这是一篇来自已证抗体库的有关人类 GSK3的综述,是根据212篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合GSK3 抗体。
赛默飞世尔
domestic rabbit 重组(19H1L12)
  • 免疫组化-石蜡切片; 人类; 图 7b
赛默飞世尔 GSK3抗体(Thermo Fisher, 702230)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7b). Oncotarget (2018) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠; 图 7a
赛默飞世尔 GSK3抗体(Invitrogen, 44-610)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Biol Chem (2016) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠; 图 1d
赛默飞世尔 GSK3抗体(Invitrogen, 44-610)被用于被用于免疫印迹在小鼠样本上 (图 1d). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛默飞世尔 GSK3抗体(Invitrogen, 44610)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Aging Cell (2016) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛默飞世尔 GSK3抗体(Bioresource, 44-610)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Brain Behav (2015) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠; 1:3000; 图 2
赛默飞世尔 GSK3抗体(生活技术, 44610)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 GSK3抗体(Invitrogen, 44-610)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Biol Reprod (2015) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠; 1:5000; 图 1
赛默飞世尔 GSK3抗体(Invitrogen, 44-610)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 人类; 图 4a
  • 免疫印迹; 大鼠; 图 4d
赛默飞世尔 GSK3抗体(Invitrogen, 44-610)被用于被用于免疫印迹在人类样本上 (图 4a) 和 被用于免疫印迹在大鼠样本上 (图 4d). PLoS ONE (2015) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 人类; 图 s1
赛默飞世尔 GSK3抗体(Invitrogen, 44-610)被用于被用于免疫印迹在人类样本上 (图 s1). FEBS Lett (2015) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 GSK3抗体(Biosource, 44-610)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Mol Neurobiol (2015) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠
赛默飞世尔 GSK3抗体(Biosource, 44-610)被用于被用于免疫印迹在小鼠样本上. Eur J Neurosci (2014) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠; 1:4000; 图 3, 5
赛默飞世尔 GSK3抗体(Invitrogen, 44-610)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 3, 5). Am J Physiol Endocrinol Metab (2014) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 GSK3抗体(Biosource, 44-610)被用于被用于免疫印迹在小鼠样本上 (图 2). Mol Brain (2013) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔 GSK3抗体(Invitrogen, 44-610)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Cell Biochem Funct (2013) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 GSK3抗体(Invitrogen, 44-610)被用于被用于免疫印迹在人类样本上 (图 5). Am J Physiol Renal Physiol (2013) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠
赛默飞世尔 GSK3抗体(Invitrogen, 44-610)被用于被用于免疫印迹在小鼠样本上. Biochem J (2013) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛默飞世尔 GSK3抗体(Biosource, 44-610)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). J Neuroinflammation (2012) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛默飞世尔 GSK3抗体(Biosource, 44-610)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Nat Cell Biol (2011) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔 GSK3抗体(Invitrogen, 44-610)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Neurochem Int (2011) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 GSK3抗体(Biosource, 44-610)被用于被用于免疫印迹在小鼠样本上 (图 1). Br J Cancer (2011) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 GSK3抗体(Biosource, 44-610)被用于被用于免疫印迹在人类样本上 (图 3). Biochem J (2009) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 人类
赛默飞世尔 GSK3抗体(Biosource, Invitrogen, 44610)被用于被用于免疫印迹在人类样本上. Methods Mol Biol (2008) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 大鼠; 1:6000; 图 6
赛默飞世尔 GSK3抗体(Invitrogen, 44-610)被用于被用于免疫印迹在大鼠样本上浓度为1:6000 (图 6). Toxicol Appl Pharmacol (2008) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 GSK3抗体(Biosource, 44-610)被用于被用于免疫印迹在小鼠样本上 (图 1). Am J Physiol Endocrinol Metab (2008) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 GSK3抗体(Biosource, 44-610)被用于被用于免疫印迹在小鼠样本上 (图 3). FEBS Lett (2005) ncbi
圣克鲁斯生物技术
小鼠 单克隆(0011-A)
  • 免疫印迹; 小鼠; 图 7e
圣克鲁斯生物技术 GSK3抗体(Santacruz, 7291)被用于被用于免疫印迹在小鼠样本上 (图 7e). Sci Rep (2021) ncbi
小鼠 单克隆(0011-A)
  • 免疫印迹; 牛; 1:2000; 图 3a
圣克鲁斯生物技术 GSK3抗体(Santa Cruz, sc-7291)被用于被用于免疫印迹在牛样本上浓度为1:2000 (图 3a). BMC Vet Res (2020) ncbi
小鼠 单克隆(1H8)
  • 免疫印迹; 小鼠; 图 4e
圣克鲁斯生物技术 GSK3抗体(Santa, sc-56,913)被用于被用于免疫印迹在小鼠样本上 (图 4e). Mol Neurodegener (2020) ncbi
小鼠 单克隆(0011-A)
  • 免疫印迹; 小鼠; 1:1000; 图 7c
圣克鲁斯生物技术 GSK3抗体(Santa Cruz Biotechnology, Sc-7291)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7c). Cell Mol Gastroenterol Hepatol (2019) ncbi
小鼠 单克隆(0011-A)
  • 其他; 人类; 图 4c
圣克鲁斯生物技术 GSK3抗体(SantaCruz, sc-7291)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
小鼠 单克隆(0011-A)
  • reverse phase protein lysate microarray; 人类; 图 st6
圣克鲁斯生物技术 GSK3抗体(Santa Cruz, SC-7291)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
小鼠 单克隆(0011-A)
  • reverse phase protein lysate microarray; 人类; 图 3a
圣克鲁斯生物技术 GSK3抗体(SantaCruz, SC-7291)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 3a). Nature (2017) ncbi
小鼠 单克隆(0011-A)
  • 免疫印迹; 人类; 1:500; 图 3b
圣克鲁斯生物技术 GSK3抗体(Santa Cruz, sc-7291)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3b). J Nutr Biochem (2017) ncbi
小鼠 单克隆(0011-A)
  • 免疫印迹; 人类
圣克鲁斯生物技术 GSK3抗体(Santa Cruz, sc-7291)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
小鼠 单克隆(6D3)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术 GSK3抗体(Santa Cruz, sc-81496)被用于被用于免疫印迹在人类样本上 (图 1c). Exp Mol Med (2016) ncbi
小鼠 单克隆(0011-A)
  • 免疫印迹; 人类; 1:200; 图 8e
圣克鲁斯生物技术 GSK3抗体(santa cruz, sc-7291)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 8e). J Biol Chem (2015) ncbi
小鼠 单克隆(0011-A)
  • 免疫细胞化学; 衣藻; 1:100; 图 5
  • 酶联免疫吸附测定; 衣藻; 1:500; 图 5
  • 免疫印迹; 衣藻; 1:500; 图 5
圣克鲁斯生物技术 GSK3抗体(Santa Cruz, sc-7291)被用于被用于免疫细胞化学在衣藻样本上浓度为1:100 (图 5), 被用于酶联免疫吸附测定在衣藻样本上浓度为1:500 (图 5) 和 被用于免疫印迹在衣藻样本上浓度为1:500 (图 5). Mol Biol Cell (2015) ncbi
小鼠 单克隆(1H8)
  • 免疫印迹; 小鼠; 图 3b
圣克鲁斯生物技术 GSK3抗体(Santa Cruz, sc-56913)被用于被用于免疫印迹在小鼠样本上 (图 3b). Front Microbiol (2015) ncbi
小鼠 单克隆(0011-A)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 GSK3抗体(Santa Cruz Biotechnology, sc-7291)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Psychiatry Res (2015) ncbi
小鼠 单克隆(0011-A)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 GSK3抗体(Santa Cruz Biotechnology, sc7291)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(0011-A)
  • 免疫印迹; 人类
圣克鲁斯生物技术 GSK3抗体(Santa Cruz Biotechnology, sc-7291)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(0011-A)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 GSK3抗体(Santa Cruz, sc-7291)被用于被用于免疫印迹在小鼠样本上. J Biol Rhythms (2014) ncbi
小鼠 单克隆(0011-A)
  • 免疫印迹; 小鼠; 图 2a
圣克鲁斯生物技术 GSK3抗体(Santa, sc-7291)被用于被用于免疫印迹在小鼠样本上 (图 2a). Cell Res (2014) ncbi
小鼠 单克隆(0011-A)
  • 免疫印迹; 人类
圣克鲁斯生物技术 GSK3抗体(Santa Cruz, sc-7291)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(0011-A)
  • 免疫印迹; 人类
圣克鲁斯生物技术 GSK3抗体(Santa Cruz Biotechnology, sc-7291)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(0011-A)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 GSK3抗体(Santa Cruz, sc-7291)被用于被用于免疫印迹在人类样本上 (图 5). Cell (2014) ncbi
小鼠 单克隆(B-8)
  • 免疫印迹; 人类; 1:100
圣克鲁斯生物技术 GSK3抗体(Santa Cruz, sc166116)被用于被用于免疫印迹在人类样本上浓度为1:100. Stem Cells Dev (2014) ncbi
艾博抗(上海)贸易有限公司
单克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7h
  • 免疫印迹; 小鼠; 1:1000; 图 7a
艾博抗(上海)贸易有限公司 GSK3抗体(Abcam, ab93926)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 7h) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). J Cell Mol Med (2022) ncbi
单克隆
  • 免疫印迹; 人类; 图 5e
艾博抗(上海)贸易有限公司 GSK3抗体(Abcam, ab93926)被用于被用于免疫印迹在人类样本上 (图 5e). Cell Death Dis (2021) ncbi
单克隆
  • 免疫印迹; 大鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司 GSK3抗体(abcam, ab93926)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 5a). Aging (Albany NY) (2021) ncbi
单克隆
  • 免疫印迹; 人类; 图 6b, 6d
艾博抗(上海)贸易有限公司 GSK3抗体(Abcam, ab93926)被用于被用于免疫印迹在人类样本上 (图 6b, 6d). Front Genet (2020) ncbi
单克隆
  • 免疫细胞化学; 人类; 图 4a
  • 免疫印迹; 人类; 图 1e
艾博抗(上海)贸易有限公司 GSK3抗体(Abcam, ab93926)被用于被用于免疫细胞化学在人类样本上 (图 4a) 和 被用于免疫印迹在人类样本上 (图 1e). Nucleic Acids Res (2016) ncbi
domestic rabbit 单克隆(EP793Y)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 GSK3抗体(Abcam, ab40870)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
单克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 GSK3抗体(Abcam, ab93926)被用于被用于免疫印迹在人类样本上. Cell Mol Life Sci (2015) ncbi
单克隆
  • 免疫细胞化学; 小鼠; 1:300
  • 免疫组化; 小鼠; 1:300
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 GSK3抗体(Abcam, ab93926)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300, 被用于免疫组化在小鼠样本上浓度为1:300 和 被用于免疫印迹在人类样本上浓度为1:1000. Stem Cells Dev (2014) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s2
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9331)被用于被用于免疫印迹在小鼠样本上 (图 s2). Cancers (Basel) (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s2
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9338)被用于被用于免疫印迹在小鼠样本上 (图 s2). Cancers (Basel) (2022) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 GSK3抗体(CST, 12456)被用于被用于免疫印迹在人类样本上 (图 5a). Cell Death Dis (2022) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 大鼠; 图 1e
  • 免疫印迹基因敲除验证; 人类; 图 3e
  • 免疫组化-冰冻切片; 小鼠; 图 1a
  • 免疫细胞化学; 小鼠; 图 1k
  • 免疫印迹; 小鼠; 图 1c, 1i
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 12456)被用于被用于免疫印迹在大鼠样本上 (图 1e), 被用于免疫印迹基因敲除验证在人类样本上 (图 3e), 被用于免疫组化-冰冻切片在小鼠样本上 (图 1a), 被用于免疫细胞化学在小鼠样本上 (图 1k) 和 被用于免疫印迹在小鼠样本上 (图 1c, 1i). EBioMedicine (2022) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 人类; 1:1000; 图 1b, 2b, 2i
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 12456)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b, 2b, 2i). Nat Commun (2022) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Technology, 12456S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Front Immunol (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3d
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9331)被用于被用于免疫印迹在小鼠样本上 (图 s3d). Mol Oncol (2022) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫细胞化学; 人类; 1:200; 图 s1
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 12456)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s1). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 小鼠; 图 4e
赛信通(上海)生物试剂有限公司 GSK3抗体(CST, 12456)被用于被用于免疫印迹在小鼠样本上 (图 4e). Cell Mol Gastroenterol Hepatol (2022) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 GSK3抗体(CST, 12456)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500-1:2000; 图 3c
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9332)被用于被用于免疫印迹在小鼠样本上浓度为1:500-1:2000 (图 3c). Redox Biol (2021) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Technology, 12456T)被用于被用于免疫印迹在小鼠样本上 (图 5c). Mol Cells (2021) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 小鼠; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 GSK3抗体(CST, 12,456)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6d). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 人类; 图 s4a
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 12456)被用于被用于免疫印迹在人类样本上 (图 s4a). iScience (2021) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 12456)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(37F11)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signalling Technology, 9327)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. elife (2021) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 人类; 1:5000; 图 1a
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Technology, 12456)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 小鼠; 1:1000; 图 s4c
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 12456S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4c). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫组化; 小鼠; 1:100; 图 1
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 12456)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫组化; 人类; 图 1b
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Technology, 12456)被用于被用于免疫组化在人类样本上 (图 1b). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 GSK3抗体(CST, 12456)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 人类; 1:2000; 图 5a
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell signaling, 12456)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). Antioxidants (Basel) (2021) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 人类; 1:1000; 图 6a, 6c
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 12456)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a, 6c). Neoplasma (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:250; 图 3a
赛信通(上海)生物试剂有限公司 GSK3抗体(CST, 9331)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 3a). Mol Brain (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7e
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9331)被用于被用于免疫印迹在小鼠样本上 (图 7e). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 8c
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signalling, 9331)被用于被用于免疫组化在人类样本上 (图 8c). PLoS Genet (2021) ncbi
domestic rabbit 单克隆(D17D2)
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 8566)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Aging Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 6a
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9331)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6a). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 1c
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9338)被用于被用于免疫细胞化学在小鼠样本上 (图 1c) 和 被用于免疫印迹在小鼠样本上 (图 2a). iScience (2021) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 GSK3抗体(CST, D5C5Z)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Front Aging Neurosci (2020) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 12456)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D17D2)
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Technology, 8566)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Science (2020) ncbi
domestic rabbit 单克隆(D80E6)
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Technology, 4337)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Science (2020) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 小鼠; 1:500; 图 s2b
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Technology, 12456)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s2b). Commun Biol (2020) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 GSK3抗体(CST, 5676)被用于被用于免疫印迹在人类样本上 (图 3b). Cell (2020) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司 GSK3抗体(CST, 12456S)被用于被用于免疫印迹在小鼠样本上 (图 s4a). Theranostics (2020) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 小鼠; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 12456)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). Mol Metab (2020) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 GSK3抗体(CST, 12456T)被用于被用于免疫印迹在小鼠样本上 (图 5d). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 人类; 图 8b
赛信通(上海)生物试剂有限公司 GSK3抗体(CST, 12456)被用于被用于免疫印迹在人类样本上 (图 8b). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 GSK3抗体(CST, 12456)被用于被用于免疫印迹在人类样本上 (图 5e). Sci Adv (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4e
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9331)被用于被用于免疫印迹在小鼠样本上 (图 4e). Mol Neurodegener (2020) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 人类; 图 s3
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Technology, 5676)被用于被用于免疫印迹在人类样本上 (图 s3). Cancers (Basel) (2020) ncbi
domestic rabbit 单克隆(36E9)
  • 免疫沉淀; 人类; 1:5000; 图 2b, 3b, 4b, 5b, 6b, 7b
赛信通(上海)生物试剂有限公司 GSK3抗体(CST, #9316)被用于被用于免疫沉淀在人类样本上浓度为1:5000 (图 2b, 3b, 4b, 5b, 6b, 7b). Sci Rep (2019) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 小鼠; 1:1000; 图 s7d
赛信通(上海)生物试剂有限公司 GSK3抗体(CST, 12456T)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7d). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 大鼠; 图 5f
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 12456S)被用于被用于免疫印迹在大鼠样本上 (图 5f) 和 被用于免疫印迹在人类样本上 (图 5a). J Biol Chem (2019) ncbi
domestic rabbit 单克隆(D17D2)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell signaling, 8566)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nature (2019) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 12456)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). J Exp Med (2020) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 大鼠; 1:50; 图 4g
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 12456)被用于被用于免疫印迹在大鼠样本上浓度为1:50 (图 4g). Am J Physiol Regul Integr Comp Physiol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell signaling, 9331s)被用于被用于免疫印迹在小鼠样本上 (图 3b). Cardiovasc Diabetol (2019) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 5676S)被用于被用于免疫印迹在人类样本上 (图 8a). J Immunol (2019) ncbi
domestic rabbit 单克隆(D17D2)
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 8566S)被用于被用于免疫印迹在人类样本上 (图 8a). J Immunol (2019) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, D75D3)被用于被用于免疫印迹在小鼠样本上 (图 4c). Science (2019) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 GSK3抗体(CST, 12456)被用于被用于免疫印迹在人类样本上 (图 4a). Oxid Med Cell Longev (2019) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 小鼠; 1:1000; 图 3i
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 5676)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3i). Am J Physiol Endocrinol Metab (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3i
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9331)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3i). Am J Physiol Endocrinol Metab (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2d
  • 免疫印迹; 小鼠; 1:1000; 图 2d, 4g
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9331S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d, 4g). elife (2019) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, D75D3)被用于被用于免疫印迹在人类样本上 (图 3a). Mol Oncol (2019) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 12456)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Oncol Rep (2019) ncbi
domestic rabbit 单克隆(D17D2)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 GSK3抗体(CST, 8566)被用于被用于免疫印迹在小鼠样本上 (图 4b). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 GSK3抗体(CST, 12456)被用于被用于免疫印迹在小鼠样本上 (图 4b). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9331)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3b). Br J Pharmacol (2019) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 大鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 5676)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3b). Br J Pharmacol (2019) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signalling Technology, 5676)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Redox Biol (2019) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 人类; 图 7e
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, D5C5Z)被用于被用于免疫印迹在人类样本上 (图 7e). Cell Death Differ (2019) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫组化-石蜡切片; 人类; 图 4d
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 12456)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4d) 和 被用于免疫印迹在人类样本上 (图 1d). J Exp Clin Cancer Res (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9331)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 小鼠; 图 s3f
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Technology, 12456)被用于被用于免疫印迹在小鼠样本上 (图 s3f). Neuron (2018) ncbi
domestic rabbit 单克隆(D80E6)
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 4337)被用于被用于免疫印迹在小鼠样本上 (图 3d). Sci Rep (2018) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 12456)被用于被用于免疫印迹在小鼠样本上 (图 3d). Sci Rep (2018) ncbi
domestic rabbit 单克隆(36E9)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9316)被用于被用于免疫印迹在小鼠样本上 (图 4b). Sci Rep (2018) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 12456)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Biosci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2a
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9331)被用于被用于免疫印迹在人类样本上 (图 s2a). J Biol Chem (2018) ncbi
domestic rabbit 单克隆(D80E6)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 4337)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 1a). Dev Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9338)被用于被用于免疫印迹在人类样本上 (图 s2). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 12456)被用于被用于免疫印迹在人类样本上 (图 s2). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 小鼠; 图 2h
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 12456)被用于被用于免疫印迹在小鼠样本上 (图 2h). Cancer Res (2017) ncbi
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9369)被用于被用于免疫印迹在人类样本上 (图 4b). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9331)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). J Clin Endocrinol Metab (2017) ncbi
domestic rabbit 单克隆(37F11)
  • 免疫印迹; 人类; 图 5h
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9327)被用于被用于免疫印迹在人类样本上 (图 5h). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 人类; 图 5h
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 5676)被用于被用于免疫印迹在人类样本上 (图 5h). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D17D2)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 8566)被用于被用于免疫印迹在人类样本上 (图 2a). Mol Cell (2017) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 5676)被用于被用于免疫印迹在人类样本上 (图 2a). Mol Cell (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 GSK3抗体(CST, 9331)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 GSK3抗体(cell signalling, 9331)被用于被用于免疫印迹在小鼠样本上 (图 7a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 GSK3抗体(cell signalling, 12456)被用于被用于免疫印迹在小鼠样本上 (图 7a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 人类; 图 s4j
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 12456P)被用于被用于免疫印迹在人类样本上 (图 s4j). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4o
赛信通(上海)生物试剂有限公司 GSK3抗体(cell signalling, 9331)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4o). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:100; 图 3b
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9331)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 3b). J Nutr Biochem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9331)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Neuroinflammation (2017) ncbi
  • 免疫印迹; 人类; 1:1000; 表 3
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9369)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 3). Mol Cell Biochem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Technology, 9331)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 GSK3抗体(cell signalling, 9331)被用于被用于免疫印迹在人类样本上 (图 5a). PLoS Med (2016) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 GSK3抗体(cell signalling, 5676)被用于被用于免疫印迹在人类样本上 (图 5a). PLoS Med (2016) ncbi
domestic rabbit 单克隆(36E9)
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signalling, 9316)被用于被用于免疫印迹在小鼠样本上 (图 2c). Nutr Diabetes (2016) ncbi
domestic rabbit 单克隆(D80E6)
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signalling, 4337)被用于被用于免疫印迹在小鼠样本上 (图 2c). Nutr Diabetes (2016) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 12456)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D17D2)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 8566)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(36E9)
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司 GSK3抗体(cell signalling, 9316)被用于被用于免疫印迹在人类样本上 (图 4e). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 5676)被用于被用于免疫印迹在人类样本上 (图 3d). Front Mol Neurosci (2016) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 12456)被用于被用于免疫印迹在人类样本上 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, D5C5Z)被用于被用于免疫印迹在人类样本上 (图 5a). Cancer Sci (2016) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 12456)被用于被用于免疫印迹在人类样本上 (图 5a). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9331)被用于被用于免疫印迹在人类样本上 (图 s1). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D80E6)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, D80E6)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Immunol (2016) ncbi
domestic rabbit 单克隆(D1G2)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, D1G2)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Immunol (2016) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 12456)被用于被用于免疫印迹在人类样本上 (图 5). Biosci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 s1c
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9338)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s1c). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 大鼠; 1:2000; 图 2
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell signaling, 5676)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司 GSK3抗体(Millipore, 9331)被用于被用于免疫印迹在小鼠样本上 (图 1d). Biochim Biophys Acta (2016) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 12456)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 小鼠; 1:2000; 图 2
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 5676)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D17D2)
  • 免疫印迹; 小鼠; 1:2000; 图 S11
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 8566)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 S11). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 人类; 图 7b
  • 免疫印迹; 小鼠; 图 8c
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 5676)被用于被用于免疫印迹在人类样本上 (图 7b) 和 被用于免疫印迹在小鼠样本上 (图 8c). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 5676)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9331)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9331)被用于被用于免疫印迹在小鼠样本上 (图 1a). Am J Physiol Regul Integr Comp Physiol (2016) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 小鼠; 图 5h
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 5676)被用于被用于免疫印迹在小鼠样本上 (图 5h). Diabetes (2016) ncbi
domestic rabbit 单克隆(D80E6)
  • 免疫印迹; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 4337)被用于被用于免疫印迹在小鼠样本上 (图 6b). JCI Insight (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 5d
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9331)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5d). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell signaling, 9331)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Diabetologia (2016) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 12456)被用于被用于免疫印迹在人类样本上 (图 1c). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 大鼠; 1:2000; 图 3
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signalling, 5676)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 3). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell signaling, 9331)被用于被用于免疫印迹在人类样本上 (图 4). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 大鼠; 图 1a
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 12456)被用于被用于免疫印迹在大鼠样本上 (图 1a). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 5676)被用于被用于免疫印迹在小鼠样本上 (图 2). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(D17D2)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 8566)被用于被用于免疫印迹在小鼠样本上 (图 2). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9331)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D17D2)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 8566)被用于被用于免疫印迹在小鼠样本上 (图 5). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 表 s2
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9331)被用于被用于免疫印迹在人类样本上浓度为1:3000 (表 s2). Exp Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9331)被用于被用于免疫印迹在小鼠样本上 (图 3). Hepatology (2016) ncbi
小鼠 单克隆(46H12)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Technology, 9337)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9331)被用于被用于免疫印迹在小鼠样本上 (图 5). J Exp Med (2016) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Technologies, 12456)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7e
赛信通(上海)生物试剂有限公司 GSK3抗体(CST, 9331)被用于被用于免疫印迹在小鼠样本上 (图 7e). Diabetes (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Technology, 9331)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Technology, 9338)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D17D2)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Technology, 8566)被用于被用于免疫印迹在人类样本上 (图 5d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Technology, 5676)被用于被用于免疫印迹在人类样本上 (图 5d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 56765)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Tech, cst-9331)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9331)被用于被用于免疫印迹在小鼠样本上 (图 1). J Neurochem (2016) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, D75D3)被用于被用于免疫印迹在小鼠样本上 (图 5). Cell Death Differ (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9331)被用于被用于免疫印迹在小鼠样本上 (图 5). Cell Death Differ (2016) ncbi
domestic rabbit 单克隆(D80E6)
  • 免疫印迹; 小鼠; 图 3f
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Technology, 4337)被用于被用于免疫印迹在小鼠样本上 (图 3f). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 小鼠; 图 3f
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Technology, 12456)被用于被用于免疫印迹在小鼠样本上 (图 3f). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D17D2)
  • 免疫印迹; 小鼠; 图 3f
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Technology, 8566)被用于被用于免疫印迹在小鼠样本上 (图 3f). J Biol Chem (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9331)被用于被用于免疫印迹在人类样本上 (图 4b). Neuroendocrinology (2016) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 5676)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Int J Mol Med (2015) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 5676)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D17D2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 8566)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(46H12)
  • 其他; 小鼠; 1:2000; 图 s1
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9337)被用于被用于其他在小鼠样本上浓度为1:2000 (图 s1). Front Microbiol (2015) ncbi
domestic rabbit 单克隆(D1G2)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Technology, 8452)被用于被用于免疫印迹在小鼠样本上 (图 1c). J Clin Invest (2015) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Technology, 12456)被用于被用于免疫印迹在小鼠样本上 (图 1c). J Clin Invest (2015) ncbi
domestic rabbit 单克隆(D80D1)
  • 免疫细胞化学; 小鼠; 1:200; 图 3
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell signaling, 4818)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 小鼠; 1:1000; 图 s9
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell signaling, 12456)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s9). Nat Commun (2015) ncbi
domestic rabbit 单克隆(37F11)
  • 免疫印迹; 小鼠; 1:1000; 图 s9
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell signaling, 9327)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s9). Nat Commun (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signalling Technology, 9331)被用于被用于免疫印迹在人类样本上 (图 4). Gut (2016) ncbi
domestic rabbit 单克隆(D17D2)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Technology, 8566)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Carcinogenesis (2015) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Technology, 5676)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Carcinogenesis (2015) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 大鼠; 图 1
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 12456)被用于被用于免疫印迹在大鼠样本上 (图 1). J Transl Med (2015) ncbi
domestic rabbit 单克隆(37F11)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling TECHNOLOGY, 9327)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Sci Signal (2015) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling TECHNOLOGY, 5676)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Sci Signal (2015) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 5676)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). BMC Genomics (2015) ncbi
domestic rabbit 单克隆(D5C5Z)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 12456)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2015) ncbi
domestic rabbit 单克隆(36E9)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell signaling, 9316)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. J Exerc Nutrition Biochem (2014) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Technology, 5676)被用于被用于免疫印迹在人类样本上. Int J Mol Sci (2014) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 GSK3抗体(细胞, 5676S)被用于被用于免疫印迹在小鼠样本上. Redox Biol (2014) ncbi
domestic rabbit 单克隆(D17D2)
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 8566)被用于被用于免疫印迹在小鼠样本上 (图 2a). Cell Res (2014) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 5676s)被用于被用于免疫印迹在人类样本上. Neurobiol Aging (2015) ncbi
domestic rabbit 单克隆(37F11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9327s)被用于被用于免疫印迹在人类样本上. Neurobiol Aging (2015) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Tech, 5676)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2015) ncbi
domestic rabbit 单克隆(36E9)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Tech, 9316)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2015) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Technology, 5676)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Cell Biol (2014) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Technology, 5676)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
domestic rabbit 单克隆(37F11)
  • 免疫印迹; 小鼠; 图 9b
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell signaling, 9327)被用于被用于免疫印迹在小鼠样本上 (图 9b). Mol Cell Biol (2014) ncbi
domestic rabbit 单克隆(D75D3)
  • 免疫印迹; 小鼠; 图 9b
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell signaling, 5676)被用于被用于免疫印迹在小鼠样本上 (图 9b). Mol Cell Biol (2014) ncbi
domestic rabbit 单克隆(D80E6)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 4337)被用于被用于免疫印迹在人类样本上. Pigment Cell Melanoma Res (2014) ncbi
domestic rabbit 单克隆(36E9)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Technology, 9316)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Med (2013) ncbi
domestic rabbit 单克隆(D80E6)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Technology, 4337)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Med (2013) ncbi
domestic rabbit 单克隆(D80E6)
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling Technology, 4337)被用于被用于免疫印迹在人类样本上浓度为1:2000. J Neurochem (2013) ncbi
domestic rabbit 单克隆(36E9)
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司 GSK3抗体(Cell Signaling, 9316)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Cell Biochem Funct (2013) ncbi
碧迪BD
小鼠 单克隆(13A)
  • 免疫印迹; 小鼠; 1:1000; 图 s3a
碧迪BD GSK3抗体(BD Bioscience, 612312)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3a). Nat Commun (2021) ncbi
小鼠 单克隆(7/GSK-3b)
  • 免疫组化; 小鼠; 图 e1k
碧迪BD GSK3抗体(BD Bioscience, 610201)被用于被用于免疫组化在小鼠样本上 (图 e1k). EMBO J (2021) ncbi
小鼠 单克隆(7/GSK-3b)
  • 免疫印迹; 大鼠; 1:1000; 图 7b
  • 免疫印迹; 小鼠; 1:1000; 图 7a, 7d
碧迪BD GSK3抗体(BD Biosciences, 610201)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a, 7d). elife (2020) ncbi
小鼠 单克隆(13A)
  • 免疫印迹; 小鼠; 1:5000; 图 7c
  • 免疫印迹; 大鼠; 1:5000; 图 8a
碧迪BD GSK3抗体(BD Biosciences, 612312)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 7c) 和 被用于免疫印迹在大鼠样本上浓度为1:5000 (图 8a). elife (2020) ncbi
小鼠 单克隆(7/GSK-3b)
  • 免疫印迹; 小鼠; 1:1000; 图 9b
碧迪BD GSK3抗体(BD Transduction Labs, 610202)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9b). Cell Mol Gastroenterol Hepatol (2020) ncbi
小鼠 单克隆(13A)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
碧迪BD GSK3抗体(BD, 612313)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Nature (2019) ncbi
小鼠 单克隆(13A)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
碧迪BD GSK3抗体(BD, 612313)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Neurobiol Dis (2019) ncbi
小鼠 单克隆(7/GSK-3b)
  • 免疫印迹; 人类; 1:1000; 图 6a
碧迪BD GSK3抗体(BD Biosciences, 610201)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Cell Rep (2019) ncbi
小鼠 单克隆(7/GSK-3b)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 1a
碧迪BD GSK3抗体(BD, 610201)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 1a). Dev Cell (2017) ncbi
小鼠 单克隆(7/GSK-3b)
  • 免疫印迹; 大鼠; 图 7b
  • 免疫印迹; 人类; 图 7b
  • 免疫印迹; 小鼠; 图 8c
碧迪BD GSK3抗体(BD Biosciences, 7)被用于被用于免疫印迹在大鼠样本上 (图 7b), 被用于免疫印迹在人类样本上 (图 7b) 和 被用于免疫印迹在小鼠样本上 (图 8c). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
小鼠 单克隆(7/GSK-3b)
  • 免疫组化; 小鼠; 1:500; 图 5d
碧迪BD GSK3抗体(BD Biosciences, 610201)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5d). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(7/GSK-3b)
  • 免疫印迹; 小鼠; 图 s6
碧迪BD GSK3抗体(BD Biosciences, 610202)被用于被用于免疫印迹在小鼠样本上 (图 s6). Hepatology (2016) ncbi
小鼠 单克隆(7/GSK-3b)
  • 免疫印迹; 大鼠; 1:2500; 图 4b
碧迪BD GSK3抗体(BD, 610201)被用于被用于免疫印迹在大鼠样本上浓度为1:2500 (图 4b). Neural Plast (2016) ncbi
小鼠 单克隆(7/GSK-3b)
  • 其他; 人类; 图 st1
碧迪BD GSK3抗体(BD, 7)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(13A)
  • 其他; 人类; 图 st1
碧迪BD GSK3抗体(BD, 13a)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(7/GSK-3b)
  • 免疫印迹; 人类; 图 4a
碧迪BD GSK3抗体(BD, 610202)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2015) ncbi
小鼠 单克隆(7/GSK-3b)
  • 免疫印迹; 人类; 1:250; 图 6
碧迪BD GSK3抗体(BD Transduction Laboratories, 610201)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 6). Exp Cell Res (2015) ncbi
小鼠 单克隆(7/GSK-3b)
  • 免疫细胞化学; 小鼠; 1:200; 图 3
碧迪BD GSK3抗体(BD, 610201)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(7/GSK-3b)
  • 免疫印迹; 人类; 图 3
碧迪BD GSK3抗体(BD Transduction, 610201)被用于被用于免疫印迹在人类样本上 (图 3). EMBO J (2015) ncbi
小鼠 单克隆(7/GSK-3b)
  • 免疫印迹; 小鼠; 1:1000; 图 6
碧迪BD GSK3抗体(BD科学, 610201)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Commun (2015) ncbi
小鼠 单克隆(7/GSK-3b)
  • 免疫印迹; 小鼠
碧迪BD GSK3抗体(BD Bioscience, 610202)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(7/GSK-3b)
  • 免疫印迹; 小鼠
碧迪BD GSK3抗体(BD科学, 610201)被用于被用于免疫印迹在小鼠样本上. Mol Neurodegener (2014) ncbi
小鼠 单克隆(7/GSK-3b)
  • 免疫印迹; 小鼠; 图 8
碧迪BD GSK3抗体(BD Bioscience, 610201)被用于被用于免疫印迹在小鼠样本上 (图 8). Mol Metab (2014) ncbi
小鼠 单克隆(7/GSK-3b)
  • 免疫印迹; 小鼠
碧迪BD GSK3抗体(BD Transduction, 610202)被用于被用于免疫印迹在小鼠样本上. Mol Psychiatry (2015) ncbi
小鼠 单克隆(13A)
  • 免疫印迹; 人类; 1:1000
碧迪BD GSK3抗体(BD Bioscience, 612313)被用于被用于免疫印迹在人类样本上浓度为1:1000. Stem Cells Dev (2014) ncbi
小鼠 单克隆(7/GSK-3b)
  • 免疫印迹; 人类
碧迪BD GSK3抗体(BD Bioscience, 610202)被用于被用于免疫印迹在人类样本上. Mitochondrion (2014) ncbi
小鼠 单克隆(13A)
  • 免疫印迹; 小鼠
碧迪BD GSK3抗体(BD Biosciences, 612312)被用于被用于免疫印迹在小鼠样本上. Cell Death Dis (2013) ncbi
小鼠 单克隆(7/GSK-3b)
  • 免疫印迹; 小鼠; 1:1000
碧迪BD GSK3抗体(BD Transduction Laboratories, 610 201)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nucleic Acids Res (2012) ncbi
小鼠 单克隆(7/GSK-3b)
  • 免疫印迹; 人类
碧迪BD GSK3抗体(BD Transduction Laboratories, 610201)被用于被用于免疫印迹在人类样本上. J Neurochem (2008) ncbi
文章列表
  1. Malanga D, Laudanna C, Mirante T, Colelli F, Migliozzi S, Zoppoli P, et al. The AKT1E17K Allele Promotes Breast Cancer in Mice. Cancers (Basel). 2022;14: pubmed 出版商
  2. Yu J, Yang K, Zheng J, Zhao P, Xia J, Sun X, et al. Activation of FXR and inhibition of EZH2 synergistically inhibit colorectal cancer through cooperatively accelerating FXR nuclear location and upregulating CDX2 expression. Cell Death Dis. 2022;13:388 pubmed 出版商
  3. Zhou Q, Li S, Li M, Ke D, Wang Q, Yang Y, et al. Human tau accumulation promotes glycogen synthase kinase-3β acetylation and thus upregulates the kinase: A vicious cycle in Alzheimer neurodegeneration. EBioMedicine. 2022;78:103970 pubmed 出版商
  4. Jiang Q, Zhang X, Dai X, Han S, Wu X, Wang L, et al. S6K1-mediated phosphorylation of PDK1 impairs AKT kinase activity and oncogenic functions. Nat Commun. 2022;13:1548 pubmed 出版商
  5. Gong N, Shi L, Bing X, Li H, Hu H, Zhang P, et al. S100A4/TCF Complex Transcription Regulation Drives Epithelial-Mesenchymal Transition in Chronic Sinusitis Through Wnt/GSK-3β/β-Catenin Signaling. Front Immunol. 2022;13:835888 pubmed 出版商
  6. He S, Gao Q, Wu X, Shi J, Zhang Y, Yang J, et al. NAD+ ameliorates endotoxin-induced acute kidney injury in a sirtuin1-dependent manner via GSK-3β/Nrf2 signalling pathway. J Cell Mol Med. 2022;26:1979-1993 pubmed 出版商
  7. Heitink L, Whittle J, Vaillant F, Capaldo B, Dekkers J, Dawson C, et al. In vivo genome-editing screen identifies tumor suppressor genes that cooperate with Trp53 loss during mammary tumorigenesis. Mol Oncol. 2022;16:1119-1131 pubmed 出版商
  8. Zou Y, Gan C, Xin Z, Zhang H, Zhang Q, Lee T, et al. Programmed Cell Death Protein 1 Blockade Reduces Glycogen Synthase Kinase 3β Activity and Tau Hyperphosphorylation in Alzheimer's Disease Mouse Models. Front Cell Dev Biol. 2021;9:769229 pubmed 出版商
  9. Rock S, Jiang K, Wu Y, Liu Y, Li J, Weiss H, et al. Neurotensin Regulates Proliferation and Stem Cell Function in the Small Intestine in a Nutrient-Dependent Manner. Cell Mol Gastroenterol Hepatol. 2022;13:501-516 pubmed 出版商
  10. Hu D, Sun X, Magpusao A, Fedorov Y, Thompson M, Wang B, et al. Small-molecule suppression of calpastatin degradation reduces neuropathology in models of Huntington's disease. Nat Commun. 2021;12:5305 pubmed 出版商
  11. Tang X, Li G, Shi L, Su F, Qian M, Liu Z, et al. Combined intermittent fasting and ERK inhibition enhance the anti-tumor effects of chemotherapy via the GSK3β-SIRT7 axis. Nat Commun. 2021;12:5058 pubmed 出版商
  12. da Silva F, Zhang K, Pinson A, Fatti E, Wilsch Bräuninger M, Herbst J, et al. Mitotic WNT signalling orchestrates neurogenesis in the developing neocortex. EMBO J. 2021;40:e108041 pubmed 出版商
  13. Chiang S, Braidy N, Maleki S, Lal S, Richardson D, Huang M. Mechanisms of impaired mitochondrial homeostasis and NAD+ metabolism in a model of mitochondrial heart disease exhibiting redox active iron accumulation. Redox Biol. 2021;46:102038 pubmed 出版商
  14. Jiang L, Yang Q, Gao J, Yang J, He J, Xin H, et al. BK Channel Deficiency in Osteoblasts Reduces Bone Formation via the Wnt/β-Catenin Pathway. Mol Cells. 2021;44:557-568 pubmed 出版商
  15. Xu X, Lei Y, Chen L, Zhou H, Liu H, Jiang J, et al. Phosphorylation of NF-κBp65 drives inflammation-mediated hepatocellular carcinogenesis and is a novel therapeutic target. J Exp Clin Cancer Res. 2021;40:253 pubmed 出版商
  16. Mygland L, Brinch S, Strand M, Olsen P, Aizenshtadt A, Lund K, et al. Identification of response signatures for tankyrase inhibitor treatment in tumor cell lines. iScience. 2021;24:102807 pubmed 出版商
  17. Guo J, Cheng J, Zheng N, Zhang X, Dai X, Zhang L, et al. Copper Promotes Tumorigenesis by Activating the PDK1-AKT Oncogenic Pathway in a Copper Transporter 1 Dependent Manner. Adv Sci (Weinh). 2021;8:e2004303 pubmed 出版商
  18. Kearney A, Norris D, Ghomlaghi M, Kin Lok Wong M, Humphrey S, Carroll L, et al. Akt phosphorylates insulin receptor substrate to limit PI3K-mediated PIP3 synthesis. elife. 2021;10: pubmed 出版商
  19. Yin S, Liu L, Brobbey C, PALANISAMY V, Ball L, Olsen S, et al. PRMT5-mediated arginine methylation activates AKT kinase to govern tumorigenesis. Nat Commun. 2021;12:3444 pubmed 出版商
  20. Lai W, Zhu W, Xiao C, Li X, Wang Y, Han Y, et al. HJURP promotes proliferation in prostate cancer cells through increasing CDKN1A degradation via the GSK3β/JNK signaling pathway. Cell Death Dis. 2021;12:583 pubmed 出版商
  21. López Gambero A, Rosell Valle C, Medina Vera D, Navarro J, Vargas A, Rivera P, et al. A Negative Energy Balance Is Associated with Metabolic Dysfunctions in the Hypothalamus of a Humanized Preclinical Model of Alzheimer's Disease, the 5XFAD Mouse. Int J Mol Sci. 2021;22: pubmed 出版商
  22. Landin Malt A, Clancy S, Hwang D, Liu A, Smith C, Smith M, et al. Non-Canonical Wnt Signaling Regulates Cochlear Outgrowth and Planar Cell Polarity via Gsk3β Inhibition. Front Cell Dev Biol. 2021;9:649830 pubmed 出版商
  23. Chen B, Wang P, Liang X, Jiang C, Ge Y, Dworkin L, et al. Permissive effect of GSK3β on profibrogenic plasticity of renal tubular cells in progressive chronic kidney disease. Cell Death Dis. 2021;12:432 pubmed 出版商
  24. Luo L, Wu J, Lin T, Lian G, Wang H, Gao G, et al. Influence of atorvastatin on metabolic pattern of rats with pulmonary hypertension. Aging (Albany NY). 2021;13:11954-11968 pubmed 出版商
  25. Gao S, Gao L, Wang S, Shi X, Yue C, Wei S, et al. ATF3 Suppresses Growth and Metastasis of Clear Cell Renal Cell Carcinoma by Deactivating EGFR/AKT/GSK3β/β-Catenin Signaling Pathway. Front Cell Dev Biol. 2021;9:618987 pubmed 出版商
  26. Chang N, Yeh C, Lin Y, Kuo K, Fong I, Kounis N, et al. Garcinol Attenuates Lipoprotein(a)-Induced Oxidative Stress and Inflammatory Cytokine Production in Ventricular Cardiomyocyte through α7-Nicotinic Acetylcholine Receptor-Mediated Inhibition of the p38 MAPK and NF-κB Signaling Pathways. Antioxidants (Basel). 2021;10: pubmed 出版商
  27. Zhang L, Li M, Tian C, Wang T, Mi S. CCAAT enhancer binding protein α suppresses proliferation, metastasis, and epithelial-mesenchymal transition of ovarian cancer cells via suppressing the Wnt/β-catenin signaling. Neoplasma. 2021;68:602-612 pubmed 出版商
  28. Sowa A, Popova T, Harmuth T, Weber J, Pereira Sena P, Schmidt J, et al. Neurodegenerative phosphoprotein signaling landscape in models of SCA3. Mol Brain. 2021;14:57 pubmed 出版商
  29. Jacques S, Arjomand A, Per xe9 e H, Collins P, Mayer A, Lavergne A, et al. Dual-specificity phosphatase 3 deletion promotes obesity, non-alcoholic steatohepatitis and hepatocellular carcinoma. Sci Rep. 2021;11:5817 pubmed 出版商
  30. Sanchez Vazquez R, Martinez P, Blasco M. AKT-dependent signaling of extracellular cues through telomeres impact on tumorigenesis. PLoS Genet. 2021;17:e1009410 pubmed 出版商
  31. Wallace M, Aguirre N, Marcotte G, Marshall A, Baehr L, Hughes D, et al. The ketogenic diet preserves skeletal muscle with aging in mice. Aging Cell. 2021;20:e13322 pubmed 出版商
  32. Ischenko I, D Amico S, Rao M, Li J, Hayman M, Powers S, et al. KRAS drives immune evasion in a genetic model of pancreatic cancer. Nat Commun. 2021;12:1482 pubmed 出版商
  33. Amaral A, Perez Nievas B, Siao Tick Chong M, González Martínez A, Argente Escrig H, Rubio Guerra S, et al. Isoform-selective decrease of glycogen synthase kinase-3-beta (GSK-3β) reduces synaptic tau phosphorylation, transcellular spreading, and aggregation. iScience. 2021;24:102058 pubmed 出版商
  34. Chao F, Zhang Y, Zhang L, Jiang L, Zhou C, Tang J, et al. Fluoxetine Promotes Hippocampal Oligodendrocyte Maturation and Delays Learning and Memory Decline in APP/PS1 Mice. Front Aging Neurosci. 2020;12:627362 pubmed 出版商
  35. Shen X, Zhao K, Xu L, Cheng G, Zhu J, Gan L, et al. YTHDF2 Inhibits Gastric Cancer Cell Growth by Regulating FOXC2 Signaling Pathway. Front Genet. 2020;11:592042 pubmed 出版商
  36. Lu M, Qin X, Zhou Y, Li G, Liu Z, Geng X, et al. Long non-coding RNA LINC00665 promotes gemcitabine resistance of Cholangiocarcinoma cells via regulating EMT and stemness properties through miR-424-5p/BCL9L axis. Cell Death Dis. 2021;12:72 pubmed 出版商
  37. Cook S, Comrie W, Poli M, Similuk M, Oler A, Faruqi A, et al. HEM1 deficiency disrupts mTORC2 and F-actin control in inherited immunodysregulatory disease. Science. 2020;369:202-207 pubmed 出版商
  38. Waaler J, Mygland L, Tveita A, Strand M, Solberg N, Olsen P, et al. Tankyrase inhibition sensitizes melanoma to PD-1 immune checkpoint blockade in syngeneic mouse models. Commun Biol. 2020;3:196 pubmed 出版商
  39. Guo C, Ma X, Xing Y, Zheng C, Xu Y, Shan L, et al. Distinct Processing of lncRNAs Contributes to Non-conserved Functions in Stem Cells. Cell. 2020;181:621-636.e22 pubmed 出版商
  40. Li X, Wu Y, Zhao J, Wang H, Tan J, Yang M, et al. Distinct cardiac energy metabolism and oxidative stress adaptations between obese and non-obese type 2 diabetes mellitus. Theranostics. 2020;10:2675-2695 pubmed 出版商
  41. Xu M, Ge C, Qin Y, Lou D, Li Q, Feng J, et al. Functional loss of inactive rhomboid-like protein 2 mitigates obesity by suppressing pro-inflammatory macrophage activation-triggered adipose inflammation. Mol Metab. 2020;34:112-123 pubmed 出版商
  42. Shi H, Wang Q, Zheng M, Hao S, Lum J, Chen X, et al. Supplement of microbiota-accessible carbohydrates prevents neuroinflammation and cognitive decline by improving the gut microbiota-brain axis in diet-induced obese mice. J Neuroinflammation. 2020;17:77 pubmed 出版商
  43. Du X, He W, He H, Wang H. Beta-catenin inhibits bovine parainfluenza virus type 3 replication via innate immunity pathway. BMC Vet Res. 2020;16:72 pubmed 出版商
  44. Tian S, Peng P, Li J, Deng H, Zhan N, Zeng Z, et al. SERPINH1 regulates EMT and gastric cancer metastasis via the Wnt/β-catenin signaling pathway. Aging (Albany NY). 2020;12:3574-3593 pubmed 出版商
  45. Aldonza M, Ku J, Hong J, Kim D, Yu S, Lee M, et al. Prior acquired resistance to paclitaxel relays diverse EGFR-targeted therapy persistence mechanisms. Sci Adv. 2020;6:eaav7416 pubmed 出版商
  46. Li J, Chiu J, Ramanjulu M, Blass B, Pratico D. A pharmacological chaperone improves memory by reducing Aβ and tau neuropathology in a mouse model with plaques and tangles. Mol Neurodegener. 2020;15:1 pubmed 出版商
  47. Zhou L, Shao C, Xie Y, Wang N, Xu S, Luo B, et al. Gab1 mediates PDGF signaling and is essential to oligodendrocyte differentiation and CNS myelination. elife. 2020;9: pubmed 出版商
  48. Kwan S, Au Yeung C, Yeung T, Rynne Vidal A, Wong K, Risinger J, et al. Ubiquitin Carboxyl-Terminal Hydrolase L1 (UCHL1) Promotes Uterine Serous Cancer Cell Proliferation and Cell Cycle Progression. Cancers (Basel). 2020;12: pubmed 出版商
  49. Xing T, Benderman L, Sabu S, Parker J, Yang J, Lu Q, et al. Tight Junction Protein Claudin-7 Is Essential for Intestinal Epithelial Stem Cell Self-Renewal and Differentiation. Cell Mol Gastroenterol Hepatol. 2020;9:641-659 pubmed 出版商
  50. Smolko C, Janes K. An ultrasensitive fiveplex activity assay for cellular kinases. Sci Rep. 2019;9:19409 pubmed 出版商
  51. Quach C, Song Y, Guo H, Li S, Maazi H, Fung M, et al. A truncating mutation in the autophagy gene UVRAG drives inflammation and tumorigenesis in mice. Nat Commun. 2019;10:5681 pubmed 出版商
  52. Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt S, Vieira Saecker A, et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;: pubmed 出版商
  53. Tian S, Jia W, Lu M, Zhao J, Sun X. Dual-specificity tyrosine phosphorylation-regulated kinase 1A ameliorates insulin resistance in neurons by up-regulating IRS-1 expression. J Biol Chem. 2019;: pubmed 出版商
  54. Hamilton W, Mosesson Y, Monteiro R, Emdal K, Knudsen T, Francavilla C, et al. Dynamic lineage priming is driven via direct enhancer regulation by ERK. Nature. 2019;: pubmed 出版商
  55. Yan D, Wang J, Sun H, Zamani A, Zhang H, Chen W, et al. TIPE2 specifies the functional polarization of myeloid-derived suppressor cells during tumorigenesis. J Exp Med. 2020;217: pubmed 出版商
  56. Presby D, Checkley L, Jackman M, Higgins J, Jones K, Giles E, et al. Regular exercise potentiates energetically expensive hepatic de novo lipogenesis during early weight regain. Am J Physiol Regul Integr Comp Physiol. 2019;317:R684-R695 pubmed 出版商
  57. Gao C, Chen G, Zhang D, Zhang J, Kuan S, Hu W, et al. PYK2 Is Involved in Premalignant Acinar Cell Reprogramming and Pancreatic Ductal Adenocarcinoma Maintenance by Phosphorylating β-CateninY654. Cell Mol Gastroenterol Hepatol. 2019;8:561-578 pubmed 出版商
  58. Uddin G, Zhang L, Shah S, Fukushima A, Wagg C, Gopal K, et al. Impaired branched chain amino acid oxidation contributes to cardiac insulin resistance in heart failure. Cardiovasc Diabetol. 2019;18:86 pubmed 出版商
  59. Gu C, Wang L, Zurawski S, Oh S. Signaling Cascade through DC-ASGPR Induces Transcriptionally Active CREB for IL-10 Induction and Immune Regulation. J Immunol. 2019;: pubmed 出版商
  60. Choi J, Zhong X, McAlpine W, Liao T, Zhang D, Fang B, et al. LMBR1L regulates lymphopoiesis through Wnt/β-catenin signaling. Science. 2019;364: pubmed 出版商
  61. Zhang H, Wang J, Wang Y, Gao C, Gu Y, Huang J, et al. Salvianolic Acid A Protects the Kidney against Oxidative Stress by Activating the Akt/GSK-3β/Nrf2 Signaling Pathway and Inhibiting the NF-κB Signaling Pathway in 5/6 Nephrectomized Rats. Oxid Med Cell Longev. 2019;2019:2853534 pubmed 出版商
  62. Chang H, Di T, Wang Y, Zeng X, Li G, Wan Q, et al. Seipin deletion in mice enhances phosphorylation and aggregation of tau protein through reduced neuronal PPARγ and insulin resistance. Neurobiol Dis. 2019;127:350-361 pubmed 出版商
  63. Martins V, Dent J, Svensson K, Tahvilian S, Begur M, Lakkaraju S, et al. Germline or inducible knockout of p300 or CBP in skeletal muscle does not alter insulin sensitivity. Am J Physiol Endocrinol Metab. 2019;: pubmed 出版商
  64. Shen B, Vardy K, Hughes P, Tasdogan A, Zhao Z, Yue R, et al. Integrin alpha11 is an Osteolectin receptor and is required for the maintenance of adult skeletal bone mass. elife. 2019;8: pubmed 出版商
  65. Agajanian M, Walker M, Axtman A, Ruela de Sousa R, Serafin D, Rabinowitz A, et al. WNT Activates the AAK1 Kinase to Promote Clathrin-Mediated Endocytosis of LRP6 and Establish a Negative Feedback Loop. Cell Rep. 2019;26:79-93.e8 pubmed 出版商
  66. Zhang Z, Chen J, Huang W, Ning D, Liu Q, Wang C, et al. FAM134B induces tumorigenesis and epithelial-to-mesenchymal transition via Akt signaling in hepatocellular carcinoma. Mol Oncol. 2019;13:792-810 pubmed 出版商
  67. Peng J, Liang S, Li L. sFRP1 exerts effects on gastric cancer cells through GSK3β/Rac1‑mediated restraint of TGFβ/Smad3 signaling. Oncol Rep. 2019;41:224-234 pubmed 出版商
  68. Du X, de Almeida P, Manieri N, de Almeida Nagata D, Wu T, Harden Bowles K, et al. CD226 regulates natural killer cell antitumor responses via phosphorylation-mediated inactivation of transcription factor FOXO1. Proc Natl Acad Sci U S A. 2018;115:E11731-E11740 pubmed 出版商
  69. Zhou X, Zhang R, Zou Z, Shen X, Xie T, Xu C, et al. Hypoglycaemic effects of glimepiride in sulfonylurea receptor 1 deficient rat. Br J Pharmacol. 2019;176:478-490 pubmed 出版商
  70. Li H, Feng J, Zhang Y, Feng J, Wang Q, Zhao S, et al. Mst1 deletion attenuates renal ischaemia-reperfusion injury: The role of microtubule cytoskeleton dynamics, mitochondrial fission and the GSK3β-p53 signalling pathway. Redox Biol. 2019;20:261-274 pubmed 出版商
  71. Lionnard L, Duc P, Brennan M, Kueh A, Pal M, Guardia F, et al. TRIM17 and TRIM28 antagonistically regulate the ubiquitination and anti-apoptotic activity of BCL2A1. Cell Death Differ. 2019;26:902-917 pubmed 出版商
  72. Huang W, Bei L, Eklund E. Inhibition of Fas associated phosphatase 1 (Fap1) facilitates apoptosis of colon cancer stem cells and enhances the effects of oxaliplatin. Oncotarget. 2018;9:25891-25902 pubmed 出版商
  73. Zheng C, Wang J, Lin M, Zhang P, Liu L, Lin J, et al. CDK5RAP3 suppresses Wnt/β-catenin signaling by inhibiting AKT phosphorylation in gastric cancer. J Exp Clin Cancer Res. 2018;37:59 pubmed 出版商
  74. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  75. Zhao Y, Wu X, Li X, Jiang L, Gui X, Liu Y, et al. TREM2 Is a Receptor for β-Amyloid that Mediates Microglial Function. Neuron. 2018;97:1023-1031.e7 pubmed 出版商
  76. Markussen L, Winther S, Wicksteed B, Hansen J. GSK3 is a negative regulator of the thermogenic program in brown adipocytes. Sci Rep. 2018;8:3469 pubmed 出版商
  77. Xue C, Hong L, Lin J, Yao X, Wu D, Lin X, et al. β-Elemene inhibits the proliferation of primary human airway granulation fibroblasts by down-regulating canonical Wnt/β-catenin pathway. Biosci Rep. 2018;38: pubmed 出版商
  78. Sutavani R, Phair I, Barker R, McFarlane A, Shpiro N, Lang S, et al. Differential control of Toll-like receptor 4-induced interleukin-10 induction in macrophages and B cells reveals a role for p90 ribosomal S6 kinases. J Biol Chem. 2018;293:2302-2317 pubmed 出版商
  79. Chen X, Wang R, Liu X, Wu Y, Zhou T, Yang Y, et al. A Chemical-Genetic Approach Reveals the Distinct Roles of GSK3? and GSK3? in Regulating Embryonic Stem Cell Fate. Dev Cell. 2017;43:563-576.e4 pubmed 出版商
  80. Shuang W, Hou L, Zhu Y, Li Q, Hu W. Mcl-1 stabilization confers resistance to taxol in human gastric cancer. Oncotarget. 2017;8:82981-82990 pubmed 出版商
  81. Akiel M, Guo C, Li X, Rajasekaran D, Mendoza R, Robertson C, et al. IGFBP7 Deletion Promotes Hepatocellular Carcinoma. Cancer Res. 2017;77:4014-4025 pubmed 出版商
  82. Choi E, Jung B, Lee S, Yoo H, Shin E, Ko H, et al. A clinical drug library screen identifies clobetasol propionate as an NRF2 inhibitor with potential therapeutic efficacy in KEAP1 mutant lung cancer. Oncogene. 2017;36:5285-5295 pubmed 出版商
  83. Krag T, Ruiz Ruiz C, Vissing J. Glycogen Synthesis in Glycogenin 1-Deficient Patients: A Role for Glycogenin 2 in Muscle. J Clin Endocrinol Metab. 2017;102:2690-2700 pubmed 出版商
  84. Zhao X, Sun K, Lan Z, Song W, Cheng L, Chi W, et al. Tenofovir and adefovir down-regulate mitochondrial chaperone TRAP1 and succinate dehydrogenase subunit B to metabolically reprogram glucose metabolism and induce nephrotoxicity. Sci Rep. 2017;7:46344 pubmed 出版商
  85. Gupta A, Anjomani Virmouni S, Koundouros N, Dimitriadi M, Choo Wing R, Valle A, et al. PARK2 Depletion Connects Energy and Oxidative Stress to PI3K/Akt Activation via PTEN S-Nitrosylation. Mol Cell. 2017;65:999-1013.e7 pubmed 出版商
  86. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  87. Dong Q, Li J, Wu Q, Zhao N, Qian C, Ding D, et al. Blockage of transient receptor potential vanilloid 4 alleviates myocardial ischemia/reperfusion injury in mice. Sci Rep. 2017;7:42678 pubmed 出版商
  88. Zhao D, Lu X, Wang G, Lan Z, Liao W, Li J, et al. Synthetic essentiality of chromatin remodelling factor CHD1 in PTEN-deficient cancer. Nature. 2017;542:484-488 pubmed 出版商
  89. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed 出版商
  90. Wu M, Chen W, Lu Y, Zhu G, Hao L, Li Y. Gα13 negatively controls osteoclastogenesis through inhibition of the Akt-GSK3β-NFATc1 signalling pathway. Nat Commun. 2017;8:13700 pubmed 出版商
  91. Granato M, Rizzello C, Gilardini Montani M, Cuomo L, Vitillo M, Santarelli R, et al. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J Nutr Biochem. 2017;41:124-136 pubmed 出版商
  92. Merckx E, Albertini G, Paterka M, Jensen C, Albrecht P, Dietrich M, et al. Absence of system xc- on immune cells invading the central nervous system alleviates experimental autoimmune encephalitis. J Neuroinflammation. 2017;14:9 pubmed 出版商
  93. Sivagurunathan S, Palanisamy K, Arunachalam J, Chidambaram S. Possible role of HIWI2 in modulating tight junction proteins in retinal pigment epithelial cells through Akt signaling pathway. Mol Cell Biochem. 2017;427:145-156 pubmed 出版商
  94. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  95. Li Y, Buijs Gladdines J, Cant Barrett K, Stubbs A, Vroegindeweij E, Smits W, et al. IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study. PLoS Med. 2016;13:e1002200 pubmed 出版商
  96. Pal M, Gupta S. Testosterone supplementation improves glucose homeostasis despite increasing hepatic insulin resistance in male mouse model of type 2 diabetes mellitus. Nutr Diabetes. 2016;6:e236 pubmed 出版商
  97. Li W, Liu M, Deng S, Liu Y, Shang L, Ding J, et al. ASIC1a regulates insular long-term depression and is required for the extinction of conditioned taste aversion. Nat Commun. 2016;7:13770 pubmed 出版商
  98. Cao J, Tyburczy M, Moss J, Darling T, Widlund H, Kwiatkowski D. Tuberous sclerosis complex inactivation disrupts melanogenesis via mTORC1 activation. J Clin Invest. 2017;127:349-364 pubmed 出版商
  99. Grabinski T, Kanaan N. Novel Non-phosphorylated Serine 9/21 GSK3?/? Antibodies: Expanding the Tools for Studying GSK3 Regulation. Front Mol Neurosci. 2016;9:123 pubmed
  100. Fletcher C, Godfrey J, Shibakawa A, Bushell M, Bevan C. A novel role for GSK3? as a modulator of Drosha microprocessor activity and MicroRNA biogenesis. Nucleic Acids Res. 2016;: pubmed
  101. Song H, Li L, Zhong L, Yang R, Jiang K, Yang X, et al. NLS?RAR? modulates acute promyelocytic leukemia NB4 cell proliferation and differentiation via the PI3K/AKT pathway. Mol Med Rep. 2016;14:5495-5500 pubmed 出版商
  102. Nonomiya Y, Noguchi K, Tanaka N, Kasagaki T, Katayama K, Sugimoto Y. Effect of AKT3 expression on MYC- and caspase-8-dependent apoptosis caused by polo-like kinase inhibitors in HCT 116 cells. Cancer Sci. 2016;107:1877-1887 pubmed 出版商
  103. Lu W, Shi J, Zhang J, Lv Z, Guo F, Huang H, et al. CXCL12/CXCR4 Axis Regulates Aggrecanase Activation and Cartilage Degradation in a Post-Traumatic Osteoarthritis Rat Model. Int J Mol Sci. 2016;17: pubmed
  104. Tai Y, Tung L, Lin Y, Lu P, Chu P, Wang M, et al. Grb7 Protein Stability Modulated by Pin1 in Association with Cell Cycle Progression. PLoS ONE. 2016;11:e0163617 pubmed 出版商
  105. Qin Y, Liu Y, Hao W, Decker Y, Tomic I, Menger M, et al. Stimulation of TLR4 Attenuates Alzheimer's Disease-Related Symptoms and Pathology in Tau-Transgenic Mice. J Immunol. 2016;197:3281-3292 pubmed
  106. Woodall B, Woodall M, Luongo T, Grisanti L, Tilley D, Elrod J, et al. Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy. J Biol Chem. 2016;291:21913-21924 pubmed
  107. Weikel K, Cacicedo J, Ruderman N, Ido Y. Knockdown of GSK3β increases basal autophagy and AMPK signalling in nutrient-laden human aortic endothelial cells. Biosci Rep. 2016;36: pubmed 出版商
  108. Zhou A, Lin K, Zhang S, Chen Y, Zhang N, Xue J, et al. Nuclear GSK3β promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitylation by USP22. Nat Cell Biol. 2016;18:954-966 pubmed 出版商
  109. Park Y, Nam H, Do M, Lee J. The p90 ribosomal S6 kinase 2 specifically affects mitotic progression by regulating the basal level, distribution and stability of mitotic spindles. Exp Mol Med. 2016;48:e250 pubmed 出版商
  110. Pan B, Huang X, Deng C. Chronic administration of aripiprazole activates GSK3β-dependent signalling pathways, and up-regulates GABAA receptor expression and CREB1 activity in rats. Sci Rep. 2016;6:30040 pubmed 出版商
  111. Diez H, Benitez M, Fernandez S, Torres Aleman I, Garrido J, Wandosell F. Class I PI3-kinase or Akt inhibition do not impair axonal polarization, but slow down axonal elongation. Biochim Biophys Acta. 2016;1863:2574-2583 pubmed 出版商
  112. Manassero G, Guglielmotto M, Zamfir R, Borghi R, Colombo L, Salmona M, et al. Beta-amyloid 1-42 monomers, but not oligomers, produce PHF-like conformation of Tau protein. Aging Cell. 2016;15:914-23 pubmed 出版商
  113. Shriver M, Marimuthu S, Paul C, Geist J, Seale T, Konstantopoulos K, et al. Giant obscurins regulate the PI3K cascade in breast epithelial cells via direct binding to the PI3K/p85 regulatory subunit. Oncotarget. 2016;7:45414-45428 pubmed 出版商
  114. Gautheron J, Vucur M, Schneider A, Severi I, Roderburg C, Roy S, et al. The necroptosis-inducing kinase RIPK3 dampens adipose tissue inflammation and glucose intolerance. Nat Commun. 2016;7:11869 pubmed 出版商
  115. Nasri I, Bonnet D, Zwarycz B, d Aldebert E, Khou S, Mezghani Jarraya R, et al. PAR2-dependent activation of GSK3? regulates the survival of colon stem/progenitor cells. Am J Physiol Gastrointest Liver Physiol. 2016;311:G221-36 pubmed 出版商
  116. Hey F, Giblett S, Forrest S, Herbert C, Pritchard C. Phosphorylations of Serines 21/9 in Glycogen Synthase Kinase 3α/β Are Not Required for Cell Lineage Commitment or WNT Signaling in the Normal Mouse Intestine. PLoS ONE. 2016;11:e0156877 pubmed 出版商
  117. Krag T, Pinós T, Nielsen T, Duran J, García Rocha M, Andreu A, et al. Differential glucose metabolism in mice and humans affected by McArdle disease. Am J Physiol Regul Integr Comp Physiol. 2016;311:R307-14 pubmed 出版商
  118. Zhang W, Wu M, Kim T, Jariwala R, Garvey W, Luo N, et al. Skeletal Muscle TRIB3 Mediates Glucose Toxicity in Diabetes and High- Fat Diet-Induced Insulin Resistance. Diabetes. 2016;65:2380-91 pubmed 出版商
  119. Chelko S, Asimaki A, Andersen P, Bedja D, Amat Alarcon N, Demazumder D, et al. Central role for GSK3β in the pathogenesis of arrhythmogenic cardiomyopathy. JCI Insight. 2016;1: pubmed 出版商
  120. Itoh Y, Higuchi M, Oishi K, Kishi Y, Okazaki T, Sakai H, et al. PDK1-Akt pathway regulates radial neuronal migration and microtubules in the developing mouse neocortex. Proc Natl Acad Sci U S A. 2016;113:E2955-64 pubmed 出版商
  121. PluciÅ„ska K, Dekeryte R, Koss D, Shearer K, Mody N, Whitfield P, et al. Neuronal human BACE1 knockin induces systemic diabetes in mice. Diabetologia. 2016;59:1513-1523 pubmed 出版商
  122. Park S, Lee J, Herbst R, Koo J. GSK-3? Is a Novel Target of CREB and CREB-GSK-3? Signaling Participates in Cell Viability in Lung Cancer. PLoS ONE. 2016;11:e0153075 pubmed 出版商
  123. Pan B, Huang X, Deng C. Aripiprazole and Haloperidol Activate GSK3?-Dependent Signalling Pathway Differentially in Various Brain Regions of Rats. Int J Mol Sci. 2016;17:459 pubmed 出版商
  124. Kurbatskaya K, Phillips E, Croft C, Dentoni G, Hughes M, Wade M, et al. Upregulation of calpain activity precedes tau phosphorylation and loss of synaptic proteins in Alzheimer's disease brain. Acta Neuropathol Commun. 2016;4:34 pubmed 出版商
  125. Ge N, Liu C, Li G, Xie L, Zhang Q, Li L, et al. Hydrosulfide attenuates acute myocardial ischemic injury through the glycogen synthase kinase-3?/?-catenin signaling pathway. Int J Mol Med. 2016;37:1281-9 pubmed 出版商
  126. Liu D, Bordicchia M, Zhang C, Fang H, Wei W, Li J, et al. Activation of mTORC1 is essential for ?-adrenergic stimulation of adipose browning. J Clin Invest. 2016;126:1704-16 pubmed 出版商
  127. Lee J, Kim H, Rho S, Lee S. eIF3f reduces tumor growth by directly interrupting clusterin with anti-apoptotic property in cancer cells. Oncotarget. 2016;7:18541-57 pubmed 出版商
  128. Winnay J, Solheim M, Dirice E, Sakaguchi M, Noh H, Kang H, et al. PI3-kinase mutation linked to insulin and growth factor resistance in vivo. J Clin Invest. 2016;126:1401-12 pubmed 出版商
  129. Santio N, Salmela M, Arola H, Eerola S, Heino J, Rainio E, et al. The PIM1 kinase promotes prostate cancer cell migration and adhesion via multiple signalling pathways. Exp Cell Res. 2016;342:113-24 pubmed 出版商
  130. Gong Q, Hu Z, Zhang F, Cui A, Chen X, Jiang H, et al. Fibroblast growth factor 21 improves hepatic insulin sensitivity by inhibiting mammalian target of rapamycin complex 1 in mice. Hepatology. 2016;64:425-38 pubmed 出版商
  131. Shukla S, Sinha S, Khan S, Kumar S, Singh K, Mitra K, et al. Cucurbitacin B inhibits the stemness and metastatic abilities of NSCLC via downregulation of canonical Wnt/β-catenin signaling axis. Sci Rep. 2016;6:21860 pubmed 出版商
  132. Hu H, Wang H, Xiao Y, Jin J, Chang J, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213:399-414 pubmed 出版商
  133. Molteni R, Rossetti A, Savino E, Racagni G, Calabrese F. Chronic Mild Stress Modulates Activity-Dependent Transcription of BDNF in Rat Hippocampal Slices. Neural Plast. 2016;2016:2592319 pubmed 出版商
  134. Liu T, Fang Z, Wang G, Shi M, Wang X, Jiang K, et al. Anti-tumor activity of the TRPM8 inhibitor BCTC in prostate cancer DU145 cells. Oncol Lett. 2016;11:182-188 pubmed
  135. Lakshmipathi J, Alvarez Perez J, Rosselot C, Casinelli G, Stamateris R, Rausell Palamos F, et al. PKCζ Is Essential for Pancreatic β-Cell Replication During Insulin Resistance by Regulating mTOR and Cyclin-D2. Diabetes. 2016;65:1283-96 pubmed 出版商
  136. Malanga D, Belmonte S, Colelli F, Scarfò M, De Marco C, Oliveira D, et al. AKT1E¹⁷K Is Oncogenic in Mouse Lung and Cooperates with Chemical Carcinogens in Inducing Lung Cancer. PLoS ONE. 2016;11:e0147334 pubmed 出版商
  137. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  138. Wang X, Tang Z, Yu D, Cui S, Jiang Y, Zhang Q, et al. Epithelial but not stromal expression of collagen alpha-1(III) is a diagnostic and prognostic indicator of colorectal carcinoma. Oncotarget. 2016;7:8823-38 pubmed 出版商
  139. Franco Villanueva A, Wandosell F, Antón I. Neuritic complexity of hippocampal neurons depends on WIP-mediated mTORC1 and Abl family kinases activities. Brain Behav. 2015;5:e00359 pubmed 出版商
  140. Tarangelo A, Lo N, Teng R, Kim E, Le L, Watson D, et al. Recruitment of Pontin/Reptin by E2f1 amplifies E2f transcriptional response during cancer progression. Nat Commun. 2015;6:10028 pubmed 出版商
  141. Sakurikar N, Thompson R, Montano R, Eastman A. A subset of cancer cell lines is acutely sensitive to the Chk1 inhibitor MK-8776 as monotherapy due to CDK2 activation in S phase. Oncotarget. 2016;7:1380-94 pubmed 出版商
  142. Kenney J, Genheden M, Moon K, Wang X, Foster L, Proud C. Eukaryotic elongation factor 2 kinase regulates the synthesis of microtubule-related proteins in neurons. J Neurochem. 2016;136:276-84 pubmed 出版商
  143. Lin K, Kao S, Lai C, Chen C, Wu C, Hsu H, et al. Tumor Suppressor Lzap Suppresses Wnt/β-Catenin Signaling to Promote Zebrafish Embryonic Ventral Cell Fates via the Suppression of Inhibitory Phosphorylation of Glycogen Synthase Kinase 3. J Biol Chem. 2015;290:29808-19 pubmed 出版商
  144. Sabirzhanov B, Stoica B, Zhao Z, Loane D, Wu J, Dorsey S, et al. miR-711 upregulation induces neuronal cell death after traumatic brain injury. Cell Death Differ. 2016;23:654-68 pubmed 出版商
  145. Hausmann C, Temme A, Cordes N, Eke I. ILKAP, ILK and PINCH1 control cell survival of p53-wildtype glioblastoma cells after irradiation. Oncotarget. 2015;6:34592-605 pubmed 出版商
  146. Martínez Revollar G, Garay E, Martín Tapia D, Nava P, Huerta M, Lopez Bayghen E, et al. Heterogeneity between triple negative breast cancer cells due to differential activation of Wnt and PI3K/AKT pathways. Exp Cell Res. 2015;339:67-80 pubmed 出版商
  147. Kong J, Hardin K, Dinkins M, Wang G, He Q, Mujadzic T, et al. Regulation of Chlamydomonas flagella and ependymal cell motile cilia by ceramide-mediated translocation of GSK3. Mol Biol Cell. 2015;26:4451-65 pubmed 出版商
  148. Finch Edmondson M, Strauss R, Passman A, Sudol M, Yeoh G, Callus B. TAZ Protein Accumulation Is Negatively Regulated by YAP Abundance in Mammalian Cells. J Biol Chem. 2015;290:27928-38 pubmed 出版商
  149. Reuther C, Heinzle V, Spampatti M, Vlotides G, de Toni E, Spöttl G, et al. Cabozantinib and Tivantinib, but Not INC280, Induce Antiproliferative and Antimigratory Effects in Human Neuroendocrine Tumor Cells in vitro: Evidence for 'Off-Target' Effects Not Mediated by c-Met Inhibition. Neuroendocrinology. 2016;103:383-401 pubmed 出版商
  150. Chen B, Tao J, Lin Y, Lin R, Liu W, Chen L. Electro-acupuncture exerts beneficial effects against cerebral ischemia and promotes the proliferation of neural progenitor cells in the cortical peri-infarct area through the Wnt/β-catenin signaling pathway. Int J Mol Med. 2015;36:1215-22 pubmed 出版商
  151. Bunaciu R, Jensen H, Macdonald R, Latocha D, Varner J, Yen A. 6-Formylindolo(3,2-b)Carbazole (FICZ) Modulates the Signalsome Responsible for RA-Induced Differentiation of HL-60 Myeloblastic Leukemia Cells. PLoS ONE. 2015;10:e0135668 pubmed 出版商
  152. Chiang C, Uzoma I, Lane D, MemiÅ¡ević V, Alem F, Yao K, et al. A reverse-phase protein microarray-based screen identifies host signaling dynamics upon Burkholderia spp. infection. Front Microbiol. 2015;6:683 pubmed 出版商
  153. Seo M, Lee C, Cho H, You Y, Lee B, Lee J, et al. Effects of antipsychotic drugs on the expression of synapse-associated proteins in the frontal cortex of rats subjected to immobilization stress. Psychiatry Res. 2015;229:968-74 pubmed 出版商
  154. Krishnan N, Krishnan K, Connors C, Choy M, Page R, Peti W, et al. PTP1B inhibition suggests a therapeutic strategy for Rett syndrome. J Clin Invest. 2015;125:3163-77 pubmed 出版商
  155. Cymerman I, Gozdz A, Urbanska M, Milek J, Dziembowska M, Jaworski J. Structural Plasticity of Dendritic Spines Requires GSK3α and GSK3β. PLoS ONE. 2015;10:e0134018 pubmed 出版商
  156. Reis C, Chen P, Srinivasan S, Aguet F, Mettlen M, Schmid S. Crosstalk between Akt/GSK3β signaling and dynamin-1 regulates clathrin-mediated endocytosis. EMBO J. 2015;34:2132-46 pubmed 出版商
  157. Kim A, Park Y, Pan X, Shin K, Kwak S, Bassas A, et al. Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance. Nat Commun. 2015;6:7585 pubmed 出版商
  158. Braccini L, Ciraolo E, Campa C, Perino A, Longo D, Tibolla G, et al. PI3K-C2γ is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling. Nat Commun. 2015;6:7400 pubmed 出版商
  159. Urban B, Collard T, Eagle C, Southern S, Greenhough A, Hamdollah Zadeh M, et al. BCL-3 expression promotes colorectal tumorigenesis through activation of AKT signalling. Gut. 2016;65:1151-64 pubmed 出版商
  160. Cheung C, Bendris N, Paul C, Hamieh A, Anouar Y, Hahne M, et al. Cyclin A2 modulates EMT via β-catenin and phospholipase C pathways. Carcinogenesis. 2015;36:914-24 pubmed 出版商
  161. De Zio D, Molinari F, Rizza S, Gatta L, Ciotti M, Salvatore A, et al. Apaf1-deficient cortical neurons exhibit defects in axonal outgrowth. Cell Mol Life Sci. 2015;72:4173-91 pubmed 出版商
  162. Moreira J, Wohlwend M, Alves M, Wisløff U, Bye A. A small molecule activator of AKT does not reduce ischemic injury of the rat heart. J Transl Med. 2015;13:76 pubmed 出版商
  163. Morra F, Luise C, Merolla F, Poser I, Visconti R, Ilardi G, et al. FBXW7 and USP7 regulate CCDC6 turnover during the cell cycle and affect cancer drugs susceptibility in NSCLC. Oncotarget. 2015;6:12697-709 pubmed
  164. Janes K. An analysis of critical factors for quantitative immunoblotting. Sci Signal. 2015;8:rs2 pubmed 出版商
  165. Monteiro da Rocha A, Ding J, Slawny N, Wolf A, Smith G. Loss of glycogen synthase kinase 3 isoforms during murine oocyte growth induces offspring cardiac dysfunction. Biol Reprod. 2015;92:127 pubmed 出版商
  166. Ko R, Park J, Ha H, Choi Y, Lee S. Glycogen synthase kinase 3β ubiquitination by TRAF6 regulates TLR3-mediated pro-inflammatory cytokine production. Nat Commun. 2015;6:6765 pubmed 出版商
  167. Hossini A, Megges M, Prigione A, Lichtner B, Toliat M, Wruck W, et al. Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer's disease donor as a model for investigating AD-associated gene regulatory networks. BMC Genomics. 2015;16:84 pubmed 出版商
  168. Cuesto G, Jordán Álvarez S, Enriquez Barreto L, Ferrús A, Morales M, Acebes A. GSK3β inhibition promotes synaptogenesis in Drosophila and mammalian neurons. PLoS ONE. 2015;10:e0118475 pubmed 出版商
  169. Kobayashi K, Sakurai K, Hiramatsu H, Inada K, Shiogama K, Nakamura S, et al. The miR-199a/Brm/EGR1 axis is a determinant of anchorage-independent growth in epithelial tumor cell lines. Sci Rep. 2015;5:8428 pubmed 出版商
  170. Banach Orlowska M, Szymańska E, Miaczynska M. APPL1 endocytic adaptor as a fine tuner of Dvl2-induced transcription. FEBS Lett. 2015;589:532-9 pubmed 出版商
  171. Nakazawa H, Yamada M, Tanaka T, Kramer J, Yu Y, Fischman A, et al. Role of protein farnesylation in burn-induced metabolic derangements and insulin resistance in mouse skeletal muscle. PLoS ONE. 2015;10:e0116633 pubmed 出版商
  172. Kang E, Cho J. Effects of treadmill exercise on brain insulin signaling and β-amyloid in intracerebroventricular streptozotocin induced-memory impairment in rats. J Exerc Nutrition Biochem. 2014;18:89-96 pubmed 出版商
  173. Inaba J, McConnell E, Davis K. Lunasin sensitivity in non-small cell lung cancer cells is linked to suppression of integrin signaling and changes in histone acetylation. Int J Mol Sci. 2014;15:23705-24 pubmed 出版商
  174. Manley S, Ni H, Williams J, Kong B, DiTacchio L, Guo G, et al. Farnesoid X receptor regulates forkhead Box O3a activation in ethanol-induced autophagy and hepatotoxicity. Redox Biol. 2014;2:991-1002 pubmed 出版商
  175. Giovannini C, Minguzzi M, Baglioni M, Fornari F, Giannone F, Ravaioli M, et al. Suppression of p53 by Notch3 is mediated by Cyclin G1 and sustained by MDM2 and miR-221 axis in hepatocellular carcinoma. Oncotarget. 2014;5:10607-20 pubmed
  176. Hu X, Li X, Zhao M, Gottesdiener A, Luo W, Paul S. Tau pathogenesis is promoted by Aβ1-42 but not Aβ1-40. Mol Neurodegener. 2014;9:52 pubmed 出版商
  177. Pérez Alvarez M, Mateos L, Alonso A, Wandosell F. Estradiol and Progesterone Administration After pMCAO Stimulates the Neurological Recovery and Reduces the Detrimental Effect of Ischemia Mainly in Hippocampus. Mol Neurobiol. 2015;52:1690-1703 pubmed 出版商
  178. Young M, Brewer R, Peliciari Garcia R, Collins H, He L, Birky T, et al. Cardiomyocyte-specific BMAL1 plays critical roles in metabolism, signaling, and maintenance of contractile function of the heart. J Biol Rhythms. 2014;29:257-76 pubmed 出版商
  179. Chu Y, Gómez Rosso L, Huang P, Wang Z, Xu Y, Yao X, et al. Liver Med23 ablation improves glucose and lipid metabolism through modulating FOXO1 activity. Cell Res. 2014;24:1250-65 pubmed 出版商
  180. Wang Y, Yang R, Gu J, Yin X, Jin N, Xie S, et al. Cross talk between PI3K-AKT-GSK-3β and PP2A pathways determines tau hyperphosphorylation. Neurobiol Aging. 2015;36:188-200 pubmed 出版商
  181. Kleinert M, Sylow L, Fazakerley D, Krycer J, Thomas K, Oxbøll A, et al. Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo. Mol Metab. 2014;3:630-41 pubmed 出版商
  182. Xu L, Long Z, Peng F, Liu Y, Xu J, Wang C, et al. Aurora kinase a suppresses metabolic stress-induced autophagic cell death by activating mTOR signaling in breast cancer cells. Oncotarget. 2014;5:7498-511 pubmed
  183. Izumi H, Kaneko Y. Trim32 facilitates degradation of MYCN on spindle poles and induces asymmetric cell division in human neuroblastoma cells. Cancer Res. 2014;74:5620-30 pubmed 出版商
  184. Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S, et al. YAP/TAZ incorporation in the ?-catenin destruction complex orchestrates the Wnt response. Cell. 2014;158:157-70 pubmed 出版商
  185. Moody S, Schinzel A, Singh S, Izzo F, Strickland M, Luo L, et al. PRKACA mediates resistance to HER2-targeted therapy in breast cancer cells and restores anti-apoptotic signaling. Oncogene. 2015;34:2061-71 pubmed 出版商
  186. Durak O, de Anda F, Singh K, Leussis M, Petryshen T, Sklar P, et al. Ankyrin-G regulates neurogenesis and Wnt signaling by altering the subcellular localization of ?-catenin. Mol Psychiatry. 2015;20:388-97 pubmed 出版商
  187. Maurin H, Lechat B, Borghgraef P, Devijver H, Jaworski T, Van Leuven F. Terminal hypothermic Tau.P301L mice have increased Tau phosphorylation independently of glycogen synthase kinase 3?/?. Eur J Neurosci. 2014;40:2442-53 pubmed 出版商
  188. Bejarano E, Yuste A, Patel B, Stout R, Spray D, Cuervo A. Connexins modulate autophagosome biogenesis. Nat Cell Biol. 2014;16:401-14 pubmed 出版商
  189. Waitkus M, Chandrasekharan U, Willard B, Tee T, Hsieh J, Przybycin C, et al. Signal integration and gene induction by a functionally distinct STAT3 phosphoform. Mol Cell Biol. 2014;34:1800-11 pubmed 出版商
  190. Wadosky K, Rodriguez J, Hite R, Min J, Walton B, Willis M. Muscle RING finger-1 attenuates IGF-I-dependent cardiomyocyte hypertrophy by inhibiting JNK signaling. Am J Physiol Endocrinol Metab. 2014;306:E723-39 pubmed 出版商
  191. Ahn J, Jang J, Choi J, Lee J, Oh S, Lee J, et al. GSK3?, but not GSK3?, inhibits the neuronal differentiation of neural progenitor cells as a downstream target of mammalian target of rapamycin complex1. Stem Cells Dev. 2014;23:1121-33 pubmed 出版商
  192. Taguchi K, Hirano I, Itoh T, Tanaka M, Miyajima A, Suzuki A, et al. Nrf2 enhances cholangiocyte expansion in Pten-deficient livers. Mol Cell Biol. 2014;34:900-13 pubmed 出版商
  193. Ngamsiri P, Watcharasit P, Satayavivad J. Glycogen synthase kinase-3 (GSK3) controls deoxyglucose-induced mitochondrial biogenesis in human neuroblastoma SH-SY5Y cells. Mitochondrion. 2014;14:54-63 pubmed 出版商
  194. Choi J, Landrette S, Wang T, Evans P, Bacchiocchi A, Bjornson R, et al. Identification of PLX4032-resistance mechanisms and implications for novel RAF inhibitors. Pigment Cell Melanoma Res. 2014;27:253-62 pubmed 出版商
  195. Udagawa T, Farny N, Jakovcevski M, Kaphzan H, Alarcon J, Anilkumar S, et al. Genetic and acute CPEB1 depletion ameliorate fragile X pathophysiology. Nat Med. 2013;19:1473-7 pubmed 出版商
  196. Maurin H, Lechat B, Dewachter I, Ris L, Louis J, Borghgraef P, et al. Neurological characterization of mice deficient in GSK3? highlight pleiotropic physiological functions in cognition and pathological activity as Tau kinase. Mol Brain. 2013;6:27 pubmed 出版商
  197. Mobasher M, Gonzalez Rodriguez A, Santamaria B, Ramos S, Martin M, Goya L, et al. Protein tyrosine phosphatase 1B modulates GSK3?/Nrf2 and IGFIR signaling pathways in acetaminophen-induced hepatotoxicity. Cell Death Dis. 2013;4:e626 pubmed 出版商
  198. Kao C, Hsu Y, Liu J, Lee D, Chung Y, Chiu I. The mood stabilizer valproate activates human FGF1 gene promoter through inhibiting HDAC and GSK-3 activities. J Neurochem. 2013;126:4-18 pubmed 出版商
  199. Willis M, Min J, Wang S, McDonough H, Lockyer P, Wadosky K, et al. Carboxyl terminus of Hsp70-interacting protein (CHIP) is required to modulate cardiac hypertrophy and attenuate autophagy during exercise. Cell Biochem Funct. 2013;31:724-35 pubmed 出版商
  200. Zhou X, Wang H, Burg M, Ferraris J. Inhibitory phosphorylation of GSK-3? by AKT, PKA, and PI3K contributes to high NaCl-induced activation of the transcription factor NFAT5 (TonEBP/OREBP). Am J Physiol Renal Physiol. 2013;304:F908-17 pubmed 出版商
  201. Wang H, Ducommun S, Quan C, Xie B, Li M, Wasserman D, et al. AS160 deficiency causes whole-body insulin resistance via composite effects in multiple tissues. Biochem J. 2013;449:479-89 pubmed 出版商
  202. Wallmen B, Schrempp M, Hecht A. Intrinsic properties of Tcf1 and Tcf4 splice variants determine cell-type-specific Wnt/?-catenin target gene expression. Nucleic Acids Res. 2012;40:9455-69 pubmed 出版商
  203. Pérez Alvarez M, Maza M, Anton M, Ordoñez L, Wandosell F. Post-ischemic estradiol treatment reduced glial response and triggers distinct cortical and hippocampal signaling in a rat model of cerebral ischemia. J Neuroinflammation. 2012;9:157 pubmed 出版商
  204. Wray J, Kalkan T, Gómez López S, Eckardt D, Cook A, Kemler R, et al. Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nat Cell Biol. 2011;13:838-45 pubmed 出版商
  205. Goñi Oliver P, Avila J, Hernandez F. Calpain regulates N-terminal interaction of GSK-3? with 14-3-3?, p53 and PKB but not with axin. Neurochem Int. 2011;59:97-100 pubmed 出版商
  206. García Martínez J, Wullschleger S, Preston G, Guichard S, Fleming S, Alessi D, et al. Effect of PI3K- and mTOR-specific inhibitors on spontaneous B-cell follicular lymphomas in PTEN/LKB1-deficient mice. Br J Cancer. 2011;104:1116-25 pubmed 出版商
  207. García Martínez J, Moran J, Clarke R, Gray A, Cosulich S, Chresta C, et al. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem J. 2009;421:29-42 pubmed 出版商
  208. Cole A, Sutherland C. Measuring GSK3 expression and activity in cells. Methods Mol Biol. 2008;468:45-65 pubmed 出版商
  209. Rieger J, Lemke D, Maurer G, Weiler M, Frank B, Tabatabai G, et al. Enzastaurin-induced apoptosis in glioma cells is caspase-dependent and inhibited by BCL-XL. J Neurochem. 2008;106:2436-48 pubmed 出版商
  210. Sun H, Xu B, Sheveleva E, Chen Q. LY294002 inhibits glucocorticoid-induced COX-2 gene expression in cardiomyocytes through a phosphatidylinositol 3 kinase-independent mechanism. Toxicol Appl Pharmacol. 2008;232:25-32 pubmed 出版商
  211. Bouskila M, Hirshman M, Jensen J, Goodyear L, Sakamoto K. Insulin promotes glycogen synthesis in the absence of GSK3 phosphorylation in skeletal muscle. Am J Physiol Endocrinol Metab. 2008;294:E28-35 pubmed
  212. Mora A, Sakamoto K, McManus E, Alessi D. Role of the PDK1-PKB-GSK3 pathway in regulating glycogen synthase and glucose uptake in the heart. FEBS Lett. 2005;579:3632-8 pubmed