这是一篇来自已证抗体库的有关人类 GM130的综述,是根据218篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合GM130 抗体。
GM130 同义词: GM130

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EP892Y)
  • 免疫细胞化学; 人类; 图 2f
艾博抗(上海)贸易有限公司 GM130抗体(Abcam, ab52649)被用于被用于免疫细胞化学在人类样本上 (图 2f). J Cell Biol (2019) ncbi
domestic rabbit 单克隆(EP892Y)
  • 免疫印迹; 人类; 1:2000; 图 s5
艾博抗(上海)贸易有限公司 GM130抗体(Abcam, ab52649)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s5). J Biol Chem (2019) ncbi
domestic rabbit 单克隆(EP892Y)
  • 免疫印迹; 人类; 图 1e
艾博抗(上海)贸易有限公司 GM130抗体(Abcam, EP892Y)被用于被用于免疫印迹在人类样本上 (图 1e). Cells (2019) ncbi
domestic rabbit 单克隆(EP892Y)
  • 免疫细胞化学; 人类; 图 5a
  • 免疫印迹; 人类; 图 5b
艾博抗(上海)贸易有限公司 GM130抗体(Abcam, ab52649)被用于被用于免疫细胞化学在人类样本上 (图 5a) 和 被用于免疫印迹在人类样本上 (图 5b). Sci Rep (2018) ncbi
domestic rabbit 单克隆(EP892Y)
  • 免疫细胞化学; 人类; 图 s2a
  • 免疫印迹; 人类; 1:10,000; 图 1c
  • 免疫印迹; 小鼠; 1:10,000; 图 s2b
艾博抗(上海)贸易有限公司 GM130抗体(Abcam, AB52649)被用于被用于免疫细胞化学在人类样本上 (图 s2a), 被用于免疫印迹在人类样本上浓度为1:10,000 (图 1c) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 s2b). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 单克隆(EP892Y)
  • 免疫细胞化学; 人类; 图 1a
艾博抗(上海)贸易有限公司 GM130抗体(Abcam, EP892Y)被用于被用于免疫细胞化学在人类样本上 (图 1a). J Cell Biol (2018) ncbi
domestic rabbit 单克隆(EP892Y)
  • 免疫印迹; 人类; 1:1000; 图 2b
艾博抗(上海)贸易有限公司 GM130抗体(Abcam, ab52649)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). J Exp Med (2018) ncbi
小鼠 多克隆
  • 免疫细胞化学; 人类; 1:142; 图 3
艾博抗(上海)贸易有限公司 GM130抗体(Abcam, ab169276)被用于被用于免疫细胞化学在人类样本上浓度为1:142 (图 3). J Lipid Res (2018) ncbi
小鼠 多克隆
  • 免疫细胞化学; 人类; 图 3f
艾博抗(上海)贸易有限公司 GM130抗体(Abcam, 169276)被用于被用于免疫细胞化学在人类样本上 (图 3f). Nature (2017) ncbi
domestic rabbit 单克隆(EP892Y)
  • 免疫印迹; 人类; 1:10,000; 图 4h
艾博抗(上海)贸易有限公司 GM130抗体(Abcam, ab52649)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4h). Nat Commun (2017) ncbi
domestic rabbit 单克隆(EP892Y)
  • 免疫印迹; 人类; 1:1000; 图 1d
艾博抗(上海)贸易有限公司 GM130抗体(Abcam, ab52649)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Mol Cell Proteomics (2017) ncbi
domestic rabbit 单克隆(EP892Y)
  • 免疫印迹基因敲除验证; 小鼠; 图 8
艾博抗(上海)贸易有限公司 GM130抗体(Abcam, ab52649)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 8). Cell Death Dis (2017) ncbi
小鼠 多克隆
  • 免疫细胞化学; 人类; 1:250; 图 5b
  • 免疫印迹; 人类; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 GM130抗体(Abcam, ab169276)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 5b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(EP892Y)
  • 免疫细胞化学; 人类; 图 7d
艾博抗(上海)贸易有限公司 GM130抗体(Abcam, ab52649)被用于被用于免疫细胞化学在人类样本上 (图 7d). Alcohol Clin Exp Res (2016) ncbi
domestic rabbit 单克隆(EP892Y)
  • 免疫组化; 人类; 1:1000; 图 3b
艾博抗(上海)贸易有限公司 GM130抗体(Abcam, ab52649)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 3b). Autophagy (2016) ncbi
domestic rabbit 单克隆(EP892Y)
  • 免疫细胞化学; 人类; 图 5a
艾博抗(上海)贸易有限公司 GM130抗体(Abcam, ab52649)被用于被用于免疫细胞化学在人类样本上 (图 5a). Traffic (2016) ncbi
domestic rabbit 单克隆(EP892Y)
  • 免疫细胞化学; 小鼠; 1:250; 图 3
艾博抗(上海)贸易有限公司 GM130抗体(abcam, ab52649)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 3). Mol Vis (2016) ncbi
domestic rabbit 单克隆(EP892Y)
  • 免疫细胞化学; 小鼠; 1:500; 图 3e
艾博抗(上海)贸易有限公司 GM130抗体(Abcam, EP892Y)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3e). J Cell Biol (2016) ncbi
domestic rabbit 单克隆(EP892Y)
  • 免疫细胞化学; African green monkey; 1:100
艾博抗(上海)贸易有限公司 GM130抗体(Abcam, ab52649)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:100. J Cell Sci (2016) ncbi
domestic rabbit 单克隆(EP892Y)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 GM130抗体(Abcam, ab52649)被用于被用于免疫印迹在小鼠样本上. elife (2015) ncbi
domestic rabbit 单克隆(EP892Y)
  • 免疫印迹; 人类; 1:1000; 图 s11
艾博抗(上海)贸易有限公司 GM130抗体(Abcam, ab52649)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s11). Nat Commun (2015) ncbi
domestic rabbit 单克隆(EP892Y)
  • 免疫细胞化学; 小鼠
艾博抗(上海)贸易有限公司 GM130抗体(Abcam, ab52649)被用于被用于免疫细胞化学在小鼠样本上. Am J Physiol Lung Cell Mol Physiol (2015) ncbi
domestic rabbit 单克隆(EP892Y)
  • 免疫细胞化学; 犬; 1:100; 图 4
艾博抗(上海)贸易有限公司 GM130抗体(Abcam, ab52649)被用于被用于免疫细胞化学在犬样本上浓度为1:100 (图 4). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(EP892Y)
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司 GM130抗体(Abcam, ab52649)被用于被用于免疫印迹在大鼠样本上. Cell Commun Signal (2015) ncbi
domestic rabbit 单克隆(EP892Y)
  • 免疫细胞化学; 人类; 图 s6
艾博抗(上海)贸易有限公司 GM130抗体(Abcam, ab52649)被用于被用于免疫细胞化学在人类样本上 (图 s6). Nucleic Acids Res (2015) ncbi
domestic rabbit 单克隆(EP892Y)
  • 免疫细胞化学; 人类; 图 2
艾博抗(上海)贸易有限公司 GM130抗体(Abcam, ab52649)被用于被用于免疫细胞化学在人类样本上 (图 2). PLoS Pathog (2015) ncbi
domestic rabbit 单克隆(EP892Y)
  • 免疫组化-自由浮动切片; 大鼠; 1:200
  • 免疫细胞化学; 大鼠; 1:200
艾博抗(上海)贸易有限公司 GM130抗体(Abcam, ab52649)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:200 和 被用于免疫细胞化学在大鼠样本上浓度为1:200. Neurochem Res (2014) ncbi
domestic rabbit 单克隆(EP892Y)
  • 免疫细胞化学; 人类; 1:100; 图 s1
艾博抗(上海)贸易有限公司 GM130抗体(Abcam, Ab 52649)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s1). Biochem J (2014) ncbi
domestic rabbit 单克隆(EP892Y)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 GM130抗体(Abcam, ab52649)被用于被用于免疫细胞化学在人类样本上. Cell Cycle (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(B-10)
  • 免疫细胞化学; 小鼠; 图 6b
圣克鲁斯生物技术 GM130抗体(Santa Cruz, sc-55591)被用于被用于免疫细胞化学在小鼠样本上 (图 6b). Front Mol Neurosci (2017) ncbi
小鼠 单克隆(B-10)
  • 免疫细胞化学; 人类; 图 1C
圣克鲁斯生物技术 GM130抗体(Santa Cruz, sc-55591)被用于被用于免疫细胞化学在人类样本上 (图 1C). BMC Cancer (2016) ncbi
小鼠 单克隆(H-7)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术 GM130抗体(Santa Cruz, sc-55590)被用于被用于免疫细胞化学在人类样本上. J Biol Chem (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D6B1)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 GM130抗体(CST, 12480S)被用于被用于免疫印迹在人类样本上 (图 3b). Antioxidants (Basel) (2021) ncbi
domestic rabbit 单克隆(D6B1)
  • 免疫细胞化学; 人类; 图 s2b
赛信通(上海)生物试剂有限公司 GM130抗体(Cell Signaling, 12480S)被用于被用于免疫细胞化学在人类样本上 (图 s2b). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(D6B1)
  • 免疫细胞化学; 人类; 1:3000; 图 s2b
赛信通(上海)生物试剂有限公司 GM130抗体(Cell Signaling, D6B1)被用于被用于免疫细胞化学在人类样本上浓度为1:3000 (图 s2b). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D6B1)
  • 免疫细胞化学; 人类; 图 3s2a
赛信通(上海)生物试剂有限公司 GM130抗体(Cell Signaling, 12480)被用于被用于免疫细胞化学在人类样本上 (图 3s2a). elife (2020) ncbi
domestic rabbit 单克隆(D6B1)
  • 免疫印迹; pigs ; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 GM130抗体(Cell Signaling, D6B1)被用于被用于免疫印迹在pigs 样本上浓度为1:1000 (图 4a). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D6B1)
  • 免疫细胞化学; 小鼠; 1:200; 图 4a
赛信通(上海)生物试剂有限公司 GM130抗体(Cell Signaling, D6B1)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4a). J Cell Biol (2019) ncbi
domestic rabbit 单克隆(D6B1)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 GM130抗体(Cell Signaling, 12480S)被用于被用于免疫印迹在人类样本上 (图 5a). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(D6B1)
  • 免疫细胞化学; 人类; 图 4a
赛信通(上海)生物试剂有限公司 GM130抗体(Cell Signaling, 12480)被用于被用于免疫细胞化学在人类样本上 (图 4a). J Cell Sci (2016) ncbi
domestic rabbit 单克隆(D6B1)
  • 免疫细胞化学; 人类; 图 4a
赛信通(上海)生物试剂有限公司 GM130抗体(CST, D6B1)被用于被用于免疫细胞化学在人类样本上 (图 4a). PLoS Pathog (2016) ncbi
domestic rabbit 单克隆(D6B1)
  • 免疫细胞化学; 人类; 图 5
赛信通(上海)生物试剂有限公司 GM130抗体(Cell Signalling, D681)被用于被用于免疫细胞化学在人类样本上 (图 5). PLoS Genet (2015) ncbi
碧迪BD
小鼠 单克隆(35/GM130)
  • 免疫印迹; 大鼠; 图 5e
碧迪BD GM130抗体(BD Biosciences, 610823)被用于被用于免疫印迹在大鼠样本上 (图 5e). J Cell Biol (2021) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1b
碧迪BD GM130抗体(BD Biosciences, 610823)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1b). Sci Rep (2021) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 1:800; 图 3g
碧迪BD GM130抗体(BD, 610822)被用于被用于免疫细胞化学在人类样本上浓度为1:800 (图 3g). Cancer Biol Med (2021) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 大鼠; 1:500; 图 3a
碧迪BD GM130抗体(BD Biosciences, 610823)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 3a). elife (2020) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 小鼠; 1:250; 图 s10e
碧迪BD GM130抗体(BD, 610823)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 s10e). Sci Adv (2020) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 小鼠; 1:2000; 图 s1a
碧迪BD GM130抗体(BD, 810822)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s1a). Science (2020) ncbi
小鼠 单克隆(35/GM130)
  • 免疫组化-冰冻切片; 人类; 图 6b
  • 免疫组化-石蜡切片; 人类; 图 7f
  • 免疫细胞化学; 人类; 图 3a
  • 免疫印迹; 人类; 图 s5a
碧迪BD GM130抗体(BD, 610822)被用于被用于免疫组化-冰冻切片在人类样本上 (图 6b), 被用于免疫组化-石蜡切片在人类样本上 (图 7f), 被用于免疫细胞化学在人类样本上 (图 3a) 和 被用于免疫印迹在人类样本上 (图 s5a). Nat Commun (2020) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 3
碧迪BD GM130抗体(BD, 35)被用于被用于免疫细胞化学在人类样本上 (图 3). Antibodies (Basel) (2020) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 小鼠; 图 5c
碧迪BD GM130抗体(BD Biosciences, 610823)被用于被用于免疫细胞化学在小鼠样本上 (图 5c). Sci Rep (2020) ncbi
小鼠 单克隆(35/GM130)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4e
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4e). Nat Commun (2020) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 1:100; 图 7d
碧迪BD GM130抗体(BD Transduction Lab, 610822)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 7d). elife (2019) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 人类; 图 3b
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫印迹在人类样本上 (图 3b). Sci Rep (2019) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 小鼠; 图 1d
碧迪BD GM130抗体(BD Bioscience, 35/GM130)被用于被用于免疫印迹在小鼠样本上 (图 1d). elife (2019) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 s3d
碧迪BD GM130抗体(BD biosciences, 610823)被用于被用于免疫细胞化学在人类样本上 (图 s3d). Cell Rep (2019) ncbi
小鼠 单克隆(35/GM130)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2e
碧迪BD GM130抗体(BD Biosciences, 610823)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2e). elife (2019) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 1:200; 图 s3b
碧迪BD GM130抗体(BD Biosciences, 610823)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s3b). J Biol Chem (2019) ncbi
小鼠 单克隆(35/GM130)
  • 免疫组化; 小鼠; 图 7b
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫组化在小鼠样本上 (图 7b). Cell Rep (2019) ncbi
小鼠 单克隆(35/GM130)
  • 免疫组化; 人类; 图 s4
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫组化在人类样本上 (图 s4). PLoS Pathog (2019) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 人类; 图 1h
碧迪BD GM130抗体(BD Transduction Laboratories, 610823)被用于被用于免疫印迹在人类样本上 (图 1h). Sci China Life Sci (2019) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 4b
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫细胞化学在人类样本上 (图 4b). Biol Open (2019) ncbi
小鼠 单克隆(35/GM130)
  • 免疫组化; 小鼠; 1:500; 图 1d
碧迪BD GM130抗体(BD, 610823)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1d). Nat Commun (2019) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 8c
碧迪BD GM130抗体(BD, 610822)被用于被用于免疫细胞化学在人类样本上 (图 8c). elife (2019) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 5a
碧迪BD GM130抗体(BD, 610822)被用于被用于免疫细胞化学在人类样本上 (图 5a). J Cell Biol (2019) ncbi
小鼠 单克隆(35/GM130)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 6d
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 6d). elife (2019) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 小鼠; 1:1000; 图 1a
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). Cancers (Basel) (2019) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 4h
  • 免疫印迹; 小鼠; 图 3a
碧迪BD GM130抗体(BD, 610823)被用于被用于免疫细胞化学在人类样本上 (图 4h) 和 被用于免疫印迹在小鼠样本上 (图 3a). EMBO J (2019) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 1:1000; 图 4c
碧迪BD GM130抗体(BD Transduction, 610822)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4c). Sci Rep (2019) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 人类; 1:100; 图 5b
碧迪BD GM130抗体(BD Bioscience, 610822)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 5b). J Cell Sci (2019) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 小鼠; 1:3000; 图 5a
碧迪BD GM130抗体(BD Biosciences, 610823)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 5a). Nature (2019) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹基因敲除验证; 小鼠; 图 2d
  • 免疫组化; 小鼠; 图 2c
  • 免疫印迹; 小鼠; 图 2d
  • 免疫印迹; 人类; 图 3a
碧迪BD GM130抗体(BD, 610822)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 2d), 被用于免疫组化在小鼠样本上 (图 2c), 被用于免疫印迹在小鼠样本上 (图 2d) 和 被用于免疫印迹在人类样本上 (图 3a). Oncogene (2019) ncbi
小鼠 单克隆(35/GM130)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 3i
  • 免疫组化; 大鼠; 1:500; 图 3e
  • 免疫组化; 小鼠; 1:500; 图 3b
碧迪BD GM130抗体(BD, 610822)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 3i), 被用于免疫组化在大鼠样本上浓度为1:500 (图 3e) 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 3b). J Comp Neurol (2019) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 小鼠; 图 3h
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫印迹在小鼠样本上 (图 3h). Cell (2018) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 s13a
碧迪BD GM130抗体(BD, 35)被用于被用于免疫细胞化学在人类样本上 (图 s13a). Science (2018) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 1:200; 图 3f
碧迪BD GM130抗体(BD Biosciences, 610823)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3f). Mol Cell (2018) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 1:300; 图 s4i
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 s4i). Science (2018) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 小鼠; 1:100; 图 1g
碧迪BD GM130抗体(BD Transduction, 610822)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1g). J Cell Sci (2018) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 s1e
碧迪BD GM130抗体(BD Biosciences, 35)被用于被用于免疫细胞化学在人类样本上 (图 s1e). EMBO J (2018) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 1:75; 图 4a
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫细胞化学在人类样本上浓度为1:75 (图 4a). PLoS ONE (2018) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 小鼠; 图 1f
  • 免疫印迹; 小鼠; 图 1h
碧迪BD GM130抗体(BD Biosciences, 610823)被用于被用于免疫细胞化学在小鼠样本上 (图 1f) 和 被用于免疫印迹在小鼠样本上 (图 1h). J Neurosci (2018) ncbi
小鼠 单克隆(35/GM130)
  • 免疫组化; 人类; 1:200; 图 6b
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫组化在人类样本上浓度为1:200 (图 6b). Nat Commun (2018) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 小鼠; 图 6f
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫印迹在小鼠样本上 (图 6f). J Cell Biol (2018) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 1:1000; 图 7b
  • 免疫印迹; 人类; 1:1000; 图 7c
碧迪BD GM130抗体(BD, 610823)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 7b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 7c). Nat Commun (2018) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 2a
  • 免疫印迹; 人类; 图 3b
碧迪BD GM130抗体(BD Biosciences, BD 610823)被用于被用于免疫细胞化学在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 3b). J Cell Sci (2017) ncbi
小鼠 单克隆(35/GM130)
  • 免疫组化-冰冻切片; 小鼠; 1:150; 图 s4b
碧迪BD GM130抗体(BD Biosciences, 610823)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:150 (图 s4b). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 1:300; 图 6b
碧迪BD GM130抗体(BD Biosciences, 610823)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 6b). Sci Signal (2017) ncbi
小鼠 单克隆(35/GM130)
碧迪BD GM130抗体(BD transduction, 610823)被用于. Nat Commun (2017) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 4d
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫细胞化学在人类样本上 (图 4d). Curr Biol (2017) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 大鼠; 1:500; 图 5e
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 5e). J Cell Biol (2017) ncbi
小鼠 单克隆(35/GM130)
  • 免疫组化-石蜡切片; 小鼠; 图 4a
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a). PLoS Genet (2017) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 4h
碧迪BD GM130抗体(BD, 610823)被用于被用于免疫细胞化学在人类样本上 (图 4h). J Exp Med (2017) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 3d
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫细胞化学在人类样本上 (图 3d). Oncogenesis (2017) ncbi
小鼠 单克隆(35/GM130)
  • 流式细胞仪; 人类; 图 5a
碧迪BD GM130抗体(BD Biosciences, 35)被用于被用于流式细胞仪在人类样本上 (图 5a). J Virol (2017) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 1:3000
碧迪BD GM130抗体(BD, 610822)被用于被用于免疫细胞化学在人类样本上浓度为1:3000. J Cell Sci (2017) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 1:1000; 图 8
  • 免疫细胞化学; 小鼠; 1:1000; 图 8
碧迪BD GM130抗体(BD Bioscience, 610822)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 8) 和 被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 8). Cilia (2017) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 2c
碧迪BD GM130抗体(BD Transduction Laboratories, 610822)被用于被用于免疫细胞化学在人类样本上 (图 2c). Biochem Biophys Res Commun (2017) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 1:100; 图 4a
碧迪BD GM130抗体(BD Transduction Laboratories, 610822)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4a). Biol Open (2017) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 小鼠; 1:1000; 图 5a
碧迪BD GM130抗体(BD Biosciences, 610823)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 5a). Nat Commun (2017) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 1:200; 图 2f
碧迪BD GM130抗体(BD Pharmingen, 35)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2f). Mol Cell Biol (2017) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 小鼠; 表 1
碧迪BD GM130抗体(BD biosciences, 610822)被用于被用于免疫印迹在小鼠样本上 (表 1). Neuron (2017) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 s6
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫细胞化学在人类样本上 (图 s6). Sci Rep (2017) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 2m
碧迪BD GM130抗体(BD Transduction Laboratories, 610822)被用于被用于免疫细胞化学在人类样本上 (图 2m). J Clin Invest (2017) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 1:200; 图 7b
碧迪BD GM130抗体(BD Biosciences, 610823)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 7b). Sci Rep (2017) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 小鼠; 图 7a
碧迪BD GM130抗体(BD Transduction Laboratories, 610822)被用于被用于免疫印迹在小鼠样本上 (图 7a). Sci Rep (2017) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 1:100; 图 s2k
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s2k). Autophagy (2017) ncbi
小鼠 单克隆(35/GM130)
  • 免疫组化基因敲除验证; 小鼠; 图 s4b
  • 免疫组化-冰冻切片; 小鼠; 图 s4e
碧迪BD GM130抗体(BD Transduction Laboratories, 610823)被用于被用于免疫组化基因敲除验证在小鼠样本上 (图 s4b) 和 被用于免疫组化-冰冻切片在小鼠样本上 (图 s4e). Cell Death Dis (2017) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 小鼠; 1:250; 图 3a
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 3a). Virology (2017) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 人类; 图 s2d
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫印迹在人类样本上 (图 s2d). Nature (2017) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 1:400; 图 1b
碧迪BD GM130抗体(BD, 610822)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 1b). J Cell Biol (2017) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; African green monkey; 图 9a
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫细胞化学在African green monkey样本上 (图 9a). J Biol Chem (2017) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 2a
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫细胞化学在人类样本上 (图 2a). PLoS ONE (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫组化; 斑马鱼; 1:100; 图 2q
碧迪BD GM130抗体(BD Transduction Laboratories, 610822)被用于被用于免疫组化在斑马鱼样本上浓度为1:100 (图 2q). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠; 图 4a
碧迪BD GM130抗体(BD Biosciences, bd610823)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上 (图 4a). Cell Chem Biol (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 大鼠; 1:250
碧迪BD GM130抗体(BD Biosciences, 35/GM130)被用于被用于免疫细胞化学在大鼠样本上浓度为1:250. Methods Mol Biol (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s6b
碧迪BD GM130抗体(BD Transduction, 610823)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s6b). Nature (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 7a
碧迪BD GM130抗体(BD Bioscience, 610823)被用于被用于免疫细胞化学在人类样本上 (图 7a). Oncotarget (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s1
  • 免疫印迹; 小鼠; 1:4000; 图 s1
  • 免疫细胞化学; 人类; 1:1000; 图 s5
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s1), 被用于免疫印迹在小鼠样本上浓度为1:4000 (图 s1) 和 被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s5). BMC Biol (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 小鼠; 图 7c
碧迪BD GM130抗体(BD Bioscience, BD-610822)被用于被用于免疫细胞化学在小鼠样本上 (图 7c). Cell Death Dis (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 1:250; 图 4
碧迪BD GM130抗体(BD Biosciences, 610823)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 4). elife (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 5b
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫细胞化学在人类样本上 (图 5b). Mol Biol Cell (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 1:200; 图 2
碧迪BD GM130抗体(BD Transduction Laboratories, 610823)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 小鼠; 1:500; 图 11
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 11). Histochem Cell Biol (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 人类; 表 3
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫印迹在人类样本上 (表 3). J Virol (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 小鼠; 1:1000; 图 s4
  • 免疫印迹; African green monkey; 1:1000; 图 1
碧迪BD GM130抗体(BD Biosciences, 610823)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4) 和 被用于免疫印迹在African green monkey样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 1:200; 图 2c
碧迪BD GM130抗体(BD Biosciences, 610823)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2c). Pflugers Arch (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 小鼠; 图 s16n
碧迪BD GM130抗体(BD Biosciences, 610823)被用于被用于免疫细胞化学在小鼠样本上 (图 s16n). Nat Genet (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 人类; 图 6d
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫印迹在人类样本上 (图 6d). elife (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; African green monkey; 1:1000; 图 6a
碧迪BD GM130抗体(BD Biosciences, 610823)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:1000 (图 6a). Sci Rep (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 s4
碧迪BD GM130抗体(BD Transduction Laboratories, 610822)被用于被用于免疫细胞化学在人类样本上 (图 s4). EMBO Rep (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 1:50; 图 1
碧迪BD GM130抗体(BD Biosciences, 610,823)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 0.63 ug/ml; 图 6c
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫细胞化学在人类样本上浓度为0.63 ug/ml (图 6c). Mol Biol Cell (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 1:200; 图 5d
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5d). Nat Cell Biol (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 s2a
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫细胞化学在人类样本上 (图 s2a). J Cell Biol (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 4
碧迪BD GM130抗体(BD Biosciences, 35/GM130)被用于被用于免疫细胞化学在人类样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 小鼠; 1:200; 图 4
  • 免疫组化; 小鼠; 1:200; 图 4
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4) 和 被用于免疫组化在小鼠样本上浓度为1:200 (图 4). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 s3
碧迪BD GM130抗体(BD Biosciences, 35/GM130)被用于被用于免疫细胞化学在人类样本上 (图 s3). EMBO Rep (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 小鼠; 1:200; 图 st2
  • 免疫印迹; 小鼠; 1:200; 图 5
碧迪BD GM130抗体(BD Biosciences, BDB610822)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 st2) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 5). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫组化-自由浮动切片; 斑马鱼; 1:500; 图 4
碧迪BD GM130抗体(BD Transduction Labs, 610822)被用于被用于免疫组化-自由浮动切片在斑马鱼样本上浓度为1:500 (图 4). Dev Dyn (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫组化; 小鼠; 1:200; 图 s2c
碧迪BD GM130抗体(BD Biosciences, 35)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s2c). Nat Cell Biol (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 大鼠; 图 5b
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫印迹在大鼠样本上 (图 5b). BMC Biol (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 人类; 1:1000; 图 1c
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Nat Commun (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 小鼠; 1:50; 图 s2
  • 免疫细胞化学; 人类; 1:50; 图 s2
碧迪BD GM130抗体(BD Biosciences, 558712)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 s2) 和 被用于免疫细胞化学在人类样本上浓度为1:50 (图 s2). PLoS Genet (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 小鼠; 1:2000; 图 5f
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5f). Autophagy (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 4
碧迪BD GM130抗体(BD-Biosciences, 610822)被用于被用于免疫细胞化学在人类样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 小鼠; 1:400; 图 8b
碧迪BD GM130抗体(BD Pharmingen, 610822)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 8b). elife (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 小鼠; 图 5
碧迪BD GM130抗体(BD Transduction Laboratories, 610822)被用于被用于免疫印迹在小鼠样本上 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 2
碧迪BD GM130抗体(BD Transduction Laboratories, 610822)被用于被用于免疫细胞化学在人类样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫组化-冰冻切片; 小鼠; 图 5
碧迪BD GM130抗体(BD, 610822)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). J Neurosci (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 小鼠; 1:500; 图 6a
碧迪BD GM130抗体(BD, 610822)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 6a). Mol Brain (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 1:100; 图 s5
碧迪BD GM130抗体(BD Bioscience, 610822)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s5). Hum Mol Genet (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 1:500; 图 2s1d
  • 免疫印迹; 人类; 1:1000; 图 2s2h
碧迪BD GM130抗体(BD Bioscience, 610822)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2s1d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2s2h). elife (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 人类; 图 1
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫印迹在人类样本上 (图 1). Breast Cancer Res (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 小鼠; 1:400; 图 5
碧迪BD GM130抗体(BD Biosciences, 610823)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 5). Cell Death Dis (2015) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 大鼠; 图 7
碧迪BD GM130抗体(BD Bioscience, 610822)被用于被用于免疫细胞化学在大鼠样本上 (图 7). Mol Biol Cell (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 大鼠; 1:1000; 图 s4
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 s4). PLoS ONE (2015) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 小鼠; 图 3
碧迪BD GM130抗体(BD, 610823)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在小鼠样本上 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 小鼠; 图 12
  • 免疫印迹; 小鼠; 图 12
碧迪BD GM130抗体(BD Transduction, 610822)被用于被用于免疫细胞化学在小鼠样本上 (图 12) 和 被用于免疫印迹在小鼠样本上 (图 12). Mol Biol Cell (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 s9
碧迪BD GM130抗体(BD Biosciences, 610823)被用于被用于免疫细胞化学在人类样本上 (图 s9). Nat Neurosci (2015) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 人类; 图 8
碧迪BD GM130抗体(BD Transduction Laboratories, 610822)被用于被用于免疫印迹在人类样本上 (图 8). J Cell Sci (2015) ncbi
小鼠 单克隆(35/GM130)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6
  • 免疫细胞化学; 小鼠; 1:200; 图 5
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6) 和 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 5). PLoS Genet (2015) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; African green monkey; 图 s1b
碧迪BD GM130抗体(BD Bioscience, 610822)被用于被用于免疫细胞化学在African green monkey样本上 (图 s1b). Traffic (2016) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 小鼠; 1:100; 图 3
碧迪BD GM130抗体(BD Biosciences, BD 610823)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3). Free Radic Biol Med (2015) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 人类; 1:500; 图 2d
碧迪BD GM130抗体(Becton Dickinson, 610822)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2d). Oncotarget (2015) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 1
碧迪BD GM130抗体(BD, 610822)被用于被用于免疫细胞化学在人类样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(35/GM130)
碧迪BD GM130抗体(BD, 610822)被用于. J Virol (2015) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 3
碧迪BD GM130抗体(BD Biosciences, 35/GM130)被用于被用于免疫细胞化学在人类样本上 (图 3). J Virol (2015) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 大鼠; 1:250
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫印迹在大鼠样本上浓度为1:250. J Neurochem (2015) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 1:200
碧迪BD GM130抗体(BD Transduction Laboratories, 610822)被用于被用于免疫细胞化学在人类样本上浓度为1:200. PLoS Pathog (2015) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 1:500; 图 6
碧迪BD GM130抗体(BD Biosciences, 610823)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 6). Nat Commun (2015) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 小鼠; 1:1000
碧迪BD GM130抗体(BD Bioscience, 610823)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
碧迪BD GM130抗体(BD Biosciences, 610823)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 小鼠; 图 4
碧迪BD GM130抗体(BD Biosciences, 610823)被用于被用于免疫细胞化学在小鼠样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 小鼠; 1:500
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. J Neurosci (2015) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 小鼠
碧迪BD GM130抗体(BD Transduction, 610822)被用于被用于免疫细胞化学在小鼠样本上. J Neurosci (2015) ncbi
小鼠 单克隆(35/GM130)
  • 免疫组化; 斑马鱼; 1:200; 图 2b
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫组化在斑马鱼样本上浓度为1:200 (图 2b). PLoS ONE (2015) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 小鼠; 1:50; 图 s3b
碧迪BD GM130抗体(BD, 610823)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 s3b). Nat Commun (2015) ncbi
小鼠 单克隆(35/GM130)
  • 免疫组化; 小鼠; 1:400; 图 s6
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 s6). Development (2015) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 s3
碧迪BD GM130抗体(BD PharMingen, 35/GM130)被用于被用于免疫细胞化学在人类样本上 (图 s3). Mol Biol Cell (2015) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 大鼠; 图 1
碧迪BD GM130抗体(BD实验室, 610823)被用于被用于免疫细胞化学在大鼠样本上 (图 1). Autophagy (2015) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
碧迪BD GM130抗体(BD, 610822)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Nat Cell Biol (2015) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 5
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫细胞化学在人类样本上 (图 5). EMBO J (2015) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 1:1000
碧迪BD GM130抗体(BD Transduction Laboratories, 610822)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. J Biol Chem (2015) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 小鼠; 1:1000
碧迪BD GM130抗体(BD Transduction Laboratories, 610823)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 5
碧迪BD GM130抗体(Transduction Laboratories, 35/GM130)被用于被用于免疫细胞化学在人类样本上 (图 5). Biochemistry (Mosc) (2014) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 10 ug/ml; 图 4
碧迪BD GM130抗体(BD Transduction, 610822)被用于被用于免疫细胞化学在人类样本上浓度为10 ug/ml (图 4). Mol Biol Cell (2015) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 人类; 1:500
碧迪BD GM130抗体(Becton Dickinson, 610822)被用于被用于免疫印迹在人类样本上浓度为1:500. J Extracell Vesicles (2014) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 小鼠
碧迪BD GM130抗体(BD Biosciences, 610823)被用于被用于免疫细胞化学在小鼠样本上. Nat Protoc (2014) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Infect Immun (2014) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 s1
碧迪BD GM130抗体(BD Biosciences, 35)被用于被用于免疫细胞化学在人类样本上 (图 s1). J Cell Sci (2014) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 人类
碧迪BD GM130抗体(BD, 610822)被用于被用于免疫印迹在人类样本上. J Exp Clin Cancer Res (2014) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 小鼠; 1:500; 图 s1
碧迪BD GM130抗体(BD Transduction Laboratories, 610822)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s1). Cell Death Dis (2014) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类
碧迪BD GM130抗体(BD Transduction Laboratories, 610823)被用于被用于免疫细胞化学在人类样本上. Eur J Cell Biol (2014) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 4
碧迪BD GM130抗体(BD Transduction Laboratories, 35)被用于被用于免疫细胞化学在人类样本上 (图 4). Mol Biol Cell (2014) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类
碧迪BD GM130抗体(BD Transduction Laboratories, 610822)被用于被用于免疫细胞化学在人类样本上. Exp Cell Res (2014) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 1:500
碧迪BD GM130抗体(BD Transduction Laboratories, 35/GM130)被用于被用于免疫细胞化学在人类样本上浓度为1:500. J Biol Chem (2014) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 1:100
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Nat Commun (2014) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 小鼠; 1:1000
碧迪BD GM130抗体(BD Biosciences, 558712)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Cell Biol (2014) ncbi
小鼠 单克隆(35/GM130)
  • 免疫沉淀; African green monkey
  • 免疫细胞化学; African green monkey
  • 免疫印迹; African green monkey
碧迪BD GM130抗体(BD Transduction Laboratories, 610822)被用于被用于免疫沉淀在African green monkey样本上, 被用于免疫细胞化学在African green monkey样本上 和 被用于免疫印迹在African green monkey样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 仓鼠
  • 免疫细胞化学; 小鼠
碧迪BD GM130抗体(BD Biosciences, 610823)被用于被用于免疫细胞化学在仓鼠样本上 和 被用于免疫细胞化学在小鼠样本上. Exp Dermatol (2014) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类
碧迪BD GM130抗体(BD Transduction Laboratories, 610822)被用于被用于免疫细胞化学在人类样本上. J Invest Dermatol (2014) ncbi
小鼠 单克隆(35/GM130)
  • 免疫组化-冰冻切片; 小鼠; 图 8
碧迪BD GM130抗体(BD Transduction Laboratories, 610822)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8). PLoS ONE (2013) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 图 8.1
碧迪BD GM130抗体(BD Transduction Laboratories, 610823)被用于被用于免疫细胞化学在人类样本上 (图 8.1). Methods Enzymol (2014) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 1:250
碧迪BD GM130抗体(BD Translab, 610823)被用于被用于免疫细胞化学在人类样本上浓度为1:250. Traffic (2014) ncbi
小鼠 单克隆(35/GM130)
  • 免疫组化-冰冻切片; 大鼠; 1:100
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100. Transl Stroke Res (2013) ncbi
小鼠 单克隆(35/GM130)
  • 免疫组化-冰冻切片; 小鼠; 1:100
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. J Neurosci (2013) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类
碧迪BD GM130抗体(BD Biosciences, 610823)被用于被用于免疫细胞化学在人类样本上. Carcinogenesis (2014) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 人类; 1:500
碧迪BD GM130抗体(BD Biosciences, 35)被用于被用于免疫印迹在人类样本上浓度为1:500. PLoS ONE (2013) ncbi
小鼠 单克隆(35/GM130)
  • 免疫组化-石蜡切片; 小鼠; 1:100
碧迪BD GM130抗体(BD Transduction Laboratories, 610822)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2013) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; African green monkey; 1:200
  • 免疫细胞化学; 人类; 1:200
碧迪BD GM130抗体(BD Biosciences, 610823)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:200 和 被用于免疫细胞化学在人类样本上浓度为1:200. J Biol Chem (2013) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类
碧迪BD GM130抗体(BD Biosciences, 35)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(35/GM130)
  • 免疫组化; 大鼠; 1:500
碧迪BD GM130抗体(BD Transduction Laboratories, 610822)被用于被用于免疫组化在大鼠样本上浓度为1:500. J Comp Neurol (2013) ncbi
小鼠 单克隆(35/GM130)
  • 免疫印迹; 人类; 1:1000
碧迪BD GM130抗体(BD Transduction Laboratories, 610822)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Biol Chem (2013) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类
碧迪BD GM130抗体(BD Transduction Laboratories, 610823)被用于被用于免疫细胞化学在人类样本上. J Virol (2013) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类
碧迪BD GM130抗体(BD Transduction, 610822)被用于被用于免疫细胞化学在人类样本上. J Cell Sci (2012) ncbi
小鼠 单克隆(35/GM130)
  • 免疫组化-冰冻切片; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:500
碧迪BD GM130抗体(BD Biosciences, 610822)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 和 被用于免疫印迹在大鼠样本上浓度为1:500. Neuroscience (2011) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 人类; 1:100
碧迪BD GM130抗体(BD Biosciences, 35/GM130)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Neurobiol Aging (2012) ncbi
小鼠 单克隆(35/GM130)
  • 免疫细胞化学; 小鼠; 1:50
碧迪BD GM130抗体(BD Transduction Laboratories, 610822)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50. J Comp Neurol (2009) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫细胞化学; 鸡; 1:1000; 图 4b
西格玛奥德里奇 GM130抗体(Sigma, G7295)被用于被用于免疫细胞化学在鸡样本上浓度为1:1000 (图 4b). Int J Biol Macromol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s1a
西格玛奥德里奇 GM130抗体(Sigma, G7295)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1a). Nat Commun (2018) ncbi
文章列表
  1. Lim K, Dayem A, Choi Y, Lee Y, An J, Gil M, et al. High Therapeutic and Esthetic Properties of Extracellular Vesicles Produced from the Stem Cells and Their Spheroids Cultured from Ocular Surgery-Derived Waste Orbicularis Oculi Muscle Tissues. Antioxidants (Basel). 2021;10: pubmed 出版商
  2. Song L, Tian X, Schekman R. Extracellular vesicles from neurons promote neural induction of stem cells through cyclin D1. J Cell Biol. 2021;220: pubmed 出版商
  3. Takahashi K, Niki T, Ogawa E, Fumika K, Nishioka Y, Sawa M, et al. A cell-free assay implicates a role of sphingomyelin and cholesterol in STING phosphorylation. Sci Rep. 2021;11:11996 pubmed 出版商
  4. Zhang Y, Chen Y, Li Y, Huang F, Luo B, Yuan Y, et al. The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-Ι. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  5. Wang X, Pei Z, Hossain A, Bai Y, Chen G. Transcription factor-based gene therapy to treat glioblastoma through direct neuronal conversion. Cancer Biol Med. 2021;: pubmed 出版商
  6. Goldfarb A, Freeman K, Sahu R, Elagib K, Holy M, Arneja A, et al. Iron control of erythroid microtubule cytoskeleton as a potential target in treatment of iron-restricted anemia. Nat Commun. 2021;12:1645 pubmed 出版商
  7. Vergarajauregui S, Becker R, Steffen U, Sharkova M, Esser T, Petzold J, et al. AKAP6 orchestrates the nuclear envelope microtubule-organizing center by linking golgi and nucleus via AKAP9. elife. 2020;9: pubmed 出版商
  8. Ke Y, Weng M, Chhetri G, Usman M, Li Y, Yu Q, et al. Trappc9 deficiency in mice impairs learning and memory by causing imbalance of dopamine D1 and D2 neurons. Sci Adv. 2020;6: pubmed 出版商
  9. Bosch M, Sánchez Alvarez M, Fajardo A, Kapetanovic R, Steiner B, Dutra F, et al. Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense. Science. 2020;370: pubmed 出版商
  10. Capaci V, Bascetta L, Fantuz M, Beznoussenko G, Sommaggio R, Cancila V, et al. Mutant p53 induces Golgi tubulo-vesiculation driving a prometastatic secretome. Nat Commun. 2020;11:3945 pubmed 出版商
  11. Charrin S, Palmulli R, Billard M, Clay D, Boucheix C, van Niel G, et al. Rapid Isolation of Rare Isotype-Switched Hybridoma Variants: Application to the Generation of IgG2a and IgG2b MAb to CD63, a Late Endosome and Exosome Marker. Antibodies (Basel). 2020;9: pubmed 出版商
  12. Tokuhisa M, Kadowaki T, Ogawa K, Yamaguchi Y, Kido M, Gao W, et al. Expression and localisation of Rab44 in immune-related cells change during cell differentiation and stimulation. Sci Rep. 2020;10:10728 pubmed 出版商
  13. Bae S, Ni L, Luo X. STK25 suppresses Hippo signaling by regulating SAV1-STRIPAK antagonism. elife. 2020;9: pubmed 出版商
  14. Cao H, Krueger E, Chen J, Drizyte Miller K, Schulz M, McNiven M. The anti-viral dynamin family member MxB participates in mitochondrial integrity. Nat Commun. 2020;11:1048 pubmed 出版商
  15. Tharp M, Malki S, Bortvin A. Maximizing the ovarian reserve in mice by evading LINE-1 genotoxicity. Nat Commun. 2020;11:330 pubmed 出版商
  16. Wang J, Ba G, Han Y, Ming S, Wang M, Fu P, et al. Cyclic GMP-AMP synthase is essential for cytosolic double-stranded DNA and fowl adenovirus serotype 4 triggered innate immune responses in chickens. Int J Biol Macromol. 2020;146:497-507 pubmed 出版商
  17. Luxan G, Stewen J, Díaz N, Kato K, Maney S, Aravamudhan A, et al. Endothelial EphB4 maintains vascular integrity and transport function in adult heart. elife. 2019;8: pubmed 出版商
  18. Santos M, Morais S, Pereira C, Sequeiros J, Alonso I. Parkin truncating variants result in a loss-of-function phenotype. Sci Rep. 2019;9:16150 pubmed 出版商
  19. Massa L pez D, Thelen M, Stahl F, Thiel C, Linhorst A, Sylvester M, et al. The lysosomal transporter MFSD1 is essential for liver homeostasis and critically depends on its accessory subunit GLMP. elife. 2019;8: pubmed 出版商
  20. Laufer J, Hauser M, Kindinger I, Purvanov V, Pauli A, Legler D. Chemokine Receptor CCR7 Triggers an Endomembrane Signaling Complex for Spatial Rac Activation. Cell Rep. 2019;29:995-1009.e6 pubmed 出版商
  21. Kon E, Calvo Jiménez E, Cossard A, Na Y, Cooper J, Jossin Y. N-cadherin-regulated FGFR ubiquitination and degradation control mammalian neocortical projection neuron migration. elife. 2019;8: pubmed 出版商
  22. James C, Müller M, Goldberg M, Lenz C, Urlaub H, Kehlenbach R. Proteomic mapping by rapamycin-dependent targeting of APEX2 identifies binding partners of VAPB at the inner nuclear membrane. J Biol Chem. 2019;294:16241-16254 pubmed 出版商
  23. Uzquiano A, Cifuentes Diaz C, Jabali A, Romero D, Houllier A, Dingli F, et al. Mutations in the Heterotopia Gene Eml1/EML1 Severely Disrupt the Formation of Primary Cilia. Cell Rep. 2019;28:1596-1611.e10 pubmed 出版商
  24. Horova V, Lyoo H, Różycki B, Chalupska D, Smola M, Humpolickova J, et al. Convergent evolution in the mechanisms of ACBD3 recruitment to picornavirus replication sites. PLoS Pathog. 2019;15:e1007962 pubmed 出版商
  25. Xiao J, Luo J, Hu A, Xiao T, Li M, Kong Z, et al. Cholesterol transport through the peroxisome-ER membrane contacts tethered by PI(4,5)P2 and extended synaptotagmins. Sci China Life Sci. 2019;: pubmed 出版商
  26. Xiong X, Lee C, Li W, Yu J, Zhu L, Kim Y, et al. Acid Sphingomyelinase regulates the localization and trafficking of palmitoylated proteins. Biol Open. 2019;: pubmed 出版商
  27. Genet G, Boyé K, Mathivet T, Ola R, Zhang F, Dubrac A, et al. Endophilin-A2 dependent VEGFR2 endocytosis promotes sprouting angiogenesis. Nat Commun. 2019;10:2350 pubmed 出版商
  28. Fearnley G, Young K, Edgar J, Antrobus R, Hay I, Liang W, et al. The homophilic receptor PTPRK selectively dephosphorylates multiple junctional regulators to promote cell-cell adhesion. elife. 2019;8: pubmed 出版商
  29. Judith D, Jefferies H, Boeing S, Frith D, Snijders A, Tooze S. ATG9A shapes the forming autophagosome through Arfaptin 2 and phosphatidylinositol 4-kinase IIIβ. J Cell Biol. 2019;218:1634-1652 pubmed 出版商
  30. Farbehi N, Patrick R, Dorison A, Xaymardan M, Janbandhu V, Wystub Lis K, et al. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. elife. 2019;8: pubmed 出版商
  31. Pergu R, Dagar S, Kumar H, Kumar R, Bhattacharya J, Mylavarapu S. The chaperone ERp29 is required for tunneling nanotube formation by stabilizing MSec. J Biol Chem. 2019;294:7177-7193 pubmed 出版商
  32. Le Vasseur M, Chen V, Huang K, Vogl W, Naus C. Pannexin 2 Localizes at ER-Mitochondria Contact Sites. Cancers (Basel). 2019;11: pubmed 出版商
  33. Su L, Zhou L, Chen F, Wang H, Qian H, Sheng Y, et al. Cideb controls sterol-regulated ER export of SREBP/SCAP by promoting cargo loading at ER exit sites. EMBO J. 2019;38: pubmed 出版商
  34. Mason D, Collins J, Dawahare J, Nguyen T, Lin Y, Voytik Harbin S, et al. YAP and TAZ limit cytoskeletal and focal adhesion maturation to enable persistent cell motility. J Cell Biol. 2019;218:1369-1389 pubmed 出版商
  35. Vanneste M, Huang Q, Li M, Moose D, Zhao L, STAMNES M, et al. High content screening identifies monensin as an EMT-selective cytotoxic compound. Sci Rep. 2019;9:1200 pubmed 出版商
  36. Saiz Ros N, Czapiewski R, Epifano I, Stevenson A, Swanson S, Dixon C, et al. Host Vesicle Fusion Protein VAPB Contributes to the Nuclear Egress Stage of Herpes Simplex Virus Type-1 (HSV-1) Replication. Cells. 2019;8: pubmed 出版商
  37. Song K, Gras C, Capin G, Gimber N, Lehmann M, Mohd S, et al. A SEPT1-based scaffold is required for Golgi integrity and function. J Cell Sci. 2019;132: pubmed 出版商
  38. Poulopoulos A, Murphy A, Ozkan A, Davis P, Hatch J, Kirchner R, et al. Subcellular transcriptomes and proteomes of developing axon projections in the cerebral cortex. Nature. 2019;565:356-360 pubmed 出版商
  39. Jeon Y, Kim T, Park D, Nuovo G, Rhee S, Joshi P, et al. miRNA-mediated TUSC3 deficiency enhances UPR and ERAD to promote metastatic potential of NSCLC. Nat Commun. 2018;9:5110 pubmed 出版商
  40. Lee C, Cheng Y, Chang C, Lin C, Chang J. Alpha-tubulin acetyltransferase/MEC-17 regulates cancer cell migration and invasion through epithelial-mesenchymal transition suppression and cell polarity disruption. Sci Rep. 2018;8:17477 pubmed 出版商
  41. Zhao H, Martin E, Matalkah F, Shah N, Ivanov A, Ruppert J, et al. Conditional knockout of SHP2 in ErbB2 transgenic mice or inhibition in HER2-amplified breast cancer cell lines blocks oncogene expression and tumorigenesis. Oncogene. 2019;38:2275-2290 pubmed 出版商
  42. Rahman A, Weber J, Labin E, Lai C, Prieto A. Developmental expression of Neuregulin-3 in the rat central nervous system. J Comp Neurol. 2019;527:797-817 pubmed 出版商
  43. Xu X, Xu J, Wu J, Hu Y, Han Y, Gu Y, et al. Phosphorylation-Mediated IFN-γR2 Membrane Translocation Is Required to Activate Macrophage Innate Response. Cell. 2018;175:1336-1351.e17 pubmed 出版商
  44. Gerber T, Murawala P, Knapp D, Masselink W, Schuez M, Hermann S, et al. Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science. 2018;362: pubmed 出版商
  45. Cha J, Yang W, Xia W, Wei Y, Chan L, Lim S, et al. Metformin Promotes Antitumor Immunity via Endoplasmic-Reticulum-Associated Degradation of PD-L1. Mol Cell. 2018;71:606-620.e7 pubmed 出版商
  46. Gut G, Herrmann M, Pelkmans L. Multiplexed protein maps link subcellular organization to cellular states. Science. 2018;361: pubmed 出版商
  47. Singh V, Erady C, Balasubramanian N. Cell-matrix adhesion controls Golgi organization and function through Arf1 activation in anchorage-dependent cells. J Cell Sci. 2018;131: pubmed 出版商
  48. Seo B, Cho T, Lee D, Lee J, Lee B, Kim S, et al. LARGE, an intellectual disability-associated protein, regulates AMPA-type glutamate receptor trafficking and memory. Proc Natl Acad Sci U S A. 2018;115:7111-7116 pubmed 出版商
  49. Takada N, Naito T, Inoue T, Nakayama K, Takatsu H, Shin H. Phospholipid-flipping activity of P4-ATPase drives membrane curvature. EMBO J. 2018;37: pubmed 出版商
  50. Hsieh W, Ramadesikan S, FEKETE D, Aguilar R. Kidney-differentiated cells derived from Lowe Syndrome patient's iPSCs show ciliogenesis defects and Six2 retention at the Golgi complex. PLoS ONE. 2018;13:e0192635 pubmed 出版商
  51. Yurchenko M, Skjesol A, Ryan L, Richard G, Kandasamy R, Wang N, et al. SLAMF1 is required for TLR4-mediated TRAM-TRIF-dependent signaling in human macrophages. J Cell Biol. 2018;217:1411-1429 pubmed 出版商
  52. Carpier J, Zucchetti A, Bataille L, Dogniaux S, Shafaq Zadah M, Bardin S, et al. Rab6-dependent retrograde traffic of LAT controls immune synapse formation and T cell activation. J Exp Med. 2018;215:1245-1265 pubmed 出版商
  53. Kuliyev E, Gingras S, Guy C, Howell S, Vogel P, Pelletier S. Overlapping Role of SCYL1 and SCYL3 in Maintaining Motor Neuron Viability. J Neurosci. 2018;38:2615-2630 pubmed 出版商
  54. Navarro Negredo P, Edgar J, Manna P, Antrobus R, Robinson M. The WDR11 complex facilitates the tethering of AP-1-derived vesicles. Nat Commun. 2018;9:596 pubmed 出版商
  55. Xu D, Li Y, Wu L, Li Y, Zhao D, Yu J, et al. Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions. J Cell Biol. 2018;217:975-995 pubmed 出版商
  56. Kathayat R, Cao Y, Elvira P, Sandoz P, Zaballa M, Springer M, et al. Active and dynamic mitochondrial S-depalmitoylation revealed by targeted fluorescent probes. Nat Commun. 2018;9:334 pubmed 出版商
  57. Hartman C, Duerr M, Albert C, Neumann W, McHowat J, Ford D. 2-Chlorofatty acids induce Weibel-Palade body mobilization. J Lipid Res. 2018;59:113-122 pubmed 出版商
  58. Stevenson N, Bergen D, Skinner R, Kague E, Martin Silverstone E, Robson Brown K, et al. Giantin-knockout models reveal a feedback loop between Golgi function and glycosyltransferase expression. J Cell Sci. 2017;130:4132-4143 pubmed 出版商
  59. Maurya D, Bohm S, Alenius M. Hedgehog signaling regulates ciliary localization of mouse odorant receptors. Proc Natl Acad Sci U S A. 2017;114:E9386-E9394 pubmed 出版商
  60. Waters A, Ozkan Dagliyan I, Vaseva A, Fer N, Strathern L, Hobbs G, et al. Evaluation of the selectivity and sensitivity of isoform- and mutation-specific RAS antibodies. Sci Signal. 2017;10: pubmed 出版商
  61. Huet Calderwood C, Rivera Molina F, Iwamoto D, Kromann E, Toomre D, Calderwood D. Novel ecto-tagged integrins reveal their trafficking in live cells. Nat Commun. 2017;8:570 pubmed 出版商
  62. Merrill N, Schipper J, Karnes J, Kauffman A, Martin K, Mackeigan J. PI3K-C2? knockdown decreases autophagy and maturation of endocytic vesicles. PLoS ONE. 2017;12:e0184909 pubmed 出版商
  63. Burr M, Sparbier C, Chan Y, Williamson J, Woods K, Beavis P, et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature. 2017;549:101-105 pubmed 出版商
  64. Joachim J, Razi M, Judith D, Wirth M, Calamita E, Encheva V, et al. Centriolar Satellites Control GABARAP Ubiquitination and GABARAP-Mediated Autophagy. Curr Biol. 2017;27:2123-2136.e7 pubmed 出版商
  65. Zhang X, Jiang S, Mitok K, Li L, Attie A, Martin T. BAIAP3, a C2 domain-containing Munc13 protein, controls the fate of dense-core vesicles in neuroendocrine cells. J Cell Biol. 2017;216:2151-2166 pubmed 出版商
  66. Cartier Michaud A, Bailly A, Betzi S, Shi X, Lissitzky J, Zarubica A, et al. Genetic, structural, and chemical insights into the dual function of GRASP55 in germ cell Golgi remodeling and JAM-C polarized localization during spermatogenesis. PLoS Genet. 2017;13:e1006803 pubmed 出版商
  67. Patwardhan A, Bardin S, Miserey Lenkei S, Larue L, Goud B, Raposo G, et al. Routing of the RAB6 secretory pathway towards the lysosome related organelle of melanocytes. Nat Commun. 2017;8:15835 pubmed 出版商
  68. Cerboni S, Jeremiah N, Gentili M, Gehrmann U, Conrad C, Stolzenberg M, et al. Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes. J Exp Med. 2017;214:1769-1785 pubmed 出版商
  69. Li P, Wang Y, Mao X, Jiang Y, Liu J, Li J, et al. CRB3 downregulation confers breast cancer stem cell traits through TAZ/?-catenin. Oncogenesis. 2017;6:e322 pubmed 出版商
  70. Tanaka A, Tumkosit U, Nakamura S, Motooka D, Kishishita N, Priengprom T, et al. Genome-Wide Screening Uncovers the Significance of N-Sulfation of Heparan Sulfate as a Host Cell Factor for Chikungunya Virus Infection. J Virol. 2017;91: pubmed 出版商
  71. Dong C, Xu H, Zhang R, Tanaka N, Takeichi M, Meng W. CAMSAP3 accumulates in the pericentrosomal area and accompanies microtubule release from the centrosome via katanin. J Cell Sci. 2017;130:1709-1715 pubmed 出版商
  72. Hua K, Ferland R. Fixation methods can differentially affect ciliary protein immunolabeling. Cilia. 2017;6:5 pubmed 出版商
  73. Terao Y, Fujita H, Horibe S, Sato J, Minami S, Kobayashi M, et al. Interaction of FAM5C with UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1): Implication of N-glycosylation in FAM5C secretion. Biochem Biophys Res Commun. 2017;486:811-816 pubmed 出版商
  74. Vogelgesang S, Niebert S, Renner U, Mobius W, Hülsmann S, Manzke T, et al. Analysis of the Serotonergic System in a Mouse Model of Rett Syndrome Reveals Unusual Upregulation of Serotonin Receptor 5b. Front Mol Neurosci. 2017;10:61 pubmed 出版商
  75. Marcassa E, Raimondi M, Anwar T, Eskelinen E, Myers M, Triolo G, et al. Calpain mobilizes Atg9/Bif-1 vesicles from Golgi stacks upon autophagy induction by thapsigargin. Biol Open. 2017;6:551-562 pubmed 出版商
  76. Bagh M, Peng S, Chandra G, Zhang Z, Singh S, Pattabiraman N, et al. Misrouting of v-ATPase subunit V0a1 dysregulates lysosomal acidification in a neurodegenerative lysosomal storage disease model. Nat Commun. 2017;8:14612 pubmed 出版商
  77. Jia X, Chen J, Megger D, Zhang X, Kozlowski M, Zhang L, et al. Label-free Proteomic Analysis of Exosomes Derived from Inducible Hepatitis B Virus-Replicating HepAD38 Cell Line. Mol Cell Proteomics. 2017;16:S144-S160 pubmed 出版商
  78. Iurlaro R, Püschel F, León Annicchiarico C, O Connor H, Martin S, Palou Gramón D, et al. Glucose Deprivation Induces ATF4-Mediated Apoptosis through TRAIL Death Receptors. Mol Cell Biol. 2017;37: pubmed 出版商
  79. Cao M, Wu Y, Ashrafi G, McCartney A, Wheeler H, Bushong E, et al. Parkinson Sac Domain Mutation in Synaptojanin 1 Impairs Clathrin Uncoating at Synapses and Triggers Dystrophic Changes in Dopaminergic Axons. Neuron. 2017;93:882-896.e5 pubmed 出版商
  80. Oliver D, Ji H, Liu P, Gasparian A, Gardiner E, Lee S, et al. Identification of novel cancer therapeutic targets using a designed and pooled shRNA library screen. Sci Rep. 2017;7:43023 pubmed 出版商
  81. Lovric S, Gonçalves S, Gee H, Oskouian B, Srinivas H, Choi W, et al. Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency. J Clin Invest. 2017;127:912-928 pubmed 出版商
  82. Cabukusta B, Kol M, Kneller L, Hilderink A, Bickert A, Mina J, et al. ER residency of the ceramide phosphoethanolamine synthase SMSr relies on homotypic oligomerization mediated by its SAM domain. Sci Rep. 2017;7:41290 pubmed 出版商
  83. Valkova C, Liebmann L, Kramer A, Hübner C, Kaether C. The sorting receptor Rer1 controls Purkinje cell function via voltage gated sodium channels. Sci Rep. 2017;7:41248 pubmed 出版商
  84. Eritja N, Chen B, Rodríguez Barrueco R, Santacana M, Gatius S, Vidal A, et al. Autophagy orchestrates adaptive responses to targeted therapy in endometrial cancer. Autophagy. 2017;13:608-624 pubmed 出版商
  85. Han F, Liu C, Zhang L, Zhou Y, Qin Y, Wang Y, et al. Globozoospermia and lack of acrosome formation in GM130-deficient mice. Cell Death Dis. 2017;8:e2532 pubmed 出版商
  86. Rivera Serrano E, Sherry B. NF-?B activation is cell type-specific in the heart. Virology. 2017;502:133-143 pubmed 出版商
  87. Matsumoto A, Pasut A, Matsumoto M, Yamashita R, Fung J, Monteleone E, et al. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature. 2017;541:228-232 pubmed 出版商
  88. Rafiq N, Lieu Z, Jiang T, Yu C, Matsudaira P, Jones G, et al. Podosome assembly is controlled by the GTPase ARF1 and its nucleotide exchange factor ARNO. J Cell Biol. 2017;216:181-197 pubmed 出版商
  89. Hayashi Y, Nemoto Sasaki Y, Matsumoto N, Tanikawa T, Oka S, Tanaka Y, et al. Carboxyl-terminal Tail-mediated Homodimerizations of Sphingomyelin Synthases Are Responsible for Efficient Export from the Endoplasmic Reticulum. J Biol Chem. 2017;292:1122-1141 pubmed 出版商
  90. Stoetzel C, Bär S, De Craene J, Scheidecker S, Etard C, Chicher J, et al. A mutation in VPS15 (PIK3R4) causes a ciliopathy and affects IFT20 release from the cis-Golgi. Nat Commun. 2016;7:13586 pubmed 出版商
  91. Tábara L, Escalante R. VMP1 Establishes ER-Microdomains that Regulate Membrane Contact Sites and Autophagy. PLoS ONE. 2016;11:e0166499 pubmed 出版商
  92. Mardakheh F, Self A, Marshall C. RHO binding to FAM65A regulates Golgi reorientation during cell migration. J Cell Sci. 2016;129:4466-4479 pubmed
  93. Kantarci H, Gerberding A, Riley B. Spemann organizer gene Goosecoid promotes delamination of neuroblasts from the otic vesicle. Proc Natl Acad Sci U S A. 2016;113:E6840-E6848 pubmed
  94. Casey C, Bhat G, Holzapfel M, Petrosyan A. Study of Ethanol-Induced Golgi Disorganization Reveals the Potential Mechanism of Alcohol-Impaired N-Glycosylation. Alcohol Clin Exp Res. 2016;40:2573-2590 pubmed 出版商
  95. Gómez Salinero J, López Olañeta M, Ortiz Sánchez P, Larrasa Alonso J, Gatto A, Felkin L, et al. The Calcineurin Variant CnA?1 Controls Mouse Embryonic Stem Cell Differentiation by Directing mTORC2 Membrane Localization and Activation. Cell Chem Biol. 2016;23:1372-1382 pubmed 出版商
  96. Ding S, Mooney N, Li B, Kelly M, Feng N, Loktev A, et al. Comparative Proteomics Reveals Strain-Specific β-TrCP Degradation via Rotavirus NSP1 Hijacking a Host Cullin-3-Rbx1 Complex. PLoS Pathog. 2016;12:e1005929 pubmed 出版商
  97. Hernandez Tiedra S, Fabrias G, Davila D, Salanueva I, Casas J, Montes L, et al. Dihydroceramide accumulation mediates cytotoxic autophagy of cancer cells via autolysosome destabilization. Autophagy. 2016;12:2213-2229 pubmed
  98. Bisbal M, Quassollo G, Caceres A. Imaging Golgi Outposts in Fixed and Living Neurons. Methods Mol Biol. 2016;1496:31-9 pubmed 出版商
  99. Vermeij W, Dollé M, Reiling E, Jaarsma D, Payan Gomez C, Bombardieri C, et al. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice. Nature. 2016;537:427-431 pubmed 出版商
  100. Greenwood E, Maisel S, Ebertz D, Russ A, Pandey R, SCHROEDER J. Llgl1 prevents metaplastic survival driven by epidermal growth factor dependent migration. Oncotarget. 2016;7:60776-60792 pubmed 出版商
  101. Pourcelot M, Zemirli N, Silva da Costa L, Loyant R, Garcin D, Vitour D, et al. The Golgi apparatus acts as a platform for TBK1 activation after viral RNA sensing. BMC Biol. 2016;14:69 pubmed 出版商
  102. Gao Y, Liu Y, Hong L, Yang Z, Cai X, Chen X, et al. Golgi-associated LC3 lipidation requires V-ATPase in noncanonical autophagy. Cell Death Dis. 2016;7:e2330 pubmed 出版商
  103. Jagadish N, Parashar D, Gupta N, Agarwal S, Suri V, Kumar R, et al. Heat shock protein 70-2 (HSP70-2) is a novel therapeutic target for colorectal cancer and is associated with tumor growth. BMC Cancer. 2016;16:561 pubmed 出版商
  104. Gallagher C, Walter P. Ceapins inhibit ATF6α signaling by selectively preventing transport of ATF6α to the Golgi apparatus during ER stress. elife. 2016;5: pubmed 出版商
  105. Adolf F, Rhiel M, Reckmann I, Wieland F. Sec24C/D-isoform-specific sorting of the preassembled ER-Golgi Q-SNARE complex. Mol Biol Cell. 2016;27:2697-707 pubmed 出版商
  106. Pagliuso A, Valente C, Giordano L, Filograna A, Li G, Circolo D, et al. Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase ?. Nat Commun. 2016;7:12148 pubmed 出版商
  107. Elkin S, Oswald N, Reed D, Mettlen M, Macmillan J, Schmid S. Ikarugamycin: A Natural Product Inhibitor of Clathrin-Mediated Endocytosis. Traffic. 2016;17:1139-49 pubmed 出版商
  108. Uribe M, Haro C, Ventero M, Campello L, Cruces J, Martín Nieto J. Expression pattern in retinal photoreceptors of POMGnT1, a protein involved in muscle-eye-brain disease. Mol Vis. 2016;22:658-73 pubmed
  109. Schmitt D, Funk N, Blum R, Asan E, Andersen L, Rülicke T, et al. Initial characterization of a Syap1 knock-out mouse and distribution of Syap1 in mouse brain and cultured motoneurons. Histochem Cell Biol. 2016;146:489-512 pubmed 出版商
  110. Ortiz D, Glassbrook J, Pellett P. Protein-Protein Interactions Suggest Novel Activities of Human Cytomegalovirus Tegument Protein pUL103. J Virol. 2016;90:7798-810 pubmed 出版商
  111. Mukai K, Konno H, Akiba T, Uemura T, Waguri S, Kobayashi T, et al. Activation of STING requires palmitoylation at the Golgi. Nat Commun. 2016;7:11932 pubmed 出版商
  112. Hao Y, Chow A, Yip W, Li C, Wan T, Tong B, et al. G protein-coupled estrogen receptor inhibits the P2Y receptor-mediated Ca(2+) signaling pathway in human airway epithelia. Pflugers Arch. 2016;468:1489-503 pubmed 出版商
  113. Deng H, Shi Y, Yang Y, Ahmeti K, Miller N, Huang C, et al. Identification of TMEM230 mutations in familial Parkinson's disease. Nat Genet. 2016;48:733-9 pubmed 出版商
  114. Mkhikian H, Mortales C, Zhou R, Khachikyan K, Wu G, Haslam S, et al. Golgi self-correction generates bioequivalent glycans to preserve cellular homeostasis. elife. 2016;5: pubmed 出版商
  115. Wegel E, Göhler A, Lagerholm B, Wainman A, Uphoff S, Kaufmann R, et al. Imaging cellular structures in super-resolution with SIM, STED and Localisation Microscopy: A practical comparison. Sci Rep. 2016;6:27290 pubmed 出版商
  116. Kajiho H, Kajiho Y, Frittoli E, Confalonieri S, Bertalot G, Viale G, et al. RAB2A controls MT1-MMP endocytic and E-cadherin polarized Golgi trafficking to promote invasive breast cancer programs. EMBO Rep. 2016;17:1061-80 pubmed 出版商
  117. Barretta M, Spano D, D Ambrosio C, Cervigni R, Scaloni A, Corda D, et al. Aurora-A recruitment and centrosomal maturation are regulated by a Golgi-activated pool of Src during G2. Nat Commun. 2016;7:11727 pubmed 出版商
  118. Kelly J, Esseltine J, Shao Q, Jabs E, SAMPSON J, Auranen M, et al. Specific functional pathologies of Cx43 mutations associated with oculodentodigital dysplasia. Mol Biol Cell. 2016;27:2172-85 pubmed 出版商
  119. Chiapparo G, Lin X, Lescroart F, Chabab S, Paulissen C, Pitisci L, et al. Mesp1 controls the speed, polarity, and directionality of cardiovascular progenitor migration. J Cell Biol. 2016;213:463-77 pubmed 出版商
  120. Shahbazi M, Jedrusik A, Vuoristo S, Recher G, Hupalowska A, Bolton V, et al. Self-organization of the human embryo in the absence of maternal tissues. Nat Cell Biol. 2016;18:700-708 pubmed 出版商
  121. Crevenna A, Blank B, Maiser A, Emin D, Prescher J, Beck G, et al. Secretory cargo sorting by Ca2+-dependent Cab45 oligomerization at the trans-Golgi network. J Cell Biol. 2016;213:305-14 pubmed 出版商
  122. Tenorio M, Ross B, Luchsinger C, Rivera Dictter A, Arriagada C, Acuña D, et al. Distinct Biochemical Pools of Golgi Phosphoprotein 3 in the Human Breast Cancer Cell Lines MCF7 and MDA-MB-231. PLoS ONE. 2016;11:e0154719 pubmed 出版商
  123. Noda K, Kitami M, Kitami K, Kaku M, Komatsu Y. Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development. Proc Natl Acad Sci U S A. 2016;113:E2589-97 pubmed 出版商
  124. Starling G, Yip Y, Sanger A, Morton P, Eden E, Dodding M. Folliculin directs the formation of a Rab34-RILP complex to control the nutrient-dependent dynamic distribution of lysosomes. EMBO Rep. 2016;17:823-41 pubmed 出版商
  125. Hersrud S, Kovács A, Pearce D. Antigen presenting cell abnormalities in the Cln3(-/-) mouse model of juvenile neuronal ceroid lipofuscinosis. Biochim Biophys Acta. 2016;1862:1324-36 pubmed 出版商
  126. Sepich D, Solnica Krezel L. Intracellular Golgi Complex organization reveals tissue specific polarity during zebrafish embryogenesis. Dev Dyn. 2016;245:678-91 pubmed 出版商
  127. Nader G, Ezratty E, Gundersen G. FAK, talin and PIPKI? regulate endocytosed integrin activation to polarize focal adhesion assembly. Nat Cell Biol. 2016;18:491-503 pubmed 出版商
  128. Kuzuya A, Zoltowska K, Post K, Arimon M, Li X, Svirsky S, et al. Identification of the novel activity-driven interaction between synaptotagmin 1 and presenilin 1 links calcium, synapse, and amyloid beta. BMC Biol. 2016;14:25 pubmed 出版商
  129. Au Yeung C, Co N, Tsuruga T, Yeung T, Kwan S, Leung C, et al. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun. 2016;7:11150 pubmed 出版商
  130. Grampa V, Delous M, Zaidan M, Odye G, Thomas S, Elkhartoufi N, et al. Novel NEK8 Mutations Cause Severe Syndromic Renal Cystic Dysplasia through YAP Dysregulation. PLoS Genet. 2016;12:e1005894 pubmed 出版商
  131. Son S, Cha M, Choi H, Kang S, Choi H, Lee M, et al. Insulin-degrading enzyme secretion from astrocytes is mediated by an autophagy-based unconventional secretory pathway in Alzheimer disease. Autophagy. 2016;12:784-800 pubmed 出版商
  132. Laura R, Dong D, Reynolds W, Maki R. T47D Cells Expressing Myeloperoxidase Are Able to Process, Traffic and Store the Mature Protein in Lysosomes: Studies in T47D Cells Reveal a Role for Cys319 in MPO Biosynthesis that Precedes Its Known Role in Inter-Molecular Disulfide Bond Formation. PLoS ONE. 2016;11:e0149391 pubmed 出版商
  133. Franco C, Jones M, Bernabeu M, Vion A, Barbacena P, Fan J, et al. Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling. elife. 2016;5:e07727 pubmed 出版商
  134. Nakazawa T, Hashimoto R, Sakoori K, Sugaya Y, Tanimura A, Hashimotodani Y, et al. Emerging roles of ARHGAP33 in intracellular trafficking of TrkB and pathophysiology of neuropsychiatric disorders. Nat Commun. 2016;7:10594 pubmed 出版商
  135. Oda S, Nozawa T, Nozawa Minowa A, Tanaka M, Aikawa C, Harada H, et al. Golgi-Resident GTPase Rab30 Promotes the Biogenesis of Pathogen-Containing Autophagosomes. PLoS ONE. 2016;11:e0147061 pubmed 出版商
  136. Lian H, Litvinchuk A, Chiang A, Aithmitti N, Jankowsky J, Zheng H. Astrocyte-Microglia Cross Talk through Complement Activation Modulates Amyloid Pathology in Mouse Models of Alzheimer's Disease. J Neurosci. 2016;36:577-89 pubmed 出版商
  137. Wu J, Xu Y, Jiang Y, Xu J, Hu Y, Zha X. ASIC subunit ratio and differential surface trafficking in the brain. Mol Brain. 2016;9:4 pubmed 出版商
  138. Tjondrokoesoemo A, Schips T, Kanisicak O, Sargent M, Molkentin J. Genetic overexpression of Serpina3n attenuates muscular dystrophy in mice. Hum Mol Genet. 2016;25:1192-202 pubmed 出版商
  139. Kilisch M, Lytovchenko O, Arakel E, Bertinetti D, Schwappach B. A dual phosphorylation switch controls 14-3-3-dependent cell surface expression of TASK-1. J Cell Sci. 2016;129:831-42 pubmed 出版商
  140. Carroll B, Maetzel D, Maddocks O, Otten G, Ratcliff M, Smith G, et al. Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity. elife. 2016;5: pubmed 出版商
  141. Matalkah F, Martin E, Zhao H, Agazie Y. SHP2 acts both upstream and downstream of multiple receptor tyrosine kinases to promote basal-like and triple-negative breast cancer. Breast Cancer Res. 2016;18:2 pubmed 出版商
  142. Mätlik K, Yu L, Eesmaa A, Hellman M, Lindholm P, Peränen J, et al. Role of two sequence motifs of mesencephalic astrocyte-derived neurotrophic factor in its survival-promoting activity. Cell Death Dis. 2015;6:e2032 pubmed 出版商
  143. Fan S, Numata Y, Numata M. Endosomal Na+/H+ exchanger NHE5 influences MET recycling and cell migration. Mol Biol Cell. 2016;27:702-15 pubmed 出版商
  144. Müller A, Stellmacher A, Freitag C, Landgraf P, Dieterich D. Monitoring Astrocytic Proteome Dynamics by Cell Type-Specific Protein Labeling. PLoS ONE. 2015;10:e0145451 pubmed 出版商
  145. Wang J, Lu R, Yang J, Li H, He Z, Jing N, et al. TRPC6 specifically interacts with APP to inhibit its cleavage by γ-secretase and reduce Aβ production. Nat Commun. 2015;6:8876 pubmed 出版商
  146. Copeland S, Thurston S, Copeland J. Actin- and microtubule-dependent regulation of Golgi morphology by FHDC1. Mol Biol Cell. 2016;27:260-76 pubmed 出版商
  147. Rost B, Schneider F, Grauel M, Wozny C, Bentz C, Blessing A, et al. Optogenetic acidification of synaptic vesicles and lysosomes. Nat Neurosci. 2015;18:1845-1852 pubmed 出版商
  148. Kanemoto S, Kobayashi Y, Yamashita T, Miyamoto T, Cui M, Asada R, et al. Luman is involved in osteoclastogenesis through the regulation of DC-STAMP expression, stability and localization. J Cell Sci. 2015;128:4353-65 pubmed 出版商
  149. Geister K, Brinkmeier M, Cheung L, Wendt J, Oatley M, Burgess D, et al. LINE-1 Mediated Insertion into Poc1a (Protein of Centriole 1 A) Causes Growth Insufficiency and Male Infertility in Mice. PLoS Genet. 2015;11:e1005569 pubmed 出版商
  150. Albecka A, Laine R, Janssen A, Kaminski C, Crump C. HSV-1 Glycoproteins Are Delivered to Virus Assembly Sites Through Dynamin-Dependent Endocytosis. Traffic. 2016;17:21-39 pubmed 出版商
  151. Covarrubias Pinto A, Moll P, Solís Maldonado M, Acuña A, Riveros A, Miró M, et al. Beyond the redox imbalance: Oxidative stress contributes to an impaired GLUT3 modulation in Huntington's disease. Free Radic Biol Med. 2015;89:1085-96 pubmed 出版商
  152. Setti M, Osti D, Richichi C, Ortensi B, Del Bene M, Fornasari L, et al. Extracellular vesicle-mediated transfer of CLIC1 protein is a novel mechanism for the regulation of glioblastoma growth. Oncotarget. 2015;6:31413-27 pubmed 出版商
  153. McCormack R, de Armas L, Shiratsuchi M, Fiorentino D, Olsson M, Lichtenheld M, et al. Perforin-2 is essential for intracellular defense of parenchymal cells and phagocytes against pathogenic bacteria. elife. 2015;4: pubmed 出版商
  154. Schnerch D, Nigg E. Structural centrosome aberrations favor proliferation by abrogating microtubule-dependent tissue integrity of breast epithelial mammospheres. Oncogene. 2016;35:2711-22 pubmed 出版商
  155. Otahal A, Fuchs R, Al Allaf F, Blaas D. Release of Vesicular Stomatitis Virus Spike Protein G-Pseudotyped Lentivirus from the Host Cell Is Impaired upon Low-Density Lipoprotein Receptor Overexpression. J Virol. 2015;89:11723-6 pubmed 出版商
  156. Cavaletto N, Luganini A, Gribaudo G. Inactivation of the Human Cytomegalovirus US20 Gene Hampers Productive Viral Replication in Endothelial Cells. J Virol. 2015;89:11092-106 pubmed 出版商
  157. Xu D, Wang Z, Zhang Y, Jiang W, Pan Y, Song B, et al. PAQR3 modulates cholesterol homeostasis by anchoring Scap/SREBP complex to the Golgi apparatus. Nat Commun. 2015;6:8100 pubmed 出版商
  158. Lundgren J, Ahmed S, Schedin Weiss S, Gouras G, Winblad B, Tjernberg L, et al. ADAM10 and BACE1 are localized to synaptic vesicles. J Neurochem. 2015;135:606-15 pubmed 出版商
  159. Rennoll Bankert K, Rahman M, Gillespie J, Guillotte M, Kaur S, Lehman S, et al. Which Way In? The RalF Arf-GEF Orchestrates Rickettsia Host Cell Invasion. PLoS Pathog. 2015;11:e1005115 pubmed 出版商
  160. Costantini L, Baloban M, Markwardt M, Rizzo M, Guo F, Verkhusha V, et al. A palette of fluorescent proteins optimized for diverse cellular environments. Nat Commun. 2015;6:7670 pubmed 出版商
  161. McGowan S, McCoy D. Fibroblast growth factor signaling in myofibroblasts differs from lipofibroblasts during alveolar septation in mice. Am J Physiol Lung Cell Mol Physiol. 2015;309:L463-74 pubmed 出版商
  162. Lindert U, Weis M, Rai J, Seeliger F, Hausser I, Leeb T, et al. Molecular Consequences of the SERPINH1/HSP47 Mutation in the Dachshund Natural Model of Osteogenesis Imperfecta. J Biol Chem. 2015;290:17679-89 pubmed 出版商
  163. Suárez Causado A, Caballero Díaz D, Bertrán E, Roncero C, Addante A, García Álvaro M, et al. HGF/c-Met signaling promotes liver progenitor cell migration and invasion by an epithelial-mesenchymal transition-independent, phosphatidyl inositol-3 kinase-dependent pathway in an in vitro model. Biochim Biophys Acta. 2015;1853:2453-63 pubmed 出版商
  164. Panic M, Hata S, Neuner A, Schiebel E. The centrosomal linker and microtubules provide dual levels of spatial coordination of centrosomes. PLoS Genet. 2015;11:e1005243 pubmed 出版商
  165. De Zio D, Molinari F, Rizza S, Gatta L, Ciotti M, Salvatore A, et al. Apaf1-deficient cortical neurons exhibit defects in axonal outgrowth. Cell Mol Life Sci. 2015;72:4173-91 pubmed 出版商
  166. Sin Y, Martin T, Wills L, Currie S, Baillie G. Small heat shock protein 20 (Hsp20) facilitates nuclear import of protein kinase D 1 (PKD1) during cardiac hypertrophy. Cell Commun Signal. 2015;13:16 pubmed 出版商
  167. Serth K, Schuster Gossler K, Kremmer E, Hansen B, Marohn Köhn B, Gossler A. O-fucosylation of DLL3 is required for its function during somitogenesis. PLoS ONE. 2015;10:e0123776 pubmed 出版商
  168. Kett L, Stiller B, Bernath M, Tasset I, Blesa J, Jackson Lewis V, et al. α-Synuclein-independent histopathological and motor deficits in mice lacking the endolysosomal Parkinsonism protein Atp13a2. J Neurosci. 2015;35:5724-42 pubmed 出版商
  169. Underhill S, Wheeler D, Amara S. Differential regulation of two isoforms of the glial glutamate transporter EAAT2 by DLG1 and CaMKII. J Neurosci. 2015;35:5260-70 pubmed 出版商
  170. Gramage E, D Cruz T, Taylor S, Thummel R, Hitchcock P. Midkine-a protein localization in the developing and adult retina of the zebrafish and its function during photoreceptor regeneration. PLoS ONE. 2015;10:e0121789 pubmed 出版商
  171. Mignogna M, Giannandrea M, Gurgone A, Fanelli F, Raimondi F, Mapelli L, et al. The intellectual disability protein RAB39B selectively regulates GluA2 trafficking to determine synaptic AMPAR composition. Nat Commun. 2015;6:6504 pubmed 出版商
  172. Staudacher J, Naarmann de Vries I, Ujvari S, Klinger B, Kasim M, Benko E, et al. Hypoxia-induced gene expression results from selective mRNA partitioning to the endoplasmic reticulum. Nucleic Acids Res. 2015;43:3219-36 pubmed 出版商
  173. Grego Bessa J, Hildebrand J, Anderson K. Morphogenesis of the mouse neural plate depends on distinct roles of cofilin 1 in apical and basal epithelial domains. Development. 2015;142:1305-14 pubmed 出版商
  174. Xu H, Malinin N, Awasthi N, Schwarz R, Schwarz M. The N terminus of pro-endothelial monocyte-activating polypeptide II (EMAP II) regulates its binding with the C terminus, arginyl-tRNA synthetase, and neurofilament light protein. J Biol Chem. 2015;290:9753-66 pubmed 出版商
  175. Cruse G, Beaven M, Music S, Bradding P, Gilfillan A, Metcalfe D. The CD20 homologue MS4A4 directs trafficking of KIT toward clathrin-independent endocytosis pathways and thus regulates receptor signaling and recycling. Mol Biol Cell. 2015;26:1711-27 pubmed 出版商
  176. Biazik J, Ylä Anttila P, Vihinen H, Jokitalo E, Eskelinen E. Ultrastructural relationship of the phagophore with surrounding organelles. Autophagy. 2015;11:439-51 pubmed 出版商
  177. Popa A, Zhang W, Harrison M, Goodner K, Kazakov T, Goodwin E, et al. Direct binding of retromer to human papillomavirus type 16 minor capsid protein L2 mediates endosome exit during viral infection. PLoS Pathog. 2015;11:e1004699 pubmed 出版商
  178. Murrow L, Malhotra R, Debnath J. ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat Cell Biol. 2015;17:300-10 pubmed 出版商
  179. Johnson A, Bhattacharya N, Hanna M, Pennington J, Schuh A, Wang L, et al. TFG clusters COPII-coated transport carriers and promotes early secretory pathway organization. EMBO J. 2015;34:811-27 pubmed 出版商
  180. Zacherl S, La Venuta G, Muller H, Wegehingel S, Dimou E, Sehr P, et al. A direct role for ATP1A1 in unconventional secretion of fibroblast growth factor 2. J Biol Chem. 2015;290:3654-65 pubmed 出版商
  181. Gory Fauré S, Windscheid V, Brocard J, Montessuit S, Tsutsumi R, Denarier E, et al. Non-microtubular localizations of microtubule-associated protein 6 (MAP6). PLoS ONE. 2014;9:e114905 pubmed 出版商
  182. Korobko E, Kiselev S, Korobko I. Characterization of Rabaptin-5 γ isoform. Biochemistry (Mosc). 2014;79:856-64 pubmed 出版商
  183. Phillips Krawczak C, Singla A, Starokadomskyy P, Deng Z, Osborne D, Li H, et al. COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A. Mol Biol Cell. 2015;26:91-103 pubmed 出版商
  184. Van Deun J, Mestdagh P, Sormunen R, Cocquyt V, Vermaelen K, Vandesompele J, et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles. 2014;3: pubmed 出版商
  185. Wiernasz E, Kaliszewska A, Brutkowski W, Bednarczyk J, Gorniak M, Kaza B, et al. Ttyh1 protein is expressed in glia in vitro and shows elevated expression in activated astrocytes following status epilepticus. Neurochem Res. 2014;39:2516-26 pubmed 出版商
  186. Gao X, Hannoush R. Single-cell in situ imaging of palmitoylation in fatty-acylated proteins. Nat Protoc. 2014;9:2607-23 pubmed 出版商
  187. Pereira L, Pinto R, Silva D, Moreira A, Beitzinger C, Oliveira P, et al. Intracellular trafficking of AIP56, an NF-κB-cleaving toxin from Photobacterium damselae subsp. piscicida. Infect Immun. 2014;82:5270-85 pubmed 出版商
  188. Beaumel S, Grunwald D, Fieschi F, Stasia M. Identification of NOX2 regions for normal biosynthesis of cytochrome b558 in phagocytes highlighting essential residues for p22phox binding. Biochem J. 2014;464:425-37 pubmed 出版商
  189. Lucken Ardjomande Häsler S, Vallis Y, Jolin H, McKenzie A, McMahon H. GRAF1a is a brain-specific protein that promotes lipid droplet clustering and growth, and is enriched at lipid droplet junctions. J Cell Sci. 2014;127:4602-19 pubmed 出版商
  190. Li J, Liu J, Li P, Mao X, Li W, Yang J, et al. Loss of LKB1 disrupts breast epithelial cell polarity and promotes breast cancer metastasis and invasion. J Exp Clin Cancer Res. 2014;33:70 pubmed 出版商
  191. Omi T, Tanimukai H, Kanayama D, Sakagami Y, Tagami S, Okochi M, et al. Fluvoxamine alleviates ER stress via induction of Sigma-1 receptor. Cell Death Dis. 2014;5:e1332 pubmed 出版商
  192. Schlüter K, Waschbüsch D, Anft M, Hügging D, Kind S, Hänisch J, et al. JMY is involved in anterograde vesicle trafficking from the trans-Golgi network. Eur J Cell Biol. 2014;93:194-204 pubmed 出版商
  193. McEwen A, Maher M, Mo R, Gottardi C. E-cadherin phosphorylation occurs during its biosynthesis to promote its cell surface stability and adhesion. Mol Biol Cell. 2014;25:2365-74 pubmed 出版商
  194. Ling Y, Wong C, Li K, Chan K, Boukamp P, Liu W. CCHCR1 interacts with EDC4, suggesting its localization in P-bodies. Exp Cell Res. 2014;327:12-23 pubmed 出版商
  195. Hans F, Fiesel F, Strong J, J ckel S, Rasse T, Geisler S, et al. UBE2E ubiquitin-conjugating enzymes and ubiquitin isopeptidase Y regulate TDP-43 protein ubiquitination. J Biol Chem. 2014;289:19164-79 pubmed 出版商
  196. Zavodszky E, Seaman M, Moreau K, Jimenez Sanchez M, Breusegem S, Harbour M, et al. Mutation in VPS35 associated with Parkinson's disease impairs WASH complex association and inhibits autophagy. Nat Commun. 2014;5:3828 pubmed 出版商
  197. Bejarano E, Yuste A, Patel B, Stout R, Spray D, Cuervo A. Connexins modulate autophagosome biogenesis. Nat Cell Biol. 2014;16:401-14 pubmed 出版商
  198. Wehmeyer L, Du Toit A, Lang D, Hapgood J. Lipid raft- and protein kinase C-mediated synergism between glucocorticoid- and gonadotropin-releasing hormone signaling results in decreased cell proliferation. J Biol Chem. 2014;289:10235-51 pubmed 出版商
  199. Baumann T, Bergmann S, Schmidt Rose T, Max H, Martin A, Enthaler B, et al. Glutathione-conjugated sulfanylalkanols are substrates for ABCC11 and ?-glutamyl transferase 1: a potential new pathway for the formation of odorant precursors in the apocrine sweat gland. Exp Dermatol. 2014;23:247-52 pubmed 出版商
  200. Scharadin T, Adhikary G, Shaw K, Grun D, Xu W, Eckert R. Pericentrosomal localization of the TIG3 tumor suppressor requires an N-terminal hydrophilic region motif. J Invest Dermatol. 2014;134:1220-1229 pubmed 出版商
  201. Yamanaka T, Tosaki A, Kurosawa M, Akimoto K, Hirose T, Ohno S, et al. Loss of aPKC? in differentiated neurons disrupts the polarity complex but does not induce obvious neuronal loss or disorientation in mouse brains. PLoS ONE. 2013;8:e84036 pubmed 出版商
  202. Ruggiero C, Cancino J, Giannotta M, Sallese M. Signaling initiated by the secretory compartment. Methods Enzymol. 2014;534:133-54 pubmed 出版商
  203. Ingle G, Scales S. DropArray™, a wall-less 96-well plate for uptake and immunofluorescence microscopy, confirms CD22 recycles. Traffic. 2014;15:255-72 pubmed 出版商
  204. Lewis M, Jamison J, Dunbar J, DeGracia D. mRNA redistribution during permanent focal cerebral ischemia. Transl Stroke Res. 2013;4:604-17 pubmed 出版商
  205. Sadakata T, Kakegawa W, Shinoda Y, Hosono M, Katoh Semba R, Sekine Y, et al. CAPS1 deficiency perturbs dense-core vesicle trafficking and Golgi structure and reduces presynaptic release probability in the mouse brain. J Neurosci. 2013;33:17326-34 pubmed 出版商
  206. Linch M, Sanz Garcia M, Rosse C, Riou P, Peel N, Madsen C, et al. Regulation of polarized morphogenesis by protein kinase C iota in oncogenic epithelial spheroids. Carcinogenesis. 2014;35:396-406 pubmed 出版商
  207. Camacho L, Guerrero P, Marchetti D. MicroRNA and protein profiling of brain metastasis competent cell-derived exosomes. PLoS ONE. 2013;8:e73790 pubmed 出版商
  208. Cross B, Hack A, Reinhardt T, Rao R. SPCA2 regulates Orai1 trafficking and store independent Ca2+ entry in a model of lactation. PLoS ONE. 2013;8:e67348 pubmed 出版商
  209. Oner S, Vural A, Lanier S. Translocation of activator of G-protein signaling 3 to the Golgi apparatus in response to receptor activation and its effect on the trans-Golgi network. J Biol Chem. 2013;288:24091-103 pubmed 出版商
  210. Maier B, Kirsch M, Anderhub S, Zentgraf H, Krämer A. The novel actin/focal adhesion-associated protein MISP is involved in mitotic spindle positioning in human cells. Cell Cycle. 2013;12:1457-71 pubmed 出版商
  211. Koreishi M, Yu S, Oda M, Honjo Y, Satoh A. CK2 phosphorylates Sec31 and regulates ER-To-Golgi trafficking. PLoS ONE. 2013;8:e54382 pubmed 出版商
  212. Cox D, Racca C. Differential dendritic targeting of AMPA receptor subunit mRNAs in adult rat hippocampal principal neurons and interneurons. J Comp Neurol. 2013;521:1954-2007 pubmed 出版商
  213. Körschen H, Yildiz Y, Raju D, Schonauer S, Bönigk W, Jansen V, et al. The non-lysosomal ?-glucosidase GBA2 is a non-integral membrane-associated protein at the endoplasmic reticulum (ER) and Golgi. J Biol Chem. 2013;288:3381-93 pubmed 出版商
  214. Journo C, Bonnet A, Favre Bonvin A, Turpin J, Vinera J, C t E, et al. Human T cell leukemia virus type 2 tax-mediated NF-?B activation involves a mechanism independent of Tax conjugation to ubiquitin and SUMO. J Virol. 2013;87:1123-36 pubmed 出版商
  215. Ma M, Chircop M. SNX9, SNX18 and SNX33 are required for progression through and completion of mitosis. J Cell Sci. 2012;125:4372-82 pubmed 出版商
  216. Jamison J, Szymanski J, DeGracia D. Organelles do not colocalize with mRNA granules in post-ischemic neurons. Neuroscience. 2011;199:394-400 pubmed 出版商
  217. Beyer A, von Einem B, Schwanzar D, Keller I, Hellrung A, Thal D, et al. Engulfment adapter PTB domain containing 1 interacts with and affects processing of the amyloid-? precursor protein. Neurobiol Aging. 2012;33:732-43 pubmed 出版商
  218. Clarke J, Emson P, Irvine R. Distribution and neuronal expression of phosphatidylinositol phosphate kinase IIgamma in the mouse brain. J Comp Neurol. 2009;517:296-312 pubmed 出版商