这是一篇来自已证抗体库的有关人类 Grb2的综述,是根据29篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Grb2 抗体。
Grb2 同义词: ASH; EGFRBP-GRB2; Grb3-3; MST084; MSTP084; NCKAP2

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(Y301)
  • 免疫印迹; 人类; 图 5f
艾博抗(上海)贸易有限公司 Grb2抗体(Abcam, ab32111)被用于被用于免疫印迹在人类样本上 (图 5f). Aging (Albany NY) (2021) ncbi
小鼠 单克隆(M331)
  • 免疫细胞化学; 人类; 图 5a
  • 免疫印迹; 人类; 图 6a
艾博抗(上海)贸易有限公司 Grb2抗体(Abcam, ab86713)被用于被用于免疫细胞化学在人类样本上 (图 5a) 和 被用于免疫印迹在人类样本上 (图 6a). Biochim Biophys Acta Mol Cell Res (2017) ncbi
domestic rabbit 单克隆(Y301)
  • 免疫印迹; 小鼠; 1:2000
艾博抗(上海)贸易有限公司 Grb2抗体(Abcam, ab32111)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Acta Neuropathol (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(C-7)
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术 Grb2抗体(Santa Cruz Biotechnology, sc-8034)被用于被用于免疫印迹在人类样本上 (图 5c). Breast Cancer Res (2019) ncbi
小鼠 单克隆(E-1)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 Grb2抗体(Santa Cruz, sc-17813)被用于被用于免疫印迹在大鼠样本上. Front Neurosci (2016) ncbi
小鼠 单克隆(C-7)
  • 免疫印迹; 人类; 1:200; 图 2
圣克鲁斯生物技术 Grb2抗体(Santa Cruz, sc-8034)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2). Oncol Lett (2016) ncbi
小鼠 单克隆(1-68)
  • 免疫沉淀; 人类; 图 2g
  • 免疫细胞化学; 人类; 1:500; 图 s3h
  • 免疫印迹; 人类; 1:1000; 图 5a
圣克鲁斯生物技术 Grb2抗体(Santa Cruz Biotechnology, sc-503)被用于被用于免疫沉淀在人类样本上 (图 2g), 被用于免疫细胞化学在人类样本上浓度为1:500 (图 s3h) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Nat Commun (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s6a
赛信通(上海)生物试剂有限公司 Grb2抗体(Cell Signaling, 3972)被用于被用于免疫印迹在小鼠样本上 (图 s6a). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Grb2抗体(Cell Signaling, 3972)被用于被用于免疫印迹在人类样本上 (图 4c). Cancer Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Grb2抗体(Cell Signaling, 3972)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 Grb2抗体(Cell Signaling Technology, 3972S)被用于被用于免疫印迹在人类样本上 (图 8). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Grb2抗体(Cell Signaling, 3972)被用于被用于免疫印迹在小鼠样本上 (图 5). Front Cell Neurosci (2016) ncbi
碧迪BD
小鼠 单克隆(81/GRB2)
  • 免疫印迹; 人类; 1:2000; 图 s3-1f
碧迪BD Grb2抗体(BD Transduction Laboratories, 610112)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s3-1f). elife (2021) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫印迹; 人类; 1:2000; 图 s3-1f
碧迪BD Grb2抗体(BD Transduction Laboratories, 610112)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s3-1f). elife (2021) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫印迹; 人类; 1:1000; 图 3b
碧迪BD Grb2抗体(BD, 610111s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). elife (2021) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫印迹; 小鼠; 1:1000; 图 7g
  • 免疫印迹; 人类; 1:1000; 图 7g
碧迪BD Grb2抗体(BD, 610112)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7g) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 7g). J Immunother Cancer (2021) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫印迹; 大鼠; 图 2d
碧迪BD Grb2抗体(BD Bioscences, 610111)被用于被用于免疫印迹在大鼠样本上 (图 2d). Cell (2019) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫细胞化学; 人类; 图 s12
碧迪BD Grb2抗体(BD Biosciences, 610112)被用于被用于免疫细胞化学在人类样本上 (图 s12). Mol Biol Cell (2016) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫印迹; 人类; 图 6b
碧迪BD Grb2抗体(BD Biosciences, 610111)被用于被用于免疫印迹在人类样本上 (图 6b). Nat Struct Mol Biol (2016) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫印迹; 人类
碧迪BD Grb2抗体(Transduction Lab, 610111)被用于被用于免疫印迹在人类样本上. Sci Rep (2016) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫印迹; 人类; 图 4
碧迪BD Grb2抗体(BD Pharmingen, 610111)被用于被用于免疫印迹在人类样本上 (图 4). Mol Cancer (2015) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫印迹; 人类; 图 2
  • 免疫印迹; 小鼠; 图 1
碧迪BD Grb2抗体(BD Bioscience, 610111)被用于被用于免疫印迹在人类样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 1). Nat Med (2015) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫印迹; 人类; 1:1000; 图 2
碧迪BD Grb2抗体(BD Transduction Laboratories, 610112)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫印迹; 人类; 图 3
碧迪BD Grb2抗体(BD Biosciences, 610112)被用于被用于免疫印迹在人类样本上 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫印迹; 小鼠; 图 2
碧迪BD Grb2抗体(BD Bioscience, 610112)被用于被用于免疫印迹在小鼠样本上 (图 2). Cancer Res (2015) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫印迹; 人类; 图 4
碧迪BD Grb2抗体(BD Transduction, 610112)被用于被用于免疫印迹在人类样本上 (图 4). J Cell Sci (2015) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫印迹; 小鼠; 1:1000; 图 5D
碧迪BD Grb2抗体(BD, 610112)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5D). DNA Repair (Amst) (2015) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫沉淀; 小鼠; 图 7
  • 免疫印迹; 小鼠; 1:2000; 图 7
碧迪BD Grb2抗体(BD Transduction Laboratories, 610112)被用于被用于免疫沉淀在小鼠样本上 (图 7) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 7). PLoS ONE (2014) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫印迹; 人类; 1:2000
碧迪BD Grb2抗体(BD Biosciences, 610111)被用于被用于免疫印迹在人类样本上浓度为1:2000. FEBS Lett (2013) ncbi
文章列表
  1. Zhang Y, Ding L, Ni Q, Tao R, Qin J. Transcription factor PAX4 facilitates gastric cancer progression through interacting with miR-27b-3p/Grb2 axis. Aging (Albany NY). 2021;13:16786-16803 pubmed 出版商
  2. Vemulapalli V, Chylek L, Erickson A, Pfeiffer A, Gabriel K, LaRochelle J, et al. Time-resolved phosphoproteomics reveals scaffolding and catalysis-responsive patterns of SHP2-dependent signaling. elife. 2021;10: pubmed 出版商
  3. Willoughby P, Allen M, Yu J, Korytnikov R, Chen T, Liu Y, et al. The recycling endosome protein Rab25 coordinates collective cell movements in the zebrafish surface epithelium. elife. 2021;10: pubmed 出版商
  4. Alghanem A, Abello J, Maurer J, Kumar A, Ta C, Gunasekar S, et al. The SWELL1-LRRC8 complex regulates endothelial AKT-eNOS signaling and vascular function. elife. 2021;10: pubmed 出版商
  5. Ghonim M, Ibba S, Tarhuni A, Errami Y, Luu H, Dean M, et al. Targeting PARP-1 with metronomic therapy modulates MDSC suppressive function and enhances anti-PD-1 immunotherapy in colon cancer. J Immunother Cancer. 2021;9: pubmed 出版商
  6. Lundby A, Franciosa G, Emdal K, Refsgaard J, Gnosa S, Bekker Jensen D, et al. Oncogenic Mutations Rewire Signaling Pathways by Switching Protein Recruitment to Phosphotyrosine Sites. Cell. 2019;179:543-560.e26 pubmed 出版商
  7. Kuriakose J, Redecke V, Guy C, Zhou J, Wu R, Ippagunta S, et al. Patrolling monocytes promote the pathogenesis of early lupus-like glomerulonephritis. J Clin Invest. 2019;129:2251-2265 pubmed 出版商
  8. Kennedy S, Han J, Portman N, Nobis M, Hastings J, Murphy K, et al. Targeting promiscuous heterodimerization overcomes innate resistance to ERBB2 dimerization inhibitors in breast cancer. Breast Cancer Res. 2019;21:43 pubmed 出版商
  9. Vaishnavi A, Schubert L, Rix U, Marek L, Le A, Keysar S, et al. EGFR Mediates Responses to Small-Molecule Drugs Targeting Oncogenic Fusion Kinases. Cancer Res. 2017;77:3551-3563 pubmed 出版商
  10. Luo L, Bokil N, Wall A, Kapetanovic R, Lansdaal N, Marceline F, et al. SCIMP is a transmembrane non-TIR TLR adaptor that promotes proinflammatory cytokine production from macrophages. Nat Commun. 2017;8:14133 pubmed 出版商
  11. Pandini G, Satriano C, Pietropaolo A, Gianì F, Travaglia A, La Mendola D, et al. The Inorganic Side of NGF: Copper(II) and Zinc(II) Affect the NGF Mimicking Signaling of the N-Terminus Peptides Encompassing the Recognition Domain of TrkA Receptor. Front Neurosci. 2016;10:569 pubmed 出版商
  12. Zhang L, Dai F, Cui L, Zhou B, Guo Y. Up-regulation of the active form of small GTPase Rab13 promotes macroautophagy in vascular endothelial cells. Biochim Biophys Acta Mol Cell Res. 2017;1864:613-624 pubmed 出版商
  13. Yi J, Manna A, Barr V, Hong J, Neuman K, Samelson L. madSTORM: a superresolution technique for large-scale multiplexing at single-molecule accuracy. Mol Biol Cell. 2016;27:3591-3600 pubmed
  14. Sousa A, Rei M, Freitas R, Ricardo S, Caffrey T, David L, et al. Effect of MUC1/?-catenin interaction on the tumorigenic capacity of pancreatic CD133+ cells. Oncol Lett. 2016;12:1811-1817 pubmed
  15. Liu L, Phua Y, Lee R, Ma X, Jenkins Y, Novy K, et al. Homo- and Heterotypic Association Regulates Signaling by the SgK269/PEAK1 and SgK223 Pseudokinases. J Biol Chem. 2016;291:21571-21583 pubmed
  16. Francavilla C, Papetti M, Rigbolt K, Pedersen A, Sigurdsson J, Cazzamali G, et al. Multilayered proteomics reveals molecular switches dictating ligand-dependent EGFR trafficking. Nat Struct Mol Biol. 2016;23:608-18 pubmed 出版商
  17. Osinalde N, Sánchez Quiles V, Blagoev B, Kratchmarova I. Changes in Gab2 phosphorylation and interaction partners in response to interleukin (IL)-2 stimulation in T-lymphocytes. Sci Rep. 2016;6:23530 pubmed 出版商
  18. Zhang X, Peng D, Xi Y, Yuan C, Sagum C, Klein B, et al. G9a-mediated methylation of ERα links the PHF20/MOF histone acetyltransferase complex to hormonal gene expression. Nat Commun. 2016;7:10810 pubmed 出版商
  19. Balakrishnan S, Niebert M, Richter D. Rescue of Cyclic AMP Mediated Long Term Potentiation Impairment in the Hippocampus of Mecp2 Knockout (Mecp2(-/y) ) Mice by Rolipram. Front Cell Neurosci. 2016;10:15 pubmed 出版商
  20. van Jaarsveld M, van Kuijk P, Boersma A, Helleman J, Van Ijcken W, Mathijssen R, et al. miR-634 restores drug sensitivity in resistant ovarian cancer cells by targeting the Ras-MAPK pathway. Mol Cancer. 2015;14:196 pubmed 出版商
  21. Wen Q, Yang Q, Goldenson B, Malinge S, Lasho T, Schneider R, et al. Targeting megakaryocytic-induced fibrosis in myeloproliferative neoplasms by AURKA inhibition. Nat Med. 2015;21:1473-80 pubmed 出版商
  22. Xing M, Wang X, Palmai Pallag T, Shen H, Helleday T, Hickson I, et al. Acute MUS81 depletion leads to replication fork slowing and a constitutive DNA damage response. Oncotarget. 2015;6:37638-46 pubmed 出版商
  23. Capuani F, Conte A, Argenzio E, Marchetti L, Priami C, Polo S, et al. Quantitative analysis reveals how EGFR activation and downregulation are coupled in normal but not in cancer cells. Nat Commun. 2015;6:7999 pubmed 出版商
  24. Kratochvill F, Gratz N, Qualls J, Van De Velde L, Chi H, Kovarik P, et al. Tristetraprolin Limits Inflammatory Cytokine Production in Tumor-Associated Macrophages in an mRNA Decay-Independent Manner. Cancer Res. 2015;75:3054-64 pubmed 出版商
  25. Parodi B, Rossi S, Morando S, Cordano C, Bragoni A, Motta C, et al. Fumarates modulate microglia activation through a novel HCAR2 signaling pathway and rescue synaptic dysregulation in inflamed CNS. Acta Neuropathol. 2015;130:279-95 pubmed 出版商
  26. Diesenberg K, Beerbaum M, Fink U, Schmieder P, Krauss M. SEPT9 negatively regulates ubiquitin-dependent downregulation of EGFR. J Cell Sci. 2015;128:397-407 pubmed 出版商
  27. Uringa E, Baldeyron C, Odijk H, Wassenaar E, van Cappellen W, Maas A, et al. A mRad51-GFP antimorphic allele affects homologous recombination and DNA damage sensitivity. DNA Repair (Amst). 2015;25:27-40 pubmed 出版商
  28. Tao W, Moore R, Smith E, Xu X. Hormonal induction and roles of Disabled-2 in lactation and involution. PLoS ONE. 2014;9:e110737 pubmed 出版商
  29. Kodigepalli K, Dutta P, Bauckman K, Nanjundan M. SnoN/SkiL expression is modulated via arsenic trioxide-induced activation of the PI3K/AKT pathway in ovarian cancer cells. FEBS Lett. 2013;587:5-16 pubmed 出版商