这是一篇来自已证抗体库的有关人类 GLUT1的综述,是根据72篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合GLUT1 抗体。
GLUT1 同义词: CSE; DYT17; DYT18; DYT9; EIG12; GLUT; GLUT-1; GLUT1; GLUT1DS; HTLVR; PED; SDCHCN

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR3915)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s12e
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab195020)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s12e). Nat Commun (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 图 s16a
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309)被用于被用于免疫组化-冰冻切片在人类样本上 (图 s16a). Nat Commun (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 3c
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3c). Brain (2022) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫印迹在人类样本上 (图 1c). Cell Death Dis (2022) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫组化-石蜡切片; 人类; 图 4i
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4i). J Transl Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 2a
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab14683)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2a). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫细胞化学; 人类; 图 1a
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫细胞化学在人类样本上 (图 1a). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:2500; 图 6a
  • 免疫印迹; African green monkey; 1:2500; 图 6a
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309)被用于被用于免疫印迹在大鼠样本上浓度为1:2500 (图 6a) 和 被用于免疫印迹在African green monkey样本上浓度为1:2500 (图 6a). Pharmaceutics (2021) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s1a
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s1a). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫组化-石蜡切片; 人类; 图 3d
  • 免疫组化-石蜡切片; 小鼠; 图 3c
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3d) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 3c). Oncogene (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab128033)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Mol Cell Proteomics (2021) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫组化-石蜡切片; 人类; 图 7k
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7k). Nat Commun (2021) ncbi
domestic rabbit 单克隆(EPR3915)
  • 流式细胞仪; 小鼠; 1:100; 图 e3d
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab195020)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 e3d). Nat Metab (2021) ncbi
domestic rabbit 单克隆
  • 免疫组化; 小鼠; 1:200; 图 1i
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab206360)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1i). J Exp Med (2021) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫组化; 小鼠; 图 1f
  • 免疫印迹; 小鼠; 1:5000; 图 2b
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, Ab115730)被用于被用于免疫组化在小鼠样本上 (图 1f) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2b). Front Cell Dev Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Nature (2021) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫组化-石蜡切片; 小鼠; 1:650; 图 4a
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:650 (图 4a). elife (2020) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6a
  • 免疫印迹; 小鼠; 1:10,000; 图 s1
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6a) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 s1). Theranostics (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 家羊; 图 6a
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, AB14683)被用于被用于免疫组化-石蜡切片在家羊样本上 (图 6a). Stem Cell Res Ther (2020) ncbi
domestic rabbit 单克隆(EPR3915)
  • 流式细胞仪; 小鼠; 图 5d
艾博抗(上海)贸易有限公司 GLUT1抗体(abcam, ab195020)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Cell (2019) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫印迹; 人类; ; 图 4a
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫印迹在人类样本上浓度为 (图 4a). Sci Rep (2019) ncbi
domestic rabbit 单克隆(EPR3915)
  • 流式细胞仪; 小鼠; 图 1a
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, EPR3915)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Cancer Immunol Immunother (2019) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫印迹; 人类; 图 2e
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫印迹在人类样本上 (图 2e). Int J Cancer (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 s4d
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s4d). EMBO J (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab14683)被用于被用于免疫印迹在人类样本上 (图 1d). Cancer Metab (2017) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫细胞化学; 小鼠; 图 s5e
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, EPR3915)被用于被用于免疫细胞化学在小鼠样本上 (图 s5e). Science (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:50; 图 4d
  • 免疫组化; 小鼠; 1:50; 图 2b
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, Ab15309)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 4d) 和 被用于免疫组化在小鼠样本上浓度为1:50 (图 2b). Hear Res (2017) ncbi
domestic rabbit 单克隆(EPR3915)
  • 流式细胞仪; 小鼠; 图 3f
  • 免疫印迹; 小鼠; 1:1000; 图 4c-e
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, EPR3915)被用于被用于流式细胞仪在小鼠样本上 (图 3f) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c-e). Genes Cells (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s6f
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s6f). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫细胞化学; 人类; 图 5b
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, 115730)被用于被用于免疫细胞化学在人类样本上 (图 5b). J Cell Biol (2016) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, EPR3915)被用于被用于免疫印迹在人类样本上. PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500; 图 1
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309-500)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3b). Arterioscler Thromb Vasc Biol (2016) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 图 9
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab14683)被用于被用于流式细胞仪在小鼠样本上 (图 9). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫印迹; 人类; 图 5c
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫印迹在人类样本上 (图 5c). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫印迹; 大鼠; 图 4
  • 免疫组化-石蜡切片; 人类; 图 9
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫印迹在大鼠样本上 (图 4) 和 被用于免疫组化-石蜡切片在人类样本上 (图 9). PLoS Pathog (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:350; 图 5
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab14683)被用于被用于免疫组化在小鼠样本上浓度为1:350 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Cell Sci (2016) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫组化-石蜡切片; 人类; 图 6
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫印迹; 人类; 1:5000
艾博抗(上海)贸易有限公司 GLUT1抗体(Epitomics, 2944-1)被用于被用于免疫印迹在人类样本上浓度为1:5000. ACS Chem Biol (2014) ncbi
domestic rabbit 单克隆(EPR3915)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫印迹在小鼠样本上. J Immunol (2014) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛默飞世尔 GLUT1抗体(Thermo Fisher, PA5-16793)被用于被用于免疫印迹在人类样本上. iScience (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1b
  • 免疫印迹; 小鼠; 1:2000; 图 1a
赛默飞世尔 GLUT1抗体(Thermo Fisher, RB-9052-P0)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1b) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1a). Nat Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 仓鼠; 1:500; 图 5a
赛默飞世尔 GLUT1抗体(Thermo scientific, PA1-46152)被用于被用于免疫印迹在仓鼠样本上浓度为1:500 (图 5a). J Photochem Photobiol B (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 1e
赛默飞世尔 GLUT1抗体(Thermo Fischer Scientific, RB-9052)被用于被用于免疫组化在人类样本上 (图 1e). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1a
赛默飞世尔 GLUT1抗体(Thermo Scientific, PA1-46152)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1a). J Neurooncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 GLUT1抗体(THERMO SCIENTIFIC, PA1-46152)被用于被用于免疫印迹在小鼠样本上 (图 1). Biochim Biophys Acta (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 GLUT1抗体(Thermo Scientific, PA5-16793)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 GLUT1抗体(Thermo Scientific, PA5-16793,)被用于. J Biol Chem (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 GLUT1抗体(Thermo Scientific, PA5-16793,)被用于. NMR Biomed (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 GLUT1抗体(Thermo Fisher Scientific, RB-9052-P)被用于. PLoS ONE (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(A-4)
  • 免疫印迹; 小鼠; 图 4a
圣克鲁斯生物技术 GLUT1抗体(Santa Cruz, sc-377228)被用于被用于免疫印迹在小鼠样本上 (图 4a). Int J Mol Sci (2022) ncbi
小鼠 单克隆(A-4)
  • 免疫印迹; 人类; 1:1000; 图 6a
圣克鲁斯生物技术 GLUT1抗体(Santa Cruz, sc-377228)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Biomed Res Int (2019) ncbi
小鼠 单克隆(A-4)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
圣克鲁斯生物技术 GLUT1抗体(Santa Cruz, sc-377228)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Mol Med Rep (2016) ncbi
Novus Biologicals
domestic rabbit 多克隆(KBB36)
  • 免疫印迹; 小鼠; 图 7b
Novus Biologicals GLUT1抗体(Novus Biologicals, NB110-39113)被用于被用于免疫印迹在小鼠样本上 (图 7b). J Cell Biochem (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1d
Novus Biologicals GLUT1抗体(Novus Biologicals, NB300-666)被用于被用于免疫细胞化学在人类样本上 (图 1d). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 1:200; 图 7a
Novus Biologicals GLUT1抗体(Novus Biologicals, NB300666)被用于被用于免疫组化在斑马鱼样本上浓度为1:200 (图 7a). Development (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D3J3A)
  • 免疫印迹; 小鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 GLUT1抗体(Cell Signaling Technology, D3J3A)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). Theranostics (2021) ncbi
domestic rabbit 单克隆(D3J3A)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 GLUT1抗体(Cell Signaling, 12939S)被用于被用于免疫印迹在人类样本上 (图 4a). Mol Cell (2021) ncbi
domestic rabbit 单克隆(D3J3A)
  • 免疫印迹; 人类; 图 4j
赛信通(上海)生物试剂有限公司 GLUT1抗体(CST, 12939)被用于被用于免疫印迹在人类样本上 (图 4j). Sci Adv (2020) ncbi
domestic rabbit 单克隆(D3J3A)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 GLUT1抗体(CST, 129395)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). PLoS ONE (2020) ncbi
domestic rabbit 单克隆(D3J3A)
  • 免疫组化; 人类; 图 5d
  • 免疫印迹; 人类; 图 2a, 2b
赛信通(上海)生物试剂有限公司 GLUT1抗体(Cell Signaling, 12939)被用于被用于免疫组化在人类样本上 (图 5d) 和 被用于免疫印迹在人类样本上 (图 2a, 2b). J Exp Clin Cancer Res (2020) ncbi
domestic rabbit 单克隆(D3J3A)
  • 免疫印迹; 小鼠; 图 s13g
赛信通(上海)生物试剂有限公司 GLUT1抗体(CST, 12939S)被用于被用于免疫印迹在小鼠样本上 (图 s13g). Science (2019) ncbi
domestic rabbit 单克隆(D3J3A)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 GLUT1抗体(Cell Signaling, D3J3A)被用于被用于免疫印迹在人类样本上 (图 2d). Nature (2018) ncbi
domestic rabbit 单克隆(D3J3A)
  • 免疫印迹; 人类; 1:1000; 图 ex3f
赛信通(上海)生物试剂有限公司 GLUT1抗体(Cell Signaling, 12939)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 ex3f). Nature (2018) ncbi
domestic rabbit 单克隆(D3J3A)
  • 免疫细胞化学; 小鼠; 图 5c
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 GLUT1抗体(Cell Signaling, 12939)被用于被用于免疫细胞化学在小鼠样本上 (图 5c) 和 被用于免疫印迹在小鼠样本上 (图 5a). Redox Biol (2017) ncbi
domestic rabbit 单克隆(D3J3A)
  • 免疫印迹; 人类; 图 1a
  • 免疫印迹; 小鼠; 图 s3d
赛信通(上海)生物试剂有限公司 GLUT1抗体(Cell Signaling, 12939)被用于被用于免疫印迹在人类样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 s3d). Nature (2017) ncbi
domestic rabbit 单克隆(D3J3A)
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 GLUT1抗体(cell signalling, 12939)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D3J3A)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 GLUT1抗体(Cell Signaling Technology, D3J3A)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2016) ncbi
西格玛奥德里奇
domestic rabbit 单克隆(SP168)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1d
西格玛奥德里奇 GLUT1抗体(Sigma, SP168)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1d). J Histochem Cytochem (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4a
西格玛奥德里奇 GLUT1抗体(Sigma, SAB 4502803)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a). Mol Neurobiol (2017) ncbi
文章列表
  1. Kim J, Kang S, Chang K. Effect of cx-DHED on Abnormal Glucose Transporter Expression Induced by AD Pathologies in the 5xFAD Mouse Model. Int J Mol Sci. 2022;23: pubmed 出版商
  2. Coy S, Wang S, Stopka S, Lin J, Yapp C, Ritch C, et al. Single cell spatial analysis reveals the topology of immunomodulatory purinergic signaling in glioblastoma. Nat Commun. 2022;13:4814 pubmed 出版商
  3. Zhang M, Cui J, Lee D, Yuen V, Chiu D, Goh C, et al. Hypoxia-induced macropinocytosis represents a metabolic route for liver cancer. Nat Commun. 2022;13:954 pubmed 出版商
  4. Ali M, Falkenhain K, Njiru B, Murtaza Ali M, Ruiz Uribe N, Haft Javaherian M, et al. VEGF signalling causes stalls in brain capillaries and reduces cerebral blood flow in Alzheimer's mice. Brain. 2022;145:1449-1463 pubmed 出版商
  5. Shen M, Zhang R, Jia W, Zhu Z, Zhao L, Huang G, et al. RNA-binding protein p54nrb/NONO potentiates nuclear EGFR-mediated tumorigenesis of triple-negative breast cancer. Cell Death Dis. 2022;13:42 pubmed 出版商
  6. Wang X, He H, Rui W, Zhang N, Zhu Y, Xie X. TRIM38 triggers the uniquitination and degradation of glucose transporter type 1 (GLUT1) to restrict tumor progression in bladder cancer. J Transl Med. 2021;19:508 pubmed 出版商
  7. Hoefflin R, Harlander S, Abhari B, Peighambari A, Adlesic M, Seidel P, et al. Therapeutic Effects of Inhibition of Sphingosine-1-Phosphate Signaling in HIF-2α Inhibitor-Resistant Clear Cell Renal Cell Carcinoma. Cancers (Basel). 2021;13: pubmed 出版商
  8. Zhang Z, Li X, Yang F, Chen C, Liu P, Ren Y, et al. DHHC9-mediated GLUT1 S-palmitoylation promotes glioblastoma glycolysis and tumorigenesis. Nat Commun. 2021;12:5872 pubmed 出版商
  9. Watanabe D, Nakagawa S, Morofuji Y, Tóth A, Vastag M, Aruga J, et al. Characterization of a Primate Blood-Brain Barrier Co-Culture Model Prepared from Primary Brain Endothelial Cells, Pericytes and Astrocytes. Pharmaceutics. 2021;13: pubmed 出版商
  10. Zheleznyak A, Mixdorf M, Marsala L, Prior J, Yang X, Cui G, et al. Orthogonal targeting of osteoclasts and myeloma cells for radionuclide stimulated dynamic therapy induces multidimensional cell death pathways. Theranostics. 2021;11:7735-7754 pubmed 出版商
  11. Goyette M, Elkholi I, Apcher C, Kuasne H, Rothlin C, Muller W, et al. Targeting Axl favors an antitumorigenic microenvironment that enhances immunotherapy responses by decreasing Hif-1α levels. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  12. Koppula P, Olszewski K, Zhang Y, Kondiparthi L, Liu X, Lei G, et al. KEAP1 deficiency drives glucose dependency and sensitizes lung cancer cells and tumors to GLUT inhibition. iScience. 2021;24:102649 pubmed 出版商
  13. Shen M, Zhang R, Jia W, Zhu Z, Zhao X, Zhao L, et al. Nuclear scaffold protein p54nrb/NONO facilitates the hypoxia-enhanced progression of hepatocellular carcinoma. Oncogene. 2021;40:4167-4183 pubmed 出版商
  14. Honeder S, Tomin T, Nebel L, Gindlhuber J, Fritz Wallace K, Schinagl M, et al. Adipose Triglyceride Lipase Loss Promotes a Metabolic Switch in A549 Non-Small Cell Lung Cancer Cell Spheroids. Mol Cell Proteomics. 2021;20:100095 pubmed 出版商
  15. Zheng F, Chen J, Zhang X, Wang Z, Chen J, Lin X, et al. The HIF-1α antisense long non-coding RNA drives a positive feedback loop of HIF-1α mediated transactivation and glycolysis. Nat Commun. 2021;12:1341 pubmed 出版商
  16. Choi J, Sebastian C, Ferrer C, Lewis C, Sade Feldman M, LaSalle T, et al. A unique subset of glycolytic tumour-propagating cells drives squamous cell carcinoma. Nat Metab. 2021;3:182-195 pubmed 出版商
  17. Heider M, Eichner R, Stroh J, Morath V, Kuisl A, Zecha J, et al. The IMiD target CRBN determines HSP90 activity toward transmembrane proteins essential in multiple myeloma. Mol Cell. 2021;: pubmed 出版商
  18. Nikolakopoulou A, Wang Y, Ma Q, Sagare A, Montagne A, Huuskonen M, et al. Endothelial LRP1 protects against neurodegeneration by blocking cyclophilin A. J Exp Med. 2021;218: pubmed 出版商
  19. Yang Q, Ma Q, Xu J, Liu Z, Zou J, Shen J, et al. Prkaa1 Metabolically Regulates Monocyte/Macrophage Recruitment and Viability in Diet-Induced Murine Metabolic Disorders. Front Cell Dev Biol. 2020;8:611354 pubmed 出版商
  20. Dong X, Yang Y, Zou Z, Zhao Y, Ci B, Zhong L, et al. Sorting nexin 5 mediates virus-induced autophagy and immunity. Nature. 2021;589:456-461 pubmed 出版商
  21. Contat C, Ancey P, Zangger N, Sabatino S, Pascual J, Escrig S, et al. Combined deletion of Glut1 and Glut3 impairs lung adenocarcinoma growth. elife. 2020;9: pubmed 出版商
  22. Facchin C, Pérez Liva M, Garofalakis A, Viel T, Certain A, Balvay D, et al. Concurrent imaging of vascularization and metabolism in a mouse model of paraganglioma under anti-angiogenic treatment. Theranostics. 2020;10:3518-3532 pubmed 出版商
  23. Aldonza M, Ku J, Hong J, Kim D, Yu S, Lee M, et al. Prior acquired resistance to paclitaxel relays diverse EGFR-targeted therapy persistence mechanisms. Sci Adv. 2020;6:eaav7416 pubmed 出版商
  24. Potilinski M, Ortiz G, Salica J, Lopez E, Fernández Acquier M, Chuluyan E, et al. Elucidating the mechanism of action of alpha-1-antitrypsin using retinal pigment epithelium cells exposed to high glucose. Potential use in diabetic retinopathy. PLoS ONE. 2020;15:e0228895 pubmed 出版商
  25. Li H, Lan J, Wang G, Guo K, Han C, Li X, et al. KDM4B facilitates colorectal cancer growth and glucose metabolism by stimulating TRAF6-mediated AKT activation. J Exp Clin Cancer Res. 2020;39:12 pubmed 出版商
  26. Malhotra A, Castillo Melendez M, Allison B, Sutherland A, Nitsos I, Pham Y, et al. Neurovascular effects of umbilical cord blood-derived stem cells in growth-restricted newborn lambs : UCBCs for perinatal brain injury. Stem Cell Res Ther. 2020;11:17 pubmed 出版商
  27. Moya I, Castaldo S, Van den Mooter L, Soheily S, Sansores Garcia L, Jacobs J, et al. Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science. 2019;366:1029-1034 pubmed 出版商
  28. Nagai M, Noguchi R, Takahashi D, Morikawa T, Koshida K, Komiyama S, et al. Fasting-Refeeding Impacts Immune Cell Dynamics and Mucosal Immune Responses. Cell. 2019;178:1072-1087.e14 pubmed 出版商
  29. Yang H, Shen J, Wang Y, Liu Y, Shen D, Quan S. Tankyrase Promotes Aerobic Glycolysis and Proliferation of Ovarian Cancer through Activation of Wnt/β-Catenin Signaling. Biomed Res Int. 2019;2019:2686340 pubmed 出版商
  30. Oliveira H, Roma Rodrigues C, Santos A, Veigas B, Brás N, Faria A, et al. GLUT1 and GLUT3 involvement in anthocyanin gastric transport- Nanobased targeted approach. Sci Rep. 2019;9:789 pubmed 出版商
  31. Song M, Sandoval T, Chae C, Chopra S, Tan C, Rutkowski M, et al. IRE1α-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature. 2018;562:423-428 pubmed 出版商
  32. Qiao G, Bucsek M, Winder N, Chen M, Giridharan T, Olejniczak S, et al. β-Adrenergic signaling blocks murine CD8+ T-cell metabolic reprogramming during activation: a mechanism for immunosuppression by adrenergic stress. Cancer Immunol Immunother. 2019;68:11-22 pubmed 出版商
  33. Rapino F, Delaunay S, Rambow F, Zhou Z, Tharun L, de Tullio P, et al. Codon-specific translation reprogramming promotes resistance to targeted therapy. Nature. 2018;558:605-609 pubmed 出版商
  34. Zhang Z, Zi Z, Lee E, Zhao J, Contreras D, South A, et al. Differential glucose requirement in skin homeostasis and injury identifies a therapeutic target for psoriasis. Nat Med. 2018;24:617-627 pubmed 出版商
  35. Gilbert A, Chevez Barrios P, Cykowski M. Perineurial-like Cells and EMA Expression in the Suprachoroidal Region of the Human Eye. J Histochem Cytochem. 2018;66:367-375 pubmed 出版商
  36. Qu S, Xue H, Dong X, Lin D, Wu R, Nabavi N, et al. Aneustat (OMN54) has aerobic glycolysis-inhibitory activity and also immunomodulatory activity as indicated by a first-generation PDX prostate cancer model. Int J Cancer. 2018;143:419-429 pubmed 出版商
  37. Jimenez Orgaz A, Kvainickas A, Nägele H, Denner J, Eimer S, Dengjel J, et al. Control of RAB7 activity and localization through the retromer-TBC1D5 complex enables RAB7-dependent mitophagy. EMBO J. 2018;37:235-254 pubmed 出版商
  38. Miikkulainen P, Högel H, Rantanen K, Suomi T, Kouvonen P, Elo L, et al. HIF prolyl hydroxylase PHD3 regulates translational machinery and glucose metabolism in clear cell renal cell carcinoma. Cancer Metab. 2017;5:5 pubmed 出版商
  39. Ip W, Hoshi N, Shouval D, Snapper S, Medzhitov R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science. 2017;356:513-519 pubmed 出版商
  40. Prasad S, Sajja R, Kaisar M, Park J, Villalba H, Liles T, et al. Role of Nrf2 and protective effects of Metformin against tobacco smoke-induced cerebrovascular toxicity. Redox Biol. 2017;12:58-69 pubmed 出版商
  41. Chan L, Chen Z, Braas D, Lee J, Xiao G, Geng H, et al. Metabolic gatekeeper function of B-lymphoid transcription factors. Nature. 2017;542:479-483 pubmed 出版商
  42. Zhang J, Chen S, Cai J, Hou Z, Wang X, Kachelmeier A, et al. Culture media-based selection of endothelial cells, pericytes, and perivascular-resident macrophage-like melanocytes from the young mouse vestibular system. Hear Res. 2017;345:10-22 pubmed 出版商
  43. Tanegashima K, Sato Miyata Y, Funakoshi M, Nishito Y, Aigaki T, Hara T. Epigenetic regulation of the glucose transporter gene Slc2a1 by ?-hydroxybutyrate underlies preferential glucose supply to the brain of fasted mice. Genes Cells. 2017;22:71-83 pubmed 出版商
  44. Li Y, Li X, Kan Q, Zhang M, Li X, Xu R, et al. Mitochondrial pyruvate carrier function is negatively linked to Warburg phenotype in vitro and malignant features in esophageal squamous cell carcinomas. Oncotarget. 2017;8:1058-1073 pubmed 出版商
  45. Kühnel E, Kleff V, Stojanovska V, Kaiser S, Waldschütz R, Herse F, et al. Placental-Specific Overexpression of sFlt-1 Alters Trophoblast Differentiation and Nutrient Transporter Expression in an IUGR Mouse Model. J Cell Biochem. 2017;118:1316-1329 pubmed 出版商
  46. Verma R, Haldar C. Photoperiodic modulation of thyroid hormone receptor (TR-?), deiodinase-2 (Dio-2) and glucose transporters (GLUT 1 and GLUT 4) expression in testis of adult golden hamster, Mesocricetus auratus. J Photochem Photobiol B. 2016;165:351-358 pubmed 出版商
  47. Chruvattil R, Banerjee S, Nath S, Machhi J, Kharkwal G, Yadav M, et al. Dexamethasone Alters the Appetite Regulation via Induction of Hypothalamic Insulin Resistance in Rat Brain. Mol Neurobiol. 2017;54:7483-7496 pubmed 出版商
  48. Kim S, Roy S, Chen B, Nguyen T, McMonigle R, McCracken A, et al. Targeting cancer metabolism by simultaneously disrupting parallel nutrient access pathways. J Clin Invest. 2016;126:4088-4102 pubmed 出版商
  49. Lacroix M, Rodier G, Kirsh O, Houles T, Delpech H, Seyran B, et al. E4F1 controls a transcriptional program essential for pyruvate dehydrogenase activity. Proc Natl Acad Sci U S A. 2016;113:10998-1003 pubmed 出版商
  50. McMillan K, Gallon M, Jellett A, Clairfeuille T, Tilley F, McGough I, et al. Atypical parkinsonism-associated retromer mutant alters endosomal sorting of specific cargo proteins. J Cell Biol. 2016;214:389-99 pubmed 出版商
  51. Khanom R, Nguyen C, Kayamori K, Zhao X, Morita K, Miki Y, et al. Keratin 17 Is Induced in Oral Cancer and Facilitates Tumor Growth. PLoS ONE. 2016;11:e0161163 pubmed 出版商
  52. Li Y, Li X, Li X, Zhong Y, Ji Y, Yu D, et al. PDHA1 gene knockout in prostate cancer cells results in metabolic reprogramming towards greater glutamine dependence. Oncotarget. 2016;7:53837-53852 pubmed 出版商
  53. Martins S, Amorim R, Viana Pereira M, Pinheiro C, Costa R, Silva P, et al. Significance of glycolytic metabolism-related protein expression in colorectal cancer, lymph node and hepatic metastasis. BMC Cancer. 2016;16:535 pubmed 出版商
  54. Aarup A, Pedersen T, Junker N, Christoffersen C, Bartels E, Madsen M, et al. Hypoxia-Inducible Factor-1? Expression in Macrophages Promotes Development of Atherosclerosis. Arterioscler Thromb Vasc Biol. 2016;36:1782-90 pubmed 出版商
  55. Saha A, O Connor R, Thangavelu G, Lovitch S, Dandamudi D, Wilson C, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126:2642-60 pubmed 出版商
  56. Xu Y, Chaudhury A, Zhang M, Savoldo B, Metelitsa L, Rodgers J, et al. Glycolysis determines dichotomous regulation of T cell subsets in hypoxia. J Clin Invest. 2016;126:2678-88 pubmed 出版商
  57. Zhu Y, Ramos da Silva S, He M, Liang Q, Lu C, Feng P, et al. An Oncogenic Virus Promotes Cell Survival and Cellular Transformation by Suppressing Glycolysis. PLoS Pathog. 2016;12:e1005648 pubmed 出版商
  58. Espana Agusti J, Zou X, Wong K, Fu B, Yang F, Tuveson D, et al. Generation and Characterisation of a Pax8-CreERT2 Transgenic Line and a Slc22a6-CreERT2 Knock-In Line for Inducible and Specific Genetic Manipulation of Renal Tubular Epithelial Cells. PLoS ONE. 2016;11:e0148055 pubmed 出版商
  59. Wang P, Li L, Zhang Z, Kan Q, Chen S, Gao F. Time-dependent homeostasis between glucose uptake and consumption in astrocytes exposed to CoClâ‚‚ treatment. Mol Med Rep. 2016;13:2909-17 pubmed 出版商
  60. Chen K, Zeng J, Xiao H, Huang C, Hu J, Yao W, et al. Regulation of glucose metabolism by p62/SQSTM1 through HIF1α. J Cell Sci. 2016;129:817-30 pubmed 出版商
  61. Ulrich F, Carretero Ortega J, Menendez J, Narvaez C, Sun B, Lancaster E, et al. Reck enables cerebrovascular development by promoting canonical Wnt signaling. Development. 2016;143:147-59 pubmed 出版商
  62. Weijer R, Broekgaarden M, Krekorian M, Alles L, van Wijk A, Mackaaij C, et al. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy. Oncotarget. 2016;7:3341-56 pubmed 出版商
  63. Taïeb D, Barlier A, Yang C, Pertuit M, Tchoghandjian A, Rochette C, et al. Somatic gain-of-function HIF2A mutations in sporadic central nervous system hemangioblastomas. J Neurooncol. 2016;126:473-81 pubmed 出版商
  64. Qin W, Li C, Zheng W, Guo Q, Zhang Y, Kang M, et al. Inhibition of autophagy promotes metastasis and glycolysis by inducing ROS in gastric cancer cells. Oncotarget. 2015;6:39839-54 pubmed 出版商
  65. Pinel A, Rigaudière J, Laillet B, Pouyet C, Malpuech Brugère C, Prip Buus C, et al. N-3PUFA differentially modulate palmitate-induced lipotoxicity through alterations of its metabolism in C2C12 muscle cells. Biochim Biophys Acta. 2016;1861:12-20 pubmed 出版商
  66. Barbone D, Follo C, Echeverry N, Gerbaudo V, Klabatsa A, Bueno R, et al. Autophagy Correlates with the Therapeutic Responsiveness of Malignant Pleural Mesothelioma in 3D Models. PLoS ONE. 2015;10:e0134825 pubmed 出版商
  67. Pan P, Marrs J, Ryan T. Vesicular glutamate transporter 1 orchestrates recruitment of other synaptic vesicle cargo proteins during synaptic vesicle recycling. J Biol Chem. 2015;290:22593-601 pubmed 出版商
  68. Lemasson B, Bouchet A, Maisin C, Christen T, Le Duc G, Rémy C, et al. Multiparametric MRI as an early biomarker of individual therapy effects during concomitant treatment of brain tumours. NMR Biomed. 2015;28:1163-73 pubmed 出版商
  69. Sun Y, George J, Rocha S. Dose-dependent effects of allopurinol on human foreskin fibroblast cells and human umbilical vein endothelial cells under hypoxia. PLoS ONE. 2015;10:e0123649 pubmed 出版商
  70. Cao Y, Rathmell J, Macintyre A. Metabolic reprogramming towards aerobic glycolysis correlates with greater proliferative ability and resistance to metabolic inhibition in CD8 versus CD4 T cells. PLoS ONE. 2014;9:e104104 pubmed 出版商
  71. Adams D, Ito D, Rees M, Seashore Ludlow B, Puyang X, Ramos A, et al. NAMPT is the cellular target of STF-31-like small-molecule probes. ACS Chem Biol. 2014;9:2247-54 pubmed 出版商
  72. Caro Maldonado A, Wang R, Nichols A, Kuraoka M, Milasta S, Sun L, et al. Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J Immunol. 2014;192:3626-36 pubmed 出版商