这是一篇来自已证抗体库的有关人类 GLUT1的综述,是根据99篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合GLUT1 抗体。
GLUT1 同义词: CSE; DYT17; DYT18; DYT9; EIG12; GLUT; GLUT-1; GLUT1; GLUT1DS; HTLVR; PED; SDCHCN

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR3915)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6a
  • 免疫印迹; 小鼠; 1:10,000; 图 s1
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6a) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 s1). Theranostics (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab652)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). PLoS ONE (2020) ncbi
domestic rabbit 单克隆(EPR3915)
  • 流式细胞仪; 小鼠; 图 5d
艾博抗(上海)贸易有限公司 GLUT1抗体(abcam, ab195020)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab32551)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Hypoxia (Auckl) (2019) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫印迹; 人类; ; 图 4a
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫印迹在人类样本上浓度为 (图 4a). Sci Rep (2019) ncbi
小鼠 单克隆(SPM498)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5c
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5c). Cell Death Dis (2018) ncbi
domestic rabbit 单克隆(EPR3915)
  • 流式细胞仪; 小鼠; 图 1a
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, EPR3915)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Cancer Immunol Immunother (2019) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫印迹; 人类; 图 2e
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫印迹在人类样本上 (图 2e). Int J Cancer (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 s4d
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s4d). EMBO J (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab32551)被用于被用于免疫印迹在人类样本上 (图 2c). Cell Biol Int (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab14683)被用于被用于免疫印迹在人类样本上 (图 1d). Cancer Metab (2017) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫细胞化学; 小鼠; 图 s5e
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, EPR3915)被用于被用于免疫细胞化学在小鼠样本上 (图 s5e). Science (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:50; 图 4d
  • 免疫组化; 小鼠; 1:50; 图 2b
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, Ab15309)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 4d) 和 被用于免疫组化在小鼠样本上浓度为1:50 (图 2b). Hear Res (2017) ncbi
小鼠 单克隆(SPM498)
  • 免疫印迹; 人类; 图 1b
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫印迹在人类样本上 (图 1b). Free Radic Biol Med (2016) ncbi
domestic rabbit 单克隆(EPR3915)
  • 流式细胞仪; 小鼠; 图 3f
  • 免疫印迹; 小鼠; 1:1000; 图 4c-e
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, EPR3915)被用于被用于流式细胞仪在小鼠样本上 (图 3f) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c-e). Genes Cells (2017) ncbi
小鼠 单克隆(SPM498)
  • 免疫印迹; 人类; 1:1000; 图 6b
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, Ab40084)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Front Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 2b
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab652)被用于被用于免疫印迹在大鼠样本上 (图 2b). J Neurosci (2016) ncbi
小鼠 单克隆(SPM498)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 9a
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 9a). Eneuro (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1 ug/ml; 图 2a
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab652)被用于被用于免疫印迹在小鼠样本上浓度为1 ug/ml (图 2a). Aging (Albany NY) (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s6f
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s6f). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3d
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab652)被用于被用于免疫印迹在小鼠样本上 (图 3d). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫细胞化学; 人类; 图 5b
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, 115730)被用于被用于免疫细胞化学在人类样本上 (图 5b). J Cell Biol (2016) ncbi
小鼠 单克隆(SPM498)
  • 免疫印迹; 小鼠; 图 7b
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, 40084)被用于被用于免疫印迹在小鼠样本上 (图 7b). Hum Mol Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s2d
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab65267)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2d). EJNMMI Res (2016) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, EPR3915)被用于被用于免疫印迹在人类样本上. PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:10; 图 1c
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab32551)被用于被用于免疫细胞化学在大鼠样本上浓度为1:10 (图 1c). J Cereb Blood Flow Metab (2016) ncbi
小鼠 单克隆(SPM498)
  • 免疫细胞化学; 大鼠; 1:10; 图 1d
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫细胞化学在大鼠样本上浓度为1:10 (图 1d). J Cereb Blood Flow Metab (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500; 图 1
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309-500)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3b). Arterioscler Thromb Vasc Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 7d
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab652)被用于被用于免疫组化在人类样本上 (图 7d). Onco Targets Ther (2016) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 图 9
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab14683)被用于被用于流式细胞仪在小鼠样本上 (图 9). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫印迹; 人类; 图 5c
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫印迹在人类样本上 (图 5c). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫组化-石蜡切片; 人类; 图 9
  • 免疫印迹; 大鼠; 图 4
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫组化-石蜡切片在人类样本上 (图 9) 和 被用于免疫印迹在大鼠样本上 (图 4). PLoS Pathog (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 2
艾博抗(上海)贸易有限公司 GLUT1抗体(abcam, ab652)被用于被用于免疫组化在人类样本上 (图 2). Cell Rep (2016) ncbi
小鼠 单克隆(SPM498)
  • 免疫印迹; 人类; 图 3b
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, Ab40084)被用于被用于免疫印迹在人类样本上 (图 3b). Mol Metab (2016) ncbi
小鼠 单克隆(SPM498)
  • 免疫组化; 人类; 1:100; 图 3c
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3c). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab 652)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 GLUT1抗体(abcam, 652)被用于被用于免疫印迹在人类样本上 (图 1). J Extracell Vesicles (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:350; 图 5
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab14683)被用于被用于免疫组化在小鼠样本上浓度为1:350 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(SPM498)
  • 免疫印迹; 小鼠; 1:1000; 图 5d
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab-40084)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). EMBO Mol Med (2016) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Cell Sci (2016) ncbi
小鼠 单克隆(SPM498)
  • 免疫细胞化学; 人类; 1:300; 图 3
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 3). Nat Commun (2015) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫组化-石蜡切片; 人类; 图 6
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4g
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab32551)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4g). FASEB J (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s4
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, 652)被用于被用于免疫印迹在人类样本上 (图 s4). Leukemia (2016) ncbi
小鼠 单克隆(SPM498)
  • 免疫细胞化学; 小鼠; 1:200; 图 3
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3). Lab Invest (2015) ncbi
小鼠 单克隆(SPM498)
  • 免疫印迹; 小鼠; 图 3,7,8
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫印迹在小鼠样本上 (图 3,7,8). J Am Heart Assoc (2015) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫印迹; 人类; 1:5000
艾博抗(上海)贸易有限公司 GLUT1抗体(Epitomics, 2944-1)被用于被用于免疫印迹在人类样本上浓度为1:5000. ACS Chem Biol (2014) ncbi
小鼠 单克隆(SPM498)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. J Transl Med (2014) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫印迹在小鼠样本上. J Immunol (2014) ncbi
小鼠 单克隆(SPM498)
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(SPM498)
  • 免疫细胞化学; 人类; 1:100
  • 免疫印迹; 人类; 1:500
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫细胞化学在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上浓度为1:500. Am J Physiol Cell Physiol (2013) ncbi
小鼠 单克隆(SPM498)
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫印迹在大鼠样本上. Lab Anim Res (2012) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1b
  • 免疫印迹; 小鼠; 1:2000; 图 1a
赛默飞世尔 GLUT1抗体(Thermo Fisher, RB-9052-P0)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1b) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1a). Nat Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 仓鼠; 1:500; 图 5a
赛默飞世尔 GLUT1抗体(Thermo scientific, PA1-46152)被用于被用于免疫印迹在仓鼠样本上浓度为1:500 (图 5a). J Photochem Photobiol B (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 1e
赛默飞世尔 GLUT1抗体(Thermo Fischer Scientific, RB-9052)被用于被用于免疫组化在人类样本上 (图 1e). Oncotarget (2016) ncbi
小鼠 单克隆(SPM498)
  • 免疫细胞化学; 人类; 1:100; 图 2
赛默飞世尔 GLUT1抗体(Thermo Scientific, SPM498)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2). Methods (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1a
赛默飞世尔 GLUT1抗体(Thermo Scientific, PA1-46152)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1a). J Neurooncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 GLUT1抗体(THERMO SCIENTIFIC, PA1-46152)被用于被用于免疫印迹在小鼠样本上 (图 1). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(SPM498)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 2
赛默飞世尔 GLUT1抗体(Thermo Fisher Scientific, SPM498)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 2). J Pediatr Hematol Oncol (2016) ncbi
小鼠 单克隆(SPM498)
  • 免疫组化-冰冻切片; 人类
赛默飞世尔 GLUT1抗体(Thermo Scientific, SPM498)被用于被用于免疫组化-冰冻切片在人类样本上. J Neurochem (2015) ncbi
小鼠 单克隆(SPM498)
  • 抑制或激活实验; 人类
赛默飞世尔 GLUT1抗体(Pierce, MA1-37783)被用于被用于抑制或激活实验在人类样本上. Nanomedicine (2015) ncbi
小鼠 单克隆(SPM498)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 GLUT1抗体(Thermo Scientific, SPM498)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Hum Pathol (2014) ncbi
小鼠 单克隆(SPM498)
  • 免疫细胞化学; 人类; 1:50
赛默飞世尔 GLUT1抗体(Thermo-Fisher, SPM498)被用于被用于免疫细胞化学在人类样本上浓度为1:50. Clin Cancer Res (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(A-4)
  • 免疫印迹; 人类; 1:1000; 图 6a
圣克鲁斯生物技术 GLUT1抗体(Santa Cruz, sc-377228)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Biomed Res Int (2019) ncbi
小鼠 单克隆(A-4)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
圣克鲁斯生物技术 GLUT1抗体(Santa Cruz, sc-377228)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Mol Med Rep (2016) ncbi
武汉三鹰
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
武汉三鹰 GLUT1抗体(Proteintech Group, 21829-1-AP)被用于被用于免疫印迹在人类样本上 (图 2b). Autophagy (2019) ncbi
小鼠 单克隆(2A5A2)
  • 免疫印迹; 人类; 图 6k
武汉三鹰 GLUT1抗体(Proteintech, 66290-1-lg)被用于被用于免疫印迹在人类样本上 (图 6k). Cell Death Dis (2018) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7b
Novus Biologicals GLUT1抗体(Novus Biologicals, NB110-39113)被用于被用于免疫印迹在小鼠样本上 (图 7b). J Cell Biochem (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1d
Novus Biologicals GLUT1抗体(Novus Biologicals, NB300-666)被用于被用于免疫细胞化学在人类样本上 (图 1d). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 1:200; 图 7a
Novus Biologicals GLUT1抗体(Novus Biologicals, NB300666)被用于被用于免疫组化在斑马鱼样本上浓度为1:200 (图 7a). Development (2016) ncbi
安迪生物R&D
小鼠 单克隆(202915)
  • 免疫组化-冰冻切片; Atlantic cod; 20 ug/ml; 图 7c
  • 免疫印迹; Atlantic cod; 2 ug/ml; 图 8a
安迪生物R&D GLUT1抗体(R&D Systems, MAB1418)被用于被用于免疫组化-冰冻切片在Atlantic cod样本上浓度为20 ug/ml (图 7c) 和 被用于免疫印迹在Atlantic cod样本上浓度为2 ug/ml (图 8a). J Exp Biol (2016) ncbi
小鼠 单克隆(202915)
  • 流式细胞仪; 人类; 图 8a
安迪生物R&D GLUT1抗体(R&D Systems, FAB1418P)被用于被用于流式细胞仪在人类样本上 (图 8a). Eur J Cell Biol (2016) ncbi
GeneTex
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 6
GeneTex GLUT1抗体(GeneTex, GTX100684)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6). J Clin Invest (2016) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4a
西格玛奥德里奇 GLUT1抗体(Sigma, SAB 4502803)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a). Mol Neurobiol (2017) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D3J3A)
  • 免疫印迹; 人类; 图 4j
赛信通(上海)生物试剂有限公司 GLUT1抗体(CST, 12939)被用于被用于免疫印迹在人类样本上 (图 4j). Sci Adv (2020) ncbi
domestic rabbit 单克隆(D3J3A)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 GLUT1抗体(CST, 129395)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). PLoS ONE (2020) ncbi
domestic rabbit 单克隆(D3J3A)
  • 免疫印迹; 小鼠; 图 s13g
赛信通(上海)生物试剂有限公司 GLUT1抗体(CST, 12939S)被用于被用于免疫印迹在小鼠样本上 (图 s13g). Science (2019) ncbi
domestic rabbit 单克隆(D3J3A)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 GLUT1抗体(Cell Signaling, D3J3A)被用于被用于免疫印迹在人类样本上 (图 2d). Nature (2018) ncbi
domestic rabbit 单克隆(D3J3A)
  • 免疫印迹; 人类; 1:1000; 图 ex3f
赛信通(上海)生物试剂有限公司 GLUT1抗体(Cell Signaling, 12939)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 ex3f). Nature (2018) ncbi
domestic rabbit 单克隆(D3J3A)
  • 免疫细胞化学; 小鼠; 图 5c
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 GLUT1抗体(Cell Signaling, 12939)被用于被用于免疫细胞化学在小鼠样本上 (图 5c) 和 被用于免疫印迹在小鼠样本上 (图 5a). Redox Biol (2017) ncbi
domestic rabbit 单克隆(D3J3A)
  • 免疫印迹; 人类; 图 1a
  • 免疫印迹; 小鼠; 图 s3d
赛信通(上海)生物试剂有限公司 GLUT1抗体(Cell Signaling, 12939)被用于被用于免疫印迹在人类样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 s3d). Nature (2017) ncbi
domestic rabbit 单克隆(D3J3A)
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 GLUT1抗体(cell signalling, 12939)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D3J3A)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 GLUT1抗体(Cell Signaling Technology, D3J3A)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2016) ncbi
默克密理博中国
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 1i
默克密理博中国 GLUT1抗体(Millipore, 07-1401)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1i). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200
默克密理博中国 GLUT1抗体(Millipore, 07-C1401)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s5d
默克密理博中国 GLUT1抗体(Millipore, 07-1401)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s5d). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s4e
默克密理博中国 GLUT1抗体(EMD Millipore, 07-1401)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4e). Nat Cell Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1e
默克密理博中国 GLUT1抗体(Millipore, 07-1401)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Nat Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 6f
默克密理博中国 GLUT1抗体(EMD Millipore, 07-1401)被用于被用于免疫组化在小鼠样本上 (图 6f). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:400; 图 s4a
默克密理博中国 GLUT1抗体(Millipore, 07-1401)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:400 (图 s4a). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 4d
默克密理博中国 GLUT1抗体(Millipore, 07-1401)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4d). Neoplasia (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 3
默克密理博中国 GLUT1抗体(Millipore, 07-1401)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠
默克密理博中国 GLUT1抗体(Millipore, 07-1401)被用于被用于免疫组化-石蜡切片在小鼠样本上. Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
默克密理博中国 GLUT1抗体(Merck Millipore, 07?C1401)被用于被用于免疫印迹在人类样本上 (图 3). J Clin Endocrinol Metab (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
默克密理博中国 GLUT1抗体(EMD Millipore, 07-1401)被用于被用于免疫印迹在小鼠样本上 (图 1). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
默克密理博中国 GLUT1抗体(Millipore, 07-1401)被用于被用于免疫印迹在人类样本上 (图 1). Int J Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 s6
默克密理博中国 GLUT1抗体(Millipore, 07-1401)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s6). J Control Release (2016) ncbi
小鼠 单克隆(5B12.3)
  • 免疫组化; 大鼠
  • 免疫组化; 小鼠
默克密理博中国 GLUT1抗体(Millipore, MABS132)被用于被用于免疫组化在大鼠样本上 和 被用于免疫组化在小鼠样本上. Fluids Barriers CNS (2015) ncbi
小鼠 单克隆(5B12.3)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 4
默克密理博中国 GLUT1抗体(EMD Millipore, MABS132)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). Fluids Barriers CNS (2015) ncbi
文章列表
  1. Facchin C, Pérez Liva M, Garofalakis A, Viel T, Certain A, Balvay D, et al. Concurrent imaging of vascularization and metabolism in a mouse model of paraganglioma under anti-angiogenic treatment. Theranostics. 2020;10:3518-3532 pubmed 出版商
  2. Aldonza M, Ku J, Hong J, Kim D, Yu S, Lee M, et al. Prior acquired resistance to paclitaxel relays diverse EGFR-targeted therapy persistence mechanisms. Sci Adv. 2020;6:eaav7416 pubmed 出版商
  3. Potilinski M, Ortiz G, Salica J, Lopez E, Fernández Acquier M, Chuluyan E, et al. Elucidating the mechanism of action of alpha-1-antitrypsin using retinal pigment epithelium cells exposed to high glucose. Potential use in diabetic retinopathy. PLoS ONE. 2020;15:e0228895 pubmed 出版商
  4. Moya I, Castaldo S, Van den Mooter L, Soheily S, Sansores Garcia L, Jacobs J, et al. Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science. 2019;366:1029-1034 pubmed 出版商
  5. Nagai M, Noguchi R, Takahashi D, Morikawa T, Koshida K, Komiyama S, et al. Fasting-Refeeding Impacts Immune Cell Dynamics and Mucosal Immune Responses. Cell. 2019;178:1072-1087.e14 pubmed 出版商
  6. Diéguez Hurtado R, Kato K, Giaimo B, Nieminen Kelhä M, Arf H, Ferrante F, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10:2817 pubmed 出版商
  7. Wohlrab C, Kuiper C, Vissers M, Phillips E, Robinson B, Dachs G. Ascorbate modulates the hypoxic pathway by increasing intracellular activity of the HIF hydroxylases in renal cell carcinoma cells. Hypoxia (Auckl). 2019;7:17-31 pubmed 出版商
  8. Yang H, Shen J, Wang Y, Liu Y, Shen D, Quan S. Tankyrase Promotes Aerobic Glycolysis and Proliferation of Ovarian Cancer through Activation of Wnt/β-Catenin Signaling. Biomed Res Int. 2019;2019:2686340 pubmed 出版商
  9. Huang X, Gan G, Wang X, Xu T, Xie W. The HGF-MET axis coordinates liver cancer metabolism and autophagy for chemotherapeutic resistance. Autophagy. 2019;15:1258-1279 pubmed 出版商
  10. Oliveira H, Roma Rodrigues C, Santos A, Veigas B, Brás N, Faria A, et al. GLUT1 and GLUT3 involvement in anthocyanin gastric transport- Nanobased targeted approach. Sci Rep. 2019;9:789 pubmed 出版商
  11. Gerber D, Ghidinelli M, Tinelli E, Somandin C, Gerber J, Pereira J, et al. Schwann cells, but not Oligodendrocytes, Depend Strictly on Dynamin 2 Function. elife. 2019;8: pubmed 出版商
  12. Gorth D, Shapiro I, Risbud M. Transgenic mice overexpressing human TNF-α experience early onset spontaneous intervertebral disc herniation in the absence of overt degeneration. Cell Death Dis. 2018;10:7 pubmed 出版商
  13. Song M, Sandoval T, Chae C, Chopra S, Tan C, Rutkowski M, et al. IRE1α-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature. 2018;562:423-428 pubmed 出版商
  14. Qiao G, Bucsek M, Winder N, Chen M, Giridharan T, Olejniczak S, et al. β-Adrenergic signaling blocks murine CD8+ T-cell metabolic reprogramming during activation: a mechanism for immunosuppression by adrenergic stress. Cancer Immunol Immunother. 2019;68:11-22 pubmed 出版商
  15. Segarra M, Aburto M, Cop F, Llaó Cid C, Härtl R, Damm M, et al. Endothelial Dab1 signaling orchestrates neuro-glia-vessel communication in the central nervous system. Science. 2018;361: pubmed 出版商
  16. Rapino F, Delaunay S, Rambow F, Zhou Z, Tharun L, de Tullio P, et al. Codon-specific translation reprogramming promotes resistance to targeted therapy. Nature. 2018;558:605-609 pubmed 出版商
  17. Chhipa R, Fan Q, Anderson J, Muraleedharan R, Huang Y, Ciraolo G, et al. AMP kinase promotes glioblastoma bioenergetics and tumour growth. Nat Cell Biol. 2018;20:823-835 pubmed 出版商
  18. Zhang Z, Zi Z, Lee E, Zhao J, Contreras D, South A, et al. Differential glucose requirement in skin homeostasis and injury identifies a therapeutic target for psoriasis. Nat Med. 2018;24:617-627 pubmed 出版商
  19. Xiang J, Hu Q, Qin Y, Ji S, Xu W, Liu W, et al. TCF7L2 positively regulates aerobic glycolysis via the EGLN2/HIF-1α axis and indicates prognosis in pancreatic cancer. Cell Death Dis. 2018;9:321 pubmed 出版商
  20. Qu S, Xue H, Dong X, Lin D, Wu R, Nabavi N, et al. Aneustat (OMN54) has aerobic glycolysis-inhibitory activity and also immunomodulatory activity as indicated by a first-generation PDX prostate cancer model. Int J Cancer. 2018;143:419-429 pubmed 出版商
  21. Jimenez Orgaz A, Kvainickas A, Nägele H, Denner J, Eimer S, Dengjel J, et al. Control of RAB7 activity and localization through the retromer-TBC1D5 complex enables RAB7-dependent mitophagy. EMBO J. 2018;37:235-254 pubmed 出版商
  22. Zhang R, Li J, Yan X, Jin K, Li W, Xu J, et al. SODD promotes glucose uptake of colorectal cancer cells via AKT pathway. Cell Biol Int. 2017;: pubmed 出版商
  23. Mai W, Gosa L, Daniëls V, Ta L, Tsang J, Higgins B, et al. Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma. Nat Med. 2017;23:1342-1351 pubmed 出版商
  24. Kim J, Kim Y, Kim J, Park D, Bae H, Lee D, et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest. 2017;127:3441-3461 pubmed 出版商
  25. Miikkulainen P, Högel H, Rantanen K, Suomi T, Kouvonen P, Elo L, et al. HIF prolyl hydroxylase PHD3 regulates translational machinery and glucose metabolism in clear cell renal cell carcinoma. Cancer Metab. 2017;5:5 pubmed 出版商
  26. Ip W, Hoshi N, Shouval D, Snapper S, Medzhitov R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science. 2017;356:513-519 pubmed 出版商
  27. Yanagida K, Liu C, Faraco G, Galvani S, Smith H, Burg N, et al. Size-selective opening of the blood-brain barrier by targeting endothelial sphingosine 1-phosphate receptor 1. Proc Natl Acad Sci U S A. 2017;114:4531-4536 pubmed 出版商
  28. Azzalin A, Nato G, Parmigiani E, Garello F, Buffo A, Magrassi L. Inhibitors of GLUT/SLC2A Enhance the Action of BCNU and Temozolomide against High-Grade Gliomas. Neoplasia. 2017;19:364-373 pubmed 出版商
  29. Prasad S, Sajja R, Kaisar M, Park J, Villalba H, Liles T, et al. Role of Nrf2 and protective effects of Metformin against tobacco smoke-induced cerebrovascular toxicity. Redox Biol. 2017;12:58-69 pubmed 出版商
  30. Chan L, Chen Z, Braas D, Lee J, Xiao G, Geng H, et al. Metabolic gatekeeper function of B-lymphoid transcription factors. Nature. 2017;542:479-483 pubmed 出版商
  31. Zhang J, Chen S, Cai J, Hou Z, Wang X, Kachelmeier A, et al. Culture media-based selection of endothelial cells, pericytes, and perivascular-resident macrophage-like melanocytes from the young mouse vestibular system. Hear Res. 2017;345:10-22 pubmed 出版商
  32. Zeng C, Wu Q, Wang J, Yao B, Ma L, Yang Z, et al. NOX4 supports glycolysis and promotes glutamine metabolism in non-small cell lung cancer cells. Free Radic Biol Med. 2016;101:236-248 pubmed 出版商
  33. Tanegashima K, Sato Miyata Y, Funakoshi M, Nishito Y, Aigaki T, Hara T. Epigenetic regulation of the glucose transporter gene Slc2a1 by ?-hydroxybutyrate underlies preferential glucose supply to the brain of fasted mice. Genes Cells. 2017;22:71-83 pubmed 出版商
  34. Li Y, Li X, Kan Q, Zhang M, Li X, Xu R, et al. Mitochondrial pyruvate carrier function is negatively linked to Warburg phenotype in vitro and malignant features in esophageal squamous cell carcinomas. Oncotarget. 2017;8:1058-1073 pubmed 出版商
  35. Prieto P, Fernandez Velasco M, Fernández Santos M, Sanchez P, Terrón V, Martín Sanz P, et al. Cell Expansion-Dependent Inflammatory and Metabolic Profile of Human Bone Marrow Mesenchymal Stem Cells. Front Physiol. 2016;7:548 pubmed
  36. Pearson Leary J, McNay E. Novel Roles for the Insulin-Regulated Glucose Transporter-4 in Hippocampally Dependent Memory. J Neurosci. 2016;36:11851-11864 pubmed
  37. Kühnel E, Kleff V, Stojanovska V, Kaiser S, Waldschütz R, Herse F, et al. Placental-Specific Overexpression of sFlt-1 Alters Trophoblast Differentiation and Nutrient Transporter Expression in an IUGR Mouse Model. J Cell Biochem. 2017;118:1316-1329 pubmed 出版商
  38. Kalyan Masih P, Vega Torres J, Miles C, Haddad E, Rainsbury S, Baghchechi M, et al. Western High-Fat Diet Consumption during Adolescence Increases Susceptibility to Traumatic Stress while Selectively Disrupting Hippocampal and Ventricular Volumes. Eneuro. 2016;3: pubmed
  39. Verma R, Haldar C. Photoperiodic modulation of thyroid hormone receptor (TR-?), deiodinase-2 (Dio-2) and glucose transporters (GLUT 1 and GLUT 4) expression in testis of adult golden hamster, Mesocricetus auratus. J Photochem Photobiol B. 2016;165:351-358 pubmed 出版商
  40. Parikh I, Guo J, Chuang K, Zhong Y, Rempe R, Hoffman J, et al. Caloric restriction preserves memory and reduces anxiety of aging mice with early enhancement of neurovascular functions. Aging (Albany NY). 2016;8:2814-2826 pubmed 出版商
  41. Chruvattil R, Banerjee S, Nath S, Machhi J, Kharkwal G, Yadav M, et al. Dexamethasone Alters the Appetite Regulation via Induction of Hypothalamic Insulin Resistance in Rat Brain. Mol Neurobiol. 2017;54:7483-7496 pubmed 出版商
  42. Kim S, Roy S, Chen B, Nguyen T, McMonigle R, McCracken A, et al. Targeting cancer metabolism by simultaneously disrupting parallel nutrient access pathways. J Clin Invest. 2016;126:4088-4102 pubmed 出版商
  43. Lacroix M, Rodier G, Kirsh O, Houles T, Delpech H, Seyran B, et al. E4F1 controls a transcriptional program essential for pyruvate dehydrogenase activity. Proc Natl Acad Sci U S A. 2016;113:10998-1003 pubmed 出版商
  44. Coleman S, Rebalka I, D Souza D, Deodhare N, Desjardins E, Hawke T. Myostatin inhibition therapy for insulin-deficient type 1 diabetes. Sci Rep. 2016;6:32495 pubmed 出版商
  45. McMillan K, Gallon M, Jellett A, Clairfeuille T, Tilley F, McGough I, et al. Atypical parkinsonism-associated retromer mutant alters endosomal sorting of specific cargo proteins. J Cell Biol. 2016;214:389-99 pubmed 出版商
  46. Zhang L, Justus S, Xu Y, Pluchenik T, Hsu C, Yang J, et al. Reprogramming towards anabolism impedes degeneration in a preclinical model of retinitis pigmentosa. Hum Mol Genet. 2016;25:4244-4255 pubmed 出版商
  47. Maynard J, Emmas S, Blé F, Barjat H, Lawrie E, Hancox U, et al. The use of (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) as a pathway-specific biomarker with AZD8186, a PI3K?/? inhibitor. EJNMMI Res. 2016;6:62 pubmed 出版商
  48. Khanom R, Nguyen C, Kayamori K, Zhao X, Morita K, Miki Y, et al. Keratin 17 Is Induced in Oral Cancer and Facilitates Tumor Growth. PLoS ONE. 2016;11:e0161163 pubmed 出版商
  49. Busse B, Bezrukov L, Blank P, Zimmerberg J. Resin embedded multicycle imaging (REMI): a tool to evaluate protein domains. Sci Rep. 2016;6:30284 pubmed 出版商
  50. Johansson E, Rönö B, Johansson M, Lindgren D, Möller C, Axelson H, et al. Simultaneous targeted activation of Notch1 and Vhl-disruption in the kidney proximal epithelial tubular cells in mice. Sci Rep. 2016;6:30739 pubmed 出版商
  51. Tome M, Herndon J, Schaefer C, Jacobs L, Zhang Y, Jarvis C, et al. P-glycoprotein traffics from the nucleus to the plasma membrane in rat brain endothelium during inflammatory pain. J Cereb Blood Flow Metab. 2016;36:1913-1928 pubmed
  52. Li Y, Li X, Li X, Zhong Y, Ji Y, Yu D, et al. PDHA1 gene knockout in prostate cancer cells results in metabolic reprogramming towards greater glutamine dependence. Oncotarget. 2016;7:53837-53852 pubmed 出版商
  53. Martins S, Amorim R, Viana Pereira M, Pinheiro C, Costa R, Silva P, et al. Significance of glycolytic metabolism-related protein expression in colorectal cancer, lymph node and hepatic metastasis. BMC Cancer. 2016;16:535 pubmed 出版商
  54. Aarup A, Pedersen T, Junker N, Christoffersen C, Bartels E, Madsen M, et al. Hypoxia-Inducible Factor-1? Expression in Macrophages Promotes Development of Atherosclerosis. Arterioscler Thromb Vasc Biol. 2016;36:1782-90 pubmed 出版商
  55. Yan Y, Xie M, Zhang L, Zhou X, Xie H, Zhou L, et al. Ras-related associated with diabetes gene acts as a suppressor and inhibits Warburg effect in hepatocellular carcinoma. Onco Targets Ther. 2016;9:3925-37 pubmed 出版商
  56. Clow K, Short C, Hall J, Gendron R, Paradis H, Ralhan A, et al. High rates of glucose utilization in the gas gland of Atlantic cod (Gadus morhua) are supported by GLUT1 and HK1b. J Exp Biol. 2016;219:2763-73 pubmed 出版商
  57. Saha A, O Connor R, Thangavelu G, Lovitch S, Dandamudi D, Wilson C, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126:2642-60 pubmed 出版商
  58. Xu Y, Chaudhury A, Zhang M, Savoldo B, Metelitsa L, Rodgers J, et al. Glycolysis determines dichotomous regulation of T cell subsets in hypoxia. J Clin Invest. 2016;126:2678-88 pubmed 出版商
  59. Zhu Y, Ramos da Silva S, He M, Liang Q, Lu C, Feng P, et al. An Oncogenic Virus Promotes Cell Survival and Cellular Transformation by Suppressing Glycolysis. PLoS Pathog. 2016;12:e1005648 pubmed 出版商
  60. Jiménez Valerio G, Martínez Lozano M, Bassani N, Vidal A, Ochoa de Olza M, Suarez C, et al. Resistance to Antiangiogenic Therapies by Metabolic Symbiosis in Renal Cell Carcinoma PDX Models and Patients. Cell Rep. 2016;15:1134-43 pubmed 出版商
  61. Barquissau V, Beuzelin D, Pisani D, Beranger G, Mairal A, Montagner A, et al. White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways. Mol Metab. 2016;5:352-365 pubmed 出版商
  62. Bourseau Guilmain E, Menard J, Lindqvist E, Indira Chandran V, Christianson H, Cerezo Magaña M, et al. Hypoxia regulates global membrane protein endocytosis through caveolin-1 in cancer cells. Nat Commun. 2016;7:11371 pubmed 出版商
  63. Pires A, Marques C, Encarnação J, Abrantes A, Mamede A, Laranjo M, et al. Ascorbic acid and colon cancer: an oxidative stimulus to cell death depending on cell profile. Eur J Cell Biol. 2016;95:208-18 pubmed 出版商
  64. Kim D, Bynoe M. A2A adenosine receptor modulates drug efflux transporter P-glycoprotein at the blood-brain barrier. J Clin Invest. 2016;126:1717-33 pubmed 出版商
  65. Hansen N, Hjort L, Broholm C, Gillberg L, Schrölkamp M, Schultz H, et al. Metabolic and Transcriptional Changes in Cultured Muscle Stem Cells from Low Birth Weight Subjects. J Clin Endocrinol Metab. 2016;101:2254-64 pubmed 出版商
  66. Peteranderl C, Morales Nebreda L, Selvakumar B, Lecuona E, Vadász I, Morty R, et al. Macrophage-epithelial paracrine crosstalk inhibits lung edema clearance during influenza infection. J Clin Invest. 2016;126:1566-80 pubmed 出版商
  67. Jennewein L, Ronellenfitsch M, Antonietti P, Ilina E, Jung J, Stadel D, et al. Diagnostic and clinical relevance of the autophago-lysosomal network in human gliomas. Oncotarget. 2016;7:20016-32 pubmed 出版商
  68. Ronquist K, Sanchez C, Dubois L, Chioureas D, Fonseca P, Larsson A, et al. Energy-requiring uptake of prostasomes and PC3 cell-derived exosomes into non-malignant and malignant cells. J Extracell Vesicles. 2016;5:29877 pubmed 出版商
  69. Ruf M, Moch H, Schraml P. PD-L1 expression is regulated by hypoxia inducible factor in clear cell renal cell carcinoma. Int J Cancer. 2016;139:396-403 pubmed 出版商
  70. Van Woensel M, Wauthoz N, Rosière R, Mathieu V, Kiss R, Lefranc F, et al. Development of siRNA-loaded chitosan nanoparticles targeting Galectin-1 for the treatment of glioblastoma multiforme via intranasal administration. J Control Release. 2016;227:71-81 pubmed 出版商
  71. Espana Agusti J, Zou X, Wong K, Fu B, Yang F, Tuveson D, et al. Generation and Characterisation of a Pax8-CreERT2 Transgenic Line and a Slc22a6-CreERT2 Knock-In Line for Inducible and Specific Genetic Manipulation of Renal Tubular Epithelial Cells. PLoS ONE. 2016;11:e0148055 pubmed 出版商
  72. Wang P, Li L, Zhang Z, Kan Q, Chen S, Gao F. Time-dependent homeostasis between glucose uptake and consumption in astrocytes exposed to CoClâ‚‚ treatment. Mol Med Rep. 2016;13:2909-17 pubmed 出版商
  73. Albert V, Svensson K, Shimobayashi M, Colombi M, Munoz S, Jimenez V, et al. mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue. EMBO Mol Med. 2016;8:232-46 pubmed 出版商
  74. Chen K, Zeng J, Xiao H, Huang C, Hu J, Yao W, et al. Regulation of glucose metabolism by p62/SQSTM1 through HIF1α. J Cell Sci. 2016;129:817-30 pubmed 出版商
  75. Ulrich F, Carretero Ortega J, Menendez J, Narvaez C, Sun B, Lancaster E, et al. Reck enables cerebrovascular development by promoting canonical Wnt signaling. Development. 2016;143:147-59 pubmed 出版商
  76. Weijer R, Broekgaarden M, Krekorian M, Alles L, van Wijk A, Mackaaij C, et al. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy. Oncotarget. 2016;7:3341-56 pubmed 出版商
  77. Miura S, Sato K, Kato Negishi M, Teshima T, Takeuchi S. Fluid shear triggers microvilli formation via mechanosensitive activation of TRPV6. Nat Commun. 2015;6:8871 pubmed 出版商
  78. Stebbins M, Wilson H, Canfield S, Qian T, Palecek S, Shusta E. Differentiation and characterization of human pluripotent stem cell-derived brain microvascular endothelial cells. Methods. 2016;101:93-102 pubmed 出版商
  79. Taïeb D, Barlier A, Yang C, Pertuit M, Tchoghandjian A, Rochette C, et al. Somatic gain-of-function HIF2A mutations in sporadic central nervous system hemangioblastomas. J Neurooncol. 2016;126:473-81 pubmed 出版商
  80. Qin W, Li C, Zheng W, Guo Q, Zhang Y, Kang M, et al. Inhibition of autophagy promotes metastasis and glycolysis by inducing ROS in gastric cancer cells. Oncotarget. 2015;6:39839-54 pubmed 出版商
  81. Pinel A, Rigaudière J, Laillet B, Pouyet C, Malpuech Brugère C, Prip Buus C, et al. N-3PUFA differentially modulate palmitate-induced lipotoxicity through alterations of its metabolism in C2C12 muscle cells. Biochim Biophys Acta. 2016;1861:12-20 pubmed 出版商
  82. Wittmann G, Mohácsik P, Balkhi M, Gereben B, Lechan R. Endotoxin-induced inflammation down-regulates L-type amino acid transporter 1 (LAT1) expression at the blood-brain barrier of male rats and mice. Fluids Barriers CNS. 2015;12:21 pubmed 出版商
  83. Sharma B, Kolhe R, Black S, Keller J, Mivechi N, Satyanarayana A. Inhibitor of differentiation 1 transcription factor promotes metabolic reprogramming in hepatocellular carcinoma cells. FASEB J. 2016;30:262-75 pubmed 出版商
  84. Kong G, Hofman M, Murray W, Wilson S, Wood P, Downie P, et al. Initial Experience With Gallium-68 DOTA-Octreotate PET/CT and Peptide Receptor Radionuclide Therapy for Pediatric Patients With Refractory Metastatic Neuroblastoma. J Pediatr Hematol Oncol. 2016;38:87-96 pubmed 出版商
  85. Hermanova I, Arruabarrena Aristorena A, Valis K, Nůsková H, Alberich Jorda M, Fiser K, et al. Pharmacological inhibition of fatty-acid oxidation synergistically enhances the effect of l-asparaginase in childhood ALL cells. Leukemia. 2016;30:209-18 pubmed 出版商
  86. Prasad S, Sajja R, Park J, Naik P, Kaisar M, Cucullo L. Impact of cigarette smoke extract and hyperglycemic conditions on blood-brain barrier endothelial cells. Fluids Barriers CNS. 2015;12:18 pubmed 出版商
  87. Tsuneki M, Hardee S, Michaud M, Morotti R, Lavik E, Madri J. A hydrogel-endothelial cell implant mimics infantile hemangioma: modulation by survivin and the Hippo pathway. Lab Invest. 2015;95:765-80 pubmed 出版商
  88. Uchida Y, Ito K, Ohtsuki S, Kubo Y, Suzuki T, Terasaki T. Major involvement of Na(+) -dependent multivitamin transporter (SLC5A6/SMVT) in uptake of biotin and pantothenic acid by human brain capillary endothelial cells. J Neurochem. 2015;134:97-112 pubmed 出版商
  89. Schisler J, Grevengoed T, Pascual F, Cooper D, Ellis J, Paul D, et al. Cardiac energy dependence on glucose increases metabolites related to glutathione and activates metabolic genes controlled by mechanistic target of rapamycin. J Am Heart Assoc. 2015;4: pubmed 出版商
  90. Sohn C, Park S, Choi S, Park S, Kim S, Xu L, et al. MRI molecular imaging using GLUT1 antibody-Fe3O4 nanoparticles in the hemangioma animal model for differentiating infantile hemangioma from vascular malformation. Nanomedicine. 2015;11:127-35 pubmed 出版商
  91. Cao Y, Rathmell J, Macintyre A. Metabolic reprogramming towards aerobic glycolysis correlates with greater proliferative ability and resistance to metabolic inhibition in CD8 versus CD4 T cells. PLoS ONE. 2014;9:e104104 pubmed 出版商
  92. Adams D, Ito D, Rees M, Seashore Ludlow B, Puyang X, Ramos A, et al. NAMPT is the cellular target of STF-31-like small-molecule probes. ACS Chem Biol. 2014;9:2247-54 pubmed 出版商
  93. Duregon E, Rapa I, Votta A, Giorcelli J, Daffara F, Terzolo M, et al. MicroRNA expression patterns in adrenocortical carcinoma variants and clinical pathologic correlations. Hum Pathol. 2014;45:1555-62 pubmed 出版商
  94. Nogueira A, Sogayar M, Colquhoun A, Siqueira S, Nogueira A, Marchiori P, et al. Existence of a potential neurogenic system in the adult human brain. J Transl Med. 2014;12:75 pubmed 出版商
  95. Caro Maldonado A, Wang R, Nichols A, Kuraoka M, Milasta S, Sun L, et al. Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J Immunol. 2014;192:3626-36 pubmed 出版商
  96. Malin D, Strekalova E, Petrovic V, Deal A, Al Ahmad A, Adamo B, et al. ?B-crystallin: a novel regulator of breast cancer metastasis to the brain. Clin Cancer Res. 2014;20:56-67 pubmed 出版商
  97. Morato P, Lollo P, Moura C, Batista T, Camargo R, Carneiro E, et al. Whey protein hydrolysate increases translocation of GLUT-4 to the plasma membrane independent of insulin in wistar rats. PLoS ONE. 2013;8:e71134 pubmed 出版商
  98. Pyla R, Poulose N, Jun J, Segar L. Expression of conventional and novel glucose transporters, GLUT1, -9, -10, and -12, in vascular smooth muscle cells. Am J Physiol Cell Physiol. 2013;304:C574-89 pubmed 出版商
  99. Kim J, Hwang I, Choi S, Lee H, Lee Y, Goo J, et al. Aqueous extract of Liriope platyphylla, a traditional Chinese medicine, significantly inhibits abdominal fat accumulation and improves glucose regulation in OLETF type II diabetes model rats. Lab Anim Res. 2012;28:181-91 pubmed 出版商