这是一篇来自已证抗体库的有关人类 葡萄糖转运蛋白4 (GLUT4) 的综述,是根据35篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合葡萄糖转运蛋白4 抗体。
葡萄糖转运蛋白4 同义词: GLUT4

圣克鲁斯生物技术
小鼠 单克隆(IF8)
  • 免疫组化-石蜡切片; 大鼠; 图 6
圣克鲁斯生物技术葡萄糖转运蛋白4抗体(Santa Cruz, sc-53566)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 6). Int J Endocrinol (2022) ncbi
小鼠 单克隆(IF8)
  • 免疫沉淀; 小鼠; 图 6
  • 免疫印迹; 小鼠; 图 6
圣克鲁斯生物技术葡萄糖转运蛋白4抗体(Santa Cruz Biotechnology, sc-53566)被用于被用于免疫沉淀在小鼠样本上 (图 6) 和 被用于免疫印迹在小鼠样本上 (图 6). Skelet Muscle (2015) ncbi
小鼠 单克隆(IF8)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
圣克鲁斯生物技术葡萄糖转运蛋白4抗体(Santa Cruz, sc-53566)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Br J Pharmacol (2015) ncbi
小鼠 单克隆(IF8)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术葡萄糖转运蛋白4抗体(scbt, sc-53566)被用于被用于免疫印迹在小鼠样本上. J Proteome Res (2015) ncbi
赛默飞世尔
小鼠 单克隆(1F8)
  • 免疫印迹; 小鼠; 图 1g
赛默飞世尔葡萄糖转运蛋白4抗体(Thermo Fisher, MA183191)被用于被用于免疫印迹在小鼠样本上 (图 1g). elife (2020) ncbi
小鼠 单克隆(1F8)
  • 免疫印迹; 大鼠; 图 3b
赛默飞世尔葡萄糖转运蛋白4抗体(ThermoFisher, MA1-83191)被用于被用于免疫印迹在大鼠样本上 (图 3b). Molecules (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 5c
赛默飞世尔葡萄糖转运蛋白4抗体(Thermo Fisher Scientific, PA5-19621)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5c). J Clin Endocrinol Metab (2017) ncbi
小鼠 单克隆(3G10A3)
  • 免疫印迹; 小鼠; 图 4k
赛默飞世尔葡萄糖转运蛋白4抗体(Thermo Fisher, MA5-17176)被用于被用于免疫印迹在小鼠样本上 (图 4k). FASEB J (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 仓鼠; 1:500; 图 5b
赛默飞世尔葡萄糖转运蛋白4抗体(Thermo scientific, PA5-23052)被用于被用于免疫印迹在仓鼠样本上浓度为1:500 (图 5b). J Photochem Photobiol B (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 1a
赛默飞世尔葡萄糖转运蛋白4抗体(ThermoFisher, PA5-19621)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1a). Am J Physiol Regul Integr Comp Physiol (2016) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:80; 图 6d
艾博抗(上海)贸易有限公司葡萄糖转运蛋白4抗体(Abcam, ab33780)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:80 (图 6d). Mol Med Rep (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:10; 图 4b
艾博抗(上海)贸易有限公司葡萄糖转运蛋白4抗体(Abcam, ab33780)被用于被用于免疫印迹在小鼠样本上浓度为1:10 (图 4b). J Proteomics (2020) ncbi
domestic rabbit 单克隆(EPR930(2))
  • 免疫印迹; 小鼠; 图 S1b
艾博抗(上海)贸易有限公司葡萄糖转运蛋白4抗体(Abcam, ab188317)被用于被用于免疫印迹在小鼠样本上 (图 S1b). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 3a
  • 免疫印迹; 小鼠; 图 3c
艾博抗(上海)贸易有限公司葡萄糖转运蛋白4抗体(Abcam, ab33780)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3a) 和 被用于免疫印迹在小鼠样本上 (图 3c). Environ Health Perspect (2016) ncbi
小鼠 单克隆(1F8)
  • 免疫组化-冰冻切片; 大鼠; 1:100
艾博抗(上海)贸易有限公司葡萄糖转运蛋白4抗体(abCam, 1F8)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100. Front Neurosci (2014) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2a
  • 免疫印迹; 小鼠; 1:2000; 图 4d
  • 免疫印迹; 人类; 1:2000; 图 s1c
Novus Biologicals葡萄糖转运蛋白4抗体(NovusBio, NBP149533)被用于被用于免疫组化在小鼠样本上 (图 2a), 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4d) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 s1c). Cardiovasc Diabetol (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200
Novus Biologicals葡萄糖转运蛋白4抗体(Novus, NBP1-49533)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Cell Transplant (2021) ncbi
小鼠 单克隆(3G10A3)
  • 免疫印迹; 小鼠; 1:1000; 图 5d
Novus Biologicals葡萄糖转运蛋白4抗体(Novus Biologicals, NBP2-22214)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
Novus Biologicals葡萄糖转运蛋白4抗体(Novusbio, NBP1-49533)被用于. EMBO Rep (2015) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(1F8)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司葡萄糖转运蛋白4抗体(CST, 2213)被用于被用于免疫印迹在人类样本上 (图 2e). Mol Ther Nucleic Acids (2021) ncbi
小鼠 单克隆(1F8)
  • 免疫印迹; 大鼠; 图 3e, 10a, 10b
赛信通(上海)生物试剂有限公司葡萄糖转运蛋白4抗体(CST, 2213)被用于被用于免疫印迹在大鼠样本上 (图 3e, 10a, 10b). Front Pharmacol (2020) ncbi
小鼠 单克隆(1F8)
  • 免疫印迹; 小鼠; 1:1000; 图 1g
赛信通(上海)生物试剂有限公司葡萄糖转运蛋白4抗体(Cell Signaling, 2213)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1g). Commun Biol (2021) ncbi
小鼠 单克隆(1F8)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司葡萄糖转运蛋白4抗体(CST, 2213S)被用于被用于免疫印迹在小鼠样本上 (图 6a). Theranostics (2020) ncbi
小鼠 单克隆(1F8)
  • 免疫印迹; pigs ; 图 5b
赛信通(上海)生物试剂有限公司葡萄糖转运蛋白4抗体(Cell Signal, 2213)被用于被用于免疫印迹在pigs 样本上 (图 5b). Oncotarget (2017) ncbi
小鼠 单克隆(1F8)
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司葡萄糖转运蛋白4抗体(Cell Signaling, 2213)被用于被用于免疫印迹在小鼠样本上 (图 3b). Metabolism (2017) ncbi
小鼠 单克隆(1F8)
  • 免疫印迹; 小鼠; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司葡萄糖转运蛋白4抗体(Cell Signaling, 2213)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). PLoS ONE (2017) ncbi
小鼠 单克隆(1F8)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司葡萄糖转运蛋白4抗体(Cell Signaling, 2213)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). PLoS ONE (2017) ncbi
小鼠 单克隆(1F8)
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司葡萄糖转运蛋白4抗体(Cell Signaling, 2213S)被用于被用于免疫印迹在小鼠样本上 (图 4d). Am J Physiol Endocrinol Metab (2017) ncbi
小鼠 单克隆(1F8)
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司葡萄糖转运蛋白4抗体(Cell Signaling, 2213)被用于被用于免疫印迹在小鼠样本上 (图 6c). Am J Physiol Endocrinol Metab (2016) ncbi
小鼠 单克隆(1F8)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司葡萄糖转运蛋白4抗体(Cell Signaling, 2213)被用于被用于免疫印迹在小鼠样本上 (图 4b). Skelet Muscle (2016) ncbi
小鼠 单克隆(1F8)
  • 免疫印迹; 小鼠; 1:25,000; 图 1d
赛信通(上海)生物试剂有限公司葡萄糖转运蛋白4抗体(Cell Signaling Technology, 2213)被用于被用于免疫印迹在小鼠样本上浓度为1:25,000 (图 1d). Diabetes (2016) ncbi
小鼠 单克隆(1F8)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司葡萄糖转运蛋白4抗体(Cell Signaling Technology, 2213)被用于被用于免疫印迹在小鼠样本上 (图 1). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(1F8)
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司葡萄糖转运蛋白4抗体(Cell Signaling, 2213)被用于被用于免疫印迹在小鼠样本上 (图 3e). J Biol Chem (2015) ncbi
小鼠 单克隆(1F8)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司葡萄糖转运蛋白4抗体(Cell Signaling Technology, 2213)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Antioxid Redox Signal (2015) ncbi
小鼠 单克隆(1F8)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司葡萄糖转运蛋白4抗体(Cell Signaling, 2213)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
文章列表
  1. Sohrabipour S, Sharifi M, Sharifi M, Talebi A, Soltani N. Combination Therapy with GABA and MgSO4 Improves Insulin Sensitivity in Type 2 Diabetic Rat. Int J Endocrinol. 2022;2022:2144615 pubmed 出版商
  2. Yeh C, Liu H, Lee M, Leu Y, Chiang W, Chang H, et al. Phytochemical‑rich herbal formula ATG‑125 protects against sucrose‑induced gastrocnemius muscle atrophy by rescuing Akt signaling and improving mitochondrial dysfunction in young adult mice. Mol Med Rep. 2022;25: pubmed 出版商
  3. Sun Z, Sun D, Feng Y, Zhang B, Sun P, Zhou B, et al. Exosomal linc-ROR mediates crosstalk between cancer cells and adipocytes to promote tumor growth in pancreatic cancer. Mol Ther Nucleic Acids. 2021;26:253-268 pubmed 出版商
  4. Saw E, Pearson J, Schwenke D, Munasinghe P, Tsuchimochi H, Rawal S, et al. Activation of the cardiac non-neuronal cholinergic system prevents the development of diabetes-associated cardiovascular complications. Cardiovasc Diabetol. 2021;20:50 pubmed 出版商
  5. Song G, Huang Y, Xiong M, Yang Z, Liu Q, Shen J, et al. Aloperine Relieves Type 2 Diabetes Mellitus via Enhancing GLUT4 Expression and Translocation. Front Pharmacol. 2020;11:561956 pubmed 出版商
  6. Jones I, Novikova L, Wiberg M, Carlsson L, Novikov L. Human Embryonic Stem Cell-derived Neural Crest Cells Promote Sprouting and Motor Recovery Following Spinal Cord Injury in Adult Rats. Cell Transplant. 2021;30:963689720988245 pubmed 出版商
  7. Stojakovic A, Trushin S, Sheu A, Khalili L, Chang S, Li X, et al. Partial inhibition of mitochondrial complex I ameliorates Alzheimer's disease pathology and cognition in APP/PS1 female mice. Commun Biol. 2021;4:61 pubmed 出版商
  8. Ruiz Velasco A, Zi M, Hille S, Azam T, Kaur N, Jiang J, et al. Targeting mir128-3p alleviates myocardial insulin resistance and prevents ischemia-induced heart failure. elife. 2020;9: pubmed 出版商
  9. Li X, Wu Y, Zhao J, Wang H, Tan J, Yang M, et al. Distinct cardiac energy metabolism and oxidative stress adaptations between obese and non-obese type 2 diabetes mellitus. Theranostics. 2020;10:2675-2695 pubmed 出版商
  10. Yang N, Yu L, Deng Y, Han Q, Wang J, Yu L, et al. Identification and characterization of proteins that are differentially expressed in adipose tissue of olanzapine-induced insulin resistance rat by iTRAQ quantitative proteomics. J Proteomics. 2020;212:103570 pubmed 出版商
  11. Bazzari F, Abdallah D, El Abhar H. Chenodeoxycholic Acid Ameliorates AlCl3-Induced Alzheimer's Disease Neurotoxicity and Cognitive Deterioration via Enhanced Insulin Signaling in Rats. Molecules. 2019;24: pubmed 出版商
  12. Krag T, Ruiz Ruiz C, Vissing J. Glycogen Synthesis in Glycogenin 1-Deficient Patients: A Role for Glycogenin 2 in Muscle. J Clin Endocrinol Metab. 2017;102:2690-2700 pubmed 出版商
  13. Cai C, Qian L, Jiang S, Sun Y, Wang Q, Ma D, et al. Loss-of-function myostatin mutation increases insulin sensitivity and browning of white fat in Meishan pigs. Oncotarget. 2017;8:34911-34922 pubmed 出版商
  14. Dogan A, Demirci S, Apdik H, Bayrak O, Gulluoglu S, Tuysuz E, et al. A new hope for obesity management: Boron inhibits adipogenesis in progenitor cells through the Wnt/β-catenin pathway. Metabolism. 2017;69:130-142 pubmed 出版商
  15. Major J, Dewan A, Salih M, Leddy J, Tuana B. E2F6 Impairs Glycolysis and Activates BDH1 Expression Prior to Dilated Cardiomyopathy. PLoS ONE. 2017;12:e0170066 pubmed 出版商
  16. Yu N, Fang X, Zhao D, Mu Q, Zuo J, Ma Y, et al. Anti-Diabetic Effects of Jiang Tang Xiao Ke Granule via PI3K/Akt Signalling Pathway in Type 2 Diabetes KKAy Mice. PLoS ONE. 2017;12:e0168980 pubmed 出版商
  17. Kocsis T, Trencsenyi G, Szabó K, Baán J, Müller G, Mendler L, et al. Myostatin propeptide mutation of the hypermuscular Compact mice decreases the formation of myostatin and improves insulin sensitivity. Am J Physiol Endocrinol Metab. 2017;312:E150-E160 pubmed 出版商
  18. Liu Z, Gan L, Wu T, Feng F, Luo D, Gu H, et al. Adiponectin reduces ER stress-induced apoptosis through PPARα transcriptional regulation of ATF2 in mouse adipose. Cell Death Dis. 2016;7:e2487 pubmed 出版商
  19. Fernández Verdejo R, Vanwynsberghe A, Essaghir A, Demoulin J, Hai T, Deldicque L, et al. Activating transcription factor 3 attenuates chemokine and cytokine expression in mouse skeletal muscle after exercise and facilitates molecular adaptation to endurance training. FASEB J. 2017;31:840-851 pubmed 出版商
  20. Verma R, Haldar C. Photoperiodic modulation of thyroid hormone receptor (TR-?), deiodinase-2 (Dio-2) and glucose transporters (GLUT 1 and GLUT 4) expression in testis of adult golden hamster, Mesocricetus auratus. J Photochem Photobiol B. 2016;165:351-358 pubmed 出版商
  21. Charrier A, Wang L, Stephenson E, Ghanta S, Ko C, Croniger C, et al. Zinc finger protein 407 overexpression upregulates PPAR target gene expression and improves glucose homeostasis in mice. Am J Physiol Endocrinol Metab. 2016;311:E869-E880 pubmed 出版商
  22. Harfmann B, Schroder E, Kachman M, Hodge B, Zhang X, Esser K. Muscle-specific loss of Bmal1 leads to disrupted tissue glucose metabolism and systemic glucose homeostasis. Skelet Muscle. 2016;6:12 pubmed 出版商
  23. Krag T, Pinós T, Nielsen T, Duran J, García Rocha M, Andreu A, et al. Differential glucose metabolism in mice and humans affected by McArdle disease. Am J Physiol Regul Integr Comp Physiol. 2016;311:R307-14 pubmed 出版商
  24. Vazirani R, Verma A, Sadacca L, Buckman M, Picatoste B, Beg M, et al. Disruption of Adipose Rab10-Dependent Insulin Signaling Causes Hepatic Insulin Resistance. Diabetes. 2016;65:1577-89 pubmed 出版商
  25. Liu L, Wang F, Lu H, Cao S, Du Z, Wang Y, et al. Effects of Noise Exposure on Systemic and Tissue-Level Markers of Glucose Homeostasis and Insulin Resistance in Male Mice. Environ Health Perspect. 2016;124:1390-8 pubmed 出版商
  26. Albert V, Svensson K, Shimobayashi M, Colombi M, Munoz S, Jimenez V, et al. mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue. EMBO Mol Med. 2016;8:232-46 pubmed 出版商
  27. Pinel A, Rigaudière J, Laillet B, Pouyet C, Malpuech Brugère C, Prip Buus C, et al. N-3PUFA differentially modulate palmitate-induced lipotoxicity through alterations of its metabolism in C2C12 muscle cells. Biochim Biophys Acta. 2016;1861:12-20 pubmed 出版商
  28. Yoo M, Kim B, Lee S, Jeong H, Park J, Seo D, et al. Syntaxin 4 regulates the surface localization of a promyogenic receptor Cdo thereby promoting myogenic differentiation. Skelet Muscle. 2015;5:28 pubmed 出版商
  29. Zidek L, Ackermann T, Hartleben G, Eichwald S, Kortman G, Kiehntopf M, et al. Deficiency in mTORC1-controlled C/EBPβ-mRNA translation improves metabolic health in mice. EMBO Rep. 2015;16:1022-36 pubmed 出版商
  30. Zheng T, Yang X, Wu D, Xing S, Bian F, Li W, et al. Salidroside ameliorates insulin resistance through activation of a mitochondria-associated AMPK/PI3K/Akt/GSK3β pathway. Br J Pharmacol. 2015;172:3284-301 pubmed 出版商
  31. Buchner D, Charrier A, Srinivasan E, Wang L, Paulsen M, Ljungman M, et al. Zinc finger protein 407 (ZFP407) regulates insulin-stimulated glucose uptake and glucose transporter 4 (Glut4) mRNA. J Biol Chem. 2015;290:6376-86 pubmed 出版商
  32. Azimzadeh O, Sievert W, Sarioglu H, Merl Pham J, Yentrapalli R, Bakshi M, et al. Integrative proteomics and targeted transcriptomics analyses in cardiac endothelial cells unravel mechanisms of long-term radiation-induced vascular dysfunction. J Proteome Res. 2015;14:1203-19 pubmed 出版商
  33. Zheng H, Fu J, Xue P, Zhao R, Dong J, Liu D, et al. CNC-bZIP protein Nrf1-dependent regulation of glucose-stimulated insulin secretion. Antioxid Redox Signal. 2015;22:819-31 pubmed 出版商
  34. Al Koborssy D, Palouzier Paulignan B, Salem R, Thevenet M, Romestaing C, Julliard A. Cellular and molecular cues of glucose sensing in the rat olfactory bulb. Front Neurosci. 2014;8:333 pubmed 出版商
  35. Ost M, Werner F, Dokas J, Klaus S, Voigt A. Activation of AMPK?2 is not crucial for mitochondrial uncoupling-induced metabolic effects but required to maintain skeletal muscle integrity. PLoS ONE. 2014;9:e94689 pubmed 出版商