这是一篇来自已证抗体库的有关人类 GRIN2A的综述,是根据63篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合GRIN2A 抗体。
GRIN2A 同义词: EPND; FESD; GluN2A; LKS; NMDAR2A; NR2A; glutamate receptor ionotropic, NMDA 2A; N-methyl D-aspartate receptor subtype 2A; N-methyl-D-aspartate receptor channel, subunit epsilon-1; N-methyl-D-aspartate receptor subunit 2A; glutamate receptor, ionotropic, N-methyl D-aspartate 2A

赛默飞世尔
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 3a
赛默飞世尔 GRIN2A抗体(Thermo Fisher, OPA1-04021)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3a). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 2
赛默飞世尔 GRIN2A抗体(Invitrogen, A-6473)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:200; 图 5
赛默飞世尔 GRIN2A抗体(Molecular Probes/Invitrogen, A-6473)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 5). J Alzheimers Dis (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:250
  • 免疫印迹; 大鼠; 1:500; 图 3
赛默飞世尔 GRIN2A抗体(生活技术, A-6473)被用于被用于免疫细胞化学在大鼠样本上浓度为1:250 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 3). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化; 人类; 图 2
赛默飞世尔 GRIN2A抗体(Invitrogen, A-6473)被用于被用于免疫组化在人类样本上 (图 2). Brain Res (2011) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 s4
赛默飞世尔 GRIN2A抗体(Invitrogen, A6473)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s4). J Neurosci (2010) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:10,000; 图 2
赛默飞世尔 GRIN2A抗体(分子探针, A-6473)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 2). Hippocampus (2011) ncbi
兔 多克隆
赛默飞世尔 GRIN2A抗体(分子探针, A-6473)被用于. J Neurosci (1999) ncbi
艾博抗(上海)贸易有限公司
兔 单克隆(EPR2465(2))
  • 免疫印迹; 大鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司 GRIN2A抗体(Abcam, ab124913)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 5). Sci Rep (2016) ncbi
兔 单克隆(EPR2465(2))
  • 免疫印迹; 小鼠; 图 5
艾博抗(上海)贸易有限公司 GRIN2A抗体(Abcam, ab124913)被用于被用于免疫印迹在小鼠样本上 (图 5). Physiol Rep (2016) ncbi
兔 单克隆(EPR7063)
  • 免疫印迹; 小鼠; 图 2b
艾博抗(上海)贸易有限公司 GRIN2A抗体(Abcam, ab133265)被用于被用于免疫印迹在小鼠样本上 (图 2b). EBioMedicine (2016) ncbi
安迪生物R&D
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s6c
安迪生物R&D GRIN2A抗体(R&D Systems, PPS012)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6c). Proc Natl Acad Sci U S A (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s2
安迪生物R&D GRIN2A抗体(R&D Systems, PPS012)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Nat Neurosci (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 4
  • 免疫印迹; 大鼠; 1:5000; 图 2
安迪生物R&D GRIN2A抗体(R&D Systems, PPS012)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:5000 (图 2). Neuroscience (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000
安迪生物R&D GRIN2A抗体(R&D System, PPS012)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. J Neurosci Res (2014) ncbi
Alomone Labs
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 s2
Alomone Labs GRIN2A抗体(Alomone Labs, AGC-002)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s2). Diabetes (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:500
Alomone Labs GRIN2A抗体(Alomone, AGC-002)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 和 被用于免疫印迹在小鼠样本上浓度为1:500. J Neurosci (2015) ncbi
亚诺法生技股份有限公司
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7
亚诺法生技股份有限公司 GRIN2A抗体(Abnova, PAB9699)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Hippocampus (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(D-8)
  • 免疫印迹; 小鼠; 1:500; 图 4
圣克鲁斯生物技术 GRIN2A抗体(Santa Cruz, sc-390094)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). Front Cell Neurosci (2015) ncbi
西格玛奥德里奇
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 9b
西格玛奥德里奇 GRIN2A抗体(Sigma, M264)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 9b). Mol Neurobiol (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s2c
西格玛奥德里奇 GRIN2A抗体(Sigma-Aldrich, G9038)被用于被用于免疫印迹在小鼠样本上 (图 s2c). Mol Psychiatry (2017) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1
西格玛奥德里奇 GRIN2A抗体(Sigma-Aldrich, M264)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 11
西格玛奥德里奇 GRIN2A抗体(Sigma-Aldrich, M264)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 11). J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4,5
西格玛奥德里奇 GRIN2A抗体(Sigma, G9038)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4,5). J Neurosci (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
西格玛奥德里奇 GRIN2A抗体(Sigma-Aldrich, M264)被用于被用于免疫印迹在小鼠样本上. Front Cell Neurosci (2014) ncbi
赛信通(上海)生物试剂有限公司
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 GRIN2A抗体(Cell Signaling Tech, 4205)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 GRIN2A抗体(Cell Signaling Technology, 4205)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6b). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 GRIN2A抗体(CST, 4205)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Brain Res Bull (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 GRIN2A抗体(Cell Signaling, 4205)被用于被用于免疫印迹在小鼠样本上. J Neuroinflammation (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 GRIN2A抗体(Cell Signaling Technology, 4205S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 GRIN2A抗体(Cell Signaling, 4205)被用于被用于免疫印迹在小鼠样本上. Eur J Pharmacol (2013) ncbi
默克密理博中国
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 2e
默克密理博中国 GRIN2A抗体(Millipore, MAB5216)被用于被用于免疫印迹在小鼠样本上 (图 2e). Science (2019) ncbi
兔 单克隆(A12W)
  • 免疫印迹; 小鼠; 1:2000; 图 7b
默克密理博中国 GRIN2A抗体(Millipore, 05-901R)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 7b). Mol Neurobiol (2017) ncbi
兔 单克隆(A12W)
  • 免疫印迹; 大鼠; 1:5000; 图 6a
默克密理博中国 GRIN2A抗体(Millipore, 05-901R)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 6a). J Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 7f
默克密理博中国 GRIN2A抗体(Chemicon, AB1548)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 7f). Neurobiol Aging (2016) ncbi
小鼠 单克隆(2H9.24A6)
  • 免疫细胞化学; 大鼠; 图 2a
  • 免疫印迹; 大鼠; 图 2c
默克密理博中国 GRIN2A抗体(Millipore, MAB5572)被用于被用于免疫细胞化学在大鼠样本上 (图 2a) 和 被用于免疫印迹在大鼠样本上 (图 2c). J Alzheimers Dis (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 1c
默克密理博中国 GRIN2A抗体(Chemicon, AB1555P)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1c). Science (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 3c
默克密理博中国 GRIN2A抗体(Millipore, AB1555P)被用于被用于免疫印迹在大鼠样本上 (图 3c). Neural Dev (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠
默克密理博中国 GRIN2A抗体(Millipore, AB1548)被用于被用于免疫细胞化学在小鼠样本上. J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:1000
  • 免疫印迹; 小鼠; 1:1000
默克密理博中国 GRIN2A抗体(Millipore, AB1555P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 和 被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci (2015) ncbi
兔 单克隆(A12W)
  • 免疫印迹; 小鼠; 图 5
默克密理博中国 GRIN2A抗体(Millipore, A12W)被用于被用于免疫印迹在小鼠样本上 (图 5). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:100
默克密理博中国 GRIN2A抗体(Millipore, AB1548)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:100. J Comp Neurol (2015) ncbi
小鼠 单克隆
  • 免疫细胞化学; 人类; 1:500
默克密理博中国 GRIN2A抗体(Millipore, MAB5216)被用于被用于免疫细胞化学在人类样本上浓度为1:500. PLoS ONE (2015) ncbi
小鼠 单克隆
  • 免疫组化; 大鼠; 7.5 ug/ml; 图 2b
默克密理博中国 GRIN2A抗体(Chemicon, MAB5216)被用于被用于免疫组化在大鼠样本上浓度为7.5 ug/ml (图 2b). Front Synaptic Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s4
默克密理博中国 GRIN2A抗体(Millipore, AB1548)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s4). Science (2015) ncbi
小鼠 单克隆(2H9.24A6)
  • 免疫组化; 大鼠; 1:1000; 图  5
  • 免疫印迹; 大鼠; 1:500; 图  5
默克密理博中国 GRIN2A抗体(Chemicon, MAB5572)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图  5) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图  5). Neurobiol Dis (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5
默克密理博中国 GRIN2A抗体(EMD Millipore, AB1555P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). J Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:400
默克密理博中国 GRIN2A抗体(Millipore, AB1548)被用于被用于免疫组化在小鼠样本上浓度为1:400. Mol Vis (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
默克密理博中国 GRIN2A抗体(Millipore, AB1555P)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆
  • 免疫细胞化学; 人类; 1:800
  • 免疫印迹; 人类; 1:1000
默克密理博中国 GRIN2A抗体(EMD Millipore, MAB5216)被用于被用于免疫细胞化学在人类样本上浓度为1:800 和 被用于免疫印迹在人类样本上浓度为1:1000. Thromb Res (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
默克密理博中国 GRIN2A抗体(Millipore, AB1555)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫印迹; domestic ferret; 1:2000
默克密理博中国 GRIN2A抗体(Millipore, AB1555)被用于被用于免疫印迹在domestic ferret样本上浓度为1:2000. Neural Plast (2013) ncbi
兔 单克隆(A12W)
  • 免疫印迹; 小鼠; 1:500
默克密理博中国 GRIN2A抗体(Millipore, 05-901R)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Nat Med (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 GRIN2A抗体(Millipore, AB1555)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Neurochem Int (2013) ncbi
兔 多克隆
  • 免疫沉淀; 小鼠; 4 ug/time
  • 免疫印迹; 小鼠; 1:1000
默克密理博中国 GRIN2A抗体(Millipore, AB1555)被用于被用于免疫沉淀在小鼠样本上浓度为4 ug/time 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Neurobiol Learn Mem (2014) ncbi
兔 多克隆
  • 免疫印迹; common platanna; 1:300
默克密理博中国 GRIN2A抗体(Millipore, AB1555P)被用于被用于免疫印迹在common platanna样本上浓度为1:300. J Neurosci (2013) ncbi
小鼠 单克隆
  • 免疫细胞化学; 小鼠; 1:25
默克密理博中国 GRIN2A抗体(Millipore, MAB5216)被用于被用于免疫细胞化学在小鼠样本上浓度为1:25. PLoS Comput Biol (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 GRIN2A抗体(Millipore, AB1555P)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Eur J Neurosci (2013) ncbi
兔 单克隆(A12W)
  • 免疫印迹; 大鼠
默克密理博中国 GRIN2A抗体(Millipore, 05-901R)被用于被用于免疫印迹在大鼠样本上. J Neurosci (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:3,000
默克密理博中国 GRIN2A抗体(Millipore, AB1555)被用于被用于免疫印迹在小鼠样本上浓度为1:3,000. J Neurosci (2013) ncbi
兔 多克隆
  • 免疫组化; 小鼠
默克密理博中国 GRIN2A抗体(Chemicon, AB1548)被用于被用于免疫组化在小鼠样本上. Mol Cell Biol (2013) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:200
默克密理博中国 GRIN2A抗体(Millipore, MAB5216)被用于被用于免疫印迹在小鼠样本上浓度为1:200. PLoS ONE (2012) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000
默克密理博中国 GRIN2A抗体(Millipore, AB1555)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. J Neurochem (2013) ncbi
文章列表
  1. Awasthi A, Ramachandran B, Ahmed S, Benito E, Shinoda Y, Nitzan N, et al. Synaptotagmin-3 drives AMPA receptor endocytosis, depression of synapse strength, and forgetting. Science. 2019;363: pubmed 出版商
  2. Wang Y, Figueiredo D, Sun X, Dong Z, Chen W, Cui W, et al. Controlling of glutamate release by neuregulin3 via inhibiting the assembly of the SNARE complex. Proc Natl Acad Sci U S A. 2018;115:2508-2513 pubmed 出版商
  3. Arcego D, Toniazzo A, Krolow R, Lampert C, Berlitz C, Dos Santos Garcia E, et al. Impact of High-Fat Diet and Early Stress on Depressive-Like Behavior and Hippocampal Plasticity in Adult Male Rats. Mol Neurobiol. 2018;55:2740-2753 pubmed 出版商
  4. Kim J, Ko A, Hyun H, Min S, Kim J. PDI regulates seizure activity via NMDA receptor redox in rats. Sci Rep. 2017;7:42491 pubmed 出版商
  5. Le H, Ahn B, Lee H, Shin A, Chae S, Lee S, et al. Disruption of Ninjurin1 Leads to Repetitive and Anxiety-Like Behaviors in Mice. Mol Neurobiol. 2017;54:7353-7368 pubmed 出版商
  6. McQuail J, Beas B, Kelly K, Simpson K, Frazier C, Setlow B, et al. NR2A-Containing NMDARs in the Prefrontal Cortex Are Required for Working Memory and Associated with Age-Related Cognitive Decline. J Neurosci. 2016;36:12537-12548 pubmed
  7. Lauritzen K, Hasan Olive M, Regnell C, Kleppa L, Scheibye Knudsen M, Gjedde A, et al. A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain. Neurobiol Aging. 2016;48:34-47 pubmed 出版商
  8. Li Y, Chang L, Song Y, Gao X, Roselli F, Liu J, et al. Astrocytic GluN2A and GluN2B Oppose the Synaptotoxic Effects of Amyloid-?1-40 in Hippocampal Cells. J Alzheimers Dis. 2016;54:135-48 pubmed 出版商
  9. Lie E, Ko J, Choi S, Roh J, Cho Y, Noh R, et al. SALM4 suppresses excitatory synapse development by cis-inhibiting trans-synaptic SALM3-LAR adhesion. Nat Commun. 2016;7:12328 pubmed 出版商
  10. Pan B, Huang X, Deng C. Chronic administration of aripiprazole activates GSK3β-dependent signalling pathways, and up-regulates GABAA receptor expression and CREB1 activity in rats. Sci Rep. 2016;6:30040 pubmed 出版商
  11. Chandler J, Wongtrakool C, Banton S, Li S, Orr M, Barr D, et al. Low-dose oral cadmium increases airway reactivity and lung neuronal gene expression in mice. Physiol Rep. 2016;4: pubmed 出版商
  12. Roshanravan H, Kim E, Dryer S. NMDA Receptors as Potential Therapeutic Targets in Diabetic Nephropathy: Increased Renal NMDA Receptor Subunit Expression in Akita Mice and Reduced Nephropathy Following Sustained Treatment With Memantine or MK-801. Diabetes. 2016;65:3139-50 pubmed 出版商
  13. Emanuele M, Esposito A, Camerini S, Antonucci F, Ferrara S, Seghezza S, et al. Exogenous Alpha-Synuclein Alters Pre- and Post-Synaptic Activity by Fragmenting Lipid Rafts. EBioMedicine. 2016;7:191-204 pubmed 出版商
  14. Sun X, Li L, Liu F, Huang Z, Bean J, Jiao H, et al. Lrp4 in astrocytes modulates glutamatergic transmission. Nat Neurosci. 2016;19:1010-8 pubmed 出版商
  15. Zhang H, Kang E, Wang Y, Yang C, Yu H, Wang Q, et al. Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice. Nat Commun. 2016;7: pubmed 出版商
  16. Zhao T, Li C, Wei W, Zhang H, Ma D, Song X, et al. Prenatal ketamine exposure causes abnormal development of prefrontal cortex in rat. Sci Rep. 2016;6:26865 pubmed 出版商
  17. Traunmüller L, Gomez A, Nguyen T, Scheiffele P. Control of neuronal synapse specification by a highly dedicated alternative splicing program. Science. 2016;352:982-6 pubmed 出版商
  18. Vicidomini C, Ponzoni L, Lim D, Schmeisser M, Reim D, Morello N, et al. Pharmacological enhancement of mGlu5 receptors rescues behavioral deficits in SHANK3 knock-out mice. Mol Psychiatry. 2017;22:689-702 pubmed 出版商
  19. Stanic J, Carta M, Eberini I, Pelucchi S, Marcello E, Genazzani A, et al. Rabphilin 3A retains NMDA receptors at synaptic sites through interaction with GluN2A/PSD-95 complex. Nat Commun. 2015;6:10181 pubmed 出版商
  20. Bean L, Kumar A, Rani A, Guidi M, Rosario A, Cruz P, et al. Re-Opening the Critical Window for Estrogen Therapy. J Neurosci. 2015;35:16077-93 pubmed 出版商
  21. Brai E, Marathe S, Astori S, Fredj N, Perry E, Lamy C, et al. Notch1 Regulates Hippocampal Plasticity Through Interaction with the Reelin Pathway, Glutamatergic Transmission and CREB Signaling. Front Cell Neurosci. 2015;9:447 pubmed 出版商
  22. Corbel C, Hernandez I, Wu B, Kosik K. Developmental attenuation of N-methyl-D-aspartate receptor subunit expression by microRNAs. Neural Dev. 2015;10:20 pubmed 出版商
  23. Forrest C, McNair K, Pisar M, Khalil O, Darlington L, Stone T. Altered hippocampal plasticity by prenatal kynurenine administration, kynurenine-3-monoxygenase (KMO) deletion or galantamine. Neuroscience. 2015;310:91-105 pubmed 出版商
  24. Gingras S, Earls L, Howell S, Smeyne R, Zakharenko S, Pelletier S. SCYL2 Protects CA3 Pyramidal Neurons from Excitotoxicity during Functional Maturation of the Mouse Hippocampus. J Neurosci. 2015;35:10510-22 pubmed 出版商
  25. Hsu W, Chung H, Wu C, Wu H, Lee Y, Chen E, et al. Glutamate Stimulates Local Protein Synthesis in the Axons of Rat Cortical Neurons by Activating α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors and Metabotropic Glutamate Receptors. J Biol Chem. 2015;290:20748-60 pubmed 出版商
  26. Ferreira J, Schmidt J, Rio P, Águas R, Rooyakkers A, Li K, et al. GluN2B-Containing NMDA Receptors Regulate AMPA Receptor Traffic through Anchoring of the Synaptic Proteasome. J Neurosci. 2015;35:8462-79 pubmed 出版商
  27. Vullhorst D, Mitchell R, Keating C, Roychowdhury S, Karavanova I, Tao Cheng J, et al. A negative feedback loop controls NMDA receptor function in cortical interneurons via neuregulin 2/ErbB4 signalling. Nat Commun. 2015;6:7222 pubmed 出版商
  28. Stensrud M, Sogn C, Gundersen V. Immunogold characteristics of VGLUT3-positive GABAergic nerve terminals suggest corelease of glutamate. J Comp Neurol. 2015;523:2698-713 pubmed 出版商
  29. Maggio N, Shavit Stein E, Segal M. Ischemic LTP: NMDA-dependency and dorso/ventral distribution within the hippocampus. Hippocampus. 2015;25:1465-71 pubmed 出版商
  30. Atkin G, Moore S, Lu Y, Nelson R, Tipper N, Rajpal G, et al. Loss of F-box only protein 2 (Fbxo2) disrupts levels and localization of select NMDA receptor subunits, and promotes aberrant synaptic connectivity. J Neurosci. 2015;35:6165-78 pubmed 出版商
  31. Ramberger M, Peschl P, Schanda K, Irschick R, Höftberger R, Deisenhammer F, et al. Comparison of diagnostic accuracy of microscopy and flow cytometry in evaluating N-methyl-D-aspartate receptor antibodies in serum using a live cell-based assay. PLoS ONE. 2015;10:e0122037 pubmed 出版商
  32. Bidoret C, Bouvier G, Ayon A, Szapiro G, Casado M. Properties and molecular identity of NMDA receptors at synaptic and non-synaptic inputs in cerebellar molecular layer interneurons. Front Synaptic Neurosci. 2015;7:1 pubmed 出版商
  33. Chen F, Tillberg P, Boyden E. Optical imaging. Expansion microscopy. Science. 2015;347:543-8 pubmed 出版商
  34. Di Maio R, Cannon J, Greenamyre J. Post-status epilepticus treatment with the cannabinoid agonist WIN 55,212-2 prevents chronic epileptic hippocampal damage in rats. Neurobiol Dis. 2015;73:356-65 pubmed 出版商
  35. Zhang J, Hu M, Teng Z, Tang Y, Chen C. Synaptic and cognitive improvements by inhibition of 2-AG metabolism are through upregulation of microRNA-188-3p in a mouse model of Alzheimer's disease. J Neurosci. 2014;34:14919-33 pubmed 出版商
  36. Grau C, Arató K, Fernández Fernández J, Valderrama A, Sindreu C, Fillat C, et al. DYRK1A-mediated phosphorylation of GluN2A at Ser(1048) regulates the surface expression and channel activity of GluN1/GluN2A receptors. Front Cell Neurosci. 2014;8:331 pubmed 出版商
  37. de Andrade G, Kunzelman L, Merrill M, Fuerst P. Developmentally dynamic colocalization patterns of DSCAM with adhesion and synaptic proteins in the mouse retina. Mol Vis. 2014;20:1422-33 pubmed
  38. Ma Q, Ying M, Sui X, Zhang H, Huang H, Yang L, et al. Chronic copper exposure causes spatial memory impairment, selective loss of hippocampal synaptic proteins, and activation of PKR/eIF2α pathway in mice. J Alzheimers Dis. 2015;43:1413-27 pubmed 出版商
  39. Abazyan S, Yang E, Abazyan B, Xia M, Yang C, Rojas C, et al. Mutant disrupted-in-schizophrenia 1 in astrocytes: focus on glutamate metabolism. J Neurosci Res. 2014;92:1659-68 pubmed 出版商
  40. Fernandes J, Vieira M, Carreto L, Santos M, Duarte C, Carvalho A, et al. In vitro ischemia triggers a transcriptional response to down-regulate synaptic proteins in hippocampal neurons. PLoS ONE. 2014;9:e99958 pubmed 出版商
  41. Liu X, Liu Y, Zhang J, Zhang W, Sun Y, Gu X, et al. Intrathecal administration of roscovitine prevents remifentanil-induced postoperative hyperalgesia and decreases the phosphorylation of N-methyl-D-aspartate receptor and metabotropic glutamate receptor 5 in spinal cord. Brain Res Bull. 2014;106:9-16 pubmed 出版商
  42. Bustos F, Varela Nallar L, Campos M, Henriquez B, Phillips M, Opazo C, et al. PSD95 suppresses dendritic arbor development in mature hippocampal neurons by occluding the clustering of NR2B-NMDA receptors. PLoS ONE. 2014;9:e94037 pubmed 出版商
  43. Niesman I, Schilling J, Shapiro L, Kellerhals S, Bonds J, Kleschevnikov A, et al. Traumatic brain injury enhances neuroinflammation and lesion volume in caveolin deficient mice. J Neuroinflammation. 2014;11:39 pubmed 出版商
  44. Kalev Zylinska M, Green T, Morel Kopp M, Sun P, Park Y, Lasham A, et al. N-methyl-D-aspartate receptors amplify activation and aggregation of human platelets. Thromb Res. 2014;133:837-47 pubmed 出版商
  45. Portugal G, Al Hasani R, Fakira A, Gonzalez Romero J, Melyan Z, McCall J, et al. Hippocampal long-term potentiation is disrupted during expression and extinction but is restored after reinstatement of morphine place preference. J Neurosci. 2014;34:527-38 pubmed 出版商
  46. Mao Y, Pallas S. Cross-modal plasticity results in increased inhibition in primary auditory cortical areas. Neural Plast. 2013;2013:530651 pubmed 出版商
  47. Udagawa T, Farny N, Jakovcevski M, Kaphzan H, Alarcon J, Anilkumar S, et al. Genetic and acute CPEB1 depletion ameliorate fragile X pathophysiology. Nat Med. 2013;19:1473-7 pubmed 出版商
  48. Savignac H, Corona G, Mills H, Chen L, Spencer J, Tzortzis G, et al. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-D-aspartate receptor subunits and D-serine. Neurochem Int. 2013;63:756-64 pubmed 出版商
  49. Leaderbrand K, Corcoran K, Radulovic J. Co-activation of NR2A and NR2B subunits induces resistance to fear extinction. Neurobiol Learn Mem. 2014;113:35-40 pubmed 出版商
  50. Prox J, Bernreuther C, Altmeppen H, Grendel J, Glatzel M, D Hooge R, et al. Postnatal disruption of the disintegrin/metalloproteinase ADAM10 in brain causes epileptic seizures, learning deficits, altered spine morphology, and defective synaptic functions. J Neurosci. 2013;33:12915-28, 12928a pubmed 出版商
  51. Kazi R, Gan Q, Talukder I, Markowitz M, Salussolia C, Wollmuth L. Asynchronous movements prior to pore opening in NMDA receptors. J Neurosci. 2013;33:12052-66 pubmed 出版商
  52. Busse B, Smith S. Automated analysis of a diverse synapse population. PLoS Comput Biol. 2013;9:e1002976 pubmed 出版商
  53. Gupta S, Hillman B, Prakash A, Ugale R, Stairs D, Dravid S. Effect of D-cycloserine in conjunction with fear extinction training on extracellular signal-regulated kinase activation in the medial prefrontal cortex and amygdala in rat. Eur J Neurosci. 2013;37:1811-22 pubmed 出版商
  54. Murata Y, Constantine Paton M. Postsynaptic density scaffold SAP102 regulates cortical synapse development through EphB and PAK signaling pathway. J Neurosci. 2013;33:5040-52 pubmed 出版商
  55. Abrahao K, Ariwodola O, Butler T, Rau A, Skelly M, Carter E, et al. Locomotor sensitization to ethanol impairs NMDA receptor-dependent synaptic plasticity in the nucleus accumbens and increases ethanol self-administration. J Neurosci. 2013;33:4834-42 pubmed 出版商
  56. Semerdjieva S, Abdul Razak H, Salim S, Yáñez Muñoz R, Chen P, Tarabykin V, et al. Activation of EphA receptors mediates the recruitment of the adaptor protein Slap, contributing to the downregulation of N-methyl-D-aspartate receptors. Mol Cell Biol. 2013;33:1442-55 pubmed 出版商
  57. Nagakura A, Shitaka Y, Yarimizu J, Matsuoka N. Characterization of cognitive deficits in a transgenic mouse model of Alzheimer's disease and effects of donepezil and memantine. Eur J Pharmacol. 2013;703:53-61 pubmed 出版商
  58. Xu Z, Yang Q, Ma L, Liu S, Chen G, Wu Y, et al. Deficits in LTP induction by 5-HT2A receptor antagonist in a mouse model for fragile X syndrome. PLoS ONE. 2012;7:e48741 pubmed 出版商
  59. Almonte A, Qadri L, Sultan F, Watson J, Mount D, Rumbaugh G, et al. Protease-activated receptor-1 modulates hippocampal memory formation and synaptic plasticity. J Neurochem. 2013;124:109-22 pubmed 出版商
  60. Cao H, Zhang G, Geller A. Antibody-mediated targeted gene transfer of helper virus-free HSV-1 vectors to rat neocortical neurons that contain either NMDA receptor 2B or 2A subunits. Brain Res. 2011;1415:127-35 pubmed 出版商
  61. Hughes E, Peng X, Gleichman A, Lai M, Zhou L, Tsou R, et al. Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J Neurosci. 2010;30:5866-75 pubmed 出版商
  62. Snyder M, Cooke B, Woolley C. Estradiol potentiation of NR2B-dependent EPSCs is not due to changes in NR2B protein expression or phosphorylation. Hippocampus. 2011;21:398-408 pubmed 出版商
  63. Kurschner C, Yuzaki M. Neuronal interleukin-16 (NIL-16): a dual function PDZ domain protein. J Neurosci. 1999;19:7770-80 pubmed