这是一篇来自已证抗体库的有关人类 GLUT1的综述,是根据120篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合GLUT1 抗体。
GLUT1 同义词: CSE; DYT17; DYT18; DYT9; EIG12; GLUT; GLUT-1; GLUT1; GLUT1DS; HTLVR; PED; SDCHCN; solute carrier family 2, facilitated glucose transporter member 1; choreoathetosis/spasticity, episodic (paroxysmal choreoathetosis/spasticity); glucose transporter type 1, erythrocyte/brain; hepG2 glucose transporter; human T-cell leukemia virus (I and II) receptor; receptor for HTLV-1 and HTLV-2; solute carrier family 2 (facilitated glucose transporter), member 1

艾博抗(上海)贸易有限公司
兔 单克隆(EPR3915)
  • 流式细胞仪; 小鼠; 图 1a
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, EPR3915)被用于被用于流式细胞仪在小鼠样品上 (图 1a). Cancer Immunol Immunother (2018) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 s4d
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 s4d). EMBO J (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab14683)被用于被用于免疫印迹在人类样品上 (图 1d). Cancer Metab (2017) ncbi
兔 单克隆(EPR3915)
  • 免疫细胞化学; 小鼠; 图 s5e
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, EPR3915)被用于被用于免疫细胞化学在小鼠样品上 (图 s5e). Science (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:50; 图 4d
  • 免疫组化; 小鼠; 1:50; 图 2b
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, Ab15309)被用于被用于免疫细胞化学在小鼠样品上浓度为1:50 (图 4d) 和 被用于免疫组化在小鼠样品上浓度为1:50 (图 2b). Hear Res (2017) ncbi
小鼠 单克隆(SPM498)
  • 免疫印迹; 人类; 图 1b
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫印迹在人类样品上 (图 1b). Free Radic Biol Med (2016) ncbi
兔 单克隆(EPR3915)
  • 流式细胞仪; 小鼠; 图 3f
  • 免疫印迹; 小鼠; 1:1000; 图 4c-e
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, EPR3915)被用于被用于流式细胞仪在小鼠样品上 (图 3f) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 4c-e). Genes Cells (2017) ncbi
小鼠 单克隆(SPM498)
  • 免疫印迹; 人类; 1:1000; 图 6b
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, Ab40084)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 6b). Front Physiol (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 2b
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab652)被用于被用于免疫印迹在大鼠样品上 (图 2b). J Neurosci (2016) ncbi
小鼠 单克隆(SPM498)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 9a
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000 (图 9a). Eneuro (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1 ug/ml; 图 2a
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab652)被用于被用于免疫印迹在小鼠样品上浓度为1 ug/ml (图 2a). Aging (Albany NY) (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s6f
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 s6f). Proc Natl Acad Sci U S A (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3d
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab652)被用于被用于免疫印迹在小鼠样品上 (图 3d). Sci Rep (2016) ncbi
兔 单克隆(EPR3915)
  • 免疫细胞化学; 人类; 图 5b
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, 115730)被用于被用于免疫细胞化学在人类样品上 (图 5b). J Cell Biol (2016) ncbi
小鼠 单克隆(SPM498)
  • 免疫印迹; 小鼠; 图 7b
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, 40084)被用于被用于免疫印迹在小鼠样品上 (图 7b). Hum Mol Genet (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s2d
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab65267)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 s2d). EJNMMI Res (2016) ncbi
兔 单克隆(EPR3915)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, EPR3915)被用于被用于免疫印迹在人类样品上. PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:10; 图 1c
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab32551)被用于被用于免疫细胞化学在大鼠样品上浓度为1:10 (图 1c). J Cereb Blood Flow Metab (2016) ncbi
小鼠 单克隆(SPM498)
  • 免疫细胞化学; 大鼠; 1:10; 图 1d
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫细胞化学在大鼠样品上浓度为1:10 (图 1d). J Cereb Blood Flow Metab (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:500; 图 1
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309-500)被用于被用于免疫组化在人类样品上浓度为1:500 (图 1). BMC Cancer (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 3b). Arterioscler Thromb Vasc Biol (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 图 7d
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab652)被用于被用于免疫组化在人类样品上 (图 7d). Onco Targets Ther (2016) ncbi
兔 多克隆
  • 流式细胞仪; 小鼠; 图 9
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab14683)被用于被用于流式细胞仪在小鼠样品上 (图 9). J Clin Invest (2016) ncbi
兔 单克隆(EPR3915)
  • 免疫印迹; 人类; 图 5c
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫印迹在人类样品上 (图 5c). J Clin Invest (2016) ncbi
兔 单克隆(EPR3915)
  • 免疫组化-石蜡切片; 人类; 图 9
  • 免疫印迹; 大鼠; 图 4
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫组化-石蜡切片在人类样品上 (图 9) 和 被用于免疫印迹在大鼠样品上 (图 4). PLoS Pathog (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 图 2
艾博抗(上海)贸易有限公司 GLUT1抗体(abcam, ab652)被用于被用于免疫组化在人类样品上 (图 2). Cell Rep (2016) ncbi
小鼠 单克隆(SPM498)
  • 免疫印迹; 人类; 图 3b
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, Ab40084)被用于被用于免疫印迹在人类样品上 (图 3b). Mol Metab (2016) ncbi
小鼠 单克隆(SPM498)
  • 免疫组化; 人类; 1:100; 图 3c
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫组化在人类样品上浓度为1:100 (图 3c). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab 652)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 5). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 GLUT1抗体(abcam, 652)被用于被用于免疫印迹在人类样品上 (图 1). J Extracell Vesicles (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:350; 图 5
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab14683)被用于被用于免疫组化在小鼠样品上浓度为1:350 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(SPM498)
  • 免疫印迹; 小鼠; 1:1000; 图 5d
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab-40084)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 5d). EMBO Mol Med (2016) ncbi
兔 单克隆(EPR3915)
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3). J Cell Sci (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1
艾博抗(上海)贸易有限公司 GLUT1抗体(abcam, ab15309)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(SPM498)
  • 免疫细胞化学; 人类; 1:300; 图 3
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫细胞化学在人类样品上浓度为1:300 (图 3). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1d
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309-500)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图 1d). BMC Cancer (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab652)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 6). Nat Med (2015) ncbi
兔 单克隆(EPR3915)
  • 免疫组化-石蜡切片; 人类; 图 6
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫组化-石蜡切片在人类样品上 (图 6) 和 被用于免疫印迹在人类样品上 (图 4). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4g
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab32551)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4g). FASEB J (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s4
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, 652)被用于被用于免疫印迹在人类样品上 (图 s4). Leukemia (2016) ncbi
小鼠 单克隆(SPM498)
  • 免疫细胞化学; 小鼠; 1:200; 图 3
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200 (图 3). Lab Invest (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:2000; 图 1
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309)被用于被用于免疫组化在人类样品上浓度为1:2000 (图 1). J Pathol (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:50
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab652)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:50. Exp Physiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 2
艾博抗(上海)贸易有限公司 GLUT1抗体(AbCam, ab32551)被用于被用于免疫印迹在大鼠样品上 (图 2). J Neurochem (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:500
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab652)被用于被用于免疫组化在人类样品上浓度为1:500. PLoS ONE (2015) ncbi
小鼠 单克隆(SPM498)
  • 免疫印迹; 小鼠; 图 3,7,8
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫印迹在小鼠样品上 (图 3,7,8). J Am Heart Assoc (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500. Dev Neurobiol (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:250; 图 6
  • 免疫组化; 人类; 1:250; 图 6
  • 免疫印迹; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司 GLUT1抗体(abcam, ab652)被用于被用于免疫组化在小鼠样品上浓度为1:250 (图 6), 被用于免疫组化在人类样品上浓度为1:250 (图 6) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 2). Nat Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:100
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab652)被用于被用于免疫印迹在小鼠样品上浓度为1:100. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab32551)被用于被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1
艾博抗(上海)贸易有限公司 GLUT1抗体(AbCam, ab15309-500)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图 1). BMC Cancer (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, 15309)被用于被用于免疫细胞化学在人类样品上 和 被用于免疫印迹在人类样品上. J Cell Sci (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500
  • 流式细胞仪; 人类; 1:10
  • 免疫印迹; 人类; 1:400
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500, 被用于流式细胞仪在人类样品上浓度为1:10 和 被用于免疫印迹在人类样品上浓度为1:400. BMC Cancer (2014) ncbi
兔 单克隆(EPR3915)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200
  • 免疫印迹; 人类; 1:300
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab14683)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 和 被用于免疫印迹在人类样品上浓度为1:300. Placenta (2014) ncbi
兔 单克隆(EPR3915)
  • 免疫印迹; 人类; 1:5000
艾博抗(上海)贸易有限公司 GLUT1抗体(Epitomics, 2944-1)被用于被用于免疫印迹在人类样品上浓度为1:5000. ACS Chem Biol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, 15309)被用于被用于免疫印迹在人类样品上. Curr Biol (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab14683)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 1). J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:200
  • 免疫印迹; 人类; 1:500
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309)被用于被用于免疫细胞化学在人类样品上浓度为1:200 和 被用于免疫印迹在人类样品上浓度为1:500. Fluids Barriers CNS (2014) ncbi
小鼠 单克隆(SPM498)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. J Transl Med (2014) ncbi
兔 多克隆
  • 流式细胞仪; 小鼠
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, Ab652)被用于被用于流式细胞仪在小鼠样品上. J Immunol (2014) ncbi
兔 单克隆(EPR3915)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab115730)被用于被用于免疫印迹在小鼠样品上. J Immunol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab32551)被用于被用于免疫印迹在小鼠样品上浓度为1:500 (图 2). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309)被用于被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(SPM498)
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫印迹在大鼠样品上浓度为1:1000. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:3000; 图 2, 3
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab15309)被用于被用于免疫印迹在大鼠样品上浓度为1:3000 (图 2, 3). Neurochem Int (2013) ncbi
小鼠 单克隆(SPM498)
  • 免疫细胞化学; 人类; 1:100
  • 免疫印迹; 人类; 1:500
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫细胞化学在人类样品上浓度为1:100 和 被用于免疫印迹在人类样品上浓度为1:500. Am J Physiol Cell Physiol (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab652)被用于被用于免疫印迹在人类样品上. Urol Oncol (2014) ncbi
小鼠 单克隆(SPM498)
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司 GLUT1抗体(Abcam, ab40084)被用于被用于免疫印迹在大鼠样品上. Lab Anim Res (2012) ncbi
赛默飞世尔
兔 多克隆
  • 免疫印迹; 仓鼠; 1:500; 图 5a
赛默飞世尔 GLUT1抗体(Thermo scientific, PA1-46152)被用于被用于免疫印迹在仓鼠样品上浓度为1:500 (图 5a). J Photochem Photobiol B (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:100; 图 3
赛默飞世尔 GLUT1抗体(ThermoScientific, PA1-21041)被用于被用于免疫组化在人类样品上浓度为1:100 (图 3). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 图 1e
赛默飞世尔 GLUT1抗体(Thermo Fischer Scientific, RB-9052)被用于被用于免疫组化在人类样品上 (图 1e). Oncotarget (2016) ncbi
小鼠 单克隆(SPM498)
  • 免疫细胞化学; 人类; 1:100; 图 2
赛默飞世尔 GLUT1抗体(Thermo Scientific, SPM498)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 2). Methods (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1a
赛默飞世尔 GLUT1抗体(Thermo Scientific, PA1-46152)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 1a). J Neurooncol (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 图 5e
赛默飞世尔 GLUT1抗体(Thermo Scientific, PA1-37782)被用于被用于免疫组化在人类样品上 (图 5e). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 GLUT1抗体(THERMO SCIENTIFIC, PA1-46152)被用于被用于免疫印迹在小鼠样品上 (图 1). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(SPM498)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 2
赛默飞世尔 GLUT1抗体(Thermo Fisher Scientific, SPM498)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (表 2). J Pediatr Hematol Oncol (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 s3
赛默飞世尔 GLUT1抗体(Thermo Scientific, PA5-16793)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图 s3). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 4
赛默飞世尔 GLUT1抗体(Thermo Scientific, PA5-16793,)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500 (图 4). J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 4
赛默飞世尔 GLUT1抗体(Thermo Scientific, PA5-16793,)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500 (图 4). NMR Biomed (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 GLUT1抗体(Thermo Fisher Scientific, RB-9052-P)被用于被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2015) ncbi
小鼠 单克隆(SPM498)
  • 免疫组化-冰冻切片; 人类
赛默飞世尔 GLUT1抗体(Thermo Scientific, SPM498)被用于被用于免疫组化-冰冻切片在人类样品上. J Neurochem (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 GLUT1抗体(Thermo Scientific, RB-9052-P0)被用于被用于免疫组化-石蜡切片在小鼠样品上. Dev Cell (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:200
赛默飞世尔 GLUT1抗体(Thermo Scientific, PA1-21041)被用于被用于免疫印迹在人类样品上浓度为1:200. Neuropathol Appl Neurobiol (2015) ncbi
小鼠 单克隆(SPM498)
  • 抑制或激活实验; 人类
赛默飞世尔 GLUT1抗体(Pierce, MA1-37783)被用于被用于抑制或激活实验在人类样品上. Nanomedicine (2015) ncbi
小鼠 单克隆(SPM498)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 GLUT1抗体(Thermo Scientific, SPM498)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Hum Pathol (2014) ncbi
小鼠 单克隆(SPM498)
  • 免疫细胞化学; 人类; 1:50
赛默飞世尔 GLUT1抗体(Thermo-Fisher, SPM498)被用于被用于免疫细胞化学在人类样品上浓度为1:50. Clin Cancer Res (2014) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:200; 图 1i
赛默飞世尔 GLUT1抗体(Thermo Scientific, RB-9052-P0)被用于被用于免疫组化在人类样品上浓度为1:200 (图 1i). Mol Imaging Biol (2013) ncbi
安迪生物R&D
小鼠 单克隆(202915)
  • 免疫组化-冰冻切片; Atlantic cod; 20 ug/ml; 图 7c
  • 免疫印迹; Atlantic cod; 2 ug/ml; 图 8a
安迪生物R&D GLUT1抗体(R&D Systems, MAB1418)被用于被用于免疫组化-冰冻切片在Atlantic cod样品上浓度为20 ug/ml (图 7c) 和 被用于免疫印迹在Atlantic cod样品上浓度为2 ug/ml (图 8a). J Exp Biol (2016) ncbi
小鼠 单克隆(202915)
  • 流式细胞仪; 人类; 图 8a
安迪生物R&D GLUT1抗体(R&D Systems, FAB1418P)被用于被用于流式细胞仪在人类样品上 (图 8a). Eur J Cell Biol (2016) ncbi
武汉三鹰
小鼠 单克隆(2A5A2)
  • 免疫印迹; 人类; 图 6k
武汉三鹰 GLUT1抗体(Proteintech, 66290-1-lg)被用于被用于免疫印迹在人类样品上 (图 6k). Cell Death Dis (2018) ncbi
Novus Biologicals
兔 多克隆
  • 免疫印迹; 小鼠; 图 7b
Novus Biologicals GLUT1抗体(Novus Biologicals, NB110-39113)被用于被用于免疫印迹在小鼠样品上 (图 7b). J Cell Biochem (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 1d
Novus Biologicals GLUT1抗体(Novus Biologicals, NB300-666)被用于被用于免疫细胞化学在人类样品上 (图 1d). J Clin Invest (2016) ncbi
兔 多克隆
  • 免疫组化; 斑马鱼; 1:200; 图 7a
Novus Biologicals GLUT1抗体(Novus Biologicals, NB300666)被用于被用于免疫组化在斑马鱼样品上浓度为1:200 (图 7a). Development (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠
  • 免疫组化; 小鼠; 1:200
Novus Biologicals GLUT1抗体(Novus Biologicals, NB110-39113)被用于被用于免疫组化-冰冻切片在小鼠样品上 和 被用于免疫组化在小鼠样品上浓度为1:200. Dev Biol (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(A-4)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
圣克鲁斯生物技术 GLUT1抗体(Santa Cruz, sc-377228)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 2a). Mol Med Rep (2016) ncbi
GeneTex
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 6
GeneTex GLUT1抗体(GeneTex, GTX100684)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 6). J Clin Invest (2016) ncbi
默克密理博中国
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1e
默克密理博中国 GLUT1抗体(Millipore, 07-1401)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 1e). Nat Med (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 6f
默克密理博中国 GLUT1抗体(EMD Millipore, 07-1401)被用于被用于免疫组化在小鼠样品上 (图 6f). J Clin Invest (2017) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:400; 图 s4a
默克密理博中国 GLUT1抗体(Millipore, 07-1401)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:400 (图 s4a). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 4d
默克密理博中国 GLUT1抗体(Millipore, 07-1401)被用于被用于免疫印迹在人类样品上浓度为1:10,000 (图 4d). Neoplasia (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 3
默克密理博中国 GLUT1抗体(Millipore, 07-1401)被用于被用于免疫细胞化学在小鼠样品上浓度为1:100 (图 3). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠
默克密理博中国 GLUT1抗体(Millipore, 07-1401)被用于被用于免疫组化-石蜡切片在小鼠样品上. Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
默克密理博中国 GLUT1抗体(Merck Millipore, 07?C1401)被用于被用于免疫印迹在人类样品上 (图 3). J Clin Endocrinol Metab (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1
默克密理博中国 GLUT1抗体(EMD Millipore, 07-1401)被用于被用于免疫印迹在小鼠样品上 (图 1). J Clin Invest (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
默克密理博中国 GLUT1抗体(Millipore, 07-1401)被用于被用于免疫印迹在人类样品上 (图 1). Int J Cancer (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:100; 图 s6
默克密理博中国 GLUT1抗体(Millipore, 07-1401)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 s6). J Control Release (2016) ncbi
小鼠 单克隆(5B12.3)
  • 免疫组化; 小鼠
  • 免疫组化; 大鼠
默克密理博中国 GLUT1抗体(Millipore, MABS132)被用于被用于免疫组化在小鼠样品上 和 被用于免疫组化在大鼠样品上. Fluids Barriers CNS (2015) ncbi
小鼠 单克隆(5B12.3)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 4
默克密理博中国 GLUT1抗体(EMD Millipore, MABS132)被用于被用于免疫细胞化学在人类样品上 (图 4) 和 被用于免疫印迹在人类样品上 (图 4). Fluids Barriers CNS (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:100
默克密理博中国 GLUT1抗体(Millipore, 07-1401)被用于被用于免疫组化在小鼠样品上浓度为1:100. Mol Neurodegener (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 3
默克密理博中国 GLUT1抗体(Millipore, 07-1401)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 3). Nat Cell Biol (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200; 图 2k
默克密理博中国 GLUT1抗体(Millipore, 07-1401)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 2k). Acta Neuropathol (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:150
默克密理博中国 GLUT1抗体(Millipore, 400060-50UG)被用于被用于免疫组化在人类样品上浓度为1:150. Neurobiol Dis (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500
默克密理博中国 GLUT1抗体(Millipore, CBL242)被用于被用于免疫印迹在大鼠样品上浓度为1:500. Mol Hum Reprod (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠
默克密理博中国 GLUT1抗体(Millipore, 07-1401)被用于被用于免疫组化在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500
默克密理博中国 GLUT1抗体(EMD Millipore, 07-1401)被用于被用于免疫印迹在小鼠样品上浓度为1:500. Nat Commun (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
默克密理博中国 GLUT1抗体(Millipore, CBL242)被用于被用于免疫细胞化学在人类样品上 和 被用于免疫印迹在人类样品上. Biomed Res Int (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:500
默克密理博中国 GLUT1抗体(EMD Millipore, 07-1401)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:100 和 被用于免疫印迹在大鼠样品上浓度为1:500. Lab Invest (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:6000
默克密理博中国 GLUT1抗体(Merck millipore, 07-1401)被用于被用于免疫组化在小鼠样品上浓度为1:6000. Acta Neuropathol Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:300
默克密理博中国 GLUT1抗体(Millipore, CBL242)被用于被用于免疫印迹在大鼠样品上浓度为1:300. Br J Pharmacol (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
默克密理博中国 GLUT1抗体(Millipore, 07-1401)被用于被用于免疫印迹在大鼠样品上. Life Sci (2013) ncbi
西格玛奥德里奇
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4a
西格玛奥德里奇 GLUT1抗体(Sigma, SAB 4502803)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 4a). Mol Neurobiol (2017) ncbi
文章列表
  1. Qiao G, Bucsek M, Winder N, Chen M, Giridharan T, Olejniczak S, et al. ?-Adrenergic signaling blocks murine CD8+ T-cell metabolic reprogramming during activation: a mechanism for immunosuppression by adrenergic stress. Cancer Immunol Immunother. 2018;: pubmed 出版商
  2. Xiang J, Hu Q, Qin Y, Ji S, Xu W, Liu W, et al. TCF7L2 positively regulates aerobic glycolysis via the EGLN2/HIF-1α axis and indicates prognosis in pancreatic cancer. Cell Death Dis. 2018;9:321 pubmed 出版商
  3. Jimenez Orgaz A, Kvainickas A, Nägele H, Denner J, Eimer S, Dengjel J, et al. Control of RAB7 activity and localization through the retromer-TBC1D5 complex enables RAB7-dependent mitophagy. EMBO J. 2018;37:235-254 pubmed 出版商
  4. Mai W, Gosa L, Daniëls V, Ta L, Tsang J, Higgins B, et al. Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma. Nat Med. 2017;23:1342-1351 pubmed 出版商
  5. Kim J, Kim Y, Kim J, Park D, Bae H, Lee D, et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest. 2017;127:3441-3461 pubmed 出版商
  6. Miikkulainen P, Högel H, Rantanen K, Suomi T, Kouvonen P, Elo L, et al. HIF prolyl hydroxylase PHD3 regulates translational machinery and glucose metabolism in clear cell renal cell carcinoma. Cancer Metab. 2017;5:5 pubmed 出版商
  7. Ip W, Hoshi N, Shouval D, Snapper S, Medzhitov R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science. 2017;356:513-519 pubmed 出版商
  8. Yanagida K, Liu C, Faraco G, Galvani S, Smith H, Burg N, et al. Size-selective opening of the blood-brain barrier by targeting endothelial sphingosine 1-phosphate receptor 1. Proc Natl Acad Sci U S A. 2017;114:4531-4536 pubmed 出版商
  9. Azzalin A, Nato G, Parmigiani E, Garello F, Buffo A, Magrassi L. Inhibitors of GLUT/SLC2A Enhance the Action of BCNU and Temozolomide against High-Grade Gliomas. Neoplasia. 2017;19:364-373 pubmed 出版商
  10. Zhang J, Chen S, Cai J, Hou Z, Wang X, Kachelmeier A, et al. Culture media-based selection of endothelial cells, pericytes, and perivascular-resident macrophage-like melanocytes from the young mouse vestibular system. Hear Res. 2017;345:10-22 pubmed 出版商
  11. Zeng C, Wu Q, Wang J, Yao B, Ma L, Yang Z, et al. NOX4 supports glycolysis and promotes glutamine metabolism in non-small cell lung cancer cells. Free Radic Biol Med. 2016;101:236-248 pubmed 出版商
  12. Tanegashima K, Sato Miyata Y, Funakoshi M, Nishito Y, Aigaki T, Hara T. Epigenetic regulation of the glucose transporter gene Slc2a1 by ?-hydroxybutyrate underlies preferential glucose supply to the brain of fasted mice. Genes Cells. 2017;22:71-83 pubmed 出版商
  13. Prieto P, Fernandez Velasco M, Fernández Santos M, Sanchez P, Terrón V, Martín Sanz P, et al. Cell Expansion-Dependent Inflammatory and Metabolic Profile of Human Bone Marrow Mesenchymal Stem Cells. Front Physiol. 2016;7:548 pubmed
  14. Pearson Leary J, McNay E. Novel Roles for the Insulin-Regulated Glucose Transporter-4 in Hippocampally Dependent Memory. J Neurosci. 2016;36:11851-11864 pubmed
  15. Kühnel E, Kleff V, Stojanovska V, Kaiser S, Waldschütz R, Herse F, et al. Placental-Specific Overexpression of sFlt-1 Alters Trophoblast Differentiation and Nutrient Transporter Expression in an IUGR Mouse Model. J Cell Biochem. 2017;118:1316-1329 pubmed 出版商
  16. Kalyan Masih P, Vega Torres J, Miles C, Haddad E, Rainsbury S, Baghchechi M, et al. Western High-Fat Diet Consumption during Adolescence Increases Susceptibility to Traumatic Stress while Selectively Disrupting Hippocampal and Ventricular Volumes. Eneuro. 2016;3: pubmed
  17. Verma R, Haldar C. Photoperiodic modulation of thyroid hormone receptor (TR-?), deiodinase-2 (Dio-2) and glucose transporters (GLUT 1 and GLUT 4) expression in testis of adult golden hamster, Mesocricetus auratus. J Photochem Photobiol B. 2016;165:351-358 pubmed 出版商
  18. Parikh I, Guo J, Chuang K, Zhong Y, Rempe R, Hoffman J, et al. Caloric restriction preserves memory and reduces anxiety of aging mice with early enhancement of neurovascular functions. Aging (Albany NY). 2016;8:2814-2826 pubmed 出版商
  19. Chruvattil R, Banerjee S, Nath S, Machhi J, Kharkwal G, Yadav M, et al. Dexamethasone Alters the Appetite Regulation via Induction of Hypothalamic Insulin Resistance in Rat Brain. Mol Neurobiol. 2017;54:7483-7496 pubmed 出版商
  20. Kim S, Roy S, Chen B, Nguyen T, McMonigle R, McCracken A, et al. Targeting cancer metabolism by simultaneously disrupting parallel nutrient access pathways. J Clin Invest. 2016;126:4088-4102 pubmed 出版商
  21. Lacroix M, Rodier G, Kirsh O, Houles T, Delpech H, Seyran B, et al. E4F1 controls a transcriptional program essential for pyruvate dehydrogenase activity. Proc Natl Acad Sci U S A. 2016;113:10998-1003 pubmed 出版商
  22. Coleman S, Rebalka I, D Souza D, Deodhare N, Desjardins E, Hawke T. Myostatin inhibition therapy for insulin-deficient type 1 diabetes. Sci Rep. 2016;6:32495 pubmed 出版商
  23. McMillan K, Gallon M, Jellett A, Clairfeuille T, Tilley F, McGough I, et al. Atypical parkinsonism-associated retromer mutant alters endosomal sorting of specific cargo proteins. J Cell Biol. 2016;214:389-99 pubmed 出版商
  24. Zhang L, Justus S, Xu Y, Pluchenik T, Hsu C, Yang J, et al. Reprogramming towards anabolism impedes degeneration in a preclinical model of retinitis pigmentosa. Hum Mol Genet. 2016;25:4244-4255 pubmed 出版商
  25. Maynard J, Emmas S, Blé F, Barjat H, Lawrie E, Hancox U, et al. The use of (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) as a pathway-specific biomarker with AZD8186, a PI3K?/? inhibitor. EJNMMI Res. 2016;6:62 pubmed 出版商
  26. Khanom R, Nguyen C, Kayamori K, Zhao X, Morita K, Miki Y, et al. Keratin 17 Is Induced in Oral Cancer and Facilitates Tumor Growth. PLoS ONE. 2016;11:e0161163 pubmed 出版商
  27. Busse B, Bezrukov L, Blank P, Zimmerberg J. Resin embedded multicycle imaging (REMI): a tool to evaluate protein domains. Sci Rep. 2016;6:30284 pubmed 出版商
  28. Johansson E, Rönö B, Johansson M, Lindgren D, Möller C, Axelson H, et al. Simultaneous targeted activation of Notch1 and Vhl-disruption in the kidney proximal epithelial tubular cells in mice. Sci Rep. 2016;6:30739 pubmed 出版商
  29. Tome M, Herndon J, Schaefer C, Jacobs L, Zhang Y, Jarvis C, et al. P-glycoprotein traffics from the nucleus to the plasma membrane in rat brain endothelium during inflammatory pain. J Cereb Blood Flow Metab. 2016;36:1913-1928 pubmed
  30. Martins S, Amorim R, Viana Pereira M, Pinheiro C, Costa R, Silva P, et al. Significance of glycolytic metabolism-related protein expression in colorectal cancer, lymph node and hepatic metastasis. BMC Cancer. 2016;16:535 pubmed 出版商
  31. Aarup A, Pedersen T, Junker N, Christoffersen C, Bartels E, Madsen M, et al. Hypoxia-Inducible Factor-1? Expression in Macrophages Promotes Development of Atherosclerosis. Arterioscler Thromb Vasc Biol. 2016;36:1782-90 pubmed 出版商
  32. Yan Y, Xie M, Zhang L, Zhou X, Xie H, Zhou L, et al. Ras-related associated with diabetes gene acts as a suppressor and inhibits Warburg effect in hepatocellular carcinoma. Onco Targets Ther. 2016;9:3925-37 pubmed 出版商
  33. Clow K, Short C, Hall J, Gendron R, Paradis H, Ralhan A, et al. High rates of glucose utilization in the gas gland of Atlantic cod (Gadus morhua) are supported by GLUT1 and HK1b. J Exp Biol. 2016;219:2763-73 pubmed 出版商
  34. Saha A, O Connor R, Thangavelu G, Lovitch S, Dandamudi D, Wilson C, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126:2642-60 pubmed 出版商
  35. Xu Y, Chaudhury A, Zhang M, Savoldo B, Metelitsa L, Rodgers J, et al. Glycolysis determines dichotomous regulation of T cell subsets in hypoxia. J Clin Invest. 2016;126:2678-88 pubmed 出版商
  36. Zhu Y, Ramos da Silva S, He M, Liang Q, Lu C, Feng P, et al. An Oncogenic Virus Promotes Cell Survival and Cellular Transformation by Suppressing Glycolysis. PLoS Pathog. 2016;12:e1005648 pubmed 出版商
  37. Phillips J, Laude A, Lightowlers R, Morris C, Turnbull D, Lax N. Development of passive CLARITY and immunofluorescent labelling of multiple proteins in human cerebellum: understanding mechanisms of neurodegeneration in mitochondrial disease. Sci Rep. 2016;6:26013 pubmed 出版商
  38. Jiménez Valerio G, Martínez Lozano M, Bassani N, Vidal A, Ochoa de Olza M, Suarez C, et al. Resistance to Antiangiogenic Therapies by Metabolic Symbiosis in Renal Cell Carcinoma PDX Models and Patients. Cell Rep. 2016;15:1134-43 pubmed 出版商
  39. Barquissau V, Beuzelin D, Pisani D, Beranger G, Mairal A, Montagner A, et al. White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways. Mol Metab. 2016;5:352-365 pubmed 出版商
  40. Bourseau Guilmain E, Menard J, Lindqvist E, Indira Chandran V, Christianson H, Cerezo Magaña M, et al. Hypoxia regulates global membrane protein endocytosis through caveolin-1 in cancer cells. Nat Commun. 2016;7:11371 pubmed 出版商
  41. Pires A, Marques C, Encarnação J, Abrantes A, Mamede A, Laranjo M, et al. Ascorbic acid and colon cancer: an oxidative stimulus to cell death depending on cell profile. Eur J Cell Biol. 2016;95:208-18 pubmed 出版商
  42. Kim D, Bynoe M. A2A adenosine receptor modulates drug efflux transporter P-glycoprotein at the blood-brain barrier. J Clin Invest. 2016;126:1717-33 pubmed 出版商
  43. Hansen N, Hjort L, Broholm C, Gillberg L, Schrölkamp M, Schultz H, et al. Metabolic and Transcriptional Changes in Cultured Muscle Stem Cells from Low Birth Weight Subjects. J Clin Endocrinol Metab. 2016;101:2254-64 pubmed 出版商
  44. Peteranderl C, Morales Nebreda L, Selvakumar B, Lecuona E, Vadász I, Morty R, et al. Macrophage-epithelial paracrine crosstalk inhibits lung edema clearance during influenza infection. J Clin Invest. 2016;126:1566-80 pubmed 出版商
  45. Jennewein L, Ronellenfitsch M, Antonietti P, Ilina E, Jung J, Stadel D, et al. Diagnostic and clinical relevance of the autophago-lysosomal network in human gliomas. Oncotarget. 2016;7:20016-32 pubmed 出版商
  46. Ronquist K, Sanchez C, Dubois L, Chioureas D, Fonseca P, Larsson A, et al. Energy-requiring uptake of prostasomes and PC3 cell-derived exosomes into non-malignant and malignant cells. J Extracell Vesicles. 2016;5:29877 pubmed 出版商
  47. Ruf M, Moch H, Schraml P. PD-L1 expression is regulated by hypoxia inducible factor in clear cell renal cell carcinoma. Int J Cancer. 2016;139:396-403 pubmed 出版商
  48. Van Woensel M, Wauthoz N, Rosière R, Mathieu V, Kiss R, Lefranc F, et al. Development of siRNA-loaded chitosan nanoparticles targeting Galectin-1 for the treatment of glioblastoma multiforme via intranasal administration. J Control Release. 2016;227:71-81 pubmed 出版商
  49. Espana Agusti J, Zou X, Wong K, Fu B, Yang F, Tuveson D, et al. Generation and Characterisation of a Pax8-CreERT2 Transgenic Line and a Slc22a6-CreERT2 Knock-In Line for Inducible and Specific Genetic Manipulation of Renal Tubular Epithelial Cells. PLoS ONE. 2016;11:e0148055 pubmed 出版商
  50. Wang P, Li L, Zhang Z, Kan Q, Chen S, Gao F. Time-dependent homeostasis between glucose uptake and consumption in astrocytes exposed to CoClâ‚‚ treatment. Mol Med Rep. 2016;13:2909-17 pubmed 出版商
  51. Albert V, Svensson K, Shimobayashi M, Colombi M, Muñoz S, Jimenez V, et al. mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue. EMBO Mol Med. 2016;8:232-46 pubmed 出版商
  52. Chen K, Zeng J, Xiao H, Huang C, Hu J, Yao W, et al. Regulation of glucose metabolism by p62/SQSTM1 through HIF1α. J Cell Sci. 2016;129:817-30 pubmed 出版商
  53. Ulrich F, Carretero Ortega J, Menéndez J, Narvaez C, Sun B, Lancaster E, et al. Reck enables cerebrovascular development by promoting canonical Wnt signaling. Development. 2016;143:147-59 pubmed 出版商
  54. Weijer R, Broekgaarden M, Krekorian M, Alles L, van Wijk A, Mackaaij C, et al. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy. Oncotarget. 2016;7:3341-56 pubmed 出版商
  55. Pinheiro C, Granja S, Longatto Filho A, Faria A, Fragoso M, Lovisolo S, et al. Metabolic reprogramming: a new relevant pathway in adult adrenocortical tumors. Oncotarget. 2015;6:44403-21 pubmed 出版商
  56. Miura S, Sato K, Kato Negishi M, Teshima T, Takeuchi S. Fluid shear triggers microvilli formation via mechanosensitive activation of TRPV6. Nat Commun. 2015;6:8871 pubmed 出版商
  57. Pinheiro C, Garcia E, Morais Santos F, Moreira M, Almeida F, Jubé L, et al. Reprogramming energy metabolism and inducing angiogenesis: co-expression of monocarboxylate transporters with VEGF family members in cervical adenocarcinomas. BMC Cancer. 2015;15:835 pubmed 出版商
  58. Stebbins M, Wilson H, Canfield S, Qian T, Palecek S, Shusta E. Differentiation and characterization of human pluripotent stem cell-derived brain microvascular endothelial cells. Methods. 2016;101:93-102 pubmed 出版商
  59. Taïeb D, Barlier A, Yang C, Pertuit M, Tchoghandjian A, Rochette C, et al. Somatic gain-of-function HIF2A mutations in sporadic central nervous system hemangioblastomas. J Neurooncol. 2016;126:473-81 pubmed 出版商
  60. Zhou W, Cheng L, Shi Y, Ke S, Huang Z, Fang X, et al. Arsenic trioxide disrupts glioma stem cells via promoting PML degradation to inhibit tumor growth. Oncotarget. 2015;6:37300-15 pubmed 出版商
  61. Huang L, Holtzinger A, Jagan I, BeGora M, Lohse I, Ngai N, et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat Med. 2015;21:1364-71 pubmed 出版商
  62. Qin W, Li C, Zheng W, Guo Q, Zhang Y, Kang M, et al. Inhibition of autophagy promotes metastasis and glycolysis by inducing ROS in gastric cancer cells. Oncotarget. 2015;6:39839-54 pubmed 出版商
  63. Pinel A, Rigaudière J, Laillet B, Pouyet C, Malpuech Brugère C, Prip Buus C, et al. N-3PUFA differentially modulate palmitate-induced lipotoxicity through alterations of its metabolism in C2C12 muscle cells. Biochim Biophys Acta. 2016;1861:12-20 pubmed 出版商
  64. Wittmann G, Mohácsik P, Balkhi M, Gereben B, Lechan R. Endotoxin-induced inflammation down-regulates L-type amino acid transporter 1 (LAT1) expression at the blood-brain barrier of male rats and mice. Fluids Barriers CNS. 2015;12:21 pubmed 出版商
  65. Sharma B, Kolhe R, Black S, Keller J, Mivechi N, Satyanarayana A. Inhibitor of differentiation 1 transcription factor promotes metabolic reprogramming in hepatocellular carcinoma cells. FASEB J. 2016;30:262-75 pubmed 出版商
  66. Kong G, Hofman M, Murray W, Wilson S, Wood P, Downie P, et al. Initial Experience With Gallium-68 DOTA-Octreotate PET/CT and Peptide Receptor Radionuclide Therapy for Pediatric Patients With Refractory Metastatic Neuroblastoma. J Pediatr Hematol Oncol. 2016;38:87-96 pubmed 出版商
  67. Barbone D, Follo C, Echeverry N, Gerbaudo V, Klabatsa A, Bueno R, et al. Autophagy Correlates with the Therapeutic Responsiveness of Malignant Pleural Mesothelioma in 3D Models. PLoS ONE. 2015;10:e0134825 pubmed 出版商
  68. Hermanova I, Arruabarrena Aristorena A, Valis K, Nůsková H, Alberich Jorda M, Fiser K, et al. Pharmacological inhibition of fatty-acid oxidation synergistically enhances the effect of l-asparaginase in childhood ALL cells. Leukemia. 2016;30:209-18 pubmed 出版商
  69. Pan P, Marrs J, Ryan T. Vesicular glutamate transporter 1 orchestrates recruitment of other synaptic vesicle cargo proteins during synaptic vesicle recycling. J Biol Chem. 2015;290:22593-601 pubmed 出版商
  70. Lemasson B, Bouchet A, Maisin C, Christen T, Le Duc G, Rémy C, et al. Multiparametric MRI as an early biomarker of individual therapy effects during concomitant treatment of brain tumours. NMR Biomed. 2015;28:1163-73 pubmed 出版商
  71. Prasad S, Sajja R, Park J, Naik P, Kaisar M, Cucullo L. Impact of cigarette smoke extract and hyperglycemic conditions on blood-brain barrier endothelial cells. Fluids Barriers CNS. 2015;12:18 pubmed 出版商
  72. Tan X, Xue Y, Ma T, Wang X, Li J, Lan L, et al. Partial eNOS deficiency causes spontaneous thrombotic cerebral infarction, amyloid angiopathy and cognitive impairment. Mol Neurodegener. 2015;10:24 pubmed 出版商
  73. Tsuneki M, Hardee S, Michaud M, Morotti R, Lavik E, Madri J. A hydrogel-endothelial cell implant mimics infantile hemangioma: modulation by survivin and the Hippo pathway. Lab Invest. 2015;95:765-80 pubmed 出版商
  74. Pértega Gomes N, Felisbino S, Massie C, Vizcaíno J, Coelho R, Sandi C, et al. A glycolytic phenotype is associated with prostate cancer progression and aggressiveness: a role for monocarboxylate transporters as metabolic targets for therapy. J Pathol. 2015;236:517-30 pubmed 出版商
  75. Brown M, Chingombe T, Zinn A, Reddy J, Novack R, Cooney S, et al. Novel assessment of haemodynamic kinetics with acute exercise in a rat model of pulmonary arterial hypertension. Exp Physiol. 2015;100:742-54 pubmed 出版商
  76. Tome M, Schaefer C, Jacobs L, Zhang Y, Herndon J, Matty F, et al. Identification of P-glycoprotein co-fractionating proteins and specific binding partners in rat brain microvessels. J Neurochem. 2015;134:200-10 pubmed 出版商
  77. Sun Y, George J, Rocha S. Dose-dependent effects of allopurinol on human foreskin fibroblast cells and human umbilical vein endothelial cells under hypoxia. PLoS ONE. 2015;10:e0123649 pubmed 出版商
  78. Verduzco D, Lloyd M, Xu L, Ibrahim Hashim A, Balagurunathan Y, Gatenby R, et al. Intermittent hypoxia selects for genotypes and phenotypes that increase survival, invasion, and therapy resistance. PLoS ONE. 2015;10:e0120958 pubmed 出版商
  79. Uchida Y, Ito K, Ohtsuki S, Kubo Y, Suzuki T, Terasaki T. Major involvement of Na(+) -dependent multivitamin transporter (SLC5A6/SMVT) in uptake of biotin and pantothenic acid by human brain capillary endothelial cells. J Neurochem. 2015;134:97-112 pubmed 出版商
  80. Schisler J, Grevengoed T, Pascual F, Cooper D, Ellis J, Paul D, et al. Cardiac energy dependence on glucose increases metabolites related to glutathione and activates metabolic genes controlled by mechanistic target of rapamycin. J Am Heart Assoc. 2015;4: pubmed 出版商
  81. Locher H, de Groot J, van Iperen L, Huisman M, Frijns J, Chuva de Sousa Lopes S. Development of the stria vascularis and potassium regulation in the human fetal cochlea: Insights into hereditary sensorineural hearing loss. Dev Neurobiol. 2015;75:1219-40 pubmed 出版商
  82. Fong M, Zhou W, Liu L, Alontaga A, Chandra M, Ashby J, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol. 2015;17:183-94 pubmed 出版商
  83. Zhou W, Ke S, Huang Z, Flavahan W, Fang X, Paul J, et al. Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol. 2015;17:170-82 pubmed 出版商
  84. Pérez de Puig I, Miró Mur F, Ferrer Ferrer M, Gelpi E, Pedragosa J, Justicia C, et al. Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropathol. 2015;129:239-57 pubmed 出版商
  85. Pienaar I, Lee C, Elson J, McGuinness L, Gentleman S, Kalaria R, et al. Deep-brain stimulation associates with improved microvascular integrity in the subthalamic nucleus in Parkinson's disease. Neurobiol Dis. 2015;74:392-405 pubmed 出版商
  86. Zhou Y, Nathans J. Gpr124 controls CNS angiogenesis and blood-brain barrier integrity by promoting ligand-specific canonical wnt signaling. Dev Cell. 2014;31:248-56 pubmed 出版商
  87. Gangadharan Komala M, Gross S, Mudaliar H, Huang C, Pegg K, Mather A, et al. Inhibition of kidney proximal tubular glucose reabsorption does not prevent against diabetic nephropathy in type 1 diabetic eNOS knockout mice. PLoS ONE. 2014;9:e108994 pubmed 出版商
  88. Mössenböck K, Vegiopoulos A, Rose A, Sijmonsma T, Herzig S, Schafmeier T. Browning of white adipose tissue uncouples glucose uptake from insulin signaling. PLoS ONE. 2014;9:e110428 pubmed 出版商
  89. Craggs L, Fenwick R, Oakley A, Ihara M, Kalaria R. Immunolocalization of platelet-derived growth factor receptor-β (PDGFR-β) and pericytes in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Neuropathol Appl Neurobiol. 2015;41:557-70 pubmed 出版商
  90. Pinheiro C, Garcia E, Morais Santos F, Scapulatempo Neto C, Mafra A, Steenbergen R, et al. Lactate transporters and vascular factors in HPV-induced squamous cell carcinoma of the uterine cervix. BMC Cancer. 2014;14:751 pubmed 出版商
  91. McGough I, Steinberg F, Gallon M, Yatsu A, Ohbayashi N, Heesom K, et al. Identification of molecular heterogeneity in SNX27-retromer-mediated endosome-to-plasma-membrane recycling. J Cell Sci. 2014;127:4940-53 pubmed 出版商
  92. Sousa B, Ribeiro A, Nobre A, Lopes N, Martins D, Pinheiro C, et al. The basal epithelial marker P-cadherin associates with breast cancer cell populations harboring a glycolytic and acid-resistant phenotype. BMC Cancer. 2014;14:734 pubmed 出版商
  93. Rocha C, Martins A, Rato L, Silva B, Oliveira P, Alves M. Melatonin alters the glycolytic profile of Sertoli cells: implications for male fertility. Mol Hum Reprod. 2014;20:1067-76 pubmed 出版商
  94. Sohn C, Park S, Choi S, Park S, Kim S, Xu L, et al. MRI molecular imaging using GLUT1 antibody-Fe3O4 nanoparticles in the hemangioma animal model for differentiating infantile hemangioma from vascular malformation. Nanomedicine. 2015;11:127-35 pubmed 出版商
  95. Micucci C, Orciari S, Catalano A. Hyperglycemia promotes K-Ras-induced lung tumorigenesis through BASCs amplification. PLoS ONE. 2014;9:e105550 pubmed 出版商
  96. Cao Y, Rathmell J, Macintyre A. Metabolic reprogramming towards aerobic glycolysis correlates with greater proliferative ability and resistance to metabolic inhibition in CD8 versus CD4 T cells. PLoS ONE. 2014;9:e104104 pubmed 出版商
  97. Wei W, Hu Y. Expression of hypoxia-regulated genes and glycometabolic genes in placenta from patients with intrahepatic cholestasis of pregnancy. Placenta. 2014;35:732-6 pubmed 出版商
  98. Adams D, Ito D, Rees M, Seashore Ludlow B, Puyang X, Ramos A, et al. NAMPT is the cellular target of STF-31-like small-molecule probes. ACS Chem Biol. 2014;9:2247-54 pubmed 出版商
  99. Requejo Aguilar R, Lopez Fabuel I, Fernandez E, Martins L, Almeida A, Bolanos J. PINK1 deficiency sustains cell proliferation by reprogramming glucose metabolism through HIF1. Nat Commun. 2014;5:4514 pubmed 出版商
  100. McGough I, Steinberg F, Jia D, Barbuti P, McMillan K, Heesom K, et al. Retromer binding to FAM21 and the WASH complex is perturbed by the Parkinson disease-linked VPS35(D620N) mutation. Curr Biol. 2014;24:1670-1676 pubmed 出版商
  101. Paatero I, Seagroves T, Vaparanta K, Han W, Jones F, Johnson R, et al. Hypoxia-inducible factor-1? induces ErbB4 signaling in the differentiating mammary gland. J Biol Chem. 2014;289:22459-69 pubmed 出版商
  102. Duregon E, Rapa I, Votta A, Giorcelli J, Daffara F, Terzolo M, et al. MicroRNA expression patterns in adrenocortical carcinoma variants and clinical pathologic correlations. Hum Pathol. 2014;45:1555-62 pubmed 出版商
  103. Moreau J, Artap S, Shi H, Chapman G, Leone G, Sparrow D, et al. Cited2 is required in trophoblasts for correct placental capillary patterning. Dev Biol. 2014;392:62-79 pubmed 出版商
  104. Caliceti C, Zambonin L, Rizzo B, Fiorentini D, Vieceli Dalla Sega F, Hrelia S, et al. Role of plasma membrane caveolae/lipid rafts in VEGF-induced redox signaling in human leukemia cells. Biomed Res Int. 2014;2014:857504 pubmed 出版商
  105. Sajja R, Prasad S, Cucullo L. Impact of altered glycaemia on blood-brain barrier endothelium: an in vitro study using the hCMEC/D3 cell line. Fluids Barriers CNS. 2014;11:8 pubmed 出版商
  106. Nogueira A, Sogayar M, Colquhoun A, Siqueira S, Nogueira A, Marchiori P, et al. Existence of a potential neurogenic system in the adult human brain. J Transl Med. 2014;12:75 pubmed 出版商
  107. Caro Maldonado A, Wang R, Nichols A, Kuraoka M, Milasta S, Sun L, et al. Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J Immunol. 2014;192:3626-36 pubmed 出版商
  108. Ekman M, Uvelius B, Albinsson S, Swärd K. HIF-mediated metabolic switching in bladder outlet obstruction mitigates the relaxing effect of mitochondrial inhibition. Lab Invest. 2014;94:557-68 pubmed 出版商
  109. Notari L, Riera D, Sun R, Bohl J, McLean L, Madden K, et al. Role of macrophages in the altered epithelial function during a type 2 immune response induced by enteric nematode infection. PLoS ONE. 2014;9:e84763 pubmed 出版商
  110. Smith R, Solberg R, Jacobsen L, Voreland A, Rustan A, Thoresen G, et al. Simvastatin inhibits glucose metabolism and legumain activity in human myotubes. PLoS ONE. 2014;9:e85721 pubmed 出版商
  111. Yang M, Rainone A, Shi X, Fournier S, Zhang J. A new animal model of spontaneous autoimmune peripheral polyneuropathy: implications for Guillain-Barré syndrome. Acta Neuropathol Commun. 2014;2:5 pubmed 出版商
  112. Alves M, Martins A, Vaz C, Correia S, Moreira P, Oliveira P, et al. Metformin and male reproduction: effects on Sertoli cell metabolism. Br J Pharmacol. 2014;171:1033-42 pubmed 出版商
  113. Malin D, Strekalova E, Petrovic V, Deal A, Al Ahmad A, Adamo B, et al. ?B-crystallin: a novel regulator of breast cancer metastasis to the brain. Clin Cancer Res. 2014;20:56-67 pubmed 出版商
  114. Morato P, Lollo P, Moura C, Batista T, Camargo R, Carneiro E, et al. Whey protein hydrolysate increases translocation of GLUT-4 to the plasma membrane independent of insulin in wistar rats. PLoS ONE. 2013;8:e71134 pubmed 出版商
  115. Roy M, Hennebelle M, St Pierre V, Courchesne Loyer A, Fortier M, Bouzier Sore A, et al. Long-term calorie restriction has minimal impact on brain metabolite and fatty acid profiles in aged rats on a Western-style diet. Neurochem Int. 2013;63:450-7 pubmed 出版商
  116. da Silva A, Dias L, Borges J, Markoski M, de Souza M, Irigoyen M, et al. Renal GLUT1 reduction depends on angiotensin-converting enzyme inhibition in diabetic hypertensive rats. Life Sci. 2013;92:1174-9 pubmed 出版商
  117. Pyla R, Poulose N, Jun J, Segar L. Expression of conventional and novel glucose transporters, GLUT1, -9, -10, and -12, in vascular smooth muscle cells. Am J Physiol Cell Physiol. 2013;304:C574-89 pubmed 出版商
  118. Ji S, Su X, Cheng W, Zhang H, Zhao Y, Han Z. Down-regulation of CD74 inhibits growth and invasion in clear cell renal cell carcinoma through HIF-1? pathway. Urol Oncol. 2014;32:153-61 pubmed 出版商
  119. Kim J, Hwang I, Choi S, Lee H, Lee Y, Goo J, et al. Aqueous extract of Liriope platyphylla, a traditional Chinese medicine, significantly inhibits abdominal fat accumulation and improves glucose regulation in OLETF type II diabetes model rats. Lab Anim Res. 2012;28:181-91 pubmed 出版商
  120. Garofalakis A, Dubois A, Thézé B, Czarny B, Tavitian B, Duconge F. Fusion of [(18)F]FDG PET with fluorescence diffuse optical tomography to improve validation of probes and tumor imaging. Mol Imaging Biol. 2013;15:316-25 pubmed 出版商