克隆
  • 免疫组化-F; 小鼠; 1:100; 图7g
  • 免疫组化-P; 小鼠; 1:100; 图4d
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图7g) 和 免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图4d). Sci Rep (2016) ncbi
山羊 多克隆
  • 细胞化学; 人类; 图s4d
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于免疫细胞化学在人类样品上 (图s4d). Nature (2016) ncbi
兔 多克隆
  • 细胞化学; 人类
  • 细胞化学; 大鼠; 1:50
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫细胞化学在人类样品上 和 在大鼠样品上浓度为1:50. Mol Med Rep (2016) ncbi
鸡 多克隆
  • IHC-Free; 小鼠; 1:200; 图2
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:200 (图2). Cell Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图8
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 7260)被用于免疫印迹在小鼠样品上 (图8). Mol Vis (2016) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 1:50; 图1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 7260)被用于免疫细胞化学在大鼠样品上浓度为1:50 (图1). Oncol Lett (2016) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1:600; 表1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, Ab53554)被用于免疫组化在小鼠样品上浓度为1:600 (表1). Int J Mol Sci (2016) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:500; 图4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500 (图4). Acta Neuropathol Commun (2016) ncbi
兔 多克隆
  • FC; 小鼠; 1:100; 图2
  • 免疫印迹; 小鼠; 1:100; 图2
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab16997)被用于流式细胞仪在小鼠样品上浓度为1:100 (图2) 和 免疫印迹在小鼠样品上浓度为1:100 (图2). Dis Model Mech (2016) ncbi
小鼠 单克隆(GF5)
  • 免疫组化; 小鼠; 1:1000; 图1b
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 10,062)被用于免疫组化在小鼠样品上浓度为1:1000 (图1b). Mol Ther Nucleic Acids (2016) ncbi
兔 单克隆(EP672Y)
  • 细胞化学; 人类; 1:500; 图1g
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab33922)被用于免疫细胞化学在人类样品上浓度为1:500 (图1g). Mol Med Rep (2016) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:1000; 图5a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫细胞化学在小鼠样品上浓度为1:1000 (图5a). Dev Neurobiol (2016) ncbi
山羊 多克隆
  • 细胞化学; 人类; 1:400; 图1s1
艾博抗(上海)贸易有限公司 GFAP抗体(abcam, 54554)被用于免疫细胞化学在人类样品上浓度为1:400 (图1s1). elife (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化; 小鼠; 1:50; 图3
  • 免疫组化; 大鼠; 1:50; 图4
艾博抗(上海)贸易有限公司 GFAP抗体(AbCam, Ab4648)被用于免疫组化在小鼠样品上浓度为1:50 (图3) 和 在大鼠样品上浓度为1:50 (图4). Neuroscience (2016) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-P; 大鼠; 图1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于免疫组化-石蜡切片在大鼠样品上 (图1). Mol Brain (2016) ncbi
鸡 多克隆
  • 免疫组化-P; 大鼠; 1:100; 图6
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 (图6). PLoS ONE (2016) ncbi
鸡 多克隆
  • 免疫组化; domestic ferret; 1:500; 图9d
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化在domestic ferret样品上浓度为1:500 (图9d). Shock (2016) ncbi
山羊 多克隆
  • 免疫印迹; 大鼠; 1:500; 图4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于免疫印迹在大鼠样品上浓度为1:500 (图4). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:500; 图1b
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:500 (图1b). Front Cell Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:5000; 图4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:5000 (图4). Sci Rep (2016) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 图6
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化在小鼠样品上浓度为1:1000 (图6). Front Cell Neurosci (2016) ncbi
鸡 多克隆
  • 免疫组化-F; 小鼠; 1:2000; 图1g
  • 细胞化学; 小鼠; 1:2000; 图1l
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:2000 (图1g) 和 免疫细胞化学在小鼠样品上浓度为1:2000 (图1l). Nat Commun (2016) ncbi
鸡 多克隆
  • FC; 大鼠; 图6
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于流式细胞仪在大鼠样品上 (图6). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:1000; 图1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (图1). Aging (Albany NY) (2016) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:5000; 图3
  • 免疫印迹; 大鼠; 1:20,000; 图3
艾博抗(上海)贸易有限公司 GFAP抗体(abcam, ab7260)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:5000 (图3) 和 免疫印迹在大鼠样品上浓度为1:20,000 (图3). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图ev1c
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫印迹在小鼠样品上浓度为1:5000 (图ev1c). EMBO Mol Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫印迹在小鼠样品上 (图1). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:2000; 图1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab16997)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:2000 (图1). Mol Med Rep (2016) ncbi
山羊 多克隆
  • IHC-Free; 小鼠; 1:1000; 图4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000 (图4). Proc Natl Acad Sci U S A (2016) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 表1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化在小鼠样品上浓度为1:1000 (表1). Cell Mol Gastroenterol Hepatol (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图6a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, AB7260)被用于免疫组化在小鼠样品上浓度为1:500 (图6a). PLoS ONE (2015) ncbi
小鼠 单克隆(2A5)
  • 免疫组化; 小鼠; 1:500; 图2
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4648)被用于免疫组化在小鼠样品上浓度为1:500 (图2). Mol Ther (2016) ncbi
鸡 多克隆
  • 免疫印迹; 大鼠; 1:10,000; 图1b
  • 细胞化学; 大鼠; 1:1000; 图6c
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫印迹在大鼠样品上浓度为1:10,000 (图1b) 和 免疫细胞化学在大鼠样品上浓度为1:1000 (图6c). PLoS ONE (2015) ncbi
小鼠 单克隆(2A5)
  • 免疫组化; 人类; 1:100; 图2c
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 2A5)被用于免疫组化在人类样品上浓度为1:100 (图2c). Oncotarget (2016) ncbi
小鼠 单克隆(GF5)
  • 免疫组化; 人类; 1:100; 图2
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于免疫组化在人类样品上浓度为1:100 (图2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图4). Gene Ther (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图s10
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化在小鼠样品上浓度为1:500 (图s10). Brain (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1500; 图2
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫印迹在人类样品上浓度为1:1500 (图2). Stem Cell Res (2015) ncbi
鸡 多克隆
  • IHC-Free; 小鼠; 1:2000; 图3
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:2000 (图3). Front Mol Neurosci (2015) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-F; 大鼠; 1:100; 图3
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:100 (图3). Mol Brain (2015) ncbi
鸡 多克隆
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化在小鼠样品上. Sci Signal (2015) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-F; 小鼠; 图2
  • 细胞化学; 小鼠; 图4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, GF5)被用于免疫组化-冰冻切片在小鼠样品上 (图2) 和 免疫细胞化学在小鼠样品上 (图4). Neuroscience (2015) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-F; 小鼠; 图2a
艾博抗(上海)贸易有限公司 GFAP抗体(abcam, ab10062)被用于免疫组化-冰冻切片在小鼠样品上 (图2a). PLoS ONE (2015) ncbi
小鼠 单克隆(GF5)
  • 免疫印迹; 小鼠; 1:1000; 图1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于免疫印迹在小鼠样品上浓度为1:1000 (图1). Nat Neurosci (2015) ncbi
小鼠 单克隆(2A5)
  • 免疫组化-F; 大鼠; 图4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4648)被用于免疫组化-冰冻切片在大鼠样品上 (图4). Mol Pain (2015) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 图3
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化-冰冻切片在大鼠样品上 (图3). J Korean Med Sci (2015) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(abcam, ab7260)被用于免疫细胞化学在小鼠样品上浓度为1:500. Iran J Basic Med Sci (2015) ncbi
小鼠 单克隆(2A5)
  • 细胞化学; 人类; 1:100; 图3
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4648)被用于免疫细胞化学在人类样品上浓度为1:100 (图3). PLoS ONE (2015) ncbi
鸡 多克隆
  • 免疫组化-P; 大鼠; 1:400
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:400. J Histochem Cytochem (2015) ncbi
鸡 多克隆
  • 免疫组化-F; 小鼠; 1:300
  • 细胞化学; 小鼠; 1:300
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:300 和 免疫细胞化学在小鼠样品上浓度为1:300. Mol Cell Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:1000; 图3
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 7260)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图3). Hum Mol Genet (2015) ncbi
鸡 多克隆
  • 细胞化学; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(AbCam, ab4674)被用于免疫细胞化学在大鼠样品上浓度为1:1000. Exp Eye Res (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:5000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化在小鼠样品上浓度为1:5000. Shock (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图2
艾博抗(上海)贸易有限公司 GFAP抗体(abcam, ab7260)被用于免疫组化在小鼠样品上 (图2). Oncotarget (2015) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. Cereb Cortex (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化在小鼠样品上浓度为1:500. J Assoc Res Otolaryngol (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化在大鼠样品上浓度为1:1000. Biol Psychiatry (2015) ncbi
小鼠 单克隆(GF5)
  • 免疫组化; 小鼠; 1:100; 图s2a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于免疫组化在小鼠样品上浓度为1:100 (图s2a). Nat Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化在小鼠样品上. Curr Protoc Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, AB7260)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. J Neurosci (2015) ncbi
小鼠 单克隆(GF5)
  • IHC-Free; 大鼠; 1:500
  • 免疫组化; 大鼠; 1:500
  • 免疫印迹; 大鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:500, 免疫组化在大鼠样品上浓度为1:500, 和 免疫印迹在大鼠样品上浓度为1:500. Biochim Biophys Acta (2015) ncbi
鸡 多克隆
  • 细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫细胞化学在人类样品上浓度为1:100. Mol Med Rep (2015) ncbi
山羊 多克隆
  • 免疫印迹; 小鼠; 图3a
艾博抗(上海)贸易有限公司 GFAP抗体(abcam, ab53554)被用于免疫印迹在小鼠样品上 (图3a). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化在人类样品上浓度为1:500. Tumour Biol (2015) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 7260)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500. Ann Neurol (2015) ncbi
小鼠 单克隆(GF5)
  • 免疫组化; 小鼠; 1:250; 图5
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于免疫组化在小鼠样品上浓度为1:250 (图5). Age (Dordr) (2015) ncbi
小鼠 单克隆(GF5)
  • 细胞化学; 人类; 1:100; 图1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于免疫细胞化学在人类样品上浓度为1:100 (图1). J Neurosci (2015) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于免疫组化在小鼠样品上浓度为1:500. Nature (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图5
艾博抗(上海)贸易有限公司 GFAP抗体(abcam, ab7260)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图5). Nat Cell Biol (2015) ncbi
兔 多克隆
  • 免疫组化-F; 人类; 图3
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化-冰冻切片在人类样品上 (图3). Transl Psychiatry (2015) ncbi
鸡 多克隆
  • 免疫组化; 大鼠; 图4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化在大鼠样品上 (图4). Mol Ther (2015) ncbi
鸡 多克隆
  • IHC-Free; 小鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab50738)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500. Neurobiol Dis (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000
  • 免疫印迹; 大鼠; 1:5000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 7260)被用于免疫印迹在人类样品上浓度为1:5000 和 在大鼠样品上浓度为1:5000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫印迹在小鼠样品上 和 免疫组化在小鼠样品上. Stem Cells (2015) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:500
  • 免疫组化; 大鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化在小鼠样品上浓度为1:500 和 在大鼠样品上浓度为1:500. J Neurotrauma (2015) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化在小鼠样品上浓度为1:500. Neurobiol Dis (2015) ncbi
鸡 多克隆
  • IHC-Free; 小鼠; 1:200
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:200. Cereb Cortex (2015) ncbi
鸡 多克隆
  • 免疫组化-F; 人类; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化-冰冻切片在人类样品上浓度为1:500. J Comp Neurol (2015) ncbi
兔 多克隆
  • 细胞化学; 小鼠
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫细胞化学在小鼠样品上. Glia (2015) ncbi
鸡 多克隆
  • 细胞化学; 人类; 1:3000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫细胞化学在人类样品上浓度为1:3000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1 ul/ml; 图2
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化在小鼠样品上浓度为1 ul/ml (图2). Methods Mol Biol (2014) ncbi
山羊 多克隆
  • 免疫印迹; 大鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于免疫印迹在大鼠样品上浓度为1:500. PLoS ONE (2014) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化在小鼠样品上浓度为1:1000. Neurobiol Dis (2014) ncbi
兔 多克隆
  • 细胞化学; 小鼠
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫细胞化学在小鼠样品上. PLoS Genet (2014) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-F; 小鼠
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 10062)被用于免疫组化-冰冻切片在小鼠样品上. Mol Cell Neurosci (2014) ncbi
兔 多克隆
  • 细胞化学; 牛; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫细胞化学在牛样品上浓度为1:500. AAPS J (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
  • 免疫组化; 人类; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫印迹在人类样品上浓度为1:1000 和 免疫组化在人类样品上浓度为1:1000. J Neuroimmunol (2014) ncbi
山羊 多克隆
  • 免疫组化; 大鼠; 1:2000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于免疫组化在大鼠样品上浓度为1:2000. Front Synaptic Neurosci (2014) ncbi
鸡 多克隆
  • 免疫组化-F; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Neurotrauma (2014) ncbi
鸡 多克隆
  • IHC-Free; 大鼠; 6.6 ug/ml
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于immunohistochemistry - free floating section在大鼠样品上浓度为6.6 ug/ml. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化在小鼠样品上浓度为1:1000. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化在小鼠样品上浓度为1:500. Cell Mol Neurobiol (2014) ncbi
鸡 多克隆
  • 免疫组化-P; 人类; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化-石蜡切片在人类样品上浓度为1:500. Acta Neuropathol (2014) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab16997)被用于免疫组化-冰冻切片在大鼠样品上. PLoS ONE (2013) ncbi
山羊 多克隆
  • 免疫组化-F; 人类; 1:200
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab53554)被用于免疫组化-冰冻切片在人类样品上浓度为1:200. Stem Cells Dev (2014) ncbi
兔 多克隆艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, Ab7260)被用于. Hum Mol Genet (2014) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-P; 小鼠; 1:250
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:250. J Innate Immun (2014) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-F; 大鼠; 1:500
  • 免疫印迹; 大鼠; 1:500
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500 和 免疫印迹在大鼠样品上浓度为1:500. Exp Neurol (2013) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化在小鼠样品上浓度为1:1000. Hum Mol Genet (2013) ncbi
小鼠 单克隆(2A5)
  • 免疫组化; 大鼠; 1:200
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4648)被用于免疫组化在大鼠样品上浓度为1:200. BMC Neurosci (2013) ncbi
鸡 多克隆
  • 免疫组化-P; 人类; 1:200
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Neuroscience (2013) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-P; 小鼠; 1:250
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:250. Mol Neurodegener (2012) ncbi
兔 多克隆
  • 其他; 猪; 1:500; 图2a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于其他在猪样品上浓度为1:500 (图2a). Electrophoresis (2012) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-P; 小鼠; 1:250
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab10062)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:250. J Neuroimmunol (2013) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化-石蜡切片在小鼠样品上 (图4). PLoS ONE (2011) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:600
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:600. J Comp Neurol (2009) ncbi
赛默飞世尔
小鼠 单克隆(ASTRO6)
  • 细胞化学; 小鼠; 图s1b
赛默飞世尔 GFAP抗体(Thermo, MA5-12023)被用于免疫细胞化学在小鼠样品上 (图s1b). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫印迹; 小鼠; 1:500; 图s1b
赛默飞世尔 GFAP抗体(ThermoFischer, 13-0300)被用于免疫印迹在小鼠样品上浓度为1:500 (图s1b). Invest Ophthalmol Vis Sci (2017) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 图S2G
赛默飞世尔 GFAP抗体(invitrogen, PA1-10019)被用于免疫组化-冰冻切片在小鼠样品上 (图S2G). PLoS ONE (2017) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 图7a
赛默飞世尔 GFAP抗体(ThermoFisher, PA1-10004)被用于免疫组化在小鼠样品上 (图7a). Cell Stem Cell (2017) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化-F; 人类; 1:500; 图5e
赛默飞世尔 GFAP抗体(Invitrogen, MA5-12023)被用于免疫组化-冰冻切片在人类样品上浓度为1:500 (图5e). Nature (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠; 1:500; 图1f
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图1f). Nature (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫印迹; 小鼠; 1:500; 图s1a
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于免疫印迹在小鼠样品上浓度为1:500 (图s1a). J Cell Sci (2017) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-P; 小鼠; 1:400; 图2g
赛默飞世尔 GFAP抗体(Thermo Fischer Scientific, 131-17719)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400 (图2g). Mediators Inflamm (2016) ncbi
小鼠 单克隆(ASTRO6)
  • 细胞化学; Epinephelus; 图1a
赛默飞世尔 GFAP抗体(Thermo Fisher Scientific, MA5-12023)被用于免疫细胞化学在Epinephelus样品上 (图1a). Dev Comp Immunol (2017) ncbi
大鼠 单克隆(2.2B10)
  • 细胞化学; 小鼠; 1:1000; 图3
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫细胞化学在小鼠样品上浓度为1:1000 (图3). J Vis Exp (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图8m
赛默飞世尔 GFAP抗体(Zymed, 2.2B10)被用于免疫组化在小鼠样品上 (图8m). J Neurosci (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠; 1:500; 图6d
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图6d). PLoS ONE (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-P; 人类; 1:200; 表1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (表1). Glia (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠; 1:250; 图4a
赛默飞世尔 GFAP抗体(生活技术, 2.2B10)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:250 (图4a). Glia (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:500; 表1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化在小鼠样品上浓度为1:500 (表1). J Neurovirol (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:5000; 图5a
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化在小鼠样品上浓度为1:5000 (图5a). Nat Commun (2016) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:1000; 图6b
赛默飞世尔 GFAP抗体(ThermoFisher Scientific, PA3-16727)被用于免疫细胞化学在人类样品上浓度为1:1000 (图6b). Dev Growth Differ (2016) ncbi
大鼠 单克隆(2.2B10)
  • 细胞化学; 人类; 图1g
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫细胞化学在人类样品上 (图1g). Neuroscience (2016) ncbi
小鼠 单克隆(131-17719)赛默飞世尔 GFAP抗体(分子探针, A-21294)被用于. Neuroscience (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠; 1:1000; 图5a
赛默飞世尔 GFAP抗体(Zymed, 2.2B10)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图5a). J Neuroinflammation (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠; 1:400; 图2
赛默飞世尔 GFAP抗体(生活技术, 13-0300)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:400 (图2). J Neuroinflammation (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图7b
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于免疫组化在小鼠样品上 (图7b). Neuroimage (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-P; 小鼠; 1:1000; 图3
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图3). Acta Neuropathol Commun (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:500; 图1f
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化在小鼠样品上浓度为1:500 (图1f). Science (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000; 表1
赛默飞世尔 GFAP抗体(Thermo Fisher, PA1-9565)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (表1). J Comp Neurol (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-P; 小鼠; 图3a
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于免疫组化-石蜡切片在小鼠样品上 (图3a). Biol Cell (2016) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化; 小鼠; 1:2000; 图2C
赛默飞世尔 GFAP抗体(Thermo, MA5-12023)被用于免疫组化在小鼠样品上浓度为1:2000 (图2C). Sci Rep (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:2000; 表1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化在小鼠样品上浓度为1:2000 (表1). J Comp Neurol (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠; 1:200; 图s2
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图s2). Nature (2016) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化; 小鼠; 1:250; 图3f
赛默飞世尔 GFAP抗体(Invitrogen, A21282)被用于免疫组化在小鼠样品上浓度为1:250 (图3f). Neuroscience (2016) ncbi
大鼠 单克隆(2.2B10)
  • 细胞化学; 小鼠; 图1
赛默飞世尔 GFAP抗体(生活技术, 13-0300)被用于免疫细胞化学在小鼠样品上 (图1). Proteomics (2016) ncbi
鸡 多克隆
  • IHC-Free; 大鼠; 1:2000; 图4
赛默飞世尔 GFAP抗体(Thermo Scientific, PA1-10004)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:2000 (图4). J Neurochem (2016) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化-P; 小鼠; 图4
赛默飞世尔 GFAP抗体(Thermo Scientific, MS-1376)被用于免疫组化-石蜡切片在小鼠样品上 (图4). PLoS ONE (2016) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化-P; 人类; 1:100; 图4
赛默飞世尔 GFAP抗体(Thermo Fisher, MA5-12023)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图4). Oncol Lett (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠; 1:500; 图2
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图2). J Neuroinflammation (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图6
  • 免疫印迹; 小鼠; 图4
赛默飞世尔 GFAP抗体(Pierce, PA3-16727)被用于免疫组化-石蜡切片在小鼠样品上 (图6) 和 免疫印迹在小鼠样品上 (图4). J Neurochem (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠; 1:1000; 图3
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图3). Neuroscience (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 人类; 图3f
赛默飞世尔 GFAP抗体(Invitrogen, GA5)被用于免疫组化-石蜡切片在人类样品上 (图3f). Sci Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 人类; 图3f
赛默飞世尔 GFAP抗体(Invitrogen, GA5)被用于免疫组化-石蜡切片在人类样品上 (图3f). Sci Rep (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-P; 小鼠; 1:1000; 图1c
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图1c). Neurobiol Dis (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图7
赛默飞世尔 GFAP抗体(Pierce, PA1-10019)被用于免疫组化在小鼠样品上浓度为1:1000 (图7). Neuroscience (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠; 1:6000; 图1
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:6000 (图1). J Neurochem (2016) ncbi
小鼠 单克隆(S.880.0)
  • 细胞化学; 人类; 图7
赛默飞世尔 GFAP抗体(生活技术, MA5-15086)被用于免疫细胞化学在人类样品上 (图7). Sci Rep (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠; 图1a
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于免疫组化-冰冻切片在小鼠样品上 (图1a). Mol Neurobiol (2016) ncbi
大鼠 单克隆(2.2B10)
  • 细胞化学; 小鼠
赛默飞世尔 GFAP抗体(生活技术, 13-0300)被用于免疫细胞化学在小鼠样品上. Biochem J (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图7
赛默飞世尔 GFAP抗体(Thermo Scientific, RB-087-A)被用于免疫组化在小鼠样品上 (图7). Neural Dev (2015) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化-F; 小鼠; 1:2000; 图3
  • 免疫印迹; 小鼠; 1:5000; 图7
赛默飞世尔 GFAP抗体(Thermo Scientific, MA5-12023)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:2000 (图3) 和 免疫印迹在小鼠样品上浓度为1:5000 (图7). Anesthesiology (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠; 1:200
赛默飞世尔 GFAP抗体(生活技术, 13-0300)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200. Ann Clin Transl Neurol (2015) ncbi
小鼠 单克隆(131-17719)
  • 细胞化学; 人类; 1:500; 图3
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于免疫细胞化学在人类样品上浓度为1:500 (图3). J Tissue Eng Regen Med (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:2000
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于免疫组化在小鼠样品上浓度为1:2000. J Neurosci (2015) ncbi
小鼠 单克隆(131-17719)
  • IHC-Free; 大鼠; 1:400
赛默飞世尔 GFAP抗体(生活技术, 131-17719)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:400. Free Radic Biol Med (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-P; 小鼠; 1:300
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:300. Glia (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠; 1:1000; 图1a
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图1a). Nat Neurosci (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:1000
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化在小鼠样品上浓度为1:1000. Neuroscience (2015) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; ready-to-use
赛默飞世尔 GFAP抗体(LabVision, RB-087-R7)被用于免疫组化-石蜡切片在大鼠样品上浓度为ready-to-use. Nutr Neurosci (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-P; 小鼠; 1:500
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500. Genes Cancer (2015) ncbi
大鼠 单克隆(2.2B10)
  • 细胞化学; 人类; 1:1000
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫细胞化学在人类样品上浓度为1:1000. J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-P; 人类
赛默飞世尔 GFAP抗体(Lab Vision, RB-087-R7)被用于免疫组化-石蜡切片在人类样品上. Korean J Parasitol (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛默飞世尔 GFAP抗体(thermo, pa3-16727)被用于免疫印迹在大鼠样品上. Biochim Biophys Acta (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:1000; 图2
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于免疫组化在小鼠样品上浓度为1:1000 (图2). Stroke (2015) ncbi
小鼠 单克隆(S.880.0)
  • IHC-Free; 小鼠; 1:1000
赛默飞世尔 GFAP抗体(Millipore, MA5-15086)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. Curr Gene Ther (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化在小鼠样品上浓度为1:200. Acta Neuropathol (2015) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化-P; 小鼠; 图5
赛默飞世尔 GFAP抗体(Thermo, ASTRO6)被用于免疫组化-石蜡切片在小鼠样品上 (图5). PLoS ONE (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠; 图s1c
赛默飞世尔 GFAP抗体(生活技术, 13-0300)被用于免疫组化-冰冻切片在小鼠样品上 (图s1c). EMBO Mol Med (2015) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化-P; 大鼠
赛默飞世尔 GFAP抗体(Lab Vision, MS-1376-P)被用于免疫组化-石蜡切片在大鼠样品上. Int J Stem Cells (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图5
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化在小鼠样品上浓度为1:200 (图5). PLoS ONE (2014) ncbi
小鼠 单克隆(131-17719)
  • IHC-Free; 小鼠; 1:600
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:600. Cereb Cortex (2015) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-F; 小鼠; 5 ug/ml
赛默飞世尔 GFAP抗体(Invitrogen, A21294)被用于免疫组化-冰冻切片在小鼠样品上浓度为5 ug/ml. J Virol (2014) ncbi
小鼠 单克隆(131-17719)
  • 细胞化学; 小鼠; 1:400; 图2
赛默飞世尔 GFAP抗体(生活技术, A21282)被用于免疫细胞化学在小鼠样品上浓度为1:400 (图2). J Neuroinflammation (2014) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 1:5000
赛默飞世尔 GFAP抗体(ThermoScientific, PA3-16727)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:5000. Pain (2014) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-P; 人类; 图8
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于免疫组化-石蜡切片在人类样品上 (图8). J Exp Med (2014) ncbi
小鼠 单克隆(S.880.0)
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔 GFAP抗体(Thermo Sci., MA5-15086)被用于免疫印迹在小鼠样品上浓度为1:2000. J Neurosci Res (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图s1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化在小鼠样品上浓度为1:200 (图s1). Stem Cells Dev (2014) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-F; 大鼠; 1:200
赛默飞世尔 GFAP抗体(生活技术, 131-17719)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200. Mar Drugs (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠
赛默飞世尔 GFAP抗体(Neomarkers, RB-087)被用于免疫组化在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:500
赛默飞世尔 GFAP抗体(Thermo Scientific, PA1-9565)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:500. Acta Histochem (2014) ncbi
小鼠 单克隆(GFA-02)
  • FC; 小鼠
赛默飞世尔 GFAP抗体(Pierce, MA1-35376)被用于流式细胞仪在小鼠样品上. Sci Rep (2014) ncbi
小鼠 单克隆(131-17719)
  • 免疫印迹; 大鼠
赛默飞世尔 GFAP抗体(生活技术, A-21282)被用于免疫印迹在大鼠样品上. Neurobiol Aging (2014) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化; Styela clava; 1:500
赛默飞世尔 GFAP抗体(Invitrogen, A-21282)被用于免疫组化在Styela clava样品上浓度为1:500. Acta Biomater (2014) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-F; 大鼠; 1:200; 图4
赛默飞世尔 GFAP抗体(Life Technologies Corporation, 131-17719)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200 (图4). J Pain (2013) ncbi
鸡 多克隆
  • 免疫组化-F; 小鼠; 1:500
赛默飞世尔 GFAP抗体(Thermo Fisher Scientific , PA1-10004)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. Genes Brain Behav (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠
  • 免疫印迹; 小鼠
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于免疫组化-冰冻切片在小鼠样品上 和 免疫印迹在小鼠样品上. Genes Cells (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 GFAP抗体(生活技术, 13-0300)被用于免疫印迹在小鼠样品上浓度为1:1000. Exp Neurol (2013) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化; 大鼠; 1:500; 图3
赛默飞世尔 GFAP抗体(Invitrogen, A-21282)被用于免疫组化在大鼠样品上浓度为1:500 (图3). Biomaterials (2013) ncbi
小鼠 单克隆(131-17719)
  • 免疫印迹; 人类; 1:2000
赛默飞世尔 GFAP抗体(Invitrogen, A-21282)被用于免疫印迹在人类样品上浓度为1:2000. J Neurochem (2013) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-P; 小鼠
赛默飞世尔 GFAP抗体(Invitrogen, A-21295)被用于免疫组化-石蜡切片在小鼠样品上. Invest Ophthalmol Vis Sci (2013) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠; 1:50; 图1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:50 (图1). Neurobiol Dis (2013) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-P; 小鼠; 图5
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于免疫组化-石蜡切片在小鼠样品上 (图5). J Virol (2013) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化; 大鼠; 1:200
赛默飞世尔 GFAP抗体(分子探针, 131-17719)被用于免疫组化在大鼠样品上浓度为1:200. Mar Drugs (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化在小鼠样品上浓度为1:200 (图1). PLoS ONE (2012) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200
赛默飞世尔 GFAP抗体(Neomarkers, RB-087-A1)被用于免疫组化在小鼠样品上浓度为1:200. PLoS ONE (2012) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-F; 小鼠; 图5
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于免疫组化-冰冻切片在小鼠样品上 (图5). Clin Cancer Res (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:250; 图2
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于免疫组化在小鼠样品上浓度为1:250 (图2). Endocrinology (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠; 1:250; 图s1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:250 (图s1). Neurosci Lett (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-P; 人类; 1:100; 图2
  • 免疫组化-P; 大鼠; 1:100; 图2
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图2) 和 在大鼠样品上浓度为1:100 (图2). Neuropathol Appl Neurobiol (2013) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-P; 小鼠; 1:100; 图2
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图2). J Neuroimmunol (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 大鼠; 图5
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化在大鼠样品上 (图5). Adv Funct Mater (2011) ncbi
小鼠 单克隆(131-17719)
  • FC; 小鼠; 图3
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于流式细胞仪在小鼠样品上 (图3). J Neuroinflammation (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠; 图5
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化-冰冻切片在小鼠样品上 (图5). Am J Pathol (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 人类; 1:200; 图4
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化在人类样品上浓度为1:200 (图4). Biomaterials (2011) ncbi
小鼠 单克隆(131-17719)
  • FC; 小鼠; 图 3
赛默飞世尔 GFAP抗体(Invitrogen, clone 131?C17719)被用于流式细胞仪在小鼠样品上 (图 3). J Immunol (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 人类; 1:400
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于免疫组化在人类样品上浓度为1:400. Am J Pathol (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 大鼠; 1:200; 图7
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化在大鼠样品上浓度为1:200 (图7). Acta Biomater (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠; 图5
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于免疫组化-冰冻切片在小鼠样品上 (图5). J Virol (2011) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-F; 小鼠; 图1
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于免疫组化-冰冻切片在小鼠样品上 (图1). PLoS ONE (2010) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化; African green monkey; 1:500; 图2
赛默飞世尔 GFAP抗体(Invitrogen, A21282)被用于免疫组化在African green monkey样品上浓度为1:500 (图2). Toxicol Appl Pharmacol (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫印迹; 小鼠; 图s1
赛默飞世尔 GFAP抗体(Zymed, 2.2B10)被用于免疫印迹在小鼠样品上 (图s1). Biol Psychiatry (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:100; 图1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于免疫组化在小鼠样品上浓度为1:100 (图1). Glia (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 大鼠; 1:1000; 图2
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于免疫组化在大鼠样品上浓度为1:1000 (图2). J Comp Neurol (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图s4
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于免疫组化在小鼠样品上浓度为1:200 (图s4). Pigment Cell Melanoma Res (2010) ncbi
小鼠 单克隆(131-17719)
  • FC; 小鼠; 图5
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于流式细胞仪在小鼠样品上 (图5). Virology (2010) ncbi
小鼠 单克隆(131-17719)
  • FC; 小鼠; 图2
赛默飞世尔 GFAP抗体(Invitrogen, A-21294)被用于流式细胞仪在小鼠样品上 (图2). J Neurosci Methods (2010) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-F; 小鼠; 图3
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于免疫组化-冰冻切片在小鼠样品上 (图3). Neurosci Lett (2010) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-F; 小鼠; 图3
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于免疫组化-冰冻切片在小鼠样品上 (图3). Neurosci Lett (2010) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-F; 小鼠; 1:600
赛默飞世尔 GFAP抗体(Invitrogen, A-21282)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:600. J Comp Neurol (2010) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-F; 小鼠
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于免疫组化-冰冻切片在小鼠样品上. ASN Neuro (2009) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-F; 小鼠
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于免疫组化-冰冻切片在小鼠样品上. J Neuroimmunol (2009) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-F; 小鼠
赛默飞世尔 GFAP抗体(Invitrogen, 131-17719)被用于免疫组化-冰冻切片在小鼠样品上. J Neuroimmunol (2009) ncbi
小鼠 单克隆(131-17719)
  • 细胞化学; 小鼠; 1:200; 图4
赛默飞世尔 GFAP抗体(分子探针, A21282)被用于免疫细胞化学在小鼠样品上浓度为1:200 (图4). PLoS ONE (2009) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-F; 大鼠; 1:500; 图1
赛默飞世尔 GFAP抗体(Invitrogen, A21282)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500 (图1). Neurobiol Dis (2009) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-F; 小鼠; 5 ug/ml; 图10
赛默飞世尔 GFAP抗体(Invitrogen, A21294)被用于免疫组化-冰冻切片在小鼠样品上浓度为5 ug/ml (图10). J Immunol (2009) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-F; 小鼠
  • 细胞化学; 小鼠
赛默飞世尔 GFAP抗体(Zymed/Invitrogen, 2.2B10)被用于免疫组化-冰冻切片在小鼠样品上 和 免疫细胞化学在小鼠样品上. J Neurosci (2008) ncbi
小鼠 单克隆(131-17719)
  • IHC-Free; 小鼠; 1:500
  • 细胞化学; 小鼠; 1:500
赛默飞世尔 GFAP抗体(分子探针, A-21282)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500 和 免疫细胞化学在小鼠样品上浓度为1:500. J Comp Neurol (2009) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-F; 人类; 图2
  • 免疫组化-F; 小鼠; 图1
赛默飞世尔 GFAP抗体(分子探针, 131-17719)被用于免疫组化-冰冻切片在人类样品上 (图2) 和 在小鼠样品上 (图1). Invest Ophthalmol Vis Sci (2008) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 人类; 1:100-1:200
  • 免疫组化; Domestic guinea pig; 1:100-1:200
赛默飞世尔 GFAP抗体(Zytomed, 13-0300)被用于免疫组化在人类样品上浓度为1:100-1:200 和 在Domestic guinea pig样品上浓度为1:100-1:200. J Comp Neurol (2008) ncbi
小鼠 单克隆(131-17719)
  • 免疫组化-F; 小鼠; 1:200
赛默飞世尔 GFAP抗体(Invitrogen, A-21294)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200. J Nucl Med (2007) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图8
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于免疫组化在小鼠样品上 (图8). J Virol (2007) ncbi
大鼠 单克隆(2.2B10)
  • IHC-Free; 小鼠; 1:3000; 表2
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:3000 (表2). Glia (2006) ncbi
大鼠 单克隆(2.2B10)
  • 免疫沉淀; 小鼠; 图4
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于免疫沉淀在小鼠样品上 (图4). J Comp Neurol (2005) ncbi
大鼠 单克隆(2.2B10)
  • IHC-Free; 小鼠; 1:3000; 表1
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:3000 (表1). Exp Neurol (2004) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:10,000; 图1
  • 免疫印迹; 小鼠; 1:1000; 图1
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于免疫组化在小鼠样品上浓度为1:10,000 (图1) 和 免疫印迹在小鼠样品上浓度为1:1000 (图1). Glia (2003) ncbi
大鼠 单克隆(2.2B10)
  • IHC-Free; 小鼠; 1:10000
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:10000 和 免疫印迹在小鼠样品上浓度为1:1000. Oncogene (2002) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-P; 小鼠; 1:2; 图3
赛默飞世尔 GFAP抗体(Zymed, 2.2B10)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:2 (图3). J Neurosci Res (2002) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:100
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于免疫组化在小鼠样品上浓度为1:100. J Neurosci (1999) ncbi
大鼠 单克隆(2.2B10)
  • 细胞化学; 小鼠; 图3
赛默飞世尔 GFAP抗体(Zymed, 2.2B10)被用于免疫细胞化学在小鼠样品上 (图3). Neuroreport (1998) ncbi
大鼠 单克隆(2.2B10)赛默飞世尔 GFAP抗体(Zymed, clone 2.2B10(1))被用于. J Neuropathol Exp Neurol (1996) ncbi
小鼠 单克隆(131-17719)
  • FC; 小鼠
  • 免疫组化; 小鼠
赛默飞世尔 GFAP抗体(noco, noca)被用于流式细胞仪在小鼠样品上 和 免疫组化在小鼠样品上. J Neurosci (1996) ncbi
BioLegend
小鼠 单克隆(SMI 21)
  • 免疫印迹; 人类; 1:5000; 表1
  • 免疫印迹; 小鼠; 1:5000; 表1
  • 细胞化学; 人类; 1:400; 表1
  • 细胞化学; 小鼠; 1:400; 表1
BioLegend GFAP抗体(BioLegend, SMI-21)被用于免疫印迹在人类样品上浓度为1:5000 (表1) 和 在小鼠样品上浓度为1:5000 (表1) 和 免疫细胞化学在人类样品上浓度为1:400 (表1) 和 在小鼠样品上浓度为1:400 (表1). PLoS ONE (2017) ncbi
小鼠 单克隆(SMI 24)
  • 免疫印迹; 人类; 1:5000; 表1
  • 免疫印迹; 小鼠; 1:5000; 表1
  • 细胞化学; 人类; 1:400; 表1
  • 细胞化学; 小鼠; 1:400; 表1
BioLegend GFAP抗体(BioLegend, SMI-24)被用于免疫印迹在人类样品上浓度为1:5000 (表1) 和 在小鼠样品上浓度为1:5000 (表1) 和 免疫细胞化学在人类样品上浓度为1:400 (表1) 和 在小鼠样品上浓度为1:400 (表1). PLoS ONE (2017) ncbi
小鼠 单克隆(SMI 21)
  • 细胞化学; 人类; 1:400; 表1
  • 细胞化学; 小鼠; 1:400; 表1
  • 免疫印迹; 人类; 1:5000; 表1
  • 免疫印迹; 小鼠; 1:5000; 表1
BioLegend GFAP抗体(BioLegend, SMI-21)被用于免疫细胞化学在人类样品上浓度为1:400 (表1) 和 在小鼠样品上浓度为1:400 (表1) 和 免疫印迹在人类样品上浓度为1:5000 (表1) 和 在小鼠样品上浓度为1:5000 (表1). PLoS ONE (2017) ncbi
小鼠 单克隆(SMI 21)
  • 免疫印迹; 人类; 1:5000; 表1
  • 免疫印迹; 小鼠; 1:5000; 表1
  • 细胞化学; 人类; 1:400; 表1
  • 细胞化学; 小鼠; 1:400; 表1
BioLegend GFAP抗体(BioLegend, SMI-21)被用于免疫印迹在人类样品上浓度为1:5000 (表1) 和 在小鼠样品上浓度为1:5000 (表1) 和 免疫细胞化学在人类样品上浓度为1:400 (表1) 和 在小鼠样品上浓度为1:400 (表1). PLoS ONE (2017) ncbi
小鼠 单克隆(SMI 24)
  • 免疫印迹; 人类; 1:5000; 表1
  • 免疫印迹; 小鼠; 1:5000; 表1
  • 细胞化学; 人类; 1:400; 表1
  • 细胞化学; 小鼠; 1:400; 表1
BioLegend GFAP抗体(BioLegend, SMI-24)被用于免疫印迹在人类样品上浓度为1:5000 (表1) 和 在小鼠样品上浓度为1:5000 (表1) 和 免疫细胞化学在人类样品上浓度为1:400 (表1) 和 在小鼠样品上浓度为1:400 (表1). PLoS ONE (2017) ncbi
小鼠 单克隆(SMI 23)
  • 免疫印迹; 人类; 1:5000; 表1
  • 免疫印迹; 小鼠; 1:5000; 表1
  • 细胞化学; 人类; 1:400; 表1
  • 细胞化学; 小鼠; 1:400; 表1
BioLegend GFAP抗体(BioLegend, SMI-23)被用于免疫印迹在人类样品上浓度为1:5000 (表1) 和 在小鼠样品上浓度为1:5000 (表1) 和 免疫细胞化学在人类样品上浓度为1:400 (表1) 和 在小鼠样品上浓度为1:400 (表1). PLoS ONE (2017) ncbi
小鼠 单克隆(SMI 23)
  • 细胞化学; 人类; 1:400; 表1
  • 细胞化学; 小鼠; 1:400; 表1
  • 免疫印迹; 人类; 1:5000; 表1
  • 免疫印迹; 小鼠; 1:5000; 表1
BioLegend GFAP抗体(BioLegend, SMI-23)被用于免疫细胞化学在人类样品上浓度为1:400 (表1) 和 在小鼠样品上浓度为1:400 (表1) 和 免疫印迹在人类样品上浓度为1:5000 (表1) 和 在小鼠样品上浓度为1:5000 (表1). PLoS ONE (2017) ncbi
小鼠 单克隆(SMI 23)
  • 免疫印迹; 人类; 1:5000; 表1
  • 免疫印迹; 小鼠; 1:5000; 表1
  • 细胞化学; 人类; 1:400; 表1
  • 细胞化学; 小鼠; 1:400; 表1
BioLegend GFAP抗体(BioLegend, SMI-23)被用于免疫印迹在人类样品上浓度为1:5000 (表1) 和 在小鼠样品上浓度为1:5000 (表1) 和 免疫细胞化学在人类样品上浓度为1:400 (表1) 和 在小鼠样品上浓度为1:400 (表1). PLoS ONE (2017) ncbi
小鼠 单克隆(SMI 25)
  • 免疫印迹; 人类; 1:5000; 表1
  • 免疫印迹; 小鼠; 1:5000; 表1
  • 细胞化学; 人类; 1:400; 表1
  • 细胞化学; 小鼠; 1:400; 表1
BioLegend GFAP抗体(BioLegend, SMI-25)被用于免疫印迹在人类样品上浓度为1:5000 (表1) 和 在小鼠样品上浓度为1:5000 (表1) 和 免疫细胞化学在人类样品上浓度为1:400 (表1) 和 在小鼠样品上浓度为1:400 (表1). PLoS ONE (2017) ncbi
小鼠 单克隆(SMI 25)
  • 细胞化学; 人类; 1:400; 表1
  • 细胞化学; 小鼠; 1:400; 表1
  • 免疫印迹; 人类; 1:5000; 表1
  • 免疫印迹; 小鼠; 1:5000; 表1
BioLegend GFAP抗体(BioLegend, SMI-25)被用于免疫细胞化学在人类样品上浓度为1:400 (表1) 和 在小鼠样品上浓度为1:400 (表1) 和 免疫印迹在人类样品上浓度为1:5000 (表1) 和 在小鼠样品上浓度为1:5000 (表1). PLoS ONE (2017) ncbi
小鼠 单克隆(SMI 25)
  • 细胞化学; 人类; 1:400; 表1
  • 细胞化学; 小鼠; 1:400; 表1
  • 免疫印迹; 人类; 1:5000; 表1
  • 免疫印迹; 小鼠; 1:5000; 表1
BioLegend GFAP抗体(BioLegend, SMI-25)被用于免疫细胞化学在人类样品上浓度为1:400 (表1) 和 在小鼠样品上浓度为1:400 (表1) 和 免疫印迹在人类样品上浓度为1:5000 (表1) 和 在小鼠样品上浓度为1:5000 (表1). PLoS ONE (2017) ncbi
小鼠 单克隆(SMI 24)
  • 细胞化学; 人类; 1:400; 表1
  • 细胞化学; 小鼠; 1:400; 表1
  • 免疫印迹; 人类; 1:5000; 表1
  • 免疫印迹; 小鼠; 1:5000; 表1
BioLegend GFAP抗体(BioLegend, SMI-24)被用于免疫细胞化学在人类样品上浓度为1:400 (表1) 和 在小鼠样品上浓度为1:400 (表1) 和 免疫印迹在人类样品上浓度为1:5000 (表1) 和 在小鼠样品上浓度为1:5000 (表1). PLoS ONE (2017) ncbi
兔 多克隆(Poly28400)
  • 免疫印迹; 人类; 1:1000; 图6h
BioLegend GFAP抗体(Covance, PRB-571C)被用于免疫印迹在人类样品上浓度为1:1000 (图6h). Nat Commun (2017) ncbi
小鼠 单克隆(SMI 21)
  • 免疫印迹; 人类; 图3a
BioLegend GFAP抗体(Covance, SMI-21R)被用于免疫印迹在人类样品上 (图3a). JCI Insight (2017) ncbi
小鼠 单克隆(SMI 21)
  • 免疫印迹; 人类; 图3a
BioLegend GFAP抗体(Covance, SMI-21R)被用于免疫印迹在人类样品上 (图3a). JCI Insight (2017) ncbi
小鼠 单克隆(SMI 21)
  • 免疫印迹; 人类; 图3a
BioLegend GFAP抗体(Covance, SMI-21R)被用于免疫印迹在人类样品上 (图3a). JCI Insight (2017) ncbi
小鼠 单克隆(SMI 21)
  • 免疫组化; 小鼠; 1:1000; 图s4c
BioLegend GFAP抗体(Covance, SMI21)被用于免疫组化在小鼠样品上浓度为1:1000 (图s4c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(SMI 21)
  • 免疫组化; 小鼠; 1:1000; 图s4c
BioLegend GFAP抗体(Covance, SMI21)被用于免疫组化在小鼠样品上浓度为1:1000 (图s4c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(SMI 21)
  • 免疫组化; 小鼠; 1:1000; 图s4c
BioLegend GFAP抗体(Covance, SMI21)被用于免疫组化在小鼠样品上浓度为1:1000 (图s4c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(SMI 26)
  • 免疫印迹; 大鼠; 图2a
BioLegend GFAP抗体(Biolegend, SMI26)被用于免疫印迹在大鼠样品上 (图2a). Mol Biol Cell (2016) ncbi
小鼠 单克隆(SMI 26)
  • 免疫印迹; 大鼠; 图2a
BioLegend GFAP抗体(Biolegend, SMI26)被用于免疫印迹在大鼠样品上 (图2a). Mol Biol Cell (2016) ncbi
小鼠 单克隆(SMI 25)
  • 免疫组化-F; 小鼠; 1:2000; 图4
BioLegend GFAP抗体(Covance, SMI-25R)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:2000 (图4). Mol Neurodegener (2016) ncbi
小鼠 单克隆(SMI 21)
  • 免疫组化; 小鼠; 图st1
BioLegend GFAP抗体(BioLegend, 837201)被用于免疫组化在小鼠样品上 (图st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化; 小鼠; 图st1
BioLegend GFAP抗体(BioLegend, 835301)被用于免疫组化在小鼠样品上 (图st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(SMI 26)
  • 免疫组化; 小鼠; 1:1000; 图1
BioLegend GFAP抗体(Sternberger Monoclonals, SMI-26)被用于免疫组化在小鼠样品上浓度为1:1000 (图1). J Proteome Res (2016) ncbi
小鼠 单克隆(SMI 26)
  • 免疫组化; 小鼠; 1:1000; 图1
BioLegend GFAP抗体(Sternberger Monoclonals, SMI-26)被用于免疫组化在小鼠样品上浓度为1:1000 (图1). J Proteome Res (2016) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化; 小鼠; 图1
BioLegend GFAP抗体(Covance, SMI-22R-100)被用于免疫组化在小鼠样品上 (图1). Mol Biol Cell (2015) ncbi
小鼠 单克隆(SMI 22)
  • 免疫印迹; 小鼠
BioLegend GFAP抗体(Covance, SMI-22R)被用于免疫印迹在小鼠样品上. J Vis Exp (2014) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化; 大鼠; 1:1000
BioLegend GFAP抗体(Covance, SMI-22R)被用于免疫组化在大鼠样品上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(SMI 21)
  • 细胞化学; 人类; 1:000
BioLegend GFAP抗体(Covance, SMI21)被用于免疫细胞化学在人类样品上浓度为1:000. J Neurosci (2012) ncbi
小鼠 单克隆(SMI 21)
  • 细胞化学; 人类; 1:000
BioLegend GFAP抗体(Covance, SMI21)被用于免疫细胞化学在人类样品上浓度为1:000. J Neurosci (2012) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化-P; 人类; 1:3000
BioLegend GFAP抗体(Sternberger Monoclonals, SMI 22)被用于免疫组化-石蜡切片在人类样品上浓度为1:3000. J Comp Neurol (2012) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化; 大鼠; 1:1,000
BioLegend GFAP抗体(Sternberger Monoclonals, SMI 22)被用于免疫组化在大鼠样品上浓度为1:1,000. J Comp Neurol (2006) ncbi
圣克鲁斯生物技术
小鼠 单克隆(F-7)
  • 免疫组化-P; 小鼠; 图3j
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-166458)被用于免疫组化-石蜡切片在小鼠样品上 (图3j). Biomed Rep (2017) ncbi
小鼠 单克隆(2E1)
  • 免疫印迹; 小鼠; 图5d
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-33673)被用于免疫印迹在小鼠样品上 (图5d). Sci Rep (2017) ncbi
小鼠 单克隆(52)
  • 免疫组化; 大鼠; 1:1000; 图3a
圣克鲁斯生物技术 GFAP抗体(Santa Cruz Biotechnology, sc-135921)被用于免疫组化在大鼠样品上浓度为1:1000 (图3a). Mol Med Rep (2017) ncbi
小鼠 单克隆(2E1)
  • 免疫印迹; 人类; 图s1d
圣克鲁斯生物技术 GFAP抗体(Santa Cruz Biotechnology, sc-33673)被用于免疫印迹在人类样品上 (图s1d). Oncotarget (2016) ncbi
小鼠 单克隆(2E1)
  • 免疫组化; 小鼠; 1:50; 图4a
  • 免疫印迹; 小鼠; 1:500; 图9
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-33673)被用于免疫组化在小鼠样品上浓度为1:50 (图4a) 和 免疫印迹在小鼠样品上浓度为1:500 (图9). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(F-7)
  • 免疫组化-P; 小鼠; 图s4f
圣克鲁斯生物技术 GFAP抗体(Santa Cruz Biotech, sc-166458)被用于免疫组化-石蜡切片在小鼠样品上 (图s4f). Nat Biotechnol (2016) ncbi
小鼠 单克隆(GA-5)
  • 免疫组化-F; 小鼠; 1:500; 图1
圣克鲁斯生物技术 GFAP抗体(Santa Cruz Biotechnology, sc-58766)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图1). Transl Psychiatry (2016) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-P; 小鼠; 1:1000; 图4n
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-33673)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图4n). Exp Neurol (2016) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-P; 小鼠; 1:200; 图3
  • 免疫印迹; 小鼠; 1:200; 图3
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-33673)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图3) 和 免疫印迹在小鼠样品上浓度为1:200 (图3). Transl Psychiatry (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫印迹; 小鼠; 1:1000; 图2
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-65343)被用于免疫印迹在小鼠样品上浓度为1:1000 (图2). Neuron (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫印迹; 狗; 1:1000; 图6
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-65343)被用于免疫印迹在狗样品上浓度为1:1000 (图6). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-P; 大鼠; 1:500; 图7a
圣克鲁斯生物技术 GFAP抗体(SantaCruz, sc-33673)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:500 (图7a). Toxicology (2016) ncbi
小鼠 单克隆(GF5)
  • 免疫组化; 小鼠; 1:200
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-51908)被用于免疫组化在小鼠样品上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫印迹; 大鼠; 图7
圣克鲁斯生物技术 GFAP抗体(santa Cruz, sc-33673)被用于免疫印迹在大鼠样品上 (图7). Int J Mol Med (2015) ncbi
小鼠 单克隆(GA-5)
  • 细胞化学; 小鼠
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, G3893)被用于免疫细胞化学在小鼠样品上. J Clin Invest (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-P; 小鼠; 1:300
  • 免疫印迹; 小鼠; 1:400
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-33673)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:300 和 免疫印迹在小鼠样品上浓度为1:400. Neurobiol Aging (2015) ncbi
小鼠 单克隆(2E1)
  • IHC-Free; 大鼠; 1:300; 图7a
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-33673)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:300 (图7a). Restor Neurol Neurosci (2015) ncbi
小鼠 单克隆(GA-5)
  • 细胞化学; 大鼠; 1:200
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-58766)被用于免疫细胞化学在大鼠样品上浓度为1:200. J Neuroinflammation (2014) ncbi
小鼠 单克隆(F-7)
  • 细胞化学; 大鼠; 1:200
圣克鲁斯生物技术 GFAP抗体(Santa Cruz Biotechnology, sc-166458)被用于免疫细胞化学在大鼠样品上浓度为1:200. Mol Cell Biol (2014) ncbi
小鼠 单克隆(2E1)
  • 免疫印迹; 大鼠; 1:400
  • 细胞化学; 大鼠; 1:300
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-33673)被用于免疫印迹在大鼠样品上浓度为1:400 和 免疫细胞化学在大鼠样品上浓度为1:300. Cell Mol Neurobiol (2014) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-F; 人类; 1:300; 图5
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc-33673)被用于免疫组化-冰冻切片在人类样品上浓度为1:300 (图5). Brain Struct Funct (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫组化; 人类
圣克鲁斯生物技术 GFAP抗体(Santa Cruz, sc33673)被用于免疫组化在人类样品上. Mol Psychiatry (2013) ncbi
小鼠 单克隆(F-2)
  • 细胞化学; 小鼠
圣克鲁斯生物技术 GFAP抗体(Santa Cruz Biotechnology, sc-166481)被用于免疫细胞化学在小鼠样品上. Mediators Inflamm (2012) ncbi
EnCor Biotechnology
兔 多克隆
  • 免疫组化-P; 小鼠; 1:1000; 表2
EnCor Biotechnology GFAP抗体(Encore, RPCA-GFAP)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (表2). Glia (2016) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 图5a
EnCor Biotechnology GFAP抗体(Encor, RPCA-GFAP)被用于免疫细胞化学在小鼠样品上 (图5a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆
  • 免疫组化-P; equine; 图3
EnCor Biotechnology GFAP抗体(EnCor-Biotechnology, 5C10)被用于免疫组化-石蜡切片在equine样品上 (图3). Peerj (2016) ncbi
小鼠 单克隆
  • IHC-Free; 大鼠; 1:1000; 图2
EnCor Biotechnology GFAP抗体(EnCor Biotechnology, MCA-5C10)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000 (图2). Sci Rep (2015) ncbi
鸡 多克隆
  • 免疫组化-P; 大鼠; 1:1000
EnCor Biotechnology GFAP抗体(Encor, CPCA-GFAP)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:1000. Exp Neurol (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠; 1:5000
EnCor Biotechnology GFAP抗体(EnCor Biotechnology Inc, MCA5C10)被用于免疫印迹在大鼠样品上浓度为1:5000. J Neurochem (2014) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:12000
EnCor Biotechnology GFAP抗体(Encor, RPCA-GFAP)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:12000. J Mol Neurosci (2013) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:10000
EnCor Biotechnology GFAP抗体(Encore, RPCA-GFAP)被用于免疫组化在小鼠样品上浓度为1:10000. Glia (2012) ncbi
Synaptic Systems
豚鼠 多克隆(/)
  • 免疫印迹; 小鼠; 图5e
  • 免疫组化; 小鼠; 图5d
Synaptic Systems GFAP抗体(Synaptic systems, 173004)被用于免疫印迹在小鼠样品上 (图5e) 和 免疫组化在小鼠样品上 (图5d). Glia (2017) ncbi
小鼠 单克隆(134B1)
  • 细胞化学; 小鼠; 1:2000; 图7
Synaptic Systems GFAP抗体(Synaptic Systems, 173011)被用于免疫细胞化学在小鼠样品上浓度为1:2000 (图7). Histochem Cell Biol (2016) ncbi
豚鼠 多克隆(/)
  • IHC-Free; 人类; 1:500; 图1
Synaptic Systems GFAP抗体(SYnaptic SYstems, 173 004)被用于immunohistochemistry - free floating section在人类样品上浓度为1:500 (图1). Sci Rep (2016) ncbi
豚鼠 多克隆(/)
  • 免疫组化; 小鼠; 1:500; 图3
Synaptic Systems GFAP抗体(Synaptic Systems, 173 004)被用于免疫组化在小鼠样品上浓度为1:500 (图3). Nature (2016) ncbi
小鼠 单克隆(134B1)
  • 免疫组化; 人类; 图6
  • 免疫组化; 小鼠; 图6
Synaptic Systems GFAP抗体(Synaptic Systems, 173011)被用于免疫组化在人类样品上 (图6) 和 在小鼠样品上 (图6). Stem Cell Res Ther (2015) ncbi
武汉三鹰
兔 多克隆
  • 免疫组化; 小鼠; 图4
武汉三鹰 GFAP抗体(Proteintech, 16825-1-AP)被用于免疫组化在小鼠样品上 (图4). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图3a
武汉三鹰 GFAP抗体(ProteinTech, 16825-1-AP)被用于免疫组化-石蜡切片在小鼠样品上 (图3a). Biol Cell (2016) ncbi
小鼠 单克隆(4B2E10)
  • 细胞化学; 大鼠; 1:500
武汉三鹰 GFAP抗体(Proteintech, 60190-1-Ig)被用于免疫细胞化学在大鼠样品上浓度为1:500. Mol Brain (2015) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:200
武汉三鹰 GFAP抗体(Proteintech Group, 16825-1-AP)被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Springerplus (2015) ncbi
小鼠 单克隆(4B2E10)
  • 免疫组化-P; 人类; 图1
武汉三鹰 GFAP抗体(Proteintech, 60190)被用于免疫组化-石蜡切片在人类样品上 (图1). In Vitro Cell Dev Biol Anim (2015) ncbi
小鼠 单克隆(4B2E10)
  • 免疫印迹; 人类
武汉三鹰 GFAP抗体(ProteinTech Group, 60190-1-Ig)被用于免疫印迹在人类样品上. Carcinogenesis (2014) ncbi
Novus Biologicals
小鼠 单克隆(5c10)
  • IHC-Free; 小鼠; 1:1000; 图7c
Novus Biologicals GFAP抗体(Novus Biologicals, NBP1-05197)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000 (图7c). J Comp Neurol (2017) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:200; 图4A
Novus Biologicals GFAP抗体(Novus Biologic, NB300-141)被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图4A). Sci Rep (2015) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(GF-05)
  • 免疫组化-F; 小鼠; 1:400; 图4b
伯乐(Bio-Rad)公司 GFAP抗体(AbD Serotec, 4650-0309)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:400 (图4b). Front Neuroanat (2017) ncbi
小鼠 单克隆(GF-05)
  • 免疫组化-F; African green monkey; 1:2000
伯乐(Bio-Rad)公司 GFAP抗体(生物合成, 4650-0309)被用于免疫组化-冰冻切片在African green monkey样品上浓度为1:2000. J Comp Neurol (2009) ncbi
北京傲锐东源
小鼠 单克隆(OTI2C4)
  • 免疫组化; 大鼠; 1:100; 图6
北京傲锐东源 GFAP抗体(Golden Bridge, TA500335)被用于免疫组化在大鼠样品上浓度为1:100 (图6). Sci Rep (2016) ncbi
小鼠 单克隆(OTI4C10)
  • 免疫组化; 人类; 图1d
北京傲锐东源 GFAP抗体(ZSGB-BIO, TA500336)被用于免疫组化在人类样品上 (图1d). J Neuroinflammation (2015) ncbi
安迪生物R&D
羊 多克隆
  • 细胞化学; 小鼠; 1:500; 图2b
安迪生物R&D GFAP抗体(R&D Systems, AF2594)被用于免疫细胞化学在小鼠样品上浓度为1:500 (图2b). J Pineal Res (2017) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 0.57 ug/ml
亚诺法生技股份有限公司 GFAP抗体(Abnova, MAB11287)被用于免疫组化在小鼠样品上浓度为0.57 ug/ml. J Biol Chem (2015) ncbi
Bioss
兔 多克隆
  • 免疫组化-P; 大鼠; 1:100; 图1
Bioss GFAP抗体(Beijing Biosynthesis Biotechnology, bs-0199R)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 (图1). Neural Regen Res (2012) ncbi
BioLogo
小鼠 单克隆(MIG-G2)
  • 免疫印迹; 人类
  • 细胞化学; 人类
BioLogo GFAP抗体(Biologo, GF500)被用于免疫印迹在人类样品上 和 免疫细胞化学在人类样品上. Bone (2006) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(6F2)
  • 免疫印迹; 人类; 1:1000; 表1
  • 免疫印迹; 小鼠; 1:1000; 表1
  • 细胞化学; 人类; 1:100; 表1
  • 细胞化学; 小鼠; 1:100; 表1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, 6F2)被用于免疫印迹在人类样品上浓度为1:1000 (表1) 和 在小鼠样品上浓度为1:1000 (表1) 和 免疫细胞化学在人类样品上浓度为1:100 (表1) 和 在小鼠样品上浓度为1:100 (表1). PLoS ONE (2017) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:500; 图8a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图8a). EMBO Mol Med (2017) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:100; 图1g
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在人类样品上浓度为1:100 (图1g). Stem Cell Res Ther (2017) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:5000; 图4e
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:5000 (图4e). Acta Neuropathol (2017) ncbi
兔 多克隆
  • 免疫组化-F; 鸡; 1:500; 图5a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z033)被用于免疫组化-冰冻切片在鸡样品上浓度为1:500 (图5a). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫组化; sea lamprey; 1:400; 图2c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在sea lamprey样品上浓度为1:400 (图2c). Nature (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上浓度为1:500. Front Cell Neurosci (2017) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:200; 图3e
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在小鼠样品上浓度为1:200 (图3e). Stem Cell Reports (2017) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 图s4b
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在小鼠样品上 (图s4b). Neuron (2017) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图1c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图1c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 大鼠; 图107
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于免疫组化在大鼠样品上 (图107). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-F; 小鼠; 1:1000; 图1a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, 6F2)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图1a). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200; 图3e
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上浓度为1:200 (图3e). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图1b
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上浓度为1:500 (图1b). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:300; 图5a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z033401)被用于免疫组化在小鼠样品上浓度为1:300 (图5a). PLoS ONE (2017) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:500; 图3d
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0344)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图3d). PLoS ONE (2017) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:5000; 图1f
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:5000 (图1f). Nature (2017) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1500; 图1c
  • 细胞化学; 人类; 1:1500; 图s4a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1500 (图1c) 和 免疫细胞化学在人类样品上浓度为1:1500 (图s4a). Transl Res (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图3h
  • 细胞化学; 小鼠; 图4b
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, ZO334)被用于免疫组化-石蜡切片在小鼠样品上 (图3h) 和 免疫细胞化学在小鼠样品上 (图4b). Mol Cell Biol (2017) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:500; 图S1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在小鼠样品上浓度为1:500 (图S1). Redox Biol (2017) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:1000; 图5b
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000 (图5b). Front Cell Neurosci (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图1e
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫印迹在大鼠样品上 (图1e). Stem Cell Reports (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上 (图6). Int J Mol Med (2017) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:300; 图5a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:300 (图5a). Childs Nerv Syst (2016) ncbi
兔 多克隆
  • 细胞化学; 人类; 图s1g
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在人类样品上 (图s1g). Cell (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图s1e
  • 细胞化学; 小鼠; 1:100; 图s1f
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫印迹在小鼠样品上浓度为1:5000 (图s1e) 和 免疫细胞化学在小鼠样品上浓度为1:100 (图s1f). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化-P; 斑马鱼; 1:1000; 图3i
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在斑马鱼样品上浓度为1:1000 (图3i). Dis Model Mech (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图1a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫印迹在小鼠样品上浓度为1:2000 (图1a). PLoS Genet (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 表1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化在小鼠样品上浓度为1:1000 (表1). Brain Struct Funct (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:1000; 图4e
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图4e). Acta Neuropathol Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2e
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫印迹在人类样品上 (图2e). J Neuroinflammation (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200; 图4a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上浓度为1:200 (图4a). MBio (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:400; 表2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化在小鼠样品上浓度为1:400 (表2). Mol Neurobiol (2016) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:4000; 图1d
  • 免疫组化; 小鼠; 1:500; 图2c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:4000 (图1d) 和 免疫组化在小鼠样品上浓度为1:500 (图2c). Brain (2017) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-P; 人类; 1:100; 图3d
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图3d). Nature (2016) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 1:1000; 表2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000 (表2). Front Neurosci (2016) ncbi
兔 多克隆
  • 细胞化学; 人类; 图5a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z334)被用于免疫细胞化学在人类样品上 (图5a). Mol Biol Cell (2016) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 1:500; 表1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z033429-2)被用于免疫细胞化学在大鼠样品上浓度为1:500 (表1). Methods Mol Biol (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图2a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上 (图2a). J Neurosci Res (2016) ncbi
小鼠 单克隆(6F2)
  • 免疫印迹; 小鼠; 1:2000; 图4f
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, 6F2)被用于免疫印迹在小鼠样品上浓度为1:2000 (图4f). Glia (2017) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:500; 表2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在人类样品上浓度为1:500 (表2). Lab Chip (2016) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:500; 图5c
  • 免疫印迹; 大鼠; 1:500; 图5a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:500 (图5c) 和 免疫印迹在大鼠样品上浓度为1:500 (图5a). Mol Pharm (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化在小鼠样品上 (图1). Sci Rep (2016) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 1:1000; 图4a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在大鼠样品上浓度为1:1000 (图4a). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上. Mol Cell Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 图3a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在大鼠样品上 (图3a). Mol Neurobiol (2016) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:1000; 图s5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:1000 (图s5). Sci Rep (2016) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:500; 图2c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在人类样品上浓度为1:500 (图2c). Exp Neurol (2016) ncbi
兔 多克隆
  • 免疫组化-P; 人类
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在人类样品上. Mol Psychiatry (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:1000; 图4a
  • 免疫组化; 小鼠; 1:2000; 图1a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在人类样品上浓度为1:1000 (图4a) 和 在小鼠样品上浓度为1:2000 (图1a). Glia (2017) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:4000; 表s4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, z0334)被用于免疫细胞化学在人类样品上浓度为1:4000 (表s4). Stem Cell Res (2016) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:10,000; 图7b
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在小鼠样品上浓度为1:10,000 (图7b). EMBO Mol Med (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:8000; 图s5d
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:8000 (图s5d). Nature (2016) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 图s1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在大鼠样品上 (图s1). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000; 图5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图5). elife (2016) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 图1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在大鼠样品上 (图1). J Alzheimers Dis (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:1000; 图3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图3). Acta Neuropathol Commun (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:5000; 图3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z033429)被用于免疫组化在小鼠样品上浓度为1:5000 (图3). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:2000; 图4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:2000 (图4). Mol Neurodegener (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000; 图2
  • 免疫印迹; 小鼠; 1:1000; 图3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图2) 和 免疫印迹在小鼠样品上浓度为1:1000 (图3). Mol Brain (2016) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:200; 图2e
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在小鼠样品上浓度为1:200 (图2e). J Neurochem (2016) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:1000; 图3c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在人类样品上浓度为1:1000 (图3c). Mol Ther (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图7
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cooperation, Z0334)被用于免疫组化-石蜡切片在小鼠样品上 (图7). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:250; 图5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:250 (图5). Invest Ophthalmol Vis Sci (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 图s.8
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上 (图s.8). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图3c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上 (图3c). J Clin Invest (2016) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 图1b
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z03334)被用于免疫细胞化学在小鼠样品上 (图1b). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在小鼠样品上 (图3). J Mol Psychiatry (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:750
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:750. Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 图3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于免疫组化在大鼠样品上 (图3). J Neuroinflammation (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:5000; 图5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(dako, Z0334)被用于免疫组化在小鼠样品上浓度为1:5000 (图5). Sci Rep (2016) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:5000; 图7b
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:5000 (图7b). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:100; 图3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在大鼠样品上浓度为1:100 (图3). Development (2016) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:200; 图1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200 (图1). Cell Tissue Res (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上浓度为1:1000 (图1). J Proteome Res (2016) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在大鼠样品上 (图2). J Neuroinflammation (2016) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-P; 人类; 1:40,000; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(dako, M-0761)被用于免疫组化-石蜡切片在人类样品上浓度为1:40,000 (图2). PLoS ONE (2016) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:500; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在人类样品上浓度为1:500 (图2). Mol Vis (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化在小鼠样品上浓度为1:1000 (图4). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:1000; 图s6d
  • 细胞化学; 小鼠; 1:4000; 图1g
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图s6d) 和 免疫细胞化学在小鼠样品上浓度为1:4000 (图1g). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:40,000; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:40,000 (图2). J Comp Pathol (2016) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:500; 图6i
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在人类样品上浓度为1:500 (图6i). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:200; 图6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在大鼠样品上浓度为1:200 (图6). Cell Death Dis (2016) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 1:5000; 图3a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:5000 (图3a). Endocrinology (2016) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-P; 人类; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于免疫组化-石蜡切片在人类样品上 (图2). Breast Cancer Res (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图S2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DaKo, Z0334)被用于免疫组化在小鼠样品上浓度为1:1000 (图S2). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:200; 图5c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z 0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图5c). Am J Physiol Regul Integr Comp Physiol (2016) ncbi
兔 多克隆
  • IHC-Free; 人类; 1:1000; 图4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, z0334)被用于immunohistochemistry - free floating section在人类样品上浓度为1:1000 (图4). Sci Rep (2016) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:500; 图6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500 (图6). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, z0334)被用于免疫组化-冰冻切片在小鼠样品上. Nature (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000; 图1g
  • 细胞化学; 小鼠; 1:1000; 图1l
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图1g) 和 免疫细胞化学在小鼠样品上浓度为1:1000 (图1l). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:2000; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化在小鼠样品上浓度为1:2000 (图2). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图s3c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在小鼠样品上 (图s3c). Science (2016) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:1000; 图5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (图5). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 表1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化在小鼠样品上浓度为1:1000 (表1). Exp Neurol (2016) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:3000; 图5
  • 细胞化学; 人类; 图6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在人类样品上浓度为1:3000 (图5) 和 免疫细胞化学在人类样品上 (图6). PLoS ONE (2016) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:500; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在人类样品上浓度为1:500 (图2). Nat Commun (2016) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:200; 图4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:200 (图4). PLoS Pathog (2016) ncbi
兔 多克隆
  • 免疫组化-F; 斑马鱼; 1:100; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在斑马鱼样品上浓度为1:100 (图2). Restor Neurol Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500; 图s6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z-0334)被用于免疫组化在大鼠样品上浓度为1:500 (图s6). Acta Biomater (2016) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:500; 图5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z-0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500 (图5). Am J Pathol (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:5000; 图s1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:5000 (图s1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-P; 羊; 1:1000; 图5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-石蜡切片在羊样品上浓度为1:1000 (图5). J Neuroinflammation (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫印迹在小鼠样品上浓度为1:5000 (图2). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图3a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上浓度为1:1000 (图3a). Nat Biotechnol (2016) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于免疫组化在人类样品上浓度为1:200. Brain Tumor Pathol (2016) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 1:500; 图8
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:500 (图8). Exp Neurol (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:2000; 图6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:2000 (图6). Neoplasia (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:1000; 图1c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z033429)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图1c). Neurobiol Dis (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫印迹在小鼠样品上 (图2). J Cell Biol (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上 (图1). J Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:200; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图2). Stem Cell Reports (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:1000; 图4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图4). Dis Model Mech (2016) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:250; 图3
  • 免疫印迹; 人类; 图1
  • 细胞化学; 人类; 图1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在人类样品上浓度为1:250 (图3), 免疫印迹在人类样品上 (图1), 和 免疫细胞化学在人类样品上 (图1). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:500; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化在人类样品上浓度为1:500 (图2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图s1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在小鼠样品上 (图s1). Eur J Immunol (2016) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 人类; 1:200; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, 6 F2)被用于免疫组化在人类样品上浓度为1:200 (图2). Acta Neuropathol Commun (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:1000; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在人类样品上浓度为1:1000 (图2). Brain (2016) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 人类; 1:50; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于免疫组化在人类样品上浓度为1:50 (图2). Brain (2016) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:500; 图9
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500 (图9). J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:4000; 图3
  • 免疫印迹; 小鼠; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上浓度为1:4000 (图3) 和 免疫印迹在小鼠样品上浓度为1:2000. Brain (2016) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 图4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上 (图4). Front Cell Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500; 图4b
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化在大鼠样品上浓度为1:500 (图4b). J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 斑马鱼; 1:500; 图1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, 20334)被用于免疫组化在斑马鱼样品上浓度为1:500 (图1). PLoS ONE (2015) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 人类; 1:2000; 图3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, 6F2)被用于免疫组化在人类样品上浓度为1:2000 (图3). Acta Neuropathol Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:10,000; 图5a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫印迹在人类样品上浓度为1:10,000 (图5a). Nat Cell Biol (2015) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 小鼠; 图3c
  • 免疫印迹; 小鼠; 图3a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于免疫组化在小鼠样品上 (图3c) 和 免疫印迹在小鼠样品上 (图3a). Mol Neurodegener (2015) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫细胞化学在小鼠样品上浓度为1:1000. Nat Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:3000; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:3000 (图2). J Neuroinflammation (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, 20334)被用于免疫组化在小鼠样品上浓度为1:1000 (图3). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(6F2)
  • 细胞化学; 小鼠; 1:1000; 表2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dakocytomation, M0761)被用于免疫细胞化学在小鼠样品上浓度为1:1000 (表2). J Cell Physiol (2016) ncbi
兔 多克隆
  • 细胞化学; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于. Nature (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上 (图6). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:4000; 图1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, N Z0334)被用于免疫组化在小鼠样品上浓度为1:4000 (图1). ASN Neuro (2015) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:200; 图1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200 (图1). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:1000; 图s5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:1000 (图s5). Development (2015) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:500; 图5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500 (图5). PLoS ONE (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫细胞化学在人类样品上浓度为1:1000. Methods (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图s4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-石蜡切片在小鼠样品上 (图s4). Acta Neuropathol (2015) ncbi
兔 多克隆丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于. Acta Neuropathol Commun (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:200; 图5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图5). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:500; 图3a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图3a). Proc Natl Acad Sci U S A (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1 ug/ml; 图1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化在小鼠样品上浓度为1 ug/ml (图1). Nat Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化在人类样品上. Mol Brain (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:1500; 图1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在人类样品上浓度为1:1500 (图1). Mol Neurodegener (2015) ncbi
兔 多克隆
  • 免疫组化; 牛; 1:100; 图6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化在牛样品上浓度为1:100 (图6). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上浓度为1:200 (图2). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫组化; 鸡; 1:2000; 图8
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于免疫组化在鸡样品上浓度为1:2000 (图8). Exp Neurol (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化在大鼠样品上. PLoS ONE (2015) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-P; 人类; 1:5000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于免疫组化-石蜡切片在人类样品上浓度为1:5000. J Child Neurol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
  • 免疫组化; 小鼠; 图1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫印迹在小鼠样品上 和 免疫组化在小鼠样品上 (图1). PLoS ONE (2015) ncbi
兔 多克隆
  • 细胞化学; 斑马鱼; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在斑马鱼样品上浓度为1:200. Biol Open (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图4,5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在小鼠样品上 (图4,5). J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 狗; 1:1000; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于免疫组化在狗样品上浓度为1:1000 (图2). PLoS ONE (2015) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:1000; 图3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000 (图3). Glia (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在人类样品上浓度为1:2000. Acta Neuropathol Commun (2015) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:500; 图s14
  • 细胞化学; 小鼠; 1:500; 图s8
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500 (图s14) 和 免疫细胞化学在小鼠样品上浓度为1:500 (图s8). Nat Med (2015) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 表2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z 0334)被用于免疫组化-石蜡切片在人类样品上 (表2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 图6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, z0334)被用于免疫组化在大鼠样品上 (图6). PLoS ONE (2015) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫细胞化学在小鼠样品上浓度为1:1000. J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图s5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图s5). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于免疫组化在人类样品上 (图2). J Neuroinflammation (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:1000; 图3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图3). Nat Commun (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:1000; 图3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, z0334)被用于免疫细胞化学在人类样品上浓度为1:1000 (图3). Nat Protoc (2015) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 1:100000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:100000. J Comp Neurol (2015) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:400. Brain (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图s2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图s2). PLoS Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:30,000; 图s3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫印迹在小鼠样品上浓度为1:30,000 (图s3). PLoS ONE (2015) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334l)被用于免疫细胞化学在大鼠样品上浓度为1:1000. Mol Med Rep (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:200; 图7
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图7). J Neuroinflammation (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 图1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在人类样品上 (图1). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在小鼠样品上. Glia (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:10,000; 图5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上浓度为1:10,000 (图5). J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:1600
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在大鼠样品上浓度为1:1600. Tissue Eng Part A (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:10000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上浓度为1:10000. J Neuroinflammation (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上浓度为1:500. J Neurosci (2015) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:5000; 图1h
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在小鼠样品上浓度为1:5000 (图1h). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:400; 图6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, Z0334)被用于免疫组化在人类样品上浓度为1:400 (图6). Hum Mol Genet (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:2000
  • 免疫印迹; 小鼠; 1:50000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, Z0334)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:2000 和 免疫印迹在小鼠样品上浓度为1:50000. J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:10,000; 图5a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在人类样品上浓度为1:10,000 (图5a). Front Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z 0334)被用于免疫组化-石蜡切片在人类样品上浓度为1:500. Exp Eye Res (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z033429-2)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000. Eur J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:2000
  • 细胞化学; 小鼠; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化在小鼠样品上浓度为1:2000 和 免疫细胞化学在小鼠样品上浓度为1:2000. Neurobiol Aging (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400. Brain (2015) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-P; 人类; 1:200; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图2). Onco Targets Ther (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:200; 图4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在人类样品上浓度为1:200 (图4). Onco Targets Ther (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图7
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, ZO334)被用于免疫组化在小鼠样品上 (图7). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:250
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上浓度为1:250. J Neurochem (2015) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:1800
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dakopatts, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1800. Glia (2015) ncbi
兔 多克隆
  • 免疫沉淀; 人类; 图3
  • 免疫沉淀; 猪; 图3
  • 免疫印迹; 人类; 图1c
  • 免疫印迹; 猪; 图1d,3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫沉淀在人类样品上 (图3) 和 在猪样品上 (图3) 和 免疫印迹在人类样品上 (图1c) 和 在猪样品上 (图1d,3). PLoS ONE (2015) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 小鼠; 1:200; 图8
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, M0761)被用于免疫组化在小鼠样品上浓度为1:200 (图8). elife (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图4). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫组化-P; 斑马鱼; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在斑马鱼样品上浓度为1:1000. Mol Cancer (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图s5
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上 (图s5). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:1000. Cell Death Dis (2015) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:20,000; 图5h
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:20,000 (图5h). Mol Cell Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:5000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:5000. Biomaterials (2015) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:750
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:750. Exp Neurol (2015) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:200. J Stroke Cerebrovasc Dis (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图s3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上 (图s3). Cancer Cell (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:100
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dakocytomation, Z0334)被用于免疫组化在大鼠样品上浓度为1:100. J Cell Mol Med (2015) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:100
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:100. Ann Clin Transl Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图s6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图s6). Autophagy (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上浓度为1:400. J Neuroinflammation (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上浓度为1:1000. J Neurosci (2014) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:1000; 表1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, 20334)被用于免疫细胞化学在人类样品上浓度为1:1000 (表1). Acta Biomater (2015) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 表1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dakopatts, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上 (表1). Brain Behav Immun (2015) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在小鼠样品上浓度为1:1000. Dev Neurobiol (2015) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:500; 图1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图1). Neuropathology (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:2000; 图s4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:2000 (图s4). Nat Med (2014) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:500; 图3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, 70334)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图3). EMBO Mol Med (2014) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:2000. Front Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Comp Neurol (2015) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:15000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:15000. Cereb Cortex (2015) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 1:1000; 图3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在大鼠样品上浓度为1:1000 (图3). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:600
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化在小鼠样品上浓度为1:600. Glia (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-石蜡切片在小鼠样品上. Neuropathol Appl Neurobiol (2015) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:800
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z 0334)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:800. PLoS ONE (2014) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:500. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:500; 图4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于免疫组化在人类样品上浓度为1:500 (图4). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:600; 图4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫印迹在小鼠样品上浓度为1:600 (图4). Mol Vis (2014) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在小鼠样品上浓度为1:500. J Biol Chem (2014) ncbi
兔 多克隆
  • IHC-Free; 人类; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在人类样品上浓度为1:2000. Brain Pathol (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:2000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:5000; 图7c
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:5000 (图7c). Dev Dyn (2015) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, 6F2)被用于免疫组化在人类样品上浓度为1:200. Head Neck Pathol (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:250
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在大鼠样品上浓度为1:250. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫印迹在人类样品上浓度为1:1000. Stem Cell Rev (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫印迹在小鼠样品上浓度为1:400. J Neurotrauma (2015) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. Eur J Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化; 斑马鱼; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在斑马鱼样品上浓度为1:2000. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图1). Nat Commun (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:400. Invest Ophthalmol Vis Sci (2014) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于免疫组化在人类样品上浓度为1:200. Brain Pathol (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化在小鼠样品上浓度为1:500. Int J Dev Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:400; 图1
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400 (图1). J Neurochem (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Immunol (2014) ncbi
兔 多克隆丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于. Nat Neurosci (2014) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫细胞化学在小鼠样品上浓度为1:500. Glia (2014) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Corporation, Z0334)被用于免疫组化在人类样品上浓度为1:500. Ann Neurol (2014) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-P; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, M0761)被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Ann Neurol (2014) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:250
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:250. Front Cell Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. Glia (2014) ncbi
小鼠 单克隆(6F2)
  • 细胞化学; 人类
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于免疫细胞化学在人类样品上. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:10000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:10000. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:20,000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:20,000. J Comp Neurol (2014) ncbi
兔 多克隆
  • IHC-Free; 猕猴; 1:500
  • IHC-Free; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在猕猴样品上浓度为1:500 和 在人类样品上浓度为1:500. J Comp Neurol (2014) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:1 000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在小鼠样品上浓度为1:1 000. Cell Res (2014) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在大鼠样品上浓度为1:500. Hum Gene Ther (2014) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:3000
  • 免疫组化-P; 小鼠; 1:3000
  • 免疫组化-P; 大鼠; 1:3000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在人类样品上浓度为1:3000, 在小鼠样品上浓度为1:3000, 和 在大鼠样品上浓度为1:3000. Acta Neuropathol (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上. J Thromb Haemost (2014) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在大鼠样品上浓度为1:500. J Comp Neurol (2014) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在人类样品上浓度为1:1000 . J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. J Neurosci Methods (2014) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, 6F2)被用于免疫组化在人类样品上. Histol Histopathol (2014) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-石蜡切片在大鼠样品上. Mol Cancer Res (2014) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500. Glia (2014) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:1000; 图 4
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (图 4). Acta Neuropathol Commun (2014) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-P; 兔; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, 6F2)被用于免疫组化-石蜡切片在兔样品上浓度为1:200. Biomaterials (2014) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 兔
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, 6F2)被用于免疫组化在兔样品上. Neuropathology (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 图7
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在小鼠样品上 (图7). PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:15,000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在人类样品上浓度为1:15,000. Neurobiol Aging (2014) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-P; 人类
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, 6F2)被用于免疫组化-石蜡切片在人类样品上. Oncol Lett (2014) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. Acta Neuropathol Commun (2013) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化在大鼠样品上浓度为1:1000. J Neurochem (2014) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 1:700
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在大鼠样品上浓度为1:700. Biomaterials (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200. Genesis (2014) ncbi
兔 多克隆
  • IHC-Free; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上. J Neurosci (2013) ncbi
兔 多克隆
  • 免疫组化-F; 狗; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于免疫组化-冰冻切片在狗样品上浓度为1:400. Gene Ther (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于免疫组化在小鼠样品上浓度为1:2000. Stem Cells Dev (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上浓度为1:1000. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在人类样品上浓度为1:400. FASEB J (2014) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:4000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-石蜡切片在人类样品上浓度为1:4000. Dev Neurobiol (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上浓度为1:500. Nat Neurosci (2013) ncbi
兔 多克隆
  • 免疫组化-P; 猪; 1:1500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于免疫组化-石蜡切片在猪样品上浓度为1:1500. Toxicon (2013) ncbi
兔 多克隆
  • 细胞化学; 猪; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫细胞化学在猪样品上浓度为1:1000. Cell Reprogram (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000
  • 免疫组化; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, Z0334)被用于免疫印迹在小鼠样品上浓度为1:2000 和 免疫组化在小鼠样品上浓度为1:1000. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:100
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100. Exp Neurol (2013) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在小鼠样品上浓度为1:500. Methods Mol Biol (2013) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-P; 小鼠; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, M0761)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200. J Neurosci (2013) ncbi
兔 多克隆
  • IHC-Free; western lowland gorilla; 1:400
  • 免疫组化; western lowland gorilla; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在western lowland gorilla样品上浓度为1:400 和 免疫组化在western lowland gorilla样品上浓度为1:400. J Comp Neurol (2013) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:1,500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在人类样品上浓度为1:1,500. Ann Neurol (2013) ncbi
兔 多克隆
  • 细胞化学; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于免疫细胞化学在小鼠样品上. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:1000
  • 免疫印迹; 人类; 1:5000
  • 细胞化学; 人类; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-石蜡切片在人类样品上浓度为1:1000, 免疫印迹在人类样品上浓度为1:5000, 和 免疫细胞化学在人类样品上浓度为1:1000. Oncotarget (2013) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠
  • 细胞化学; 人类
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上 和 免疫细胞化学在人类样品上. Glia (2013) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:500
  • 细胞化学; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, Z0334)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 和 免疫细胞化学在小鼠样品上. Glia (2013) ncbi
兔 多克隆
  • 免疫组化; smaller spotted catshark; 1:300
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在smaller spotted catshark样品上浓度为1:300. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上. Nature (2013) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, M0761)被用于免疫组化在小鼠样品上. Cancer Res (2013) ncbi
兔 多克隆
  • 细胞化学; 人类
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫细胞化学在人类样品上. Cancer Res (2013) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:1,000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在人类样品上浓度为1:1,000. J Cereb Blood Flow Metab (2013) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, Z0334)被用于免疫细胞化学在人类样品上浓度为1:2000. Cytotherapy (2013) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:2,000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z 0334)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:2,000. J Comp Neurol (2013) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:4000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在人类样品上浓度为1:4000. Mol Brain (2013) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:3000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化在大鼠样品上浓度为1:3000. Br J Pharmacol (2013) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫细胞化学在人类样品上浓度为1:1000. Stem Cell Rev (2013) ncbi
兔 多克隆
  • 细胞化学; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在小鼠样品上. EMBO J (2013) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Schweiz, Z0334)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000. Hum Gene Ther (2013) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:3,000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在人类样品上浓度为1:3,000. Acta Neuropathol (2013) ncbi
兔 多克隆
  • 免疫组化-F; 人类; 0.73 ug/ml
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在人类样品上浓度为0.73 ug/ml. Neuropathol Appl Neurobiol (2014) ncbi
兔 多克隆
  • IHC-Free; 人类; 1:5000
  • 细胞化学; 人类; 1:5000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在人类样品上浓度为1:5000 和 免疫细胞化学在人类样品上浓度为1:5000. Glia (2013) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠
  • 细胞化学; 小鼠; 1:100
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, z0334)被用于免疫组化-冰冻切片在小鼠样品上 和 免疫细胞化学在小鼠样品上浓度为1:100. Neurosci Bull (2013) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:10:000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫细胞化学在人类样品上浓度为1:10:000. Cell Cycle (2013) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在人类样品上浓度为1:500. Am J Pathol (2013) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 图8a
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于免疫组化-冰冻切片在大鼠样品上 (图8a). Biofabrication (2013) ncbi
兔 多克隆
  • 免疫组化-P; smaller spotted catshark; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z 0334)被用于免疫组化-石蜡切片在smaller spotted catshark样品上浓度为1:500. Brain Struct Funct (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化在小鼠样品上浓度为1:1000. PLoS ONE (2012) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:2,000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于免疫细胞化学在人类样品上浓度为1:2,000. Stem Cells Transl Med (2012) ncbi
兔 多克隆
  • 细胞化学; Burton's mouthbrooder; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫细胞化学在Burton's mouthbrooder样品上浓度为1:500. J Neurosci Methods (2013) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dakopatts, Z-0334)被用于免疫组化在大鼠样品上浓度为1:500. Gene Ther (2013) ncbi
小鼠 单克隆(6F2)
  • 免疫组化-P; 小鼠; 1:5000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:5000. PLoS ONE (2012) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:500; 图2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:500 (图2). J Tissue Eng Regen Med (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z-0334)被用于免疫组化在大鼠样品上浓度为1:2000. J Comp Neurol (2013) ncbi
兔 多克隆
  • 免疫组化-F; 羊; 1:10000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DakoCytomation, Z0334)被用于免疫组化-冰冻切片在羊样品上浓度为1:10000. J Comp Neurol (2013) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000
  • 免疫印迹; 小鼠
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 和 免疫印迹在小鼠样品上. J Neurosci (2012) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图5d
  • 细胞化学; 小鼠; 1:1000; 图5b
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫印迹在小鼠样品上浓度为1:1000 (图5d) 和 免疫细胞化学在小鼠样品上浓度为1:1000 (图5b). PLoS ONE (2012) ncbi
兔 多克隆
  • 免疫印迹; 斑马鱼
  • 细胞化学; 斑马鱼
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫印迹在斑马鱼样品上 和 免疫细胞化学在斑马鱼样品上. Nucleic Acids Res (2012) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化在小鼠样品上浓度为1:1000. J Comp Neurol (2012) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:1500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在大鼠样品上浓度为1:1500. Brain (2012) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. J Comp Neurol (2011) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:40000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:40000. J Comp Neurol (2011) ncbi
兔 多克隆
  • 免疫组化-P; African green monkey
  • 免疫组化-P; 人类
  • 免疫组化-F; African green monkey
  • 免疫组化-F; 人类
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-石蜡切片在African green monkey样品上 和 在人类样品上 和 免疫组化-冰冻切片在African green monkey样品上 和 在人类样品上. J Comp Neurol (2011) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:5000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z-0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:5000. J Comp Neurol (2011) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:1000; 图3
  • 免疫组化; 小鼠; 1:100; 图6
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图3) 和 免疫组化在小鼠样品上浓度为1:100 (图6). J Neuroinflammation (2010) ncbi
兔 多克隆
  • 免疫组化-F; 斑马鱼; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在斑马鱼样品上浓度为1:500. J Comp Neurol (2010) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:30000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:30000. J Comp Neurol (2010) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:250
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:250. J Comp Neurol (2010) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:250
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:250. J Comp Neurol (2010) ncbi
兔 多克隆
  • IHC-Free; common canary; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于immunohistochemistry - free floating section在common canary样品上浓度为1:500. J Comp Neurol (2010) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫细胞化学在小鼠样品上浓度为1:500. J Comp Neurol (2010) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:2500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:2500. J Comp Neurol (2010) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:20,000; 表2
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z 0334)被用于免疫组化-石蜡切片在人类样品上浓度为1:20,000 (表2). PLoS ONE (2009) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:400
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, Z0334)被用于免疫细胞化学在小鼠样品上浓度为1:400. J Comp Neurol (2009) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500. J Comp Neurol (2009) ncbi
兔 多克隆
  • 免疫组化-F; 人类; 1:2000
  • 细胞化学; 人类; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在人类样品上浓度为1:2000 和 免疫细胞化学在人类样品上浓度为1:2000. J Comp Neurol (2009) ncbi
兔 多克隆
  • 免疫组化-F; African green monkey; 1:2000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在African green monkey样品上浓度为1:2000. J Comp Neurol (2009) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako Cytomation, Z0334)被用于免疫组化在小鼠样品上浓度为1:1000. J Comp Neurol (2009) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:100
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:100. J Comp Neurol (2009) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 1:500; 图3
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(DAKO, Z0334)被用于免疫细胞化学在大鼠样品上浓度为1:500 (图3). Exp Neurol (2009) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:1,000
  • 细胞化学; 小鼠; 1:1,000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1,000 和 免疫细胞化学在小鼠样品上浓度为1:1,000. J Comp Neurol (2009) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:500. J Comp Neurol (2008) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:4000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:4000. J Comp Neurol (2008) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:200
  • 免疫组化; Domestic guinea pig; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在人类样品上浓度为1:200 和 在Domestic guinea pig样品上浓度为1:200. J Comp Neurol (2008) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. J Comp Neurol (2008) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:200
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200. J Comp Neurol (2007) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500. J Comp Neurol (2007) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 4.1 ug/ml
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于immunohistochemistry - free floating section在小鼠样品上浓度为4.1 ug/ml. J Comp Neurol (2006) ncbi
兔 多克隆
  • 免疫组化-F; 兔; 1:1,000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化-冰冻切片在兔样品上浓度为1:1,000. J Comp Neurol (2006) ncbi
小鼠 单克隆(6F2)
  • 免疫组化; 小鼠; 1:3000
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, M0761)被用于免疫组化在小鼠样品上浓度为1:3000. J Comp Neurol (2006) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 GFAP抗体(Dako, Z0334)被用于免疫组化在小鼠样品上浓度为1:500. J Comp Neurol (2006) ncbi
默克密理博中国
兔 多克隆
  • 免疫组化-P; 人类; 1:4000; 表1
  • 免疫组化-P; 小鼠; 1:4000; 图st2
  • 细胞化学; 小鼠; 1:100; 图st2
  • 免疫印迹; 小鼠; 1:1000; 图st2
默克密理博中国 GFAP抗体(Millipore, ab5804)被用于免疫组化-石蜡切片在人类样品上浓度为1:4000 (表1) 和 在小鼠样品上浓度为1:4000 (图st2), 免疫细胞化学在小鼠样品上浓度为1:100 (图st2), 和 免疫印迹在小鼠样品上浓度为1:1000 (图st2). Gastroenterology (2017) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:600; 图2d
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于免疫组化在小鼠样品上浓度为1:600 (图2d). Science (2017) ncbi
鸡 多克隆
  • 细胞化学; 人类; 1:500; 表s1
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于免疫细胞化学在人类样品上浓度为1:500 (表s1). Stem Cell Reports (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; Domestic guinea pig; 1:200; 图2c
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在Domestic guinea pig样品上浓度为1:200 (图2c). Dev Growth Differ (2017) ncbi
鸡 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图2a
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图2a). Biochem Biophys Res Commun (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:500; 表2
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化在小鼠样品上浓度为1:500 (表2). J Neurosci Res (2017) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 小鼠; 1:1000; 图7e
默克密理博中国 GFAP抗体(Millipore Bioscience, MAB360)被用于免疫细胞化学在小鼠样品上浓度为1:1000 (图7e). Front Cell Neurosci (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 图2d
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫印迹在小鼠样品上 (图2d). Stem Cells Int (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:5000; 表1
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化在大鼠样品上浓度为1:5000 (表1). Front Cell Neurosci (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 小鼠; 图1c
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于免疫组化-石蜡切片在小鼠样品上 (图1c). Nat Commun (2017) ncbi
小鼠 单克隆(GA5)
  • IHC-Free; 小鼠; 1:250; 图1b
  • 免疫组化; 小鼠; 图1b
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:250 (图1b) 和 免疫组化在小鼠样品上 (图1b). Neuron (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:200
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200. J Neuroinflammation (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 人类; 1:1000; 图5d
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-冰冻切片在人类样品上浓度为1:1000 (图5d). Nature (2017) ncbi
兔 单克隆(EPR1034Y)
  • IHC-Free; 人类; 图s27
默克密理博中国 GFAP抗体(Millipore, 04-1062)被用于immunohistochemistry - free floating section在人类样品上 (图s27). Hum Mol Genet (2017) ncbi
鸡 多克隆
  • 免疫组化-P; 人类; 1:2000; 图1b
  • 免疫组化-P; 小鼠; 1:2000; 图1c
默克密理博中国 GFAP抗体(EMD Millipore, AB5541)被用于免疫组化-石蜡切片在人类样品上浓度为1:2000 (图1b) 和 在小鼠样品上浓度为1:2000 (图1c). J Exp Med (2016) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 人类; 1:200; 图4o
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在人类样品上浓度为1:200 (图4o). Int J Mol Med (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图3f
默克密理博中国 GFAP抗体(Chemicon, AB5804)被用于免疫组化在小鼠样品上浓度为1:1000 (图3f). Aging (Albany NY) (2016) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 图4a
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于免疫组化在小鼠样品上浓度为1:1000 (图4a). J Exp Med (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:400; 图7c
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:400 (图7c). J Mol Neurosci (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 人类; 1:1000; 图3a
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (图3a). J Neurosci Res (2016) ncbi
鸡 多克隆
  • 免疫组化-F; 小鼠; 1:300; 图5a
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:300 (图5a). EMBO Mol Med (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; baboons; 1:300; 图4
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-石蜡切片在baboons样品上浓度为1:300 (图4). Biol Res (2016) ncbi
小鼠 单克隆(GA5)
  • IHC-Free; 大鼠; 1:1000; 表2
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000 (表2). Front Neurosci (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:500; 图7
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图7). J Neurosci (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:10,000; 图s2d
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在大鼠样品上浓度为1:10,000 (图s2d). Brain Behav Immun (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:50; 图2d
默克密理博中国 GFAP抗体(Millipore, MAB 360)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:50 (图2d). BMC Neurosci (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:6000; 图4a
  • 免疫组化; 小鼠; 1:1500; 图1g
默克密理博中国 GFAP抗体(Millipore, Ab5804)被用于免疫印迹在小鼠样品上浓度为1:6000 (图4a) 和 免疫组化在小鼠样品上浓度为1:1500 (图1g). J Huntingtons Dis (2016) ncbi
大鼠 单克隆
  • 免疫组化-F; 小鼠; 1:200; 图7h
默克密理博中国 GFAP抗体(Calbiochem, 345860)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图7h). J Comp Neurol (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 小鼠; 图4
默克密理博中国 GFAP抗体(EMD Millipore, MAB3402)被用于免疫组化-石蜡切片在小鼠样品上 (图4). elife (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:100; 图6a
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化在大鼠样品上浓度为1:100 (图6a). Br J Pharmacol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:100; 图5
  • 免疫印迹; 大鼠; 1:2500
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:100 (图5) 和 免疫印迹在大鼠样品上浓度为1:2500. Mol Genet Metab (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:1000; 图2e
  • 免疫印迹; 小鼠; 1:2000; 图1b
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图2e) 和 免疫印迹在小鼠样品上浓度为1:2000 (图1b). Neuropharmacology (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 图2
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在小鼠样品上 (图2). Redox Biol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:200; 图3g
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200 (图3g). J Headache Pain (2016) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 图5e
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于免疫组化在小鼠样品上浓度为1:1000 (图5e). Nat Commun (2016) ncbi
小鼠 单克隆
  • 细胞化学; 大鼠; 1:500; 图5
默克密理博中国 GFAP抗体(Millipore, MAB5628)被用于免疫细胞化学在大鼠样品上浓度为1:500 (图5). Exp Ther Med (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:5000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在大鼠样品上浓度为1:5000. Neuroscience (2016) ncbi
小鼠 单克隆
  • 免疫组化-F; 鸡; 1:400; 图2
默克密理博中国 GFAP抗体(Calbiochem, IF03L)被用于免疫组化-冰冻切片在鸡样品上浓度为1:400 (图2). BMC Biol (2016) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 小鼠; 1:500; 图3d
  • 免疫印迹; 小鼠; 1:1000; 图3f
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在小鼠样品上浓度为1:500 (图3d) 和 免疫印迹在小鼠样品上浓度为1:1000 (图3f). Development (2016) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:500; 图3d
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫细胞化学在小鼠样品上浓度为1:500 (图3d). Development (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 图2-s1
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于免疫组化在小鼠样品上 (图2-s1). elife (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:200; 图5b
  • 免疫印迹; 小鼠; 1:1000; 图6a
默克密理博中国 GFAP抗体(EMD Millipore, MAB360)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图5b) 和 免疫印迹在小鼠样品上浓度为1:1000 (图6a). J Comp Neurol (2017) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:1500; 图4b
  • 免疫印迹; 小鼠; 1:6000; 图5a
默克密理博中国 GFAP抗体(Millipore, Ab5804)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1500 (图4b) 和 免疫印迹在小鼠样品上浓度为1:6000 (图5a). J Huntingtons Dis (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图3
  • 免疫印迹; 小鼠; 1:1000; 图6
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图3) 和 免疫印迹在小鼠样品上浓度为1:1000 (图6). Nat Neurosci (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:50; 图2
默克密理博中国 GFAP抗体(Millipore, MAB3402x)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:50 (图2). Sci Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 小鼠; 1:800; 图6
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:800 (图6). PLoS ONE (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 大鼠; 1:100; 图1d
默克密理博中国 GFAP抗体(Millipore, Mab3402)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 (图1d). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(GA5)
  • IHC-Free; 小鼠; 1:1000; 图4g
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000 (图4g). Front Neurosci (2016) ncbi
小鼠 单克隆(GA5)
  • IHC-Free; 大鼠; 1:1200; 图3
默克密理博中国 GFAP抗体(millipore, MAB360)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1200 (图3). J Neurochem (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 小鼠; 1:1000; 图1
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图1). Nat Commun (2016) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 人类; 1:800; 图3
默克密理博中国 GFAP抗体(Merck Millipore, MAB360)被用于免疫细胞化学在人类样品上浓度为1:800 (图3). PLoS ONE (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:2000; 图s6
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫印迹在小鼠样品上浓度为1:2000 (图s6). Sci Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:5000; 图1
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫印迹在小鼠样品上浓度为1:5000 (图1). Glia (2016) ncbi
鸡 多克隆
  • 免疫组化-F; 小鼠; 1:200; 图1
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图1). Glia (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:400; 图7j
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:400 (图7j). Mol Ther Methods Clin Dev (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000; 图4
默克密理博中国 GFAP抗体(EMD Millipore, AB5804)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图4). J Clin Invest (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:500; 图4
默克密理博中国 GFAP抗体(EMD Millipore, MAB3402)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图4). J Clin Invest (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:100; 图2b
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在大鼠样品上浓度为1:100 (图2b). Sci Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 小鼠; 1:200
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在小鼠样品上浓度为1:200. Nat Commun (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:1000; 图1g
  • 细胞化学; 小鼠; 1:1000; 图1l
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图1g) 和 免疫细胞化学在小鼠样品上浓度为1:1000 (图1l). Nat Commun (2016) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 大鼠; 1:500; 图5
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在大鼠样品上浓度为1:500 (图5). Sci Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 图3c-d
  • 细胞化学; 小鼠; 图3e
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫印迹在小鼠样品上 (图3c-d) 和 免疫细胞化学在小鼠样品上 (图3e). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:1000; 图3
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图3). EMBO Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:1000; 图1
默克密理博中国 GFAP抗体(Millipore, MAB3402X)被用于免疫组化在小鼠样品上浓度为1:1000 (图1). Front Mol Neurosci (2016) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 大鼠; 1:200; 图6
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫细胞化学在大鼠样品上浓度为1:200 (图6). J Mater Sci Mater Med (2016) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 大鼠; 图1
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在大鼠样品上 (图1). Sci Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 人类; 图2
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫印迹在人类样品上 (图2). Stem Cells Int (2016) ncbi
小鼠 单克隆(GA5)
  • IHC-Free; 大鼠; 1:1000; 图6
  • 免疫印迹; 大鼠; 1:400; 图6
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000 (图6) 和 免疫印迹在大鼠样品上浓度为1:400 (图6). Exp Neurol (2016) ncbi
小鼠 单克隆
  • 免疫组化-P; 人类; 1:200; 图3
默克密理博中国 GFAP抗体(Millipore, IF03L)被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图3). Neuropathol Appl Neurobiol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:800; 图4a
  • 免疫印迹; 大鼠; 1:60,000; 图2b
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:800 (图4a) 和 免疫印迹在大鼠样品上浓度为1:60,000 (图2b). Neuroscience (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 图1
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化-冰冻切片在小鼠样品上 (图1). J Neurosci (2016) ncbi
鸡 多克隆
  • 免疫组化; 人类; 1:100; 图1
  • 免疫组化; 小鼠; 1:100; 图s4
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于免疫组化在人类样品上浓度为1:100 (图1) 和 在小鼠样品上浓度为1:100 (图s4). Nat Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:1000; 图5
默克密理博中国 GFAP抗体(Chemicon, AB5804)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000 (图5). Ann Anat (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 大鼠; 图5
默克密理博中国 GFAP抗体(Merck KGaA, MAB360)被用于免疫组化-石蜡切片在大鼠样品上 (图5). BMC Neurosci (2015) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:1000; 图3
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫细胞化学在小鼠样品上浓度为1:1000 (图3). Sci Rep (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 小鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在小鼠样品上浓度为1:1000. Nat Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; tiger salamander; 1:400; 图7
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于免疫组化在tiger salamander样品上浓度为1:400 (图7). elife (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 人类; 1:400; 图6
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在人类样品上浓度为1:400 (图6). PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 人类; 1:500; 图2
默克密理博中国 GFAP抗体(Chemicon-Millipore, MAB 360)被用于免疫细胞化学在人类样品上浓度为1:500 (图2). PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • IHC-Free; 小鼠; 1:5000; 图7
默克密理博中国 GFAP抗体(millipore, MAB3402)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:5000 (图7). Anesthesiology (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:4000; 图2
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:4000 (图2). Mol Brain (2015) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 1:500; 图5
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫细胞化学在大鼠样品上浓度为1:500 (图5). Tissue Eng Part A (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:500; 图2
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化在小鼠样品上浓度为1:500 (图2). Int J Dev Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 人类; 图1
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在人类样品上 (图1). Stem Cells Dev (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 人类; 1:500
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-石蜡切片在人类样品上浓度为1:500. Glia (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 图3
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-冰冻切片在小鼠样品上 (图3). J Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:100
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在小鼠样品上浓度为1:100. Eur J Neurosci (2015) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:250
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于免疫组化在小鼠样品上浓度为1:250. Front Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 人类; 1:500; 图s13
默克密理博中国 GFAP抗体(Millipore, MAB 360)被用于免疫细胞化学在人类样品上浓度为1:500 (图s13). PLoS Biol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 大鼠; 1:1000
  • 免疫组化; 大鼠; 1:5000
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于免疫印迹在大鼠样品上浓度为1:1000 和 免疫组化在大鼠样品上浓度为1:5000. Neuroscience (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:30000; 图1
默克密理博中国 GFAP抗体(Millipore, MAB5628)被用于免疫印迹在小鼠样品上浓度为1:30000 (图1). Glia (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于免疫组化在大鼠样品上. CNS Neurosci Ther (2015) ncbi
鸡 多克隆默克密理博中国 GFAP抗体(Millipore, AB5541)被用于. Glia (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 人类; 图2
默克密理博中国 GFAP抗体(Millipore, MAB 360)被用于免疫组化-石蜡切片在人类样品上 (图2). PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 小鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在小鼠样品上浓度为1:1000. J Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:500; 图s2b
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化在小鼠样品上浓度为1:500 (图s2b). Nature (2015) ncbi
鸡 多克隆
  • 免疫组化-P; 人类; 图2
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于免疫组化-石蜡切片在人类样品上 (图2). Brain Pathol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:200
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200 和 免疫印迹在大鼠样品上浓度为1:1000. Brain Inj (2015) ncbi
兔 多克隆
  • 免疫组化; 人类
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫组化在人类样品上. J Neuroinflammation (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 大鼠; 1:200; 图s1
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于免疫细胞化学在大鼠样品上浓度为1:200 (图s1). PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 大鼠; 1:100
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在大鼠样品上浓度为1:100. J Cell Physiol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图3a
默克密理博中国 GFAP抗体(Millipore, AD5804)被用于免疫印迹在小鼠样品上浓度为1:5000 (图3a). Mol Psychiatry (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 图10
默克密理博中国 GFAP抗体(EMD Millipore, mab3402)被用于免疫组化在小鼠样品上 (图10). Mol Cell Biol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 人类; 1:200; 图1
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化在人类样品上浓度为1:200 (图1). Sci Rep (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 小鼠; 1:400; 表1
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在小鼠样品上浓度为1:400 (表1). Cell Transplant (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:1000; 图3
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化在大鼠样品上浓度为1:1000 (图3). Front Cell Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 图S4
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫组化-石蜡切片在人类样品上 (图S4). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图s7
默克密理博中国 GFAP抗体(millipore, AB5804)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图s7). Nat Med (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:200
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化在大鼠样品上浓度为1:200. Biomaterials (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 图4
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在小鼠样品上 (图4). J Neuroinflammation (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:200
默克密理博中国 GFAP抗体(EMD Millipore, MAB3402)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200. J Neuroinflammation (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:400
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在小鼠样品上浓度为1:400. Neuroimage (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:1000; 图5P
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在小鼠样品上浓度为1:1000 (图5P). J Neurochem (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 大鼠; 1:200; 图s4
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在大鼠样品上浓度为1:200 (图s4). Nat Commun (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 人类; 1:500; 图2
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫细胞化学在人类样品上浓度为1:500 (图2). Int J Oncol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在大鼠样品上浓度为1:1000. Neurobiol Dis (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:500
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫细胞化学在人类样品上浓度为1:500. Brain Pathol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 小鼠
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-石蜡切片在小鼠样品上. EMBO Mol Med (2015) ncbi
兔 多克隆
  • 其他; 大鼠; 1:200; 图1g
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于其他在大鼠样品上浓度为1:200 (图1g). PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 人类; 1:400
  • 免疫组化-P; 小鼠; 1:400
默克密理博中国 GFAP抗体(Millipore, MAB 360)被用于免疫组化-石蜡切片在人类样品上浓度为1:400 和 在小鼠样品上浓度为1:400. Brain (2015) ncbi
鸡 多克隆
  • 细胞化学; 人类
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于免疫细胞化学在人类样品上. Tissue Eng Part A (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:500; 图7
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图7). Nat Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:100
默克密理博中国 GFAP抗体(Millipore Corporation, Mab360)被用于免疫组化在小鼠样品上浓度为1:100. J Neurochem (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫组化在小鼠样品上浓度为1:1000. Surg Neurol Int (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 大鼠; 1:400
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:400 和 免疫印迹在大鼠样品上浓度为1:1000. Mol Neurobiol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:500; 图5
  • 细胞化学; 小鼠; 1:500; 图4
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图5) 和 免疫细胞化学在小鼠样品上浓度为1:500 (图4). Development (2015) ncbi
小鼠 单克隆
  • 细胞化学; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB3402C3)被用于免疫细胞化学在大鼠样品上浓度为1:1000. Toxicol In Vitro (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB3402X)被用于免疫细胞化学在大鼠样品上浓度为1:1000. Toxicol In Vitro (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:500
  • 免疫组化; 大鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在小鼠样品上浓度为1:500 和 在大鼠样品上浓度为1:500. Neurobiol Dis (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 大鼠; 1:500; 图2a
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于免疫细胞化学在大鼠样品上浓度为1:500 (图2a). J Neurosci Res (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:4000
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:4000. Front Neural Circuits (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:100
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在小鼠样品上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:1000
默克密理博中国 GFAP抗体(EMD Millipore, MAB360)被用于免疫组化在大鼠样品上浓度为1:1000. Free Radic Biol Med (2015) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:2000
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于免疫组化在小鼠样品上浓度为1:2000. Mol Cell Neurosci (2014) ncbi
兔 单克隆(EP672Y)
  • 免疫组化-P; 人类; 1:500
默克密理博中国 GFAP抗体(Millipore, 04-1031)被用于免疫组化-石蜡切片在人类样品上浓度为1:500. Acta Neuropathol Commun (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 小鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500. Cell Tissue Res (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:2000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:2000. Front Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 小鼠; 1:25,000; 图s3
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:25,000 (图s3). Hum Mol Genet (2015) ncbi
小鼠 单克隆(GA5)
  • IHC-Free; 小鼠; 1:100
默克密理博中国 GFAP抗体(Millipore, MAB 360)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:100. Cereb Cortex (2015) ncbi
兔 多克隆
  • IHC-Free; African green monkey; 1:1600; 表1
默克密理博中国 GFAP抗体(Millipore, #AB5804)被用于immunohistochemistry - free floating section在African green monkey样品上浓度为1:1600 (表1). J Comp Neurol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 人类; 1:1000
默克密理博中国 GFAP抗体(EMD Millipore, MAB360)被用于免疫组化-冰冻切片在人类样品上浓度为1:1000. J Comp Neurol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:100
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在大鼠样品上浓度为1:100. Toxicol Sci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 小鼠
默克密理博中国 GFAP抗体(MIllipore, GA5)被用于免疫组化-石蜡切片在小鼠样品上. J Neurosci Res (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 小鼠
默克密理博中国 GFAP抗体(MIllipore, GA5)被用于免疫组化-石蜡切片在小鼠样品上. J Neurosci Res (2015) ncbi
小鼠 单克隆(GA5)
  • IHC-Free; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000. Neuroscience (2014) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 大鼠
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在大鼠样品上. PLoS ONE (2014) ncbi
鸡 多克隆
  • 免疫组化; 人类; 1:1000
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于免疫组化在人类样品上浓度为1:1000. Neuroscience (2014) ncbi
小鼠 单克隆
  • 细胞化学; 大鼠; 图2b
默克密理博中国 GFAP抗体(Calbiochem, IF03L)被用于免疫细胞化学在大鼠样品上 (图2b). Exp Neurol (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 人类; 1:500; 图1b
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于免疫细胞化学在人类样品上浓度为1:500 (图1b). J Cell Biochem (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:200
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200. J Anat (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:10,000; 图2
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫印迹在小鼠样品上浓度为1:10,000 (图2). Front Cell Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在大鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:200
  • 免疫印迹; 大鼠
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200 和 免疫印迹在大鼠样品上. Brain Behav Immun (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:200; 图6
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在大鼠样品上浓度为1:200 (图6). Stem Cells (2014) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:500
默克密理博中国 GFAP抗体(Chemicon, AB5804)被用于免疫细胞化学在人类样品上浓度为1:500. Biomed Res Int (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 人类; 1:200
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Acta Neuropathol (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:1000; 图2
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化在小鼠样品上浓度为1:1000 (图2). Nat Med (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. J Neurosci Res (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:200; 图 4
默克密理博中国 GFAP抗体(Chemicon/Millipore, MAB360)被用于免疫组化在小鼠样品上浓度为1:200 (图 4). Pharmacol Biochem Behav (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 斑马鱼; 1:100; 图3
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在斑马鱼样品上浓度为1:100 (图3). Neuroscience (2014) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 小鼠; 1:100
默克密理博中国 GFAP抗体(Merck Millipore, MAB360)被用于免疫细胞化学在小鼠样品上浓度为1:100. Int J Dev Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:5000
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫印迹在小鼠样品上浓度为1:5000. Neuroscience (2014) ncbi
小鼠 单克隆(GA5)
  • IHC-Free; 大鼠; 1:1000; 图5
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000 (图5). Brain Struct Funct (2015) ncbi
鸡 多克隆
  • 细胞化学; 小鼠; 1:1000; 图1
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于免疫细胞化学在小鼠样品上浓度为1:1000 (图1). Nat Commun (2014) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:100
  • 免疫组化; 大鼠; 1:100
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在大鼠样品上浓度为1:100, 免疫印迹在大鼠样品上浓度为1:100, 和 免疫组化在大鼠样品上浓度为1:100. J Neuroinflammation (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:400
默克密理博中国 GFAP抗体(Millipore, Mab360)被用于免疫组化在小鼠样品上浓度为1:400. Int J Dev Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:4000
默克密理博中国 GFAP抗体(Millepore, AB5804)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:4000. Environ Health Perspect (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫印迹在大鼠样品上浓度为1:1000. Mol Pain (2014) ncbi
小鼠 单克隆(GA5)
  • IHC-Free; 小鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. Cell Tissue Res (2014) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; platanna; 1:400
默克密理博中国 GFAP抗体(Milipore, MAB360)被用于免疫细胞化学在platanna样品上浓度为1:400. Gen Comp Endocrinol (2014) ncbi
小鼠 单克隆(GA5)
  • IHC-Free; 大鼠; 1:1000
默克密理博中国 GFAP抗体(EMD Millipore, mAb360)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000. J Biol Chem (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:1000. J Histochem Cytochem (2014) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 小鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在小鼠样品上浓度为1:1000. Mol Cell Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:10000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫印迹在小鼠样品上浓度为1:10000. Front Integr Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:1000
  • 免疫印迹; 小鼠; 1:3000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 和 免疫印迹在小鼠样品上浓度为1:3000. J Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在小鼠样品上浓度为1:500. J Neurochem (2014) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 1:2000
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:2000. Curr Protoc Cytom (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化在大鼠样品上浓度为1:500. Neuroscience (2014) ncbi
小鼠 单克隆(GA5)
  • IHC-Free; 猕猴; 1:500
  • IHC-Free; 人类; 1:500
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于immunohistochemistry - free floating section在猕猴样品上浓度为1:500 和 在人类样品上浓度为1:500. J Comp Neurol (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫印迹在大鼠样品上浓度为1:1000. Glia (2014) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. Glia (2014) ncbi
鸡 多克隆
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于免疫组化在小鼠样品上 和 免疫印迹在小鼠样品上. J Neuroinflammation (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 小鼠
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-石蜡切片在小鼠样品上. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在小鼠样品上浓度为1:500. J Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:1000
  • 细胞化学; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Chemicon International, MAB360)被用于免疫组化在大鼠样品上浓度为1:1000 和 免疫细胞化学在大鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠
默克密理博中国 GFAP抗体(Chemicon International, MAB360)被用于免疫组化-冰冻切片在小鼠样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:10000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在小鼠样品上浓度为1:10000. Cell Mol Neurobiol (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫组化在小鼠样品上. J Vis Exp (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫组化在小鼠样品上浓度为1:500. Cancer Res (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; African green monkey; 1:100000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在African green monkey样品上浓度为1:100000. Mol Ther (2014) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 小鼠; 1:200
  • 免疫组化; 小鼠; 1:200
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫细胞化学在小鼠样品上浓度为1:200 和 免疫组化在小鼠样品上浓度为1:200. Stem Cells Dev (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:200
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在大鼠样品上浓度为1:200. Exp Eye Res (2014) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:400
  • 细胞化学; 人类
默克密理博中国 GFAP抗体(Chemicon, AB5804)被用于免疫组化在人类样品上浓度为1:400 和 免疫细胞化学在人类样品上. J Cell Mol Med (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:400
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:400. J Virol (2014) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 人类
  • 细胞化学; 大鼠
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在人类样品上 和 在大鼠样品上. J Mol Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:200; 图2, 3
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于免疫组化在小鼠样品上浓度为1:200 (图2, 3). Development (2014) ncbi
兔 多克隆
  • 免疫组化; 大鼠
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫组化在大鼠样品上. J Cereb Blood Flow Metab (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:100; 图2
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图2). Development (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:1500
默克密理博中国 GFAP抗体(Chemicon International, GA5)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1500. Acta Neuropathol Commun (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:1500
默克密理博中国 GFAP抗体(Chemicon International, GA5)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1500. Acta Neuropathol Commun (2013) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 小鼠
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫细胞化学在小鼠样品上. Anal Chem (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在小鼠样品上浓度为1:500. PLoS ONE (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 大鼠; 1:200
默克密理博中国 GFAP抗体(Millipore, GA5)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:200. Toxicol Lett (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 大鼠; 1:200
默克密理博中国 GFAP抗体(Millipore, GA5)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:200. Toxicol Lett (2014) ncbi
小鼠 单克隆(GA5)
  • IHC-Free; 小鼠
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于immunohistochemistry - free floating section在小鼠样品上. J Neurosci (2013) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:100
默克密理博中国 GFAP抗体(Chemicon, AB5804)被用于免疫细胞化学在人类样品上浓度为1:100. Cytotechnology (2013) ncbi
鸡 多克隆
  • 免疫组化-P; 大鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:500. J Neuroinflammation (2013) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 人类
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在人类样品上. elife (2013) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 狗
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在狗样品上. Methods Mol Biol (2013) ncbi
小鼠 单克隆(GA5)
  • IHC-Free; 小鼠; 1:4000
  • IHC-Free; 大鼠; 1:4000
  • 免疫印迹; 小鼠
  • 免疫印迹; 大鼠
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:4000 和 在大鼠样品上浓度为1:4000 和 免疫印迹在小鼠样品上 和 在大鼠样品上. Mol Neurobiol (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:100
  • 免疫组化-F; 大鼠
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 和 在大鼠样品上. Anesthesiology (2014) ncbi
兔 多克隆
  • 免疫组化-F; African green monkey; 1:2000
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫组化-冰冻切片在African green monkey样品上浓度为1:2000. Neuroscience (2013) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:400
默克密理博中国 GFAP抗体(Chemicon, AB5804)被用于免疫组化在大鼠样品上浓度为1:400. Cereb Cortex (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:2500; 图6
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫印迹在小鼠样品上浓度为1:2500 (图6). ASN Neuro (2013) ncbi
鸡 多克隆
  • 免疫组化-P; 小鼠; 1:600
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:600. J Comp Neurol (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:500
  • 细胞化学; 大鼠; 1:500
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化在大鼠样品上浓度为1:500, 免疫细胞化学在大鼠样品上浓度为1:500, 和 免疫印迹在大鼠样品上浓度为1:1000. Biomaterials (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 人类; 1:1000
  • 免疫组化; 人类; 1:200
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫印迹在人类样品上浓度为1:1000 和 免疫组化在人类样品上浓度为1:200. Neuro Oncol (2013) ncbi
兔 多克隆
  • 免疫组化-F; 人类; 1:75
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫组化-冰冻切片在人类样品上浓度为1:75. Cell Tissue Res (2013) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:1000
默克密理博中国 GFAP抗体(Millipore, ab5804)被用于免疫组化-石蜡切片在人类样品上浓度为1:1000. Neuroscience (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 人类; 1 ug/ml
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于免疫组化-冰冻切片在人类样品上浓度为1 ug/ml. Neuropathol Appl Neurobiol (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; African green monkey; 1:100000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-冰冻切片在African green monkey样品上浓度为1:100000. Hum Gene Ther (2013) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500. J Neurotrauma (2013) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 大鼠; 1:800
  • 免疫印迹; 大鼠; 1:60000
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:800 和 免疫印迹在大鼠样品上浓度为1:60000. J Neurotrauma (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:200
默克密理博中国 GFAP抗体(Millipore Corporation, GA5)被用于免疫组化在小鼠样品上浓度为1:200. Reprod Toxicol (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:200
默克密理博中国 GFAP抗体(Millipore Corporation, GA5)被用于免疫组化在小鼠样品上浓度为1:200. Reprod Toxicol (2013) ncbi
小鼠 单克隆(GA5)
  • IHC-Free; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000. J Neuroinflammation (2013) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 小鼠
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在小鼠样品上. Neurobiol Dis (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:300
默克密理博中国 GFAP抗体(Millipore, GA5)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:300. J Neurosci (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:300
默克密理博中国 GFAP抗体(Millipore, GA5)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:300. J Neurosci (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 大鼠; 1:500
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:500. PLoS ONE (2012) ncbi
兔 多克隆
  • 免疫组化-F; 狗; 1:200
  • 细胞化学; 狗; 1:200
默克密理博中国 GFAP抗体(Chemicon, AB5804)被用于免疫组化-冰冻切片在狗样品上浓度为1:200 和 免疫细胞化学在狗样品上浓度为1:200. Histochem Cell Biol (2013) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 猕猴; 1:500
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于免疫细胞化学在猕猴样品上浓度为1:500. Stem Cells Dev (2013) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 人类; 1:800
  • 免疫组化; 人类; 1:800
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫细胞化学在人类样品上浓度为1:800 和 免疫组化在人类样品上浓度为1:800. Gene Ther (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 大鼠; 1:800
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:800. Cell Mol Neurobiol (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:5000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:5000. J Neuroinflammation (2012) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图6
默克密理博中国 GFAP抗体(Millipore, AB5804)被用于免疫组化-石蜡切片在小鼠样品上 (图6). PLoS ONE (2011) ncbi
鸡 多克隆
  • IHC-Free; 小鼠; 1:2000
默克密理博中国 GFAP抗体(Millipore, AB5541)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:2000. J Comp Neurol (2012) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:1000
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化在大鼠样品上浓度为1:1000. Brain (2012) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:500
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500. Exp Neurol (2011) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:2000
默克密理博中国 GFAP抗体(Millipore, MAB360)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:2000. J Comp Neurol (2011) ncbi
鸡 多克隆
  • 细胞化学; African green monkey
  • 细胞化学; 人类
默克密理博中国 GFAP抗体(Chemicon, AB5541)被用于免疫细胞化学在African green monkey样品上 和 在人类样品上. J Comp Neurol (2011) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:2000
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:2000. J Comp Neurol (2011) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 人类; 1:2000
默克密理博中国 GFAP抗体(Millipore, MAB3402)被用于免疫组化-冰冻切片在人类样品上浓度为1:2000. J Comp Neurol (2009) ncbi
兔 多克隆
  • 免疫组化-F; 人类; 1:750
默克密理博中国 GFAP抗体(Chemicon, AB9598)被用于免疫组化-冰冻切片在人类样品上浓度为1:750. J Comp Neurol (2009) ncbi
兔 多克隆
  • 免疫组化; Trachemys dorbigni; 1:500
默克密理博中国 GFAP抗体(Chemicon, AB 5804)被用于免疫组化在Trachemys dorbigni样品上浓度为1:500. J Comp Neurol (2009) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:2000
默克密理博中国 GFAP抗体(Chemicon / Millipore, AB5804)被用于免疫组化在大鼠样品上浓度为1:2000. J Comp Neurol (2008) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:1000
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Comp Neurol (2008) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000
默克密理博中国 GFAP抗体(Chemicon, AB5804)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Comp Neurol (2008) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:1,000
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于免疫组化在小鼠样品上浓度为1:1,000. J Comp Neurol (2008) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 小鼠; 1:2,000
  • 细胞化学; 小鼠; 1:2,000
  • 免疫印迹; 小鼠; 1:30,000
默克密理博中国 GFAP抗体(Chemicon, MAB 3402)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:2,000, 免疫细胞化学在小鼠样品上浓度为1:2,000, 和 免疫印迹在小鼠样品上浓度为1:30,000. J Comp Neurol (2007) ncbi
兔 多克隆默克密理博中国 GFAP抗体(Chemicon International, AB 5804)被用于. J Comp Neurol (2007) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 鸡; 1:400
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于免疫组化在鸡样品上浓度为1:400. J Comp Neurol (2007) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:200
默克密理博中国 GFAP抗体(Chemicon, AB5804)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200. J Comp Neurol (2006) ncbi
小鼠 单克隆(GA5)
  • IHC-Free; 小鼠; 1:2,500
默克密理博中国 GFAP抗体(Chemicon, MAB360)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:2,500. J Comp Neurol (2006) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500
默克密理博中国 GFAP抗体(Chemicon International, AB 5804)被用于免疫组化在大鼠样品上浓度为1:500. J Comp Neurol (2006) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:200
  • 免疫组化; 大鼠; 1:200
默克密理博中国 GFAP抗体(Chemicon, MAB3402)被用于免疫组化在小鼠样品上浓度为1:200 和 在大鼠样品上浓度为1:200. J Comp Neurol (2006) ncbi
西格玛奥德里奇
兔 多克隆
  • 免疫组化-F; 小鼠; 图1b
  • 免疫组化; 小鼠; 图s3d
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G9269)被用于免疫组化-冰冻切片在小鼠样品上 (图1b) 和 免疫组化在小鼠样品上 (图s3d). Science (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:200; 图4c
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, C9205)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图4c). Front Mol Neurosci (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; jirds; 1:400; 表1
西格玛奥德里奇 GFAP抗体(Sigma, G-3893)被用于免疫组化在jirds样品上浓度为1:400 (表1). J Comp Neurol (2017) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 人类; 1:400; 图e1b
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫细胞化学在人类样品上浓度为1:400 (图e1b). Nature (2017) ncbi
小鼠 单克隆(G-A-5)
  • IHC-Free; 小鼠; 图2a
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于immunohistochemistry - free floating section在小鼠样品上 (图2a). Sci Rep (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; 人类; 1:1000; 图8f
  • 免疫组化; 小鼠; 1:1000; 图5c
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (图8f) 和 免疫组化在小鼠样品上浓度为1:1000 (图5c). Acta Neuropathol Commun (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:500; 图6
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, C9205)被用于免疫组化在大鼠样品上浓度为1:500 (图6). PLoS ONE (2017) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 图1k
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于immunohistochemistry - free floating section在小鼠样品上 (图1k). Front Neurosci (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:200; 图8i
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上浓度为1:200 (图8i). Sci Rep (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:400; 图3c
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上浓度为1:400 (图3c). Front Aging Neurosci (2017) ncbi
小鼠 单克隆(G-A-5)
  • IHC-Free; 小鼠; 1:1000; 图4f
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000 (图4f). FASEB J (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:1000; 图1a
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图1a). Nat Commun (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:500; 图1D
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图1D). elife (2017) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 小鼠; 1:200; 图42
西格玛奥德里奇 GFAP抗体(Sigma, C9205)被用于免疫细胞化学在小鼠样品上浓度为1:200 (图42). Neural Regen Res (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 人类; 1:1000; 图5d
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在人类样品上浓度为1:1000 (图5d). Nature (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; 人类; 1:100; 图1
西格玛奥德里奇 GFAP抗体(Sigma, G3896)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图1). Int J Mol Sci (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 图s2d
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上 (图s2d). Cell Stem Cell (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; 人类; 1:500; 图2k
西格玛奥德里奇 GFAP抗体(Sigma, C9205)被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图2k). Oncotarget (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; 小鼠; 图5a
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化-石蜡切片在小鼠样品上 (图5a). Hum Mol Genet (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:400; 图5
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在大鼠样品上浓度为1:400 (图5). Front Cell Neurosci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2c
  • 细胞化学; 人类; 图2f
西格玛奥德里奇 GFAP抗体(Sigma, SAB43000647)被用于免疫印迹在人类样品上 (图2c) 和 免疫细胞化学在人类样品上 (图2f). Cell Chem Biol (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 表1
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于免疫组化在小鼠样品上浓度为1:1000 (表1). elife (2016) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 小鼠; 1:300; 图s2a
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫细胞化学在小鼠样品上浓度为1:300 (图s2a). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化; 斑马鱼; 1:1000; 图s3b
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于免疫组化在斑马鱼样品上浓度为1:1000 (图s3b). Science (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:500; 图4c
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在大鼠样品上浓度为1:500 (图4c). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化; African green monkey; 1:2000; 图5
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于免疫组化在African green monkey样品上浓度为1:2000 (图5). Sci Rep (2016) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 大鼠; 1:10,000; 图2f
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫细胞化学在大鼠样品上浓度为1:10,000 (图2f). Mol Pharm (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:2000; 图2c
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在大鼠样品上浓度为1:2000 (图2c). Brain Struct Funct (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 大鼠; 图3
西格玛奥德里奇 GFAP抗体(Sigma, C9205)被用于免疫组化-冰冻切片在大鼠样品上 (图3). Sci Rep (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; Japanese firebelly newt; 1:600; 图3f
西格玛奥德里奇 GFAP抗体(Sigma, C9205)被用于免疫组化-冰冻切片在Japanese firebelly newt样品上浓度为1:600 (图3f). Sci Rep (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; 小鼠; 1:1000; 图2e
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图2e). Neurobiol Aging (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; Gallotia galloti; 1:500; 图1i
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化在Gallotia galloti样品上浓度为1:500 (图1i). J Comp Neurol (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图1a
  • 免疫组化; 人类; 1:500; 图7c
  • 免疫组化; 小鼠; 1:500; 图4a
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于免疫印迹在小鼠样品上浓度为1:500 (图1a) 和 免疫组化在人类样品上浓度为1:500 (图7c) 和 在小鼠样品上浓度为1:500 (图4a). Neuroscience (2016) ncbi
小鼠 单克隆(G-A-5)
  • IHC-Free; 小鼠; 1:500; 图4d
  • 免疫印迹; 小鼠; 1:2000; 图6c
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500 (图4d) 和 免疫印迹在小鼠样品上浓度为1:2000 (图6c). Dis Model Mech (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; 小鼠; 1:500; 图s6
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图s6). Cell Death Dis (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000; 图2
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上浓度为1:1000 (图2). Front Neurosci (2016) ncbi
小鼠 单克隆
  • 细胞化学; 小鼠; 1:4000; 图5a
西格玛奥德里奇 GFAP抗体(Sigma, SAB1405864)被用于免疫细胞化学在小鼠样品上浓度为1:4000 (图5a). Mol Med Rep (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:500; 图3e
西格玛奥德里奇 GFAP抗体(SIGMA, G6171)被用于免疫组化在小鼠样品上浓度为1:500 (图3e). Science (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000; 图5a
西格玛奥德里奇 GFAP抗体(Sigma, G 3893)被用于免疫组化在小鼠样品上浓度为1:1000 (图5a). Brain (2016) ncbi
小鼠 单克隆(GFAP-B4)
  • 免疫组化; 小鼠; 1:400; 图s4
西格玛奥德里奇 GFAP抗体(Sigma, SAB4100002)被用于免疫组化在小鼠样品上浓度为1:400 (图s4). Science (2016) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 大鼠
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫细胞化学在大鼠样品上. ACS Nano (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000; 图1
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上浓度为1:1000 (图1). elife (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 大鼠; 图1a
  • 免疫印迹; 大鼠; 图4a
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在大鼠样品上 (图1a) 和 免疫印迹在大鼠样品上 (图4a). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000; 图4
西格玛奥德里奇 GFAP抗体(Sigma, G6171)被用于免疫组化在小鼠样品上浓度为1:1000 (图4). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000; 图1
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上浓度为1:1000 (图1). J Proteome Res (2016) ncbi
小鼠 单克隆(G-A-5)
  • IHC-Free; 小鼠; 1:500; 图s2
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500 (图s2). Nat Commun (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:100; 图6
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在大鼠样品上浓度为1:100 (图6). Sci Rep (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化在小鼠样品上. Sci Rep (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:100; 表2
西格玛奥德里奇 GFAP抗体(Sigma, C9205)被用于免疫组化在大鼠样品上浓度为1:100 (表2). Front Neurosci (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图2a
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于免疫印迹在大鼠样品上 (图2a). Sci Rep (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:500; 图s1
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上浓度为1:500 (图s1). Nat Commun (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:200; 图6
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图6). Neurobiol Dis (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000; 图6b
西格玛奥德里奇 GFAP抗体(Sigma, C9205)被用于免疫组化在小鼠样品上浓度为1:1000 (图6b). J Neuropathol Exp Neurol (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:200; 图4
  • 免疫印迹; 小鼠; 1:1000; 图4
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图4) 和 免疫印迹在小鼠样品上浓度为1:1000 (图4). Nat Commun (2016) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1:1000; 图s4
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, SAB2500462)被用于免疫组化在小鼠样品上浓度为1:1000 (图s4). Nat Commun (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 图5c
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上 (图5c). J Mol Neurosci (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; 小鼠; 图5b
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-石蜡切片在小鼠样品上 (图5b). Sci Rep (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:500; 图7
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化在小鼠样品上浓度为1:500 (图7). Acta Neuropathol Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于免疫印迹在小鼠样品上 (图3). J Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:200; 图1
西格玛奥德里奇 GFAP抗体(Sigma Aldrich, G4546)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200 (图1). Am J Physiol Heart Circ Physiol (2016) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 人类; 图s1
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫细胞化学在人类样品上 (图s1). F1000Res (2015) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 大鼠; 1:500; 图s2
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫细胞化学在大鼠样品上浓度为1:500 (图s2). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 小鼠; 图6
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫印迹在小鼠样品上 (图6). elife (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:10,000; 图s4
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化在小鼠样品上浓度为1:10,000 (图s4). Front Mol Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 小鼠; 1:400; 图4d
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫细胞化学在小鼠样品上浓度为1:400 (图4d). Stem Cells Int (2016) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 人类; 1:1000; 表1
西格玛奥德里奇 GFAP抗体(Sigma, C9205)被用于免疫细胞化学在人类样品上浓度为1:1000 (表1). Exp Eye Res (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:2000; 图3a
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在大鼠样品上浓度为1:2000 (图3a). Gene Ther (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:100; 图8
西格玛奥德里奇 GFAP抗体(Sigma, G6171)被用于免疫组化在小鼠样品上浓度为1:100 (图8). Sci Rep (2016) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 大鼠; 1:200; 图2
  • 免疫印迹; 大鼠; 1:1000; 图3
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫细胞化学在大鼠样品上浓度为1:200 (图2) 和 免疫印迹在大鼠样品上浓度为1:1000 (图3). Brain Behav (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图5
西格玛奥德里奇 GFAP抗体(sigma-Adrich, 4546)被用于免疫组化在小鼠样品上浓度为1:1000 (图5). Mol Vis (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化在小鼠样品上. J Virol (2015) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 图1
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于免疫细胞化学在小鼠样品上 (图1). Sci Rep (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 小鼠; 1:1000; 图5
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫印迹在小鼠样品上浓度为1:1000 (图5). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:400; 图5e
西格玛奥德里奇 GFAP抗体(Sigma, G4546)被用于免疫组化在小鼠样品上浓度为1:400 (图5e). Sci Rep (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000; 图6
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上浓度为1:1000 (图6). PLoS ONE (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:100; 图5a
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图5a). J Neuroinflammation (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:500; 图6
西格玛奥德里奇 GFAP抗体(Sigma, G 3893)被用于免疫组化在小鼠样品上浓度为1:500 (图6). Neuropharmacology (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:3000; 图1
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化在小鼠样品上浓度为1:3000 (图1). Dis Model Mech (2016) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 图5
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于免疫细胞化学在大鼠样品上 (图5). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 图6
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, C9205)被用于免疫组化在大鼠样品上 (图6). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 图7
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在小鼠样品上 (图7). J Neurosci Res (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 大鼠; 1:200; 图4f
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200 (图4f). Mol Med Rep (2015) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 小鼠; 1:500; 表1
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫细胞化学在小鼠样品上浓度为1:500 (表1). J Neurosci Res (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma Aldrich, G9269)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. Glia (2016) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 小鼠; 1:500; 图1
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫细胞化学在小鼠样品上浓度为1:500 (图1). BMC Biol (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:800; 图5
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, C9205)被用于免疫组化在小鼠样品上浓度为1:800 (图5). J Clin Invest (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图3
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于免疫组化-石蜡切片在小鼠样品上 (图3). Oxid Med Cell Longev (2015) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 羊; 1:500; 图2
西格玛奥德里奇 GFAP抗体(Sigma, C9205)被用于免疫细胞化学在羊样品上浓度为1:500 (图2). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, cat# G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. EMBO J (2015) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 大鼠; 1:200
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫细胞化学在大鼠样品上浓度为1:200. Cell J (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上浓度为1:1000. J Neuroimmunol (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 大鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma, G389)被用于免疫印迹在大鼠样品上浓度为1:400. J Proteome Res (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫印迹在小鼠样品上浓度为1:500. PLoS ONE (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:400; 表2
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上浓度为1:400 (表2). Eur J Neurosci (2015) ncbi
兔 多克隆西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于. Glia (2015) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 1:200; 图1
西格玛奥德里奇 GFAP抗体(Sigma, G4546)被用于免疫细胞化学在大鼠样品上浓度为1:200 (图1). Front Neuroanat (2015) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 大鼠; 1:600; 图1
西格玛奥德里奇 GFAP抗体(Sigma, G393)被用于免疫细胞化学在大鼠样品上浓度为1:600 (图1). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, C9205)被用于免疫细胞化学在小鼠样品上浓度为1:500. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:5000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G9269)被用于免疫印迹在大鼠样品上浓度为1:5000. J Neurochem (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 人类; 图5
西格玛奥德里奇 GFAP抗体(Sigma, G-A-5)被用于免疫组化在人类样品上 (图5). J Neuroinflammation (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 人类; 图5
西格玛奥德里奇 GFAP抗体(Sigma, G-A-5)被用于免疫组化在人类样品上 (图5). J Neuroinflammation (2015) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, SAB2500462)被用于免疫组化在小鼠样品上浓度为1:1000. J Immunol (2015) ncbi
小鼠 单克隆(GFAP-B4)
  • 细胞化学; 人类; 图7
西格玛奥德里奇 GFAP抗体(Sigma, SAB4100002)被用于免疫细胞化学在人类样品上 (图7). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:100; 图4
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G926)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图4). Brain (2015) ncbi
小鼠 单克隆(G-A-5)
  • IHC-Free; 小鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma, G-A-5)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. Cell Tissue Res (2016) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 大鼠; 1:200
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫细胞化学在大鼠样品上浓度为1:200. J Mol Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • IHC-Free; 大鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G-3893)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:400. Mol Neurobiol (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 图s4d
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G9269)被用于免疫细胞化学在人类样品上 (图s4d). Oncotarget (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; 小鼠; 图6
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-石蜡切片在小鼠样品上 (图6). Sci Rep (2015) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 人类; 1:250; 图3d
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫细胞化学在人类样品上浓度为1:250 (图3d). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图4
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G-9269)被用于免疫组化在小鼠样品上浓度为1:500 (图4). Amyotroph Lateral Scler Frontotemporal Degener (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G9269)被用于免疫印迹在小鼠样品上 (图1). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, C9205)被用于免疫组化在大鼠样品上浓度为1:1000. Front Mol Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; 小鼠; 1:500; 图s2
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图s2). Stem Cell Reports (2015) ncbi
兔 多克隆
  • FC; 大鼠; 图s4a
  • 免疫印迹 (基因敲减); 大鼠; 图2f
  • 细胞化学; 大鼠; 1:250; 图s3a
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于流式细胞仪在大鼠样品上 (图s4a), 免疫印迹 (基因敲减)在大鼠样品上 (图2f), 和 免疫细胞化学在大鼠样品上浓度为1:250 (图s3a). Cell Death Differ (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 大鼠; 1:1000; 图4g
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000 (图4g). BMC Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在大鼠样品上浓度为1:500. Front Cell Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在大鼠样品上. Brain Struct Funct (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; medaka; 1:1000; 图2
  • 免疫印迹; medaka; 1:1000; 图2
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化在medaka样品上浓度为1:1000 (图2) 和 免疫印迹在medaka样品上浓度为1:1000 (图2). PLoS Genet (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. Neuroscience (2015) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 人类; 1:1000; 图1
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫细胞化学在人类样品上浓度为1:1000 (图1). J Immunol (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. J Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:2000; 图5
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化在大鼠样品上浓度为1:2000 (图5). Neuroscience (2015) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 大鼠
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫细胞化学在大鼠样品上. Brain Behav (2015) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 小鼠; 1:200; 图s4
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫细胞化学在小鼠样品上浓度为1:200 (图s4). Sci Rep (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G 3893)被用于免疫组化在小鼠样品上浓度为1:500. Neuropharmacology (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:400; 图4
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:400 (图4). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图3
  • 免疫印迹; 小鼠; 1:3000; 图s2
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G9269)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图3) 和 免疫印迹在小鼠样品上浓度为1:3000 (图s2). Nat Neurosci (2015) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. J Neurosci (2015) ncbi
兔 多克隆
  • 酶联免疫吸附测定; 大鼠
  • 免疫印迹; 大鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma Chemical, G9269)被用于酶联免疫吸附测定在大鼠样品上 和 免疫印迹在大鼠样品上浓度为1:1000. Mol Neurobiol (2016) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 人类; 1:5000
西格玛奥德里奇 GFAP抗体(SIGMA, G3893)被用于免疫细胞化学在人类样品上浓度为1:5000. J Cell Physiol (2015) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 0.1 ug/ul
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G9269)被用于immunohistochemistry - free floating section在大鼠样品上浓度为0.1 ug/ul. J Comp Neurol (2015) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 人类; 1:500
  • 细胞化学; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫细胞化学在人类样品上浓度为1:500 和 在小鼠样品上浓度为1:500. Cell Biol Int Rep (2010) (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 大鼠; 1:500; 图5a
  • PLA; 大鼠; 1:500; 图5i
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500 (图5a) 和 proximity ligation assay在大鼠样品上浓度为1:500 (图5i). Exp Eye Res (2015) ncbi
兔 多克隆
  • 免疫印迹; Styela plicata; 1:5000
  • 免疫组化; Styela plicata; 1:100
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于免疫印迹在Styela plicata样品上浓度为1:5000 和 免疫组化在Styela plicata样品上浓度为1:100. Dev Neurobiol (2015) ncbi
小鼠 单克隆(G-A-5)
  • IHC-Free; 大鼠; 1:1000
西格玛奥德里奇 GFAP抗体(SIGMA, G3893)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000. Neuroscience (2015) ncbi
小鼠 单克隆(G-A-5)
  • IHC-Free; 小鼠; 1:5000; 表1
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:5000 (表1). Brain Behav Immun (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上浓度为1:400. Front Behav Neurosci (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:200; 图4
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图4). J Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:2000
  • 免疫印迹; 大鼠; 1:4000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G9269)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:2000 和 免疫印迹在大鼠样品上浓度为1:4000. Adv Alzheimer Dis (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:2000; 图4
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在大鼠样品上浓度为1:2000 (图4). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G9269)被用于免疫组化在小鼠样品上浓度为1:500. ASN Neuro (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 大鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G-3893)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. J Neurosci (2014) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 人类
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫细胞化学在人类样品上. Neuroscience (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:5000
西格玛奥德里奇 GFAP抗体(Sigma Aldrich, G3893)被用于免疫组化在大鼠样品上浓度为1:5000. Gene Ther (2014) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 人类; 1:3000
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫细胞化学在人类样品上浓度为1:3000. PLoS ONE (2014) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 1:600
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于免疫细胞化学在大鼠样品上浓度为1:600. J Neuroinflammation (2014) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 大鼠; 1:600
西格玛奥德里奇 GFAP抗体(Sigma, G6171)被用于免疫细胞化学在大鼠样品上浓度为1:600. J Neuroinflammation (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 人类; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在人类样品上浓度为1:1000. J Comp Neurol (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:100
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G6171)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100. Neurobiol Aging (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 人类
  • 免疫组化-F; 大鼠
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在人类样品上 和 在大鼠样品上. Ann Neurol (2014) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 人类; 1:400
西格玛奥德里奇 GFAP抗体(Sigma, C9205)被用于免疫细胞化学在人类样品上浓度为1:400. J Biol Chem (2014) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 小鼠; 1:2000; 图4
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫细胞化学在小鼠样品上浓度为1:2000 (图4). Stem Cells Dev (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; 人类; 1:500
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, Clone G-A-5)被用于免疫组化-石蜡切片在人类样品上浓度为1:500. J Immunol (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; 人类; 1:500
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, Clone G-A-5)被用于免疫组化-石蜡切片在人类样品上浓度为1:500. J Immunol (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 人类; 1:1000
  • 免疫组化; 大鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在人类样品上浓度为1:1000 和 在大鼠样品上浓度为1:1000. Int J Clin Exp Pathol (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1600
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上浓度为1:1600. J Chem Neuroanat (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Neurosci (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; 人类; 1:5000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化-石蜡切片在人类样品上浓度为1:5000. J Chem Neuroanat (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫印迹在小鼠样品上浓度为1:1000. Neurobiol Dis (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于免疫组化在小鼠样品上浓度为1:500. Cereb Cortex (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:20
  • 免疫组化-F; 大鼠; 1:20
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:20 和 在大鼠样品上浓度为1:20. Neuroscience (2014) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 人类; 1:600
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫细胞化学在人类样品上浓度为1:600. J Vis Exp (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000; 图s7
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上浓度为1:1000 (图s7). Nat Neurosci (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 人类; 1:1000; 图2b3
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在人类样品上浓度为1:1000 (图2b3). J Mol Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:1000; 图2b3
西格玛奥德里奇 GFAP抗体(Sigma, G9269)被用于免疫组化在人类样品上浓度为1:1000 (图2b3). J Mol Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:400. J Alzheimers Dis (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 大鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G-3893)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. Exp Neurol (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠
西格玛奥德里奇 GFAP抗体(Sigma, G-3893)被用于免疫组化在大鼠样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 大鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G6171)被用于免疫细胞化学在大鼠样品上浓度为1:500. Neuroscience (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:2000; 图4a
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上浓度为1:2000 (图4a). Nat Neurosci (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 兔
  • 免疫组化; 大鼠
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在兔样品上 和 在大鼠样品上. Exp Eye Res (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G9269)被用于免疫组化在小鼠样品上浓度为1:200. Exp Neurol (2014) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 人类; 1:400
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫细胞化学在人类样品上浓度为1:400. J Proteomics (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; 人类; 1:500; 图2
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图2). Brain Struct Funct (2015) ncbi
小鼠 单克隆(G-A-5)
  • IHC-Free; 小鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. Front Neurosci (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma-aldrich, G3893)被用于免疫组化在小鼠样品上浓度为1:1000. Stem Cells (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 人类; 1:15,000
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在人类样品上浓度为1:15,000. Neurobiol Aging (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; Apteronotus leptorhynchus; 图3
西格玛奥德里奇 GFAP抗体(Sigma, G-A-5)被用于免疫组化在Apteronotus leptorhynchus样品上 (图3). Dev Neurobiol (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 大鼠; 1:2000
  • 免疫印迹; 大鼠; 1:2000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G6171)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:2000 和 免疫印迹在大鼠样品上浓度为1:2000. J Neurol Sci (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:100
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上浓度为1:100. Glia (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 大鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500. Acta Neuropathol Commun (2013) ncbi
小鼠 单克隆(G-A-5)
  • IHC-Free; 人类; 1:1000
  • IHC-Free; 小鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于immunohistochemistry - free floating section在人类样品上浓度为1:1000 和 在小鼠样品上浓度为1:1000. Acta Neuropathol Commun (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在小鼠样品上. Acta Neuropathol Commun (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 人类
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫印迹在人类样品上. PLoS ONE (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:50000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G6171)被用于免疫组化在小鼠样品上浓度为1:50000. Hippocampus (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上浓度为1:500. J Neurosci (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化在小鼠样品上浓度为1:500. Nat Neurosci (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000
  • 免疫印迹; 小鼠; 1:2000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化在小鼠样品上浓度为1:1000 和 免疫印迹在小鼠样品上浓度为1:2000. J Comp Neurol (2014) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 小鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫细胞化学在小鼠样品上浓度为1:400. Nat Med (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 小鼠
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫印迹在小鼠样品上. J Neurosci (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 猕猴; 1:200
西格玛奥德里奇 GFAP抗体(Sigma, GA5)被用于免疫组化-冰冻切片在猕猴样品上浓度为1:200. J Neuroinflammation (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 猕猴; 1:200
西格玛奥德里奇 GFAP抗体(Sigma, GA5)被用于免疫组化-冰冻切片在猕猴样品上浓度为1:200. J Neuroinflammation (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; 小鼠; 1:500
  • 细胞化学; 小鼠
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 和 免疫细胞化学在小鼠样品上. Glia (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:800
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:800. PLoS ONE (2013) ncbi
小鼠 单克隆(G-A-5)
  • IHC-Free; 人类; 1:20,000
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于immunohistochemistry - free floating section在人类样品上浓度为1:20,000. J Chem Neuroanat (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma, G 3893)被用于免疫组化在小鼠样品上浓度为1:400. J Comp Neurol (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; 小鼠; 1:800; 图7
西格玛奥德里奇 GFAP抗体(Sigma, C9205)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:800 (图7). PLoS ONE (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, GA5)被用于免疫组化在大鼠样品上. J Neurosci (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, GA5)被用于免疫组化在大鼠样品上. J Neurosci (2013) ncbi
小鼠 单克隆(G-A-5)
  • 细胞化学; 小鼠
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫细胞化学在小鼠样品上. EMBO J (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; 猪
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化-石蜡切片在猪样品上. Reprod Sci (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 人类; 1:75
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化-冰冻切片在人类样品上浓度为1:75. Cell Tissue Res (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; 人类; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, GA5)被用于免疫组化-石蜡切片在人类样品上浓度为1:1000. Dev Neurosci (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; 人类; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, GA5)被用于免疫组化-石蜡切片在人类样品上浓度为1:1000. Dev Neurosci (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; 人类; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, GA5)被用于免疫组化-石蜡切片在人类样品上浓度为1:1000. Dev Neurosci (2013) ncbi
小鼠 单克隆(G-A-5)
  • IHC-Free; 人类; 1:5000
  • 细胞化学; 人类; 1:5000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于immunohistochemistry - free floating section在人类样品上浓度为1:5000 和 免疫细胞化学在人类样品上浓度为1:5000. Glia (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 人类
  • 免疫组化-F; 兔
  • 免疫印迹; 兔
西格玛奥德里奇 GFAP抗体(Sigma, G6171)被用于免疫组化-冰冻切片在人类样品上 和 在兔样品上 和 免疫印迹在兔样品上. Exp Neurol (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:5000
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:5000. Neuroscience (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 大鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:400. J Histochem Cytochem (2012) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. J Neurosci (2012) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:400. J Comp Neurol (2011) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; African green monkey
  • 免疫组化-P; 人类
  • 免疫组化-F; African green monkey
  • 免疫组化-F; 人类
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化-石蜡切片在African green monkey样品上 和 在人类样品上 和 免疫组化-冰冻切片在African green monkey样品上 和 在人类样品上. J Comp Neurol (2011) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; African green monkey; 1:100
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在African green monkey样品上浓度为1:100. J Comp Neurol (2011) ncbi
小鼠 单克隆(G-A-5)
  • IHC-Free; 小鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:400. J Comp Neurol (2010) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 斑马鱼; 1:100
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在斑马鱼样品上浓度为1:100. J Comp Neurol (2010) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:2000; 图2
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上浓度为1:2000 (图2). Neuroscience (2010) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; Trachemys dorbigni; 1:500
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化在Trachemys dorbigni样品上浓度为1:500. J Comp Neurol (2009) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. J Comp Neurol (2009) ncbi
小鼠 单克隆(G-A-5)
  • IHC-Free; 大鼠; 1:2500
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:2500. J Comp Neurol (2009) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化在小鼠样品上浓度为1:400. J Comp Neurol (2009) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 大鼠; 1:500
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500. J Comp Neurol (2008) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠; 1:300
  • 细胞化学; 小鼠; 1:1000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:300 和 免疫细胞化学在小鼠样品上浓度为1:1000. J Comp Neurol (2008) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 大鼠
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在大鼠样品上. J Comp Neurol (2008) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 斑马鱼; 1:100
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在斑马鱼样品上浓度为1:100. J Comp Neurol (2008) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 大鼠; 1:600
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G3893)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:600. J Comp Neurol (2008) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-F; 小鼠
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-冰冻切片在小鼠样品上. J Comp Neurol (2007) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1,000
西格玛奥德里奇 GFAP抗体(Sigma-Aldrich, G-3893)被用于免疫组化在小鼠样品上浓度为1:1,000. J Comp Neurol (2007) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:300
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上浓度为1:300. J Comp Neurol (2007) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-P; 人类; 1:200
  • 免疫组化-P; 小鼠; 1:200
  • 免疫组化-P; 大鼠; 1:200
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化-石蜡切片在人类样品上浓度为1:200, 在小鼠样品上浓度为1:200, 和 在大鼠样品上浓度为1:200. J Comp Neurol (2007) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:400
  • 免疫组化; 大鼠; 1:400
西格玛奥德里奇 GFAP抗体(Sigma, G3893)被用于免疫组化在小鼠样品上浓度为1:400 和 在大鼠样品上浓度为1:400. J Comp Neurol (2006) ncbi
小鼠 单克隆(G-A-5)
  • IHC-Free; 大鼠; 1:5000
西格玛奥德里奇 GFAP抗体(Sigma, GA5)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:5000. J Comp Neurol (2005) ncbi
小鼠 单克隆(G-A-5)
  • IHC-Free; 大鼠; 1:5000
西格玛奥德里奇 GFAP抗体(Sigma, GA5)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:5000. J Comp Neurol (2005) ncbi
赛信通(上海)生物试剂有限公司
兔 单克隆(D1F4Q)
  • 免疫组化-F; 小鼠; 图4a
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 12389)被用于免疫组化-冰冻切片在小鼠样品上 (图4a). Epilepsia (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:300; 图2j
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:300 (图2j). J Pain (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 图1c
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于免疫印迹在小鼠样品上 (图1c). Redox Biol (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 狗; 1:2500; 图st8
  • 免疫组化-F; 大鼠; 1:2500; 图st8
  • 免疫组化-P; 狗; 1:2500; 图st8
  • 免疫组化-P; 大鼠; 1:2500; 图st8
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, 3670)被用于免疫组化-冰冻切片在狗样品上浓度为1:2500 (图st8) 和 在大鼠样品上浓度为1:2500 (图st8) 和 免疫组化-石蜡切片在狗样品上浓度为1:2500 (图st8) 和 在大鼠样品上浓度为1:2500 (图st8). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:1000; 图7b
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于免疫印迹在小鼠样品上浓度为1:1000 (图7b). PLoS ONE (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 人类; 图3a
  • 细胞化学; 人类; 图3gb
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于免疫印迹在人类样品上 (图3a) 和 免疫细胞化学在人类样品上 (图3gb). Mol Oncol (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:100; 图1d
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于免疫组化在小鼠样品上浓度为1:100 (图1d). Nat Commun (2017) ncbi
兔 单克隆(D1F4Q)
  • 免疫印迹; 小鼠; 1:2000; 图s2b
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 12389)被用于免疫印迹在小鼠样品上浓度为1:2000 (图s2b). J Exp Med (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 人类; 表4
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell signaling, 3670)被用于免疫印迹在人类样品上 (表4). Transl Psychiatry (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:250; 图s5b
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670P)被用于免疫组化在小鼠样品上浓度为1:250 (图s5b). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(GA5)
  • IHC-Free; 小鼠; 1:400; 图s5
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:400 (图s5). PLoS Genet (2016) ncbi
兔 单克隆(D1F4Q)
  • 细胞化学; 人类; 图6b
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 12389)被用于免疫细胞化学在人类样品上 (图6b). Oncogene (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:500; 图2c
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670S)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图2c). Neurobiol Dis (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:1000; 图s1a
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图s1a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 图st1
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signalling, 8152)被用于免疫组化在小鼠样品上 (图st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 图st1
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signalling, 3655)被用于免疫组化在小鼠样品上 (图st1). Nat Biotechnol (2016) ncbi
兔 单克隆(D1F4Q)
  • 免疫组化; 小鼠; 1:200; 图S1c
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 12389)被用于免疫组化在小鼠样品上浓度为1:200 (图S1c). Nat Neurosci (2016) ncbi
兔 单克隆(D1F4Q)
  • 免疫印迹; 小鼠; 1:1000; 图5
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 12389)被用于免疫印迹在小鼠样品上浓度为1:1000 (图5). Invest Ophthalmol Vis Sci (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:200; 图8
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signalling, 36705)被用于免疫组化在小鼠样品上浓度为1:200 (图8). Hum Mol Genet (2016) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 人类; 1:500; 图s1
  • 免疫印迹; 人类; 1:1000; 图s1
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell signaling, 3670)被用于免疫细胞化学在人类样品上浓度为1:500 (图s1) 和 免疫印迹在人类样品上浓度为1:1000 (图s1). Mol Cell Endocrinol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-P; 人类; 图1
赛信通(上海)生物试剂有限公司 GFAP抗体(cell signalling, GA5)被用于免疫组化-石蜡切片在人类样品上 (图1). Oncotarget (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:500; 图2
  • 免疫组化; 小鼠; 1:1000; 图1
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, GA5)被用于免疫印迹在小鼠样品上浓度为1:500 (图2) 和 免疫组化在小鼠样品上浓度为1:1000 (图1). Sci Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:500; 图2
  • 免疫组化; 小鼠; 1:1000; 图1
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, GA5)被用于免疫印迹在小鼠样品上浓度为1:500 (图2) 和 免疫组化在小鼠样品上浓度为1:1000 (图1). Sci Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:500; 图2
  • 免疫组化; 小鼠; 1:1000; 图1
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, GA5)被用于免疫印迹在小鼠样品上浓度为1:500 (图2) 和 免疫组化在小鼠样品上浓度为1:1000 (图1). Sci Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:500; 图2
  • 免疫组化; 小鼠; 1:1000; 图1
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, GA5)被用于免疫印迹在小鼠样品上浓度为1:500 (图2) 和 免疫组化在小鼠样品上浓度为1:1000 (图1). Sci Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 图3
  • 免疫印迹; 大鼠; 图7
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670S)被用于免疫组化-冰冻切片在大鼠样品上 (图3) 和 免疫印迹在大鼠样品上 (图7). J Neurosci (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:2000; 图1s2
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signalling, 3670)被用于免疫组化在小鼠样品上浓度为1:2000 (图1s2). elife (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:2000; 图3c
  • 免疫组化; 小鼠; 1:1000; 图3b
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于免疫印迹在小鼠样品上浓度为1:2000 (图3c) 和 免疫组化在小鼠样品上浓度为1:1000 (图3b). Am J Pathol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 小鼠; 1:500; 图s22
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signalling, 3670)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图s22). Nat Biotechnol (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 人类; 1:100; 图4
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于免疫细胞化学在人类样品上浓度为1:100 (图4). Nature (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 大鼠; 1:1000; 图3i
  • 免疫组化; 大鼠; 图3e
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于免疫印迹在大鼠样品上浓度为1:1000 (图3i) 和 免疫组化在大鼠样品上 (图3e). Int J Mol Med (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, 3670)被用于免疫印迹在小鼠样品上浓度为1:500. FASEB J (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 GFAP抗体(CST, 3670)被用于免疫印迹在人类样品上浓度为1:1000. Mol Brain (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 人类; 1:1000; 图5c
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于免疫印迹在人类样品上浓度为1:1000 (图5c). Mol Cancer (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 大鼠; 1:1000; 图4a
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于免疫印迹在大鼠样品上浓度为1:1000 (图4a). BMC Complement Altern Med (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signalling Technology, 3670S)被用于免疫细胞化学在小鼠样品上. Neuromolecular Med (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 大鼠; 图4h
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, 3657)被用于免疫细胞化学在大鼠样品上 (图4h). J Cell Biol (2015) ncbi
小鼠 单克隆(GA5)
  • IHC-Free; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670S)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500. Mol Neurobiol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 图7c
  • 免疫印迹; 小鼠; 1:1000; 图7a
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, 3670)被用于免疫组化在小鼠样品上 (图7c) 和 免疫印迹在小鼠样品上浓度为1:1000 (图7a). PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 小鼠; 1:300; 图5
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, GA5)被用于免疫细胞化学在小鼠样品上浓度为1:300 (图5). Cereb Cortex (2016) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 小鼠; 1:300; 图5
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, GA5)被用于免疫细胞化学在小鼠样品上浓度为1:300 (图5). Cereb Cortex (2016) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 小鼠; 1:300; 图5
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, GA5)被用于免疫细胞化学在小鼠样品上浓度为1:300 (图5). Cereb Cortex (2016) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 小鼠; 1:300; 图5
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, GA5)被用于免疫细胞化学在小鼠样品上浓度为1:300 (图5). Cereb Cortex (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, clone GA5)被用于免疫印迹在大鼠样品上. PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • FC; 小鼠; 1:500; 图s2
  • 免疫印迹; 小鼠; 1:1000; 图s2
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, 3670)被用于流式细胞仪在小鼠样品上浓度为1:500 (图s2) 和 免疫印迹在小鼠样品上浓度为1:1000 (图s2). Nat Commun (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:200
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, GA5)被用于免疫组化在大鼠样品上浓度为1:200. Exp Mol Pathol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, 3655)被用于免疫组化在小鼠样品上浓度为1:100. J Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-F; 大鼠; 1:100; 图3
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling, 3670)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:100 (图3). Int J Oral Maxillofac Surg (2015) ncbi
小鼠 单克隆(GA5)
  • 细胞化学; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, #3670)被用于免疫细胞化学在小鼠样品上浓度为1:200. Neurochem Int (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:300
赛信通(上海)生物试剂有限公司 GFAP抗体(Cell Signaling Technology, 3670S)被用于免疫组化在小鼠样品上浓度为1:300. Mol Neurobiol (2014) ncbi
碧迪BD
小鼠 单克隆(2E1)
  • 免疫组化-P; 狗; 1:100; 图st8
  • 免疫组化-P; 小鼠; 1:100; 图st8
  • 免疫组化-P; 大鼠; 1:100; 图st8
碧迪BD GFAP抗体(BD Biosciences, 556329)被用于免疫组化-石蜡切片在狗样品上浓度为1:100 (图st8), 在小鼠样品上浓度为1:100 (图st8), 和 在大鼠样品上浓度为1:100 (图st8). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(4A11)
  • 免疫印迹; 大鼠; 1:1000; 图5c
碧迪BD GFAP抗体(BD Pharmingen, 556327)被用于免疫印迹在大鼠样品上浓度为1:1000 (图5c). Pharmacol Biochem Behav (2017) ncbi
小鼠 单克隆(1B4)
  • 细胞化学; 人类; 1:100; 图s8
碧迪BD GFAP抗体(BD Biosciences, 561483)被用于免疫细胞化学在人类样品上浓度为1:100 (图s8). Nat Commun (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫印迹; 大鼠; 1:2000; 图3
  • 免疫组化; 大鼠; 1:2000; 图3
碧迪BD GFAP抗体(BD, 556327)被用于免疫印迹在大鼠样品上浓度为1:2000 (图3) 和 免疫组化在大鼠样品上浓度为1:2000 (图3). Alzheimers Res Ther (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫组化; 小鼠; 1:2000; 图3
碧迪BD GFAP抗体(BD Pharmigen, 556327)被用于免疫组化在小鼠样品上浓度为1:2000 (图3). PLoS ONE (2016) ncbi
小鼠 单克隆(1B4)
  • FC; 小鼠; 1:50; 图4
碧迪BD GFAP抗体(BD Biosciences, 561483)被用于流式细胞仪在小鼠样品上浓度为1:50 (图4). Nat Commun (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫印迹; 人类; 1:500; 图6
碧迪BD GFAP抗体(BD Pharmingen, 556330)被用于免疫印迹在人类样品上浓度为1:500 (图6). Glia (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-P; 小鼠; 0.01 ug/ml; 图4
碧迪BD GFAP抗体(BD Biosciences, 556330)被用于免疫组化-石蜡切片在小鼠样品上浓度为0.01 ug/ml (图4). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(1B4)
  • FC; 小鼠; 图4, 7
碧迪BD GFAP抗体(BD Pharmingen, 561483)被用于流式细胞仪在小鼠样品上 (图4, 7). Nat Neurosci (2016) ncbi
小鼠 单克隆(2E1)
  • 免疫组化; 小鼠; 1:1000; 图5
碧迪BD GFAP抗体(BD Pharmingen, 556329)被用于免疫组化在小鼠样品上浓度为1:1000 (图5). Eneuro (2015) ncbi
小鼠 单克隆(1B4)
  • FC; 人类; 图4
碧迪BD GFAP抗体(Becton-Dickinson, 561449)被用于流式细胞仪在人类样品上 (图4). Int J Oncol (2015) ncbi
小鼠 单克隆(1B4)
  • 细胞化学; 小鼠; 图2a
碧迪BD GFAP抗体(BD Biosciences, 1B4)被用于免疫细胞化学在小鼠样品上 (图2a). Hepatology (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫组化; 大鼠
碧迪BD GFAP抗体(BD Pharmagen, Clon 4a11, Ref. 55632)被用于免疫组化在大鼠样品上. J Neuroendocrinol (2015) ncbi
小鼠 单克隆(4A11)
  • 免疫组化; 大鼠
碧迪BD GFAP抗体(BD Pharmagen, Clon 4a11, Ref. 55632)被用于免疫组化在大鼠样品上. J Neuroendocrinol (2015) ncbi
小鼠 单克隆(4A11)
  • 免疫组化; 小鼠; 1:200; 图8
碧迪BD GFAP抗体(BD Biosciences, 556330)被用于免疫组化在小鼠样品上浓度为1:200 (图8). Neurotherapeutics (2015) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-F; 大鼠; 1:1000
碧迪BD GFAP抗体(BD Pharmingen, 55632)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. Mol Neurobiol (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-F; 大鼠; 1:1000
碧迪BD GFAP抗体(BD Pharmingen, 55632)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. Mol Neurobiol (2015) ncbi
小鼠 单克隆(52/GFAP)
  • 细胞化学; 大鼠; 1:500; 图11
碧迪BD GFAP抗体(BD Biosciences, 610565)被用于免疫细胞化学在大鼠样品上浓度为1:500 (图11). Pain (2014) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-F; 大鼠; 1:200
碧迪BD GFAP抗体(BD Pharmigen, 556327)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200. J Comp Neurol (2010) ncbi
Neuromab
小鼠 单克隆(N206A/8)
  • 免疫印迹; 人类; 图s4a
Neuromab GFAP抗体(NeuroMab, 75-240)被用于免疫印迹在人类样品上 (图s4a). Cell (2017) ncbi
小鼠 单克隆(N206A/8)
  • 细胞化学; 人类; 1:100; 图s1
Neuromab GFAP抗体(Neuromab, 75-240)被用于免疫细胞化学在人类样品上浓度为1:100 (图s1). Nat Neurosci (2016) ncbi
小鼠 单克隆(N206A/8)
  • 细胞化学; 小鼠; 图s5
Neuromab GFAP抗体(NeuroMab, N206A/8)被用于免疫细胞化学在小鼠样品上 (图s5). elife (2016) ncbi
小鼠 单克隆(N206A/8)
  • 细胞化学; 小鼠; 图s5
Neuromab GFAP抗体(NeuroMab, N206A/8)被用于免疫细胞化学在小鼠样品上 (图s5). elife (2016) ncbi
小鼠 单克隆(N206A/8)
  • 免疫组化-F; 小鼠; 1:500; 图5
Neuromab GFAP抗体(NeuroMab, N206A/8)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图5). Brain Behav (2015) ncbi
小鼠 单克隆(N206A/8)
  • 免疫组化-F; 小鼠; 1:500; 图5
Neuromab GFAP抗体(NeuroMab, N206A/8)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图5). Brain Behav (2015) ncbi
小鼠 单克隆(N206A/8)
  • 免疫印迹; 大鼠; 1:6000; 图7
Neuromab GFAP抗体(Neuromab, 75?C240)被用于免疫印迹在大鼠样品上浓度为1:6000 (图7). PLoS ONE (2015) ncbi
小鼠 单克隆(N206A/8)
  • 免疫印迹; 大鼠; 2.08 ug/ml
Neuromab GFAP抗体(UC Davis / NIH NeuroMab Facility, N206A/8)被用于免疫印迹在大鼠样品上浓度为2.08 ug/ml. J Comp Neurol (2014) ncbi
小鼠 单克隆(N206A/8)
  • 免疫印迹; 大鼠; 2.08 ug/ml
Neuromab GFAP抗体(UC Davis / NIH NeuroMab Facility, N206A/8)被用于免疫印迹在大鼠样品上浓度为2.08 ug/ml. J Comp Neurol (2014) ncbi
Spring Bioscience Corp.
小鼠 单克隆(SPM507)
  • 免疫组化-P; 人类; 1:100; 表2
Spring Bioscience Corp. GFAP抗体(Spring Bioscience, E16510)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (表2). Eur J Histochem (2015) ncbi
兔 单克隆(SP78)
  • 免疫组化; 鸡; 图7
Spring Bioscience Corp. GFAP抗体(Spring, M3782)被用于免疫组化在鸡样品上 (图7). Neurochem Int (2015) ncbi
Takara Bio Clontech
小鼠 单克隆(STEM123)
  • 免疫组化-F; 人类; 1:500; 图s5a
Takara Bio Clontech GFAP抗体(Clontech, Y40420)被用于免疫组化-冰冻切片在人类样品上浓度为1:500 (图s5a). Transl Res (2016) ncbi
徕卡显微系统(上海)贸易有限公司
小鼠 单克隆
  • 免疫印迹; 小鼠
徕卡显微系统(上海)贸易有限公司 GFAP抗体(Novocastra/Leica, GFAP-GA5)被用于免疫印迹在小鼠样品上. Prog Neuropsychopharmacol Biol Psychiatry (2015) ncbi
文章列表
  1. Saori Watanabe-Matsumoto et al. (2017). "Dissociation of blood-brain barrier disruption and disease manifestation in an aquaporin-4-deficient mouse model of amyotrophic lateral sclerosis".PMID 29154923
  2. Jia Zou et al. (2017). "Postnatal reduction of tuberous sclerosis complex 1 expression in astrocytes and neurons causes seizures in an age-dependent manner".PMID 29023667
  3. Sinju Sundaresan et al. (2017). "Gastrin Induces Nuclear Export and Proteasome Degradation of Menin in Enteric Glial Cells".PMID 28859856
  4. Ting Zhao et al. (2017). "Differential HspBP1 expression accounts for the greater vulnerability of neurons than astrocytes to misfolded proteins".PMID 28847953
  5. Monika Piwecka et al. (2017). "Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function".PMID 28798046
  6. Ni Hsuan Lin et al. (2017). "Characterization of a panel of monoclonal antibodies recognizing specific epitopes on GFAP".PMID 28700643
  7. Federica Filice et al. (2017). "Parvalbumin-expressing ependymal cells in rostral lateral ventricle wall adhesions contribute to aging-related ventricle stenosis in mice".PMID 28675430
  8. Alex Paul et al. (2017). "Hypothalamic regulation of regionally distinct adult neural stem cells and neurogenesis".PMID 28619719
  9. Tetsuro Yasui et al. (2017). "Hypoxia Epigenetically Confers Astrocytic Differentiation Potential on Human Pluripotent Cell-Derived Neural Precursor Cells.".PMID 28591654
  10. Man Ding et al. (2017). "Purkinje Cell Degeneration and Motor Coordination Deficits in a New Mouse Model of Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay.".PMID 28588446
  11. Jun Hatakeyama et al. (2017). "Developing guinea pig brain as a model for cortical folding.".PMID 28585227
  12. Yu Shi et al. (2017). "Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth.".PMID 28569747
  13. Imane Hammoum et al. (2017). "Study of retinal neurodegeneration and maculopathy in diabetic Meriones shawi: A particular animal model with human-like macula".PMID 28542922
  14. Jinkyu Jung et al. (2017). "Nicotinamide metabolism regulates glioblastoma stem cell maintenance.".PMID 28515364
  15. Anja Feldner et al. (2017). "Loss of Mpdz impairs ependymal cell integrity leading to perinatal-onset hydrocephalus in mice.".PMID 28500065
  16. Giorgia Quadrato et al. (2017). "Cell diversity and network dynamics in photosensitive human brain organoids.".PMID 28445462
  17. Miguel Mendivil Perez et al. (2017). "Melatonin enhances neural stem cell differentiation and engraftment by increasing mitochondrial function.".PMID 28423196
  18. Chrissa A Dwyer et al. (2017). "Neurodevelopmental Changes in Excitatory Synaptic Structure and Function in the Cerebral Cortex of Sanfilippo Syndrome IIIA Mice.".PMID 28418018
  19. Jingang Hou et al. (2017). "Ginsenoside Rd as a potential neuroprotective agent prevents trimethyltin injury".PMID 28413642
  20. Rebeca Piatniczka Iglesia et al. (2017). "Engagement of cellular prion protein with the co-chaperone Hsp70/90 organizing protein regulates the proliferation of glioblastoma stem-like cells.".PMID 28412969
  21. Martin H Schludi et al. (2017). "Spinal poly-GA inclusions in a C9orf72 mouse model trigger motor deficits and inflammation without neuron loss.".PMID 28409281
  22. John W Wizeman et al. (2017). "Expression of peptidylarginine deiminase 4 in an alkali injury model of retinal gliosis.".PMID 28400047
  23. Jian Guo Li et al. (2017). "Five lipoxygenase hypomethylation mediates the homocysteine effect on Alzheimer's phenotype.".PMID 28383037
  24. Panos Theofilas et al. (2017). "Morphological study of a connexin 43-GFP reporter mouse highlights glial heterogeneity, amacrine cells, and olfactory ensheathing cells.".PMID 28370142
  25. Alexander A Sosunov et al. (2017). "The origin of Rosenthal fibers and their contributions to astrocyte pathology in Alexander disease.".PMID 28359321
  26. Nina P Connolly et al. (2017). "Genetically engineered rat gliomas: PDGF-driven tumor initiation and progression in tv-a transgenic rats recreate key features of human brain cancer.".PMID 28358926
  27. Igor Bryukhovetskiy et al. (2017). "Alkaloids of fascaplysin are effective conventional chemotherapeutic drugs, inhibiting the proliferation of C6 glioma cells and causing their death in vitro.".PMID 28356953
  28. Amanda J Barlow Anacker et al. (2017). "Neural Crest Cells Contribute an Astrocyte-like Glial Population to the Spleen.".PMID 28349968
  29. Xing Jin et al. (2017). "Neuronal Nitric Oxide Synthase in Neural Stem Cells Induces Neuronal Fate Commitment via the Inhibition of Histone Deacetylase 2".PMID 28326018
  30. Benjamin J Yungher et al. (2017). "Regenerative Responses and Axon Pathfinding of Retinal Ganglion Cells in Chronically Injured Mice.".PMID 28324115
  31. Ya Qun Zhou et al. (2017). "The Role of Spinal GABAB Receptors in Cancer-Induced Bone Pain in Rats.".PMID 28323246
  32. Stephen A Green et al. (2017). "Ancient evolutionary origin of vertebrate enteric neurons from trunk-derived neural crest".PMID 28321127
  33. Agnese Po et al. (2017). "β-Arrestin1/miR-326 Transcription Unit Is Epigenetically Regulated in Neural Stem Cells Where It Controls Stemness and Growth Arrest.".PMID 28298929
  34. Hu Huang et al. (2017). "Age-related macular degeneration phenotypes are associated with increased tumor necrosis-alpha and subretinal immune cells in aged Cxcr5 knockout mice.".PMID 28282423
  35. Bart C Jongbloets et al. (2017). "Stage-specific functions of Semaphorin7A during adult hippocampal neurogenesis rely on distinct receptors.".PMID 28281529
  36. Marlene M Hao et al. (2017). "Arundic Acid Prevents Developmental Upregulation of S100B Expression and Inhibits Enteric Glial Development".PMID 28280459
  37. Ji Eun Kim et al. (2017). "Sustained HSP25 Expression Induces Clasmatodendrosis via ER Stress in the Rat Hippocampus".PMID 28275338
  38. Go Itakura et al. (2017). "Fail-Safe System against Potential Tumorigenicity after Transplantation of iPSC Derivatives".PMID 28262544
  39. Emanuela Gardenal et al. (2017). "Increased Calcium-Sensing Receptor Immunoreactivity in the Hippocampus of a Triple Transgenic Mouse Model of Alzheimer's Disease".PMID 28261055
  40. Marc Ehrlich et al. (2017). "Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors.".PMID 28246330
  41. Diego Pignataro et al. (2017). "Adeno-Associated Viral Vectors Serotype 8 for Cell-Specific Delivery of Therapeutic Genes in the Central Nervous System".PMID 28239341
  42. Mian Cao et al. (2017). "Parkinson Sac Domain Mutation in Synaptojanin 1 Impairs Clathrin Uncoating at Synapses and Triggers Dystrophic Changes in Dopaminergic Axons.".PMID 28231468
  43. Mario J Aragon et al. (2017). "Serum-borne bioactivity caused by pulmonary multiwalled carbon nanotubes induces neuroinflammation via blood-brain barrier impairment.".PMID 28223486
  44. Shikha Prasad et al. (2017). "Role of Nrf2 and protective effects of Metformin against tobacco smoke-induced cerebrovascular toxicity".PMID 28212524
  45. Chandramohan Subashini et al. (2017). "Wnt5a is a crucial regulator of neurogenesis during cerebellum development".PMID 28205531
  46. Heather Benford et al. (2017). "A sweet taste receptor-dependent mechanism of glucosensing in hypothalamic tanycytes.".PMID 28205335
  47. Tingting Zheng et al. (2017). "Plasma Exosomes Spread and Cluster Around β-Amyloid Plaques in an Animal Model of Alzheimer's Disease".PMID 28203202
  48. Hedwich F Kuipers et al. (2017). "Phosphorylation of αB-crystallin supports reactive astrogliosis in demyelination.".PMID 28196893
  49. Qi Qian et al. (2017). "Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway.".PMID 28193719
  50. Satoshi Furukawa et al. (2017). "Databases for technical aspects of immunohistochemistry.".PMID 28190929
  51. Olga Barca-Mayo et al. (2017). "Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling".PMID 28186121
  52. Juliette M K M Delhove et al. (2017). "Longitudinal in vivo bioimaging of hepatocyte transcription factor activity following cholestatic liver injury in mice".PMID 28157201
  53. Erin Mai F Lim et al. (2017). "AlphaB-crystallin regulates remyelination after peripheral nerve injury".PMID 28137843
  54. Matthew Grove et al. (2017). "YAP/TAZ initiate and maintain Schwann cell myelination".PMID 28124973
  55. Chao Weng et al. (2016). "Ankfy1 is dispensable for neural stem/precursor cell development".PMID 28123425
  56. Sandy Stayte et al. (2017). "Activin A Inhibits MPTP and LPS-Induced Increases in Inflammatory Cell Populations and Loss of Dopamine Neurons in the Mouse Midbrain In Vivo".PMID 28121982
  57. Stefan A Berghoff et al. (2017). "Dietary cholesterol promotes repair of demyelinated lesions in the adult brain".PMID 28117328
  58. Nuno Guimarães-Camboa et al. (2017). "Pericytes of Multiple Organs Do Not Behave as Mesenchymal Stem Cells In Vivo".PMID 28111199
  59. Yusuf Tufail et al. (2017). "Phosphatidylserine Exposure Controls Viral Innate Immune Responses by Microglia".PMID 28111081
  60. Yu Wen Alvin Huang et al. (2017). "ApoE2, ApoE3, and ApoE4 Differentially Stimulate APP Transcription and Aβ Secretion".PMID 28111074
  61. Miguel Marigil et al. (2017). "Development of a DIPG Orthotopic Model in Mice Using an Implantable Guide-Screw System".PMID 28107439
  62. Lei Zhao et al. (2017). "Photoreceptor protection via blockade of BET epigenetic readers in a murine model of inherited retinal degeneration".PMID 28103888
  63. Tiffany J Mellott et al. (2017). "Perinatal Choline Supplementation Reduces Amyloidosis and Increases Choline Acetyltransferase Expression in the Hippocampus of the APPswePS1dE9 Alzheimer's Disease Model Mice".PMID 28103298
  64. Changming Zhang et al. (2017). "TRIM8 regulates stemness in glioblastoma through PIAS3-STAT3".PMID 28100038
  65. Shane A Liddelow et al. (2017). "Neurotoxic reactive astrocytes are induced by activated microglia".PMID 28099414
  66. Deborah Rotoli et al. (2017). "IQGAP1 in Podosomes/Invadosomes Is Involved in the Progression of Glioblastoma Multiforme Depending on the Tumor Status".PMID 28098764
  67. Youn Jung Kang et al. (2017). "Contribution of classical end-joining to PTEN inactivation in p53-mediated glioblastoma formation and drug-resistant survival".PMID 28094268
  68. Jie Zhu et al. (2016). "Immunosuppression via Loss of IL2rγ Enhances Long-Term Functional Integration of hESC-Derived Photoreceptors in the Mouse Retina".PMID 28089909
  69. Mikaela Behm et al. (2017). "Accumulation of nuclear ADAR2 regulates A-to-I RNA editing during neuronal development".PMID 28082424
  70. Il Shin Lee et al. (2016). "Neurogenin-2-transduced human neural progenitor cells attenuate neonatal hypoxic-ischemic brain injury".PMID 28081931
  71. Yoshinori Tanaka et al. (2017). "Progranulin regulates lysosomal function and biogenesis through acidification of lysosomes".PMID 28073925
  72. Ditte Gry Ellman et al. (2016). "Genetic Ablation of Soluble TNF Does Not Affect Lesion Size and Functional Recovery after Moderate Spinal Cord Injury in Mice".PMID 28070141
  73. Takayoshi Yamauchi et al. (2017). "FBXL5 Inactivation in Mouse Brain Induces Aberrant Proliferation of Neural Stem-Progenitor Cells".PMID 28069738
  74. Matthew Redmann et al. (2017). "Trehalose does not improve neuronal survival on exposure to alpha-synuclein pre-formed fibrils".PMID 28068606
  75. Laura Walrave et al. (2016). "Inhibition of Connexin43 Hemichannels Impairs Spatial Short-Term Memory without Affecting Spatial Working Memory".PMID 28066184
  76. Yu Hui Chiang et al. (2017). "Interleukin-1β secreted from betanodavirus-infected microglia caused the death of neurons in giant grouper brains".PMID 28062227
  77. Joo Yeon Kim et al. (2016). "Isolation and Culture of Adult Neural Stem Cells from the Mouse Subcallosal Zone".PMID 28060319
  78. Baisong Zhao et al. (2017). "Hyperbaric oxygen attenuates neuropathic pain and reverses inflammatory signaling likely via the Kindlin-1/Wnt-10a signaling pathway in the chronic pain injury model in rats".PMID 28058534
  79. Song Li et al. (2016). "Expression of pannexin 1 and 2 in cortical lesions from intractable epilepsy patients with focal cortical dysplasia".PMID 28036289
  80. Longze Sha et al. (2016). "Pharmacologic inhibition of Hsp90 to prevent GLT-1 degradation as an effective therapy for epilepsy".PMID 28028152
  81. Shin Young Park et al. (2016). "Hippocalcin Promotes Neuronal Differentiation and Inhibits Astrocytic Differentiation in Neural Stem Cells".PMID 28017654
  82. Kevin C Kemp et al. (2016). "Cytokine therapy-mediated neuroprotection in a Friedreich's ataxia mouse model".PMID 28009062
  83. Alexander W M Hooper et al. (2016). "Neuronal pentraxin 1 depletion delays neurodegeneration and extends life in Sandhoff disease mice".PMID 28007910
  84. Tae Shin Park et al. (2017). "Humulus japonicus inhibits the progression of Alzheimer's disease in a APP/PS1 transgenic mouse model".PMID 28004107
  85. WenJing Liu et al. (2016). "IL-1β impedes the chondrogenic differentiation of synovial fluid mesenchymal stem cells in the human temporomandibular joint".PMID 28000839
  86. Fani Koukouli et al. (2016). "Early and progressive deficit of neuronal activity patterns in a model of local amyloid pathology in mouse prefrontal cortex".PMID 27999185
  87. Minshu Li et al. (2016). "Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity".PMID 27994144
  88. Sachin P Gadani et al. (2016). "Characterization of meningeal type 2 innate lymphocytes and their response to CNS injury".PMID 27994070
  89. Camila Araújo Bernardino Garcia et al. (2016). "Edaravone reduces astrogliosis and apoptosis in young rats with kaolin-induced hydrocephalus".PMID 27988876
  90. Yen Sin Ang et al. (2016). "Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis".PMID 27984724
  91. Emelie Perland et al. (2016). "The Novel Membrane-Bound Proteins MFSD1 and MFSD3 are Putative SLC Transporters Affected by Altered Nutrient Intake".PMID 27981419
  92. Caixia Sun et al. (2017). "IL-17 contributed to the neuropathic pain following peripheral nerve injury by promoting astrocyte proliferation and secretion of proinflammatory cytokines".PMID 27959414
  93. M W Lopes et al. (2016). "A single high dose of dexamethasone affects the phosphorylation state of glutamate AMPA receptors in the human limbic system".PMID 27959333
  94. J D Gray et al. (2016). "Translational profiling of stress-induced neuroplasticity in the CA3 pyramidal neurons of BDNF Val66Met mice".PMID 27956743
  95. Andrew C Wang et al. (2016). "Loss of O-GlcNAc glycosylation in forebrain excitatory neurons induces neurodegeneration".PMID 27956640
  96. Boe Hyun Kim et al. (2016). "Cellular Prion Protein Combined with Galectin-3 and -6 Affects the Infectivity Titer of an Endogenous Retrovirus Assayed in Hippocampal Neuronal Cells".PMID 27936017
  97. Marie Mayrhofer et al. (2017). "A novel brain tumour model in zebrafish reveals the role of YAP activation in MAPK- and PI3K-induced malignant growth".PMID 27935819
  98. Yuki Nagahara et al. (2016). "GPNMB ameliorates mutant TDP-43-induced motor neuron cell death".PMID 27935101
  99. Shuaiyu Wang et al. (2016). "The Mitochondrial m-AAA Protease Prevents Demyelination and Hair Greying".PMID 27911893
  100. Hanna Retallack et al. (2016). "Zika virus cell tropism in the developing human brain and inhibition by azithromycin".PMID 27911847
  101. Bin Ji et al. (2016). "Multimodal Imaging for DREADD-Expressing Neurons in Living Brain and Their Application to Implantation of iPSC-Derived Neural Progenitors".PMID 27911758
  102. Eva M Marco et al. (2017). "Sex-dependent influence of chronic mild stress (CMS) on voluntary alcohol consumption; study of neurobiological consequences".PMID 27894930
  103. Gabriela Hurtado-Alvarado et al. (2016). "A2A Adenosine Receptor Antagonism Reverts the Blood-Brain Barrier Dysfunction Induced by Sleep Restriction".PMID 27893847
  104. Delu Song et al. (2016). "Retinal Pre-Conditioning by CD59a Knockout Protects against Light-Induced Photoreceptor Degeneration".PMID 27893831
  105. G R Sareddy et al. (2016). "Novel KDM1A inhibitors induce differentiation and apoptosis of glioma stem cells via unfolded protein response pathway".PMID 27893719
  106. Alexandra L Schober et al. (2016). "Recombinant Adeno-Associated Virus Serotype 6 (rAAV6) Potently and Preferentially Transduces Rat Astrocytes In vitro and In vivo".PMID 27891076
  107. GINA M FINAN et al. (2016). "Bioactive Compound Screen for Pharmacological Enhancers of Apolipoprotein E in Primary Human Astrocytes".PMID 27889409
  108. James Fraser et al. (2016). "Cell-type-specific expression of NFIX in the developing and adult cerebellum".PMID 27878595
  109. Christina Moloney et al. (2016). "Transgenic mice overexpressing the ALS-linked protein Matrin 3 develop a profound muscle phenotype".PMID 27863507
  110. Rakel Lopez de Maturana et al. (2016). "Mutations in LRRK2 impair NF-κB pathway in iPSC-derived neurons".PMID 27863501
  111. Alexander Mildner et al. (2017). "P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases".PMID 27862351
  112. Michelle Lajko et al. (2016). "Hyperoxia-Induced Proliferative Retinopathy: Early Interruption of Retinal Vascular Development with Severe and Irreversible Neurovascular Disruption".PMID 27861592
  113. Seung Hoon Yang et al. (2017). "Nec-1 alleviates cognitive impairment with reduction of Aβ and tau abnormalities in APP/PS1 mice".PMID 27861127
  114. Neele Saskia Hübner et al. (2016). "The connectomics of brain demyelination: Functional and structural patterns in the cuprizone mouse model".PMID 27845252
  115. Shinya Hidano et al. (2016). "STAT1 Signaling in Astrocytes Is Essential for Control of Infection in the Central Nervous System".PMID 27834206
  116. Hélène Lacaille et al. (2016). "PACAP Protects the Adolescent and Adult Mice Brain from Ethanol Toxicity and Modulates Distinct Sets of Genes Regulating Similar Networks".PMID 27826748
  117. Jun Zha et al. (2016). "A scFv antibody targeting common oligomeric epitope has potential for treating several amyloidoses".PMID 27824125
  118. Erin A Bassett et al. (2016). "Norrin/Frizzled4 signalling in the preneoplastic niche blocks medulloblastoma initiation".PMID 27823583
  119. Diana Cristina Pérez-Ibave et al. (2016). "Olfactomedin-like 2 A and B (OLFML2A and OLFML2B) expression profile in primates (human and baboon)".PMID 27821182
  120. Cyril Laurent et al. (2017). "Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy".PMID 27818384
  121. Dominik Fröhlich et al. (2017). "In vivocharacterization of the aspartyl-tRNA synthetase DARS: Homing in on the leukodystrophy HBSL".PMID 27816769
  122. Sarah L Roche et al. (2016). "Progesterone Attenuates Microglial-Driven Retinal Degeneration and Stimulates Protective Fractalkine-CX3CR1 Signaling".PMID 27814376
  123. Mayssa H Mokalled et al. (2016). "Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish".PMID 27811277
  124. Sinead Healy et al. (2016). "Significant glial alterations in response to iron loading in a novel organotypic hippocampal slice culture model".PMID 27808258
  125. Itay Tirosh et al. (2016). "Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma".PMID 27806376
  126. Daniel J Shepherd et al. (2016). "Anti-Nogo-A Immunotherapy Does Not Alter Hippocampal Neurogenesis after Stroke in Adult Rats".PMID 27803646
  127. Ni Hsuan Lin et al. (2016). "The role of gigaxonin in the degradation of the glial-specific intermediate filament protein GFAP".PMID 27798231
  128. Wei Yu et al. (2016). "Oxidation of KCNB1 Potassium Channels Causes Neurotoxicity and Cognitive Impairment in a Mouse Model of Traumatic Brain Injury".PMID 27798188
  129. Yasir Ahmed Syed et al. (2017). "Studying the Effects of Semaphorins on Oligodendrocyte Lineage Cells".PMID 27787864
  130. Aggeliki Giannakopoulou et al. (2016). "Long-term effects of autoimmune CNS inflammation on adult hippocampal neurogenesis".PMID 27781303
  131. Lutz Menzel et al. (2017). "Progranulin protects against exaggerated axonal injury and astrogliosis following traumatic brain injury".PMID 27778404
  132. Katherine Zukor et al. (2016). "Phrenic nerve deficits and neurological immunopathology associated with acute West Nile virus infection in mice and hamsters".PMID 27761801
  133. Hung X Nguyen et al. (2016). "Engineering prokaryotic channels for control of mammalian tissue excitability".PMID 27752065
  134. Igor S Bryukhovetskiy et al. (2016). "Hematopoietic stem cells as a tool for the treatment of glioblastoma multiforme".PMID 27748891
  135. Qin Qin He et al. (2016). "MicroRNA-127 targeting of mitoNEET inhibits neurite outgrowth, induces cell apoptosis and contributes to physiological dysfunction after spinal cord transection".PMID 27748416
  136. Jonathan D Teo et al. (2016). "Maternal obesity increases inflammation and exacerbates damage following neonatal hypoxic-ischaemic brain injury in rats".PMID 27746186
  137. Satoru Koyanagi et al. (2016). "Glucocorticoid regulation of ATP release from spinal astrocytes underlies diurnal exacerbation of neuropathic mechanical allodynia".PMID 27739425
  138. Linqiang Huang et al. (2016). "Hypertonic saline alleviates experimentally induced cerebral oedema through suppression of vascular endothelial growth factor and its receptor VEGFR2 expression in astrocytes".PMID 27733124
  139. Matias Alvarez-Saavedra et al. (2016). "Voluntary Running Triggers VGF-Mediated Oligodendrogenesis to Prolong the Lifespan of Snf2h-Null Ataxic Mice".PMID 27732860
  140. Jingjing He et al. (2016). "Neuroprotective Effects of 7, 8-dihydroxyflavone on Midbrain Dopaminergic Neurons in MPP+-treated Monkeys".PMID 27731318
  141. Kristina Hofmann et al. (2017). "Tanycytes and a differential fatty acid metabolism in the hypothalamus".PMID 27726181
  142. Onur Kilic et al. (2016). "Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis".PMID 27722368
  143. Monique Culturato Padilha Mendonça et al. (2016). "PEGylation of Reduced Graphene Oxide Induces Toxicity in Cells of the Blood-Brain Barrier: An in Vitro and in Vivo Study".PMID 27712077
  144. John W Wizeman et al. (2016). "Citrullination of glial intermediate filaments is an early response in retinal injury".PMID 27703308
  145. Arkady Khoutorsky et al. (2016). "eIF2α phosphorylation controls thermal nociception".PMID 27698114
  146. Petr Vodicka et al. (2016). "Autophagy Activation by Transcription Factor EB (TFEB) in Striatum of HDQ175/Q7 Mice".PMID 27689619
  147. Tomoyuki Yamanaka et al. (2016). "Differential roles of NF-Y transcription factor in ER chaperone expression and neuronal maintenance in the CNS".PMID 27687130
  148. Sepideh Abolpour Mofrad et al. (2016). "Optimizing neuronal differentiation of human pluripotent NT2 stem cells in monolayer cultures".PMID 27671506
  149. Jessica S Sadick et al. (2016). "Protein characterization of intracellular target-sorted, formalin-fixed cell subpopulations".PMID 27666089
  150. Lauren C Fogarty et al. (2016). "Bcl-xL dependency coincides with the onset of neurogenesis in the developing mammalian spinal cord".PMID 27665712
  151. László Biró et al. (2016). "Structural and functional alterations in the prefrontal cortex after post-weaning social isolation: relationship with species-typical and deviant aggression".PMID 27664119
  152. Valentín Cóppola-Segovia et al. (2016). "ER Stress Induced by Tunicamycin Triggers α-Synuclein Oligomerization, Dopaminergic Neurons Death and Locomotor Impairment: a New Model of Parkinson's Disease".PMID 27660269
  153. Joanna Bednarczyk et al. (2016). "MBD3 expression and DNA binding patterns are altered in a rat model of temporal lobe epilepsy".PMID 27650712
  154. Benoit Lizen et al. (2017). "HOXA5 localization in postnatal and adult mouse brain is suggestive of regulatory roles in postmitotic neurons".PMID 27650319
  155. Joanna M Dragich et al. (2016). "Autophagy linked FYVE (Alfy/WDFY3) is required for establishing neuronal connectivity in the mammalian brain".PMID 27648578
  156. T Draheim et al. (2016). "Activation of the astrocytic Nrf2/ARE system ameliorates the formation of demyelinating lesions in a multiple sclerosis animal model".PMID 27641725
  157. Martin Miguel Casco-Robles et al. (2016). "Turning the fate of reprogramming cells from retinal disorder to regeneration by Pax6 in newts".PMID 27640672
  158. Knut H Lauritzen et al. (2016). "A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain".PMID 27639119
  159. Angelo Torres et al. (2016). "Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells".PMID 27634913
  160. Pei Yu Chen et al. (2016). "Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGFβ)-dependent smooth muscle cell phenotype modulation".PMID 27634335
  161. Wei Li Kuan et al. (2016). "α-Synuclein pre-formed fibrils impair tight junction protein expression without affecting cerebral endothelial cell function".PMID 27632900
  162. Shuman Zhang et al. (2016). "Protective effect of melatonin on soluble Aβ1-42-induced memory impairment, astrogliosis, and synaptic dysfunction via the Musashi1/Notch1/Hes1 signaling pathway in the rat hippocampus".PMID 27630117
  163. A Pérez-Cañamás et al. (2016). "Sphingomyelin-induced inhibition of the plasma membrane calcium ATPase causes neurodegeneration in type A Niemann-Pick disease".PMID 27620840
  164. Dirk M Lang et al. (2017). "Nogo-A does not inhibit retinal axon regeneration in the lizard Gallotia galloti".PMID 27616630
  165. Anne H P Jansen et al. (2017). "Frequency of nuclear mutant huntingtin inclusion formation in neurons and glia is cell-type-specific".PMID 27615381
  166. Lijun Zhang et al. (2016). "CXCR4 activation promotes differentiation of human embryonic stem cells to neural stem cells".PMID 27615032
  167. Fadhel Alomar et al. (2016). "Smooth muscle-generated methylglyoxal impairs endothelial cell-mediated vasodilatation of cerebral microvessels in type 1 diabetic rats".PMID 27611446
  168. Igor Bryukhovetskiy et al. (2016). "Cancer stem cells and microglia in the processes of glioblastoma multiforme invasive growth".PMID 27602106
  169. Hong Phuc Cudré-Cung et al. (2016). "Ammonium accumulation is a primary effect of 2-methylcitrate exposure in an in vitro model for brain damage in methylmalonic aciduria".PMID 27599447
  170. Susanne K Hansen et al. (2016). "Induced pluripotent stem cell - derived neurons for the study of spinocerebellar ataxia type 3".PMID 27596958
  171. Sriram Balusu et al. (2016). "Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles".PMID 27596437
  172. Chelsea M Griffith et al. (2016). "Aberrant expression of the pore-forming KATP channel subunit Kir6.2 in hippocampal reactive astrocytes in the 3xTg-AD mouse model and human Alzheimer's disease".PMID 27586053
  173. Paola Caporali et al. (2016). "Developmental delay in motor skill acquisition in Niemann-Pick C1 mice reveals abnormal cerebellar morphogenesis".PMID 27586038
  174. Anna M Barron et al. (2016). "Assessment of neuroinflammation in a mouse model of obesity and β-amyloidosis using PET".PMID 27578213
  175. Sheu Ran Choi et al. (2016). "Astrocyte sigma-1 receptors modulate connexin 43 expression leading to the induction of below-level mechanical allodynia in spinal cord injured mice".PMID 27567941
  176. Ren Hong Du et al. (2016). "Uncoupling protein 2 modulation of the NLRP3 inflammasome in astrocytes and its implications in depression".PMID 27566281
  177. Zhijian Cheng et al. (2016). "Anti-Inflammatory Mechanism of Neural Stem Cell Transplantation in Spinal Cord Injury".PMID 27563878
  178. W P Vermeij et al. (2016). "Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice".PMID 27556946
  179. Rana S Dhillon et al. (2016). "Axonal plasticity underpins the functional recovery following surgical decompression in a rat model of cervical spondylotic myelopathy".PMID 27552807
  180. James M Hillis et al. (2016). "Cuprizone demyelination induces a unique inflammatory response in the subventricular zone".PMID 27550173
  181. Natalia D Andersen et al. (2016). "A rapid and versatile method for the isolation, purification and cryogenic storage of Schwann cells from adult rodent nerves".PMID 27549422
  182. Nan Fu Chen et al. (2016). "Contributions of p38 and ERK to the antinociceptive effects of TGF-β1 in chronic constriction injury-induced neuropathic rats".PMID 27541934
  183. Alexandra Badea et al. (2016). "The fornix provides multiple biomarkers to characterize circuit disruption in a mouse model of Alzheimer's disease".PMID 27521741
  184. Xiang Chun Ju et al. (2016). "The hominoid-specific gene TBC1D3 promotes generation of basal neural progenitors and induces cortical folding in mice".PMID 27504805
  185. Yan Li et al. (2016). "Astrocytic GluN2A and GluN2B Oppose the Synaptotoxic Effects of Amyloid-β1-40 in Hippocampal Cells".PMID 27497478
  186. Heike Wolf et al. (2016). "A mouse model for fucosidosis recapitulates storage pathology and neurological features of the milder form of the human disease".PMID 27491075
  187. Raman Saggu et al. (2016). "Astroglial NF-kB contributes to white matter damage and cognitive impairment in a mouse model of vascular dementia".PMID 27487766
  188. Wendy Westbroek et al. (2016). "A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease".PMID 27482815
  189. L J Ellett et al. (2016). "Restoration of intestinal function in an MPTP model of Parkinson's Disease".PMID 27471168
  190. Vuk Palibrk et al. (2016). "PML regulates neuroprotective innate immunity and neuroblast commitment in a hypoxic-ischemic encephalopathy model".PMID 27468695
  191. Sandro Alves et al. (2016). "Lentiviral vector-mediated overexpression of mutant ataxin-7 recapitulates SCA7 pathology and promotes accumulation of the FUS/TLS and MBNL1 RNA-binding proteins".PMID 27465358
  192. Jinwei Pang et al. (2016). "Potential implications of Apolipoprotein E in early brain injury after experimental subarachnoid hemorrhage: Involvement in the modulation of blood-brain barrier integrity".PMID 27463015
  193. Moonseok Choi et al. (2016). "Hippocampus-based contextual memory alters the morphological characteristics of astrocytes in the dentate gyrus".PMID 27460927
  194. Maj Schneider Thomsen et al. (2016). "Synthesis and deposition of basement membrane proteins by primary brain capillary endothelial cells in a murine model of the blood-brain barrier".PMID 27456748
  195. Taeyun Ku et al. (2016). "Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues".PMID 27454740
  196. Nambin Yim et al. (2016). "Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module".PMID 27447450
  197. Jian Ying Tian et al. (2016). "Effect of Lycium bararum polysaccharides on methylmercury-induced abnormal differentiation of hippocampal stem cells".PMID 27446261
  198. Martina Senzacqua et al. (2016). "Action of Administered Ciliary Neurotrophic Factor on the Mouse Dorsal Vagal Complex".PMID 27445662
  199. Giridhar Murlidharan et al. (2016). "CNS-restricted Transduction and CRISPR/Cas9-mediated Gene Deletion with an Engineered AAV Vector".PMID 27434683
  200. Yinxiu Ding et al. (2016). "Directed differentiation of postnatal hippocampal neural stem cells generates nuclear receptor related‑1 protein‑ and tyrosine hydroxylase‑expressing cells".PMID 27432537
  201. Hao Li et al. (2016). "Differential long non‑coding RNA and mRNA expression in differentiated human glioblastoma stem cells".PMID 27432080
  202. Alexi Nott et al. (2016). "Histone deacetylase 3 associates with MeCP2 to regulate FOXO and social behavior".PMID 27428650
  203. Noelia Urbán et al. (2016). "Return to quiescence of mouse neural stem cells by degradation of a proactivation protein".PMID 27418510
  204. Venkat Swaroop Achuta et al. (2016). "Metabotropic glutamate receptor 5 responses dictate differentiation of neural progenitors to NMDA-responsive cells in fragile X syndrome".PMID 27411166
  205. Abram Akopian et al. (2016). "Amacrine cells coupled to ganglion cells via gap junctions are highly vulnerable in glaucomatous mouse retinas".PMID 27411041
  206. Will P Walker et al. (2016). "Oligodendroglial deletion of ESCRT-I component TSG101 causes spongiform encephalopathy".PMID 27406702
  207. Erkan Y Osman et al. (2016). "Optimization of Morpholino Antisense Oligonucleotides Targeting the Intronic Repressor Element1 in Spinal Muscular Atrophy".PMID 27401142
  208. Natalie A Duggett et al. (2016). "Oxidative stress in the development, maintenance and resolution of paclitaxel-induced painful neuropathy".PMID 27393249
  209. Yuval Peretz et al. (2016). "A new role of hindbrain boundaries as pools of neural stem/progenitor cells regulated by Sox2".PMID 27392568
  210. Zhihui Huang et al. (2016). "YAP stabilizes SMAD1 and promotes BMP2-induced neocortical astrocytic differentiation".PMID 27381227
  211. Shenbin Liu et al. (2016). "Curcumin ameliorates neuropathic pain by down-regulating spinal IL-1β via suppressing astroglial NALP1 inflammasome and JAK2-STAT3 signalling".PMID 27381056
  212. David Forsberg et al. (2016). "CO2-evoked release of PGE2 modulates sighs and inspiration as demonstrated in brainstem organotypic culture".PMID 27377173
  213. Paul W Tillberg et al. (2016). "Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies".PMID 27376584
  214. Tong Li et al. (2016). "The neuritic plaque facilitates pathological conversion of tau in an Alzheimer's disease mouse model".PMID 27373369
  215. Gen Shiihashi et al. (2016). "Mislocated FUS is sufficient for gain-of-toxic-function amyotrophic lateral sclerosis phenotypes in mice".PMID 27368346
  216. Xinyi Su et al. (2016). "Characterization of Fatty Acid Binding Protein 7 (FABP7) in the Murine Retina".PMID 27367508
  217. Joana Neves et al. (2016). "Immune modulation by MANF promotes tissue repair and regenerative success in the retina".PMID 27365452
  218. Mattia Bramini et al. (2016). "Graphene Oxide Nanosheets Disrupt Lipid Composition, Ca(2+) Homeostasis, and Synaptic Transmission in Primary Cortical Neurons".PMID 27359048
  219. Aman P Mann et al. (2016). "A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries".PMID 27351915
  220. Kevin K Park et al. (2017). "Retinal ganglion cell survival and axon regeneration after optic nerve injury in naked mole-rats".PMID 27350178
  221. Benjamin Krusche et al. (2016). "EphrinB2 drives perivascular invasion and proliferation of glioblastoma stem-like cells".PMID 27350048
  222. Saurav Brahmachari et al. (2016). "Activation of tyrosine kinase c-Abl contributes to α-synuclein-induced neurodegeneration.".PMID 27348587
  223. Dominique Schmitt et al. (2016). "Initial characterization of a Syap1 knock-out mouse and distribution of Syap1 in mouse brain and cultured motoneurons".PMID 27344443
  224. Timur A Mavlyutov et al. (2016). "Sigma-1 receptor expression in the dorsal root ganglion: Reexamination using a highly specific antibody".PMID 27339730
  225. Seung Wan Yoo et al. (2017). "Agenesis of the corpus callosum in Nogo receptor deficient mice".PMID 27339102
  226. Michael J Vasek et al. (2016). "A complement-microglial axis drives synapse loss during virus-induced memory impairment".PMID 27337340
  227. Myriam L Velandia-Romero et al. (2016). "In Vitro Infection with Dengue Virus Induces Changes in the Structure and Function of the Mouse Brain Endothelium".PMID 27336851
  228. Stephen Sai Folmsbee et al. (2016). "αT-catenin in restricted brain cell types and its potential connection to autism".PMID 27330745
  229. Aurélia Vernay et al. (2016). "A transgenic mouse expressing CHMP2Bintron5 mutant in neurons develops histological and behavioural features of amyotrophic lateral sclerosis and frontotemporal dementia".PMID 27329763
  230. Kerstin Ure et al. (2016). "Restoration of Mecp2 expression in GABAergic neurons is sufficient to rescue multiple disease features in a mouse model of Rett syndrome".PMID 27328321
  231. Petr Vodicka et al. (2016). "Effects of Exogenous NUB1 Expression in the Striatum of HDQ175/Q7 Mice".PMID 27314618
  232. Alejandro Villarreal et al. (2016). "Isolation and Characterization of Ischemia-Derived Astrocytes (IDAs) with Ability to Transactivate Quiescent Astrocytes".PMID 27313509
  233. Kelly A Jones et al. (2016). "Persistent neuronal Ube3a expression in the suprachiasmatic nucleus of Angelman syndrome model mice".PMID 27306933
  234. Weiwei Zhai et al. (2016). "A1 adenosine receptor attenuates intracerebral hemorrhage-induced secondary brain injury in rats by activating the P38-MAPKAP2-Hsp27 pathway".PMID 27301321
  235. Eren Cerman et al. (2016). "Retinal Electrophysiological Effects of Intravitreal Bone Marrow Derived Mesenchymal Stem Cells in Streptozotocin Induced Diabetic Rats".PMID 27300133
  236. Yun Sik Choi et al. (2016). "Status epilepticus stimulates NDEL1 expression via the CREB/CRE pathway in the adult mouse brain".PMID 27298008
  237. Carolina Pellegrini et al. (2016). "Alteration of colonic excitatory tachykininergic motility and enteric inflammation following dopaminergic nigrostriatal neurodegeneration".PMID 27295950
  238. Elizabeth B Hutchinson et al. (2016). "Quantitative MRI and DTI Abnormalities During the Acute Period Following CCI in the Ferret".PMID 27294688
  239. Xiang Dong Sun et al. (2016). "Lrp4 in astrocytes modulates glutamatergic transmission".PMID 27294513
  240. Yasuhiko Kizuka et al. (2016). "Epigenetic regulation of neural N-glycomics".PMID 27286656
  241. Yang Xu et al. (2016). "Mechanisms of PDGF siRNA-mediated inhibition of bone cancer pain in the spinal cord".PMID 27282805
  242. Loic Auderset et al. (2016). "Low Density Lipoprotein-Receptor Related Protein 1 Is Differentially Expressed by Neuronal and Glial Populations in the Developing and Mature Mouse Central Nervous System".PMID 27280679
  243. Emelie Perland et al. (2016). "The Putative SLC Transporters Mfsd5 and Mfsd11 Are Abundantly Expressed in the Mouse Brain and Have a Potential Role in Energy Homeostasis".PMID 27272503
  244. Yuta Morisaki et al. (2016). "Selective Expression of Osteopontin in ALS-resistant Motor Neurons is a Critical Determinant of Late Phase Neurodegeneration Mediated by Matrix Metalloproteinase-9".PMID 27264390
  245. Marco Ávila-Rodriguez et al. (2016). "Tibolone protects astrocytic cells from glucose deprivation through a mechanism involving estrogen receptor beta and the upregulation of neuroglobin expression".PMID 27250720
  246. Ah Reum Ko et al. (2016). "The Differential DRP1 Phosphorylation and Mitochondrial Dynamics in the Regional Specific Astroglial Death Induced by Status Epilepticus".PMID 27242436
  247. María Figueres-Oñate et al. (2016). "Adult Olfactory Bulb Interneuron Phenotypes Identified by Targeting Embryonic and Postnatal Neural Progenitors".PMID 27242400
  248. Yoshinori Hayashi et al. (2016). "BK channels in microglia are required for morphine-induced hyperalgesia".PMID 27241733
  249. Vir B Singh et al. (2016). "Smoothened Agonist Reduces Human Immunodeficiency Virus Type-1-Induced Blood-Brain Barrier Breakdown in Humanized Mice".PMID 27241024
  250. Ingrid Morales et al. (2016). "The astrocytic response to the dopaminergic denervation of the striatum".PMID 27230040
  251. Valérie Vilmont et al. (2016). "A system for studying mechanisms of neuromuscular junction development and maintenance".PMID 27226316
  252. Francisco Javier Rodríguez-Jiménez et al. (2016). "Connexin 50 modulates Sox2 expression in spinal-cord-derived ependymal stem/progenitor cells".PMID 27221278
  253. Elena Agostoni et al. (2016). "Effects of Pin1 Loss in Hdh(Q111) Knock-in Mice".PMID 27199664
  254. Judith R Reinhard et al. (2016). "The calcium sensor Copine-6 regulates spine structural plasticity and learning and memory".PMID 27194588
  255. Michael R Heaven et al. (2016). "Composition of Rosenthal Fibers, the Protein Aggregate Hallmark of Alexander Disease".PMID 27193225
  256. R Marignier et al. (2016). "Neuromyelitis optica study model based on chronic infusion of autoantibodies in rat cerebrospinal fluid".PMID 27193196
  257. Keith A Wharton et al. (2016). "JC Polyomavirus Abundance and Distribution in Progressive Multifocal Leukoencephalopathy (PML) Brain Tissue Implicates Myelin Sheath in Intracerebral Dissemination of Infection".PMID 27191595
  258. Yoshiyuki Kobayashi et al. (2016). "Tenascin-C promotes angiogenesis in fibrovascular membranes in eyes with proliferative diabetic retinopathy".PMID 27186070
  259. Sabrina Oishi et al. (2016). "Usp9x-deficiency disrupts the morphological development of the postnatal hippocampal dentate gyrus".PMID 27181636
  260. Jiang He et al. (2016). "Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species".PMID 27162329
  261. Shingo Miyawaki et al. (2016). "Tumour resistance in induced pluripotent stem cells derived from naked mole-rats".PMID 27161380
  262. J W Finnie et al. (2016). "Temporal Sequence of Autolysis in the Cerebellar Cortex of the Mouse".PMID 27156898
  263. Sonja Hochmeister et al. (2016). "Lipocalin-2 as an Infection-Related Biomarker to Predict Clinical Outcome in Ischemic Stroke".PMID 27152948
  264. Nan Zhang et al. (2016). "Isolation, characterization and multi-lineage differentiation of stem cells from human exfoliated deciduous teeth".PMID 27151462
  265. R Foxton et al. (2016). "Distal retinal ganglion cell axon transport loss and activation of p38 MAPK stress pathway following VEGF-A antagonism".PMID 27148685
  266. Kamila Rosiak et al. (2016). "IDH1R132H in Neural Stem Cells: Differentiation Impaired by Increased Apoptosis".PMID 27145078
  267. Margaret A Mohr et al. (2016). "Neurons and Glial Cells Are Added to the Female Rat Anteroventral Periventricular Nucleus During Puberty".PMID 27145006
  268. Gergely Szalay et al. (2016). "Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke".PMID 27139776
  269. Yang Yang et al. (2016). "Recurrent intracranial neurenteric cyst with malignant transformation: A case report and literature review".PMID 27123123
  270. Renata Duchnowska et al. (2016). "Immune response in breast cancer brain metastases and their microenvironment: the role of the PD-1/PD-L axis".PMID 27117582
  271. Hsin I Tong et al. (2016). "Monocyte Trafficking, Engraftment, and Delivery of Nanoparticles and an Exogenous Gene into the Acutely Inflamed Brain Tissue - Evaluations on Monocyte-Based Delivery System for the Central Nervous System".PMID 27115998
  272. M Ren et al. (2016). "A biofidelic 3D culture model to study the development of brain cellular systems".PMID 27112667
  273. Yuanchao Xue et al. (2016). "Sequential regulatory loops as key gatekeepers for neuronal reprogramming in human cells".PMID 27110916
  274. Lucy H Funk et al. (2016). "Tumor necrosis factor superfamily member APRIL contributes to fibrotic scar formation after spinal cord injury".PMID 27098833
  275. Karpagam Srinivasan et al. (2016). "Untangling the brain's neuroinflammatory and neurodegenerative transcriptional responses".PMID 27097852
  276. Fredrik Anesten et al. (2016). "Preproglucagon neurons in the hindbrain have IL-6 receptor-α and show Ca2+ influx in response to IL-6".PMID 27097661
  277. David S Bouvier et al. (2016). "High Resolution Dissection of Reactive Glial Nets in Alzheimer's Disease".PMID 27090093
  278. Akshata A Almad et al. (2016). "Connexin 43 in astrocytes contributes to motor neuron toxicity in amyotrophic lateral sclerosis".PMID 27083773
  279. Harleen S Basrai et al. (2016). "Suppressor of Cytokine Signaling-2 (SOCS2) Regulates the Microglial Response and Improves Functional Outcome after Traumatic Brain Injury in Mice".PMID 27071013
  280. Abdelwahed Chtarto et al. (2016). "A regulatable AAV vector mediating GDNF biological effects at clinically-approved sub-antimicrobial doxycycline doses".PMID 27069954
  281. Makoto Hamanoue et al. (2016). "Cell-permeable p38 MAP kinase promotes migration of adult neural stem/progenitor cells".PMID 27067799
  282. Dmitrii S Vasilev et al. (2016). "Prenatal Hypoxia in Different Periods of Embryogenesis Differentially Affects Cell Migration, Neuronal Plasticity, and Rat Behavior in Postnatal Ontogenesis".PMID 27065788
  283. Sun Kwang Kim et al. (2016). "Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain".PMID 27064281
  284. Ayako Isotani et al. (2016). "Generation of Hprt-disrupted rat through mouse←rat ES chimeras".PMID 27062982
  285. Lawrence Fourgeaud et al. (2016). "TAM receptors regulate multiple features of microglial physiology".PMID 27049947
  286. Rebecca K Bubenheimer et al. (2016). "Sirtuin-3 Is Expressed by Enteric Neurons but It Does not Play a Major Role in Their Regulation of Oxidative Stress".PMID 27047337
  287. Changsheng Du et al. (2016). "Kappa opioid receptor activation alleviates experimental autoimmune encephalomyelitis and promotes oligodendrocyte-mediated remyelination".PMID 27040771
  288. Esther Fuente-Martín et al. (2016). "Ghrelin Regulates Glucose and Glutamate Transporters in Hypothalamic Astrocytes".PMID 27026049
  289. K Fujiwara et al. (2016). "Deletion of JMJD2B in neurons leads to defective spine maturation, hyperactive behavior and memory deficits in mouse".PMID 27023172
  290. Chen Chen et al. (2016). "Neuropathy correlated with imbalanced Foxp3/IL-17 in bone marrow microenvironment of patients with acute myeloid leukemia".PMID 27016413
  291. Motoshi Nagao et al. (2016). "Zbtb20 promotes astrocytogenesis during neocortical development".PMID 27000654
  292. Hiromu Monai et al. (2016). "Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain".PMID 27000523
  293. Mohammad A Yousuf et al. (2016). "Involvement of aberrant cyclin-dependent kinase 5/p25 activity in experimental traumatic brain injury".PMID 26998748
  294. Yi Cui et al. (2016). "The miR-20-Rest-Wnt signaling axis regulates neural progenitor cell differentiation".PMID 26996236
  295. B A Smeester et al. (2016). "The relationship of bone-tumor-induced spinal cord astrocyte activation and aromatase expression to mechanical hyperalgesia and cold hypersensitivity in intact female and ovariectomized mice".PMID 26995084
  296. J G O'Rourke et al. (2016). "C9orf72 is required for proper macrophage and microglial function in mice".PMID 26989253
  297. Sofia Anastasiadou et al. (2016). "The multiple sclerosis drug fingolimod (FTY720) stimulates neuronal gene expression, axonal growth and regeneration".PMID 26980486
  298. Birgit Linkus et al. (2016). "Telomere shortening leads to earlier age of onset in ALS mice".PMID 26978042
  299. Lukas Jennewein et al. (2016). "Diagnostic and clinical relevance of the autophago-lysosomal network in human gliomas".PMID 26956048
  300. Chuntao Zhao et al. (2016). "Dual regulatory switch through interactions of Tcf7l2/Tcf4 with stage-specific partners propels oligodendroglial maturation".PMID 26955760
  301. Meera Ramani et al. (2016). "Differential expression of astrocytic connexins in a mouse model of prenatal alcohol exposure".PMID 26951949
  302. Guohao Wang et al. (2016). "Ablation of huntingtin in adult neurons is nondeleterious but its depletion in young mice causes acute pancreatitis".PMID 26951659
  303. Phillip Yang et al. (2016). "Cognitive impairments following cranial irradiation can be mitigated by treatment with a tropomyosin receptor kinase B agonist".PMID 26946222
  304. Jaycie L Loewen et al. (2016). "Neuronal Injury, Gliosis, and Glial Proliferation in Two Models of Temporal Lobe Epilepsy".PMID 26945036
  305. Wei Wang et al. (2016). "Feedback regulation of apical progenitor fate by immature neurons through Wnt7-Celsr3-Fzd3 signalling".PMID 26939553
  306. Ai Ling Xu et al. (2016). "Neuroprotective effects of Ilexonin A following transient focal cerebral ischemia in rats".PMID 26936330
  307. Sumihiro Maeda et al. (2016). "Expression of A152T human tau causes age-dependent neuronal dysfunction and loss in transgenic mice".PMID 26931567
  308. Dhiraj G Kabra et al. (2016). "Hypothalamic leptin action is mediated by histone deacetylase 5".PMID 26923837
  309. Maria I Fonseca et al. (2016). "Analysis of the Putative Role of CR1 in Alzheimer's Disease: Genetic Association, Expression and Function".PMID 26914463
  310. Minako Matsumoto et al. (2016). "Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Is Involved in Adult Mouse Hippocampal Neurogenesis After Stroke".PMID 26910758
  311. Shinya Yufune et al. (2016). "Suppression of ERK phosphorylation through oxidative stress is involved in the mechanism underlying sevoflurane-induced toxicity in the developing brain".PMID 26905012
  312. Anna G McNally et al. (2016). "Characterization of a Novel Chromatin Sorting Tool Reveals Importance of Histone Variant H3.3 in Contextual Fear Memory and Motor Learning".PMID 26903803
  313. Anthony J Hinrich et al. (2016). "Therapeutic correction of ApoER2 splicing in Alzheimer's disease mice using antisense oligonucleotides".PMID 26902204
  314. Ignacio Sancho-Martinez et al. (2016). "Establishment of human iPSC-based models for the study and targeting of glioma initiating cells".PMID 26899176
  315. Carla M Cabral et al. (2016). "Neurons are the Primary Target Cell for the Brain-Tropic Intracellular Parasite Toxoplasma gondii".PMID 26895155
  316. Xiaoshuai Li et al. (2016). "Application potential of bone marrow mesenchymal stem cell (BMSCs) based tissue-engineering for spinal cord defect repair in rat fetuses with spina bifida aperta".PMID 26894267
  317. Rong Zong Liu et al. (2016). "Association between cytoplasmic CRABP2, altered retinoic acid signaling, and poor prognosis in glioblastoma".PMID 26893190
  318. Yulong Ma et al. (2016). "Estrogen replacement therapy-induced neuroprotection against brain ischemia-reperfusion injury involves the activation of astrocytes via estrogen receptor β".PMID 26891996
  319. Jurate Lasiene et al. (2016). "Neuregulin 1 confers neuroprotection in SOD1-linked amyotrophic lateral sclerosis mice via restoration of C-boutons of spinal motor neurons".PMID 26891847
  320. Tianli Chen et al. (2016). "L1.2, the zebrafish paralog of L1.1 and ortholog of the mammalian cell adhesion molecule L1 contributes to spinal cord regeneration in adult zebrafish".PMID 26889968
  321. Qiangge Zhang et al. (2016). "Impaired Dendritic Development and Memory in Sorbs2 Knock-Out Mice".PMID 26888934
  322. Jorge E Collazos-Castro et al. (2016). "Glial progenitor cell migration promotes CNS axon growth on functionalized electroconducting microfibers".PMID 26884276
  323. Wei Zhang et al. (2016). "MiRNA-128 regulates the proliferation and neurogenesis of neural precursors by targeting PCM1 in the developing cortex".PMID 26883496
  324. Yan Bing Zhu et al. (2016). "Astrocyte-derived phosphatidic acid promotes dendritic branching".PMID 26883475
  325. Giuseppina Catanzaro et al. (2016). "MicroRNAs-Proteomic Networks Characterizing Human Medulloblastoma-SLCs".PMID 26880947
  326. Ivan Merdzo et al. (2016). "The mitochondrial function of the cerebral vasculature in insulin-resistant Zucker obese rats".PMID 26873973
  327. Peddagangannagari Sreekanthreddy et al. (2015). "A three-dimensional model of the human blood-brain barrier to analyse the transport of nanoparticles and astrocyte/endothelial interactions".PMID 26870320
  328. Bin Liu et al. (2016). "MAZ mediates the cross-talk between CT-1 and NOTCH1 signaling during gliogenesis".PMID 26867947
  329. E Lauretti et al. (2016). "Chronic behavioral stress exaggerates motor deficit and neuroinflammation in the MPTP mouse model of Parkinson's disease".PMID 26859816
  330. Charisse N Winston et al. (2016). "Dendritic Spine Loss and Chronic White Matter Inflammation in a Mouse Model of Highly Repetitive Head Trauma".PMID 26857506
  331. Gretchen H Delcambre et al. (2016). "Immunohistochemistry for the detection of neural and inflammatory cells in equine brain tissue".PMID 26855862
  332. Yali Li et al. (2016). "Age-related changes in hypertensive brain damage in the hippocampi of spontaneously hypertensive rats".PMID 26846626
  333. Jennifer L Furman et al. (2016). "Blockade of Astrocytic Calcineurin/NFAT Signaling Helps to Normalize Hippocampal Synaptic Function and Plasticity in a Rat Model of Traumatic Brain Injury".PMID 26843634
  334. Aarti Sharma et al. (2016). "ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function".PMID 26842965
  335. Daan R M G Ophelders et al. (2016). "Neuroinflammation and structural injury of the fetal ovine brain following intra-amniotic Candida albicans exposure".PMID 26842664
  336. Chunyu Wang et al. (2016). "Estrogen receptor-α is localized to neurofibrillary tangles in Alzheimer's disease".PMID 26837465
  337. Michael Schoen et al. (2015). "Super-Resolution Microscopy Reveals Presynaptic Localization of the ALS/FTD Related Protein FUS in Hippocampal Neurons".PMID 26834559
  338. Hongyun Li et al. (2016). "Cerebral Apolipoprotein-D Is Hypoglycosylated Compared to Peripheral Tissues and Is Variably Expressed in Mouse and Human Brain Regions".PMID 26829325
  339. Benjamin E Deverman et al. (2016). "Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain".PMID 26829320
  340. Saori Okamoto et al. (2016). "Bevacizumab changes vascular structure and modulates the expression of angiogenic factors in recurrent malignant gliomas".PMID 26826105
  341. Eiichi Tokuda et al. (2016). "Low autophagy capacity implicated in motor system vulnerability to mutant superoxide dismutase".PMID 26810478
  342. Corinne A Lee-Kubli et al. (2016). "Analysis of the behavioral, cellular and molecular characteristics of pain in severe rodent spinal cord injury".PMID 26808661
  343. Katherine L Misuraca et al. (2016). "A Novel Mouse Model of Diffuse Intrinsic Pontine Glioma Initiated in Pax3-Expressing Cells".PMID 26806352
  344. Amber R Hackett et al. (2016). "STAT3 and SOCS3 regulate NG2 cell proliferation and differentiation after contusive spinal cord injury".PMID 26804026
  345. Peer Hendrik Kuhn et al. (2016). "Systematic substrate identification indicates a central role for the metalloprotease ADAM10 in axon targeting and synapse function".PMID 26802628
  346. Yasuhito Watanabe et al. (2015). "Age-Dependent Degeneration of Mature Dentate Gyrus Granule Cells Following NMDA Receptor Ablation".PMID 26793056
  347. Gergo Kovacs et al. (2016). "Absence of Rybp Compromises Neural Differentiation of Embryonic Stem Cells".PMID 26788067
  348. Hedwich F Kuipers et al. (2016). "Hyaluronan synthesis is necessary for autoreactive T-cell trafficking, activation, and Th1 polarization".PMID 26787861
  349. Kelly Hares et al. (2016). "Axonal motor protein KIF5A and associated cargo deficits in multiple sclerosis lesional and normal-appearing white matter".PMID 26785938
  350. Anne Korwitz et al. (2016). "Loss of OMA1 delays neurodegeneration by preventing stress-induced OPA1 processing in mitochondria".PMID 26783299
  351. Seung Kyun Kang et al. (2016). "Bioresorbable silicon electronic sensors for the brain".PMID 26779949
  352. Isola A M Brown et al. (2016). "Enteric glia mediate neuron death in colitis through purinergic pathways that require connexin-43 and nitric oxide".PMID 26771001
  353. Clairton F de Souza et al. (2016). "Macromolecular markers in normal human retina and applications to human retinal disease".PMID 26769220
  354. E Najafi et al. (2016). "Inwardly rectifying potassium channel 4.1 expression in post-traumatic syringomyelia".PMID 26768400
  355. Peng Yuan et al. (2016). "Attenuation of β-Amyloid Deposition and Neurotoxicity by Chemogenetic Modulation of Neural Activity".PMID 26758850
  356. Hong Lian et al. (2016). "Astrocyte-Microglia Cross Talk through Complement Activation Modulates Amyloid Pathology in Mouse Models of Alzheimer's Disease".PMID 26758846
  357. H Kanda et al. (2016). "HSV vector-mediated GAD67 suppresses neuropathic pain induced by perineural HIV gp120 in rats through inhibition of ROS and Wnt5a".PMID 26752351
  358. Qiang Liu et al. (2016). "Neural stem cells sustain natural killer cells that dictate recovery from brain inflammation".PMID 26752157
  359. Céline Ruegsegger et al. (2016). "Impaired mTORC1-Dependent Expression of Homer-3 Influences SCA1 Pathophysiology".PMID 26748090
  360. Valentina Vacca et al. (2016). "17beta-estradiol counteracts neuropathic pain: a behavioural, immunohistochemical, and proteomic investigation on sex-related differences in mice".PMID 26742647
  361. Soya Kawabata et al. (2016). "Grafted Human iPS Cell-Derived Oligodendrocyte Precursor Cells Contribute to Robust Remyelination of Demyelinated Axons after Spinal Cord Injury".PMID 26724902
  362. Adrián G Sandoval-Hernández et al. (2015). "Role of Liver X Receptor in AD Pathophysiology".PMID 26720273
  363. Sourav R Choudhury et al. (2016). "Widespread Central Nervous System Gene Transfer and Silencing After Systemic Delivery of Novel AAV-AS Vector".PMID 26708003
  364. Anna Benedykcinska et al. (2016). "Generation of brain tumours in mice by Cre-mediated recombination of neural progenitors in situ with the tamoxifen metabolite endoxifen".PMID 26704996
  365. Ahmed A M Abdel-Hamid et al. (2016). "Effect of memantine: A NMDA receptor blocker, on ethambutol-induced retinal injury".PMID 26704355
  366. T L Platt et al. (2016). "Obesity, diabetes, and leptin resistance promote tau pathology in a mouse model of disease".PMID 26701291
  367. Justin V Joseph et al. (2015). "Serum-Induced Differentiation of Glioblastoma Neurospheres Leads to Enhanced Migration/Invasion Capacity That Is Associated with Increased MMP9".PMID 26700636
  368. Guo Qian He et al. (2015). "Huwe1 interacts with Gadd45b under oxygen-glucose deprivation and reperfusion injury in primary Rat cortical neuronal cells".PMID 26698301
  369. Anke Müller et al. (2015). "Monitoring Astrocytic Proteome Dynamics by Cell Type-Specific Protein Labeling".PMID 26690742
  370. Martyn A Sharpe et al. (2016). "Monoamine oxidase B levels are highly expressed in human gliomas and are correlated with the expression of HiF-1α and with transcription factors Sp1 and Sp3".PMID 26689994
  371. C J Janmaat et al. (2015). "Human Dermal Fibroblasts Demonstrate Positive Immunostaining for Neuron- and Glia- Specific Proteins".PMID 26678612
  372. Arkady Khoutorsky et al. (2015). "Translational control of nociception via 4E-binding protein 1".PMID 26678009
  373. Karolina Slowicka et al. (2016). "Optineurin deficiency in mice is associated with increased sensitivity to Salmonella but does not affect proinflammatory NF-κB signaling".PMID 26677802
  374. J A Gilkes et al. (2016). "Mucopolysaccharidosis IIIB confers enhanced neonatal intracranial transduction by AAV8 but not by 5, 9 or rh10".PMID 26674264
  375. Mélanie Pages et al. (2015). "Papillary glioneuronal tumors: histological and molecular characteristics and diagnostic value of SLC44A1-PRKCA fusion".PMID 26671581
  376. Mariya Hristova et al. (2016). "Inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) reduces neonatal hypoxic-ischaemic brain damage".PMID 26669927
  377. Aiqing Chen et al. (2016). "Frontal white matter hyperintensities, clasmatodendrosis and gliovascular abnormalities in ageing and post-stroke dementia".PMID 26667280
  378. Laura T Haas et al. (2016). "Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer's disease".PMID 26667279
  379. Chuan Chuan Chao et al. (2015). "Induction of neural differentiation in rat C6 glioma cells with taxol".PMID 26665000
  380. Joseph S Pak et al. (2015). "The retinal phenotype of Grk1-/- is compromised by a Crb1 rd8 mutation".PMID 26664249
  381. Linda A Bean et al. (2015). "Re-Opening the Critical Window for Estrogen Therapy".PMID 26658861
  382. Andreas Müller-Schiffmann et al. (2016). "Amyloid-β dimers in the absence of plaque pathology impair learning and synaptic plasticity".PMID 26657517
  383. Akon Higuchi et al. (2015). "Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity".PMID 26656754
  384. Cathleen Pfefferkorn et al. (2015). "Abortively Infected Astrocytes Appear To Represent the Main Source of Interferon Beta in the Virus-Infected Brain".PMID 26656686
  385. Christina Stefanitsch et al. (2015). "tPA Deficiency in Mice Leads to Rearrangement in the Cerebrovascular Tree and Cerebroventricular Malformations".PMID 26648843
  386. Jan C Frankowski et al. (2015). "Detrimental role of the EP1 prostanoid receptor in blood-brain barrier damage following experimental ischemic stroke".PMID 26648273
  387. Marilyn Scandaglia et al. (2015). "Fine-tuned SRF activity controls asymmetrical neuronal outgrowth: implications for cortical migration, neural tissue lamination and circuit assembly".PMID 26638868
  388. Misuzu Hashimoto et al. (2016). "Severe Hypomyelination and Developmental Defects Are Caused in Mice Lacking Protein Arginine Methyltransferase 1 (PRMT1) in the Central Nervous System".PMID 26637354
  389. Eva M Jimenez-Mateos et al. (2015). "microRNA targeting of the P2X7 purinoceptor opposes a contralateral epileptogenic focus in the hippocampus".PMID 26631939
  390. Terri Leigh Stephen et al. (2015). "Miro1 Regulates Activity-Driven Positioning of Mitochondria within Astrocytic Processes Apposed to Synapses to Regulate Intracellular Calcium Signaling".PMID 26631479
  391. Subhra Prakash Hui et al. (2015). "Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish".PMID 26630262
  392. Yongsun Kim et al. (2015). "Antioxidant and anti-inflammatory effects of intravenously injected adipose derived mesenchymal stem cells in dogs with acute spinal cord injury".PMID 26612085
  393. Bruno A Benítez et al. (2015). "Clinically early-stage CSPα mutation carrier exhibits remarkable terminal stage neuronal pathology with minimal evidence of synaptic loss".PMID 26610600
  394. Ming Fang et al. (2015). "Scutellarin regulates microglia-mediated TNC1 astrocytic reaction and astrogliosis in cerebral ischemia in the adult rats".PMID 26608466
  395. Yulia Grishchuk et al. (2016). "Retinal Dystrophy and Optic Nerve Pathology in the Mouse Model of Mucolipidosis IV".PMID 26608452
  396. Luqing Zhang et al. (2015). "Expression Patterns and Potential Biological Roles of Dip2a".PMID 26605542
  397. Nora Urraca et al. (2015). "Characterization of neurons from immortalized dental pulp stem cells for the study of neurogenetic disorders".PMID 26599327
  398. Carolin Dahlke et al. (2015). "Inflammation and neuronal death in the motor cortex of the wobbler mouse, an ALS animal model".PMID 26597538
  399. Saverio Tardito et al. (2015). "Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma".PMID 26595383
  400. Cheril Tapia-Rojas et al. (2015). "Is L-methionine a trigger factor for Alzheimer's-like neurodegeneration?: Changes in Aβ oligomers, tau phosphorylation, synaptic proteins, Wnt signaling and behavioral impairment in wild-type mice".PMID 26590557
  401. Marie Josée Beaudet et al. (2015). "High yield extraction of pure spinal motor neurons, astrocytes and microglia from single embryo and adult mouse spinal cord".PMID 26577180
  402. Dennis Mircsof et al. (2015). "Mutations in NONO lead to syndromic intellectual disability and inhibitory synaptic defects".PMID 26571461
  403. Aida Rodrigo Albors et al. (2015). "Planar cell polarity-mediated induction of neural stem cell expansion during axolotl spinal cord regeneration".PMID 26568310
  404. Denise R Cook-Snyder et al. (2015). "A retrograde adeno-associated virus for collecting ribosome-bound mRNA from anatomically defined projection neurons".PMID 26557053
  405. Sung Il Park et al. (2015). "Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics".PMID 26551059
  406. Angélica Maria Sabogal-Guáqueta et al. (2016). "Linalool reverses neuropathological and behavioral impairments in old triple transgenic Alzheimer's mice".PMID 26549854
  407. Jonathan D Cherry et al. (2015). "Arginase 1+ microglia reduce Aβ plaque deposition during IL-1β-dependent neuroinflammation".PMID 26538310
  408. Marta Winiecka-Klimek et al. (2015). "SOX2 and SOX2-MYC Reprogramming Process of Fibroblasts to the Neural Stem Cells Compromised by Senescence".PMID 26535892
  409. Virginie Neirinckx et al. (2015). "Adult bone marrow mesenchymal and neural crest stem cells are chemoattractive and accelerate motor recovery in a mouse model of spinal cord injury".PMID 26530515
  410. Yunyuan Li et al. (2016). "Identification of a Hematopoietic Cell Dedifferentiation-Inducing Factor".PMID 26529564
  411. Gabriele Bonaventura et al. (2015). "Different Tissue-Derived Stem Cells: A Comparison of Neural Differentiation Capability".PMID 26517263
  412. Laura K K Pacey et al. (2015). "Persistent astrocyte activation in the fragile X mouse cerebellum".PMID 26516618
  413. Jakub Sikora et al. (2016). "X-linked Christianson syndrome: heterozygous female Slc9a6 knockout mice develop mosaic neuropathological changes and related behavioral abnormalities".PMID 26515654
  414. Shao Ming Wang et al. (2016). "Astrocytic CCAAT/Enhancer-Binding Protein Delta Contributes to Glial Scar Formation and Impairs Functional Recovery After Spinal Cord Injury".PMID 26510742
  415. Veronika Matschke et al. (2015). "NDRG2 phosphorylation provides negative feedback for SGK1-dependent regulation of a kainate receptor in astrocytes".PMID 26500492
  416. Maral Tajerian et al. (2015). "Differential Efficacy of Ketamine in the Acute versus Chronic Stages of Complex Regional Pain Syndrome in Mice".PMID 26492479
  417. Lin Zhang et al. (2015). "Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth".PMID 26479035
  418. Irena Baranowska-Bosiacka et al. (2016). "Effects of perinatal exposure to lead (Pb) on purine receptor expression in the brain and gliosis in rats tolerant to morphine analgesia".PMID 26478469
  419. Yan Gu et al. (2015). "Mesenchymal stem cells suppress neuronal apoptosis and decrease IL-10 release via the TLR2/NFκB pathway in rats with hypoxic-ischemic brain damage".PMID 26475712
  420. Wen Han Chang et al. (2015). "Antroquinonol Lowers Brain Amyloid-β Levels and Improves Spatial Learning and Memory in a Transgenic Mouse Model of Alzheimer's Disease".PMID 26469245
  421. Yasuhiko Kizuka et al. (2016). "Bisecting GlcNAc modification stabilizes BACE1 protein under oxidative stress conditions".PMID 26467158
  422. David N Hauser et al. (2015). "The Polg Mutator Phenotype Does Not Cause Dopaminergic Neurodegeneration in DJ-1-Deficient Mice".PMID 26464968
  423. Gabriela B Suarez-Mier et al. (2015). "Glial Fibrillary Acidic Protein-Expressing Glia in the Mouse Lung".PMID 26442852
  424. Hélène O B Gautier et al. (2015). "Neuronal activity regulates remyelination via glutamate signalling to oligodendrocyte progenitors".PMID 26439639
  425. Ah Reum Ko et al. (2015). "Endothelin-1 induces LIMK2-mediated programmed necrotic neuronal death independent of NOS activity".PMID 26438559
  426. D E Korzhevskii et al. (2015). "Immunohistochemical demonstration of specific antigens in the human brain fixed in zinc-ethanol-formaldehyde".PMID 26428887
  427. Jesse A Stokum et al. (2015). "Heterogeneity of aquaporin-4 localization and expression after focal cerebral ischemia underlies differences in white versus grey matter swelling".PMID 26419740
  428. Laura A Struzyna et al. (2015). "Rebuilding Brain Circuitry with Living Micro-Tissue Engineered Neural Networks".PMID 26414439
  429. Fuyi Chen et al. (2015). "Tracking and transforming neocortical progenitors by CRISPR/Cas9 gene targeting and piggyBac transposase lineage labeling".PMID 26400094
  430. Naoto Watamura et al. (2016). "Colocalization of phosphorylated forms of WAVE1, CRMP2, and tau in Alzheimer's disease model mice: Involvement of Cdk5 phosphorylation and the effect of ATRA treatment".PMID 26400044
  431. Achim Werner et al. (2015). "Cell-fate determination by ubiquitin-dependent regulation of translation".PMID 26399832
  432. Hui Wu et al. (2015). "Combination of early and delayed ischemic postconditioning enhances brain-derived neurotrophic factor production by upregulating the ERK-CREB pathway in rats with focal ischemia".PMID 26398857
  433. Shun Yamamuro et al. (2015). "Antitumorigenic effect of interferon-β by inhibition of undifferentiated glioblastoma cells".PMID 26397698
  434. Janne Hakanen et al. (2015). "Defects in neural guidepost structures and failure to remove leptomeningeal cells from the septal midline behind the interhemispheric fusion defects in Netrin1 deficient mice".PMID 26397040
  435. Ye Sun et al. (2015). "SOCS3 in retinal neurons and glial cells suppresses VEGF signaling to prevent pathological neovascular growth".PMID 26396267
  436. Zhong L Hua et al. (2015). "Rac1 plays an essential role in axon growth and guidance and in neuronal survival in the central and peripheral nervous systems".PMID 26395878
  437. Chu Hsun Cheng et al. (2015). "Local Delivery of High-Dose Chondroitinase ABC in the Sub-Acute Stage Promotes Axonal Outgrowth and Functional Recovery after Complete Spinal Cord Transection".PMID 26393921
  438. Michael Telias et al. (2015). "Molecular mechanisms regulating impaired neurogenesis of fragile X syndrome human embryonic stem cells".PMID 26393806
  439. Haruna Hirata et al. (2016). "Cell adhesion molecule contactin-associated protein 3 is expressed in the mouse basal ganglia during early postnatal stages".PMID 26389685
  440. Sandra Ahn et al. (2016). "Differentiation of human pluripotent stem cells into Medial Ganglionic Eminence vs. Caudal Ganglionic Eminence cells".PMID 26364591
  441. H Chen et al. (2015). "Interleukin-33 is released in spinal cord and suppresses experimental autoimmune encephalomyelitis in mice".PMID 26363151
  442. Emma L Clayton et al. (2015). "Frontotemporal dementia caused by CHMP2B mutation is characterised by neuronal lysosomal storage pathology".PMID 26358247
  443. Shenbin Liu et al. (2015). "Spinal IL-33/ST2 Signaling Contributes to Neuropathic Pain via Neuronal CaMKII-CREB and Astroglial JAK2-STAT3 Cascades in Mice".PMID 26352378
  444. Rachel E James et al. (2016). "Loss of galectin-3 decreases the number of immune cells in the subventricular zone and restores proliferation in a viral model of multiple sclerosis".PMID 26337870
  445. Christopher M Henstridge et al. (2015). "Post-mortem brain analyses of the Lothian Birth Cohort 1936: extending lifetime cognitive and brain phenotyping to the level of the synapse".PMID 26335101
  446. Christoph M Zehendner et al. (2015). "Traumatic brain injury results in rapid pericyte loss followed by reactive pericytosis in the cerebral cortex".PMID 26333872
  447. Bin Chen et al. (2015). "Electro-acupuncture exerts beneficial effects against cerebral ischemia and promotes the proliferation of neural progenitor cells in the cortical peri-infarct area through the Wnt/β-catenin signaling pathway".PMID 26329606
  448. Stanley B Prusiner et al. (2015). "Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism".PMID 26324905
  449. Harshvardhan Rolyan et al. (2015). "Defects of Lipid Synthesis Are Linked to the Age-Dependent Demyelination Caused by Lamin B1 Overexpression".PMID 26311780
  450. Ana C Zarpelon et al. (2016). "Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain".PMID 26310268
  451. Ying Hsien Huang et al. (2015). "Activation of Mir-29a in Activated Hepatic Stellate Cells Modulates Its Profibrogenic Phenotype through Inhibition of Histone Deacetylases 4".PMID 26305546
  452. Michele Bellesi et al. (2015). "Effects of sleep and wake on astrocytes: clues from molecular and ultrastructural studies".PMID 26303010
  453. Susanne F Koch et al. (2015). "Halting progressive neurodegeneration in advanced retinitis pigmentosa".PMID 26301813
  454. Erica Korb et al. (2015). "BET protein Brd4 activates transcription in neurons and BET inhibitor Jq1 blocks memory in mice".PMID 26301327
  455. Naotaka Izuo et al. (2015). "Brain-Specific Superoxide Dismutase 2 Deficiency Causes Perinatal Death with Spongiform Encephalopathy in Mice".PMID 26301039
  456. Mingju Cao et al. (2015). "Fetal microglial phenotype in vitro carries memory of prior in vivo exposure to inflammation".PMID 26300730
  457. Claire J Garwood et al. (2015). "Insulin and IGF1 signalling pathways in human astrocytes in vitro and in vivo; characterisation, subcellular localisation and modulation of the receptors".PMID 26297026
  458. Nico Angliker et al. (2015). "mTORC1 and mTORC2 have largely distinct functions in Purkinje cells".PMID 26296489
  459. Il Shin Lee et al. (2015). "Human neural stem cells alleviate Alzheimer-like pathology in a mouse model".PMID 26293123
  460. Awais A Mughal et al. (2015). "Knockdown of NAT12/NAA30 reduces tumorigenic features of glioblastoma-initiating cells".PMID 26292663
  461. Mikio Shimada et al. (2015). "Polynucleotide kinase-phosphatase enables neurogenesis via multiple DNA repair pathways to maintain genome stability".PMID 26290337
  462. Forough Khadem et al. (2016). "Hepatic stellate cells regulate liver immunity to visceral leishmaniasis through P110δ-dependent induction and expansion of regulatory T cells in mice".PMID 26289140
  463. Takamasa Kawaguchi et al. (2015). "Generation of Naïve Bovine Induced Pluripotent Stem Cells Using PiggyBac Transposition of Doxycycline-Inducible Transcription Factors".PMID 26287611
  464. Kuti Baruch et al. (2015). "Breaking immune tolerance by targeting Foxp3(+) regulatory T cells mitigates Alzheimer's disease pathology".PMID 26284939
  465. Linda Fredriksson et al. (2015). "Identification of a neurovascular signaling pathway regulating seizures in mice".PMID 26273685
  466. Donika Gallina et al. (2015). "Activation of glucocorticoid receptors in Müller glia is protective to retinal neurons and suppresses microglial reactivity".PMID 26272753
  467. Mark D Meadowcroft et al. (2015). "Cortical iron regulation and inflammatory response in Alzheimer's disease and APPSWE/PS1ΔE9 mice: a histological perspective".PMID 26257600
  468. Hong Qiang Qiu et al. (2015). "Koumine enhances spinal cord 3α-hydroxysteroid oxidoreductase expression and activity in a rat model of neuropathic pain".PMID 26255228
  469. Fong Kuan Wong et al. (2015). "Sustained Pax6 Expression Generates Primate-like Basal Radial Glia in Developing Mouse Neocortex".PMID 26252244
  470. William Galbavy et al. (2015). "Neuroimmune and Neuropathic Responses of Spinal Cord and Dorsal Root Ganglia in Middle Age".PMID 26241743
  471. Louiza Bohn Thomsen et al. (2015). "A Triple Culture Model of the Blood-Brain Barrier Using Porcine Brain Endothelial cells, Astrocytes and Pericytes".PMID 26241648
  472. Kyung Hoon Kim et al. (2015). "Mechanical Antiallodynic Effect of Intrathecal Nefopam in a Rat Neuropathic Pain Model".PMID 26240499
  473. Mirna Lechpammer et al. (2016). "Dysregulation of FMRP/mTOR Signaling Cascade in Hypoxic-Ischemic Injury of Premature Human Brain".PMID 26239490
  474. J Y Kim et al. (2015). "ETB receptor-mediated MMP-9 activation induces vasogenic edema via ZO-1 protein degradation following status epilepticus".PMID 26232046
  475. Manuel Lutzenberger et al. (2015). "Ablation of CCAAT/Enhancer-Binding Protein Delta (C/EBPD): Increased Plaque Burden in a Murine Alzheimer's Disease Model".PMID 26230261
  476. Peter Zhang et al. (2015). "Kruppel-Like Factor 4 Regulates Granule Cell Pax6 Expression and Cell Proliferation in Early Cerebellar Development".PMID 26226504
  477. Yuki Miyamoto et al. (2015). "Involvement of the Tyro3 receptor and its intracellular partner Fyn signaling in Schwann cell myelination".PMID 26224309
  478. Kambiz Hassanzadeh et al. (2015). "Effect of selegiline on neural stem cells differentiation: a possible role for neurotrophic factors".PMID 26221478
  479. Christian Cortés-Campos et al. (2015). "Zebrafish adult-derived hypothalamic neurospheres generate gonadotropin-releasing hormone (GnRH) neurons".PMID 26209533
  480. Masaaki Ishikawa et al. (2015). "Transplantation of neurons derived from human iPS cells cultured on collagen matrix into guinea-pig cochleae".PMID 26205474
  481. Sebastien Gingras et al. (2015). "SCYL2 Protects CA3 Pyramidal Neurons from Excitotoxicity during Functional Maturation of the Mouse Hippocampus".PMID 26203146
  482. Alireza Mohammadi et al. (2015). "Generation of Rat Embryonic Germ Cells via Inhibition of TGFß and MEK Pathways".PMID 26199907
  483. Maria Nordheim Alme et al. (2015). "Fingolimod does not enhance cerebellar remyelination in the cuprizone model".PMID 26198937
  484. Kristel Kegler et al. (2015). "Contribution of Schwann Cells to Remyelination in a Naturally Occurring Canine Model of CNS Neuroinflammation".PMID 26196511
  485. Heather R Minkel et al. (2015). "Elevated GFAP induces astrocyte dysfunction in caudal brain regions: A potential mechanism for hindbrain involved symptoms in type II Alexander disease".PMID 26190408
  486. Wu Fu Chen et al. (2015). "Neuroprotective Effects of Direct Intrathecal Administration of Granulocyte Colony-Stimulating Factor in Rats with Spinal Cord Injury".PMID 26190345
  487. Michael Stiess et al. (2015). "A Dual SILAC Proteomic Labeling Strategy for Quantifying Constitutive and Cell-Cell Induced Protein Secretion".PMID 26189946
  488. Chin Yi Cheng et al. (2015). "Electroacupuncture at different frequencies (5Hz and 25Hz) ameliorates cerebral ischemia-reperfusion injury in rats: possible involvement of p38 MAPK-mediated anti-apoptotic signaling pathways".PMID 26187498
  489. Youjun Chen et al. (2015). "Pten Mutations Alter Brain Growth Trajectory and Allocation of Cell Types through Elevated β-Catenin Signaling".PMID 26180201
  490. Deepti Chugh et al. (2015). "Alterations in Brain Inflammation, Synaptic Proteins, and Adult Hippocampal Neurogenesis during Epileptogenesis in Mice Lacking Synapsin2".PMID 26177381
  491. Chengang Song et al. (2015). "Use of Ferritin Expression, Regulated by Neural Cell-Specific Promoters in Human Adipose Tissue-Derived Mesenchymal Stem Cells, to Monitor Differentiation with Magnetic Resonance Imaging In Vitro".PMID 26176961
  492. Shotaro Michinaga et al. (2015). "Improvement of cold injury-induced mouse brain edema by endothelin ETB antagonists is accompanied by decreases in matrixmetalloproteinase 9 and vascular endothelial growth factor-A".PMID 26174228
  493. R M Gorojod et al. (2015). "The autophagic- lysosomal pathway determines the fate of glial cells under manganese- induced oxidative stress conditions".PMID 26163003
  494. Jennifer L Ziskin et al. (2015). "Neuropathologic analysis of Tyr69His TTR variant meningovascular amyloidosis with dementia".PMID 26156087
  495. Lucas K Smith et al. (2015). "β2-microglobulin is a systemic pro-aging factor that impairs cognitive function and neurogenesis".PMID 26147761
  496. Shweta S Puntambekar et al. (2015). "Interleukin-10 is a critical regulator of white matter lesion containment following viral induced demyelination".PMID 26132901
  497. Christian Schachtrup et al. (2015). "Nuclear pore complex remodeling by p75(NTR) cleavage controls TGF-β signaling and astrocyte functions".PMID 26120963
  498. Meenakshi Rao et al. (2015). "Enteric glia express proteolipid protein 1 and are a transcriptionally unique population of glia in the mammalian nervous system".PMID 26119414
  499. Johannes Hradsky et al. (2015). "Alternative splicing, expression and cellular localization of Calneuron-1 in the rat and human brain".PMID 26116628
  500. Susan Noell et al. (2015). "Water Channels Aquaporin 4 and -1 Expression in Subependymoma Depends on the Localization of the Tumors".PMID 26115524
  501. Julián Esteban Sáez et al. (2015). "Decreased Expression of CoREST1 and CoREST2 Together with LSD1 and HDAC1/2 during Neuronal Differentiation".PMID 26111147
  502. Yueguang Liu et al. (2015). "Ascl1 Converts Dorsal Midbrain Astrocytes into Functional Neurons In Vivo".PMID 26109658
  503. Olivier Cases et al. (2015). "Foxg1-Cre Mediated Lrp2 Inactivation in the Developing Mouse Neural Retina, Ciliary and Retinal Pigment Epithelia Models Congenital High Myopia".PMID 26107939
  504. Badrah Alghamdi et al. (2015). "Phenotype overlap in glial cell populations: astroglia, oligodendroglia and NG-2(+) cells".PMID 26106302
  505. Fabiola Rojas et al. (2015). "Reactive oxygen species trigger motoneuron death in non-cell-autonomous models of ALS through activation of c-Abl signaling".PMID 26106294
  506. Katarina Kapuralin et al. (2015). "STAM2, a member of the endosome-associated complex ESCRT-0 is highly expressed in neurons".PMID 26101075
  507. Kimberleve Rolón-Reyes et al. (2015). "Microglia Activate Migration of Glioma Cells through a Pyk2 Intracellular Pathway".PMID 26098895
  508. Alessio Attardo et al. (2015). "Impermanence of dendritic spines in live adult CA1 hippocampus".PMID 26098371
  509. Travis J Cook et al. (2016). "Mortalin is Expressed by Astrocytes and Decreased in the Midbrain of Parkinson's Disease Patients".PMID 26095919
  510. Jason J Kwon et al. (2015). "Pathophysiological role of microRNA-29 in pancreatic cancer stroma".PMID 26095125
  511. Keodavanh Chounlamountry et al. (2015). "Remodeling of glial coverage of glutamatergic synapses in the rat nucleus tractus solitarii after ozone inhalation".PMID 26083406
  512. Huiling Tang et al. (2015). "Progesterone and vitamin D combination therapy modulates inflammatory response after traumatic brain injury".PMID 26083048
  513. Guillaume Perriard et al. (2015). "Interleukin-22 is increased in multiple sclerosis patients and targets astrocytes".PMID 26077779
  514. E E O'Brien et al. (2015). "Colocalization of aromatase in spinal cord astrocytes: differences in expression and relationship to mechanical and thermal hyperalgesia in murine models of a painful and a non-painful bone tumor".PMID 26071956
  515. Kirsten S Evonuk et al. (2015). "Inhibition of System Xc(-) Transporter Attenuates Autoimmune Inflammatory Demyelination".PMID 26071560
  516. Christine Laclef et al. (2015). "The role of primary cilia in corpus callosum formation is mediated by production of the Gli3 repressor".PMID 26071364
  517. Marc Zuckermann et al. (2015). "Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling".PMID 26067104
  518. Bijorn Omar Balzamino et al. (2015). "NGF Expression in Reelin-Deprived Retinal Cells: A Potential Neuroprotective Effect".PMID 26066836
  519. Silke Götze et al. (2015). "Epigenetic Changes during Hepatic Stellate Cell Activation".PMID 26065684
  520. Ning Tang et al. (2016). "Different Effects of p52SHC1 and p52SHC3 on the Cell Cycle of Neurons and Neural Stem Cells".PMID 26058566
  521. Flora Cimmino et al. (2015). "Inhibition of hypoxia inducible factors combined with all-trans retinoic acid treatment enhances glial transdifferentiation of neuroblastoma cells".PMID 26057707
  522. Jian Jiang et al. (2015). "Spatiotemporal dynamics of traction forces show three contraction centers in migratory neurons".PMID 26056143
  523. A Currais et al. (2016). "Dietary glycemic index modulates the behavioral and biochemical abnormalities associated with autism spectrum disorder".PMID 26055422
  524. Mei Du et al. (2015). "Transgenic Mice Overexpressing Serum Retinol-Binding Protein Develop Progressive Retinal Degeneration through a Retinoid-Independent Mechanism".PMID 26055327
  525. Jan Hoeber et al. (2015). "Human Embryonic Stem Cell-Derived Progenitors Assist Functional Sensory Axon Regeneration after Dorsal Root Avulsion Injury".PMID 26053681
  526. Yansu Guo et al. (2016). "A Single Injection of Recombinant Adeno-Associated Virus into the Lumbar Cistern Delivers Transgene Expression Throughout the Whole Spinal Cord".PMID 26050084
  527. Yosef Koronyo et al. (2015). "Therapeutic effects of glatiramer acetate and grafted CD115⁺ monocytes in a mouse model of Alzheimer's disease".PMID 26049087
  528. Simon Kaja et al. (2015). "Plate reader-based cell viability assays for glioprotection using primary rat optic nerve head astrocytes".PMID 26048476
  529. Shoko Morita et al. (2016). "Heterogeneous vascular permeability and alternative diffusion barrier in sensory circumventricular organs of adult mouse brain".PMID 26048259
  530. Yue Juan Chen et al. (2015). "Schwann cells induce Proliferation and Migration of Oligodendrocyte Precursor Cells Through Secretion of PDGF-AA and FGF-2".PMID 26044662
  531. Benjamin Keller et al. (2015). "Regulation of hippocampal Fas receptor and death-inducing signaling complex after kainic acid treatment in mice".PMID 26044520
  532. Saiyong Zhu et al. (2015). "Reprogramming fibroblasts toward cardiomyocytes, neural stem cells and hepatocytes by cell activation and signaling-directed lineage conversion".PMID 26042385
  533. C Requejo et al. (2015). "Topographical Distribution of Morphological Changes in a Partial Model of Parkinson's Disease--Effects of Nanoencapsulated Neurotrophic Factors Administration".PMID 26041662
  534. Andrea Di Cristofori et al. (2015). "The vacuolar H+ ATPase is a novel therapeutic target for glioblastoma".PMID 26020805
  535. Mats Julius Stensrud et al. (2015). "Immunogold characteristics of VGLUT3-positive GABAergic nerve terminals suggest corelease of glutamate".PMID 26010578
  536. Romain Sonneville et al. (2015). "Neuropathological Correlates of Hyperglycemia During Prolonged Polymicrobial Sepsis in Mice".PMID 26009823
  537. Veysel Haktan Ozacmak et al. (2016). "Chronic treatment with resveratrol, a natural polyphenol found in grapes, alleviates oxidative stress and apoptotic cell death in ovariectomized female rats subjected to chronic cerebral hypoperfusion".PMID 26005194
  538. Hanadie Yousef et al. (2015). "Systemic attenuation of the TGF-β pathway by a single drug simultaneously rejuvenates hippocampal neurogenesis and myogenesis in the same old mammal".PMID 26003168
  539. Lei Pei et al. (2015). "A Novel Mechanism of Spine Damages in Stroke via DAPK1 and Tau".PMID 25995053
  540. Shinya Yufune et al. (2015). "Transient Blockade of ERK Phosphorylation in the Critical Period Causes Autistic Phenotypes as an Adult in Mice".PMID 25993696
  541. Dhaval P Bhatt et al. (2015). "A pilot study to assess effects of long-term inhalation of airborne particulate matter on early Alzheimer-like changes in the mouse brain".PMID 25992783
  542. David J Wilkinson et al. (2015). "Isolation of Enteric Nervous System Progenitor Cells from the Aganglionic Gut of Patients with Hirschsprung's Disease".PMID 25992739
  543. Hannah K Robinson et al. (2015). "Early lethality and neuronal proteinopathy in mice expressing cytoplasm-targeted FUS that lacks the RNA recognition motif".PMID 25991062
  544. Miaomiao Mao et al. (2015). "The Structural Development of the Mouse Dorsal Cochlear Nucleus".PMID 25985874
  545. David B Wang et al. (2015). "Loss of endophilin-B1 exacerbates Alzheimer's disease pathology".PMID 25981964
  546. M López-Gallardo et al. (2015). "Neonatal Treatment with a Pegylated Leptin Antagonist Induces Sexually Dimorphic Effects on Neurones and Glial Cells, and on Markers of Synaptic Plasticity in the Developing Rat Hippocampal Formation".PMID 25981175
  547. Francesco Bedogni et al. (2016). "Defects During Mecp2 Null Embryonic Cortex Development Precede the Onset of Overt Neurological Symptoms".PMID 25979088
  548. Fei Zhou et al. (2015). "Human adipose-derived stem cells partially rescue the stroke syndromes by promoting spatial learning and memory in mouse middle cerebral artery occlusion model".PMID 25956259
  549. Dino Terzic et al. (2016). "Directed Differentiation of Oligodendrocyte Progenitor Cells From Mouse Induced Pluripotent Stem Cells".PMID 25955415
  550. Michiel van Wyk et al. (2015). "Restoring the ON Switch in Blind Retinas: Opto-mGluR6, a Next-Generation, Cell-Tailored Optogenetic Tool".PMID 25950461
  551. Peng Liu et al. (2015). "Characterization of a Novel Mouse Model of Alzheimer's Disease--Amyloid Pathology and Unique β-Amyloid Oligomer Profile".PMID 25946042
  552. Satoru Yamagishi et al. (2015). "Netrin-5 is highly expressed in neurogenic regions of the adult brain".PMID 25941474
  553. Andrea Milenkovic et al. (2015). "Bestrophin 1 is indispensable for volume regulation in human retinal pigment epithelium cells".PMID 25941382
  554. Rui Liu et al. (2015). "A cortical astrocyte subpopulation inhibits axon growth in vitro and in vivo".PMID 25936767
  555. J Michael Gee et al. (2015). "Imaging activity in astrocytes and neurons with genetically encoded calcium indicators following in utero electroporation".PMID 25926768
  556. Filipa L Cardoso et al. (2015). "Systemic inflammation in early neonatal mice induces transient and lasting neurodegenerative effects".PMID 25924675
  557. Wenze Niu et al. (2015). "SOX2 reprograms resident astrocytes into neural progenitors in the adult brain".PMID 25921813
  558. Xiaoyu Luo et al. (2015). "Exosomes are unlikely involved in intercellular Nef transfer".PMID 25919665
  559. Courtney M Tate et al. (2015). "A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology".PMID 25919028
  560. Lucas Vicuña et al. (2015). "The serine protease inhibitor SerpinA3N attenuates neuropathic pain by inhibiting T cell-derived leukocyte elastase".PMID 25915831
  561. Paschalis Theotokis et al. (2015). "Connexin43 and connexin47 alterations after neural precursor cells transplantation in experimental autoimmune encephalomyelitis".PMID 25914045
  562. D Jimenez-Blasco et al. (2015). "Astrocyte NMDA receptors' activity sustains neuronal survival through a Cdk5-Nrf2 pathway".PMID 25909891
  563. Scott J Webster et al. (2015). "Closed head injury in an age-related Alzheimer mouse model leads to an altered neuroinflammatory response and persistent cognitive impairment".PMID 25904805
  564. Ruma Raha-Chowdhury et al. (2015). "Expression and cellular localization of hepcidin mRNA and protein in normal rat brain".PMID 25896789
  565. Jeffrey S Hakim et al. (2015). "Positively Charged Oligo[Poly(Ethylene Glycol) Fumarate] Scaffold Implantation Results in a Permissive Lesion Environment after Spinal Cord Injury in Rat".PMID 25891264
  566. Wu Fu Chen et al. (2015). "The use of the antimicrobial peptide piscidin (PCD)-1 as a novel anti-nociceptive agent".PMID 25890701
  567. Rebecca K Sheean et al. (2015). "Effect of thymic stimulation of CD4+ T cell expansion on disease onset and progression in mutant SOD1 mice".PMID 25889790
  568. Shi Ying Huang et al. (2015). "Involvement of phosphatase and tensin homolog deleted from chromosome 10 in rodent model of neuropathic pain".PMID 25889774
  569. Ze li Zhang et al. (2015). "Nuclear factor-κB activation in perihematomal brain tissue correlates with outcome in patients with intracerebral hemorrhage".PMID 25889503
  570. Adam D Bachstetter et al. (2015). "Attenuation of traumatic brain injury-induced cognitive impairment in mice by targeting increased cytokine levels with a small molecule experimental therapeutic".PMID 25886256
  571. Nimrod Miller et al. (2015). "Non-aggregating tau phosphorylation by cyclin-dependent kinase 5 contributes to motor neuron degeneration in spinal muscular atrophy".PMID 25878277
  572. Loic Deleyrolle et al. (2015). "OCAM regulates embryonic spinal cord stem cell proliferation by modulating ErbB2 receptor".PMID 25875008
  573. Jasmien Orije et al. (2015). "Longitudinal monitoring of metabolic alterations in cuprizone mouse model of multiple sclerosis using 1H-magnetic resonance spectroscopy".PMID 25871629
  574. Patricia Rivera et al. (2015). "Pharmacological blockade of the fatty acid amide hydrolase (FAAH) alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothalamus and striatum in a negative energy context".PMID 25870539
  575. Jens O Watzlawik et al. (2015). "Polysialic acid as an antigen for monoclonal antibody HIgM12 to treat multiple sclerosis and other neurodegenerative disorders".PMID 25866077
  576. Michael D Scofield et al. (2015). "Gq-DREADD Selectively Initiates Glial Glutamate Release and Inhibits Cue-induced Cocaine Seeking".PMID 25861696
  577. Stephan J Guyenet et al. (2015). "Proteolytic cleavage of ataxin-7 promotes SCA7 retinal degeneration and neurological dysfunction".PMID 25859008
  578. Qin Hua Gu et al. (2015). "miR-26a and miR-384-5p are required for LTP maintenance and spine enlargement".PMID 25858512
  579. Lauren R Kett et al. (2015). "α-Synuclein-independent histopathological and motor deficits in mice lacking the endolysosomal Parkinsonism protein Atp13a2".PMID 25855184
  580. Christian B Brøchner et al. (2015). "Outer brain barriers in rat and human development".PMID 25852456
  581. A K Samhan-Arias et al. (2016). "High expression of cytochrome b 5 reductase isoform 3/cytochrome b 5 system in the cerebellum and pyramidal neurons of adult rat brain".PMID 25850901
  582. Christopher L Frank et al. (2015). "Regulation of chromatin accessibility and Zic binding at enhancers in the developing cerebellum".PMID 25849986
  583. Nuria Sánchez-Farías et al. (2015). "Doublecortin is widely expressed in the developing and adult retina of sharks".PMID 25849205
  584. Jenna L Leclerc et al. (2015). "Genetic deletion of the prostaglandin E2 E prostanoid receptor subtype 3 improves anatomical and functional outcomes after intracerebral hemorrhage".PMID 25847406
  585. Carolin Kubelt et al. (2015). "Epithelial-to-mesenchymal transition in paired human primary and recurrent glioblastomas".PMID 25845427
  586. D Isaev et al. (2015). "Contribution of protease-activated receptor 1 in status epilepticus-induced epileptogenesis".PMID 25843668
  587. Norihito Uemura et al. (2015). "Viable neuronopathic Gaucher disease model in Medaka (Oryzias latipes) displays axonal accumulation of alpha-synuclein".PMID 25835295
  588. Lasse Dissing-Olesen et al. (2015). "Fixation and Immunolabeling of Brain Slices: SNAPSHOT Method".PMID 25829354
  589. Michel Fausther et al. (2015). "Establishment and characterization of rat portal myofibroblast cell lines".PMID 25822334
  590. Clifford H Shin et al. (2015). "The BRAF kinase domain promotes the development of gliomas in vivo".PMID 25821557
  591. Beatrice K Leung et al. (2015). "Ventral pallidal projections to mediodorsal thalamus and ventral tegmental area play distinct roles in outcome-specific Pavlovian-instrumental transfer".PMID 25810525
  592. Guillermo Agustin Videla Richardson et al. (2016). "Specific Preferences in Lineage Choice and Phenotypic Plasticity of Glioma Stem Cells Under BMP4 and Noggin Influence".PMID 25808628
  593. Marta Luna-Sánchez et al. (2015). "The clinical heterogeneity of coenzyme Q10 deficiency results from genotypic differences in the Coq9 gene".PMID 25802402
  594. M Smeyne et al. (2015). "HIF1α is necessary for exercise-induced neuroprotection while HIF2α is needed for dopaminergic neuron survival in the substantia nigra pars compacta".PMID 25796140
  595. Han Seok Koh et al. (2015). "The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia".PMID 25790768
  596. Long Xia Chen et al. (2015). "Neuroprotective effects of oligodendrocyte progenitor cell transplantation in premature rat brain following hypoxic-ischemic injury".PMID 25790286
  597. Elizabeth E Crouch et al. (2015). "Regional and stage-specific effects of prospectively purified vascular cells on the adult V-SVZ neural stem cell lineage".PMID 25788671
  598. Hongyun Li et al. (2015). "Apolipoprotein D modulates amyloid pathology in APP/PS1 Alzheimer's disease mice".PMID 25784209
  599. Yi Liang et al. (2012). "Scorpion ethanol extract and valproic acid effects on hippocampal glial fibrillary acidic protein expression in a rat model of chronic-kindling epilepsy induced by lithium chloride-pilocarpine".PMID 25774184
  600. Peter Filipcik et al. (2015). "Intraneuronal accumulation of misfolded tau protein induces overexpression of Hsp27 in activated astrocytes".PMID 25772164
  601. Takashi Matsushita et al. (2015). "Diffuse and persistent blood-spinal cord barrier disruption after contusive spinal cord injury rapidly recovers following intravenous infusion of bone marrow mesenchymal stem cells".PMID 25771801
  602. Eloy Cuadrado et al. (2015). "Phenotypic variation in Aicardi-Goutières syndrome explained by cell-specific IFN-stimulated gene response and cytokine release".PMID 25769924
  603. Peter Bedner et al. (2015). "Astrocyte uncoupling as a cause of human temporal lobe epilepsy".PMID 25765328
  604. Anne Cécile Boulay et al. (2015). "Immune quiescence of the brain is set by astroglial connexin 43".PMID 25762685
  605. Eiichi Tokuda et al. (2015). "Regulation of Intracellular Copper by Induction of Endogenous Metallothioneins Improves the Disease Course in a Mouse Model of Amyotrophic Lateral Sclerosis".PMID 25761970
  606. Adam J Mellott et al. (2015). "Nonviral Reprogramming of Human Wharton's Jelly Cells Reveals Differences Between ATOH1 Homologues".PMID 25760435
  607. Geng Qiang Ling et al. (2015). "All-trans retinoic acid impairs the vasculogenic mimicry formation ability of U87 stem-like cells through promoting differentiation".PMID 25760394
  608. Anusha H Tennakoon et al. (2015). "Analysis of glial fibrillary acidic protein (GFAP)-expressing ductular cells in a rat liver cirrhosis model induced by repeated injections of thioacetamide (TAA)".PMID 25758201
  609. Mohamed M Eid et al. (2015). "Immunopathological changes in the brain of immunosuppressed mice experimentally infected with Toxocara canis".PMID 25748709
  610. Sook Hyun Chung et al. (2015). "Profiling of microRNAs involved in retinal degeneration caused by selective Müller cell ablation".PMID 25741709
  611. Marta Mellai et al. (2015). "Astroblastoma: beside being a tumor entity, an occasional phenotype of astrocytic gliomas?".PMID 25737639
  612. Mallika Valapala et al. (2015). "βA3/A1-crystallin is a critical mediator of STAT3 signaling in optic nerve astrocytes".PMID 25736717
  613. Juan Ignacio Romero et al. (2015). "Thioredoxin 1 and glutaredoxin 2 contribute to maintain the phenotype and integrity of neurons following perinatal asphyxia".PMID 25735211
  614. K Nakadate et al. (2015). "Developmental changes in the flotillin-1 expression pattern of the rat visual cortex".PMID 25732136
  615. Nurdan Ozkucur et al. (2015). "Membrane potential depolarization causes alterations in neuron arrangement and connectivity in cocultures".PMID 25722947
  616. Masahito Kawabori et al. (2015). "Triggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke".PMID 25716838
  617. Jack Griffin Campbell et al. (2015). "Neural stem/progenitor cells react to non-glial cns neoplasms".PMID 25713758
  618. Jana Trylcova et al. (2015). "Effect of cancer-associated fibroblasts on the migration of glioma cells in vitro".PMID 25712375
  619. Adam C Kaufman et al. (2015). "Fyn inhibition rescues established memory and synapse loss in Alzheimer mice".PMID 25707991
  620. Clarissa S Schitine et al. (2015). "Functional plasticity of GAT-3 in avian Müller cells is regulated by neurons via a glutamatergic input".PMID 25700791
  621. Ling Zhu et al. (2015). "Dysregulation of inter-photoreceptor retinoid-binding protein (IRBP) after induced Müller cell disruption".PMID 25692504
  622. Nàdia Villacampa et al. (2015). "Astrocyte-targeted production of IL-10 induces changes in microglial reactivity and reduces motor neuron death after facial nerve axotomy".PMID 25691003
  623. Jing Chen-Roetling et al. (2015). "Astrocyte overexpression of heme oxygenase-1 improves outcome after intracerebral hemorrhage".PMID 25690543
  624. Hong Xu et al. (2014). "Tau silencing by siRNA in the P301S mouse model of tauopathy".PMID 25687501
  625. Janahan Arulmoli et al. (2015). "Static stretch affects neural stem cell differentiation in an extracellular matrix-dependent manner".PMID 25686615
  626. Angélica Maria Sabogal-Guáqueta et al. (2015). "The flavonoid quercetin ameliorates Alzheimer's disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer's disease model mice".PMID 25666032
  627. D Porquet et al. (2015). "Amyloid and tau pathology of familial Alzheimer's disease APP/PS1 mouse model in a senescence phenotype background (SAMP8)".PMID 25663420
  628. Cristine Betzer et al. (2015). "Identification of synaptosomal proteins binding to monomeric and oligomeric α-synuclein".PMID 25659148
  629. Hermann C Altmeppen et al. (2015). "The sheddase ADAM10 is a potent modulator of prion disease".PMID 25654651
  630. Jun Nagai et al. (2015). "Crmp4 deletion promotes recovery from spinal cord injury by neuroprotection and limited scar formation".PMID 25652774
  631. Bensheng Ju et al. (2015). "Oncogenic KRAS promotes malignant brain tumors in zebrafish".PMID 25644510
  632. Alison Spilsbury et al. (2015). "The role of telomerase protein TERT in Alzheimer's disease and in tau-related pathology in vitro".PMID 25632141
  633. Claudia Cantoni et al. (2015). "TREM2 regulates microglial cell activation in response to demyelination in vivo".PMID 25631124
  634. Carlo Condello et al. (2015). "Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques".PMID 25630253
  635. Wei Li et al. (2015). "Systemic and cerebral iron homeostasis in ferritin knock-out mice".PMID 25629408
  636. Yuki Oka et al. (2015). "Thirst driving and suppressing signals encoded by distinct neural populations in the brain".PMID 25624099
  637. Anna G Orr et al. (2015). "Astrocytic adenosine receptor A2A and Gs-coupled signaling regulate memory".PMID 25622143
  638. Miranda Y Fong et al. (2015). "Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis".PMID 25621950
  639. Tao Xue et al. (2015). "Exposure to acoustic stimuli promotes the development and differentiation of neural stem cells from the cochlear nuclei through the clusterin pathway".PMID 25605314
  640. H Pantazopoulos et al. (2015). "Aggrecan and chondroitin-6-sulfate abnormalities in schizophrenia and bipolar disorder: a postmortem study on the amygdala".PMID 25603412
  641. Khalil Bouyakdan et al. (2015). "A novel role for central ACBP/DBI as a regulator of long-chain fatty acid metabolism in astrocytes".PMID 25598214
  642. Anthony L Petraglia et al. (2014). "The pathophysiology underlying repetitive mild traumatic brain injury in a novel mouse model of chronic traumatic encephalopathy".PMID 25593768
  643. Yasuhiko Kizuka et al. (2015). "An aberrant sugar modification of BACE1 blocks its lysosomal targeting in Alzheimer's disease".PMID 25592972
  644. Matthew J Benskey et al. (2015). "Targeted gene delivery to the enteric nervous system using AAV: a comparison across serotypes and capsid mutants".PMID 25592336
  645. Daisuke Nakayama et al. (2015). "Long-delayed expression of the immediate early gene Arc/Arg3.1 refines neuronal circuits to perpetuate fear memory".PMID 25589774
  646. Shailendra Kumar Maurya et al. (2016). "Cypermethrin Stimulates GSK3β-Dependent Aβ and p-tau Proteins and Cognitive Loss in Young Rats: Reduced HB-EGF Signaling and Downstream Neuroinflammation as Critical Regulators".PMID 25575682
  647. Patrick M Long et al. (2015). "Acetate supplementation as a means of inducing glioblastoma stem-like cell growth arrest".PMID 25573156
  648. S Liu et al. (2015). "Disrupted autophagy after spinal cord injury is associated with ER stress and neuronal cell death".PMID 25569099
  649. Anupama Sathyamurthy et al. (2015). "ERBB3-mediated regulation of Bergmann glia proliferation in cerebellar lamination".PMID 25564653
  650. Kentaro Matsuzaki et al. (2015). "Aging attenuates acquired heat tolerance and hypothalamic neurogenesis in rats".PMID 25556765
  651. Fanny Ehret et al. (2015). "Mouse model of CADASIL reveals novel insights into Notch3 function in adult hippocampal neurogenesis".PMID 25555543
  652. Angela R Dixon et al. (2015). "Morphometric assessment of toxicant induced neuronal degeneration in full and restricted contact co-cultures of embryonic cortical rat neurons and astrocytes: using m-Dinitrobezene as a model neurotoxicant".PMID 25553915
  653. Han Tian et al. (2014). "Identification of protein network alterations upon retinal ischemia-reperfusion injury by quantitative proteomics using a Rattus norvegicus model".PMID 25549249
  654. Charlotte B Jendresen et al. (2015). "Overexpression of heparanase lowers the amyloid burden in amyloid-β precursor protein transgenic mice".PMID 25548284
  655. Andrew D Gaudet et al. (2015). "Galectin-1 in injured rat spinal cord: implications for macrophage phagocytosis and neural repair".PMID 25542813
  656. Lina Gällentoft et al. (2015). "Size-dependent long-term tissue response to biostable nanowires in the brain".PMID 25542805
  657. Edmund R Hollis et al. (2015). "A novel and robust conditioning lesion induced by ethidium bromide".PMID 25541322
  658. Pei Sen Yao et al. (2015). "Cell-density-dependent manifestation of partial characteristics for neuronal precursors in a newly established human gliosarcoma cell line".PMID 25539862
  659. Hanadie Yousef et al. (2015). "Age-Associated Increase in BMP Signaling Inhibits Hippocampal Neurogenesis".PMID 25538007
  660. Syoichiro Kono et al. (2015). "Neurovascular protection by telmisartan via reducing neuroinflammation in stroke-resistant spontaneously hypertensive rat brain after ischemic stroke".PMID 25534368
  661. Rebecca M Hill et al. (2015). "Combined MYC and P53 defects emerge at medulloblastoma relapse and define rapidly progressive, therapeutically targetable disease".PMID 25533335
  662. Chiara Ippolito et al. (2015). "An integrated assessment of histopathological changes of the enteric neuromuscular compartment in experimental colitis".PMID 25521239
  663. Carthur K Wan et al. (2013). "Spatiotemporal changes in Cx30 and Cx43 expression during neuronal differentiation of P19 EC and NT2/D1 cells".PMID 25505515
  664. Elena Caminos et al. (2015). "Relationship between rat retinal degeneration and potassium channel KCNQ5 expression".PMID 25499209
  665. Ying Li et al. (2015). "Toll-like receptor 4 enhancement of non-NMDA synaptic currents increases dentate excitability after brain injury".PMID 25497689
  666. Chika Okusa et al. (2014). "Subplate in a rat model of preterm hypoxia-ischemia".PMID 25493282
  667. Yunjiao Zhu et al. (2015). "Fibronectin Matrix Assembly after Spinal Cord Injury".PMID 25492623
  668. Friederike Knerlich-Lukoschus et al. (2015). "Impact of chemokines on the properties of spinal cord-derived neural progenitor cells in a rat spinal cord lesion model".PMID 25491360
  669. Francesca Maltecca et al. (2015). "Purkinje neuron Ca2+ influx reduction rescues ataxia in SCA28 model".PMID 25485680
  670. Bianca N S P Medina et al. (2015). "3-acetylpyridine-induced degeneration in the adult ascidian neural complex: Reactive and regenerative changes in glia and blood cells".PMID 25484282
  671. Chinmoy Sarkar et al. (2014). "Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury".PMID 25484084
  672. Jun Bin Yin et al. (2014). "Neurochemical properties of BDNF-containing neurons projecting to rostral ventromedial medulla in the ventrolateral periaqueductal gray".PMID 25477786
  673. Zeinab Mohamed Kamel Ismail et al. (2014). "Enhancement of Neural Stem Cells after Induction of Depression in Male Albino Rats (A histological & Immunohistochemical Study)".PMID 25473444
  674. Courtney Bricker-Anthony et al. (2014). "Exacerbation of blast-induced ocular trauma by an immune response".PMID 25472427
  675. Wanpeng Cui et al. (2014). "Glial dysfunction in the mouse habenula causes depressive-like behaviors and sleep disturbance".PMID 25471567
  676. Marietta Zille et al. (2014). "Influence of pigment epithelium-derived factor on outcome after striatal cerebral ischemia in the mouse".PMID 25470280
  677. Steven A Johnstone et al. (2015). "Comparison of human olfactory and skeletal MSCs using osteogenic nanotopography to demonstrate bone-specific bioactivity of the surfaces".PMID 25463488
  678. Rachel C Lazarus et al. (2015). "Protein carbonylation after traumatic brain injury: cell specificity, regional susceptibility, and gender differences".PMID 25462645
  679. Y Zhu et al. (2015). "Hematogenous macrophage depletion reduces the fibrotic scar and increases axonal growth after spinal cord injury".PMID 25461258
  680. M Ceber et al. (2015). "Changes in expression of Slit1 and its receptor Robo2 in trigeminal ganglion and inferior alveolar nerve following inferior alveolar nerve axotomy in adult rats: a pilot study".PMID 25457824
  681. Elisabetta Lauretti et al. (2015). "Modulation of AD neuropathology and memory impairments by the isoprostane F2α is mediated by the thromboxane receptor".PMID 25457549
  682. B Paniagua-Torija et al. (2015). "Spinal cord injury induces a long-lasting upregulation of interleukin-1β in astrocytes around the central canal".PMID 25453765
  683. Beatriz Almolda et al. (2015). "Alterations in microglial phenotype and hippocampal neuronal function in transgenic mice with astrocyte-targeted production of interleukin-10".PMID 25449577
  684. Lindsay A Hohsfield et al. (2014). "Vascular pathology of 20-month-old hypercholesterolemia mice in comparison to triple-transgenic and APPSwDI Alzheimer's disease mouse models".PMID 25447943
  685. Eva Vergaño-Vera et al. (2015). "Nurr1 blocks the mitogenic effect of FGF-2 and EGF, inducing olfactory bulb neural stem cells to adopt dopaminergic and dopaminergic-GABAergic neuronal phenotypes".PMID 25447275
  686. Yuri Inose et al. (2015). "Activated microglia in ischemic stroke penumbra upregulate MCP-1 and CCR2 expression in response to lysophosphatidylcholine derived from adjacent neurons and astrocytes".PMID 25443158
  687. Jeremy Petravicz et al. (2014). "Astrocyte IP3R2-dependent Ca(2+) signaling is not a major modulator of neuronal pathways governing behavior".PMID 25429263
  688. Jiwon Ryu et al. (2014). "The problem of axonal injury in the brains of veterans with histories of blast exposure".PMID 25422066
  689. Ahmed Sharaf et al. (2015). "Localization of reelin signaling pathway components in murine midbrain and striatum".PMID 25418135
  690. Chun Hu Wu et al. (2014). "Post-injury treatment with 7,8-dihydroxyflavone, a TrkB receptor agonist, protects against experimental traumatic brain injury via PI3K/Akt signaling".PMID 25415296
  691. Eduardo Gascon et al. (2014). "Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia".PMID 25401692
  692. David Macías et al. (2014). "Deletion of the von Hippel-Lindau gene causes sympathoadrenal cell death and impairs chemoreceptor-mediated adaptation to hypoxia".PMID 25385837
  693. Jian Zhang et al. (2014). "Synaptic and cognitive improvements by inhibition of 2-AG metabolism are through upregulation of microRNA-188-3p in a mouse model of Alzheimer's disease".PMID 25378159
  694. María José Pérez-Alvarez et al. (2015). "Estradiol and Progesterone Administration After pMCAO Stimulates the Neurological Recovery and Reduces the Detrimental Effect of Ischemia Mainly in Hippocampus".PMID 25377795
  695. Sándor Nardai et al. (2015). "Selegiline promotes NOTCH-JAGGED signaling in astrocytes of the peri-infarct region and improves the functional integrity of the neurovascular unit in a rat model of focal ischemia".PMID 25361607
  696. Xiaohua Deng et al. (2014). "Lipolysaccharide-Induced Neuroinflammation Is Associated with Alzheimer-Like Amyloidogenic Axonal Pathology and Dendritic Degeneration in Rats".PMID 25360394
  697. Ver nica Fuentes-Santamaría et al. (2014). "Glia-related mechanisms in the anteroventral cochlear nucleus of the adult rat in response to unilateral conductive hearing loss".PMID 25352772
  698. C Levy et al. (2015). "Cell-specific and developmental expression of lectican-cleaving proteases in mouse hippocampus and neocortex".PMID 25349050
  699. Jean Ha Baek et al. (2015). "Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior".PMID 25343989
  700. Yee Hsieh Evelyn Heng et al. (2015). "NFIX Regulates Proliferation and Migration Within the Murine SVZ Neurogenic Niche".PMID 25331604
  701. Anja R Scholze et al. (2014). "BMP signaling in astrocytes downregulates EGFR to modulate survival and maturation".PMID 25330173
  702. Victor Túlio Ribeiro-Resende et al. (2014). "Mice lacking GD3 synthase display morphological abnormalities in the sciatic nerve and neuronal disturbances during peripheral nerve regeneration".PMID 25330147
  703. Carmen Falcone et al. (2015). "Emx2 expression levels in NSCs modulate astrogenesis rates by regulating EgfR and Fgf9".PMID 25327963
  704. Dennis Y Chuang et al. (2014). "Dietary Sutherlandia and elderberry mitigate cerebral ischemia-induced neuronal damage and attenuate p47phox and phospho-ERK1/2 expression in microglial cells".PMID 25324465
  705. Oswald Steward et al. (2014). "Characterization of ectopic colonies that form in widespread areas of the nervous system with neural stem cell transplants into the site of a severe spinal cord injury".PMID 25319698
  706. Ilaria Mirabile et al. (2015). "Identification of clinical target areas in the brainstem of prion-infected mice".PMID 25311251
  707. Nikki A McLean et al. (2014). "Delayed nerve stimulation promotes axon-protective neurofilament phosphorylation, accelerates immune cell clearance and enhances remyelination in vivo in focally demyelinated nerves".PMID 25310564
  708. Gregory B Stanton et al. (2015). "Cytogenesis in the adult monkey motor cortex: perivascular NG2 cells are the major adult born cell type".PMID 25308320
  709. Matthew C Tate et al. (2015). "Postnatal growth of the human pons: a morphometric and immunohistochemical analysis".PMID 25307966
  710. Aleksandra Rutkowska et al. (2015). "EBI2 regulates intracellular signaling and migration in human astrocyte".PMID 25297897
  711. Leticia Forny-Germano et al. (2014). "Alzheimer's disease-like pathology induced by amyloid-β oligomers in nonhuman primates".PMID 25297091
  712. Anushruti Ashok et al. (2015). "Exposure to As-, Cd-, and Pb-mixture induces Aβ, amyloidogenic APP processing and cognitive impairments via oxidative stress-dependent neuroinflammation in young rats".PMID 25288670
  713. Masayuki Kaneko et al. (2015). "Zinc transporters ZnT3 and ZnT6 are downregulated in the spinal cords of patients with sporadic amyotrophic lateral sclerosis".PMID 25284286
  714. Sylwia Libard et al. (2014). "Human cytomegalovirus tegument protein pp65 is detected in all intra- and extra-axial brain tumours independent of the tumour type or grade".PMID 25268364
  715. P S Rajput et al. (2014). "Protease activated receptor-1 mediates cytotoxicity during ischemia using in vivo and in vitro models".PMID 25261684
  716. D Pamies et al. (2014). "Silencing of PNPLA6, the neuropathy target esterase (NTE) codifying gene, alters neurodifferentiation of human embryonal carcinoma stem cells (NT2)".PMID 25255935
  717. Jie Zhang et al. (2014). "Myelin basic protein induces neuron-specific toxicity by directly damaging the neuronal plasma membrane".PMID 25255088
  718. Subramanian Dharmarajan et al. (2014). "Bone morphogenetic protein 7 regulates reactive gliosis in retinal astrocytes and Müller glia".PMID 25253985
  719. Maria Abildgaard Steffensen et al. (2014). "Suppressors of cytokine signaling 1 and 3 are upregulated in brain resident cells in response to virus-induced inflammation of the central nervous system via at least two distinctive pathways".PMID 25253351
  720. A F Bray et al. (2014). "Human dental pulp stem cells respond to cues from the rat retina and differentiate to express the retinal neuronal marker rhodopsin".PMID 25242642
  721. Hélène Perreten Lambert et al. (2014). "Control of mitochondrial pH by uncoupling protein 4 in astrocytes promotes neuronal survival".PMID 25237189
  722. D Young et al. (2014). "Adenosine kinase, glutamine synthetase and EAAT2 as gene therapy targets for temporal lobe epilepsy".PMID 25231174
  723. Lauren Broom et al. (2015). "Increased neurotrophic factor levels in ventral mesencephalic cultures do not explain the protective effect of osteopontin and the synthetic 15-mer RGD domain against MPP+ toxicity".PMID 25218309
  724. Hans G Novrup et al. (2014). "Central but not systemic administration of XPro1595 is therapeutic following moderate spinal cord injury in mice".PMID 25204558
  725. Chung Hsing Chou et al. (2014). "In vitro modeling of the neurovascular environment by coculturing adult human brain endothelial cells with human neural stem cells".PMID 25187991
  726. Lih Fen Lue et al. (2015). "TREM2 Protein Expression Changes Correlate with Alzheimer's Disease Neurodegenerative Pathologies in Post-Mortem Temporal Cortices".PMID 25186950
  727. Hyun Sun Lee et al. (2015). "Priming Wharton's jelly-derived mesenchymal stromal/stem cells with ROCK inhibitor improves recovery in an intracerebral hemorrhage model".PMID 25185536
  728. Karl Holmberg Olausson et al. (2014). "Prominin-1 (CD133) defines both stem and non-stem cell populations in CNS development and gliomas".PMID 25184684
  729. G Berdugo-Vega et al. (2014). "GFAP immunoreactivity within the rat nucleus ambiguus after laryngeal nerve injury".PMID 25181319
  730. Iriana Galan-Arriero et al. (2014). "Oral administration of the p38α MAPK inhibitor, UR13870, inhibits affective pain behavior after spinal cord injury".PMID 25180015
  731. Sandra M Garraway et al. (2014). "Peripheral noxious stimulation reduces withdrawal threshold to mechanical stimuli after spinal cord injury: role of tumor necrosis factor alpha and apoptosis".PMID 25180012
  732. Min Zou et al. (2015). "Selective neuronal lineages derived from Dll4-expressing progenitors/precursors in the retina and spinal cord".PMID 25179941
  733. Clara Quintas et al. (2014). "Microglia P2Y₆ receptors mediate nitric oxide release and astrocyte apoptosis".PMID 25178395
  734. Donna L Gruol et al. (2014). "Increased astrocyte expression of IL-6 or CCL2 in transgenic mice alters levels of hippocampal and cerebellar proteins".PMID 25177271
  735. Jelle Praet et al. (2014). "Histological characterization and quantification of cellular events following neural and fibroblast(-like) stem cell grafting in healthy and demyelinated CNS tissue".PMID 25173390
  736. Hui qun Fu et al. (2014). "Prolonged neuroinflammation after lipopolysaccharide exposure in aged rats".PMID 25170959
  737. Matthew T J Lowe et al. (2015). "Distribution of the creatine transporter throughout the human brain reveals a spectrum of creatine transporter immunoreactivity".PMID 25159005
  738. Sara Marinelli et al. (2015). "Effects of age-related loss of P/Q-type calcium channels in a mice model of peripheral nerve injury".PMID 25150573
  739. Ying Zang et al. (2015). "Calpain-2 contributes to neuropathic pain following motor nerve injury via up-regulating interleukin-6 in DRG neurons".PMID 25150005
  740. Vanessa Ginet et al. (2014). "Dying neurons in thalamus of asphyxiated term newborns and rats are autophagic".PMID 25146903
  741. Lester D R Thompson et al. (2015). "Canalicular adenoma: a clinicopathologic and immunohistochemical analysis of 67 cases with a review of the literature".PMID 25141970
  742. Tilman Schneider-Hohendorf et al. (2014). "VLA-4 blockade promotes differential routes into human CNS involving PSGL-1 rolling of T cells and MCAM-adhesion of TH17 cells".PMID 25135296
  743. Monica J Chau et al. (2014). "iPSC Transplantation increases regeneration and functional recovery after ischemic stroke in neonatal rats".PMID 25132189
  744. Sofya Abazyan et al. (2014). "Mutant disrupted-in-schizophrenia 1 in astrocytes: focus on glutamate metabolism".PMID 25131692
  745. Tareck Rharass et al. (2014). "Ca2+-mediated mitochondrial reactive oxygen species metabolism augments Wnt/β-catenin pathway activation to facilitate cell differentiation".PMID 25124032
  746. T Pereira et al. (2014). "Promoting nerve regeneration in a neurotmesis rat model using poly(DL-lactide-ε-caprolactone) membranes and mesenchymal stem cells from the Wharton's jelly: in vitro and in vivo analysis".PMID 25121094
  747. Weiyong Shen et al. (2014). "Systemic administration of erythropoietin inhibits retinopathy in RCS rats".PMID 25119659
  748. Gloria G Curto et al. (2014). "Pax6 is essential for the maintenance and multi-lineage differentiation of neural stem cells, and for neuronal incorporation into the adult olfactory bulb".PMID 25117830
  749. Mark Yarchoan et al. (2014). "Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer's disease and tauopathies".PMID 25107476
  750. Balendu Shekhar Jha et al. (2015). "Motor neuron differentiation from pluripotent stem cells and other intermediate proliferative precursors that can be discriminated by lineage specific reporters".PMID 25091426
  751. Sebastien Milesi et al. (2014). "Redistribution of PDGFRβ cells and NG2DsRed pericytes at the cerebrovasculature after status epilepticus".PMID 25088711
  752. Camilla Lööv et al. (2015). "Extracellular ezrin: a novel biomarker for traumatic brain injury".PMID 25087457
  753. Jingqi Yan et al. (2014). "Obesity- and aging-induced excess of central transforming growth factor-β potentiates diabetic development via an RNA stress response".PMID 25086906
  754. Laura de Bock et al. (2014). "Sperm-associated antigen 16 is a novel target of the humoral autoimmune response in multiple sclerosis".PMID 25086173
  755. Satoshi Kawase et al. (2014). "Regulatory factor X transcription factors control Musashi1 transcription in mouse neural stem/progenitor cells".PMID 25058468
  756. Kentaro Hayakawa et al. (2014). "Lipopolysaccharide preconditioning facilitates M2 activation of resident microglia after spinal cord injury".PMID 25044014
  757. Shelley L Forrest et al. (2014). "Characterization of axons expressing the artemin receptor in the female rat urinary bladder: a comparison with other major neuronal populations".PMID 25043933
  758. Katharina Martina Janice Syhr et al. (2014). "Lack of effect of a P2Y6 receptor antagonist on neuropathic pain behavior in mice".PMID 25042778
  759. Sandrine Joly et al. (2014). "The Ephrin receptor EphA4 restricts axonal sprouting and enhances branching in the injured mouse optic nerve".PMID 25041248
  760. P Makantasi et al. (2014). "Estradiol treatment decreases cell proliferation in the neurogenic zones of adult female zebrafish (Danio rerio) brain".PMID 25034512
  761. Amita Vaidya et al. (2014). "Knock-in reporter mice demonstrate that DNA repair by non-homologous end joining declines with age".PMID 25033455
  762. Xian Dong Meng et al. (2014). "Astrocytic expression of cannabinoid type 1 receptor in rat and human sclerotic hippocampi".PMID 25031702
  763. Qing Bai et al. (2014). "Different mechanisms regulate expression of zebrafish myelin protein zero (P0) in myelinating oligodendrocytes and its induction following axonal injury".PMID 25028515
  764. J A D Dela Cruz et al. (2014). "Differential distribution of hypoxia-inducible factor 1-beta (ARNT or ARNT2) in mouse substantia nigra and ventral tegmental area".PMID 25017895
  765. Ema F Torrado et al. (2014). "Directing mouse embryonic neurosphere differentiation toward an enriched neuronal population".PMID 25016067
  766. Giulia E Tyzack et al. (2014). "Astrocyte response to motor neuron injury promotes structural synaptic plasticity via STAT3-regulated TSP-1 expression".PMID 25014177
  767. Spencer U McKinstry et al. (2014). "Huntingtin is required for normal excitatory synapse development in cortical and striatal circuits".PMID 25009276
  768. Patrick Aldrin-Kirk et al. (2014). "Novel AAV-based rat model of forebrain synucleinopathy shows extensive pathologies and progressive loss of cholinergic interneurons".PMID 24999658
  769. T Ho et al. (2014). "Immunolocalization of the P2X4 receptor on neurons and glia in the mammalian retina".PMID 24997270
  770. Courtney Bricker-Anthony et al. (2014). "Molecular changes and vision loss in a mouse model of closed-globe blast trauma".PMID 24994864
  771. Christian Hagel et al. (2015). "Upregulation of Shiga toxin receptor CD77/Gb3 and interleukin-1β expression in the brain of EHEC patients with hemolytic uremic syndrome and neurologic symptoms".PMID 24989888
  772. Ranjula Wijayatunge et al. (2014). "The histone lysine demethylase Kdm6b is required for activity-dependent preconditioning of hippocampal neuronal survival".PMID 24983519
  773. Nan Fu Chen et al. (2014). "Flexibilide obtained from cultured soft coral has anti-neuroinflammatory and analgesic effects through the upregulation of spinal transforming growth factor-β1 in neuropathic rats".PMID 24979268
  774. Megan J Dowie et al. (2014). "Cannabinoid receptor CB2 is expressed on vascular cells, but not astroglial cells in the post-mortem human Huntington's disease brain".PMID 24978314
  775. Sarah Saab et al. (2014). "Involvement of plasmalogens in post-natal retinal vascular development".PMID 24963632
  776. Hanan Dawood Yassa et al. (2014). "Age-related changes in the optic nerve of Sprague-Dawley rats: an ultrastructural and immunohistochemical study".PMID 24958340
  777. Hans Georg König et al. (2014). "The BCL-2 family protein Bid is critical for pro-inflammatory signaling in astrocytes".PMID 24956542
  778. Richard S Sandstrom et al. (2014). "Epigenetic regulation by chromatin activation mark H3K4me3 in primate progenitor cells within adult neurogenic niche".PMID 24947819
  779. Klaudia Dócs et al. (2015). "Selective axonal and glial distribution of monoacylglycerol lipase immunoreactivity in the superficial spinal dorsal horn of rodents".PMID 24942136
  780. Hans Christian Helms et al. (2014). "An electrically tight in vitro blood-brain barrier model displays net brain-to-blood efflux of substrates for the ABC transporters, P-gp, Bcrp and Mrp-1".PMID 24934296
  781. Navneet A Vasistha et al. (2015). "Cortical and Clonal Contribution of Tbr2 Expressing Progenitors in the Developing Mouse Brain".PMID 24927931
  782. Zheng Wu et al. (2014). "Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzheimer's [corrected] disease model".PMID 24923909
  783. Lin Qiang Huang et al. (2014). "Hypertonic saline alleviates cerebral edema by inhibiting microglia-derived TNF-α and IL-1β-induced Na-K-Cl Cotransporter up-regulation".PMID 24916922
  784. Petra Fallier-Becker et al. (2014). "Onset of aquaporin-4 expression in the developing mouse brain".PMID 24915007
  785. Chikako Inada et al. (2014). "Possible involvement of VEGF signaling system in rescuing effect of endogenous acetylcholine on NMDA-induced long-lasting hippocampal cell damage in organotypic hippocampal slice cultures".PMID 24911952
  786. Claire M Bradford et al. (2014). "Localisation of citrullinated proteins in normal appearing white matter and lesions in the central nervous system in multiple sclerosis".PMID 24907905
  787. S Sajjan et al. (2014). "Up-regulation of matrix metallopeptidase 12 in motor neurons undergoing synaptic stripping".PMID 24907602
  788. Binnur Eroglu et al. (2014). "Therapeutic inducers of the HSP70/HSP110 protect mice against traumatic brain injury".PMID 24903326
  789. Joshua L Allen et al. (2014). "Early postnatal exposure to ultrafine particulate matter air pollution: persistent ventriculomegaly, neurochemical disruption, and glial activation preferentially in male mice".PMID 24901756
  790. Marisa Karow et al. (2014). "Lineage-reprogramming of pericyte-derived cells of the adult human brain into induced neurons".PMID 24893711
  791. Paulino Barragán-Iglesias et al. (2014). "Role of spinal P2Y6 and P2Y11 receptors in neuropathic pain in rats: possible involvement of glial cells".PMID 24886406
  792. Patricia Paez-Gonzalez et al. (2014). "Identification of distinct ChAT⁺ neurons and activity-dependent control of postnatal SVZ neurogenesis".PMID 24880216
  793. Zhichuan Zhu et al. (2014). "Protein tyrosine phosphatase receptor U (PTPRU) is required for glioma growth and motility".PMID 24876153
  794. Angel A Alvarez et al. (2015). "The effects of histone deacetylase inhibitors on glioblastoma-derived stem cells".PMID 24874578
  795. Egle Cekanaviciute et al. (2014). "Astrocytic TGF-β signaling limits inflammation and reduces neuronal damage during central nervous system Toxoplasma infection".PMID 24860191
  796. Michel Kielar et al. (2014). "Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human".PMID 24859200
  797. Sang Jae Cho et al. (2014). "Anoctamin 1 expression in the mouse auditory brainstem".PMID 24853671
  798. Christine K Hamilton et al. (2014). "Early expression of aromatase and the membrane estrogen receptor GPER in neuromasts reveals a role for estrogens in the development of the frog lateral line system".PMID 24852348
  799. Ranjana Singh et al. (2014). "Calpain 5 is highly expressed in the central nervous system (CNS), carries dual nuclear localization signals, and is associated with nuclear promyelocytic leukemia protein bodies".PMID 24838245
  800. Michal K Oklinski et al. (2014). "Immunolocalization of Water Channel Proteins AQP1 and AQP4 in Rat Spinal Cord".PMID 24828513
  801. Jill F Betts et al. (2014). "D-amino acid oxidase is expressed in the ventral tegmental area and modulates cortical dopamine".PMID 24822045
  802. Ana J Chucair-Elliott et al. (2014). "Microglia-induced IL-6 protects against neuronal loss following HSV-1 infection of neural progenitor cells".PMID 24807365
  803. Francesca Cicchetti et al. (2014). "Mutant huntingtin is present in neuronal grafts in Huntington disease patients".PMID 24798518
  804. Rachel E Bennett et al. (2014). "Acute reduction of microglia does not alter axonal injury in a mouse model of repetitive concussive traumatic brain injury".PMID 24797413
  805. Yuhong Fu et al. (2014). "Age-dependent alterations of the hippocampal cell composition and proliferative potential in the hAβPPSwInd-J20 mouse".PMID 24787919
  806. Victoria M Ho et al. (2014). "GluA2 mRNA distribution and regulation by miR-124 in hippocampal neurons".PMID 24784359
  807. Lucas Schirmer et al. (2014). "Differential loss of KIR4.1 immunoreactivity in multiple sclerosis lesions".PMID 24777949
  808. Donna L Gruol et al. (2014). "CCL2-ethanol interactions and hippocampal synaptic protein expression in a transgenic mouse model".PMID 24772072
  809. Liana Roberts Stein et al. (2014). "Expression of Nampt in hippocampal and cortical excitatory neurons is critical for cognitive function".PMID 24760840
  810. Kelli G Sharp et al. (2014). "A re-assessment of long distance growth and connectivity of neural stem cells after severe spinal cord injury".PMID 24747827
  811. Stefano Farioli-Vecchioli et al. (2014). "Tis21 is required for adult neurogenesis in the subventricular zone and for olfactory behavior regulating cyclins, BMP4, Hes1/5 and Ids".PMID 24744701
  812. Egle Cekanaviciute et al. (2014). "Astrocytic transforming growth factor-beta signaling reduces subacute neuroinflammation after stroke in mice".PMID 24733756
  813. Hiroaki Okuda et al. (2014). "OASIS regulates chondroitin 6-O-sulfotransferase 1 gene transcription in the injured adult mouse cerebral cortex".PMID 24716865
  814. Hal X Nguyen et al. (2014). "Induction of early neural precursors and derivation of tripotent neural stem cells from human pluripotent stem cells under xeno-free conditions".PMID 24715528
  815. Victor Tapias et al. (2014). "A rapid and sensitive automated image-based approach for in vitro and in vivo characterization of cell morphology and quantification of cell number and neurite architecture".PMID 24692056
  816. S Camós et al. (2014). "The high-mobility group I-Y transcription factor is involved in cerebral ischemia and modulates the expression of angiogenic proteins".PMID 24680881
  817. Anna Eskilsson et al. (2014). "Distribution of microsomal prostaglandin E synthase-1 in the mouse brain".PMID 24668417
  818. Simone Codeluppi et al. (2014). "Interleukin-6 secretion by astrocytes is dynamically regulated by PI3K-mTOR-calcium signaling".PMID 24667246
  819. Adriana Alarcón-Aguilar et al. (2014). "Primary cultured astrocytes from old rats are capable to activate the Nrf2 response against MPP+ toxicity after tBHQ pretreatment".PMID 24650792
  820. Marta V Hamity et al. (2014). "Increased neuronal expression of neurokinin-1 receptor and stimulus-evoked internalization of the receptor in the rostral ventromedial medulla of the rat after peripheral inflammatory injury".PMID 24639151
  821. Kirstan A Vessey et al. (2014). "Adenosine triphosphate-induced photoreceptor death and retinal remodeling in rats".PMID 24639102
  822. Clara Alfaro-Cervello et al. (2014). "The adult macaque spinal cord central canal zone contains proliferative cells and closely resembles the human".PMID 24638933
  823. Lin Cheng et al. (2014). "Generation of neural progenitor cells by chemical cocktails and hypoxia".PMID 24638034
  824. Ngoc B Lu-Nguyen et al. (2014). "Transgenic expression of human glial cell line-derived neurotrophic factor from integration-deficient lentiviral vectors is neuroprotective in a rodent model of Parkinson's disease".PMID 24635742
  825. Cornelia Schuh et al. (2014). "Oxidative tissue injury in multiple sclerosis is only partly reflected in experimental disease models".PMID 24622774
  826. Min Xu et al. (2014). "Inhibition of cysteine cathepsin B and L activation in astrocytes contributes to neuroprotection against cerebral ischemia via blocking the tBid-mitochondrial apoptotic signaling pathway".PMID 24616078
  827. K Hultman et al. (2014). "Plasmin deficiency leads to fibrin accumulation and a compromised inflammatory response in the mouse brain".PMID 24612416
  828. Svitlana Garbuzova-Davis et al. (2014). "Compromised blood-brain barrier competence in remote brain areas in ischemic stroke rats at the chronic stage".PMID 24610730
  829. Dhruv Sareen et al. (2014). "Human induced pluripotent stem cells are a novel source of neural progenitor cells (iNPCs) that migrate and integrate in the rodent spinal cord".PMID 24610630
  830. K H Tse et al. (2014). "Lipopolysaccharide differentially modulates expression of cytokines and cyclooxygenases in dorsal root ganglion cells via Toll-like receptor-4 dependent pathways".PMID 24607321
  831. Erik M Deboer et al. (2014). "Prenatal deletion of the RNA-binding protein HuD disrupts postnatal cortical circuit maturation and behavior".PMID 24599466
  832. Ingrid R Niesman et al. (2014). "Traumatic brain injury enhances neuroinflammation and lesion volume in caveolin deficient mice".PMID 24593993
  833. Ulrike Pannasch et al. (2014). "Connexin 30 sets synaptic strength by controlling astroglial synapse invasion".PMID 24584052
  834. João Nuno Alves et al. (2014). "AAV vector-mediated secretion of chondroitinase provides a sensitive tracer for axonal arborisations".PMID 24583077
  835. Laura García-Corzo et al. (2014). "Ubiquinol-10 ameliorates mitochondrial encephalopathy associated with CoQ deficiency".PMID 24576561
  836. Marzia Toscano et al. (2014). "Correlative study of squash smear cytology with histopathology in a rare case of anaplastic giant cell ependymoma of the pineal".PMID 24570332
  837. Chandrakumar Balaratnasingam et al. (2014). "Comparative quantitative study of astrocytes and capillary distribution in optic nerve laminar regions".PMID 24560677
  838. H Levy Barazany et al. (2014). "Brain MRI of nasal MOG therapeutic effect in relapsing-progressive EAE".PMID 24552689
  839. Ali Fathi et al. (2014). "Quantitative proteomics analysis highlights the role of redox hemostasis and energy metabolism in human embryonic stem cell differentiation to neural cells".PMID 24530625
  840. Ryota Haba et al. (2014). "Central CRTH2, a second prostaglandin D2 receptor, mediates emotional impairment in the lipopolysaccharide and tumor-induced sickness behavior model".PMID 24523542
  841. Yara Dadalti Fragoso et al. (2015). "Expression in the human brain of retinoic acid induced 1, a protein associated with neurobehavioural disorders".PMID 24519454
  842. Fuyi Chen et al. (2014). "Contribution of tumor heterogeneity in a new animal model of CNS tumors".PMID 24501428
  843. Jamie McQueen et al. (2014). "Restoration of oligodendrocyte pools in a mouse model of chronic cerebral hypoperfusion".PMID 24498301
  844. YiYu Deng et al. (2014). "Astrocyte-derived proinflammatory cytokines induce hypomyelination in the periventricular white matter in the hypoxic neonatal brain".PMID 24498101
  845. Rocío Talaverón et al. (2014). "Implanted neural progenitor cells regulate glial reaction to brain injury and establish gap junctions with host glial cells".PMID 24481572
  846. Pratap Karki et al. (2014). "Yin Yang 1 is a repressor of glutamate transporter EAAT2, and it mediates manganese-induced decrease of EAAT2 expression in astrocytes".PMID 24469401
  847. Kelsey A Potter et al. (2014). "Curcumin-releasing mechanically adaptive intracortical implants improve the proximal neuronal density and blood-brain barrier stability".PMID 24468582
  848. Kunie Hagiwara et al. (2014). "Molecular and cellular features of murine craniofacial and trunk neural crest cells as stem cell-like cells".PMID 24465393
  849. Istvan Bodi et al. (2014). "Two cases of multinodular and vacuolating neuronal tumour".PMID 24444358
  850. Zengping Liu et al. (2014). "Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography".PMID 24439407
  851. Darrick T Balu et al. (2014). "D-serine and serine racemase are localized to neurons in the adult mouse and human forebrain".PMID 24436034
  852. Vivian P Chou et al. (2014). "Gene-environment interaction models to unmask susceptibility mechanisms in Parkinson's disease".PMID 24430802
  853. Matthew C Havrda et al. (2014). "Id2 mediates oligodendrocyte precursor cell maturation arrest and is tumorigenic in a PDGF-rich microenvironment".PMID 24425046
  854. Lluis Samaranch et al. (2014). "AAV9-mediated expression of a non-self protein in nonhuman primate central nervous system triggers widespread neuroinflammation driven by antigen-presenting cell transduction".PMID 24419081
  855. Ilenia Severi et al. (2013). "Opposite effects of a high-fat diet and calorie restriction on ciliary neurotrophic factor signaling in the mouse hypothalamus".PMID 24409114
  856. Sawang Kesdangsakonwut et al. (2014). "Survival of rabid rabbits after intrathecal immunization".PMID 24397792
  857. Jyhyun Ahn et al. (2014). "GSK3β, but not GSK3α, inhibits the neuronal differentiation of neural progenitor cells as a downstream target of mammalian target of rapamycin complex1".PMID 24397546
  858. Cecile L Maire et al. (2014). "Pten loss in Olig2 expressing neural progenitor cells and oligodendrocytes leads to interneuron dysplasia and leukodystrophy".PMID 24395742
  859. Tomoyuki Yamanaka et al. (2013). "Loss of aPKCλ in differentiated neurons disrupts the polarity complex but does not induce obvious neuronal loss or disorientation in mouse brains".PMID 24391875
  860. Natacha Coppieters et al. (2014). "Global changes in DNA methylation and hydroxymethylation in Alzheimer's disease human brain".PMID 24387984
  861. Yoshiko Matsumoto et al. (2014). "Sera from patients with seropositive neuromyelitis optica spectral disorders caused the degeneration of rodent optic nerve".PMID 24374258
  862. Jing Zhou et al. (2014). "17β-estradiol protects human eyelid-derived adipose stem cells against cytotoxicity and increases transplanted cell survival in spinal cord injury".PMID 24373095
  863. Antonio Trabalza et al. (2014). "Enhanced central nervous system transduction with lentiviral vectors pseudotyped with RVG/HIV-1gp41 chimeric envelope glycoproteins".PMID 24371049
  864. Gillian Muirhead et al. (2014). "The expression of neuronal sorting nexin 8 (SNX8) exacerbates abnormal cholesterol levels".PMID 24362679
  865. Mitsuaki Ishida et al. (2014). "Signet-ring cell melanoma with sentinel lymph node metastasis: A case report with immunohistochemical analysis and review of the clinicopathological features".PMID 24348822
  866. Luca G Di Giovannantonio et al. (2014). "Otx2 cell-autonomously determines dorsal mesencephalon versus cerebellum fate independently of isthmic organizing activity".PMID 24335253
  867. Seema Yousuf et al. (2014). "Delayed progesterone treatment reduces brain infarction and improves functional outcomes after ischemic stroke: a time-window study in middle-aged rats".PMID 24301297
  868. Ian M Traniello et al. (2014). "Age-related changes in stem cell dynamics, neurogenesis, apoptosis, and gliosis in the adult brain: a novel teleost fish model of negligible senescence".PMID 24293183
  869. Xin Gao et al. (2014). "Identification of rat respiratory mucosa stem cells and comparison of the early neural differentiation potential with the bone marrow mesenchymal stem cells in vitro".PMID 24292331
  870. Takayuki Nakajima et al. (2014). "Temporal and regional patterns of Smad activation in the rat hippocampus following global ischemia".PMID 24290497
  871. Nan Fu Chen et al. (2013). "TGF-β1 attenuates spinal neuroinflammation and the excitatory amino acid system in rats with neuropathic pain".PMID 24290447
  872. Takahiro Takano et al. (2014). "Rapid manifestation of reactive astrogliosis in acute hippocampal brain slices".PMID 24272704
  873. Stephanie A Hoffmann et al. (2014). "Stem cell factor Sox2 and its close relative Sox3 have differentiation functions in oligodendrocytes".PMID 24257626
  874. M P Price et al. (2014). "Localization and behaviors in null mice suggest that ASIC1 and ASIC2 modulate responses to aversive stimuli".PMID 24256442
  875. Shuji Wakatsuki et al. (2014). "Neuregulin-1/glial growth factor stimulates Schwann cell migration by inducing α5 β1 integrin-ErbB2-focal adhesion kinase complex formation".PMID 24256316
  876. Matthew C Judson et al. (2014). "Allelic specificity of Ube3a expression in the mouse brain during postnatal development".PMID 24254964
  877. Mary Ní Fhlathartaigh et al. (2013). "Calreticulin and other components of endoplasmic reticulum stress in rat and human inflammatory demyelination".PMID 24252779
  878. Animesh Alexander Raha et al. (2013). "The systemic iron-regulatory proteins hepcidin and ferroportin are reduced in the brain in Alzheimer's disease".PMID 24252754
  879. Huy Nguyen et al. (2013). "Glial scaffold required for cerebellar granule cell migration is dependent on dystroglycan function as a receptor for basement membrane proteins".PMID 24252195
  880. Ayman ElAli et al. (2013). "Mild chronic cerebral hypoperfusion induces neurovascular dysfunction, triggering peripheral beta-amyloid brain entry and aggregation".PMID 24252187
  881. Kendall Mitchell et al. (2014). "LPS antagonism of TGF-β signaling results in prolonged survival and activation of rat primary microglia".PMID 24251648
  882. Jonathan M Zuidema et al. (2014). "Enhanced GLT-1 mediated glutamate uptake and migration of primary astrocytes directed by fibronectin-coated electrospun poly-L-lactic acid fibers".PMID 24246642
  883. Yuriko Nishizaki et al. (2014). "SIP1 expression patterns in brain investigated by generating a SIP1-EGFP reporter knock-in mouse".PMID 24243579
  884. Yu E Yan et al. (2014). "Significant reduction of the GLUT3 level, but not GLUT1 level, was observed in the brain tissues of several scrapie experimental animals and scrapie-infected cell lines".PMID 24243341
  885. Chao Wang et al. (2014). "The role of pro-inflammatory S100A9 in Alzheimer's disease amyloid-neuroinflammatory cascade".PMID 24240735
  886. Ching Hui Lin et al. (2013). "Single-cell enzyme-free dissociation of neurospheres using a microfluidic chip".PMID 24228937
  887. Kimberly E Hawkins et al. (2014). "Neurovascular protection by post-ischemic intravenous injections of the lipoxin A4 receptor agonist, BML-111, in a rat model of ischemic stroke".PMID 24225006
  888. Thomas H Sanderson et al. (2013). "Cytochrome C is tyrosine 97 phosphorylated by neuroprotective insulin treatment".PMID 24223835
  889. Sarah C Robins et al. (2013). "Evidence for NG2-glia derived, adult-born functional neurons in the hypothalamus".PMID 24205170
  890. Davide Danovi et al. (2013). "A high-content small molecule screen identifies sensitivity of glioblastoma stem cells to inhibition of polo-like kinase 1".PMID 24204733
  891. Hirotoshi Akane et al. (2014). "Glycidol induces axonopathy and aberrations of hippocampal neurogenesis affecting late-stage differentiation by exposure to rats in a framework of 28-day toxicity study".PMID 24185127
  892. Ralitsa Petrova et al. (2013). "Titration of GLI3 repressor activity by sonic hedgehog signaling is critical for maintaining multiple adult neural stem cell and astrocyte functions".PMID 24174682
  893. Nianhua Feng et al. (2014). "Generation of highly purified neural stem cells from human adipose-derived mesenchymal stem cells by Sox1 activation".PMID 24138016
  894. G P Swain et al. (2014). "Adeno-associated virus serotypes 9 and rh10 mediate strong neuronal transduction of the dog brain".PMID 24131981
  895. Jun Yamada et al. (2014). "S100A6 (calcyclin) is a novel marker of neural stem cells and astrocyte precursors in the subgranular zone of the adult mouse hippocampus".PMID 24115312
  896. Hongyan Wang et al. (2014). "Widespread spinal cord transduction by intrathecal injection of rAAV delivers efficacious RNAi therapy for amyotrophic lateral sclerosis".PMID 24108104
  897. Long Wang et al. (2013). "Characterization of embryonic stem-like cells derived from HEK293T cells through miR302/367 expression and their potentiality to differentiate into germ-like cells".PMID 24091881
  898. Arpad Dobolyi et al. (2015). "Exclusive neuronal expression of SUCLA2 in the human brain".PMID 24085565
  899. Olga Momcilovic et al. (2014). "Genome wide profiling of dopaminergic neurons derived from human embryonic and induced pluripotent stem cells".PMID 24074155
  900. Reham Khalaf-Nazzal et al. (2013). "Organelle and cellular abnormalities associated with hippocampal heterotopia in neonatal doublecortin knockout mice".PMID 24023755
  901. Keijiro Ishikawa et al. (2014). "Periostin promotes the generation of fibrous membranes in proliferative vitreoretinopathy".PMID 24022401
  902. Alexandre Savard et al. (2013). "Involvement of neuronal IL-1β in acquired brain lesions in a rat model of neonatal encephalopathy".PMID 24007297
  903. Michele Bellesi et al. (2013). "Effects of sleep and wake on oligodendrocytes and their precursors".PMID 24005282
  904. Prasanti Kotagiri et al. (2014). "Subventricular zone cytoarchitecture changes in autism".PMID 24002902
  905. Francesca Viganò et al. (2013). "Transplantation reveals regional differences in oligodendrocyte differentiation in the adult brain".PMID 23995069
  906. Luciana A Cholich et al. (2013). "Experimental intoxication of guinea pigs with Ipomoea carnea: behavioural and neuropathological alterations".PMID 23994428
  907. Budd A Tucker et al. (2013). "Patient-specific iPSC-derived photoreceptor precursor cells as a means to investigate retinitis pigmentosa".PMID 23991284
  908. Ian C Tobias et al. (2013). "Derivation and culture of canine embryonic stem cells".PMID 23975806
  909. Julika Merres et al. (2014). "Role of the cathelicidin-related antimicrobial peptide in inflammation and mortality in a mouse model of bacterial meningitis".PMID 23969854
  910. Ji Hey Lim et al. (2013). "Alternating current electric fields of varying frequencies: effects on proliferation and differentiation of porcine neural progenitor cells".PMID 23961767
  911. Alexandra E Schreiner et al. (2014). "Laminar and subcellular heterogeneity of GLAST and GLT-1 immunoreactivity in the developing postnatal mouse hippocampus".PMID 23939750
  912. Elisa J Cops et al. (2013). "Tissue-type plasminogen activator is an extracellular mediator of Purkinje cell damage and altered gait".PMID 23939410
  913. Hassan Azari et al. (2013). "Isolation and enrichment of defined neural cell populations from heterogeneous neural stem cell progeny".PMID 23934837
  914. Xiao Long Sun et al. (2014). "The proform of glia cell line-derived neurotrophic factor: a potentially biologically active protein".PMID 23934644
  915. Stefan Bittner et al. (2013). "Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS".PMID 23933981
  916. Nian Gong et al. (2014). "Identification of a novel spinal dorsal horn astroglial D-amino acid oxidase-hydrogen peroxide pathway involved in morphine antinociceptive tolerance".PMID 23928652
  917. Johannes Prox et al. (2013). "Postnatal disruption of the disintegrin/metalloproteinase ADAM10 in brain causes epileptic seizures, learning deficits, altered spine morphology, and defective synaptic functions".PMID 23926248
  918. Surajit Sahu et al. (2013). "Caffeine and modafinil promote adult neuronal cell proliferation during 48 h of total sleep deprivation in rat dentate gyrus".PMID 23920241
  919. Sylvia E Perez et al. (2013). "Alzheimer's disease pathology in the neocortex and hippocampus of the western lowland gorilla (Gorilla gorilla gorilla)".PMID 23881733
  920. Simon Hametner et al. (2013). "Iron and neurodegeneration in the multiple sclerosis brain".PMID 23868451
  921. Geeta Ramesh et al. (2013). "The Lyme disease spirochete Borrelia burgdorferi induces inflammation and apoptosis in cells from dorsal root ganglia".PMID 23866773
  922. Shane Stegeman et al. (2013). "Loss of Usp9x disrupts cortical architecture, hippocampal development and TGFβ-mediated axonogenesis".PMID 23861879
  923. Xing gang Mao et al. (2013). "LIN28A facilitates the transformation of human neural stem cells and promotes glioblastoma tumorigenesis through a pro-invasive genetic program".PMID 23846349
  924. Jered V McGivern et al. (2013). "Spinal muscular atrophy astrocytes exhibit abnormal calcium regulation and reduced growth factor production".PMID 23839956
  925. M Ohlsson et al. (2013). "Long-term effects of a lumbosacral ventral root avulsion injury on axotomized motor neurons and avulsed ventral roots in a non-human primate model of cauda equina injury".PMID 23830908
  926. Bianka Brunne et al. (2013). "Role of the postnatal radial glial scaffold for the development of the dentate gyrus as revealed by Reelin signaling mutant mice".PMID 23828756
  927. Sol Pose-Méndez et al. (2014). "Development of the cerebellar afferent system in the shark Scyliorhinus canicula: insights into the basal organization of precerebellar nuclei in gnathostomes".PMID 23818330
  928. Xiaofei Wang et al. (2014). "Cortical PKC inhibition promotes axonal regeneration of the corticospinal tract and forelimb functional recovery after cervical dorsal spinal hemisection in adult rats".PMID 23810979
  929. David Marian Otte et al. (2013). "Effects of Chronic D-Serine Elevation on Animal Models of Depression and Anxiety-Related Behavior".PMID 23805296
  930. Kelsey A Potter et al. (2013). "The effect of resveratrol on neurodegeneration and blood brain barrier stability surrounding intracortical microelectrodes".PMID 23791503
  931. Hailong Li et al. (2013). "Inhibition of the group I mGluRs reduces acute brain damage and improves long-term histological outcomes after photothrombosis-induced ischaemia".PMID 23772679
  932. Birger V Dieriks et al. (2013). "GABA(A) receptor characterization and subunit localization in the human sub-ventricular zone".PMID 23770130
  933. Ulrike Mietzsch et al. (2013). "Comparative analysis of Tsc1 and Tsc2 single and double radial glial cell mutants".PMID 23749404
  934. Luigi Maddaluno et al. (2013). "EndMT contributes to the onset and progression of cerebral cavernous malformations".PMID 23748444
  935. Erica D Koval et al. (2013). "Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice".PMID 23740943
  936. Atsushi Natsume et al. (2013). "Chromatin regulator PRC2 is a key regulator of epigenetic plasticity in glioblastoma".PMID 23720055
  937. Matthew T J Lowe et al. (2013). "Dissociated expression of mitochondrial and cytosolic creatine kinases in the human brain: a new perspective on the role of creatine in brain energy metabolism".PMID 23715059
  938. Shilpa Prabhakar et al. (2013). "Stochastic model of Tsc1 lesions in mouse brain".PMID 23696872
  939. Qiuyue Liu et al. (2013). "Optimizing dopaminergic differentiation of pluripotent stem cells for the manufacture of dopaminergic neurons for transplantation".PMID 23664011
  940. Li Li Li et al. (2013). "The nNOS-p38MAPK pathway is mediated by NOS1AP during neuronal death".PMID 23658158
  941. Fanny Langlet et al. (2013). "Tanycyte-like cells form a blood-cerebrospinal fluid barrier in the circumventricular organs of the mouse brain".PMID 23649873
  942. Chien Yu Kao et al. (2013). "The mood stabilizer valproate activates human FGF1 gene promoter through inhibiting HDAC and GSK-3 activities".PMID 23647222
  943. Norimichi Higurashi et al. (2013). "A human Dravet syndrome model from patient induced pluripotent stem cells".PMID 23639079
  944. M C Medrano et al. (2013). "Functional and morphological characterization of glutamate transporters in the rat locus coeruleus".PMID 23638698
  945. Alessia Delli Carri et al. (2013). "Human pluripotent stem cell differentiation into authentic striatal projection neurons".PMID 23625190
  946. Anke Sparmann et al. (2013). "The chromodomain helicase Chd4 is required for Polycomb-mediated inhibition of astroglial differentiation".PMID 23624931
  947. Stephane L Bourque et al. (2013). "Prenatal hypoxia is associated with long-term retinal dysfunction in rats".PMID 23610595
  948. Karin Löw et al. (2013). "Direct and retrograde transduction of nigral neurons with AAV6, 8, and 9 and intraneuronal persistence of viral particles".PMID 23600720
  949. Xiaoran Li et al. (2013). "Promotion of neuronal differentiation of neural progenitor cells by using EGFR antibody functionalized collagen scaffolds for spinal cord injury repair".PMID 23591390
  950. Franz J Zemp et al. (2013). "Treating brain tumor-initiating cells using a combination of myxoma virus and rapamycin".PMID 23585629
  951. Meredith A Kelleher et al. (2013). "Changes in neuroactive steroid concentrations after preterm delivery in the Guinea pig".PMID 23585339
  952. Eva Degerman et al. (2013). "Expression of insulin signalling components in the sensory epithelium of the human saccule".PMID 23584706
  953. Tatsuro Misu et al. (2013). "Presence of six different lesion types suggests diverse mechanisms of tissue injury in neuromyelitis optica".PMID 23579868
  954. M J Hannula et al. (2013). "Prolyl oligopeptidase colocalizes with α-synuclein, β-amyloid, tau protein and astroglia in the post-mortem brain samples with Parkinson's and Alzheimer's diseases".PMID 23562579
  955. Corinne Brana et al. (2014). "Immunohistochemical detection of sphingosine-1-phosphate receptor 1 and 5 in human multiple sclerosis lesions".PMID 23551178
  956. R Vontell et al. (2013). "Toll-like receptor 3 expression in glia and neurons alters in response to white matter injury in preterm infants".PMID 23548575
  957. Lluis Samaranch et al. (2013). "Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the cerebrospinal fluid of nonhuman primates".PMID 23517473
  958. Neil G Harris et al. (2013). "Chondroitinase enhances cortical map plasticity and increases functionally active sprouting axons after brain injury".PMID 23517225
  959. Chung Ching Chio et al. (2013). "Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-α".PMID 23496862
  960. Amy M Smith et al. (2013). "The transcription factor PU.1 is critical for viability and function of human brain microglia".PMID 23483680
  961. Govindaiah Vinukonda et al. (2013). "Intraventricular hemorrhage induces deposition of proteoglycans in premature rabbits, but their in vivo degradation with chondroitinase does not restore myelination, ventricle size and neurological recovery".PMID 23474192
  962. Lianhua Bai et al. (2013). "Myelin repair and functional recovery mediated by neural cell transplantation in a mouse model of multiple sclerosis".PMID 23471865
  963. Bum Jun Kim et al. (2013). "An allelic series of mice reveals a role for RERE in the development of multiple organs affected in chromosome 1p36 deletions".PMID 23451234
  964. Sarah J Hemley et al. (2013). "Aquaporin-4 expression in post-traumatic syringomyelia".PMID 23441695
  965. Liyun Wang et al. (2013). "Reversible effect of developmental exposure to chlorpyrifos on late-stage neurogenesis in the hippocampal dentate gyrus in mouse offspring".PMID 23428981
  966. Yong Yuan et al. (2013). "Targeted overexpression of TGF-α in the corneal epithelium of adult transgenic mice induces changes in anterior segment morphology and activates noncanonical Wnt signaling".PMID 23412089
  967. J Chapuis et al. (2013). "Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology".PMID 23399914
  968. Joanna M Karasinska et al. (2013). "ABCA1 influences neuroinflammation and neuronal death".PMID 23376685
  969. K Murakami et al. (2013). "In vivo analysis of kallikrein-related peptidase 6 (KLK6) function in oligodendrocyte development and the expression of myelin proteins".PMID 23376368
  970. Yu Wen Hung et al. (2013). "Monocyte chemoattractant protein-1 affects migration of hippocampal neural progenitors following status epilepticus in rats".PMID 23339567
  971. Elisa Carra et al. (2013). "Sorafenib selectively depletes human glioblastoma tumor-initiating cells from primary cultures".PMID 23324350
  972. Syed J Kazmi et al. (2013). "Transgenic mice overexpressing neuregulin-1 model neurofibroma-malignant peripheral nerve sheath tumor progression and implicate specific chromosomal copy number variations in tumorigenesis".PMID 23321323
  973. Elaine L Pranski et al. (2013). "RING finger protein 11 (RNF11) modulates susceptibility to 6-OHDA-induced nigral degeneration and behavioral deficits through NF-κB signaling in dopaminergic cells".PMID 23318928
  974. Timothy W Phares et al. (2013). "Astrocyte-derived CXCL10 drives accumulation of antibody-secreting cells in the central nervous system during viral encephalomyelitis".PMID 23302888
  975. Peng Zhai et al. (2013). "Preparation and characterization of alginate microspheres for sustained protein delivery within tissue scaffolds".PMID 23302146
  976. Donna J Calu et al. (2013). "Optogenetic inhibition of dorsal medial prefrontal cortex attenuates stress-induced reinstatement of palatable food seeking in female rats".PMID 23283335
  977. I Lonskaya et al. (2013). "Decreased parkin solubility is associated with impairment of autophagy in the nigrostriatum of sporadic Parkinson's disease".PMID 23262240
  978. Lin Cao et al. (2012). "Isoflurane induces learning impairment that is mediated by interleukin 1β in rodents".PMID 23251531
  979. Idoia Quintana-Urzainqui et al. (2014). "Developmental, tract-tracing and immunohistochemical study of the peripheral olfactory system in a basal vertebrate: insights on Pax6 neurons migrating along the olfactory nerve".PMID 23224251
  980. Sabine Hellwig et al. (2012). "Reelin together with ApoER2 regulates interneuron migration in the olfactory bulb".PMID 23209795
  981. Qiuyue Liu et al. (2012). "Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: induction, maintenance, and differentiation into functional schwann cells".PMID 23197806
  982. Raquel M Walton et al. (2013). "Postnatal neural precursor cell regions in the rostral subventricular zone, hippocampal subgranular zone and cerebellum of the dog (Canis lupus familiaris)".PMID 23192285
  983. Kittiphong Putkhao et al. (2013). "Pathogenic cellular phenotypes are germline transmissible in a transgenic primate model of Huntington's disease".PMID 23190281
  984. A Trabalza et al. (2013). "Venezuelan equine encephalitis virus glycoprotein pseudotyping confers neurotropism to lentiviral vectors".PMID 23171919
  985. Andreas F Mack et al. (2013). "Cultures of astroglial cells derived from brain of adult cichlid fish".PMID 23164962
  986. Alexander Slowik et al. (2012). "Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE)--and amyloid beta 1-42-induced signal transduction in glial cells".PMID 23164356
  987. Farid Ahmed et al. (2012). "Time-dependent changes of protein biomarker levels in the cerebrospinal fluid after blast traumatic brain injury".PMID 23161535
  988. Lars Ove Brandenburg et al. (2013). "CpG oligodeoxynucleotides induce the expression of the antimicrobial peptide cathelicidin in glial cells".PMID 23141747
  989. Xiao yan Zhu et al. (2013). "Temporal distribution of p300/CBP immunoreactivity in the adult rat spinal dorsal horn following chronic constriction injury (CCI)".PMID 23129231
  990. Shi Ying Huang et al. (2012). "Sinularin from indigenous soft coral attenuates nociceptive responses and spinal neuroinflammation in carrageenan-induced inflammatory rat model".PMID 23118711
  991. Jenna M Ziebell et al. (2012). "Rod microglia: elongation, alignment, and coupling to form trains across the somatosensory cortex after experimental diffuse brain injury".PMID 23111107
  992. Crystal R McClain et al. (2012). "Pleiotrophin suppression of receptor protein tyrosine phosphatase-β/ζ maintains the self-renewal competence of fetal human oligodendrocyte progenitor cells".PMID 23100427
  993. H Peluffo et al. (2013). "Efficient gene expression from integration-deficient lentiviral vectors in the spinal cord".PMID 23076378
  994. Karim Helmy et al. (2012). "Identification of global alteration of translational regulation in glioma in vivo".PMID 23056544
  995. T Schmidt et al. (2013). "Regional heterogeneity of cuprizone-induced demyelination: topographical aspects of the midline of the corpus callosum".PMID 23054589
  996. Paul Z Elias et al. (2015). "Treatment of penetrating brain injury in a rat model using collagen scaffolds incorporating soluble Nogo receptor".PMID 23038669
  997. Szu Fu Chen et al. (2012). "Salidroside improves behavioral and histological outcomes and reduces apoptosis via PI3K/Akt signaling after experimental traumatic brain injury".PMID 23029230
  998. Gema Elvira et al. (2012). "Live imaging of mouse endogenous neural progenitors migrating in response to an induced tumor".PMID 22957072
  999. Derek A Wainwright et al. (2012). "IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival".PMID 22932670
  1000. Alexis R Gerber et al. (2012). "Antiinflammatory treatment ameliorates HPA stress axis dysfunction in a mouse model of stress sensitivity".PMID 22893724
  1001. Kirsty J Dixon et al. (2012). "Partial change in EphA4 knockout mouse phenotype: loss of diminished GFAP upregulation following spinal cord injury".PMID 22824304
  1002. Daniel Garcia-Ovejero et al. (2013). "A cell population that strongly expresses the CB1 cannabinoid receptor in the ependyma of the rat spinal cord".PMID 22791629
  1003. Taketoshi Wakabayashi et al. (2012). "Prolonged expression of Puma in cholinergic amacrine cells during the development of rat retina".PMID 22736709
  1004. M Brus et al. (2013). "Dynamics of olfactory and hippocampal neurogenesis in adult sheep".PMID 22700217
  1005. Tim Clarner et al. (2012). "Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions".PMID 22689449
  1006. Issei S Shimada et al. (2012). "Self-renewal and differentiation of reactive astrocyte-derived neural stem/progenitor cells isolated from the cortical peri-infarct area after stroke".PMID 22674268
  1007. Hao Pan et al. (2012). "The absence of Nrf2 enhances NF-κB-dependent inflammation following scratch injury in mouse primary cultured astrocytes".PMID 22529521
  1008. Tara M Desilva et al. (2012). "Expression of EAAT2 in neurons and protoplasmic astrocytes during human cortical development".PMID 22522966
  1009. A D Skjolding et al. (2013). "Differences in distribution and regulation of astrocytic aquaporin-4 in human and rat hydrocephalic brain".PMID 22497211
  1010. Youngsoon Kim et al. (2012). "The MMP-9/TIMP-1 axis controls the status of differentiation and function of myelin-forming Schwann cells in nerve regeneration".PMID 22438979
  1011. Leonid Schneider et al. (2012). "Neural stem cells exposed to BrdU lose their global DNA methylation and undergo astrocytic differentiation".PMID 22379135
  1012. Sarah E Lutz et al. (2012). "Loss of astrocyte connexins 43 and 30 does not significantly alter susceptibility or severity of acute experimental autoimmune encephalomyelitis in mice".PMID 22342190
  1013. Anandh Dhanushkodi et al. (2011). "Intracranial V. cholerae sialidase protects against excitotoxic neurodegeneration".PMID 22195039
  1014. Alexis Laux et al. (2012). "Localization of endogenous morphine-like compounds in the mouse spinal cord".PMID 22102217
  1015. Nozomu Yoshioka et al. (2012). "The astrocytic lineage marker calmodulin-regulated spectrin-associated protein 1 (Camsap1): phenotypic heterogeneity of newly born Camsap1-expressing cells in injured mouse brain".PMID 22095662
  1016. Maryla Krajewska et al. (2011). "Neuronal deletion of caspase 8 protects against brain injury in mouse models of controlled cortical impact and kainic acid-induced excitotoxicity".PMID 21957448
  1017. Jessica Schira et al. (2012). "Significant clinical, neuropathological and behavioural recovery from acute spinal cord trauma by transplantation of a well-defined somatic stem cell from human umbilical cord blood".PMID 21903726
  1018. Dan Y Lewitus et al. (2011). "Biohybrid Carbon Nanotube/Agarose Fibers for Neural Tissue Engineering".PMID 21887125
  1019. Samantha R Furr et al. (2011). "A role for DNA-dependent activator of interferon regulatory factor in the recognition of herpes simplex virus type 1 by glial cells".PMID 21838860
  1020. Anne Jaerve et al. (2011). "Differential effect of aging on axon sprouting and regenerative growth in spinal cord injury".PMID 21806987
  1021. Lian Zhao et al. (2011). "Minocycline attenuates photoreceptor degeneration in a mouse model of subretinal hemorrhage microglial: inhibition as a potential therapeutic strategy".PMID 21763674
  1022. Magdalena Zürner et al. (2011). "Analyses of the spatiotemporal expression and subcellular localization of liprin-α proteins".PMID 21618221
  1023. Dan Y Lewitus et al. (2011). "The fate of ultrafast degrading polymeric implants in the brain".PMID 21609850
  1024. Vinita S Chauhan et al. (2011). "Prophylactic and therapeutic targeting of the neurokinin-1 receptor limits neuroinflammation in a murine model of pneumococcal meningitis".PMID 21562162
  1025. Alexis Laux et al. (2011). "Mapping of endogenous morphine-like compounds in the adult mouse brain: Evidence of their localization in astrocytes and GABAergic cells".PMID 21456021
  1026. Csaba Adori et al. (2011). "Recovery and aging of serotonergic fibers after single and intermittent MDMA treatment in Dark Agouti rat".PMID 21456018
  1027. Che Feng Chang et al. (2011). "Caveolin-1 deletion reduces early brain injury after experimental intracerebral hemorrhage".PMID 21435456
  1028. Dan Lewitus et al. (2011). "Ultrafast resorbing polymers for use as carriers for cortical neural probes".PMID 21345383
  1029. Nikol A Piskuric et al. (2011). "Confocal immunofluorescence study of rat aortic body chemoreceptors and associated neurons in situ and in vitro".PMID 21280041
  1030. Jocelyne Bloch et al. (2011). "Doublecortin-positive cells in the adult primate cerebral cortex and possible role in brain plasticity and development".PMID 21246554
  1031. Kazunobu Sawamoto et al. (2011). "Cellular composition and organization of the subventricular zone and rostral migratory stream in the adult and neonatal common marmoset brain".PMID 21246550
  1032. Jelena Damm et al. (2011). "Spatiotemporal nuclear factor interleukin-6 expression in the rat brain during lipopolysaccharide-induced fever is linked to sustained hypothalamic inflammatory target gene induction".PMID 21192080
  1033. Shozo Jinno et al. (2011). "Decline in adult neurogenesis during aging follows a topographic pattern in the mouse hippocampus".PMID 21192078
  1034. Timothy W Phares et al. (2011). "Factors supporting intrathecal humoral responses following viral encephalomyelitis".PMID 21191015
  1035. Emily Roltsch et al. (2010). "PSAPP mice exhibit regionally selective reductions in gliosis and plaque deposition in response to S100B ablation".PMID 21080947
  1036. Derek A Wainwright et al. (2010). "The presence of IL-17A and T helper 17 cells in experimental mouse brain tumors and human glioma".PMID 21060663
  1037. Larissa Grupp et al. (2010). "Astroglial structures in the zebrafish brain".PMID 20853506
  1038. Catherine M Schwartz et al. (2010). "Clathrin assembly proteins AP180 and CALM in the embryonic rat brain".PMID 20653035
  1039. Randal X Moldrich et al. (2010). "Molecular regulation of the developing commissural plate".PMID 20653027
  1040. Shin ichi Sekizawa et al. (2010). "House-dust mite allergen and ozone exposure decreases histamine H3 receptors in the brainstem respiratory nuclei".PMID 20600210
  1041. Dragana Trifunovic et al. (2010). "cGMP-dependent cone photoreceptor degeneration in the cpfl1 mouse retina".PMID 20593360
  1042. Yun Yu Tseng et al. (2010). "Identification of the Tctex-1 regulatory element that directs expression to neural stem/progenitor cells in developing and adult brain".PMID 20575070
  1043. Hengxuan Yang et al. (2010). "Amelioration of the Alzheimer's disease phenotype by absence of 12/15-lipoxygenase".PMID 20570249
  1044. Brian DellaValle et al. (2010). "In vivo expression of neuroglobin in reactive astrocytes during neuropathology in murine models of traumatic brain injury, cerebral malaria, and autoimmune encephalitis".PMID 20544857
  1045. Ji Jie Pang et al. (2010). "Light responses and morphology of bNOS-immunoreactive neurons in the mouse retina".PMID 20503422
  1046. Matthew W VanBrocklin et al. (2010). "Targeted delivery of NRASQ61R and Cre-recombinase to post-natal melanocytes induces melanoma in Ink4a/Arflox/lox mice".PMID 20444198
  1047. Gabriel Lepousez et al. (2010). "Somatostatin interneurons delineate the inner part of the external plexiform layer in the mouse main olfactory bulb".PMID 20394054
  1048. Michiel Vellema et al. (2010). "Area-specific migration and recruitment of new neurons in the adult songbird brain".PMID 20187140
  1049. Konstantinos Ampatzis et al. (2010). "Regional distribution and cellular localization of beta2-adrenoceptors in the adult zebrafish brain (Danio rerio)".PMID 20187137
  1050. Vinita S Chauhan et al. (2010). "Vesicular stomatitis virus infects resident cells of the central nervous system and induces replication-dependent inflammatory responses".PMID 20172575
  1051. Simon Moussaud et al. (2010). "A new method to isolate microglia from adult mice and culture them for an extended period of time".PMID 20097228
  1052. Derek A Wainwright et al. (2010). "Toll-like receptor 2 and facial motoneuron survival after facial nerve axotomy".PMID 20056129
  1053. Y Liu et al. (2010). "Glial fibrillary acidic protein-expressing neural progenitors give rise to immature neurons via early intermediate progenitors expressing both glial fibrillary acidic protein and neuronal markers in the adult hippocampus".PMID 20026190
  1054. Emilie Caron et al. (2010). "Distribution of leptin-sensitive cells in the postnatal and adult mouse brain".PMID 20017211
  1055. Raquel Martín-Ibáñez et al. (2010). "Ikaros-1 couples cell cycle arrest of late striatal precursors with neurogenesis of enkephalinergic neurons".PMID 19950118
  1056. Jianmin Su et al. (2010). "Collagen XIX is expressed by interneurons and contributes to the formation of hippocampal synapses".PMID 19937713
  1057. Sandro Santagata et al. (2009). "CRX is a diagnostic marker of retinal and pineal lineage tumors".PMID 19936203
  1058. Derek A Wainwright et al. (2009). "Exacerbation of facial motoneuron loss after facial nerve axotomy in CCR3-deficient mice".PMID 19922414
  1059. Derek A Wainwright et al. (2009). "Effects of facial nerve axotomy on Th2- and Th1-associated chemokine expression in the facial motor nucleus of wild-type and presymptomatic mSOD1 mice".PMID 19818514
  1060. Angela Gritti et al. (2009). "Effects of developmental age, brain region, and time in culture on long-term proliferation and multipotency of neural stem cell populations".PMID 19760739
  1061. Mojgan Rastegar et al. (2009). "MECP2 isoform-specific vectors with regulated expression for Rett syndrome gene therapy".PMID 19710912
  1062. Cambrian Y Liu et al. (2009). "Grueneberg ganglion olfactory subsystem employs a cGMP signaling pathway".PMID 19565523
  1063. Krista Sultan-Styne et al. (2009). "Long-term survival of olfactory sensory neurons after target depletion".PMID 19496176
  1064. Brian W Leonard et al. (2009). "Subventricular zone neural progenitors from rapid brain autopsies of elderly subjects with and without neurodegenerative disease".PMID 19425077
  1065. María Inés Rehermann et al. (2009). "Neural reconnection in the transected spinal cord of the freshwater turtle Trachemys dorbignyi".PMID 19418545
  1066. Benjamin H Singer et al. (2009). "Conditional ablation and recovery of forebrain neurogenesis in the mouse".PMID 19363795
  1067. Sara Gil-Perotin et al. (2009). "Ultrastructure of the subventricular zone in Macaca fascicularis and evidence of a mouse-like migratory stream".PMID 19350672
  1068. Pascal E Sanchez et al. (2009). "Erythropoietin receptor expression is concordant with erythropoietin but not with common beta chain expression in the rat brain throughout the life span".PMID 19330822
  1069. Igor Jakovcevski et al. (2009). "Close homologue of adhesion molecule L1 promotes survival of Purkinje and granule cells and granule cell migration during murine cerebellar development".PMID 19226508
  1070. Manabu Toyoshima et al. (2009). "Preferential localization of neural cell recognition molecule NB-2 in developing glutamatergic neurons in the rat auditory brainstem".PMID 19177518
  1071. Colin K Franz et al. (2009). "Intraspinal cord delivery of IGF-I mediated by adeno-associated virus 2 is neuroprotective in a rat model of familial ALS".PMID 19135533
  1072. Jeanette E Christensen et al. (2009). "Fulminant lymphocytic choriomeningitis virus-induced inflammation of the CNS involves a cytokine-chemokine-cytokine-chemokine cascade".PMID 19124751
  1073. Arne Herring et al. (2009). "Environmental enrichment enhances cellular plasticity in transgenic mice with Alzheimer-like pathology".PMID 19118549
  1074. Mila Komitova et al. (2009). "NG2 cells are distinct from neurogenic cells in the postnatal mouse subventricular zone".PMID 19058188
  1075. Bin Ji et al. (2008). "Imaging of peripheral benzodiazepine receptor expression as biomarkers of detrimental versus beneficial glial responses in mouse models of Alzheimer's and other CNS pathologies".PMID 19020019
  1076. Sandrine Puverel et al. (2009). "Prokineticin receptor 2 expression identifies migrating neuroblasts and their subventricular zone transient-amplifying progenitors in adult mice".PMID 19003791
  1077. E K Y Chung et al. (2008). "Downregulation of glial glutamate transporters after dopamine denervation in the striatum of 6-hydroxydopamine-lesioned rats".PMID 18831527
  1078. Shin Ichi Sakakibara et al. (2008). "Developmental and spatial expression pattern of alpha-taxilin in the rat central nervous system".PMID 18729150
  1079. Zhengang Yang et al. (2008). "Neonatal hypoxic/ischemic brain injury induces production of calretinin-expressing interneurons in the striatum".PMID 18720478
  1080. Kazushi Miya et al. (2008). "Serine racemase is predominantly localized in neurons in mouse brain".PMID 18698599
  1081. Maria Buniel et al. (2008). "Distribution of voltage-gated potassium and hyperpolarization-activated channels in sensory afferent fibers in the rat carotid body".PMID 18668683
  1082. Richa B Tripathi et al. (2008). "Chronically increased ciliary neurotrophic factor and fibroblast growth factor-2 expression after spinal contusion in rats".PMID 18615534
  1083. Colleen M Cebulla et al. (2008). "Basic fibroblast growth factor impact on retinoblastoma progression and survival".PMID 18614803
  1084. June Kawano et al. (2008). "Wolfram syndrome 1 (Wfs1) gene expression in the normal mouse visual system".PMID 18613120
  1085. Sebastian Hoff et al. (2008). "Quantitative assessment of glial cells in the human and guinea pig enteric nervous system with an anti-Sox8/9/10 antibody".PMID 18512230
  1086. Celine Plachez et al. (2008). "Nuclear factor I gene expression in the developing forebrain".PMID 18335562
  1087. Konstantinos Ampatzis et al. (2008). "Neuronal and glial localization of alpha(2A)-adrenoceptors in the adult zebrafish (Danio rerio) brain".PMID 18300261
  1088. Jochen K Lennerz et al. (2008). "Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: differences between peripheral and central CGRP receptor distribution".PMID 18186028
  1089. Richard L Benton et al. (2008). "Griffonia simplicifolia isolectin B4 identifies a specific subpopulation of angiogenic blood vessels following contusive spinal cord injury in the adult mouse".PMID 18092342
  1090. Xian Nan Tang et al. (2007). "Monitoring the protective effects of minocycline treatment with radiolabeled annexin V in an experimental model of focal cerebral ischemia".PMID 17942809
  1091. Yuan Yang et al. (2007). "Ectopia of meningeal fibroblasts and reactive gliosis in the cerebral cortex of the mouse model of muscle-eye-brain disease".PMID 17924568
  1092. Georgia A Bishop et al. (2007). "Type III adenylyl cyclase localizes to primary cilia throughout the adult mouse brain".PMID 17924533
  1093. Barbara Ahlemeyer et al. (2007). "Differential expression of peroxisomal matrix and membrane proteins during postnatal development of mouse brain".PMID 17729295
  1094. David M Howell et al. (2007). "Molecular guidance cues necessary for axon pathfinding from the ventral cochlear nucleus".PMID 17701984
  1095. Omar Trujillo-Cenóz et al. (2007). "Cytological organization of the central gelatinosa in the turtle spinal cord".PMID 17348014
  1096. Irina Dudanova et al. (2007). "Deletion of alpha-neurexins does not cause a major impairment of axonal pathfinding or synapse formation".PMID 17347997
  1097. Gjon Blakqori et al. (2007). "La Crosse bunyavirus nonstructural protein NSs serves to suppress the type I interferon system of mammalian hosts".PMID 17344298
  1098. Núria Brunet et al. (2007). "Survival and death of mature avian motoneurons in organotypic slice culture: trophic requirements for survival and different types of degeneration".PMID 17299760
  1099. Phuong B Tran et al. (2007). "Chemokine receptor expression by neural progenitor cells in neurogenic regions of mouse brain".PMID 17183554
  1100. Huiyi Chen et al. (2007). "Epidermal growth factor receptor in adult retinal neurons of rat, mouse, and human".PMID 17111374
  1101. Kasey L Baker et al. (2006). "Neuroblast protuberances in the subventricular zone of the regenerative MRL/MpJ mouse".PMID 16927265
  1102. Giovanna Ponti et al. (2006). "Cellular composition and cytoarchitecture of the rabbit subventricular zone and its extensions in the forebrain".PMID 16874818
  1103. Liang Wei Chen et al. (2006). "Localization of nerve growth factor, neurotrophin-3, and glial cell line-derived neurotrophic factor in nestin-expressing reactive astrocytes in the caudate-putamen of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated C57/Bl mice".PMID 16802332
  1104. Byung G Kim et al. (2006). "Degradation of chondroitin sulfate proteoglycans potentiates transplant-mediated axonal remodeling and functional recovery after spinal cord injury in adult rats".PMID 16705682
  1105. Robert Papay et al. (2006). "Localization of the mouse alpha1A-adrenergic receptor (AR) in the brain: alpha1AAR is expressed in neurons, GABAergic interneurons, and NG2 oligodendrocyte progenitors".PMID 16705673
  1106. Delia M Talos et al. (2006). "Developmental regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. I. Rodent cerebral white matter and cortex".PMID 16680782
  1107. Carlos Dedesma et al. (2006). "Dynein light chain Tctex-1 identifies neural progenitors in adult brain".PMID 16628620
  1108. Michael H Donovan et al. (2006). "Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer's disease".PMID 16432899
  1109. Sabine Wenisch et al. (2006). "Immunochemical, ultrastructural and electrophysiological investigations of bone-derived stem cells in the course of neuronal differentiation".PMID 16418015
  1110. Donna L Herber et al. (2006). "Diverse microglial responses after intrahippocampal administration of lipopolysaccharide".PMID 16288481
  1111. Emi Kiyokage et al. (2005). "Localization of 5alpha-reductase in the rat main olfactory bulb".PMID 16261538
  1112. Grzegorz Wicher et al. (2005). "Low-density lipoprotein receptor-related protein (LRP)-2/megalin is transiently expressed in a subpopulation of neural progenitors in the embryonic mouse spinal cord".PMID 16196028
  1113. Donna L Herber et al. (2004). "Time-dependent reduction in Abeta levels after intracranial LPS administration in APP transgenic mice".PMID 15473997
  1114. Anthony J Apicelli et al. (2003). "Role of the Rap1 GTPase in astrocyte growth regulation".PMID 12673829
  1115. Erik J Uhlmann et al. (2002). "Heterozygosity for the tuberous sclerosis complex (TSC) gene products results in increased astrocyte numbers and decreased p27-Kip1 expression in TSC2+/- cells".PMID 12037687
  1116. Alexander Seitz et al. (2002). "Recovery from spinal cord injury: a new transection model in the C57Bl/6 mouse".PMID 11813238
  1117. M Penkowa et al. (1999). "CNS wound healing is severely depressed in metallothionein I- and II-deficient mice".PMID 10087067
  1118. J Satoh et al. (1998). "Constitutive and heat-inducible expression of HSP105 in neurons and glial cells in culture".PMID 9804301
  1119. H P Haring et al. (1996). "Distribution of integrin-like immunoreactivity on primate brain microvasculature".PMID 8786382
  1120. V Balasingam et al. (1996). "Attenuation of astroglial reactivity by interleukin-10".PMID 8622125