这是一篇来自已证抗体库的有关人类 GJB6的综述,是根据22篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合GJB6 抗体。
GJB6 同义词: CX30; DFNA3; DFNA3B; DFNB1B; ECTD2; ED2; EDH; HED; HED2

赛默飞世尔
domestic rabbit 多克隆(Z-PP9)
  • 免疫组化; African green monkey; 1:500; 图 3d
赛默飞世尔 GJB6抗体(Invitrogen, 71-2200)被用于被用于免疫组化在African green monkey样本上浓度为1:500 (图 3d). Genes (Basel) (2021) ncbi
domestic rabbit 多克隆(Z-PP9)
  • 免疫细胞化学; 小鼠; 1:300; 图 5e
赛默飞世尔 GJB6抗体(Invitrogen, 71-2200)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 5e). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆(Z-PP9)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3e
赛默飞世尔 GJB6抗体(Zymed, 71-2200)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3e). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆(Z-PP9)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 1a
赛默飞世尔 GJB6抗体(Invitrogen, 71-2200)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 1a). Int J Mol Sci (2018) ncbi
domestic rabbit 多克隆(Z-PP9)
  • 免疫组化; 小鼠; 1:250; 图 1c
赛默飞世尔 GJB6抗体(Invitrogen, 71-2200)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 1c). Nat Commun (2017) ncbi
domestic rabbit 多克隆(Z-PP9)
  • 免疫组化; 小鼠; 图 2l
赛默飞世尔 GJB6抗体(生活技术, 71-2200)被用于被用于免疫组化在小鼠样本上 (图 2l). Stem Cell Reports (2016) ncbi
domestic rabbit 重组(16H9L8)
  • 免疫组化; 小鼠; 1:500; 图 1a
赛默飞世尔 GJB6抗体(Invitrogen, 700258)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1a). Glia (2016) ncbi
domestic rabbit 重组(16H9L8)
  • 免疫沉淀; 小鼠; 图 10
赛默飞世尔 GJB6抗体(生活技术, 700-258)被用于被用于免疫沉淀在小鼠样本上 (图 10). Dev Biol (2016) ncbi
domestic rabbit 多克隆(Z-PP9)
  • 免疫组化-冰冻切片; 小鼠; 1:75
  • 免疫印迹; 小鼠; 1:500; 图 3
赛默飞世尔 GJB6抗体(生活技术, 71-2200)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:75 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 3). Dev Biol (2016) ncbi
domestic rabbit 多克隆(Z-PP9)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 7
赛默飞世尔 GJB6抗体(Invitrogen, 71-2200)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 7). PLoS ONE (2016) ncbi
domestic rabbit 重组(16H9L8)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2
  • 免疫印迹; 小鼠; 1:500; 图 2
赛默飞世尔 GJB6抗体(Invitrogen, 700258)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 2). Glia (2016) ncbi
domestic rabbit 多克隆(Z-PP9)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 6
  • 免疫印迹; 小鼠; 1:250; 图 2
赛默飞世尔 GJB6抗体(Invitrogen, 712200)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 6) 和 被用于免疫印迹在小鼠样本上浓度为1:250 (图 2). Neurobiol Dis (2016) ncbi
domestic rabbit 多克隆(Z-PP9)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 1
赛默飞世尔 GJB6抗体(Invitrogen, 71-2200)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 1). Cell Tissue Res (2016) ncbi
domestic rabbit 多克隆(Z-PP9)
  • 免疫组化-冰冻切片; 人类; 图 3
赛默飞世尔 GJB6抗体(Invitrogen, 71-2200)被用于被用于免疫组化-冰冻切片在人类样本上 (图 3). Int Forum Allergy Rhinol (2016) ncbi
domestic rabbit 多克隆(Z-PP9)
赛默飞世尔 GJB6抗体(Invitrogen, 71 - 2200)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆(Z-PP9)
赛默飞世尔 GJB6抗体(Invitrogen, 71-2200)被用于. J Neurophysiol (2015) ncbi
domestic rabbit 多克隆(Z-PP9)
赛默飞世尔 GJB6抗体(Invitrogen, 71-2200)被用于. J Cell Sci (2015) ncbi
domestic rabbit 多克隆(Z-PP9)
赛默飞世尔 GJB6抗体(生活技术, 712200)被用于. BMC Biol (2015) ncbi
domestic rabbit 多克隆(Z-PP9)
赛默飞世尔 GJB6抗体(Invitrogen, 71-2200)被用于. Hear Res (2015) ncbi
domestic rabbit 多克隆(Z-PP9)
赛默飞世尔 GJB6抗体(Invitrogen, 71-2200)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆(Z-PP9)
赛默飞世尔 GJB6抗体(Invitrogen, 71-2200)被用于. Glia (2015) ncbi
domestic rabbit 多克隆(Z-PP9)
赛默飞世尔 GJB6抗体(Invitrogen Corp, 71-2200)被用于. Neuroscience (2015) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆
  • 免疫组化; 小鼠; 图 1j
艾博抗(上海)贸易有限公司 GJB6抗体(Abcam, ab200866)被用于被用于免疫组化在小鼠样本上 (图 1j). Adv Sci (Weinh) (2021) ncbi
文章列表
  1. Hosoya M, Fujioka M, Murayama A, Ogawa K, Okano H, Ozawa H. Dynamic Spatiotemporal Expression Changes in Connexins of the Developing Primate's Cochlea. Genes (Basel). 2021;12: pubmed 出版商
  2. Wang Y, Su Y, Yu G, Wang X, Chen X, Yu B, et al. Reduced Oligodendrocyte Precursor Cell Impairs Astrocytic Development in Early Life Stress. Adv Sci (Weinh). 2021;8:e2101181 pubmed 出版商
  3. Fukunaga I, Oe Y, Chen C, Danzaki K, Ohta S, Koike A, et al. Activin/Nodal/TGF-β Pathway Inhibitor Accelerates BMP4-Induced Cochlear Gap Junction Formation During in vitro Differentiation of Embryonic Stem Cells. Front Cell Dev Biol. 2021;9:602197 pubmed 出版商
  4. Piantanida A, Acosta L, Brocardo L, Capurro C, Greer C, Rela L. Selective Cre-mediated gene deletion identifies connexin 43 as the main connexin channel supporting olfactory ensheathing cell networks. J Comp Neurol. 2019;527:1278-1289 pubmed 出版商
  5. Chen J, Liang C, Zong L, Zhu Y, Zhao H. Knockout of Pannexin-1 Induces Hearing Loss. Int J Mol Sci. 2018;19: pubmed 出版商
  6. Lukashkina V, Levic S, Lukashkin A, Strenzke N, Russell I. A connexin30 mutation rescues hearing and reveals roles for gap junctions in cochlear amplification and micromechanics. Nat Commun. 2017;8:14530 pubmed 出版商
  7. Fukunaga I, Fujimoto A, Hatakeyama K, Aoki T, Nishikawa A, Noda T, et al. In Vitro Models of GJB2-Related Hearing Loss Recapitulate Ca2+ Transients via a Gap Junction Characteristic of Developing Cochlea. Stem Cell Reports. 2016;7:1023-1036 pubmed 出版商
  8. Augustin V, Bold C, Wadle S, Langer J, Jabs R, Philippot C, et al. Functional anisotropic panglial networks in the lateral superior olive. Glia. 2016;64:1892-911 pubmed 出版商
  9. Dianati E, Poiraud J, Weber Ouellette A, Plante I. Connexins, E-cadherin, Claudin-7 and ?-catenin transiently form junctional nexuses during the post-natal mammary gland development. Dev Biol. 2016;416:52-68 pubmed 出版商
  10. Stewart M, Plante I, Penuela S, Laird D. Loss of Panx1 Impairs Mammary Gland Development at Lactation: Implications for Breast Tumorigenesis. PLoS ONE. 2016;11:e0154162 pubmed 出版商
  11. Almad A, Doreswamy A, Gross S, Richard J, Huo Y, Haughey N, et al. Connexin 43 in astrocytes contributes to motor neuron toxicity in amyotrophic lateral sclerosis. Glia. 2016;64:1154-69 pubmed 出版商
  12. Ramani M, Mylvaganam S, Krawczyk M, Wang L, Zoidl C, Brien J, et al. Differential expression of astrocytic connexins in a mouse model of prenatal alcohol exposure. Neurobiol Dis. 2016;91:83-93 pubmed 出版商
  13. Liu W, Edin F, Blom H, Magnusson P, Schrott Fischer A, Glueckert R, et al. Super-resolution structured illumination fluorescence microscopy of the lateral wall of the cochlea: the Connexin26/30 proteins are separately expressed in man. Cell Tissue Res. 2016;365:13-27 pubmed 出版商
  14. Kim R, Chang G, Hu R, Phillips A, Douglas R. Connexin gap junction channels and chronic rhinosinusitis. Int Forum Allergy Rhinol. 2016;6:611-7 pubmed 出版商
  15. Zhu Y, Zong L, Mei L, Zhao H. Connexin26 gap junction mediates miRNA intercellular genetic communication in the cochlea and is required for inner ear development. Sci Rep. 2015;5:15647 pubmed 出版商
  16. Alstrøm J, Hansen D, Nielsen M, MacAulay N. Isoform-specific phosphorylation-dependent regulation of connexin hemichannels. J Neurophysiol. 2015;114:3014-22 pubmed 出版商
  17. Kelly J, Shao Q, Jagger D, Laird D. Cx30 exhibits unique characteristics including a long half-life when assembled into gap junctions. J Cell Sci. 2015;128:3947-60 pubmed 出版商
  18. Bellesi M, de Vivo L, Tononi G, Cirelli C. Effects of sleep and wake on astrocytes: clues from molecular and ultrastructural studies. BMC Biol. 2015;13:66 pubmed 出版商
  19. Lee M, Takada T, Takada Y, Kappy M, Beyer L, Swiderski D, et al. Mice with conditional deletion of Cx26 exhibit no vestibular phenotype despite secondary loss of Cx30 in the vestibular end organs. Hear Res. 2015;328:102-12 pubmed 出版商
  20. Chen J, Zhu Y, Liang C, Chen J, Zhao H. Pannexin1 channels dominate ATP release in the cochlea ensuring endocochlear potential and auditory receptor potential generation and hearing. Sci Rep. 2015;5:10762 pubmed 出版商
  21. Theotokis P, Kleopa K, Touloumi O, Lagoudaki R, Lourbopoulos A, Nousiopoulou E, et al. Connexin43 and connexin47 alterations after neural precursor cells transplantation in experimental autoimmune encephalomyelitis. Glia. 2015;63:1772-83 pubmed 出版商
  22. Zhu Y, Liang C, Zong L, Chen J, Jones R, Zhao H. Connexin26 (GJB2) deficiency reduces active cochlear amplification leading to late-onset hearing loss. Neuroscience. 2015;284:719-29 pubmed 出版商