这是一篇来自已证抗体库的有关人类 GLUT1的综述,是根据96篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合GLUT1 抗体。
GLUT1 同义词: CSE; DYT17; DYT18; DYT9; EIG12; GLUT; GLUT-1; GLUT1; GLUT1DS; HTLVR; PED; SDCHCN; solute carrier family 2, facilitated glucose transporter member 1; choreoathetosis/spasticity, episodic (paroxysmal choreoathetosis/spasticity); glucose transporter type 1, erythrocyte/brain; hepG2 glucose transporter; human T-cell leukemia virus (I and II) receptor; receptor for HTLV-1 and HTLV-2; solute carrier family 2 (facilitated glucose transporter), member 1

艾博抗(上海)贸易有限公司
兔 单克隆(EPR3915)
  • 流式细胞仪; 小鼠; 图 1a
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, EPR3915)被用于被用于流式细胞仪在小鼠样品上 (图 1a). Cancer Immunol Immunother (2019) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 s4d
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 s4d). EMBO J (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab14683)被用于被用于免疫印迹在人类样品上 (图 1d). Cancer Metab (2017) ncbi
兔 单克隆(EPR3915)
  • 免疫细胞化学; 小鼠; 图 s5e
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, EPR3915)被用于被用于免疫细胞化学在小鼠样品上 (图 s5e). Science (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:50; 图 4d
  • 免疫组化; 小鼠; 1:50; 图 2b
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, Ab15309)被用于被用于免疫细胞化学在小鼠样品上浓度为1:50 (图 4d) 和 被用于免疫组化在小鼠样品上浓度为1:50 (图 2b). Hear Res (2017) ncbi
小鼠 单克隆(SPM498)
  • 免疫印迹; 人类; 图 1b
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫印迹在人类样品上 (图 1b). Free Radic Biol Med (2016) ncbi
兔 单克隆(EPR3915)
  • 流式细胞仪; 小鼠; 图 3f
  • 免疫印迹; 小鼠; 1:1000; 图 4c-e
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, EPR3915)被用于被用于流式细胞仪在小鼠样品上 (图 3f) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 4c-e). Genes Cells (2017) ncbi
小鼠 单克隆(SPM498)
  • 免疫印迹; 人类; 1:1000; 图 6b
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, Ab40084)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 6b). Front Physiol (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 2b
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab652)被用于被用于免疫印迹在大鼠样品上 (图 2b). J Neurosci (2016) ncbi
小鼠 单克隆(SPM498)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 9a
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000 (图 9a). Eneuro (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1 ug/ml; 图 2a
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab652)被用于被用于免疫印迹在小鼠样品上浓度为1 ug/ml (图 2a). Aging (Albany NY) (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s6f
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 s6f). Proc Natl Acad Sci U S A (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3d
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab652)被用于被用于免疫印迹在小鼠样品上 (图 3d). Sci Rep (2016) ncbi
兔 单克隆(EPR3915)
  • 免疫细胞化学; 人类; 图 5b
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, 115730)被用于被用于免疫细胞化学在人类样品上 (图 5b). J Cell Biol (2016) ncbi
小鼠 单克隆(SPM498)
  • 免疫印迹; 小鼠; 图 7b
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, 40084)被用于被用于免疫印迹在小鼠样品上 (图 7b). Hum Mol Genet (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s2d
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab65267)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 s2d). EJNMMI Res (2016) ncbi
兔 单克隆(EPR3915)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, EPR3915)被用于被用于免疫印迹在人类样品上. PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:10; 图 1c
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab32551)被用于被用于免疫细胞化学在大鼠样品上浓度为1:10 (图 1c). J Cereb Blood Flow Metab (2016) ncbi
小鼠 单克隆(SPM498)
  • 免疫细胞化学; 大鼠; 1:10; 图 1d
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫细胞化学在大鼠样品上浓度为1:10 (图 1d). J Cereb Blood Flow Metab (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:500; 图 1
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309-500)被用于被用于免疫组化在人类样品上浓度为1:500 (图 1). BMC Cancer (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 3b). Arterioscler Thromb Vasc Biol (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 图 7d
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab652)被用于被用于免疫组化在人类样品上 (图 7d). Onco Targets Ther (2016) ncbi
兔 多克隆
  • 流式细胞仪; 小鼠; 图 9
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab14683)被用于被用于流式细胞仪在小鼠样品上 (图 9). J Clin Invest (2016) ncbi
兔 单克隆(EPR3915)
  • 免疫印迹; 人类; 图 5c
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫印迹在人类样品上 (图 5c). J Clin Invest (2016) ncbi
兔 单克隆(EPR3915)
  • 免疫印迹; 大鼠; 图 4
  • 免疫组化-石蜡切片; 人类; 图 9
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫印迹在大鼠样品上 (图 4) 和 被用于免疫组化-石蜡切片在人类样品上 (图 9). PLoS Pathog (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 图 2
艾博抗(上海)贸易有限公司 GLUT1抗体(abcam, ab652)被用于被用于免疫组化在人类样品上 (图 2). Cell Rep (2016) ncbi
小鼠 单克隆(SPM498)
  • 免疫印迹; 人类; 图 3b
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, Ab40084)被用于被用于免疫印迹在人类样品上 (图 3b). Mol Metab (2016) ncbi
小鼠 单克隆(SPM498)
  • 免疫组化; 人类; 1:100; 图 3c
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫组化在人类样品上浓度为1:100 (图 3c). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab 652)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 5). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 GLUT1抗体(abcam, 652)被用于被用于免疫印迹在人类样品上 (图 1). J Extracell Vesicles (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:350; 图 5
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab14683)被用于被用于免疫组化在小鼠样品上浓度为1:350 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(SPM498)
  • 免疫印迹; 小鼠; 1:1000; 图 5d
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab-40084)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 5d). EMBO Mol Med (2016) ncbi
兔 单克隆(EPR3915)
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3). J Cell Sci (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1
艾博抗(上海)贸易有限公司 GLUT1抗体(abcam, ab15309)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(SPM498)
  • 免疫细胞化学; 人类; 1:300; 图 3
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫细胞化学在人类样品上浓度为1:300 (图 3). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1d
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309-500)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图 1d). BMC Cancer (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab652)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 6). Nat Med (2015) ncbi
兔 单克隆(EPR3915)
  • 免疫组化-石蜡切片; 人类; 图 6
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫组化-石蜡切片在人类样品上 (图 6) 和 被用于免疫印迹在人类样品上 (图 4). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4g
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab32551)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4g). FASEB J (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s4
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, 652)被用于被用于免疫印迹在人类样品上 (图 s4). Leukemia (2016) ncbi
小鼠 单克隆(SPM498)
  • 免疫细胞化学; 小鼠; 1:200; 图 3
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200 (图 3). Lab Invest (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:2000; 图 1
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309)被用于被用于免疫组化在人类样品上浓度为1:2000 (图 1). J Pathol (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:50
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab652)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:50. Exp Physiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 2
艾博抗(上海)贸易有限公司 GLUT1抗体(AbCam, ab32551)被用于被用于免疫印迹在大鼠样品上 (图 2). J Neurochem (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:500
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab652)被用于被用于免疫组化在人类样品上浓度为1:500. PLoS ONE (2015) ncbi
小鼠 单克隆(SPM498)
  • 免疫印迹; 小鼠; 图 3,7,8
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫印迹在小鼠样品上 (图 3,7,8). J Am Heart Assoc (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500. Dev Neurobiol (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:250; 图 6
  • 免疫组化; 人类; 1:250; 图 6
  • 免疫印迹; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司 GLUT1抗体(abcam, ab652)被用于被用于免疫组化在小鼠样品上浓度为1:250 (图 6), 被用于免疫组化在人类样品上浓度为1:250 (图 6) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 2). Nat Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:100
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab652)被用于被用于免疫印迹在小鼠样品上浓度为1:100. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab32551)被用于被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1
艾博抗(上海)贸易有限公司 GLUT1抗体(AbCam, ab15309-500)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图 1). BMC Cancer (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, 15309)被用于被用于免疫细胞化学在人类样品上 和 被用于免疫印迹在人类样品上. J Cell Sci (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500
  • 流式细胞仪; 人类; 1:10
  • 免疫印迹; 人类; 1:400
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500, 被用于流式细胞仪在人类样品上浓度为1:10 和 被用于免疫印迹在人类样品上浓度为1:400. BMC Cancer (2014) ncbi
兔 单克隆(EPR3915)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200
  • 免疫印迹; 人类; 1:300
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab14683)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 和 被用于免疫印迹在人类样品上浓度为1:300. Placenta (2014) ncbi
兔 单克隆(EPR3915)
  • 免疫印迹; 人类; 1:5000
艾博抗(上海)贸易有限公司 GLUT1抗体(Epitomics, 2944-1)被用于被用于免疫印迹在人类样品上浓度为1:5000. ACS Chem Biol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, 15309)被用于被用于免疫印迹在人类样品上. Curr Biol (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab14683)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 1). J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:200
  • 免疫印迹; 人类; 1:500
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309)被用于被用于免疫细胞化学在人类样品上浓度为1:200 和 被用于免疫印迹在人类样品上浓度为1:500. Fluids Barriers CNS (2014) ncbi
小鼠 单克隆(SPM498)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. J Transl Med (2014) ncbi
兔 多克隆
  • 流式细胞仪; 小鼠
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, Ab652)被用于被用于流式细胞仪在小鼠样品上. J Immunol (2014) ncbi
兔 单克隆(EPR3915)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫印迹在小鼠样品上. J Immunol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab32551)被用于被用于免疫印迹在小鼠样品上浓度为1:500 (图 2). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309)被用于被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(SPM498)
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫印迹在大鼠样品上浓度为1:1000. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:3000; 图 2, 3
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309)被用于被用于免疫印迹在大鼠样品上浓度为1:3000 (图 2, 3). Neurochem Int (2013) ncbi
小鼠 单克隆(SPM498)
  • 免疫细胞化学; 人类; 1:100
  • 免疫印迹; 人类; 1:500
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫细胞化学在人类样品上浓度为1:100 和 被用于免疫印迹在人类样品上浓度为1:500. Am J Physiol Cell Physiol (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab652)被用于被用于免疫印迹在人类样品上. Urol Oncol (2014) ncbi
小鼠 单克隆(SPM498)
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫印迹在大鼠样品上. Lab Anim Res (2012) ncbi
赛默飞世尔
兔 多克隆
  • 免疫印迹; 仓鼠; 1:500; 图 5a
赛默飞世尔 GLUT1抗体(Thermo scientific, PA1-46152)被用于被用于免疫印迹在仓鼠样品上浓度为1:500 (图 5a). J Photochem Photobiol B (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:100; 图 3
赛默飞世尔 GLUT1抗体(ThermoScientific, PA1-21041)被用于被用于免疫组化在人类样品上浓度为1:100 (图 3). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 图 1e
赛默飞世尔 GLUT1抗体(Thermo Fischer Scientific, RB-9052)被用于被用于免疫组化在人类样品上 (图 1e). Oncotarget (2016) ncbi
小鼠 单克隆(SPM498)
  • 免疫细胞化学; 人类; 1:100; 图 2
赛默飞世尔 GLUT1抗体(Thermo Scientific, SPM498)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 2). Methods (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1a
赛默飞世尔 GLUT1抗体(Thermo Scientific, PA1-46152)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 1a). J Neurooncol (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 图 5e
赛默飞世尔 GLUT1抗体(Thermo Scientific, PA1-37782)被用于被用于免疫组化在人类样品上 (图 5e). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 GLUT1抗体(THERMO SCIENTIFIC, PA1-46152)被用于被用于免疫印迹在小鼠样品上 (图 1). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(SPM498)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 2
赛默飞世尔 GLUT1抗体(Thermo Fisher Scientific, SPM498)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (表 2). J Pediatr Hematol Oncol (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 s3
赛默飞世尔 GLUT1抗体(Thermo Scientific, PA5-16793)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图 s3). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 4
赛默飞世尔 GLUT1抗体(Thermo Scientific, PA5-16793,)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500 (图 4). J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 4
赛默飞世尔 GLUT1抗体(Thermo Scientific, PA5-16793,)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500 (图 4). NMR Biomed (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 GLUT1抗体(Thermo Fisher Scientific, RB-9052-P)被用于被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2015) ncbi
小鼠 单克隆(SPM498)
  • 免疫组化-冰冻切片; 人类
赛默飞世尔 GLUT1抗体(Thermo Scientific, SPM498)被用于被用于免疫组化-冰冻切片在人类样品上. J Neurochem (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 GLUT1抗体(Thermo Scientific, RB-9052-P0)被用于被用于免疫组化-石蜡切片在小鼠样品上. Dev Cell (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:200
赛默飞世尔 GLUT1抗体(Thermo Scientific, PA1-21041)被用于被用于免疫印迹在人类样品上浓度为1:200. Neuropathol Appl Neurobiol (2015) ncbi
小鼠 单克隆(SPM498)
  • 抑制或激活实验; 人类
赛默飞世尔 GLUT1抗体(Pierce, MA1-37783)被用于被用于抑制或激活实验在人类样品上. Nanomedicine (2015) ncbi
小鼠 单克隆(SPM498)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 GLUT1抗体(Thermo Scientific, SPM498)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Hum Pathol (2014) ncbi
小鼠 单克隆(SPM498)
  • 免疫细胞化学; 人类; 1:50
赛默飞世尔 GLUT1抗体(Thermo-Fisher, SPM498)被用于被用于免疫细胞化学在人类样品上浓度为1:50. Clin Cancer Res (2014) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:200; 图 1i
赛默飞世尔 GLUT1抗体(Thermo Scientific, RB-9052-P0)被用于被用于免疫组化在人类样品上浓度为1:200 (图 1i). Mol Imaging Biol (2013) ncbi
Novus Biologicals
兔 多克隆
  • 免疫印迹; 小鼠; 图 7b
Novus Biologicals GLUT1抗体(Novus Biologicals, NB110-39113)被用于被用于免疫印迹在小鼠样品上 (图 7b). J Cell Biochem (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 1d
Novus Biologicals GLUT1抗体(Novus Biologicals, NB300-666)被用于被用于免疫细胞化学在人类样品上 (图 1d). J Clin Invest (2016) ncbi
兔 多克隆
  • 免疫组化; 斑马鱼; 1:200; 图 7a
Novus Biologicals GLUT1抗体(Novus Biologicals, NB300666)被用于被用于免疫组化在斑马鱼样品上浓度为1:200 (图 7a). Development (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠
  • 免疫组化; 小鼠; 1:200
Novus Biologicals GLUT1抗体(Novus Biologicals, NB110-39113)被用于被用于免疫组化-冰冻切片在小鼠样品上 和 被用于免疫组化在小鼠样品上浓度为1:200. Dev Biol (2014) ncbi
武汉三鹰
小鼠 单克隆(2A5A2)
  • 免疫印迹; 人类; 图 6k
武汉三鹰 GLUT1抗体(Proteintech, 66290-1-lg)被用于被用于免疫印迹在人类样品上 (图 6k). Cell Death Dis (2018) ncbi
安迪生物R&D
小鼠 单克隆(202915)
  • 免疫组化-冰冻切片; Atlantic cod; 20 ug/ml; 图 7c
  • 免疫印迹; Atlantic cod; 2 ug/ml; 图 8a
安迪生物R&D GLUT1抗体(R&D Systems, MAB1418)被用于被用于免疫组化-冰冻切片在Atlantic cod样品上浓度为20 ug/ml (图 7c) 和 被用于免疫印迹在Atlantic cod样品上浓度为2 ug/ml (图 8a). J Exp Biol (2016) ncbi
小鼠 单克隆(202915)
  • 流式细胞仪; 人类; 图 8a
安迪生物R&D GLUT1抗体(R&D Systems, FAB1418P)被用于被用于流式细胞仪在人类样品上 (图 8a). Eur J Cell Biol (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(A-4)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
圣克鲁斯生物技术 GLUT1抗体(Santa Cruz, sc-377228)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 2a). Mol Med Rep (2016) ncbi
GeneTex
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 6
GeneTex GLUT1抗体(GeneTex, GTX100684)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 6). J Clin Invest (2016) ncbi
西格玛奥德里奇
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4a
西格玛奥德里奇 GLUT1抗体(Sigma, SAB 4502803)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 4a). Mol Neurobiol (2017) ncbi
文章列表
  1. Qiao G, Bucsek M, Winder N, Chen M, Giridharan T, Olejniczak S, et al. β-Adrenergic signaling blocks murine CD8+ T-cell metabolic reprogramming during activation: a mechanism for immunosuppression by adrenergic stress. Cancer Immunol Immunother. 2019;68:11-22 pubmed 出版商
  2. Xiang J, Hu Q, Qin Y, Ji S, Xu W, Liu W, et al. TCF7L2 positively regulates aerobic glycolysis via the EGLN2/HIF-1α axis and indicates prognosis in pancreatic cancer. Cell Death Dis. 2018;9:321 pubmed 出版商
  3. Jimenez Orgaz A, Kvainickas A, Nägele H, Denner J, Eimer S, Dengjel J, et al. Control of RAB7 activity and localization through the retromer-TBC1D5 complex enables RAB7-dependent mitophagy. EMBO J. 2018;37:235-254 pubmed 出版商
  4. Miikkulainen P, Högel H, Rantanen K, Suomi T, Kouvonen P, Elo L, et al. HIF prolyl hydroxylase PHD3 regulates translational machinery and glucose metabolism in clear cell renal cell carcinoma. Cancer Metab. 2017;5:5 pubmed 出版商
  5. Ip W, Hoshi N, Shouval D, Snapper S, Medzhitov R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science. 2017;356:513-519 pubmed 出版商
  6. Zhang J, Chen S, Cai J, Hou Z, Wang X, Kachelmeier A, et al. Culture media-based selection of endothelial cells, pericytes, and perivascular-resident macrophage-like melanocytes from the young mouse vestibular system. Hear Res. 2017;345:10-22 pubmed 出版商
  7. Zeng C, Wu Q, Wang J, Yao B, Ma L, Yang Z, et al. NOX4 supports glycolysis and promotes glutamine metabolism in non-small cell lung cancer cells. Free Radic Biol Med. 2016;101:236-248 pubmed 出版商
  8. Tanegashima K, Sato Miyata Y, Funakoshi M, Nishito Y, Aigaki T, Hara T. Epigenetic regulation of the glucose transporter gene Slc2a1 by ?-hydroxybutyrate underlies preferential glucose supply to the brain of fasted mice. Genes Cells. 2017;22:71-83 pubmed 出版商
  9. Prieto P, Fernandez Velasco M, Fernández Santos M, Sanchez P, Terrón V, Martín Sanz P, et al. Cell Expansion-Dependent Inflammatory and Metabolic Profile of Human Bone Marrow Mesenchymal Stem Cells. Front Physiol. 2016;7:548 pubmed
  10. Pearson Leary J, McNay E. Novel Roles for the Insulin-Regulated Glucose Transporter-4 in Hippocampally Dependent Memory. J Neurosci. 2016;36:11851-11864 pubmed
  11. Kühnel E, Kleff V, Stojanovska V, Kaiser S, Waldschütz R, Herse F, et al. Placental-Specific Overexpression of sFlt-1 Alters Trophoblast Differentiation and Nutrient Transporter Expression in an IUGR Mouse Model. J Cell Biochem. 2017;118:1316-1329 pubmed 出版商
  12. Kalyan Masih P, Vega Torres J, Miles C, Haddad E, Rainsbury S, Baghchechi M, et al. Western High-Fat Diet Consumption during Adolescence Increases Susceptibility to Traumatic Stress while Selectively Disrupting Hippocampal and Ventricular Volumes. Eneuro. 2016;3: pubmed
  13. Verma R, Haldar C. Photoperiodic modulation of thyroid hormone receptor (TR-?), deiodinase-2 (Dio-2) and glucose transporters (GLUT 1 and GLUT 4) expression in testis of adult golden hamster, Mesocricetus auratus. J Photochem Photobiol B. 2016;165:351-358 pubmed 出版商
  14. Parikh I, Guo J, Chuang K, Zhong Y, Rempe R, Hoffman J, et al. Caloric restriction preserves memory and reduces anxiety of aging mice with early enhancement of neurovascular functions. Aging (Albany NY). 2016;8:2814-2826 pubmed 出版商
  15. Chruvattil R, Banerjee S, Nath S, Machhi J, Kharkwal G, Yadav M, et al. Dexamethasone Alters the Appetite Regulation via Induction of Hypothalamic Insulin Resistance in Rat Brain. Mol Neurobiol. 2017;54:7483-7496 pubmed 出版商
  16. Kim S, Roy S, Chen B, Nguyen T, McMonigle R, McCracken A, et al. Targeting cancer metabolism by simultaneously disrupting parallel nutrient access pathways. J Clin Invest. 2016;126:4088-4102 pubmed 出版商
  17. Lacroix M, Rodier G, Kirsh O, Houles T, Delpech H, Seyran B, et al. E4F1 controls a transcriptional program essential for pyruvate dehydrogenase activity. Proc Natl Acad Sci U S A. 2016;113:10998-1003 pubmed 出版商
  18. Coleman S, Rebalka I, D Souza D, Deodhare N, Desjardins E, Hawke T. Myostatin inhibition therapy for insulin-deficient type 1 diabetes. Sci Rep. 2016;6:32495 pubmed 出版商
  19. McMillan K, Gallon M, Jellett A, Clairfeuille T, Tilley F, McGough I, et al. Atypical parkinsonism-associated retromer mutant alters endosomal sorting of specific cargo proteins. J Cell Biol. 2016;214:389-99 pubmed 出版商
  20. Zhang L, Justus S, Xu Y, Pluchenik T, Hsu C, Yang J, et al. Reprogramming towards anabolism impedes degeneration in a preclinical model of retinitis pigmentosa. Hum Mol Genet. 2016;25:4244-4255 pubmed 出版商
  21. Maynard J, Emmas S, Blé F, Barjat H, Lawrie E, Hancox U, et al. The use of (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) as a pathway-specific biomarker with AZD8186, a PI3K?/? inhibitor. EJNMMI Res. 2016;6:62 pubmed 出版商
  22. Khanom R, Nguyen C, Kayamori K, Zhao X, Morita K, Miki Y, et al. Keratin 17 Is Induced in Oral Cancer and Facilitates Tumor Growth. PLoS ONE. 2016;11:e0161163 pubmed 出版商
  23. Tome M, Herndon J, Schaefer C, Jacobs L, Zhang Y, Jarvis C, et al. P-glycoprotein traffics from the nucleus to the plasma membrane in rat brain endothelium during inflammatory pain. J Cereb Blood Flow Metab. 2016;36:1913-1928 pubmed
  24. Martins S, Amorim R, Viana Pereira M, Pinheiro C, Costa R, Silva P, et al. Significance of glycolytic metabolism-related protein expression in colorectal cancer, lymph node and hepatic metastasis. BMC Cancer. 2016;16:535 pubmed 出版商
  25. Aarup A, Pedersen T, Junker N, Christoffersen C, Bartels E, Madsen M, et al. Hypoxia-Inducible Factor-1? Expression in Macrophages Promotes Development of Atherosclerosis. Arterioscler Thromb Vasc Biol. 2016;36:1782-90 pubmed 出版商
  26. Yan Y, Xie M, Zhang L, Zhou X, Xie H, Zhou L, et al. Ras-related associated with diabetes gene acts as a suppressor and inhibits Warburg effect in hepatocellular carcinoma. Onco Targets Ther. 2016;9:3925-37 pubmed 出版商
  27. Clow K, Short C, Hall J, Gendron R, Paradis H, Ralhan A, et al. High rates of glucose utilization in the gas gland of Atlantic cod (Gadus morhua) are supported by GLUT1 and HK1b. J Exp Biol. 2016;219:2763-73 pubmed 出版商
  28. Saha A, O Connor R, Thangavelu G, Lovitch S, Dandamudi D, Wilson C, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126:2642-60 pubmed 出版商
  29. Xu Y, Chaudhury A, Zhang M, Savoldo B, Metelitsa L, Rodgers J, et al. Glycolysis determines dichotomous regulation of T cell subsets in hypoxia. J Clin Invest. 2016;126:2678-88 pubmed 出版商
  30. Zhu Y, Ramos da Silva S, He M, Liang Q, Lu C, Feng P, et al. An Oncogenic Virus Promotes Cell Survival and Cellular Transformation by Suppressing Glycolysis. PLoS Pathog. 2016;12:e1005648 pubmed 出版商
  31. Phillips J, Laude A, Lightowlers R, Morris C, Turnbull D, Lax N. Development of passive CLARITY and immunofluorescent labelling of multiple proteins in human cerebellum: understanding mechanisms of neurodegeneration in mitochondrial disease. Sci Rep. 2016;6:26013 pubmed 出版商
  32. Jiménez Valerio G, Martínez Lozano M, Bassani N, Vidal A, Ochoa de Olza M, Suarez C, et al. Resistance to Antiangiogenic Therapies by Metabolic Symbiosis in Renal Cell Carcinoma PDX Models and Patients. Cell Rep. 2016;15:1134-43 pubmed 出版商
  33. Barquissau V, Beuzelin D, Pisani D, Beranger G, Mairal A, Montagner A, et al. White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways. Mol Metab. 2016;5:352-365 pubmed 出版商
  34. Bourseau Guilmain E, Menard J, Lindqvist E, Indira Chandran V, Christianson H, Cerezo Magaña M, et al. Hypoxia regulates global membrane protein endocytosis through caveolin-1 in cancer cells. Nat Commun. 2016;7:11371 pubmed 出版商
  35. Pires A, Marques C, Encarnação J, Abrantes A, Mamede A, Laranjo M, et al. Ascorbic acid and colon cancer: an oxidative stimulus to cell death depending on cell profile. Eur J Cell Biol. 2016;95:208-18 pubmed 出版商
  36. Kim D, Bynoe M. A2A adenosine receptor modulates drug efflux transporter P-glycoprotein at the blood-brain barrier. J Clin Invest. 2016;126:1717-33 pubmed 出版商
  37. Jennewein L, Ronellenfitsch M, Antonietti P, Ilina E, Jung J, Stadel D, et al. Diagnostic and clinical relevance of the autophago-lysosomal network in human gliomas. Oncotarget. 2016;7:20016-32 pubmed 出版商
  38. Ronquist K, Sanchez C, Dubois L, Chioureas D, Fonseca P, Larsson A, et al. Energy-requiring uptake of prostasomes and PC3 cell-derived exosomes into non-malignant and malignant cells. J Extracell Vesicles. 2016;5:29877 pubmed 出版商
  39. Espana Agusti J, Zou X, Wong K, Fu B, Yang F, Tuveson D, et al. Generation and Characterisation of a Pax8-CreERT2 Transgenic Line and a Slc22a6-CreERT2 Knock-In Line for Inducible and Specific Genetic Manipulation of Renal Tubular Epithelial Cells. PLoS ONE. 2016;11:e0148055 pubmed 出版商
  40. Wang P, Li L, Zhang Z, Kan Q, Chen S, Gao F. Time-dependent homeostasis between glucose uptake and consumption in astrocytes exposed to CoClâ‚‚ treatment. Mol Med Rep. 2016;13:2909-17 pubmed 出版商
  41. Albert V, Svensson K, Shimobayashi M, Colombi M, Munoz S, Jimenez V, et al. mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue. EMBO Mol Med. 2016;8:232-46 pubmed 出版商
  42. Chen K, Zeng J, Xiao H, Huang C, Hu J, Yao W, et al. Regulation of glucose metabolism by p62/SQSTM1 through HIF1α. J Cell Sci. 2016;129:817-30 pubmed 出版商
  43. Ulrich F, Carretero Ortega J, Menéndez J, Narvaez C, Sun B, Lancaster E, et al. Reck enables cerebrovascular development by promoting canonical Wnt signaling. Development. 2016;143:147-59 pubmed 出版商
  44. Weijer R, Broekgaarden M, Krekorian M, Alles L, van Wijk A, Mackaaij C, et al. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy. Oncotarget. 2016;7:3341-56 pubmed 出版商
  45. Pinheiro C, Granja S, Longatto Filho A, Faria A, Fragoso M, Lovisolo S, et al. Metabolic reprogramming: a new relevant pathway in adult adrenocortical tumors. Oncotarget. 2015;6:44403-21 pubmed 出版商
  46. Miura S, Sato K, Kato Negishi M, Teshima T, Takeuchi S. Fluid shear triggers microvilli formation via mechanosensitive activation of TRPV6. Nat Commun. 2015;6:8871 pubmed 出版商
  47. Pinheiro C, Garcia E, Morais Santos F, Moreira M, Almeida F, Jubé L, et al. Reprogramming energy metabolism and inducing angiogenesis: co-expression of monocarboxylate transporters with VEGF family members in cervical adenocarcinomas. BMC Cancer. 2015;15:835 pubmed 出版商
  48. Stebbins M, Wilson H, Canfield S, Qian T, Palecek S, Shusta E. Differentiation and characterization of human pluripotent stem cell-derived brain microvascular endothelial cells. Methods. 2016;101:93-102 pubmed 出版商
  49. Taïeb D, Barlier A, Yang C, Pertuit M, Tchoghandjian A, Rochette C, et al. Somatic gain-of-function HIF2A mutations in sporadic central nervous system hemangioblastomas. J Neurooncol. 2016;126:473-81 pubmed 出版商
  50. Zhou W, Cheng L, Shi Y, Ke S, Huang Z, Fang X, et al. Arsenic trioxide disrupts glioma stem cells via promoting PML degradation to inhibit tumor growth. Oncotarget. 2015;6:37300-15 pubmed 出版商
  51. Huang L, Holtzinger A, Jagan I, BeGora M, Lohse I, Ngai N, et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat Med. 2015;21:1364-71 pubmed 出版商
  52. Qin W, Li C, Zheng W, Guo Q, Zhang Y, Kang M, et al. Inhibition of autophagy promotes metastasis and glycolysis by inducing ROS in gastric cancer cells. Oncotarget. 2015;6:39839-54 pubmed 出版商
  53. Pinel A, Rigaudière J, Laillet B, Pouyet C, Malpuech Brugère C, Prip Buus C, et al. N-3PUFA differentially modulate palmitate-induced lipotoxicity through alterations of its metabolism in C2C12 muscle cells. Biochim Biophys Acta. 2016;1861:12-20 pubmed 出版商
  54. Sharma B, Kolhe R, Black S, Keller J, Mivechi N, Satyanarayana A. Inhibitor of differentiation 1 transcription factor promotes metabolic reprogramming in hepatocellular carcinoma cells. FASEB J. 2016;30:262-75 pubmed 出版商
  55. Kong G, Hofman M, Murray W, Wilson S, Wood P, Downie P, et al. Initial Experience With Gallium-68 DOTA-Octreotate PET/CT and Peptide Receptor Radionuclide Therapy for Pediatric Patients With Refractory Metastatic Neuroblastoma. J Pediatr Hematol Oncol. 2016;38:87-96 pubmed 出版商
  56. Barbone D, Follo C, Echeverry N, Gerbaudo V, Klabatsa A, Bueno R, et al. Autophagy Correlates with the Therapeutic Responsiveness of Malignant Pleural Mesothelioma in 3D Models. PLoS ONE. 2015;10:e0134825 pubmed 出版商
  57. Hermanova I, Arruabarrena Aristorena A, Valis K, Nůsková H, Alberich Jorda M, Fiser K, et al. Pharmacological inhibition of fatty-acid oxidation synergistically enhances the effect of l-asparaginase in childhood ALL cells. Leukemia. 2016;30:209-18 pubmed 出版商
  58. Pan P, Marrs J, Ryan T. Vesicular glutamate transporter 1 orchestrates recruitment of other synaptic vesicle cargo proteins during synaptic vesicle recycling. J Biol Chem. 2015;290:22593-601 pubmed 出版商
  59. Lemasson B, Bouchet A, Maisin C, Christen T, Le Duc G, Rémy C, et al. Multiparametric MRI as an early biomarker of individual therapy effects during concomitant treatment of brain tumours. NMR Biomed. 2015;28:1163-73 pubmed 出版商
  60. Tsuneki M, Hardee S, Michaud M, Morotti R, Lavik E, Madri J. A hydrogel-endothelial cell implant mimics infantile hemangioma: modulation by survivin and the Hippo pathway. Lab Invest. 2015;95:765-80 pubmed 出版商
  61. Pértega Gomes N, Felisbino S, Massie C, Vizcaíno J, Coelho R, Sandi C, et al. A glycolytic phenotype is associated with prostate cancer progression and aggressiveness: a role for monocarboxylate transporters as metabolic targets for therapy. J Pathol. 2015;236:517-30 pubmed 出版商
  62. Brown M, Chingombe T, Zinn A, Reddy J, Novack R, Cooney S, et al. Novel assessment of haemodynamic kinetics with acute exercise in a rat model of pulmonary arterial hypertension. Exp Physiol. 2015;100:742-54 pubmed 出版商
  63. Tome M, Schaefer C, Jacobs L, Zhang Y, Herndon J, Matty F, et al. Identification of P-glycoprotein co-fractionating proteins and specific binding partners in rat brain microvessels. J Neurochem. 2015;134:200-10 pubmed 出版商
  64. Sun Y, George J, Rocha S. Dose-dependent effects of allopurinol on human foreskin fibroblast cells and human umbilical vein endothelial cells under hypoxia. PLoS ONE. 2015;10:e0123649 pubmed 出版商
  65. Verduzco D, Lloyd M, Xu L, Ibrahim Hashim A, Balagurunathan Y, Gatenby R, et al. Intermittent hypoxia selects for genotypes and phenotypes that increase survival, invasion, and therapy resistance. PLoS ONE. 2015;10:e0120958 pubmed 出版商
  66. Uchida Y, Ito K, Ohtsuki S, Kubo Y, Suzuki T, Terasaki T. Major involvement of Na(+) -dependent multivitamin transporter (SLC5A6/SMVT) in uptake of biotin and pantothenic acid by human brain capillary endothelial cells. J Neurochem. 2015;134:97-112 pubmed 出版商
  67. Schisler J, Grevengoed T, Pascual F, Cooper D, Ellis J, Paul D, et al. Cardiac energy dependence on glucose increases metabolites related to glutathione and activates metabolic genes controlled by mechanistic target of rapamycin. J Am Heart Assoc. 2015;4: pubmed 出版商
  68. Locher H, de Groot J, van Iperen L, Huisman M, Frijns J, Chuva de Sousa Lopes S. Development of the stria vascularis and potassium regulation in the human fetal cochlea: Insights into hereditary sensorineural hearing loss. Dev Neurobiol. 2015;75:1219-40 pubmed 出版商
  69. Fong M, Zhou W, Liu L, Alontaga A, Chandra M, Ashby J, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol. 2015;17:183-94 pubmed 出版商
  70. Zhou Y, Nathans J. Gpr124 controls CNS angiogenesis and blood-brain barrier integrity by promoting ligand-specific canonical wnt signaling. Dev Cell. 2014;31:248-56 pubmed 出版商
  71. Gangadharan Komala M, Gross S, Mudaliar H, Huang C, Pegg K, Mather A, et al. Inhibition of kidney proximal tubular glucose reabsorption does not prevent against diabetic nephropathy in type 1 diabetic eNOS knockout mice. PLoS ONE. 2014;9:e108994 pubmed 出版商
  72. Mössenböck K, Vegiopoulos A, Rose A, Sijmonsma T, Herzig S, Schafmeier T. Browning of white adipose tissue uncouples glucose uptake from insulin signaling. PLoS ONE. 2014;9:e110428 pubmed 出版商
  73. Craggs L, Fenwick R, Oakley A, Ihara M, Kalaria R. Immunolocalization of platelet-derived growth factor receptor-β (PDGFR-β) and pericytes in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Neuropathol Appl Neurobiol. 2015;41:557-70 pubmed 出版商
  74. Pinheiro C, Garcia E, Morais Santos F, Scapulatempo Neto C, Mafra A, Steenbergen R, et al. Lactate transporters and vascular factors in HPV-induced squamous cell carcinoma of the uterine cervix. BMC Cancer. 2014;14:751 pubmed 出版商
  75. McGough I, Steinberg F, Gallon M, Yatsu A, Ohbayashi N, Heesom K, et al. Identification of molecular heterogeneity in SNX27-retromer-mediated endosome-to-plasma-membrane recycling. J Cell Sci. 2014;127:4940-53 pubmed 出版商
  76. Sousa B, Ribeiro A, Nobre A, Lopes N, Martins D, Pinheiro C, et al. The basal epithelial marker P-cadherin associates with breast cancer cell populations harboring a glycolytic and acid-resistant phenotype. BMC Cancer. 2014;14:734 pubmed 出版商
  77. Sohn C, Park S, Choi S, Park S, Kim S, Xu L, et al. MRI molecular imaging using GLUT1 antibody-Fe3O4 nanoparticles in the hemangioma animal model for differentiating infantile hemangioma from vascular malformation. Nanomedicine. 2015;11:127-35 pubmed 出版商
  78. Cao Y, Rathmell J, Macintyre A. Metabolic reprogramming towards aerobic glycolysis correlates with greater proliferative ability and resistance to metabolic inhibition in CD8 versus CD4 T cells. PLoS ONE. 2014;9:e104104 pubmed 出版商
  79. Wei W, Hu Y. Expression of hypoxia-regulated genes and glycometabolic genes in placenta from patients with intrahepatic cholestasis of pregnancy. Placenta. 2014;35:732-6 pubmed 出版商
  80. Adams D, Ito D, Rees M, Seashore Ludlow B, Puyang X, Ramos A, et al. NAMPT is the cellular target of STF-31-like small-molecule probes. ACS Chem Biol. 2014;9:2247-54 pubmed 出版商
  81. McGough I, Steinberg F, Jia D, Barbuti P, McMillan K, Heesom K, et al. Retromer binding to FAM21 and the WASH complex is perturbed by the Parkinson disease-linked VPS35(D620N) mutation. Curr Biol. 2014;24:1670-1676 pubmed 出版商
  82. Paatero I, Seagroves T, Vaparanta K, Han W, Jones F, Johnson R, et al. Hypoxia-inducible factor-1? induces ErbB4 signaling in the differentiating mammary gland. J Biol Chem. 2014;289:22459-69 pubmed 出版商
  83. Duregon E, Rapa I, Votta A, Giorcelli J, Daffara F, Terzolo M, et al. MicroRNA expression patterns in adrenocortical carcinoma variants and clinical pathologic correlations. Hum Pathol. 2014;45:1555-62 pubmed 出版商
  84. Moreau J, Artap S, Shi H, Chapman G, Leone G, Sparrow D, et al. Cited2 is required in trophoblasts for correct placental capillary patterning. Dev Biol. 2014;392:62-79 pubmed 出版商
  85. Sajja R, Prasad S, Cucullo L. Impact of altered glycaemia on blood-brain barrier endothelium: an in vitro study using the hCMEC/D3 cell line. Fluids Barriers CNS. 2014;11:8 pubmed 出版商
  86. Nogueira A, Sogayar M, Colquhoun A, Siqueira S, Nogueira A, Marchiori P, et al. Existence of a potential neurogenic system in the adult human brain. J Transl Med. 2014;12:75 pubmed 出版商
  87. Caro Maldonado A, Wang R, Nichols A, Kuraoka M, Milasta S, Sun L, et al. Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J Immunol. 2014;192:3626-36 pubmed 出版商
  88. Notari L, Riera D, Sun R, Bohl J, McLean L, Madden K, et al. Role of macrophages in the altered epithelial function during a type 2 immune response induced by enteric nematode infection. PLoS ONE. 2014;9:e84763 pubmed 出版商
  89. Smith R, Solberg R, Jacobsen L, Voreland A, Rustan A, Thoresen G, et al. Simvastatin inhibits glucose metabolism and legumain activity in human myotubes. PLoS ONE. 2014;9:e85721 pubmed 出版商
  90. Malin D, Strekalova E, Petrovic V, Deal A, Al Ahmad A, Adamo B, et al. ?B-crystallin: a novel regulator of breast cancer metastasis to the brain. Clin Cancer Res. 2014;20:56-67 pubmed 出版商
  91. Morato P, Lollo P, Moura C, Batista T, Camargo R, Carneiro E, et al. Whey protein hydrolysate increases translocation of GLUT-4 to the plasma membrane independent of insulin in wistar rats. PLoS ONE. 2013;8:e71134 pubmed 出版商
  92. Roy M, Hennebelle M, St Pierre V, Courchesne Loyer A, Fortier M, Bouzier Sore A, et al. Long-term calorie restriction has minimal impact on brain metabolite and fatty acid profiles in aged rats on a Western-style diet. Neurochem Int. 2013;63:450-7 pubmed 出版商
  93. Pyla R, Poulose N, Jun J, Segar L. Expression of conventional and novel glucose transporters, GLUT1, -9, -10, and -12, in vascular smooth muscle cells. Am J Physiol Cell Physiol. 2013;304:C574-89 pubmed 出版商
  94. Ji S, Su X, Cheng W, Zhang H, Zhao Y, Han Z. Down-regulation of CD74 inhibits growth and invasion in clear cell renal cell carcinoma through HIF-1? pathway. Urol Oncol. 2014;32:153-61 pubmed 出版商
  95. Kim J, Hwang I, Choi S, Lee H, Lee Y, Goo J, et al. Aqueous extract of Liriope platyphylla, a traditional Chinese medicine, significantly inhibits abdominal fat accumulation and improves glucose regulation in OLETF type II diabetes model rats. Lab Anim Res. 2012;28:181-91 pubmed 出版商
  96. Garofalakis A, Dubois A, Thézé B, Czarny B, Tavitian B, Duconge F. Fusion of [(18)F]FDG PET with fluorescence diffuse optical tomography to improve validation of probes and tumor imaging. Mol Imaging Biol. 2013;15:316-25 pubmed 出版商