这是一篇来自已证抗体库的有关人类 GluR1的综述,是根据43篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合GluR1 抗体。
GluR1 同义词: GLUH1; GLUR1; GLURA; GluA1; HBGR1

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4c
艾博抗(上海)贸易有限公司 GluR1抗体(Abcam, ab183797)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4c). Cell Rep (2022) ncbi
domestic rabbit 单克隆(EPR1887)
  • 免疫印迹; 小鼠; 1:1000; 图 5c
艾博抗(上海)贸易有限公司 GluR1抗体(Abcam, ab109464)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Signal Transduct Target Ther (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 2f
艾博抗(上海)贸易有限公司 GluR1抗体(Abcam, ab12108)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 2f). J Exp Med (2020) ncbi
domestic rabbit 单克隆
  • 免疫细胞化学; 非洲爪蛙; 图 s1e
艾博抗(上海)贸易有限公司 GluR1抗体(Abcam, ab183797)被用于被用于免疫细胞化学在非洲爪蛙样本上 (图 s1e). Neuron (2018) ncbi
domestic rabbit 单克隆(EPR1887)
  • 免疫印迹; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 GluR1抗体(Abcam, ab109464)被用于被用于免疫印迹在小鼠样本上 (图 3b). Neuron (2017) ncbi
domestic rabbit 单克隆(EPR2148)
  • 免疫印迹; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 GluR1抗体(Abcam, ab76321)被用于被用于免疫印迹在小鼠样本上 (图 3b). Neuron (2017) ncbi
domestic rabbit 单克隆(E308)
  • 免疫细胞化学; 大鼠; 图 4c
  • 免疫印迹; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 GluR1抗体(Abcam, ab32436)被用于被用于免疫细胞化学在大鼠样本上 (图 4c) 和 被用于免疫印迹在小鼠样本上 (图 2a). EBioMedicine (2016) ncbi
domestic rabbit 单克隆(EPR5479)
  • 免疫印迹; 小鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司 GluR1抗体(Epitomics, 3861-1)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(EPR5479)
  • 免疫印迹; 大鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司 GluR1抗体(Abcam, ab109450)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR1887)
  • 免疫印迹; 小鼠; 1:1500; 图 2,4,5,6
艾博抗(上海)贸易有限公司 GluR1抗体(Abcam, ab109464)被用于被用于免疫印迹在小鼠样本上浓度为1:1500 (图 2,4,5,6). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(EPR2148)
  • 免疫印迹; 小鼠; 1:1000; 图 2,4,5,6
艾博抗(上海)贸易有限公司 GluR1抗体(Abcam, ab76321)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2,4,5,6). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(EPR5479)
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 GluR1抗体(Abcam, ab109450)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Neuropsychopharmacology (2015) ncbi
domestic rabbit 单克隆(EPR5479)
  • 免疫印迹; 小鼠; 1:5000; 图 2
艾博抗(上海)贸易有限公司 GluR1抗体(Abcam, ab109450)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2). Nat Med (2014) ncbi
domestic rabbit 单克隆(E308)
  • 免疫沉淀; 人类
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 GluR1抗体(Abcam, AB32436)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(G-12)
  • 免疫组化-自由浮动切片; 小鼠; 图 2b
  • 免疫印迹; 小鼠; 图 2a
圣克鲁斯生物技术 GluR1抗体(Santa Cruz, sc-55509)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 2b) 和 被用于免疫印迹在小鼠样本上 (图 2a). Front Synaptic Neurosci (2021) ncbi
小鼠 单克隆(E-6)
  • 免疫印迹; 大鼠; 1:1000; 图 2b
圣克鲁斯生物技术 GluR1抗体(Santa Cruz, sc-13152)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b). Neural Regen Res (2020) ncbi
小鼠 单克隆(E-6)
  • 免疫印迹; 小鼠; 1:500; 图 3a
圣克鲁斯生物技术 GluR1抗体(Santa Cruz Biotechnology Inc, SC-13152)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3a). J Neurosci (2018) ncbi
小鼠 单克隆(E-6)
  • 免疫印迹; 人类; 表 2
圣克鲁斯生物技术 GluR1抗体(Santa Cruz, sc-13152)被用于被用于免疫印迹在人类样本上 (表 2). Transl Psychiatry (2016) ncbi
小鼠 单克隆(E-6)
  • 免疫印迹; 小鼠; 1:500; 图 4
圣克鲁斯生物技术 GluR1抗体(Santa Cruz, sc-13152)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(G-12)
  • 免疫印迹; 小鼠; 图 6
圣克鲁斯生物技术 GluR1抗体(Santa Cruz Biotechnology, sc-55509)被用于被用于免疫印迹在小鼠样本上 (图 6). J Neurosci (2015) ncbi
小鼠 单克隆(G-12)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 GluR1抗体(Santa Cruz Biotechnologies, SC-55509)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Mol Cell Neurosci (2015) ncbi
小鼠 单克隆(E-6)
  • 免疫印迹; 大鼠; 1:1000
圣克鲁斯生物技术 GluR1抗体(Santa Cruz, sc13152)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Neuropsychopharmacology (2016) ncbi
小鼠 单克隆(G-12)
  • 免疫印迹; 人类
圣克鲁斯生物技术 GluR1抗体(Santa Cruz, sc-55509)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(E-6)
  • 免疫印迹; 大鼠; 1:200; 图 1
圣克鲁斯生物技术 GluR1抗体(Santa Cruz, sc-13152)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 1). Mol Psychiatry (2014) ncbi
小鼠 单克隆(G-12)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 GluR1抗体(Santa Cruz Biotechnology, sc-55509)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2013) ncbi
Synaptic Systems
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2s1
Synaptic Systems GluR1抗体(Synaptic Systems, 182003)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2s1). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5d
Synaptic Systems GluR1抗体(Synaptic Systems, 182003)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). elife (2020) ncbi
小鼠 单克隆(1,60E+07)
  • 免疫印迹; 大鼠; 1:5000; 图 8d
Synaptic Systems GluR1抗体(Synaptic Systems, 182011)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 8d). Front Mol Neurosci (2017) ncbi
小鼠 单克隆(1,60E+07)
  • 免疫细胞化学; 大鼠; 1:500; 图 s2
Synaptic Systems GluR1抗体(Synaptic Systems, 182 011)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 s2). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(1,60E+07)
  • 免疫印迹; 人类; 1:500; 图 6b
Synaptic Systems GluR1抗体(Synaptic Systems, 182011)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6b). Neuron (2014) ncbi
小鼠 单克隆(1,60E+07)
  • 免疫印迹; 小鼠; 图 6
Synaptic Systems GluR1抗体(SYSY, 160-E5)被用于被用于免疫印迹在小鼠样本上 (图 6). Proc Natl Acad Sci U S A (2014) ncbi
赛默飞世尔
小鼠 单克隆(S355-1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 8a
赛默飞世尔 GluR1抗体(Thermo Fisher, MA5-27694)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 8a). EMBO J (2022) ncbi
Alomone Labs
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:50; 图 2a
Alomone Labs GluR1抗体(Alomone, AGC-004)被用于被用于免疫印迹在大鼠样本上浓度为1:50 (图 2a). Mol Cell Neurosci (2018) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D10G5)
  • 免疫印迹; 小鼠; 图 s5c
赛信通(上海)生物试剂有限公司 GluR1抗体(Cell Signaling, 8084)被用于被用于免疫印迹在小鼠样本上 (图 s5c). Sci Adv (2022) ncbi
domestic rabbit 单克隆(D4N9V)
  • 免疫细胞化学; 小鼠; 图 5e
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 GluR1抗体(CST, 13185)被用于被用于免疫细胞化学在小鼠样本上 (图 5e) 和 被用于免疫印迹在小鼠样本上 (图 5b). Cell Rep (2021) ncbi
domestic rabbit 单克隆(D4N9V)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 GluR1抗体(Cell Signaling, 13185)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Front Synaptic Neurosci (2020) ncbi
domestic rabbit 单克隆(D10G5)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 GluR1抗体(Cell Signaling Technology, D10G5)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. elife (2020) ncbi
domestic rabbit 单克隆(D4N9V)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 GluR1抗体(Cell Signaling Technology, D4N9V)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. elife (2020) ncbi
domestic rabbit 单克隆(D4N9V)
  • 免疫细胞化学; 小鼠; 1:400; 图 1i
  • 免疫印迹; 小鼠; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 GluR1抗体(CST, 13185)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 1i) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). Aging Cell (2020) ncbi
domestic rabbit 单克隆(D4N9V)
  • 免疫组化; 大鼠; 1:500; 图 2a
赛信通(上海)生物试剂有限公司 GluR1抗体(Cell Signaling, 13185)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 2a). Neural Regen Res (2020) ncbi
domestic rabbit 单克隆(D10G5)
  • 免疫印迹; 人类; 1:1000; 图 5f, 7
赛信通(上海)生物试剂有限公司 GluR1抗体(cell signalling technology, 8084)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5f, 7). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D4N9V)
  • 免疫印迹; 人类; 1:1000; 图 3c, 5f
赛信通(上海)生物试剂有限公司 GluR1抗体(cell signalling technology, 13185)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c, 5f). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D10G5)
  • 免疫印迹; 小鼠; 1:1000; 图 1m
  • 免疫印迹; 大鼠; 1:1000; 图 2m
赛信通(上海)生物试剂有限公司 GluR1抗体(Cell Signaling, 8084)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1m) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2m). Aging Cell (2020) ncbi
domestic rabbit 单克隆(D4N9V)
  • 免疫细胞化学; 大鼠; 1:100; 图 3d
  • 免疫印迹; 大鼠; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 GluR1抗体(Cell Signaling, 13185)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 3d) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2f). Aging Cell (2020) ncbi
domestic rabbit 单克隆(D4N9V)
  • 免疫印迹; 大鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 GluR1抗体(Cell Signaling, 13185)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D4N9V)
  • 免疫印迹; 小鼠; 1:1000; 图 1f, S10a
赛信通(上海)生物试剂有限公司 GluR1抗体(Cell Signaling, 13185)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1f, S10a). Nat Chem Biol (2016) ncbi
domestic rabbit 单克隆(D10G5)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 GluR1抗体(Cell Signaling Technology, 8084)被用于被用于免疫印迹在小鼠样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D4N9V)
  • 免疫印迹; 人类; 1:500; 图 1
  • 免疫印迹; 小鼠; 1:500; 图 1
赛信通(上海)生物试剂有限公司 GluR1抗体(Cell Signaling, 13185)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 1). Nat Commun (2014) ncbi
domestic rabbit 单克隆(D10G5)
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 GluR1抗体(Cell Signaling, 8084)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Front Integr Neurosci (2014) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 人类; 表 2
西格玛奥德里奇 GluR1抗体(Sigma, A4352)被用于被用于免疫印迹在人类样本上 (表 2). Transl Psychiatry (2016) ncbi
文章列表
  1. Azarnia Tehran D, Kochlamazashvili G, Pampaloni N, Sposini S, Shergill J, Lehmann M, et al. Selective endocytosis of Ca2+-permeable AMPARs by the Alzheimer's disease risk factor CALM bidirectionally controls synaptic plasticity. Sci Adv. 2022;8:eabl5032 pubmed 出版商
  2. Sun J, Liu Y, Hao X, Lin W, Su W, Chiang E, et al. LAMTOR1 inhibition of TRPML1-dependent lysosomal calcium release regulates dendritic lysosome trafficking and hippocampal neuronal function. EMBO J. 2022;41:e108119 pubmed 出版商
  3. Qureshi Y, Berman D, Marsh S, Klein R, Patel V, Simoes S, et al. The neuronal retromer can regulate both neuronal and microglial phenotypes of Alzheimer's disease. Cell Rep. 2022;38:110262 pubmed 出版商
  4. Luo R, Fan Y, Yang J, Ye M, Zhang D, Guo K, et al. A novel missense variant in ACAA1 contributes to early-onset Alzheimer's disease, impairs lysosomal function, and facilitates amyloid-β pathology and cognitive decline. Signal Transduct Target Ther. 2021;6:325 pubmed 出版商
  5. Swarnkar S, Avchalumov Y, Espadas I, Grinman E, Liu X, Raveendra B, et al. Molecular motor protein KIF5C mediates structural plasticity and long-term memory by constraining local translation. Cell Rep. 2021;36:109369 pubmed 出版商
  6. Safari M, Obexer D, Baier Bitterlich G, zur Nedden S. PKN1 Is a Novel Regulator of Hippocampal GluA1 Levels. Front Synaptic Neurosci. 2021;13:640495 pubmed 出版商
  7. Sahasrabudhe A, Begum F, Guevara C, Morrison C, Hsiao K, Kezunovic N, et al. Cyfip1 Regulates SynGAP1 at Hippocampal Synapses. Front Synaptic Neurosci. 2020;12:581714 pubmed 出版商
  8. Chen C, Soto G, Dumrongprechachan V, BANNON N, Kang S, Kozorovitskiy Y, et al. Pathway-specific dysregulation of striatal excitatory synapses by LRRK2 mutations. elife. 2020;9: pubmed 出版商
  9. Bączyk M, Alami N, Delestrée N, Martinot C, Tang L, Commisso B, et al. Synaptic restoration by cAMP/PKA drives activity-dependent neuroprotection to motoneurons in ALS. J Exp Med. 2020;217: pubmed 出版商
  10. Dörrbaum A, Alvarez Castelao B, Nassim Assir B, Langer J, Schuman E. Proteome dynamics during homeostatic scaling in cultured neurons. elife. 2020;9: pubmed 出版商
  11. Rodriguez Ortiz C, Prieto G, Martini A, Forner S, Trujillo Estrada L, LaFerla F, et al. miR-181a negatively modulates synaptic plasticity in hippocampal cultures and its inhibition rescues memory deficits in a mouse model of Alzheimer's disease. Aging Cell. 2020;19:e13118 pubmed 出版商
  12. Healey K, Kibble S, Hodges S, Reissner K, Testen A, Wills T, et al. Enduring alterations in hippocampal astrocytesynaptic proximity following adolescent alcohol exposure: reversal by gabapentin. Neural Regen Res. 2020;15:1496-1501 pubmed 出版商
  13. Sclip A, Sudhof T. LAR receptor phospho-tyrosine phosphatases regulate NMDA-receptor responses. elife. 2020;9: pubmed 出版商
  14. Inda M, Joshi S, Wang T, Bolaender A, Gandu S, Koren Iii J, et al. The epichaperome is a mediator of toxic hippocampal stress and leads to protein connectivity-based dysfunction. Nat Commun. 2020;11:319 pubmed 出版商
  15. Ye J, Yin Y, Liu H, Fang L, Tao X, Wei L, et al. Tau inhibits PKA by nuclear proteasome-dependent PKAR2α elevation with suppressed CREB/GluA1 phosphorylation. Aging Cell. 2020;19:e13055 pubmed 出版商
  16. Egbenya D, Hussain S, Lai Y, Xia J, Anderson A, Davanger S. Changes in synaptic AMPA receptor concentration and composition in chronic temporal lobe epilepsy. Mol Cell Neurosci. 2018;92:93-103 pubmed 出版商
  17. Cagnetta R, Frese C, Shigeoka T, Krijgsveld J, Holt C. Rapid Cue-Specific Remodeling of the Nascent Axonal Proteome. Neuron. 2018;99:29-46.e4 pubmed 出版商
  18. Wang W, Rein B, Zhang F, Tan T, Zhong P, Qin L, et al. Chemogenetic Activation of Prefrontal Cortex Rescues Synaptic and Behavioral Deficits in a Mouse Model of 16p11.2 Deletion Syndrome. J Neurosci. 2018;38:5939-5948 pubmed 出版商
  19. Liu J, Conde K, Zhang P, Lilascharoen V, Xu Z, Lim B, et al. Enhanced AMPA Receptor Trafficking Mediates the Anorexigenic Effect of Endogenous Glucagon-like Peptide-1 in the Paraventricular Hypothalamus. Neuron. 2017;96:897-909.e5 pubmed 出版商
  20. Li J, Xie X, Li Y, Liu X, Liao X, Su Y, et al. Differential Behavioral and Neurobiological Effects of Chronic Corticosterone Treatment in Adolescent and Adult Rats. Front Mol Neurosci. 2017;10:25 pubmed 出版商
  21. Lopes M, Leal R, Guarnieri R, Schwarzbold M, Hoeller A, Diaz A, et al. A single high dose of dexamethasone affects the phosphorylation state of glutamate AMPA receptors in the human limbic system. Transl Psychiatry. 2016;6:e986 pubmed 出版商
  22. Qi X, Zhang K, Xu T, Yamaki V, Wei Z, Huang M, et al. Sex Differences in Long-Term Potentiation at Temporoammonic-CA1 Synapses: Potential Implications for Memory Consolidation. PLoS ONE. 2016;11:e0165891 pubmed 出版商
  23. Roy A, Kundu M, Jana M, Mishra R, Yung Y, Luan C, et al. Identification and characterization of PPAR? ligands in the hippocampus. Nat Chem Biol. 2016;12:1075-1083 pubmed 出版商
  24. Emanuele M, Esposito A, Camerini S, Antonucci F, Ferrara S, Seghezza S, et al. Exogenous Alpha-Synuclein Alters Pre- and Post-Synaptic Activity by Fragmenting Lipid Rafts. EBioMedicine. 2016;7:191-204 pubmed 出版商
  25. Zhang H, Kang E, Wang Y, Yang C, Yu H, Wang Q, et al. Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice. Nat Commun. 2016;7: pubmed 出版商
  26. Chan E, Shetty M, Sajikumar S, Chen C, Soong T, Wong B. ApoE4 expression accelerates hippocampus-dependent cognitive deficits by enhancing Aβ impairment of insulin signaling in an Alzheimer's disease mouse model. Sci Rep. 2016;6:26119 pubmed 出版商
  27. Chen C, Meng S, Xue Y, Han Y, Sun C, Deng J, et al. Epigenetic modification of PKMζ rescues aging-related cognitive impairment. Sci Rep. 2016;6:22096 pubmed 出版商
  28. Schoen M, Reichel J, Demestre M, Putz S, Deshpande D, Proepper C, et al. Super-Resolution Microscopy Reveals Presynaptic Localization of the ALS/FTD Related Protein FUS in Hippocampal Neurons. Front Cell Neurosci. 2015;9:496 pubmed 出版商
  29. Brai E, Marathe S, Astori S, Fredj N, Perry E, Lamy C, et al. Notch1 Regulates Hippocampal Plasticity Through Interaction with the Reelin Pathway, Glutamatergic Transmission and CREB Signaling. Front Cell Neurosci. 2015;9:447 pubmed 出版商
  30. Hao J, Sun N, Lei L, Li X, Yao B, Sun K, et al. L-Stepholidine rescues memory deficit and synaptic plasticity in models of Alzheimer's disease via activating dopamine D1 receptor/PKA signaling pathway. Cell Death Dis. 2015;6:e1965 pubmed 出版商
  31. Megill A, Tran T, Eldred K, Lee N, Wong P, HOE H, et al. Defective Age-Dependent Metaplasticity in a Mouse Model of Alzheimer's Disease. J Neurosci. 2015;35:11346-57 pubmed 出版商
  32. Pasek J, Wang X, Colbran R. Differential CaMKII regulation by voltage-gated calcium channels in the striatum. Mol Cell Neurosci. 2015;68:234-43 pubmed 出版商
  33. Hryhorczuk C, Florea M, Rodaros D, Poirier I, Daneault C, Des Rosiers C, et al. Dampened Mesolimbic Dopamine Function and Signaling by Saturated but not Monounsaturated Dietary Lipids. Neuropsychopharmacology. 2016;41:811-21 pubmed 出版商
  34. Xue Y, Zhu Z, Han H, Liu J, Meng S, Chen C, et al. Overexpression of Protein Kinase Mζ in the Prelimbic Cortex Enhances the Formation of Long-Term Fear Memory. Neuropsychopharmacology. 2015;40:2146-56 pubmed 出版商
  35. Gascon E, Lynch K, Ruan H, Almeida S, Verheyden J, Seeley W, et al. Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia. Nat Med. 2014;20:1444-51 pubmed 出版商
  36. Maraschi A, Ciammola A, Folci A, Sassone F, Ronzitti G, Cappelletti G, et al. Parkin regulates kainate receptors by interacting with the GluK2 subunit. Nat Commun. 2014;5:5182 pubmed 出版商
  37. Qiu S, Zhang M, Liu Y, Guo Y, Zhao H, Song Q, et al. GluA1 phosphorylation contributes to postsynaptic amplification of neuropathic pain in the insular cortex. J Neurosci. 2014;34:13505-15 pubmed 出版商
  38. Khodosevich K, Jacobi E, Farrow P, Schulmann A, Rusu A, Zhang L, et al. Coexpressed auxiliary subunits exhibit distinct modulatory profiles on AMPA receptor function. Neuron. 2014;83:601-15 pubmed 出版商
  39. von Roemeling C, Radisky D, Marlow L, Cooper S, Grebe S, ANASTASIADIS P, et al. Neuronal pentraxin 2 supports clear cell renal cell carcinoma by activating the AMPA-selective glutamate receptor-4. Cancer Res. 2014;74:4796-810 pubmed 出版商
  40. Lee S, Sharma M, S dhof T, Shen J. Synaptic function of nicastrin in hippocampal neurons. Proc Natl Acad Sci U S A. 2014;111:8973-8 pubmed 出版商
  41. Gruol D, Vo K, Bray J, Roberts A. CCL2-ethanol interactions and hippocampal synaptic protein expression in a transgenic mouse model. Front Integr Neurosci. 2014;8:29 pubmed 出版商
  42. Wei J, Yuen E, Liu W, Li X, Zhong P, Karatsoreos I, et al. Estrogen protects against the detrimental effects of repeated stress on glutamatergic transmission and cognition. Mol Psychiatry. 2014;19:588-98 pubmed 出版商
  43. Megill A, Lee T, Dibattista A, Song J, Spitzer M, Rubinshtein M, et al. A tetra(ethylene glycol) derivative of benzothiazole aniline enhances Ras-mediated spinogenesis. J Neurosci. 2013;33:9306-18 pubmed 出版商