这是一篇来自已证抗体库的有关人类 H3-3B的综述,是根据274篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合H3-3B 抗体。
H3-3B 同义词: H3-3A; H3.3B; H3F3B

Active Motif
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4b
Active MotifH3-3B抗体(Active Motif, 39133)被用于被用于染色质免疫沉淀 在人类样本上 (图 4b). elife (2020) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; roundworm ; 图 2a
Active MotifH3-3B抗体(Active Motif, 39388)被用于被用于ChIP-Seq在roundworm 样本上 (图 2a). elife (2020) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; roundworm ; 图 2a
Active MotifH3-3B抗体(Active Motif, 39654)被用于被用于ChIP-Seq在roundworm 样本上 (图 2a). elife (2020) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 s3f
Active MotifH3-3B抗体(Active Motif, 39,155)被用于被用于染色质免疫沉淀 在人类样本上 (图 s3f). Mol Cancer (2020) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 2c
Active MotifH3-3B抗体(Active Motif, 39155)被用于被用于ChIP-Seq在小鼠样本上 (图 2c). Oncogene (2020) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 1:500; 图 s7f, s7g
Active MotifH3-3B抗体(Active motif, 39297)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为1:500 (图 s7f, s7g). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 5a
Active MotifH3-3B抗体(Active Motif, 39133)被用于被用于ChIP-Seq在人类样本上 (图 5a). Nat Commun (2019) ncbi
小鼠 单克隆(MABI 0309)
  • 染色质免疫沉淀 ; 人类; 图 4b
Active MotifH3-3B抗体(Active Motif, 39685)被用于被用于染色质免疫沉淀 在人类样本上 (图 4b). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s4d
Active MotifH3-3B抗体(Active Motif, 39155)被用于被用于免疫细胞化学在人类样本上 (图 s4d). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s4d
Active MotifH3-3B抗体(Active Motif, 39765)被用于被用于免疫细胞化学在人类样本上 (图 s4d). Nature (2019) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 s4b
Active MotifH3-3B抗体(Active Motif, 39297)被用于被用于染色质免疫沉淀 在人类样本上 (图 s4b). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:250; 图 1c
Active MotifH3-3B抗体(Active Motif, 39753)被用于被用于免疫组化在fruit fly 样本上浓度为1:250 (图 1c). elife (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 s4a
Active MotifH3-3B抗体(Active Motif, 39137)被用于被用于ChIP-Seq在小鼠样本上 (图 s4a). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 1a
Active MotifH3-3B抗体(Active Motif, 39133)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1a). elife (2019) ncbi
小鼠 单克隆(MABI 0323)
  • 免疫细胞化学; 人类; 1:250; 图 1a
Active MotifH3-3B抗体(Active Motif, 61017)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 1a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 1a
Active MotifH3-3B抗体(Active Motif, 39765)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1a). elife (2019) ncbi
小鼠 单克隆(MABI 0302)
  • 免疫细胞化学; 人类; 1:250; 图 1a
Active MotifH3-3B抗体(Active Motif, 39635)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 1a). elife (2019) ncbi
小鼠 单克隆(MABI 0309)
  • 免疫细胞化学; 人类; 1:250; 图 1a
Active MotifH3-3B抗体(Active Motif, 39685)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 1a). elife (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; ; 图 4e
  • 染色质免疫沉淀 ; 小鼠; ; 图 4g
Active MotifH3-3B抗体(Active Motif, 39915)被用于被用于ChIP-Seq在小鼠样本上浓度为 (图 4e) 和 被用于染色质免疫沉淀 在小鼠样本上浓度为 (图 4g). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 非洲爪蛙; 图 3e
Active MotifH3-3B抗体(Active Motif, 39133)被用于被用于ChIP-Seq在非洲爪蛙样本上 (图 3e). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 e4c
Active MotifH3-3B抗体(Active Motif, 61101)被用于被用于免疫印迹在小鼠样本上 (图 e4c). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:100; 图 s2a
Active MotifH3-3B抗体(Active Motif, 39141)被用于被用于免疫组化在fruit fly 样本上浓度为1:100 (图 s2a). J Cell Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:100; 图 2b
Active MotifH3-3B抗体(Active Motif, 39135)被用于被用于免疫组化在fruit fly 样本上浓度为1:100 (图 2b). J Cell Biol (2019) ncbi
小鼠 单克隆(MABI 0301)
  • 免疫组化; fruit fly ; 1:100; 图 2a
Active MotifH3-3B抗体(Active Motif, 39763)被用于被用于免疫组化在fruit fly 样本上浓度为1:100 (图 2a). J Cell Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s7a
Active MotifH3-3B抗体(Active Motif, 39239)被用于被用于免疫细胞化学在人类样本上 (图 s7a). Nature (2019) ncbi
小鼠 单克隆(MABI 0319)
  • 免疫细胞化学; 人类; 图 s7a
Active MotifH3-3B抗体(Active Motif, 61013)被用于被用于免疫细胞化学在人类样本上 (图 s7a). Nature (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 s6b
Active MotifH3-3B抗体(Active Motif, 39133)被用于被用于ChIP-Seq在人类样本上 (图 s6b). Cancer Cell (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; fruit fly ; 图 1s2h
Active MotifH3-3B抗体(Active Motif, 39161)被用于被用于ChIP-Seq在fruit fly 样本上 (图 1s2h). elife (2019) ncbi
小鼠 单克隆(MABI 0309)
  • 其他; 人类; 图 s7k
Active MotifH3-3B抗体(Active Motif, 39685)被用于被用于其他在人类样本上 (图 s7k). Cell (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 4p
Active MotifH3-3B抗体(Active Motif, 39159)被用于被用于ChIP-Seq在小鼠样本上 (图 4p). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 3a
Active MotifH3-3B抗体(Active Motif, 39133)被用于被用于ChIP-Seq在人类样本上 (图 3a). Epigenetics Chromatin (2019) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 3c
Active MotifH3-3B抗体(Active motif, 39133)被用于被用于染色质免疫沉淀 在人类样本上 (图 3c). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3e
Active MotifH3-3B抗体(Active Motif, 39155)被用于被用于免疫印迹在小鼠样本上 (图 3e). Mol Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 s9c
Active MotifH3-3B抗体(Active Motif, 39599)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s9c). Nat Commun (2019) ncbi
小鼠 单克隆(MABI 0321)
  • ChIP-Seq; 小鼠; 图 5a
  • 免疫印迹; 小鼠; 1:1000; 图 1b
Active MotifH3-3B抗体(Active Motif, 61015)被用于被用于ChIP-Seq在小鼠样本上 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 6g
Active MotifH3-3B抗体(Active Motif, 39133)被用于被用于ChIP-Seq在小鼠样本上 (图 6g). Dev Biol (2019) ncbi
小鼠 单克隆(MABI 0321)
  • 免疫印迹; 人类; 1:1000; 图 1d
Active MotifH3-3B抗体((Active Motif, 61015)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1h
Active MotifH3-3B抗体(Active Motif, 39163)被用于被用于免疫印迹在人类样本上 (图 1h). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 3b
Active MotifH3-3B抗体(Active Motif, 39,135)被用于被用于ChIP-Seq在人类样本上 (图 3b). BMC Med Genomics (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 1a
  • 免疫印迹; 人类; 1:1000; 图 3f
Active MotifH3-3B抗体(Active Motif, 39155)被用于被用于ChIP-Seq在人类样本上 (图 1a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3f). Nat Commun (2019) ncbi
小鼠 单克隆(MABI 0323)
  • 免疫细胞化学; 小鼠; 图 2s1d, 3g
Active MotifH3-3B抗体(Active Motif, 61017)被用于被用于免疫细胞化学在小鼠样本上 (图 2s1d, 3g). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s20a
Active MotifH3-3B抗体(Active Motif, 39155)被用于被用于免疫印迹在小鼠样本上 (图 s20a). Science (2019) ncbi
小鼠 单克隆(MABI 0309)
  • 免疫细胞化学; 小鼠; 1:100; 图 4a
Active MotifH3-3B抗体(Active Motif, 39685)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 4a). Cell (2019) ncbi
小鼠 单克隆(MABI 0309)
  • 染色质免疫沉淀 ; 人类; 图 7d
Active MotifH3-3B抗体(Active Motif, 39685)被用于被用于染色质免疫沉淀 在人类样本上 (图 7d). Nucleic Acids Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5a
Active MotifH3-3B抗体(Active Motif, 39159)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Bone Res (2018) ncbi
小鼠 单克隆(MABI 0323)
  • 免疫细胞化学; 小鼠; 1:500; 图 1a
Active MotifH3-3B抗体(Active Motif, 61017)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1a). Genes Dev (2018) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 5b
Active MotifH3-3B抗体(Active Motif, 61101)被用于被用于ChIP-Seq在人类样本上 (图 5b). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 5b
Active MotifH3-3B抗体(Active Motif, 39155)被用于被用于ChIP-Seq在人类样本上 (图 5b). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 5b
Active MotifH3-3B抗体(Active Motif, 39159)被用于被用于ChIP-Seq在人类样本上 (图 5b). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 5b
Active MotifH3-3B抗体(Active Motif, 39297)被用于被用于ChIP-Seq在人类样本上 (图 5b). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 5b
Active MotifH3-3B抗体(Active Motif, 39133)被用于被用于ChIP-Seq在人类样本上 (图 5b). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 5b
Active MotifH3-3B抗体(Active Motif, 39161)被用于被用于ChIP-Seq在人类样本上 (图 5b). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 5b
Active MotifH3-3B抗体(Active Motif, 39141)被用于被用于ChIP-Seq在人类样本上 (图 5b). Cancer Cell (2018) ncbi
小鼠 单克隆(MABI 0319)
  • 染色质免疫沉淀 ; 小鼠; 图 3f
Active MotifH3-3B抗体(Active Motif, 61013)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 3f). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 3g
Active MotifH3-3B抗体(Active Motif, 39155)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 3g). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 8a
Active MotifH3-3B抗体(Active Motif, 39133)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 8a). J Biol Chem (2018) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 斑马鱼; 图 s1a
Active MotifH3-3B抗体(Active Motif, 39297)被用于被用于ChIP-Seq在斑马鱼样本上 (图 s1a). Cell (2018) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 斑马鱼; 图 s1a
Active MotifH3-3B抗体(Active Motif, 39159)被用于被用于ChIP-Seq在斑马鱼样本上 (图 s1a). Cell (2018) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 斑马鱼; 图 s1a
Active MotifH3-3B抗体(Active Motif, 39599)被用于被用于ChIP-Seq在斑马鱼样本上 (图 s1a). Cell (2018) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 斑马鱼; 图 s1a
Active MotifH3-3B抗体(Active Motif, 39155)被用于被用于ChIP-Seq在斑马鱼样本上 (图 s1a). Cell (2018) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 4a
Active MotifH3-3B抗体(Active Motif, 39159)被用于被用于ChIP-Seq在小鼠样本上 (图 4a). Cell Rep (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 3a
Active MotifH3-3B抗体(Active Motif, 39155)被用于被用于ChIP-Seq在人类样本上 (图 3a). elife (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 3d
Active MotifH3-3B抗体(Active Motif, 39133)被用于被用于ChIP-Seq在人类样本上 (图 3d). Cell Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 s4c
Active MotifH3-3B抗体(Active Motif, AM39155)被用于被用于免疫细胞化学在小鼠样本上 (图 s4c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(MABI 0303)
  • 免疫印迹; 小鼠; 1:1000; 图 5f
Active MotifH3-3B抗体(Active Motif, 39679)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5f). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:100; 表 s2
Active MotifH3-3B抗体(Active Motif, 39297)被用于被用于免疫组化在fruit fly 样本上浓度为1:100 (表 s2). Science (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4e
Active MotifH3-3B抗体(Active Motif, 39133)被用于被用于免疫印迹在人类样本上 (图 4e). Sci Adv (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4e
Active MotifH3-3B抗体(Active Motif, 39915)被用于被用于免疫印迹在人类样本上 (图 4e). Sci Adv (2017) ncbi
小鼠 单克隆(MABI 0301)
  • 免疫印迹; 人类; 图 5b
Active MotifH3-3B抗体(Active Motif, 39763)被用于被用于免疫印迹在人类样本上 (图 5b). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4b
Active MotifH3-3B抗体(Active Motif, 39281)被用于被用于免疫细胞化学在人类样本上 (图 4b). EBioMedicine (2017) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 6e
  • 免疫印迹; 人类; 图 6b
Active MotifH3-3B抗体(Active Motif, 39915)被用于被用于染色质免疫沉淀 在人类样本上 (图 6e) 和 被用于免疫印迹在人类样本上 (图 6b). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 5b
Active MotifH3-3B抗体(Active Motif, 39161)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5b). Nat Commun (2017) ncbi
小鼠 单克隆(MABI 0309)
  • 染色质免疫沉淀 ; 小鼠; 图 8d
Active MotifH3-3B抗体(Active Motif, 39685)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 8d). Dev Cell (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 s9f
  • ChIP-Seq; 人类; 图 s9b
Active MotifH3-3B抗体(Active Motif, 39135)被用于被用于ChIP-Seq在小鼠样本上 (图 s9f) 和 被用于ChIP-Seq在人类样本上 (图 s9b). Science (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
Active MotifH3-3B抗体(Active Motif, 39765)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
Active MotifH3-3B抗体(Active Motif, 39755)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
Active MotifH3-3B抗体(Active Motif, 39917)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
Active MotifH3-3B抗体(Active Motif, 39915)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
Active MotifH3-3B抗体(Active Motif, 39697)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
Active MotifH3-3B抗体(Active Motif, 39155)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
Active MotifH3-3B抗体(Active Motif, 39139)被用于被用于免疫印迹在人类样本上 (图 2b). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
Active MotifH3-3B抗体(Active Motif, 39133)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Commun (2017) ncbi
小鼠 单克隆(12.1)
  • 免疫印迹; 人类; 图 2a
Active MotifH3-3B抗体(Active Motif, 61061)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
Active MotifH3-3B抗体(Active Motif, 39381)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
Active MotifH3-3B抗体(Active Motif, 39379)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
Active MotifH3-3B抗体(Active Motif, 39131)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 1b
Active MotifH3-3B抗体(Active motif, 39297)被用于被用于ChIP-Seq在小鼠样本上 (图 1b). Cell Stem Cell (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 1b
Active MotifH3-3B抗体(Active motif, 39133)被用于被用于ChIP-Seq在小鼠样本上 (图 1b). Cell Stem Cell (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 1b
Active MotifH3-3B抗体(Active motif, 39159)被用于被用于ChIP-Seq在小鼠样本上 (图 1b). Cell Stem Cell (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 1b
Active MotifH3-3B抗体(Active motif, 39155)被用于被用于ChIP-Seq在小鼠样本上 (图 1b). Cell Stem Cell (2017) ncbi
小鼠 单克隆(MABI 0332)
  • 免疫组化; roundworm ; 1:200; 图 6b
Active MotifH3-3B抗体(Active Motif, 61019)被用于被用于免疫组化在roundworm 样本上浓度为1:200 (图 6b). PLoS Genet (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
Active MotifH3-3B抗体(Active Motif, 39281)被用于被用于免疫印迹在人类样本上 (图 6a). Nucleic Acids Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
Active MotifH3-3B抗体(Active Motif, 39599)被用于被用于免疫印迹在人类样本上 (图 6a). Nucleic Acids Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; brewer's yeast; 1:5000-1:7500; 图 1a
Active MotifH3-3B抗体(Active Motif, 39163)被用于被用于免疫印迹在brewer's yeast样本上浓度为1:5000-1:7500 (图 1a). BMC Genomics (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; brewer's yeast; 1:2000; 图 1b
Active MotifH3-3B抗体(Active Motif, 39145)被用于被用于免疫印迹在brewer's yeast样本上浓度为1:2000 (图 1b). BMC Genomics (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; brewer's yeast; 1:5000; 图 1a
Active MotifH3-3B抗体(Active Motif, 39255)被用于被用于免疫印迹在brewer's yeast样本上浓度为1:5000 (图 1a). BMC Genomics (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; brewer's yeast; 1:5000; 图 1a
Active MotifH3-3B抗体(Active Motif, 39913)被用于被用于免疫印迹在brewer's yeast样本上浓度为1:5000 (图 1a). BMC Genomics (2017) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; brewer's yeast; 图 s2a
  • 免疫印迹; brewer's yeast; 1:3000-1:5000; 图 1a
Active MotifH3-3B抗体(Active Motif, 39159)被用于被用于染色质免疫沉淀 在brewer's yeast样本上 (图 s2a) 和 被用于免疫印迹在brewer's yeast样本上浓度为1:3000-1:5000 (图 1a). BMC Genomics (2017) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 3f
  • 免疫印迹; 人类; 图 3a
Active MotifH3-3B抗体(Active Motif, 39133)被用于被用于染色质免疫沉淀 在人类样本上 (图 3f) 和 被用于免疫印迹在人类样本上 (图 3a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆
  • proximity ligation assay; 人类; 图 4e
  • 免疫细胞化学; 人类; 1:500; 图 3e
Active MotifH3-3B抗体(Active Motif, 39535)被用于被用于proximity ligation assay在人类样本上 (图 4e) 和 被用于免疫细胞化学在人类样本上浓度为1:500 (图 3e). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s4b
Active MotifH3-3B抗体(Active Motif, 39163)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4b). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 5a
Active MotifH3-3B抗体(Active Motif, 39137)被用于被用于ChIP-Seq在小鼠样本上 (图 5a). Biochim Biophys Acta Gene Regul Mech (2017) ncbi
小鼠 单克隆(MABI 0333)
  • 免疫印迹; 人类; 图 4a
Active MotifH3-3B抗体(Active Motif, 61021)被用于被用于免疫印迹在人类样本上 (图 4a). Nat Genet (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3e
Active MotifH3-3B抗体(Active Motif, 39139)被用于被用于免疫印迹在人类样本上 (图 3e). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 s3f
Active MotifH3-3B抗体(Active Motif, 39377)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s3f). Development (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1b
Active MotifH3-3B抗体(Active Motif, 39155)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1b). Nat Med (2017) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4c
  • 免疫组化; 人类; 图 s6
Active MotifH3-3B抗体(Active Motif, 39141)被用于被用于染色质免疫沉淀 在人类样本上 (图 4c) 和 被用于免疫组化在人类样本上 (图 s6). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 s5
Active MotifH3-3B抗体(Active Motif, 39155)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s5). Nat Commun (2016) ncbi
小鼠 单克隆(MABI 0309)
  • ChIP-Seq; 人类; 表 2
  • ChIP-Seq; 小鼠; 表 2
Active MotifH3-3B抗体(Active Motif, 39685)被用于被用于ChIP-Seq在人类样本上 (表 2) 和 被用于ChIP-Seq在小鼠样本上 (表 2). Epigenetics Chromatin (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 1:1000; 图 6a
Active MotifH3-3B抗体(Active Motif, 39143)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为1:1000 (图 6a). Nat Cell Biol (2016) ncbi
小鼠 单克隆(MABI 0333)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s3
Active MotifH3-3B抗体(Active Motif, MABI-0333)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 s2
Active MotifH3-3B抗体(Active Motif, 39159)被用于被用于染色质免疫沉淀 在人类样本上 (图 s2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 1c
Active MotifH3-3B抗体(Active Motif, AM39297)被用于被用于ChIP-Seq在小鼠样本上 (图 1c). Genes Dev (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 5
Active MotifH3-3B抗体(Active Motif, 39159)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). Cell (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; fruit fly ; 1:100; 图 s8c
Active MotifH3-3B抗体(Active Motif, 39155)被用于被用于染色质免疫沉淀 在fruit fly 样本上浓度为1:100 (图 s8c). Nat Genet (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 非洲爪蛙; 图 6b
Active MotifH3-3B抗体(Active Motif, 39159)被用于被用于ChIP-Seq在非洲爪蛙样本上 (图 6b). elife (2016) ncbi
小鼠 单克隆(MABI 0332)
  • 染色质免疫沉淀 ; 人类; 图 s9
  • 免疫印迹; 人类; 图 2
Active MotifH3-3B抗体(Active Motif, 61019)被用于被用于染色质免疫沉淀 在人类样本上 (图 s9) 和 被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
Active MotifH3-3B抗体(Active Motif, 39255)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 6b
Active MotifH3-3B抗体(Active motif, 39139)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6b). Oncotarget (2016) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠; 图 3a
Active MotifH3-3B抗体(Active Motif, 39098)被用于被用于免疫组化在小鼠样本上 (图 3a). Radiat Res (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 6
Active MotifH3-3B抗体(active motif, 39917)被用于被用于染色质免疫沉淀 在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 4
Active MotifH3-3B抗体(Active Motif, 39133)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4). Dis Model Mech (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 4
Active MotifH3-3B抗体(Active Motif, 39915)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4). Dis Model Mech (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 4
Active MotifH3-3B抗体(Active Motif, 39137)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4). Dis Model Mech (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 5
Active MotifH3-3B抗体(Active Motif, 39135)被用于被用于ChIP-Seq在小鼠样本上 (图 5). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 表 1
Active MotifH3-3B抗体(Active Motif, 39139)被用于被用于免疫印迹在人类样本上浓度为1:500 (表 1). Br J Cancer (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 大鼠; 图 2b
Active MotifH3-3B抗体(active motif, 39163)被用于被用于染色质免疫沉淀 在大鼠样本上 (图 2b). Science (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 5d
Active MotifH3-3B抗体(Active Motif, 39135)被用于被用于ChIP-Seq在小鼠样本上 (图 5d). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 非洲爪蛙; 图 1
  • ChIP-Seq; 小鼠; 表 1
  • 免疫印迹; 小鼠; 图 6
Active MotifH3-3B抗体(Active Motif, 61101)被用于被用于免疫印迹在非洲爪蛙样本上 (图 1), 被用于ChIP-Seq在小鼠样本上 (表 1) 和 被用于免疫印迹在小鼠样本上 (图 6). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
Active MotifH3-3B抗体(Active Motif, 39651)被用于. Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 4
Active MotifH3-3B抗体(Activemotif, 39159)被用于被用于ChIP-Seq在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(MABI 0309)
  • 染色质免疫沉淀 ; 人类; 图 4
Active MotifH3-3B抗体(ActiveMotif, 39685)被用于被用于染色质免疫沉淀 在人类样本上 (图 4). F1000Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1s2
Active MotifH3-3B抗体(Active Motif, 39155)被用于被用于免疫印迹在小鼠样本上 (图 1s2). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
Active MotifH3-3B抗体(active motif, 39163)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
Active MotifH3-3B抗体(Active Motif, 39253)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 2a
  • 免疫细胞化学; 人类; 1:1000; 图 s3d
  • 免疫印迹; 人类; 图 1a
Active MotifH3-3B抗体(Active Motif, 61101)被用于被用于染色质免疫沉淀 在人类样本上 (图 2a), 被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s3d) 和 被用于免疫印迹在人类样本上 (图 1a). Science (2016) ncbi
小鼠 单克隆(12.1)
  • 免疫印迹; 人类; 图 2a
Active MotifH3-3B抗体(Active Motif, 61061)被用于被用于免疫印迹在人类样本上 (图 2a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
Active MotifH3-3B抗体(Active Motif, 39281)被用于被用于免疫印迹在人类样本上 (图 2a). PLoS ONE (2016) ncbi
小鼠 单克隆(MABI 0301)
  • 免疫印迹; 人类; 图 2b
Active MotifH3-3B抗体(Active Motif, 39763)被用于被用于免疫印迹在人类样本上 (图 2b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
Active MotifH3-3B抗体(Active Motif, 39161)被用于被用于免疫印迹在人类样本上 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
Active MotifH3-3B抗体(Active Motif, 39917)被用于被用于免疫印迹在人类样本上 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 s11b
  • 免疫印迹; 小鼠; 图 s8a
Active MotifH3-3B抗体(Active Motif, 61101)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 s11b) 和 被用于免疫印迹在小鼠样本上 (图 s8a). Science (2016) ncbi
小鼠 单克隆(MABI 0321)
  • 免疫印迹; 小鼠; 图 s6d
Active MotifH3-3B抗体(Active Motif, 61015)被用于被用于免疫印迹在小鼠样本上 (图 s6d). Science (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s6d
Active MotifH3-3B抗体(Active Motif, 39159)被用于被用于免疫印迹在小鼠样本上 (图 s6d). Science (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 6
Active MotifH3-3B抗体(Active Motif, 61101)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 6). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 6
Active MotifH3-3B抗体(Active Motif, 39159)被用于被用于染色质免疫沉淀 在人类样本上 (图 6). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 1:250; 图 4c
  • 免疫印迹; 人类; 1:1000; 图 4a
Active MotifH3-3B抗体(ACTIVE MOTIF, 39919)被用于被用于ChIP-Seq在人类样本上浓度为1:250 (图 4c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
Active MotifH3-3B抗体(Active Motif, 39155)被用于被用于免疫印迹在小鼠样本上 (图 2). Biol Open (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
Active MotifH3-3B抗体(Active Motif, 39297)被用于被用于免疫印迹在小鼠样本上 (图 2). Biol Open (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
Active MotifH3-3B抗体(Active Motif, 39915)被用于被用于免疫印迹在小鼠样本上 (图 2). Biol Open (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
Active MotifH3-3B抗体(Active Motif, 39753)被用于被用于免疫印迹在小鼠样本上 (图 2). Biol Open (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 4b
Active MotifH3-3B抗体(ActiveMotif, 39159)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 4b). Cell Rep (2016) ncbi
小鼠 单克隆(MABI 0309)
  • 染色质免疫沉淀 ; 人类; 图 1
Active MotifH3-3B抗体(Active Motif, 39685)被用于被用于染色质免疫沉淀 在人类样本上 (图 1). J Virol (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 1
Active MotifH3-3B抗体(Active Motif, 39155)被用于被用于染色质免疫沉淀 在人类样本上 (图 1). J Virol (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 1
Active MotifH3-3B抗体(Active Motif, 39141)被用于被用于染色质免疫沉淀 在人类样本上 (图 1). J Virol (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 1
Active MotifH3-3B抗体(Active Motif, 39161)被用于被用于染色质免疫沉淀 在人类样本上 (图 1). J Virol (2016) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s10
Active MotifH3-3B抗体(Active Motif, 39535)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s10). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 1:100; 图 2
Active MotifH3-3B抗体(Active Motif, 39133)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:100 (图 2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; fruit fly ; 图 1e
Active MotifH3-3B抗体(Active motif, 39156)被用于被用于染色质免疫沉淀 在fruit fly 样本上 (图 1e). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
Active MotifH3-3B抗体(Active motif, 39131/39132)被用于. J Biol Chem (2016) ncbi
domestic rabbit 多克隆
Active MotifH3-3B抗体(Active motif, 39565/39565)被用于. J Biol Chem (2016) ncbi
domestic rabbit 多克隆
Active MotifH3-3B抗体(Active motif, 39379/39380)被用于. J Biol Chem (2016) ncbi
小鼠 单克隆(MABI 0301)
  • 免疫沉淀; 人类; 图 1
  • 免疫印迹; 人类; 图 1
Active MotifH3-3B抗体(Active Motif, 39763)被用于被用于免疫沉淀在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). elife (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4
Active MotifH3-3B抗体(Active Motif, 39239)被用于被用于染色质免疫沉淀 在人类样本上 (图 4). Clin Epigenetics (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:800; 图 2
Active MotifH3-3B抗体(ActiveMotif, 39239)被用于被用于免疫细胞化学在小鼠样本上浓度为1:800 (图 2). elife (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 斑马鱼; 图 1
Active MotifH3-3B抗体(Active Motif, AM#39133)被用于被用于ChIP-Seq在斑马鱼样本上 (图 1). Nature (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 2
  • 免疫印迹; 人类; 图 7
Active MotifH3-3B抗体(Active Motif, 39143)被用于被用于染色质免疫沉淀 在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 7). Biochimie (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3s
Active MotifH3-3B抗体(Active motif, 39159)被用于被用于免疫印迹在人类样本上 (图 s3s). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
Active MotifH3-3B抗体(Active motif, 39159)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Cell Res (2016) ncbi
小鼠 单克隆(MABI 0301)
  • 免疫印迹; 人类; 图 1
Active MotifH3-3B抗体(Active Motif, 39763)被用于被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 2b
  • 免疫印迹; 小鼠; 图 1c
Active MotifH3-3B抗体(Active Motif, 39159)被用于被用于ChIP-Seq在小鼠样本上 (图 2b) 和 被用于免疫印迹在小鼠样本上 (图 1c). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 3
Active MotifH3-3B抗体(Active Motif, 39297)被用于被用于ChIP-Seq在人类样本上 (图 3). PLoS Pathog (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 3
Active MotifH3-3B抗体(Active Motif, 39155)被用于被用于ChIP-Seq在人类样本上 (图 3). PLoS Pathog (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 表  s3
Active MotifH3-3B抗体(Active Motif, 39755)被用于被用于ChIP-Seq在小鼠样本上 (表  s3). PLoS Pathog (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 3
Active MotifH3-3B抗体(Active Motif, 39133)被用于被用于染色质免疫沉淀 在人类样本上 (图 3). Nature (2016) ncbi
domestic rabbit 多克隆
  • 酶联免疫吸附测定; Austrofundulus limnaeus; 1:1000; 图 5f
Active MotifH3-3B抗体(Active Motif, 39159)被用于被用于酶联免疫吸附测定在Austrofundulus limnaeus样本上浓度为1:1000 (图 5f). J Exp Biol (2016) ncbi
domestic rabbit 多克隆
  • 酶联免疫吸附测定; Austrofundulus limnaeus; 1:1000; 图 5c
Active MotifH3-3B抗体(Active Motif, 39156)被用于被用于酶联免疫吸附测定在Austrofundulus limnaeus样本上浓度为1:1000 (图 5c). J Exp Biol (2016) ncbi
小鼠 单克隆(2AG-6F12-H4)
  • 免疫细胞化学; 小鼠; 1:100; 图 6
Active MotifH3-3B抗体(Active Motif, 39285/6)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 6). BMC Dev Biol (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3g
Active MotifH3-3B抗体(Active Motif, 39381)被用于被用于免疫印迹在小鼠样本上 (图 3g). Mol Cell Biol (2016) ncbi
小鼠 单克隆(2AG-6F12-H4)
  • 免疫组化; 人类; 图 7a
Active MotifH3-3B抗体(Active Motif, 39285)被用于被用于免疫组化在人类样本上 (图 7a). Epigenetics Chromatin (2015) ncbi
domestic rabbit 多克隆
Active MotifH3-3B抗体(Active Motif, 39239)被用于. Front Plant Sci (2015) ncbi
小鼠 单克隆(MABI 0301)
  • 免疫细胞化学; 小鼠; 图 1b
Active MotifH3-3B抗体(Active Motif, 39763)被用于被用于免疫细胞化学在小鼠样本上 (图 1b). Development (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3
Active MotifH3-3B抗体(Active Motif, 39585)被用于被用于免疫印迹在人类样本上 (图 s3). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(MABI 0301)
  • proximity ligation assay; 人类; 1:4000; 图 2
  • 免疫细胞化学; 人类; 1:4000; 图 2
Active MotifH3-3B抗体(Active Motif, 39763)被用于被用于proximity ligation assay在人类样本上浓度为1:4000 (图 2) 和 被用于免疫细胞化学在人类样本上浓度为1:4000 (图 2). Epigenetics Chromatin (2015) ncbi
小鼠 单克隆(MABI 0323)
  • 免疫细胞化学; 小鼠; 图 8
Active MotifH3-3B抗体(Active Motif, 61017)被用于被用于免疫细胞化学在小鼠样本上 (图 8). Mol Cell Biol (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
Active MotifH3-3B抗体(Active Motif, 39163)被用于被用于免疫印迹在小鼠样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(MABI 0319)
  • 染色质免疫沉淀 ; 小鼠; 图 2
Active MotifH3-3B抗体(Active Motif, 61013)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(MABI 0323)
  • 染色质免疫沉淀 ; 人类
  • 免疫印迹; 人类; 图 st2
Active MotifH3-3B抗体(Active motif, 61017)被用于被用于染色质免疫沉淀 在人类样本上 和 被用于免疫印迹在人类样本上 (图 st2). Oncotarget (2015) ncbi
小鼠 单克隆(MABI 0323)
  • 染色质免疫沉淀 ; 人类; 图 6
Active MotifH3-3B抗体(Active Motif, 61017)被用于被用于染色质免疫沉淀 在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(MABI 0323)
  • 免疫组化; 小鼠; 图 2a
Active MotifH3-3B抗体(Active Motif, 61017)被用于被用于免疫组化在小鼠样本上 (图 2a). PLoS Genet (2015) ncbi
小鼠 单克隆(MABI 0301)
  • 免疫印迹; 人类; 图 1b
Active MotifH3-3B抗体(Active Motif, 39763)被用于被用于免疫印迹在人类样本上 (图 1b). Cell Commun Signal (2015) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 3
Active MotifH3-3B抗体(Active motif, #39139)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 3). Leukemia (2016) ncbi
小鼠 单克隆
  • ChIP-Seq; 小鼠; 图 3a
Active MotifH3-3B抗体(Active Motif, 39535)被用于被用于ChIP-Seq在小鼠样本上 (图 3a). BMC Biol (2015) ncbi
小鼠 单克隆(MABI 0309)
  • 染色质免疫沉淀 ; 人类; 图 6b,6c
Active MotifH3-3B抗体(Active Motif, 39685)被用于被用于染色质免疫沉淀 在人类样本上 (图 6b,6c). PLoS ONE (2015) ncbi
小鼠 单克隆
  • 染色质免疫沉淀 ; 人类; 图 7
Active MotifH3-3B抗体(Active Motif, 39535)被用于被用于染色质免疫沉淀 在人类样本上 (图 7). Mol Cancer (2015) ncbi
小鼠 单克隆(MABI 0301)
  • 染色质免疫沉淀 ; 人类; 图 4f
Active MotifH3-3B抗体(Active Motif, MABI 0301)被用于被用于染色质免疫沉淀 在人类样本上 (图 4f). Am J Pathol (2015) ncbi
小鼠 单克隆(MABI 0307)
  • 流式细胞仪; 人类
Active MotifH3-3B抗体(Active Motif, 39683)被用于被用于流式细胞仪在人类样本上. Curr Protoc Cytom (2015) ncbi
小鼠 单克隆(MABI 0301)
  • 酶联免疫吸附测定; 人类
Active MotifH3-3B抗体(Active Motif, 39763)被用于被用于酶联免疫吸附测定在人类样本上. Theranostics (2015) ncbi
domestic rabbit 多克隆
Active MotifH3-3B抗体(Active Motif, 39137)被用于. Mol Cell Biol (2015) ncbi
小鼠 单克隆(7B11)
  • 免疫印迹; 小鼠; 图 6
Active MotifH3-3B抗体(Active Motif, 39536)被用于被用于免疫印迹在小鼠样本上 (图 6). Nat Commun (2014) ncbi
小鼠 单克隆(MABI 0333)
  • 染色质免疫沉淀 ; 拟南芥
  • 免疫组化; 拟南芥
Active MotifH3-3B抗体(Active Motif, 61021)被用于被用于染色质免疫沉淀 在拟南芥样本上 和 被用于免疫组化在拟南芥样本上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(MABI 0304)
  • 染色质免疫沉淀 ; 拟南芥
  • 免疫组化; 拟南芥
Active MotifH3-3B抗体(Active Motif, 61379)被用于被用于染色质免疫沉淀 在拟南芥样本上 和 被用于免疫组化在拟南芥样本上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(MABI 0321)
  • 免疫印迹; 人类; 图 s9e
Active MotifH3-3B抗体(Active Motif, 61015)被用于被用于免疫印迹在人类样本上 (图 s9e). Nature (2014) ncbi
小鼠 单克隆
  • 染色质免疫沉淀 ; 人类
Active MotifH3-3B抗体(Active Motif, 39535)被用于被用于染色质免疫沉淀 在人类样本上. Arch Toxicol (2014) ncbi
小鼠 单克隆(MABI 0323)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1
Active MotifH3-3B抗体(Active Motif, 61017)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1). Cell Rep (2014) ncbi
小鼠 单克隆(MABI 0319)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
Active MotifH3-3B抗体(Active Motif, 61013)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Eur Respir J (2014) ncbi
小鼠 单克隆(MABI 0301)
  • 免疫组化; 小鼠; 图 s2
  • 免疫印迹; 小鼠; 图 3c
Active MotifH3-3B抗体(Active Motif, 39763)被用于被用于免疫组化在小鼠样本上 (图 s2) 和 被用于免疫印迹在小鼠样本上 (图 3c). Biochem J (2014) ncbi
小鼠 单克隆(MABI 0306)
  • 免疫印迹; 人类
Active MotifH3-3B抗体(Active Motif, 39681)被用于被用于免疫印迹在人类样本上. Genome Res (2014) ncbi
小鼠 单克隆(MABI 0307)
  • 染色质免疫沉淀 ; 人类
  • 免疫印迹; 人类
Active MotifH3-3B抗体(Active Motif, 39683)被用于被用于染色质免疫沉淀 在人类样本上 和 被用于免疫印迹在人类样本上. Genome Res (2014) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200
Active MotifH3-3B抗体(Active Motif, 39535)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Epigenetics (2014) ncbi
小鼠 单克隆
  • 免疫组化; roundworm ; 1:30000
Active MotifH3-3B抗体(Active Motif, 39535)被用于被用于免疫组化在roundworm 样本上浓度为1:30000. Cell Rep (2012) ncbi
domestic rabbit 多克隆
Active MotifH3-3B抗体(Active Motif, 39159)被用于. Proc Natl Acad Sci U S A (2012) ncbi
domestic rabbit 多克隆
Active MotifH3-3B抗体(Active Motif, 39159)被用于. Dev Biol (2013) ncbi
domestic rabbit 多克隆
Active MotifH3-3B抗体(Active Motif, 39155)被用于. Dev Biol (2013) ncbi
小鼠 单克隆(MABI 0301)
  • 染色质免疫沉淀 ; 小鼠
Active MotifH3-3B抗体(Active Motif, 39763)被用于被用于染色质免疫沉淀 在小鼠样本上. Mol Cell Biol (2012) ncbi
小鼠 单克隆
  • 染色质免疫沉淀 ; 小鼠
Active MotifH3-3B抗体(Active Motif, 39535)被用于被用于染色质免疫沉淀 在小鼠样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(MABI 0301)
  • 免疫细胞化学; 人类; 1:200
Active MotifH3-3B抗体(Active Motif, 39763)被用于被用于免疫细胞化学在人类样本上浓度为1:200. ACS Nano (2012) ncbi
小鼠 单克隆
  • 染色质免疫沉淀 ; 人类
Active MotifH3-3B抗体(Active Motif, 39535)被用于被用于染色质免疫沉淀 在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆
  • 染色质免疫沉淀 ; 人类
Active MotifH3-3B抗体(Active Motif, 39535)被用于被用于染色质免疫沉淀 在人类样本上. Int J Cancer (2012) ncbi
小鼠 单克隆
  • 染色质免疫沉淀 ; 人类
Active MotifH3-3B抗体(Active Motif, 39535)被用于被用于染色质免疫沉淀 在人类样本上. J Virol (2012) ncbi
小鼠 单克隆(12.1)
  • 免疫印迹; 人类
Active MotifH3-3B抗体(Active Motif, 61061)被用于被用于免疫印迹在人类样本上. Sci Rep (2012) ncbi
小鼠 单克隆(MABI 0301)
  • 免疫细胞化学; 小鼠
  • 免疫细胞化学; 人类
Active MotifH3-3B抗体(Active Motif, 39763)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫细胞化学在人类样本上. Aging (Albany NY) (2011) ncbi
小鼠 单克隆(7B11)
  • 染色质免疫沉淀 ; 人类
Active MotifH3-3B抗体(Active Motif, 39536)被用于被用于染色质免疫沉淀 在人类样本上. Nature (2011) ncbi
小鼠 单克隆
  • 免疫细胞化学; 小鼠
Active MotifH3-3B抗体(Active Motif, 39535)被用于被用于免疫细胞化学在小鼠样本上. Proc Natl Acad Sci U S A (2010) ncbi
小鼠 单克隆(2AG-6F12-H4)
  • 免疫印迹; 人类
  • 免疫细胞化学; 小鼠; 1:100
Active MotifH3-3B抗体(Active Motif, 39285)被用于被用于免疫印迹在人类样本上 和 被用于免疫细胞化学在小鼠样本上浓度为1:100. J Proteome Res (2010) ncbi
小鼠 单克隆
Active MotifH3-3B抗体(Active Motif, 39535)被用于. J Biol Chem (2010) ncbi
小鼠 单克隆
  • 染色质免疫沉淀 ; 人类
Active MotifH3-3B抗体(Active Motif, 39535)被用于被用于染色质免疫沉淀 在人类样本上. Cancer Genomics Proteomics (2010) ncbi
小鼠 单克隆
  • 染色质免疫沉淀 ; 人类; 1:100
Active MotifH3-3B抗体(Active Motif, 39535)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:100. Mol Cancer (2009) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(E191)
  • 染色质免疫沉淀 ; 人类; 图 2c
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab32388)被用于被用于染色质免疫沉淀 在人类样本上 (图 2c). Nat Commun (2021) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 小鼠; 1:300; 图 4a
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, 14955)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 4a). elife (2020) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab5176)被用于. Front Cell Dev Biol (2020) ncbi
大鼠 单克隆(HTA28)
  • 流式细胞仪; 人类; 1:300; 图 s6g
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab10543)被用于被用于流式细胞仪在人类样本上浓度为1:300 (图 s6g). Science (2020) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 人类; 1:300; 图 s10d
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab10543)被用于被用于免疫组化在人类样本上浓度为1:300 (图 s10d). Science (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:50; 图 2s1a
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab5176)被用于被用于免疫组化在fruit fly 样本上浓度为1:50 (图 2s1a). elife (2020) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 非洲爪蛙; 1:1000; 图 7h-7j
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, 14955)被用于被用于免疫组化在非洲爪蛙样本上浓度为1:1000 (图 7h-7j). elife (2020) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠; 1:500; 图 1s3a
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab10543)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1s3a). elife (2020) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3a
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab10543)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3a). Front Mol Biosci (2020) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠; 1:500; 图 7b
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab10543)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 7b). elife (2020) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2l
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab10543)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2l). Nat Commun (2020) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫细胞化学; 人类; 图 1j
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab14955)被用于被用于免疫细胞化学在人类样本上 (图 1j). Sci Rep (2020) ncbi
domestic rabbit 单克隆(E173)
  • 免疫印迹; 人类; 图 s3d
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab32107)被用于被用于免疫印迹在人类样本上 (图 s3d). Autophagy (2019) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化-冰冻切片; 小鼠; 1:500
  • 免疫组化-冰冻切片; 鸡; 1:500; 图 2e
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab14955)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 和 被用于免疫组化-冰冻切片在鸡样本上浓度为1:500 (图 2e). elife (2019) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; fruit fly ; 1:1000; 图 1a
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab10543)被用于被用于免疫组化在fruit fly 样本上浓度为1:1000 (图 1a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:1000; 图 2f
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab5176)被用于被用于免疫组化在fruit fly 样本上浓度为1:1000 (图 2f). Cell Rep (2019) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 非洲爪蛙; 1:100; 图 s3b
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab10543)被用于被用于免疫组化在非洲爪蛙样本上浓度为1:100 (图 s3b). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; brewer's yeast; 1:1000; 图 3a
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab5176)被用于被用于免疫印迹在brewer's yeast样本上浓度为1:1000 (图 3a). J Vis Exp (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s6
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab5176)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s6). Development (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 图 1a
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab5176)被用于被用于免疫组化在fruit fly 样本上 (图 1a). Neuron (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s3k
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab5176)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s3k). Cell (2018) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 人类; 图 4??
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab14955)被用于被用于免疫组化在人类样本上 (图 4??). Oncogenesis (2017) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab14955)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5a). Development (2017) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠; 图 s3e
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, AB10543)被用于被用于免疫组化在小鼠样本上 (图 s3e). Cell (2017) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-石蜡切片; 斑马鱼; 1:500; 图 2 s1B
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab10543)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:500 (图 2 s1B). elife (2017) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, Ab14955)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 4a). Front Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab5176)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(E173)
  • 免疫组化; 小鼠; 1:300; 图 2a
  • 免疫印迹; 大鼠; 1:1000; 图 s3K
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab32107)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 2a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s3K). Nat Commun (2017) ncbi
大鼠 单克隆(HTA28)
  • 免疫细胞化学; 人类; 图 2b
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, Ab10543)被用于被用于免疫细胞化学在人类样本上 (图 2b). Cell Stem Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 6h
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab5176)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6h). Nat Commun (2017) ncbi
大鼠 单克隆(HTA28)
  • 免疫细胞化学; 人类; 1:1000; 图 7a
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab10543)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 7a). Nat Commun (2017) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫印迹; 人类; 图 1j
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab14955)被用于被用于免疫印迹在人类样本上 (图 1j). Nat Med (2017) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 大鼠; 1:100; 图 4a
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab14955)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 4a). PLoS ONE (2016) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s4c
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab14955)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s4c). Nat Cell Biol (2016) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化-石蜡切片; 小鼠; 1:180; 图 5a
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, Ab14955)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:180 (图 5a). Cancer Biol Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 6d
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab5176)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 6d). Cancer Res (2017) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 大鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab14955)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(E173)
  • 免疫印迹; 人类; 图 2f
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab32107)被用于被用于免疫印迹在人类样本上 (图 2f). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
艾博抗(上海)贸易有限公司H3-3B抗体(abcam, ab62642)被用于被用于免疫印迹在人类样本上 (图 4d). PLoS ONE (2016) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 s3b
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, 14955)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 s3b). Nat Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 6
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab62642)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 6). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 图 3
艾博抗(上海)贸易有限公司H3-3B抗体(abcam, ab62642)被用于被用于免疫组化在大鼠样本上 (图 3). Physiol Rep (2016) ncbi
domestic rabbit 单克隆(EP1702Y)
  • 免疫细胞化学; 人类; 图 3
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, AB78351)被用于被用于免疫细胞化学在人类样本上 (图 3). Nucleic Acids Res (2016) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-冰冻切片; 小鼠; 图 2
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab10543)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). Cell Rep (2016) ncbi
domestic rabbit 单克隆(E173)
  • 免疫组化; fruit fly ; 1:1000; 图 2
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab32107)被用于被用于免疫组化在fruit fly 样本上浓度为1:1000 (图 2). Dis Model Mech (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 仓鼠; 图 7
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab62642)被用于被用于染色质免疫沉淀 在仓鼠样本上 (图 7). BMC Biotechnol (2016) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 大鼠; 图 1
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab14955)被用于被用于免疫组化在大鼠样本上 (图 1). Nat Neurosci (2016) ncbi
小鼠 单克隆(mAbcam 14955)
  • 流式细胞仪; 小鼠; 图 7a
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab14955)被用于被用于流式细胞仪在小鼠样本上 (图 7a). Mol Cell Biol (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; American tobacco; 1:200; 图 4
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, 14955)被用于被用于免疫组化在American tobacco样本上浓度为1:200 (图 4). Front Plant Sci (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 小鼠; 图 1i, j
艾博抗(上海)贸易有限公司H3-3B抗体(abcam, ab14955)被用于被用于免疫组化在小鼠样本上 (图 1i, j). elife (2015) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠; 1:1000; 图 3
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab10543)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3). Mol Brain (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 小鼠; 1:3000; 图 s13c
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab14955)被用于被用于免疫组化在小鼠样本上浓度为1:3000 (图 s13c). Nat Med (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab14955)被用于被用于免疫印迹在人类样本上 (图 4). Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(E191)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 e2
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab32388)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 e2). Nature (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 小鼠; 1:600; 图 5l
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab14955)被用于被用于免疫组化在小鼠样本上浓度为1:600 (图 5l). PLoS ONE (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫细胞化学; 人类; 1:2000; 图 5
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab14955)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 5). Mol Biol Cell (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 流式细胞仪; 人类; 图 1
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab14955)被用于被用于流式细胞仪在人类样本上 (图 1). J Cell Biochem (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫印迹; 人类; 1:5000; 图 s7
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab14955)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s7). Science (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 酶联免疫吸附测定; 人类
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, 14955)被用于被用于酶联免疫吸附测定在人类样本上. Theranostics (2015) ncbi
domestic rabbit 单克隆(E173)
  • 免疫细胞化学; 家羊; 1:500; 图 3a
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab32107)被用于被用于免疫细胞化学在家羊样本上浓度为1:500 (图 3a). Cell Reprogram (2015) ncbi
domestic rabbit 单克隆(E173)
  • 免疫组化; 人类; 1:100; 图 1
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab32107)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1). Sci Rep (2014) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 斑马鱼; 1:1000
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab14955)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000. Development (2014) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫印迹; 人类; 1:5000; 图 2
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, 14955)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). Nat Commun (2014) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-冰冻切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, AB10543)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Nat Neurosci (2014) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab14955)被用于被用于免疫组化-石蜡切片在小鼠样本上. Exp Toxicol Pathol (2014) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab14955)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Cell Cycle (2014) ncbi
domestic rabbit 单克隆(E191)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab32388)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab10543)被用于被用于免疫组化在小鼠样本上. Neural Dev (2013) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-冰冻切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab10543)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Development (2013) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, ab5176)被用于. Dev Biol (2013) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化-冰冻切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司H3-3B抗体(Abcam, Ab14955)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Dev Biol (2012) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s1f
赛默飞世尔H3-3B抗体(Thermo Fisher, PA5-16195)被用于被用于免疫细胞化学在人类样本上 (图 s1f). Cell (2020) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 5b
赛默飞世尔H3-3B抗体(生活技术, 49-1010)被用于被用于ChIP-Seq在人类样本上 (图 5b). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 5b
赛默飞世尔H3-3B抗体(Invitrogen, 491008)被用于被用于ChIP-Seq在人类样本上 (图 5b). Cancer Cell (2018) ncbi
小鼠 单克隆(865R2)
  • 免疫印迹; 人类; 1:500; 图 s8b
赛默飞世尔H3-3B抗体(Thermo Fisher, 865R2)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s8b). Nat Commun (2018) ncbi
domestic rabbit 多克隆
赛默飞世尔H3-3B抗体(Invitrogen, PA5-17869)被用于. J Biol Chem (2018) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 6c
赛默飞世尔H3-3B抗体(Invitrogen, 49-1005)被用于被用于染色质免疫沉淀 在人类样本上 (图 6c). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 1
赛默飞世尔H3-3B抗体(Invitrogen, 49-1005)被用于被用于ChIP-Seq在人类样本上 (图 1). Mol Biol Evol (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 3c
赛默飞世尔H3-3B抗体(生活技术, 49-1005)被用于被用于染色质免疫沉淀 在人类样本上 (图 3c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 3a
赛默飞世尔H3-3B抗体(Invitrogen, 49-1005)被用于被用于染色质免疫沉淀 在人类样本上 (图 3a). Exp Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 3a
赛默飞世尔H3-3B抗体(Invitrogen, 49-1003)被用于被用于染色质免疫沉淀 在人类样本上 (图 3a). Exp Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 3a
赛默飞世尔H3-3B抗体(Invitrogen, 49-1008)被用于被用于染色质免疫沉淀 在人类样本上 (图 3a). Exp Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 3a
赛默飞世尔H3-3B抗体(Invitrogen, 49-1004)被用于被用于染色质免疫沉淀 在人类样本上 (图 3a). Exp Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛默飞世尔H3-3B抗体(Thermo Fisher Scientific, PA5-17869)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 衣藻; 1:20,000; 图 s4
赛默飞世尔H3-3B抗体(Thermo Fisher Scientific, PA5-16183)被用于被用于免疫印迹在衣藻样本上浓度为1:20,000 (图 s4). elife (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 5
赛默飞世尔H3-3B抗体(Invitrogen, 49-1008)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). Gene (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 5
赛默飞世尔H3-3B抗体(Invitrogen, 49-1005)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). Gene (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 5
赛默飞世尔H3-3B抗体(Invitrogen, 49-1011)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). Gene (2016) ncbi
domestic rabbit 重组(9H12L10)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔H3-3B抗体(生活技术, 9H12L10)被用于被用于免疫细胞化学在人类样本上 (图 2). J Negat Results Biomed (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛默飞世尔H3-3B抗体(Thermo Scientific, A15024)被用于被用于免疫印迹在人类样本上 (图 5). Tumour Biol (2016) ncbi
domestic rabbit 单克隆(J.924.2)
  • 免疫细胞化学; American tobacco; 1:200; 图 2
赛默飞世尔H3-3B抗体(Thermo Scientific, MA5-11195)被用于被用于免疫细胞化学在American tobacco样本上浓度为1:200 (图 2). Front Plant Sci (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; Girardia dorotocephala; 1:1000; 图 2
赛默飞世尔H3-3B抗体(生活技术, 44-1190G)被用于被用于免疫细胞化学在Girardia dorotocephala样本上浓度为1:1000 (图 2). Methods Mol Biol (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔H3-3B抗体(生活技术, 44-1190G)被用于. J Biol Chem (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔H3-3B抗体(Invitrogen, P7N49-1008)被用于. Nucleic Acids Res (2015) ncbi
domestic rabbit 单克隆(E.960.2)
  • 免疫印迹; 人类; 图 6
赛默飞世尔H3-3B抗体(Thermo Fisher Scientific, MA5-15150)被用于被用于免疫印迹在人类样本上 (图 6). Curr Mol Med (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔H3-3B抗体(生活技术, 491015)被用于. Genes Dev (2015) ncbi
小鼠 单克隆(865R2)
  • 染色质免疫沉淀 ; red rice
赛默飞世尔H3-3B抗体(Invitrogen, AHO1432)被用于被用于染色质免疫沉淀 在red rice 样本上. Nat Commun (2014) ncbi
domestic rabbit 单克隆(G.532.8)
  • 染色质免疫沉淀 ; 人类
赛默飞世尔H3-3B抗体(Thermo, MA511199)被用于被用于染色质免疫沉淀 在人类样本上. J Biol Chem (2014) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
西格玛奥德里奇H3-3B抗体(sigma, H0134)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). J Mol Med (Berl) (2016) ncbi
小鼠 单克隆(AH3-120)
  • 染色质免疫沉淀 ; 人类; 图 s6f
西格玛奥德里奇H3-3B抗体(Sigma-Aldrich, H0913)被用于被用于染色质免疫沉淀 在人类样本上 (图 s6f). Sci Rep (2016) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-石蜡切片; 小鼠; 1:1500; 图 1
西格玛奥德里奇H3-3B抗体(Sigma, H9908)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1500 (图 1). Breast Cancer Res (2016) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-石蜡切片; 小鼠; 图 7
西格玛奥德里奇H3-3B抗体(Sigma-Alrich, H9908)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7). Lab Invest (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇H3-3B抗体(Sigma, H0164)被用于. Oxid Med Cell Longev (2015) ncbi
大鼠 单克隆(HTA28)
  • 免疫细胞化学; American tobacco; 1:200; 图 5
西格玛奥德里奇H3-3B抗体(Sigma, H9908)被用于被用于免疫细胞化学在American tobacco样本上浓度为1:200 (图 5). Front Plant Sci (2015) ncbi
大鼠 单克隆(HTA28)
  • 免疫细胞化学; 小鼠; 1:100; 图 2
西格玛奥德里奇H3-3B抗体(Sigma-Aldrich, H9908)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2). Development (2015) ncbi
小鼠 单克隆(AH3-120)
  • 免疫印迹; 人类; 1:500
西格玛奥德里奇H3-3B抗体(Sigma Aldrich, H0913)被用于被用于免疫印迹在人类样本上浓度为1:500. Biotechnol Bioeng (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇H3-3B抗体(Sigma-Aldrich, H0164)被用于. J Neurochem (2015) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1
西格玛奥德里奇H3-3B抗体(Sigma, H9908)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1). PLoS Genet (2015) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠; 1:50; 图 5
西格玛奥德里奇H3-3B抗体(Sigma, HTA28)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5). Nat Commun (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇H3-3B抗体(Sigma, H0164)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇H3-3B抗体(Sigma, H0164)被用于. Development (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇H3-3B抗体(Sigma-Aldrich, H0164)被用于. Neurobiol Aging (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇H3-3B抗体(Sigma, H0164)被用于. Development (2015) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠
西格玛奥德里奇H3-3B抗体(Sigma-Aldrich, H9908)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AH3-120)
  • 免疫细胞化学; 人类; 1:200
西格玛奥德里奇H3-3B抗体(Sigma, H0913)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Cryobiology (2014) ncbi
小鼠 单克隆(AH3-120)
  • 免疫组化-石蜡切片; 人类; 图 2
  • 染色质免疫沉淀 ; 人类; 2-5 ug/ChIP; 图 2
西格玛奥德里奇H3-3B抗体(Sigma, H0913)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2) 和 被用于染色质免疫沉淀 在人类样本上浓度为2-5 ug/ChIP (图 2). Nature (2014) ncbi
大鼠 单克隆(HTA28)
  • 免疫细胞化学; 人类
西格玛奥德里奇H3-3B抗体(Sigma-Aldrich, H9908)被用于被用于免疫细胞化学在人类样本上. Am J Hum Genet (2014) ncbi
大鼠 单克隆(HTA28)
  • 免疫细胞化学; Planorbella trivolvis; 1:1000
西格玛奥德里奇H3-3B抗体(Sigma-Aldrich, H9908)被用于被用于免疫细胞化学在Planorbella trivolvis样本上浓度为1:1000. BMC Dev Biol (2014) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-冰冻切片; 小鼠; 1:100
西格玛奥德里奇H3-3B抗体(Sigma-Aldrich, H9908)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Biol Reprod (2013) ncbi
大鼠 单克隆(HTA28)
  • 免疫印迹; 人类
西格玛奥德里奇H3-3B抗体(Sigma-Aldrich, H9908)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2013) ncbi
CovalAb
小鼠 单克隆
  • 免疫组化-冰冻切片; 人类; 图 s4a
  • 免疫细胞化学; 人类; 图 5f
CovalAbH3-3B抗体(Covalab, mab0072-P)被用于被用于免疫组化-冰冻切片在人类样本上 (图 s4a) 和 被用于免疫细胞化学在人类样本上 (图 5f). Nat Commun (2018) ncbi
圣克鲁斯生物技术
小鼠 单克隆(AH3-120)
  • 染色质免疫沉淀 ; 人类; 图 4c
圣克鲁斯生物技术H3-3B抗体(Santa Cruz Biotechnology, sc-56616)被用于被用于染色质免疫沉淀 在人类样本上 (图 4c). Oxid Med Cell Longev (2017) ncbi
Enzo Life Sciences
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
Enzo Life SciencesH3-3B抗体(Enzo, ADI-905-705)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(2D7-H1)
  • 免疫印迹基因敲除验证; 小鼠; 1:40; 图 4
亚诺法生技股份有限公司H3-3B抗体(Abnova, 2D7-H1)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:40 (图 4). Genes Dev (2015) ncbi
文章列表
  1. Li J, Mahata B, Escobar M, Goell J, Wang K, Khemka P, et al. Programmable human histone phosphorylation and gene activation using a CRISPR/Cas9-based chromatin kinase. Nat Commun. 2021;12:896 pubmed 出版商
  2. Atkins A, Xu M, Li M, Rogers N, Pryzhkova M, Jordan P. SMC5/6 is required for replication fork stability and faithful chromosome segregation during neurogenesis. elife. 2020;9: pubmed 出版商
  3. Macri S, Di Poï N. Heterochronic Developmental Shifts Underlying Squamate Cerebellar Diversity Unveil the Key Features of Amniote Cerebellogenesis. Front Cell Dev Biol. 2020;8:593377 pubmed 出版商
  4. Zhao Z, Zhang Z, Li J, Dong Q, Xiong J, Li Y, et al. Sustained TNF-α stimulation leads to transcriptional memory that greatly enhances signal sensitivity and robustness. elife. 2020;9: pubmed 出版商
  5. Schwartz Orbach L, Zhang C, Sidoli S, Amin R, Kaur D, Zhebrun A, et al. Caenorhabditis elegans nuclear RNAi factor SET-32 deposits the transgenerational histone modification, H3K23me3. elife. 2020;9: pubmed 出版商
  6. Zatulovskiy E, Zhang S, Berenson D, Topacio B, Skotheim J. Cell growth dilutes the cell cycle inhibitor Rb to trigger cell division. Science. 2020;369:466-471 pubmed 出版商
  7. Pellegrini L, Bonfio C, Chadwick J, Begum F, Skehel M, Lancaster M. Human CNS barrier-forming organoids with cerebrospinal fluid production. Science. 2020;: pubmed 出版商
  8. Smith S, Davidson L, Rebeiz M. Evolutionary expansion of apical extracellular matrix is required for the elongation of cells in a novel structure. elife. 2020;9: pubmed 出版商
  9. Kakebeen A, Chitsazan A, Williams M, Saunders L, WILLS A. Chromatin accessibility dynamics and single cell RNA-Seq reveal new regulators of regeneration in neural progenitors. elife. 2020;9: pubmed 出版商
  10. Nava M, Miroshnikova Y, Biggs L, Whitefield D, Metge F, Boucas J, et al. Heterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage. Cell. 2020;181:800-817.e22 pubmed 出版商
  11. Nelson B, Hodge R, Daza R, Tripathi P, Arnold S, Millen K, et al. Intermediate progenitors support migration of neural stem cells into dentate gyrus outer neurogenic niches. elife. 2020;9: pubmed 出版商
  12. Zhang Y, Beketaev I, Segura A, Yu W, Xi Y, Chang J, et al. Contribution of Increased Expression of Yin Yang 2 to Development of Cardiomyopathy. Front Mol Biosci. 2020;7:35 pubmed 出版商
  13. Guven A, Kalebic N, Long K, Florio M, Vaid S, Brandl H, et al. Extracellular matrix-inducing Sox9 promotes both basal progenitor proliferation and gliogenesis in developing neocortex. elife. 2020;9: pubmed 出版商
  14. Lu C, Wei Y, Wang X, Zhang Z, Yin J, Li W, et al. DNA-methylation-mediated activating of lncRNA SNHG12 promotes temozolomide resistance in glioblastoma. Mol Cancer. 2020;19:28 pubmed 出版商
  15. Ballabio C, Anderle M, Gianesello M, Lago C, Miele E, Cardano M, et al. Modeling medulloblastoma in vivo and with human cerebellar organoids. Nat Commun. 2020;11:583 pubmed 出版商
  16. Ricci B, Millner T, Pomella N, Zhang X, Guglielmi L, Badodi S, et al. Polycomb-mediated repression of EphrinA5 promotes growth and invasion of glioblastoma. Oncogene. 2020;39:2523-2538 pubmed 出版商
  17. Cooper A, Butto T, Hammer N, Jagannath S, Fend Guella D, Akhtar J, et al. Inhibition of histone deacetylation rescues phenotype in a mouse model of Birk-Barel intellectual disability syndrome. Nat Commun. 2020;11:480 pubmed 出版商
  18. Aldaz P, Otaegi Ugartemendia M, Sáenz Antoñanzas A, Garcia Puga M, Moreno Valladares M, Flores J, et al. SOX9 promotes tumor progression through the axis BMI1-p21CIP. Sci Rep. 2020;10:357 pubmed 出版商
  19. Casanova M, Moscatelli M, Chauvière L, Huret C, Samson J, Liyakat Ali T, et al. A primate-specific retroviral enhancer wires the XACT lncRNA into the core pluripotency network in humans. Nat Commun. 2019;10:5652 pubmed 出版商
  20. Wu S, Turner K, Nguyen N, Raviram R, Erb M, Santini J, et al. Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature. 2019;575:699-703 pubmed 出版商
  21. Mills W, Lee Y, Kochendoerfer A, Dunleavy E, Karpen G. RNA from a simple-tandem repeat is required for sperm maturation and male fertility in Drosophila melanogaster. elife. 2019;8: pubmed 出版商
  22. Mews P, Egervári G, Nativio R, Sidoli S, Donahue G, Lombroso S, et al. Alcohol metabolism contributes to brain histone acetylation. Nature. 2019;574:717-721 pubmed 出版商
  23. Farhy C, Hariharan S, Ylanko J, Orozco L, Zeng F, Pass I, et al. Improving drug discovery using image-based multiparametric analysis of the epigenetic landscape. elife. 2019;8: pubmed 出版商
  24. Lin F, Meng X, Guo Y, Cao W, Liu W, Xia Q, et al. Epigenetic initiation of the TH17 differentiation program is promoted by Cxxc finger protein 1. Sci Adv. 2019;5:eaax1608 pubmed 出版商
  25. Lin T, Chan H, Chen S, Sarvagalla S, Chen P, Coumar M, et al. BIRC5/Survivin is a novel ATG12-ATG5 conjugate interactor and an autophagy-induced DNA damage suppressor in human cancer and mouse embryonic fibroblast cells. Autophagy. 2019;:1-18 pubmed 出版商
  26. Kuznetsov J, Agüero T, Owens D, Kurtenbach S, Field M, Durante M, et al. BAP1 regulates epigenetic switch from pluripotency to differentiation in developmental lineages giving rise to BAP1-mutant cancers. Sci Adv. 2019;5:eaax1738 pubmed 出版商
  27. Weinberg D, Papillon Cavanagh S, Chen H, Yue Y, Chen X, Rajagopalan K, et al. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature. 2019;573:281-286 pubmed 出版商
  28. Tang W, Martik M, Li Y, Bronner M. Cardiac neural crest contributes to cardiomyocytes in amniotes and heart regeneration in zebrafish. elife. 2019;8: pubmed 出版商
  29. Kuhn T, Pascual García P, Gozalo A, Little S, Capelson M. Chromatin targeting of nuclear pore proteins induces chromatin decondensation. J Cell Biol. 2019;218:2945-2961 pubmed 出版商
  30. Lee J, Termglinchan V, Diecke S, Itzhaki I, Lam C, Garg P, et al. Activation of PDGF pathway links LMNA mutation to dilated cardiomyopathy. Nature. 2019;572:335-340 pubmed 出版商
  31. Sin Chan P, Mumal I, Suwal T, Ho B, Fan X, Singh I, et al. A C19MC-LIN28A-MYCN Oncogenic Circuit Driven by Hijacked Super-enhancers Is a Distinct Therapeutic Vulnerability in ETMRs: A Lethal Brain Tumor. Cancer Cell. 2019;36:51-67.e7 pubmed 出版商
  32. Curt J, Salmani B, Thor S. Anterior CNS expansion driven by brain transcription factors. elife. 2019;8: pubmed 出版商
  33. Fabry M, Ciabrelli F, Munafò M, Eastwood E, Kneuss E, Falciatori I, et al. piRNA-guided co-transcriptional silencing coopts nuclear export factors. elife. 2019;8: pubmed 出版商
  34. Gil Ranedo J, Gonzaga E, Jaworek K, Berger C, Bossing T, Barros C. STRIPAK Members Orchestrate Hippo and Insulin Receptor Signaling to Promote Neural Stem Cell Reactivation. Cell Rep. 2019;27:2921-2933.e5 pubmed 出版商
  35. Li J, Dong A, Saydaminova K, Chang H, Wang G, Ochiai H, et al. Single-Molecule Nanoscopy Elucidates RNA Polymerase II Transcription at Single Genes in Live Cells. Cell. 2019;: pubmed 出版商
  36. Pivetti S, Fernandez Perez D, D Ambrosio A, Barbieri C, Manganaro D, Rossi A, et al. Loss of PRC1 activity in different stem cell compartments activates a common transcriptional program with cell type-dependent outcomes. Sci Adv. 2019;5:eaav1594 pubmed 出版商
  37. Aztekin C, Hiscock T, Marioni J, Gurdon J, Simons B, Jullien J. Identification of a regeneration-organizing cell in the Xenopus tail. Science. 2019;364:653-658 pubmed 出版商
  38. O Geen H, Bates S, Carter S, Nisson K, Halmai J, Fink K, et al. Ezh2-dCas9 and KRAB-dCas9 enable engineering of epigenetic memory in a context-dependent manner. Epigenetics Chromatin. 2019;12:26 pubmed 出版商
  39. Chowdhry S, Zanca C, Rajkumar U, Koga T, Diao Y, Raviram R, et al. NAD metabolic dependency in cancer is shaped by gene amplification and enhancer remodelling. Nature. 2019;569:570-575 pubmed 出版商
  40. Kweon S, Chen Y, Moon E, Kvederaviciute K, Klimasauskas S, Feldman D. An Adversarial DNA N6-Methyladenine-Sensor Network Preserves Polycomb Silencing. Mol Cell. 2019;74:1138-1147.e6 pubmed 出版商
  41. Lavarone E, Barbieri C, Pasini D. Dissecting the role of H3K27 acetylation and methylation in PRC2 mediated control of cellular identity. Nat Commun. 2019;10:1679 pubmed 出版商
  42. Bennett S, Cobos S, Meykler M, Fallah M, Rana N, Chen K, et al. Characterizing Histone Post-translational Modification Alterations in Yeast Neurodegenerative Proteinopathy Models. J Vis Exp. 2019;: pubmed 出版商
  43. Rajderkar S, Mann J, Panaretos C, Yumoto K, Li H, Mishina Y, et al. Trim33 is required for appropriate development of pre-cardiogenic mesoderm. Dev Biol. 2019;450:101-114 pubmed 出版商
  44. Lima Fernandes E, Murison A, da Silva Medina T, Wang Y, Ma A, Leung C, et al. Targeting bivalency de-represses Indian Hedgehog and inhibits self-renewal of colorectal cancer-initiating cells. Nat Commun. 2019;10:1436 pubmed 出版商
  45. Li W, Wang H, Zhao X, Duan H, Cheng B, Liu Y, et al. A methylation-phosphorylation switch determines Plk1 kinase activity and function in DNA damage repair. Sci Adv. 2019;5:eaau7566 pubmed 出版商
  46. Nava M, Dutta P, Zemke N, Farias Eisner R, Vadgama J, Wu Y. Transcriptomic and ChIP-sequence interrogation of EGFR signaling in HER2+ breast cancer cells reveals a dynamic chromatin landscape and S100 genes as targets. BMC Med Genomics. 2019;12:32 pubmed 出版商
  47. Mathieu J, Detraux D, Kuppers D, Wang Y, Cavanaugh C, Sidhu S, et al. Folliculin regulates mTORC1/2 and WNT pathways in early human pluripotency. Nat Commun. 2019;10:632 pubmed 出版商
  48. Suzuki T, Kikuguchi C, Nishijima S, Nagashima T, Takahashi A, Okada M, et al. Postnatal liver functional maturation requires Cnot complex-mediated decay of mRNAs encoding cell cycle and immature liver genes. Development. 2019;146: pubmed 出版商
  49. Del Rosario B, Kriz A, Del Rosario A, Anselmo A, Fry C, White F, et al. Exploration of CTCF post-translation modifications uncovers Serine-224 phosphorylation by PLK1 at pericentric regions during the G2/M transition. elife. 2019;8: pubmed 出版商
  50. Nicetto D, Donahue G, Jain T, Peng T, Sidoli S, Sheng L, et al. H3K9me3-heterochromatin loss at protein-coding genes enables developmental lineage specification. Science. 2019;363:294-297 pubmed 出版商
  51. Żylicz J, Bousard A, Zumer K, Dossin F, Mohammad E, da Rocha S, et al. The Implication of Early Chromatin Changes in X Chromosome Inactivation. Cell. 2019;176:182-197.e23 pubmed 出版商
  52. Haldeman J, Conway A, Arlotto M, Slentz D, Muoio D, Becker T, et al. Creation of versatile cloning platforms for transgene expression and dCas9-based epigenome editing. Nucleic Acids Res. 2019;47:e23 pubmed 出版商
  53. Chen X, Zhi X, Wang J, Su J. RANKL signaling in bone marrow mesenchymal stem cells negatively regulates osteoblastic bone formation. Bone Res. 2018;6:34 pubmed 出版商
  54. Inoue A, Chen Z, Yin Q, Zhang Y. Maternal Eed knockout causes loss of H3K27me3 imprinting and random X inactivation in the extraembryonic cells. Genes Dev. 2018;32:1525-1536 pubmed 出版商
  55. Chen X, Wanggou S, Bodalia A, Zhu M, Dong W, Fan J, et al. A Feedforward Mechanism Mediated by Mechanosensitive Ion Channel PIEZO1 and Tissue Mechanics Promotes Glioma Aggression. Neuron. 2018;100:799-815.e7 pubmed 出版商
  56. Stewart E, McEvoy J, Wang H, Chen X, Honnell V, Ocarz M, et al. Identification of Therapeutic Targets in Rhabdomyosarcoma through Integrated Genomic, Epigenomic, and Proteomic Analyses. Cancer Cell. 2018;34:411-426.e19 pubmed 出版商
  57. Peterson J, Wang D, Shettigar V, Roof S, Canan B, Bakkar N, et al. NF-κB inhibition rescues cardiac function by remodeling calcium genes in a Duchenne muscular dystrophy model. Nat Commun. 2018;9:3431 pubmed 出版商
  58. Alabdi L, He M, Yang Q, Norvil A, Gowher H. The transcription factor Vezf1 represses the expression of the antiangiogenic factor Cited2 in endothelial cells. J Biol Chem. 2018;293:11109-11118 pubmed 出版商
  59. Pircher J, Czermak T, Ehrlich A, Eberle C, Gaitzsch E, Margraf A, et al. Cathelicidins prime platelets to mediate arterial thrombosis and tissue inflammation. Nat Commun. 2018;9:1523 pubmed 出版商
  60. Silva C, Peyre E, Adhikari M, Tielens S, Tanco S, Van Damme P, et al. Cell-Intrinsic Control of Interneuron Migration Drives Cortical Morphogenesis. Cell. 2018;172:1063-1078.e19 pubmed 出版商
  61. Murphy P, Wu S, James C, Wike C, Cairns B. Placeholder Nucleosomes Underlie Germline-to-Embryo DNA Methylation Reprogramming. Cell. 2018;172:993-1006.e13 pubmed 出版商
  62. Zhu B, Chen S, Wang H, Yin C, Han C, Peng C, et al. The protective role of DOT1L in UV-induced melanomagenesis. Nat Commun. 2018;9:259 pubmed 出版商
  63. Arrizabalaga O, Moreno Cugnon L, Auzmendi Iriarte J, Aldaz P, Ibanez de Caceres I, Garros Regulez L, et al. High expression of MKP1/DUSP1 counteracts glioma stem cell activity and mediates HDAC inhibitor response. Oncogenesis. 2017;6:401 pubmed 出版商
  64. Welty S, Teng Y, Liang Z, Zhao W, Sanders L, Greenamyre J, et al. RAD52 is required for RNA-templated recombination repair in post-mitotic neurons. J Biol Chem. 2018;293:1353-1362 pubmed 出版商
  65. Fujita J, Freire P, Coarfa C, Benham A, Gunaratne P, Schneider M, et al. Ronin Governs Early Heart Development by Controlling Core Gene Expression Programs. Cell Rep. 2017;21:1562-1573 pubmed 出版商
  66. Kelso T, Porter D, Amaral M, Shokhirev M, Benner C, Hargreaves D. Chromatin accessibility underlies synthetic lethality of SWI/SNF subunits in ARID1A-mutant cancers. elife. 2017;6: pubmed 出版商
  67. Noutsou M, Li J, Ling J, Jones J, Wang Y, Chen Y, et al. The Cohesin Complex Is Necessary for Epidermal Progenitor Cell Function through Maintenance of Self-Renewal Genes. Cell Rep. 2017;20:3005-3013 pubmed 出版商
  68. Sunwoo H, Colognori D, Froberg J, Jeon Y, Lee J. Repeat E anchors Xist RNA to the inactive X chromosomal compartment through CDKN1A-interacting protein (CIZ1). Proc Natl Acad Sci U S A. 2017;114:10654-10659 pubmed 出版商
  69. Casoni F, Croci L, Bosone C, D Ambrosio R, Badaloni A, Gaudesi D, et al. Zfp423/ZNF423 regulates cell cycle progression, the mode of cell division and the DNA-damage response in Purkinje neuron progenitors. Development. 2017;144:3686-3697 pubmed 出版商
  70. Khanal T, Choi K, Leung Y, Wang J, Kim D, Janakiram V, et al. Loss of NR2E3 represses AHR by LSD1 reprogramming, is associated with poor prognosis in liver cancer. Sci Rep. 2017;7:10662 pubmed 出版商
  71. Zenk F, Loeser E, Schiavo R, Kilpert F, Bogdanović O, Iovino N. Germ line-inherited H3K27me3 restricts enhancer function during maternal-to-zygotic transition. Science. 2017;357:212-216 pubmed 出版商
  72. Yuen K, Slaughter B, Gerton J. Condensin II is anchored by TFIIIC and H3K4me3 in the mammalian genome and supports the expression of active dense gene clusters. Sci Adv. 2017;3:e1700191 pubmed 出版商
  73. Perez Leal O, Barrero C, Merali S. Pharmacological stimulation of nuclear factor (erythroid-derived 2)-like 2 translation activates antioxidant responses. J Biol Chem. 2017;292:14108-14121 pubmed 出版商
  74. Liang X, Yuan X, Yu J, Wu Y, Li K, Sun C, et al. Histone Chaperone ASF1A Predicts Poor Outcomes for Patients With Gastrointestinal Cancer and Drives Cancer Progression by Stimulating Transcription of β-Catenin Target Genes. EBioMedicine. 2017;21:104-116 pubmed 出版商
  75. Mahajan K, Malla P, Lawrence H, Chen Z, Kumar Sinha C, Malik R, et al. ACK1/TNK2 Regulates Histone H4 Tyr88-phosphorylation and AR Gene Expression in Castration-Resistant Prostate Cancer. Cancer Cell. 2017;31:790-803.e8 pubmed 出版商
  76. Natale F, Rapp A, Yu W, Maiser A, Harz H, Scholl A, et al. Identification of the elementary structural units of the DNA damage response. Nat Commun. 2017;8:15760 pubmed 出版商
  77. Raices M, Bukata L, Sakuma S, Borlido J, Hernandez L, Hart D, et al. Nuclear Pores Regulate Muscle Development and Maintenance by Assembling a Localized Mef2C Complex. Dev Cell. 2017;41:540-554.e7 pubmed 出版商
  78. Gosselin D, Skola D, Coufal N, Holtman I, Schlachetzki J, Sajti E, et al. An environment-dependent transcriptional network specifies human microglia identity. Science. 2017;356: pubmed 出版商
  79. del Toro D, Ruff T, Cederfjäll E, Villalba A, Seyit Bremer G, Borrell V, et al. Regulation of Cerebral Cortex Folding by Controlling Neuronal Migration via FLRT Adhesion Molecules. Cell. 2017;169:621-635.e16 pubmed 出版商
  80. Jiang L, Yin M, Xu J, Jia M, Sun S, Wang X, et al. The Transcription Factor Bach1 Suppresses the Developmental Angiogenesis of Zebrafish. Oxid Med Cell Longev. 2017;2017:2143875 pubmed 出版商
  81. Sidhaye J, Norden C. Concerted action of neuroepithelial basal shrinkage and active epithelial migration ensures efficient optic cup morphogenesis. elife. 2017;6: pubmed 出版商
  82. Chen G, Nie S, Han C, Ma K, Xu Y, Zhang Z, et al. Antidyskinetic Effects of MEK Inhibitor Are Associated with Multiple Neurochemical Alterations in the Striatum of Hemiparkinsonian Rats. Front Neurosci. 2017;11:112 pubmed 出版商
  83. Zhang X, Li B, Rezaeian A, Xu X, Chou P, Jin G, et al. H3 ubiquitination by NEDD4 regulates H3 acetylation and tumorigenesis. Nat Commun. 2017;8:14799 pubmed 出版商
  84. Cruz Molina S, Respuela P, Tebartz C, Kolovos P, Nikolic M, Fueyo R, et al. PRC2 Facilitates the Regulatory Topology Required for Poised Enhancer Function during Pluripotent Stem Cell Differentiation. Cell Stem Cell. 2017;20:689-705.e9 pubmed 出版商
  85. Ragni C, Diguet N, Le Garrec J, Novotova M, Resende T, Pop S, et al. Amotl1 mediates sequestration of the Hippo effector Yap1 downstream of Fat4 to restrict heart growth. Nat Commun. 2017;8:14582 pubmed 出版商
  86. Amendola P, Zaghet N, Ramalho J, Vilstrup Johansen J, Boxem M, Salcini A. JMJD-5/KDM8 regulates H3K36me2 and is required for late steps of homologous recombination and genome integrity. PLoS Genet. 2017;13:e1006632 pubmed 出版商
  87. Meisenberg C, Ashour M, El Shafie L, Liao C, Hodgson A, Pilborough A, et al. Epigenetic changes in histone acetylation underpin resistance to the topoisomerase I inhibitor irinotecan. Nucleic Acids Res. 2017;45:1159-1176 pubmed 出版商
  88. Young C, Hillyer C, Hokamp K, Fitzpatrick D, Konstantinov N, Welty J, et al. Distinct histone methylation and transcription profiles are established during the development of cellular quiescence in yeast. BMC Genomics. 2017;18:107 pubmed 出版商
  89. Bershteyn M, Nowakowski T, Pollen A, Di Lullo E, Nene A, Wynshaw Boris A, et al. Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia. Cell Stem Cell. 2017;20:435-449.e4 pubmed 出版商
  90. Gopal S, Veracini L, Grall D, Butori C, Schaub S, Audebert S, et al. Fibronectin-guided migration of carcinoma collectives. Nat Commun. 2017;8:14105 pubmed 出版商
  91. Sherman M, Yu R, Tseng T, Sousa C, Liu S, Truitt M, et al. Stromal cues regulate the pancreatic cancer epigenome and metabolome. Proc Natl Acad Sci U S A. 2017;114:1129-1134 pubmed 出版商
  92. de Castro I, Budzak J, Di Giacinto M, Ligammari L, Gokhan E, Spanos C, et al. Repo-Man/PP1 regulates heterochromatin formation in interphase. Nat Commun. 2017;8:14048 pubmed 出版商
  93. Wu H, Gordon J, Whitfield T, Tai P, Van Wijnen A, Stein J, et al. Chromatin dynamics regulate mesenchymal stem cell lineage specification and differentiation to osteogenesis. Biochim Biophys Acta Gene Regul Mech. 2017;1860:438-449 pubmed 出版商
  94. Papillon Cavanagh S, Lu C, Gayden T, Mikael L, Bechet D, Karamboulas C, et al. Impaired H3K36 methylation defines a subset of head and neck squamous cell carcinomas. Nat Genet. 2017;49:180-185 pubmed 出版商
  95. Herold N, Rudd S, Ljungblad L, Sanjiv K, Myrberg I, Paulin C, et al. Targeting SAMHD1 with the Vpx protein to improve cytarabine therapy for hematological malignancies. Nat Med. 2017;23:256-263 pubmed 出版商
  96. Wong B, Wang X, Zecchin A, Thienpont B, Cornelissen I, Kalucka J, et al. The role of fatty acid ?-oxidation in lymphangiogenesis. Nature. 2017;542:49-54 pubmed 出版商
  97. Zhou L, Baibakov B, Canagarajah B, Xiong B, Dean J. Genetic mosaics and time-lapse imaging identify functions of histone H3.3 residues in mouse oocytes and embryos. Development. 2017;144:519-528 pubmed 出版商
  98. Göllner S, Oellerich T, Agrawal Singh S, Schenk T, Klein H, Rohde C, et al. Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia. Nat Med. 2017;23:69-78 pubmed 出版商
  99. Sareddy G, Viswanadhapalli S, Surapaneni P, Suzuki T, Brenner A, Vadlamudi R. Novel KDM1A inhibitors induce differentiation and apoptosis of glioma stem cells via unfolded protein response pathway. Oncogene. 2017;36:2423-2434 pubmed 出版商
  100. Cooper S, Grijzenhout A, Underwood E, Ancelin K, Zhang T, Nesterova T, et al. Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2. Nat Commun. 2016;7:13661 pubmed 出版商
  101. Svoboda L, Bailey N, Van Noord R, Krook M, Harris A, Cramer C, et al. Tumorigenicity of Ewing sarcoma is critically dependent on the trithorax proteins MLL1 and menin. Oncotarget. 2017;8:458-471 pubmed 出版商
  102. Ibañez Rodriguez M, Noctor S, Muñoz E. Cellular Basis of Pineal Gland Development: Emerging Role of Microglia as Phenotype Regulator. PLoS ONE. 2016;11:e0167063 pubmed 出版商
  103. Busby M, Xue C, Li C, Farjoun Y, Gienger E, Yofe I, et al. Systematic comparison of monoclonal versus polyclonal antibodies for mapping histone modifications by ChIP-seq. Epigenetics Chromatin. 2016;9:49 pubmed
  104. Hansen R, Mund A, Poulsen S, Sandoval M, Klement K, Tsouroula K, et al. SCAI promotes DNA double-strand break repair in distinct chromosomal contexts. Nat Cell Biol. 2016;18:1357-1366 pubmed 出版商
  105. Lin W, FRANCIS J, Li H, Gao X, Pedamallu C, Ernst P, et al. Kmt2a cooperates with menin to suppress tumorigenesis in mouse pancreatic islets. Cancer Biol Ther. 2016;17:1274-1281 pubmed 出版商
  106. Day K, Lorenzatti Hiles G, Kozminsky M, Dawsey S, Paul A, Broses L, et al. HER2 and EGFR Overexpression Support Metastatic Progression of Prostate Cancer to Bone. Cancer Res. 2017;77:74-85 pubmed 出版商
  107. Strikoudis A, Lazaris C, Trimarchi T, Galvao Neto A, Yang Y, Ntziachristos P, et al. Regulation of transcriptional elongation in pluripotency and cell differentiation by the PHD-finger protein Phf5a. Nat Cell Biol. 2016;18:1127-1138 pubmed 出版商
  108. Chen Y, Xu J, Skanderup A, Dong Y, Brannon A, Wang L, et al. Molecular analysis of aggressive renal cell carcinoma with unclassified histology reveals distinct subsets. Nat Commun. 2016;7:13131 pubmed 出版商
  109. Ho T, Huang J, Zhou N, Zhang Z, Koirala P, Zhou X, et al. Regulation of PCGEM1 by p54/nrb in prostate cancer. Sci Rep. 2016;6:34529 pubmed 出版商
  110. Hu Y, Zhang Z, Kashiwagi M, Yoshida T, Joshi I, Jena N, et al. Superenhancer reprogramming drives a B-cell-epithelial transition and high-risk leukemia. Genes Dev. 2016;30:1971-90 pubmed 出版商
  111. Amabile A, Migliara A, Capasso P, Biffi M, Cittaro D, Naldini L, et al. Inheritable Silencing of Endogenous Genes by Hit-and-Run Targeted Epigenetic Editing. Cell. 2016;167:219-232.e14 pubmed 出版商
  112. Loubiere V, Delest A, Thomas A, Bonev B, Schuettengruber B, Sati S, et al. Coordinate redeployment of PRC1 proteins suppresses tumor formation during Drosophila development. Nat Genet. 2016;48:1436-1442 pubmed 出版商
  113. Park Y, Nnamani M, Maziarz J, Wagner G. Cis-Regulatory Evolution of Forkhead Box O1 (FOXO1), a Terminal Selector Gene for Decidual Stromal Cell Identity. Mol Biol Evol. 2016;33:3161-3169 pubmed
  114. Walentek P, Quigley I, Sun D, Sajjan U, Kintner C, Harland R. Ciliary transcription factors and miRNAs precisely regulate Cp110 levels required for ciliary adhesions and ciliogenesis. elife. 2016;5: pubmed 出版商
  115. García Carpizo V, Sarmentero J, Han B, Grana O, Ruiz Llorente S, Pisano D, et al. NSD2 contributes to oncogenic RAS-driven transcription in lung cancer cells through long-range epigenetic activation. Sci Rep. 2016;6:32952 pubmed 出版商
  116. Nettersheim D, Jostes S, Fabry M, Honecker F, Schumacher V, Kirfel J, et al. A signaling cascade including ARID1A, GADD45B and DUSP1 induces apoptosis and affects the cell cycle of germ cell cancers after romidepsin treatment. Oncotarget. 2016;7:74931-74946 pubmed 出版商
  117. Otsuka K, Suzuki K. Differences in Radiation Dose Response between Small and Large Intestinal Crypts. Radiat Res. 2016;186:302-14 pubmed 出版商
  118. Doobin D, Kemal S, Dantas T, Vallee R. Severe NDE1-mediated microcephaly results from neural progenitor cell cycle arrests at multiple specific stages. Nat Commun. 2016;7:12551 pubmed 出版商
  119. Romani B, Kamali Jamil R, Hamidi Fard M, Rahimi P, Momen S, Aghasadeghi M, et al. HIV-1 Vpr reactivates latent HIV-1 provirus by inducing depletion of class I HDACs on chromatin. Sci Rep. 2016;6:31924 pubmed 出版商
  120. Krook M, Hawkins A, Patel R, Lucas D, Van Noord R, Chugh R, et al. A bivalent promoter contributes to stress-induced plasticity of CXCR4 in Ewing sarcoma. Oncotarget. 2016;7:61775-61788 pubmed 出版商
  121. Singh N, Johnstone D, Martin K, Tempera I, Kaplan M, Denny M. Alterations in nuclear structure promote lupus autoimmunity in a mouse model. Dis Model Mech. 2016;9:885-97 pubmed 出版商
  122. Sengupta D, Deb M, Rath S, Kar S, Parbin S, Pradhan N, et al. DNA methylation and not H3K4 trimethylation dictates the expression status of miR-152 gene which inhibits migration of breast cancer cells via DNMT1/CDH1 loop. Exp Cell Res. 2016;346:176-87 pubmed 出版商
  123. Eichenfield D, Troutman T, Link V, Lam M, Cho H, Gosselin D, et al. Tissue damage drives co-localization of NF-?B, Smad3, and Nrf2 to direct Rev-erb sensitive wound repair in mouse macrophages. elife. 2016;5: pubmed 出版商
  124. Nettersheim D, Arndt I, Sharma R, Riesenberg S, Jostes S, Schneider S, et al. The cancer/testis-antigen PRAME supports the pluripotency network and represses somatic and germ cell differentiation programs in seminomas. Br J Cancer. 2016;115:454-64 pubmed 出版商
  125. Yang Y, Yamada T, Hill K, Hemberg M, Reddy N, Cho H, et al. Chromatin remodeling inactivates activity genes and regulates neural coding. Science. 2016;353:300-305 pubmed 出版商
  126. Zhang X, Ling Y, Guo Y, Bai Y, Shi X, Gong F, et al. Mps1 kinase regulates tumor cell viability via its novel role in mitochondria. Cell Death Dis. 2016;7:e2292 pubmed 出版商
  127. Allison K, Sajti E, Collier J, Gosselin D, Troutman T, Stone E, et al. Affinity and dose of TCR engagement yield proportional enhancer and gene activity in CD4+ T cells. elife. 2016;5: pubmed 出版商
  128. Powers N, Parvanov E, Baker C, Walker M, Petkov P, Paigen K. The Meiotic Recombination Activator PRDM9 Trimethylates Both H3K36 and H3K4 at Recombination Hotspots In Vivo. PLoS Genet. 2016;12:e1006146 pubmed 出版商
  129. Gayatri S, Cowles M, Vemulapalli V, Cheng D, Sun Z, Bedford M. Using oriented peptide array libraries to evaluate methylarginine-specific antibodies and arginine methyltransferase substrate motifs. Sci Rep. 2016;6:28718 pubmed 出版商
  130. Omata Y, Nakamura S, Koyama T, Yasui T, Hirose J, Izawa N, et al. Identification of Nedd9 as a TGF-?-Smad2/3 Target Gene Involved in RANKL-Induced Osteoclastogenesis by Comprehensive Analysis. PLoS ONE. 2016;11:e0157992 pubmed 出版商
  131. Mendoza Parra M, Saravaki V, Cholley P, Blum M, Billoré B, Gronemeyer H. Antibody performance in ChIP-sequencing assays: From quality scores of public data sets to quantitative certification. F1000Res. 2016;5:54 pubmed 出版商
  132. Deaton A, Gómez Rodríguez M, Mieczkowski J, Tolstorukov M, Kundu S, Sadreyev R, et al. Enhancer regions show high histone H3.3 turnover that changes during differentiation. elife. 2016;5: pubmed 出版商
  133. Liu Z, Lam N, Wang E, Virden R, Pawel B, Attiyeh E, et al. Identification of CASZ1 NES reveals potential mechanisms for loss of CASZ1 tumor suppressor activity in neuroblastoma. Oncogene. 2017;36:97-109 pubmed 出版商
  134. Hintermair C, Voß K, Forné I, Heidemann M, Flatley A, Kremmer E, et al. Specific threonine-4 phosphorylation and function of RNA polymerase II CTD during M phase progression. Sci Rep. 2016;6:27401 pubmed 出版商
  135. Fang D, Gan H, Lee J, Han J, Wang Z, Riester S, et al. The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas. Science. 2016;352:1344-8 pubmed 出版商
  136. Su C, Cheng C, Tzeng T, Lin I, Hsu M. An H2A Histone Isotype, H2ac, Associates with Telomere and Maintains Telomere Integrity. PLoS ONE. 2016;11:e0156378 pubmed 出版商
  137. Wang L, Hou S, Han Y. Hedgehog signaling promotes basal progenitor expansion and the growth and folding of the neocortex. Nat Neurosci. 2016;19:888-96 pubmed 出版商
  138. Pal S, Graves H, Ohsawa R, Huang T, Wang P, Harmacek L, et al. The Commercial Antibodies Widely Used to Measure H3 K56 Acetylation Are Non-Specific in Human and Drosophila Cells. PLoS ONE. 2016;11:e0155409 pubmed 出版商
  139. Jayaram H, Hoelper D, Jain S, Cantone N, Lundgren S, Poy F, et al. S-adenosyl methionine is necessary for inhibition of the methyltransferase G9a by the lysine 9 to methionine mutation on histone H3. Proc Natl Acad Sci U S A. 2016;113:6182-7 pubmed 出版商
  140. Lu C, Jain S, Hoelper D, Bechet D, Molden R, Ran L, et al. Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science. 2016;352:844-9 pubmed 出版商
  141. Lee B, Wu C, Lin Y, Park S, Wei L. Synergistic activation of Arg1 gene by retinoic acid and IL-4 involves chromatin remodeling for transcription initiation and elongation coupling. Nucleic Acids Res. 2016;44:7568-79 pubmed 出版商
  142. Kushwaha R, Jagadish N, Kustagi M, Mendiratta G, Seandel M, Soni R, et al. Mechanism and Role of SOX2 Repression in Seminoma: Relevance to Human Germline Specification. Stem Cell Reports. 2016;6:772-783 pubmed 出版商
  143. Su S, Li C, Lei P, Wang X, Zhao Q, Cai Y, et al. The EZH1-SUZ12 complex positively regulates the transcription of NF-?B target genes through interaction with UXT. J Cell Sci. 2016;129:2343-53 pubmed 出版商
  144. Carofino B, Ayanga B, Tracey L, Brooke Bisschop T, Justice M. PRDM14 promotes RAG-dependent Notch1 driver mutations in mouse T-ALL. Biol Open. 2016;5:645-53 pubmed 出版商
  145. Wang Q, Xue L, Zhang X, Bu S, Zhu X, Lai D. Autophagy protects ovarian cancer-associated fibroblasts against oxidative stress. Cell Cycle. 2016;15:1376-85 pubmed 出版商
  146. Garcia Cuellar M, Büttner C, Bartenhagen C, Dugas M, Slany R. Leukemogenic MLL-ENL Fusions Induce Alternative Chromatin States to Drive a Functionally Dichotomous Group of Target Genes. Cell Rep. 2016;15:310-22 pubmed 出版商
  147. Saez F, Hong N, Garvin J. Luminal flow induces NADPH oxidase 4 translocation to the nuclei of thick ascending limbs. Physiol Rep. 2016;4: pubmed 出版商
  148. Huang Y, Chen S, Liu R, Chen Y, Lin C, Huang C, et al. CLEC5A is critical for dengue virus-induced osteoclast activation and bone homeostasis. J Mol Med (Berl). 2016;94:1025-37 pubmed 出版商
  149. Gatchalian J, Gallardo C, Shinsky S, Ospina R, Liendo A, Krajewski K, et al. Chromatin condensation and recruitment of PHD finger proteins to histone H3K4me3 are mutually exclusive. Nucleic Acids Res. 2016;44:6102-12 pubmed 出版商
  150. Li Y, Liu D, López Paz C, OLSON B, Umen J. A new class of cyclin dependent kinase in Chlamydomonas is required for coupling cell size to cell division. elife. 2016;5:e10767 pubmed 出版商
  151. Dheekollu J, Wiedmer A, Sentana Lledo D, Cassel J, Messick T, Lieberman P. HCF1 and OCT2 Cooperate with EBNA1 To Enhance OriP-Dependent Transcription and Episome Maintenance of Latent Epstein-Barr Virus. J Virol. 2016;90:5353-5367 pubmed 出版商
  152. Faralli H, Wang C, Nakka K, Benyoucef A, Sebastian S, Zhuang L, et al. UTX demethylase activity is required for satellite cell-mediated muscle regeneration. J Clin Invest. 2016;126:1555-65 pubmed 出版商
  153. Weigel C, Veldwijk M, Oakes C, Seibold P, Slynko A, Liesenfeld D, et al. Epigenetic regulation of diacylglycerol kinase alpha promotes radiation-induced fibrosis. Nat Commun. 2016;7:10893 pubmed 出版商
  154. Sadasivam D, Huang D. Maintenance of Tissue Pluripotency by Epigenetic Factors Acting at Multiple Levels. PLoS Genet. 2016;12:e1005897 pubmed 出版商
  155. Ha S, Reid C, Meshkibaf S, Kim S. Inhibition of Interleukin 1β (IL-1β) Expression by Anthrax Lethal Toxin (LeTx) Is Reversed by Histone Deacetylase 8 (HDAC8) Inhibition in Murine Macrophages. J Biol Chem. 2016;291:8745-55 pubmed 出版商
  156. Wike C, Graves H, Hawkins R, Gibson M, Ferdinand M, Zhang T, et al. Aurora-A mediated histone H3 phosphorylation of threonine 118 controls condensin I and cohesin occupancy in mitosis. elife. 2016;5:e11402 pubmed 出版商
  157. Passer D, van de Vrugt A, Atmanli A, Domian I. Atypical Protein Kinase C-Dependent Polarized Cell Division Is Required for Myocardial Trabeculation. Cell Rep. 2016;14:1662-1672 pubmed 出版商
  158. Brasa S, Mueller A, Jacquemont S, Hahne F, Rozenberg I, Peters T, et al. Reciprocal changes in DNA methylation and hydroxymethylation and a broad repressive epigenetic switch characterize FMR1 transcriptional silencing in fragile X syndrome. Clin Epigenetics. 2016;8:15 pubmed 出版商
  159. Haokip D, Goel I, Arya V, Sharma T, Kumari R, Priya R, et al. Transcriptional Regulation of Atp-Dependent Chromatin Remodeling Factors: Smarcal1 and Brg1 Mutually Co-Regulate Each Other. Sci Rep. 2016;6:20532 pubmed 出版商
  160. Ancelin K, Syx L, Borensztein M, Ranisavljevic N, Vassilev I, Briseño Roa L, et al. Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation. elife. 2016;5: pubmed 出版商
  161. Bouge A, Parmentier M. Tau excess impairs mitosis and kinesin-5 function, leading to aneuploidy and cell death. Dis Model Mech. 2016;9:307-19 pubmed 出版商
  162. Powell E, Shao J, Yuan Y, Chen H, Cai S, Echeverria G, et al. p53 deficiency linked to B cell translocation gene 2 (BTG2) loss enhances metastatic potential by promoting tumor growth in primary and metastatic sites in patient-derived xenograft (PDX) models of triple-negative breast cancer. Breast Cancer Res. 2016;18:13 pubmed 出版商
  163. Lin C, Erkek S, Tong Y, Yin L, Federation A, Zapatka M, et al. Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature. 2016;530:57-62 pubmed 出版商
  164. Veith N, Ziehr H, MacLeod R, Reamon Buettner S. Mechanisms underlying epigenetic and transcriptional heterogeneity in Chinese hamster ovary (CHO) cell lines. BMC Biotechnol. 2016;16:6 pubmed 出版商
  165. Deb M, Sengupta D, Kar S, Rath S, Roy S, Das G, et al. Epigenetic drift towards histone modifications regulates CAV1 gene expression in colon cancer. Gene. 2016;581:75-84 pubmed 出版商
  166. Oktyabri D, Ishimura A, Tange S, Terashima M, Suzuki T. DOT1L histone methyltransferase regulates the expression of BCAT1 and is involved in sphere formation and cell migration of breast cancer cell lines. Biochimie. 2016;123:20-31 pubmed 出版商
  167. Cousin F, Jouan Lanhouet S, Théret N, Brenner C, Jouan E, Le Moigne Muller G, et al. The probiotic Propionibacterium freudenreichii as a new adjuvant for TRAIL-based therapy in colorectal cancer. Oncotarget. 2016;7:7161-78 pubmed 出版商
  168. Taniue K, Kurimoto A, Sugimasa H, Nasu E, Takeda Y, Iwasaki K, et al. Long noncoding RNA UPAT promotes colon tumorigenesis by inhibiting degradation of UHRF1. Proc Natl Acad Sci U S A. 2016;113:1273-8 pubmed 出版商
  169. Pan H, Guan D, Liu X, Li J, Wang L, Wu J, et al. SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Res. 2016;26:190-205 pubmed 出版商
  170. Kuo C, Li X, Stark J, Shih H, Ann D. RNF4 regulates DNA double-strand break repair in a cell cycle-dependent manner. Cell Cycle. 2016;15:787-98 pubmed 出版商
  171. Yang Y, Li W, Hoque M, Hou L, Shen S, Tian B, et al. PAF Complex Plays Novel Subunit-Specific Roles in Alternative Cleavage and Polyadenylation. PLoS Genet. 2016;12:e1005794 pubmed 出版商
  172. Lu F, Chen H, Kossenkov A, DeWispeleare K, Won K, Lieberman P. EBNA2 Drives Formation of New Chromosome Binding Sites and Target Genes for B-Cell Master Regulatory Transcription Factors RBP-jκ and EBF1. PLoS Pathog. 2016;12:e1005339 pubmed 出版商
  173. Carabalona A, Hu D, Vallee R. KIF1A inhibition immortalizes brain stem cells but blocks BDNF-mediated neuronal migration. Nat Neurosci. 2016;19:253-62 pubmed 出版商
  174. Yasuma K, Yasunaga J, Takemoto K, Sugata K, Mitobe Y, Takenouchi N, et al. HTLV-1 bZIP Factor Impairs Anti-viral Immunity by Inducing Co-inhibitory Molecule, T Cell Immunoglobulin and ITIM Domain (TIGIT). PLoS Pathog. 2016;12:e1005372 pubmed 出版商
  175. Mir R, Bele A, Mirza S, Srivastava S, Olou A, Ammons S, et al. A Novel Interaction of Ecdysoneless (ECD) Protein with R2TP Complex Component RUVBL1 Is Required for the Functional Role of ECD in Cell Cycle Progression. Mol Cell Biol. 2015;36:886-99 pubmed 出版商
  176. Flavahan W, Drier Y, Liau B, Gillespie S, Venteicher A, Stemmer Rachamimov A, et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature. 2016;529:110-4 pubmed 出版商
  177. Toni L, Padilla P. Developmentally arrested Austrofundulus limnaeus embryos have changes in post-translational modifications of histone H3. J Exp Biol. 2016;219:544-52 pubmed 出版商
  178. Acevedo Acevedo S, Crone W. Substrate stiffness effect and chromosome missegregation in hIPS cells. J Negat Results Biomed. 2015;14:22 pubmed 出版商
  179. Connor A, Kelley P, Tempero R. Lymphatic endothelial lineage assemblage during corneal lymphangiogenesis. Lab Invest. 2016;96:270-82 pubmed 出版商
  180. Cai L, Wang Z, Liu D. Interference with endogenous EZH2 reverses the chemotherapy drug resistance in cervical cancer cells partly by up-regulating Dicer expression. Tumour Biol. 2016;37:6359-69 pubmed 出版商
  181. Popken J, Dahlhoff M, Guengoer T, Wolf E, Zakhartchenko V. 3D structured illumination microscopy of mammalian embryos and spermatozoa. BMC Dev Biol. 2015;15:46 pubmed 出版商
  182. Hagelkruys A, Mattes K, Moos V, Rennmayr M, Ringbauer M, Sawicka A, et al. Essential Nonredundant Function of the Catalytic Activity of Histone Deacetylase 2 in Mouse Development. Mol Cell Biol. 2016;36:462-74 pubmed 出版商
  183. dos Santos N, Matias A, Higa G, Kihara A, Cerchiaro G. Copper Uptake in Mammary Epithelial Cells Activates Cyclins and Triggers Antioxidant Response. Oxid Med Cell Longev. 2015;2015:162876 pubmed 出版商
  184. Hübner B, Lomiento M, Mammoli F, Illner D, Markaki Y, Ferrari S, et al. Remodeling of nuclear landscapes during human myelopoietic cell differentiation maintains co-aligned active and inactive nuclear compartments. Epigenetics Chromatin. 2015;8:47 pubmed 出版商
  185. Mursalimov S, Permyakova N, Deineko E, Houben A, Demidov D. Cytomixis doesn't induce obvious changes in chromatin modifications and programmed cell death in tobacco male meiocytes. Front Plant Sci. 2015;6:846 pubmed 出版商
  186. Tasaki J, Uchiyama Tasaki C, Rouhana L. Analysis of Stem Cell Motility In Vivo Based on Immunodetection of Planarian Neoblasts and Tracing of BrdU-Labeled Cells After Partial Irradiation. Methods Mol Biol. 2016;1365:323-38 pubmed 出版商
  187. Fukuda A, Mitani A, Miyashita T, Umezawa A, Akutsu H. Chromatin condensation of Xist genomic loci during oogenesis in mice. Development. 2015;142:4049-55 pubmed 出版商
  188. Renaud E, Barascu A, Rosselli F. Impaired TIP60-mediated H4K16 acetylation accounts for the aberrant chromatin accumulation of 53BP1 and RAP80 in Fanconi anemia pathway-deficient cells. Nucleic Acids Res. 2016;44:648-56 pubmed 出版商
  189. Hehnly H, Canton D, Bucko P, Langeberg L, Ogier L, Gelman I, et al. A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells. elife. 2015;4:e09384 pubmed 出版商
  190. Zhan Y, Kost Alimova M, Shi X, Leo E, Bardenhagen J, Shepard H, et al. Development of novel cellular histone-binding and chromatin-displacement assays for bromodomain drug discovery. Epigenetics Chromatin. 2015;8:37 pubmed 出版商
  191. Brideau N, Coker H, Gendrel A, Siebert C, Bezstarosti K, Demmers J, et al. Independent Mechanisms Target SMCHD1 to Trimethylated Histone H3 Lysine 9-Modified Chromatin and the Inactive X Chromosome. Mol Cell Biol. 2015;35:4053-68 pubmed 出版商
  192. Sheikh B, Bechtel Walz W, Lucci J, Karpiuk O, Hild I, Hartleben B, et al. MOF maintains transcriptional programs regulating cellular stress response. Oncogene. 2016;35:2698-710 pubmed 出版商
  193. Liu R, Yang Y, Shen J, Chen H, Zhang Q, Ba R, et al. Fstl1 is involved in the regulation of radial glial scaffold development. Mol Brain. 2015;8:53 pubmed 出版商
  194. Xiao X, Shi X, Fan Y, Zhang X, Wu M, Lan P, et al. GITR subverts Foxp3(+) Tregs to boost Th9 immunity through regulation of histone acetylation. Nat Commun. 2015;6:8266 pubmed 出版商
  195. Quijada P, Hariharan N, Cubillo J, Bala K, Emathinger J, Wang B, et al. Nuclear Calcium/Calmodulin-dependent Protein Kinase II Signaling Enhances Cardiac Progenitor Cell Survival and Cardiac Lineage Commitment. J Biol Chem. 2015;290:25411-26 pubmed 出版商
  196. Tiffen J, Gunatilake D, Gallagher S, Gowrishankar K, Heinemann A, Cullinane C, et al. Targeting activating mutations of EZH2 leads to potent cell growth inhibition in human melanoma by derepression of tumor suppressor genes. Oncotarget. 2015;6:27023-36 pubmed 出版商
  197. Liu X, Chen X, Rycaj K, Chao H, Deng Q, Jeter C, et al. Systematic dissection of phenotypic, functional, and tumorigenic heterogeneity of human prostate cancer cells. Oncotarget. 2015;6:23959-86 pubmed
  198. Yamada N, Hasegawa Y, Yue M, Hamada T, Nakagawa S, Ogawa Y. Xist Exon 7 Contributes to the Stable Localization of Xist RNA on the Inactive X-Chromosome. PLoS Genet. 2015;11:e1005430 pubmed 出版商
  199. Lovisa S, LeBleu V, Tampe B, Sugimoto H, Vadnagara K, Carstens J, et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med. 2015;21:998-1009 pubmed 出版商
  200. Wagner W, Ciszewski W, Kania K. L- and D-lactate enhance DNA repair and modulate the resistance of cervical carcinoma cells to anticancer drugs via histone deacetylase inhibition and hydroxycarboxylic acid receptor 1 activation. Cell Commun Signal. 2015;13:36 pubmed 出版商
  201. Vishwakarma B, Nguyen N, Makishima H, Hosono N, Gudmundsson K, Negi V, et al. Runx1 repression by histone deacetylation is critical for Setbp1-induced mouse myeloid leukemia development. Leukemia. 2016;30:200-8 pubmed 出版商
  202. Sin H, Kartashov A, Hasegawa K, Barski A, Namekawa S. Poised chromatin and bivalent domains facilitate the mitosis-to-meiosis transition in the male germline. BMC Biol. 2015;13:53 pubmed 出版商
  203. Jang C, Shibata Y, Starmer J, Yee D, Magnuson T. Histone H3.3 maintains genome integrity during mammalian development. Genes Dev. 2015;29:1377-92 pubmed 出版商
  204. Fimiani C, Goina E, Mallamaci A. Upregulating endogenous genes by an RNA-programmable artificial transactivator. Nucleic Acids Res. 2015;43:7850-64 pubmed 出版商
  205. Sadaie M, Dillon C, Narita M, Young A, Cairney C, Godwin L, et al. Cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after Aurora kinase B inhibition. Mol Biol Cell. 2015;26:2971-85 pubmed 出版商
  206. O Shaughnessy Kirwan A, Signolet J, Costello I, Gharbi S, Hendrich B. Constraint of gene expression by the chromatin remodelling protein CHD4 facilitates lineage specification. Development. 2015;142:2586-97 pubmed 出版商
  207. Kotomura N, Harada N, Ishihara S. The Proportion of Chromatin Graded between Closed and Open States Determines the Level of Transcripts Derived from Distinct Promoters in the CYP19 Gene. PLoS ONE. 2015;10:e0128282 pubmed 出版商
  208. Alexandrova E, Yallowitz A, Li D, Xu S, Schulz R, Proia D, et al. Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment. Nature. 2015;523:352-6 pubmed 出版商
  209. Fischer S, Paul A, Wagner A, Mathias S, Geiss M, Schandock F, et al. miR-2861 as novel HDAC5 inhibitor in CHO cells enhances productivity while maintaining product quality. Biotechnol Bioeng. 2015;112:2142-53 pubmed 出版商
  210. Heubach J, Monsior J, Deenen R, Niegisch G, Szarvas T, Niedworok C, et al. The long noncoding RNA HOTAIR has tissue and cell type-dependent effects on HOX gene expression and phenotype of urothelial cancer cells. Mol Cancer. 2015;14:108 pubmed 出版商
  211. Singh P, Konar A, Kumar A, Srivas S, Thakur M. Hippocampal chromatin-modifying enzymes are pivotal for scopolamine-induced synaptic plasticity gene expression changes and memory impairment. J Neurochem. 2015;134:642-51 pubmed 出版商
  212. Yin Y, Castro A, Hoekstra M, Yan T, Kanakamedala A, Dehner L, et al. Fibroblast Growth Factor 9 Regulation by MicroRNAs Controls Lung Development and Links DICER1 Loss to the Pathogenesis of Pleuropulmonary Blastoma. PLoS Genet. 2015;11:e1005242 pubmed 出版商
  213. Chen Q, Arai D, Kawakami K, Sawada T, Jing X, Miyajima M, et al. EphA4 Regulates the Balance between Self-Renewal and Differentiation of Radial Glial Cells and Intermediate Neuronal Precursors in Cooperation with FGF Signaling. PLoS ONE. 2015;10:e0126942 pubmed 出版商
  214. Yu Y, Koehn C, Yue Y, Li S, Thiele G, Hearth Holmes M, et al. Celastrol inhibits inflammatory stimuli-induced neutrophil extracellular trap formation. Curr Mol Med. 2015;15:401-10 pubmed
  215. Chen H, Huang W, Yang L, Lin C. The PTEN-AKT-mTOR/RICTOR Pathway in Nasal Natural Killer Cell Lymphoma Is Activated by miR-494-3p via PTEN But Inhibited by miR-142-3p via RICTOR. Am J Pathol. 2015;185:1487-99 pubmed 出版商
  216. Morchoisne Bolhy S, Geoffroy M, Bouhlel I, Alves A, Audugé N, Baudin X, et al. Intranuclear dynamics of the Nup107-160 complex. Mol Biol Cell. 2015;26:2343-56 pubmed 出版商
  217. Arbeille E, Reynaud F, Sanyas I, Bozon M, Kindbeiter K, Causeret F, et al. Cerebrospinal fluid-derived Semaphorin3B orients neuroepithelial cell divisions in the apicobasal axis. Nat Commun. 2015;6:6366 pubmed 出版商
  218. Jeong H, Gil N, Lee H, Cho S, Kim K, Chun K, et al. Timely Degradation of Wip1 Phosphatase by APC/C Activator Protein Cdh1 is Necessary for Normal Mitotic Progression. J Cell Biochem. 2015;116:1602-12 pubmed 出版商
  219. Sun S, Ling S, Qiu J, Albuquerque C, Zhou Y, Tokunaga S, et al. ALS-causative mutations in FUS/TLS confer gain and loss of function by altered association with SMN and U1-snRNP. Nat Commun. 2015;6:6171 pubmed 出版商
  220. Ochi T, Blackford A, Coates J, Jhujh S, Mehmood S, Tamura N, et al. DNA repair. PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair. Science. 2015;347:185-188 pubmed 出版商
  221. Jacob V, Chernyavskaya Y, Chen X, Tan P, Kent B, Hoshida Y, et al. DNA hypomethylation induces a DNA replication-associated cell cycle arrest to block hepatic outgrowth in uhrf1 mutant zebrafish embryos. Development. 2015;142:510-21 pubmed 出版商
  222. Watson M, Hedley D. Whole blood measurement of histone modifications linked to the epigenetic regulation of gene expression. Curr Protoc Cytom. 2015;71:6.36.1-9 pubmed 出版商
  223. Pacaud R, Cheray M, Nadaradjane A, Vallette F, Cartron P. Histone H3 phosphorylation in GBM: a new rational to guide the use of kinase inhibitors in anti-GBM therapy. Theranostics. 2015;5:12-22 pubmed 出版商
  224. Wurm S, Zhang J, Guinea Viniegra J, García F, Muñoz J, Bakiri L, et al. Terminal epidermal differentiation is regulated by the interaction of Fra-2/AP-1 with Ezh2 and ERK1/2. Genes Dev. 2015;29:144-56 pubmed 出版商
  225. German S, Campbell K, Thornton E, McLachlan G, Sweetman D, Alberio R. Ovine induced pluripotent stem cells are resistant to reprogramming after nuclear transfer. Cell Reprogram. 2015;17:19-27 pubmed 出版商
  226. Smith B, Vance C, Scotter E, Troakes C, Wong C, Topp S, et al. Novel mutations support a role for Profilin 1 in the pathogenesis of ALS. Neurobiol Aging. 2015;36:1602.e17-27 pubmed 出版商
  227. Castonguay E, White S, Kagansky A, St Cyr D, Castillo A, Brugger C, et al. Panspecies small-molecule disruptors of heterochromatin-mediated transcriptional gene silencing. Mol Cell Biol. 2015;35:662-74 pubmed 出版商
  228. Lee J, Peng Y, Lin W, Parrish J. Coordinate control of terminal dendrite patterning and dynamics by the membrane protein Raw. Development. 2015;142:162-73 pubmed 出版商
  229. Fink D, Connor A, Kelley P, Steele M, Hollingsworth M, Tempero R. Nerve growth factor regulates neurolymphatic remodeling during corneal inflammation and resolution. PLoS ONE. 2014;9:e112737 pubmed 出版商
  230. Shi X, Zhang Z, Zhan X, Cao M, Satoh T, Akira S, et al. An epigenetic switch induced by Shh signalling regulates gene activation during development and medulloblastoma growth. Nat Commun. 2014;5:5425 pubmed 出版商
  231. Ambavaram M, Basu S, Krishnan A, Ramegowda V, Batlang U, Rahman L, et al. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. Nat Commun. 2014;5:5302 pubmed 出版商
  232. Tchao J, Han L, Lin B, Yang L, Tobita K. Combined biophysical and soluble factor modulation induces cardiomyocyte differentiation from human muscle derived stem cells. Sci Rep. 2014;4:6614 pubmed 出版商
  233. Bakhtari A, Rahmani H, Bonakdar E, Jafarpour F, Asgari V, Hosseini S, et al. The interfering effects of superovulation and vitrification upon some important epigenetic biomarkers in mouse blastocyst. Cryobiology. 2014;69:419-27 pubmed 出版商
  234. Seredick S, Hutchinson S, Van Ryswyk L, Talbot J, Eisen J. Lhx3 and Lhx4 suppress Kolmer-Agduhr interneuron characteristics within zebrafish axial motoneurons. Development. 2014;141:3900-9 pubmed 出版商
  235. Chan Y, West S. Spatial control of the GEN1 Holliday junction resolvase ensures genome stability. Nat Commun. 2014;5:4844 pubmed 出版商
  236. Xu Y, Gan E, Zhou J, Wee W, Zhang X, Ito T. Arabidopsis MRG domain proteins bridge two histone modifications to elevate expression of flowering genes. Nucleic Acids Res. 2014;42:10960-74 pubmed 出版商
  237. Ntziachristos P, Tsirigos A, Welstead G, Trimarchi T, Bakogianni S, Xu L, et al. Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature. 2014;514:513-7 pubmed 出版商
  238. Balmer N, Klima S, Rempel E, Ivanova V, Kolde R, Weng M, et al. From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014;88:1451-68 pubmed 出版商
  239. Kielar M, Tuy F, Bizzotto S, Lebrand C, de Juan Romero C, Poirier K, et al. Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human. Nat Neurosci. 2014;17:923-33 pubmed 出版商
  240. Cooper S, Dienstbier M, Hassan R, Schermelleh L, Sharif J, Blackledge N, et al. Targeting polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment. Cell Rep. 2014;7:1456-1470 pubmed 出版商
  241. Chen Y, Chen J, Yu J, Yang G, Temple E, Harbinski F, et al. Identification of mixed lineage leukemia 1(MLL1) protein as a coactivator of heat shock factor 1(HSF1) protein in response to heat shock protein 90 (HSP90) inhibition. J Biol Chem. 2014;289:18914-27 pubmed 出版商
  242. Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, et al. REST and stress resistance in ageing and Alzheimer's disease. Nature. 2014;507:448-54 pubmed 出版商
  243. Zhang X, Ling J, Barcia G, Jing L, Wu J, Barry B, et al. Mutations in QARS, encoding glutaminyl-tRNA synthetase, cause progressive microcephaly, cerebral-cerebellar atrophy, and intractable seizures. Am J Hum Genet. 2014;94:547-58 pubmed 出版商
  244. Glebov K, Voronezhskaya E, Khabarova M, Ivashkin E, Nezlin L, Ponimaskin E. Mechanisms underlying dual effects of serotonin during development of Helisoma trivolvis (Mollusca). BMC Dev Biol. 2014;14:14 pubmed 出版商
  245. Sanders Y, Hagood J, Liu H, Zhang W, Ambalavanan N, Thannickal V. Histone deacetylase inhibition promotes fibroblast apoptosis and ameliorates pulmonary fibrosis in mice. Eur Respir J. 2014;43:1448-58 pubmed 出版商
  246. Aoshiba K, Tsuji T, Itoh M, Semba S, Yamaguchi K, Nakamura H, et al. A murine model of airway fibrosis induced by repeated naphthalene exposure. Exp Toxicol Pathol. 2014;66:169-77 pubmed 出版商
  247. Arnandis T, Ferrer Vicens I, Torres L, García C, García Trevijano E, Zaragoza R, et al. Differential functions of calpain 1 during epithelial cell death and adipocyte differentiation in mammary gland involution. Biochem J. 2014;459:355-68 pubmed 出版商
  248. Gregory B, Cheung V. Natural variation in the histone demethylase, KDM4C, influences expression levels of specific genes including those that affect cell growth. Genome Res. 2014;24:52-63 pubmed 出版商
  249. Hammond S, Byrum S, Namjoshi S, Graves H, Dennehey B, Tackett A, et al. Mitotic phosphorylation of histone H3 threonine 80. Cell Cycle. 2014;13:440-52 pubmed 出版商
  250. Wu H, Balsbaugh J, Chandler H, Georgilis A, Zullow H, Shabanowitz J, et al. Mitogen-activated protein kinase signaling mediates phosphorylation of polycomb ortholog Cbx7. J Biol Chem. 2013;288:36398-408 pubmed 出版商
  251. McLaughlin N, Wang F, Saifudeen Z, El Dahr S. In situ histone landscape of nephrogenesis. Epigenetics. 2014;9:222-35 pubmed 出版商
  252. Douglas N, Arora R, Chen C, Sauer M, Papaioannou V. Investigating the role of tbx4 in the female germline in mice. Biol Reprod. 2013;89:148 pubmed 出版商
  253. Saurat N, Andersson T, Vasistha N, Molnár Z, Livesey F. Dicer is required for neural stem cell multipotency and lineage progression during cerebral cortex development. Neural Dev. 2013;8:14 pubmed 出版商
  254. Oshikawa M, Okada K, Nakajima K, Ajioka I. Cortical excitatory neurons become protected from cell division during neurogenesis in an Rb family-dependent manner. Development. 2013;140:2310-20 pubmed 出版商
  255. Lau P, Cheung P. Elucidating combinatorial histone modifications and crosstalks by coupling histone-modifying enzyme with biotin ligase activity. Nucleic Acids Res. 2013;41:e49 pubmed 出版商
  256. Gaydos L, Rechtsteiner A, Egelhofer T, Carroll C, Strome S. Antagonism between MES-4 and Polycomb repressive complex 2 promotes appropriate gene expression in C. elegans germ cells. Cell Rep. 2012;2:1169-77 pubmed 出版商
  257. Maltby V, Martin B, Brind Amour J, Chruscicki A, McBurney K, Schulze J, et al. Histone H3K4 demethylation is negatively regulated by histone H3 acetylation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2012;109:18505-10 pubmed 出版商
  258. Gallagher S, Kofman A, Huszar J, Dannenberg J, Depinho R, Braun R, et al. Distinct requirements for Sin3a in perinatal male gonocytes and differentiating spermatogonia. Dev Biol. 2013;373:83-94 pubmed 出版商
  259. Schwab K, Smith G, Dressler G. Arrested spermatogenesis and evidence for DNA damage in PTIP mutant testes. Dev Biol. 2013;373:64-71 pubmed 出版商
  260. Ohmori S, Takai J, Ishijima Y, Suzuki M, Moriguchi T, Philipsen S, et al. Regulation of GATA factor expression is distinct between erythroid and mast cell lineages. Mol Cell Biol. 2012;32:4742-55 pubmed 出版商
  261. Makeyev A, Enkhmandakh B, Hong S, Joshi P, Shin D, Bayarsaihan D. Diversity and complexity in chromatin recognition by TFII-I transcription factors in pluripotent embryonic stem cells and embryonic tissues. PLoS ONE. 2012;7:e44443 pubmed 出版商
  262. Cerf A, Tian H, Craighead H. Ordered arrays of native chromatin molecules for high-resolution imaging and analysis. ACS Nano. 2012;6:7928-34 pubmed
  263. Weng M, Zimmer B, Pöltl D, Broeg M, Ivanova V, Gaspar J, et al. Extensive transcriptional regulation of chromatin modifiers during human neurodevelopment. PLoS ONE. 2012;7:e36708 pubmed 出版商
  264. Kloth M, Goering W, Ribarska T, Arsov C, Sorensen K, Schulz W. The SNP rs6441224 influences transcriptional activity and prognostically relevant hypermethylation of RARRES1 in prostate cancer. Int J Cancer. 2012;131:E897-904 pubmed 出版商
  265. Rothova M, Peterkova R, Tucker A. Fate map of the dental mesenchyme: dynamic development of the dental papilla and follicle. Dev Biol. 2012;366:244-54 pubmed 出版商
  266. Murata T, Kondo Y, Sugimoto A, Kawashima D, Saito S, Isomura H, et al. Epigenetic histone modification of Epstein-Barr virus BZLF1 promoter during latency and reactivation in Raji cells. J Virol. 2012;86:4752-61 pubmed 出版商
  267. Drogaris P, Villeneuve V, Pomiès C, Lee E, Bourdeau V, Bonneil E, et al. Histone deacetylase inhibitors globally enhance h3/h4 tail acetylation without affecting h3 lysine 56 acetylation. Sci Rep. 2012;2:220 pubmed 出版商
  268. De Cecco M, Jeyapalan J, Zhao X, Tamamori Adachi M, Sedivy J. Nuclear protein accumulation in cellular senescence and organismal aging revealed with a novel single-cell resolution fluorescence microscopy assay. Aging (Albany NY). 2011;3:955-67 pubmed
  269. Rada Iglesias A, Bajpai R, Swigut T, Brugmann S, Flynn R, Wysocka J. A unique chromatin signature uncovers early developmental enhancers in humans. Nature. 2011;470:279-83 pubmed 出版商
  270. Sarma K, Levasseur P, Aristarkhov A, Lee J. Locked nucleic acids (LNAs) reveal sequence requirements and kinetics of Xist RNA localization to the X chromosome. Proc Natl Acad Sci U S A. 2010;107:22196-201 pubmed 出版商
  271. Liu H, Galka M, Iberg A, Wang Z, Li L, Voss C, et al. Systematic identification of methyllysine-driven interactions for histone and nonhistone targets. J Proteome Res. 2010;9:5827-36 pubmed 出版商
  272. Dhayalan A, Rajavelu A, Rathert P, Tamas R, Jurkowska R, Ragozin S, et al. The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation. J Biol Chem. 2010;285:26114-20 pubmed 出版商
  273. Ribarska T, Ingenwerth M, Goering W, Engers R, Schulz W. Epigenetic inactivation of the placentally imprinted tumor suppressor gene TFPI2 in prostate carcinoma. Cancer Genomics Proteomics. 2010;7:51-60 pubmed
  274. Menigatti M, Cattaneo E, Sabates Bellver J, Ilinsky V, Went P, Buffoli F, et al. The protein tyrosine phosphatase receptor type R gene is an early and frequent target of silencing in human colorectal tumorigenesis. Mol Cancer. 2009;8:124 pubmed 出版商