这是一篇来自已证抗体库的有关人类 HBA2的综述,是根据187篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合HBA2 抗体。
HBA2 同义词: ECYT7; HBA-T2; HBH

艾博抗(上海)贸易有限公司
小鼠 单克隆(7E1F)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 HBA2抗体(Abcam, ab77125)被用于被用于免疫印迹在人类样本上. Theranostics (2021) ncbi
domestic rabbit 单克隆(EPR3608)
  • 免疫细胞化学; 人类; 图 7a
  • 免疫印迹; 人类; 图 7c
艾博抗(上海)贸易有限公司 HBA2抗体(Abcam, ab92492)被用于被用于免疫细胞化学在人类样本上 (图 7a) 和 被用于免疫印迹在人类样本上 (图 7c). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(EPR3608)
  • 免疫印迹; 小鼠; 图 8
艾博抗(上海)贸易有限公司 HBA2抗体(abcam, Ab92492)被用于被用于免疫印迹在小鼠样本上 (图 8). Sci Rep (2015) ncbi
伯乐(Bio-Rad)公司
人类 单克隆(AbD05988)
  • 免疫印迹; 人类; 1:100
伯乐(Bio-Rad)公司 HBA2抗体(Serotec, HCA042)被用于被用于免疫印迹在人类样本上浓度为1:100. Int J Oncol (2014) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 图 1d
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(DAKO, M0823)被用于被用于免疫组化在人类样本上 (图 1d). Circulation (2021) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 1:100; 图 5
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, JC70A)被用于被用于免疫组化在人类样本上浓度为1:100 (图 5). Biomedicines (2021) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5a
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(DAKO, M0823)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5a). Theranostics (2021) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 图 2b
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, JC70A)被用于被用于免疫组化在人类样本上 (图 2b). Invest Ophthalmol Vis Sci (2021) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 图 4d
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫组化在人类样本上 (图 4d). Biol Open (2021) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫组化在人类样本上. Nat Commun (2021) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 1:200; 图 3a
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, JC70A)被用于被用于免疫组化在人类样本上浓度为1:200 (图 3a). Int J Mol Sci (2020) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 小鼠; 图 6e
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6e). Br J Pharmacol (2020) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 图 1e
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(DAKO, M0823)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1e). J Clin Invest (2020) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 s1c
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 s1c). Aging Cell (2020) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 人类; 1:42; 图 6h
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫细胞化学在人类样本上浓度为1:42 (图 6h). Nature (2019) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 图 4c
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4c). Oncogene (2020) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 人类; 图 1b
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(DAKO, M082329)被用于被用于免疫细胞化学在人类样本上 (图 1b). Nature (2019) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 人类; 图 1g
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫细胞化学在人类样本上 (图 1g). Fluids Barriers CNS (2018) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 人类; 1:100; 图 4
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). J Neurotrauma (2018) ncbi
小鼠 单克隆(JC70A)
  • 其他; 人类; 图 4c
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 人类; 1:100; 图 3e
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3e). Nat Commun (2017) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 小鼠; 图 3f
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, JC70A)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3f). Cancer Res (2017) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 1:200; 图 4a
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4a). Nat Protoc (2017) ncbi
小鼠 单克隆(JC70A)
  • reverse phase protein lysate microarray; 人类; 图 st6
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 人类; 1:50; 图 1b
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(DAKO, M0823)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1b). J Transl Med (2017) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 2 ug/ml; 图 st4
  • 免疫组化-石蜡切片; African green monkey; 2 ug/ml; 图 st4
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫组化-石蜡切片在人类样本上浓度为2 ug/ml (图 st4) 和 被用于免疫组化-石蜡切片在African green monkey样本上浓度为2 ug/ml (图 st4). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 1:20; 图 1d,2d
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫组化在人类样本上浓度为1:20 (图 1d,2d). PLoS ONE (2017) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 人类; 1:100; 图 2b
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2b). Arterioscler Thromb Vasc Biol (2017) ncbi
小鼠 单克隆(JC70A)
  • reverse phase protein lysate microarray; 人类; 图 3a
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 3a). Nature (2017) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:10; 表 2
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, JC/70A)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:10 (表 2). Am J Dermatopathol (2017) ncbi
小鼠 单克隆(JC70A)
  • 免疫印迹; 人类
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5b
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5b). Mol Cell Biol (2017) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4c
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(DAKO, JC70A)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4c). BMC Cancer (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 人类; 1:20
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫细胞化学在人类样本上浓度为1:20. Oncotarget (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4b
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4b). Nat Commun (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-冰冻切片; pigs ; 图 3b
  • 流式细胞仪; pigs ; 图 s2
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫组化-冰冻切片在pigs 样本上 (图 3b) 和 被用于流式细胞仪在pigs 样本上 (图 s2). Tissue Eng Part A (2017) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 1:30; 图 3e
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫组化在人类样本上浓度为1:30 (图 3e). Nat Med (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, JC/70A)被用于被用于免疫组化在人类样本上浓度为1:50. Rare Tumors (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 图 1a
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, JC70A)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). Anticancer Res (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 图 s1
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, JC70A)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1). Am J Pathol (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫印迹; 人类; 图 1d
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M082329-2)被用于被用于免疫印迹在人类样本上 (图 1d). Biol Open (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 人类; 图 4
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫细胞化学在人类样本上 (图 4). Biol Open (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M823)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:40; 表 2
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, JC70A)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40 (表 2). Histopathology (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 1:50; 图 6d
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(DAKO, M0823)被用于被用于免疫组化在人类样本上浓度为1:50 (图 6d). Diabetes (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 图 1b
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(DAKO, M082301)被用于被用于免疫组化在人类样本上 (图 1b). Sci Rep (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s14
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s14). Nat Commun (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 人类; 10 ug/ml; 图 1
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫细胞化学在人类样本上浓度为10 ug/ml (图 1). Microbes Infect (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 4
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 4). EMBO Mol Med (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 图 2b
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, JC70A)被用于被用于免疫组化在人类样本上 (图 2b). Mol Vis (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-冰冻切片; 人类; 1:25; 图 1
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:25 (图 1). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1d
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 8b
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1d) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 8b). J Clin Invest (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-冰冻切片; 人类; 1:25; 图 1
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(dako, M0823)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:25 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-冰冻切片; 人类; 图 3
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(DAKO/Agilent Technologies, JC70A)被用于被用于免疫组化-冰冻切片在人类样本上 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-冰冻切片; 人类; 1:50; 表 1
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, JC70A)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (表 1). Wound Repair Regen (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 图 3a
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, JC/70A)被用于被用于免疫组化在人类样本上 (图 3a). Pathol Res Pract (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:30; 图 3
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:30 (图 3). J Neuroimmune Pharmacol (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 1:50; 图 2
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, MO823)被用于被用于免疫组化在人类样本上浓度为1:50 (图 2). Brain Tumor Pathol (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 犬; 1:20; 图 1
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, JC70A)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:20 (图 1). Vet Comp Oncol (2017) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 1:200; 图 6
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(DAKO, JC704)被用于被用于免疫组化在人类样本上浓度为1:200 (图 6). EMBO Mol Med (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 图 1d
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫组化在人类样本上 (图 1d). Oncotarget (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 图 1e
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, JC10A)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1e). Nat Med (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 小鼠; 1:60; 图 s2
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(DAKO, JC70A)被用于被用于免疫组化在小鼠样本上浓度为1:60 (图 s2). Nat Commun (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫组化在人类样本上 (图 1). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 1:25; 图 1 A-i
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, JC70A)被用于被用于免疫组化在人类样本上浓度为1:25 (图 1 A-i). J Appl Physiol (1985) (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 犬; 1:20
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, JC70A)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:20. Anal Cell Pathol (Amst) (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫印迹; 猕猴; 1:250; 图 8
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(DakoCytomation, M0823)被用于被用于免疫印迹在猕猴样本上浓度为1:250 (图 8). PLoS ONE (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 人类; 1:20; 图 3f
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(DAKO, M0823)被用于被用于免疫细胞化学在人类样本上浓度为1:20 (图 3f). Nat Biotechnol (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:40; 表 2
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, JC/70A)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40 (表 2). Med Mol Morphol (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 1:80; 表 s4
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(DAKO, M0823)被用于被用于免疫组化在人类样本上浓度为1:80 (表 s4). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 表 2
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫组化在人类样本上 (表 2). PLoS ONE (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, JC70A)被用于被用于免疫细胞化学在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:20; 图 1
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, JC70A)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20 (图 1). Head Face Med (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(DAKO, M0823)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 1:40; 图 6
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(DAKO, M0823)被用于被用于免疫组化在人类样本上浓度为1:40 (图 6). Lab Invest (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 小鼠; 1:500
  • 免疫印迹; 人类; 1:1000
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M082329)被用于被用于免疫组化在小鼠样本上浓度为1:500 和 被用于免疫印迹在人类样本上浓度为1:1000. Am J Pathol (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 图 S6
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, JC70A)被用于被用于免疫组化-石蜡切片在人类样本上 (图 S6). PLoS ONE (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, clone JC70A)被用于被用于免疫组化在人类样本上. Brain Tumor Pathol (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 1:100
  • 免疫组化; 小鼠; 1:100
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, JC70A)被用于被用于免疫组化在人类样本上浓度为1:100 和 被用于免疫组化在小鼠样本上浓度为1:100. J Biomed Mater Res A (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 图 2j
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, JC70A)被用于被用于免疫组化在人类样本上 (图 2j). Exp Dermatol (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 图 4
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(DAKO, M0823)被用于被用于免疫组化在人类样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 衣藻; 1:40
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫细胞化学在衣藻样本上浓度为1:40. Endocrinology (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; pigs ; 1:50
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M 0823)被用于被用于免疫细胞化学在pigs 样本上浓度为1:50. Tissue Eng Part C Methods (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, JC/70A)被用于被用于免疫组化在人类样本上. Mol Immunol (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 图 s5a
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(M0823, Dako)被用于被用于免疫组化在人类样本上 (图 s5a). Am J Transplant (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. BMC Dev Biol (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 人类; 1:100; 图 3
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M082301)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3). Nat Cell Biol (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 小鼠; 图 4
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫组化在小鼠样本上 (图 4). Mol Cancer Ther (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 小鼠
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(DAKO, JC70A)被用于被用于免疫细胞化学在小鼠样本上. J Autoimmun (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, JC70A)被用于被用于免疫组化在人类样本上浓度为1:100. J Cutan Pathol (2014) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(DAKO, M0823)被用于被用于免疫组化在人类样本上浓度为1:50. Thromb Res (2014) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:20
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(DAKO, clone JC70A)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20. Pathol Res Pract (2014) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-冰冻切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200. J Comp Neurol (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, JC70A)被用于被用于免疫组化-石蜡切片在人类样本上. Virchows Arch (2014) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 图 s1
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫组化在人类样本上 (图 s1). Cell (2014) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-冰冻切片; 人类; 图 6
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako Cytomation, JC70A)被用于被用于免疫组化-冰冻切片在人类样本上 (图 6). PLoS ONE (2014) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(DAKO, JC70A)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Pancreas (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 人类
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫细胞化学在人类样本上. Int J Clin Exp Pathol (2014) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 1:30
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, JC70A)被用于被用于免疫组化在人类样本上浓度为1:30. Br J Cancer (2014) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 小鼠; 1:50
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. Tissue Eng Part A (2014) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:30
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(DAKO, JC70A)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:30. Pathol Res Pract (2014) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; domestic rabbit; 1:100
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为1:100. BMC Musculoskelet Disord (2014) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:20
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(DAKO, JC70A)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20. BMC Cancer (2014) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:25; 图 s1
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(DAKO, M0823)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25 (图 s1). PLoS ONE (2013) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类
  • 免疫组化-冰冻切片; 小鼠
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(DakoCytomation, M0823)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫组化-冰冻切片在小鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-冰冻切片; 人类; 0.5 ug/ml
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M082301)被用于被用于免疫组化-冰冻切片在人类样本上浓度为0.5 ug/ml. Neuropathol Appl Neurobiol (2014) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(DAKO, JC70A)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Neurobiol Dis (2013) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 5 ug/mL
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(DAKO, M0823)被用于被用于免疫组化在人类样本上浓度为5 ug/mL. PLoS ONE (2013) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(DakoCytomation, M 0823)被用于被用于免疫组化在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫细胞化学在人类样本上浓度为1:50. Biomaterials (2013) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:20
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, JC70A)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20. Histopathology (2013) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类
  • 免疫细胞化学; 人类
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, M0823)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫细胞化学在人类样本上. Pediatr Dev Pathol (2012) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(DakoCytomation, JC70A)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. J Am Acad Dermatol (2010) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 HBA2抗体(Dako, JC70A)被用于被用于免疫组化-石蜡切片在人类样本上. Mediators Inflamm (2009) ncbi
碧迪BD
小鼠 单克隆(L133.1)
  • 免疫组化; 小鼠; 图 s1b
碧迪BD HBA2抗体(BD Biosciences, 340297)被用于被用于免疫组化在小鼠样本上 (图 s1b). J Hematol Oncol (2021) ncbi
小鼠 单克隆(WM59)
  • 免疫细胞化学; 人类; 图 2h
碧迪BD HBA2抗体(Beckton Dickenson (BD), 555444)被用于被用于免疫细胞化学在人类样本上 (图 2h). Cell J (2021) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 1:1000; 图 1a
碧迪BD HBA2抗体(BD, 563651)被用于被用于流式细胞仪在人类样本上浓度为1:1000 (图 1a). elife (2021) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 1:4000; 图 1f
碧迪BD HBA2抗体(BD Pharmingen, 563653)被用于被用于流式细胞仪在人类样本上浓度为1:4000 (图 1f). elife (2020) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 1:20
碧迪BD HBA2抗体(BD Pharmingen, WM59)被用于被用于流式细胞仪在人类样本上浓度为1:20. Angiogenesis (2020) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 1:100; 图 s3a
碧迪BD HBA2抗体(BD, 560984)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s3a). Nat Commun (2020) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 1b
碧迪BD HBA2抗体(BD Bioscience, 555446)被用于被用于流式细胞仪在人类样本上 (图 1b). World J Stem Cells (2020) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 s2b
碧迪BD HBA2抗体(BD Pharmingen, WM59)被用于被用于流式细胞仪在人类样本上 (图 s2b). Sci Rep (2019) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 3a
碧迪BD HBA2抗体(BD, 555445)被用于被用于流式细胞仪在人类样本上 (图 3a). J Clin Invest (2019) ncbi
小鼠 单克隆(WM59)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 9d
碧迪BD HBA2抗体(BD Pharmigen, WM59)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 9d). J Cell Biol (2019) ncbi
小鼠 单克隆(M89D3)
  • 流式细胞仪; 人类; 图 s2a
碧迪BD HBA2抗体(BD, 558094)被用于被用于流式细胞仪在人类样本上 (图 s2a). Nature (2019) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 2b
碧迪BD HBA2抗体(BD Biosciences, WM59)被用于被用于流式细胞仪在人类样本上 (图 2b). J Immunol (2019) ncbi
小鼠 单克隆(WM59)
  • 免疫组化-冰冻切片; 人类; 图 3d
碧迪BD HBA2抗体(BD Biosciences, WM59)被用于被用于免疫组化-冰冻切片在人类样本上 (图 3d). J Infect Dis (2018) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 s1b
碧迪BD HBA2抗体(BD Biosciences, WM59)被用于被用于流式细胞仪在人类样本上 (图 s1b). PLoS ONE (2017) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 1c
碧迪BD HBA2抗体(BD, WM59)被用于被用于流式细胞仪在人类样本上 (图 1c). Nature (2017) ncbi
小鼠 单克隆(WM59)
碧迪BD HBA2抗体(BD Pharmingen, 555445)被用于. Nutr Res (2017) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 s4c
碧迪BD HBA2抗体(BD Pharmingen, 555445)被用于被用于流式细胞仪在人类样本上 (图 s4c). Hum Mol Genet (2017) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 1:50; 表 1
碧迪BD HBA2抗体(Becton, 555446)被用于被用于流式细胞仪在人类样本上浓度为1:50 (表 1). Sci Rep (2017) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 s1c
碧迪BD HBA2抗体(BD Biosciences, WM-59)被用于被用于流式细胞仪在人类样本上 (图 s1c). Immun Ageing (2017) ncbi
小鼠 单克隆(WM59)
  • 免疫细胞化学; 人类; 图 s1
碧迪BD HBA2抗体(BD Pharmingen, 555445)被用于被用于免疫细胞化学在人类样本上 (图 s1). PLoS ONE (2017) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 1a
碧迪BD HBA2抗体(BD Pharmingen, WM59)被用于被用于流式细胞仪在人类样本上 (图 1a). PLoS Biol (2017) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 1b
碧迪BD HBA2抗体(BD Pharmingen, 560984)被用于被用于流式细胞仪在人类样本上 (图 1b). Cell Cycle (2017) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 2d
碧迪BD HBA2抗体(BD Bioscience, WM59)被用于被用于流式细胞仪在人类样本上 (图 2d). Stem Cells (2017) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 表 1
  • 免疫组化; 人类; 图 1f
碧迪BD HBA2抗体(BD Bioscience, 555446)被用于被用于流式细胞仪在人类样本上 (表 1) 和 被用于免疫组化在人类样本上 (图 1f). Sci Rep (2017) ncbi
小鼠 单克隆(M89D3)
  • 流式细胞仪; 人类; 图 s3g
碧迪BD HBA2抗体(BD, BD-558068)被用于被用于流式细胞仪在人类样本上 (图 s3g). Cell (2016) ncbi
小鼠 单克隆(WM59)
  • 免疫组化; 人类; 图 7
碧迪BD HBA2抗体(BD Biosciences, 550389)被用于被用于免疫组化在人类样本上 (图 7). PLoS ONE (2016) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 1
碧迪BD HBA2抗体(BD Pharmingen, 555445)被用于被用于流式细胞仪在人类样本上 (图 1). Transl Psychiatry (2016) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 2
碧迪BD HBA2抗体(BD Biosciences, 555445)被用于被用于流式细胞仪在人类样本上 (图 2). Biomed Res Int (2016) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 1:50; 图 s9b
碧迪BD HBA2抗体(BD Pharmingen, 555446)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s9b). Nat Med (2016) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 2
碧迪BD HBA2抗体(BD Biosciences, 555445)被用于被用于流式细胞仪在人类样本上 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 2
碧迪BD HBA2抗体(BD Pharmingen, WM59)被用于被用于流式细胞仪在人类样本上 (图 2). Cytotherapy (2016) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 s4
碧迪BD HBA2抗体(BD Biosciences, WM59)被用于被用于流式细胞仪在人类样本上 (图 s4). Oncotarget (2016) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 s1
碧迪BD HBA2抗体(BD Biosciences, 555446)被用于被用于流式细胞仪在人类样本上 (图 s1). Sci Rep (2016) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 st1
碧迪BD HBA2抗体(BD, 555446)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 表 s1
碧迪BD HBA2抗体(BD Pharmingen, BD555446)被用于被用于流式细胞仪在人类样本上 (表 s1). Stem Cells (2016) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 2a
碧迪BD HBA2抗体(BD Pharmingen, 560983)被用于被用于流式细胞仪在人类样本上 (图 2a). Stem Cells Transl Med (2016) ncbi
小鼠 单克隆(WM59)
  • 免疫组化; 小鼠; 1:100; 图 6
碧迪BD HBA2抗体(Becton Dickinson, 555445)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6). Nat Commun (2016) ncbi
小鼠 单克隆(WM59)
  • 免疫细胞化学; 人类; 1:50; 图 s5
碧迪BD HBA2抗体(BD Pharmingen, 555445)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 s5). Cell Res (2016) ncbi
小鼠 单克隆(WM59)
  • 免疫细胞化学; 大鼠; 1:40; 图 2
碧迪BD HBA2抗体(BD Biosciences, 550389)被用于被用于免疫细胞化学在大鼠样本上浓度为1:40 (图 2). Am J Respir Crit Care Med (2016) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 表 2
碧迪BD HBA2抗体(BD Pharmingen, 555446)被用于被用于流式细胞仪在人类样本上 (表 2). Int J Mol Med (2016) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 表 1
碧迪BD HBA2抗体(Becton Dickinson, WM59)被用于被用于流式细胞仪在人类样本上 (表 1). J Transl Med (2015) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 1c
碧迪BD HBA2抗体(BD, 555445)被用于被用于流式细胞仪在人类样本上 (图 1c). Cytotherapy (2016) ncbi
小鼠 单克隆(WM59)
  • 免疫细胞化学; 人类; 1:500; 图 2
碧迪BD HBA2抗体(BD Biosciences, 555444)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(WM59)
  • 免疫细胞化学; 人类; 1:300
碧迪BD HBA2抗体(BD Pharmingen, 555444)被用于被用于免疫细胞化学在人类样本上浓度为1:300. Nature (2015) ncbi
小鼠 单克隆(WM59)
  • 免疫细胞化学; 人类; 1:100; 图 s3
碧迪BD HBA2抗体(BD Pharmingen, 550389)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s3). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 2
碧迪BD HBA2抗体(BD Biosciences, 561653)被用于被用于流式细胞仪在人类样本上 (图 2). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类
碧迪BD HBA2抗体(BD Biosciences, 555446)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(M89D3)
  • 流式细胞仪; 人类; 图 s4
碧迪BD HBA2抗体(BD Pharmingen, 558094)被用于被用于流式细胞仪在人类样本上 (图 s4). Stem Cell Reports (2015) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类
碧迪BD HBA2抗体(BD Biosciences, 555445)被用于被用于流式细胞仪在人类样本上. Nat Genet (2015) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 5
碧迪BD HBA2抗体(BD Bioscience, WM59)被用于被用于流式细胞仪在人类样本上 (图 5). Nat Immunol (2015) ncbi
小鼠 单克隆(WM59)
  • 免疫印迹; 小鼠
碧迪BD HBA2抗体(BD, WM59)被用于被用于免疫印迹在小鼠样本上. Nature (2015) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类
碧迪BD HBA2抗体(BD, BD555446)被用于被用于流式细胞仪在人类样本上. Stem Cell Reports (2015) ncbi
小鼠 单克隆(WM59)
  • 免疫组化-石蜡切片; 人类
  • 流式细胞仪; 人类; 图 s1
  • 免疫细胞化学; 人类
碧迪BD HBA2抗体(BD Biosciences, 560983)被用于被用于免疫组化-石蜡切片在人类样本上, 被用于流式细胞仪在人类样本上 (图 s1) 和 被用于免疫细胞化学在人类样本上. J Transl Med (2015) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类
碧迪BD HBA2抗体(B.D. Biosciences, 561654)被用于被用于流式细胞仪在人类样本上. World J Stem Cells (2015) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 4
碧迪BD HBA2抗体(BD Biosciences Pharmingen, WM-59)被用于被用于流式细胞仪在人类样本上 (图 4). Cytotherapy (2015) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 1:50
碧迪BD HBA2抗体(BD, 555446)被用于被用于流式细胞仪在人类样本上浓度为1:50. Stem Cells (2015) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类
碧迪BD HBA2抗体(Becton Dickinson, WM59)被用于被用于流式细胞仪在人类样本上. J Leukoc Biol (2015) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 1:50
碧迪BD HBA2抗体(BD, 555445)被用于被用于流式细胞仪在人类样本上浓度为1:50. PLoS ONE (2014) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 5
碧迪BD HBA2抗体(BD Biosciences, WM59)被用于被用于流式细胞仪在人类样本上 (图 5). J Leukoc Biol (2015) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类
碧迪BD HBA2抗体(BD Biosciences, 55445)被用于被用于流式细胞仪在人类样本上. Tissue Eng Part A (2015) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类
碧迪BD HBA2抗体(BD Pharmingen, WM59)被用于被用于流式细胞仪在人类样本上. Nat Biotechnol (2014) ncbi
小鼠 单克隆(WM59)
  • 免疫细胞化学; 小鼠
碧迪BD HBA2抗体(PharMingen, WM59)被用于被用于免疫细胞化学在小鼠样本上. Hum Pathol (2014) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类
碧迪BD HBA2抗体(BD Biosciences, WM-59)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类
碧迪BD HBA2抗体(Becton Dickinson, 555445)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类
碧迪BD HBA2抗体(BD, 560984)被用于被用于流式细胞仪在人类样本上. Cell Tissue Res (2014) ncbi
小鼠 单克隆(M89D3)
  • 流式细胞仪; 人类; 表 1
碧迪BD HBA2抗体(BD, M89D3)被用于被用于流式细胞仪在人类样本上 (表 1). Nat Immunol (2014) ncbi
小鼠 单克隆(WM59)
  • 免疫细胞化学; 人类; 1:200
碧迪BD HBA2抗体(BD Pharmingen, 550389)被用于被用于免疫细胞化学在人类样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类
碧迪BD HBA2抗体(BD Biosciences, 555446)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(WM59)
  • 免疫组化; 人类
碧迪BD HBA2抗体(BD, WM59)被用于被用于免疫组化在人类样本上. Development (2013) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 1
碧迪BD HBA2抗体(BD, WM59)被用于被用于流式细胞仪在人类样本上 (图 1). J Tissue Eng Regen Med (2015) ncbi
小鼠 单克隆(L133.1)
  • 流式细胞仪; 人类
碧迪BD HBA2抗体(BD Biosciences, L133.1)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 表 2
碧迪BD HBA2抗体(BD Biosciences, 555446)被用于被用于流式细胞仪在人类样本上 (表 2). PLoS ONE (2012) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 1:5
  • 免疫细胞化学; 人类; 1:5
碧迪BD HBA2抗体(BD Pharmingen, WM-59)被用于被用于流式细胞仪在人类样本上浓度为1:5 和 被用于免疫细胞化学在人类样本上浓度为1:5. Microvasc Res (2012) ncbi
小鼠 单克隆(WM59)
  • 免疫组化-石蜡切片; 人类; 1:200
碧迪BD HBA2抗体(BD Biosciences, WM59)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Biomarkers (2012) ncbi
文章列表
  1. Sáinz Jaspeado M, Smith R, Plunde O, Pawelzik S, Jin Y, Nordling S, et al. Palmdelphin Regulates Nuclear Resilience to Mechanical Stress in the Endothelium. Circulation. 2021;144:1629-1645 pubmed 出版商
  2. Lee J, Hur J, Kwon Y, Chae C, Choi J, Hwang I, et al. KAI1(CD82) is a key molecule to control angiogenesis and switch angiogenic milieu to quiescent state. J Hematol Oncol. 2021;14:148 pubmed 出版商
  3. Aleksandrovych V, Wrona A, Bereza T, Pitynski K, Gil K. Oviductal Telocytes in Patients with Uterine Myoma. Biomedicines. 2021;9: pubmed 出版商
  4. Qin Z, Liu F, Blair R, Wang C, Yang H, Mudd J, et al. Endothelial cell infection and dysfunction, immune activation in severe COVID-19. Theranostics. 2021;11:8076-8091 pubmed 出版商
  5. Gholami S, Mazidi Z, Pahlavan S, Moslem F, Hosseini M, Taei A, et al. A Novel Insight into Endothelial and Cardiac Cells Phenotype in Systemic Sclerosis Using Patient-Derived Induced Pluripotent Stem Cell. Cell J. 2021;23:273-287 pubmed 出版商
  6. Abu El Asrar A, Nawaz M, Ahmad A, Siddiquei M, Allegaert E, Gikandi P, et al. CD146/Soluble CD146 Pathway Is a Novel Biomarker of Angiogenesis and Inflammation in Proliferative Diabetic Retinopathy. Invest Ophthalmol Vis Sci. 2021;62:32 pubmed 出版商
  7. Dieterle M, Solà Riera C, Ye C, Goodfellow S, Mittler E, Kasikci E, et al. Genetic depletion studies inform receptor usage by virulent hantaviruses in human endothelial cells. elife. 2021;10: pubmed 出版商
  8. Prater M, Hamilton R, Wa Yung H, Sharkey A, Robson P, Abd Hamid N, et al. RNA-Seq reveals changes in human placental metabolism, transport and endocrinology across the first-second trimester transition. Biol Open. 2021;10: pubmed 出版商
  9. Zhang X, Yu K, Ma L, Qian Z, Tian X, Miao Y, et al. Endogenous glutamate determines ferroptosis sensitivity via ADCY10-dependent YAP suppression in lung adenocarcinoma. Theranostics. 2021;11:5650-5674 pubmed 出版商
  10. Georgopoulou D, Callari M, Rueda O, Shea A, Martin A, Giovannetti A, et al. Landscapes of cellular phenotypic diversity in breast cancer xenografts and their impact on drug response. Nat Commun. 2021;12:1998 pubmed 出版商
  11. Gerrits T, Zandbergen M, Wolterbeek R, Bruijn J, Baelde H, Scharpfenecker M. Endoglin Promotes Myofibroblast Differentiation and Extracellular Matrix Production in Diabetic Nephropathy. Int J Mol Sci. 2020;21: pubmed 出版商
  12. Xu J, Wang Y, Hsu C, Negri S, Tower R, Gao Y, et al. Lysosomal protein surface expression discriminates fat- from bone-forming human mesenchymal precursor cells. elife. 2020;9: pubmed 出版商
  13. Tacconi C, He Y, Ducoli L, Detmar M. Epigenetic regulation of the lineage specificity of primary human dermal lymphatic and blood vascular endothelial cells. Angiogenesis. 2020;: pubmed 出版商
  14. Suzuki K, Okada H, Takemura G, Takada C, Tomita H, Yano H, et al. Recombinant thrombomodulin protects against LPS-induced acute respiratory distress syndrome via preservation of pulmonary endothelial glycocalyx. Br J Pharmacol. 2020;177:4021-4033 pubmed 出版商
  15. Kim J, Yang Y, Park K, Ge X, Xu R, Li N, et al. A RUNX2 stabilization pathway mediates physiologic and pathologic bone formation. Nat Commun. 2020;11:2289 pubmed 出版商
  16. Dmitrieva N, Walts A, Nguyen D, Grubb A, Zhang X, Wang X, et al. Impaired angiogenesis and extracellular matrix metabolism in autosomal-dominant hyper-IgE syndrome. J Clin Invest. 2020;130:4167-4181 pubmed 出版商
  17. Gao K, He S, Kumar P, Farmer D, Zhou J, Wang A. Clonal isolation of endothelial colony-forming cells from early gestation chorionic villi of human placenta for fetal tissue regeneration. World J Stem Cells. 2020;12:123-138 pubmed 出版商
  18. Foster A, El Chami C, O Neill C, Watson R. Osmolyte transporter expression is reduced in photoaged human skin: Implications for skin hydration in aging. Aging Cell. 2020;19:e13058 pubmed 出版商
  19. Ramachandran P, Dobie R, Wilson Kanamori J, Dora E, Henderson B, Luu N, et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature. 2019;575:512-518 pubmed 出版商
  20. Veschi V, Mangiapane L, Nicotra A, Di Franco S, Scavo E, Apuzzo T, et al. Targeting chemoresistant colorectal cancer via systemic administration of a BMP7 variant. Oncogene. 2020;39:987-1003 pubmed 出版商
  21. Avril M, Benjamin M, Dols M, Smith J. Interplay of Plasmodium falciparum and thrombin in brain endothelial barrier disruption. Sci Rep. 2019;9:13142 pubmed 出版商
  22. Crippa S, Rossella V, Aprile A, Silvestri L, Rivis S, Scaramuzza S, et al. Bone marrow stromal cells from β-thalassemia patients have impaired hematopoietic supportive capacity. J Clin Invest. 2019;129:1566-1580 pubmed 出版商
  23. Mason D, Collins J, Dawahare J, Nguyen T, Lin Y, Voytik Harbin S, et al. YAP and TAZ limit cytoskeletal and focal adhesion maturation to enable persistent cell motility. J Cell Biol. 2019;218:1369-1389 pubmed 出版商
  24. Wimmer R, Leopoldi A, Aichinger M, Wick N, Hantusch B, Novatchkova M, et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature. 2019;565:505-510 pubmed 出版商
  25. Kumar A, Lee J, Suknuntha K, D Souza S, Thakur A, Slukvin I. NOTCH Activation at the Hematovascular Mesoderm Stage Facilitates Efficient Generation of T Cells with High Proliferation Potential from Human Pluripotent Stem Cells. J Immunol. 2019;202:770-776 pubmed 出版商
  26. Patel N, Vukmanovic Stejic M, Suárez Fariñas M, Chambers E, Sandhu D, Fuentes Duculan J, et al. Impact of Zostavax Vaccination on T-Cell Accumulation and Cutaneous Gene Expression in the Skin of Older Humans After Varicella Zoster Virus Antigen-Specific Challenge. J Infect Dis. 2018;218:S88-S98 pubmed 出版商
  27. Wevers N, Kasi D, Gray T, Wilschut K, Smith B, van Vught R, et al. A perfused human blood-brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport. Fluids Barriers CNS. 2018;15:23 pubmed 出版商
  28. Castro L, Noelia M, Vidal Jorge M, Sanchez Ortiz D, Gándara D, Martínez Sáez E, et al. Kir6.2, the Pore-Forming Subunit of ATP-Sensitive K+ Channels, Is Overexpressed in Human Posttraumatic Brain Contusions. J Neurotrauma. 2018;: pubmed 出版商
  29. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  30. Chen X, Janssen J, Liu J, Maggio I, t Jong A, Mikkers H, et al. In trans paired nicking triggers seamless genome editing without double-stranded DNA cutting. Nat Commun. 2017;8:657 pubmed 出版商
  31. de Wolf A, van Aalst S, Ludwig I, Bodinham C, Lewis D, van der Zee R, et al. Regulatory T cell frequencies and phenotypes following anti-viral vaccination. PLoS ONE. 2017;12:e0179942 pubmed 出版商
  32. Akiel M, Guo C, Li X, Rajasekaran D, Mendoza R, Robertson C, et al. IGFBP7 Deletion Promotes Hepatocellular Carcinoma. Cancer Res. 2017;77:4014-4025 pubmed 出版商
  33. Sugimura R, Jha D, Han A, Soria Valles C, da Rocha E, Lu Y, et al. Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature. 2017;545:432-438 pubmed 出版商
  34. Kim J, Lin G, Zhou J, Mund J, Case J, Campbell W. Weight loss achieved using an energy restriction diet with normal or higher dietary protein decreased the number of CD14++CD16+ proinflammatory monocytes and plasma lipids and lipoproteins in middle-aged, overweight, and obese adults. Nutr Res. 2017;40:75-84 pubmed 出版商
  35. Gibot L, Galbraith T, Bourland J, Rogic A, Skobe M, Auger F. Tissue-engineered 3D human lymphatic microvascular network for in vitro studies of lymphangiogenesis. Nat Protoc. 2017;12:1077-1088 pubmed 出版商
  36. Miller E, Kobayashi G, Musso C, Allen M, Ishiy F, de Caires L, et al. EIF4A3 deficient human iPSCs and mouse models demonstrate neural crest defects that underlie Richieri-Costa-Pereira syndrome. Hum Mol Genet. 2017;26:2177-2191 pubmed 出版商
  37. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  38. Di Maggio N, Martella E, Frismantiene A, Resink T, Schreiner S, Lucarelli E, et al. Extracellular matrix and α5β1 integrin signaling control the maintenance of bone formation capacity by human adipose-derived stromal cells. Sci Rep. 2017;7:44398 pubmed 出版商
  39. Zakharova I, Zhiven M, Saaya S, Shevchenko A, Smirnova A, Strunov A, et al. Endothelial and smooth muscle cells derived from human cardiac explants demonstrate angiogenic potential and suitable for design of cell-containing vascular grafts. J Transl Med. 2017;15:54 pubmed 出版商
  40. van der Geest K, Wang Q, Eijsvogels T, Koenen H, Joosten I, Brouwer E, et al. Changes in peripheral immune cell numbers and functions in octogenarian walkers - an acute exercise study. Immun Ageing. 2017;14:5 pubmed 出版商
  41. Saiwaew S, Sritabal J, Piaraksa N, Keayarsa S, Ruengweerayut R, Utaisin C, et al. Effects of sevuparin on rosette formation and cytoadherence of Plasmodium falciparum infected erythrocytes. PLoS ONE. 2017;12:e0172718 pubmed 出版商
  42. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  43. Grzelak C, Sigglekow N, Tirnitz Parker J, Hamson E, Warren A, Maneck B, et al. Widespread GLI expression but limited canonical hedgehog signaling restricted to the ductular reaction in human chronic liver disease. PLoS ONE. 2017;12:e0171480 pubmed 出版商
  44. Saha D, Koli S, Patgaonkar M, Reddy K. Expression of hemoglobin-α and β subunits in human vaginal epithelial cells and their functional significance. PLoS ONE. 2017;12:e0171084 pubmed 出版商
  45. Hasanov Z, Ruckdeschel T, König C, Mogler C, Kapel S, Korn C, et al. Endosialin Promotes Atherosclerosis Through Phenotypic Remodeling of Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol. 2017;37:495-505 pubmed 出版商
  46. Weeden C, Chen Y, Ma S, Hu Y, Ramm G, Sutherland K, et al. Lung Basal Stem Cells Rapidly Repair DNA Damage Using the Error-Prone Nonhomologous End-Joining Pathway. PLoS Biol. 2017;15:e2000731 pubmed 出版商
  47. Zorin V, Pulin A, Eremin I, Korsakov I, Zorina A, Khromova N, et al. Myogenic potential of human alveolar mucosa derived cells. Cell Cycle. 2017;16:545-555 pubmed 出版商
  48. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed 出版商
  49. Sontag S, Förster M, Qin J, Wanek P, Mitzka S, Schüler H, et al. Modelling IRF8 Deficient Human Hematopoiesis and Dendritic Cell Development with Engineered iPS Cells. Stem Cells. 2017;35:898-908 pubmed 出版商
  50. Lundell A, Nordström I, Andersson K, Lundqvist C, Telemo E, Nava S, et al. IFN type I and II induce BAFF secretion from human decidual stromal cells. Sci Rep. 2017;7:39904 pubmed 出版商
  51. Cullen D, Diaz Recuero J, Cullen R, Rodriguez Peralto J, Kutzner H, Requena L. Superficial Acral Fibromyxoma: Report of 13 Cases With New Immunohistochemical Findings. Am J Dermatopathol. 2017;39:14-22 pubmed 出版商
  52. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  53. Ang Y, Rivas R, Ribeiro A, Srivas R, Rivera J, Stone N, et al. Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis. Cell. 2016;167:1734-1749.e22 pubmed 出版商
  54. Liu L, Guan H, Li Y, Ying Z, Wu J, Zhu X, et al. Astrocyte Elevated Gene 1 Interacts with Acetyltransferase p300 and c-Jun To Promote Tumor Aggressiveness. Mol Cell Biol. 2017;37: pubmed 出版商
  55. Takano M, Shimada K, Fujii T, Morita K, Takeda M, Nakajima Y, et al. Keratin 19 as a key molecule in progression of human hepatocellular carcinomas through invasion and angiogenesis. BMC Cancer. 2016;16:903 pubmed
  56. Blomme A, Fahmy K, Peulen O, Costanza B, Fontaine M, Struman I, et al. Myoferlin is a novel exosomal protein and functional regulator of cancer-derived exosomes. Oncotarget. 2016;7:83669-83683 pubmed 出版商
  57. Williamson S, Metcalf R, Trapani F, Mohan S, Antonello J, Abbott B, et al. Vasculogenic mimicry in small cell lung cancer. Nat Commun. 2016;7:13322 pubmed 出版商
  58. Dahan N, Sarig U, Bronshtein T, Baruch L, Karram T, Hoffman A, et al. Dynamic Autologous Reendothelialization of Small-Caliber Arterial Extracellular Matrix: A Preclinical Large Animal Study. Tissue Eng Part A. 2017;23:69-79 pubmed 出版商
  59. Frentzas S, Simoneau E, Bridgeman V, Vermeulen P, Foo S, Kostaras E, et al. Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases. Nat Med. 2016;22:1294-1302 pubmed 出版商
  60. Chamberland F, Maurina T, Degano Valmary S, Spicarolen T, Chaigneau L. Angiosarcoma: A Case Report of Gingival Disease with Both Palatine Tonsils Localization. Rare Tumors. 2016;8:5907 pubmed
  61. Sun X, Yang L, Yan X, Sun Y, Zhao D, Ji Y, et al. DCE-MRI-Derived Parameters in Evaluating Abraxane-Induced Early Vascular Response and the Effectiveness of Its Synergistic Interaction with Cisplatin. PLoS ONE. 2016;11:e0162601 pubmed 出版商
  62. Jankowska Konsur A, Kobierzycki C, Grzegrzolka J, Piotrowska A, Gomulkiewicz A, Glatzel Plucińska N, et al. Expression of CD31 in Mycosis Fungoides. Anticancer Res. 2016;36:4575-82 pubmed
  63. Lopez Vilchez I, Diaz Ricart M, Navarro V, Torramade S, Zamorano León J, Lopez Farre A, et al. Endothelial damage in major depression patients is modulated by SSRI treatment, as demonstrated by circulating biomarkers and an in vitro cell model. Transl Psychiatry. 2016;6:e886 pubmed 出版商
  64. Nazari B, Rice L, Stifano G, Barron A, Wang Y, Korndorf T, et al. Altered Dermal Fibroblasts in Systemic Sclerosis Display Podoplanin and CD90. Am J Pathol. 2016;186:2650-64 pubmed 出版商
  65. Chen N, Xia X, Qin L, Luo L, Han S, Wang G, et al. Effects of 8-Week Hatha Yoga Training on Metabolic and Inflammatory Markers in Healthy, Female Chinese Subjects: A Randomized Clinical Trial. Biomed Res Int. 2016;2016:5387258 pubmed 出版商
  66. Wang Y, Zhao Z, Rege S, Wang M, Si G, Zhou Y, et al. 3K3A-activated protein C stimulates postischemic neuronal repair by human neural stem cells in mice. Nat Med. 2016;22:1050-5 pubmed 出版商
  67. Wilkinson E, Sidaway J, Cross M. Cardiotoxic drugs Herceptin and doxorubicin inhibit cardiac microvascular endothelial cell barrier formation resulting in increased drug permeability. Biol Open. 2016;5:1362-1370 pubmed 出版商
  68. Stanly T, Fritzsche M, Banerji S, Garcia E, Bernardino de la Serna J, Jackson D, et al. Critical importance of appropriate fixation conditions for faithful imaging of receptor microclusters. Biol Open. 2016;5:1343-50 pubmed 出版商
  69. Pannier D, Philippin Lauridant G, Baranzelli M, Bertin D, Bogart E, Delprat V, et al. High expression levels of egfl7 correlate with low endothelial cell activation in peritumoral vessels of human breast cancer. Oncol Lett. 2016;12:1422-1428 pubmed
  70. Jiang S, Chen G, Feng L, Jiang Z, Yu M, Bao J, et al. Disruption of kif3a results in defective osteoblastic differentiation in dental mesenchymal stem/precursor cells via the Wnt signaling pathway. Mol Med Rep. 2016;14:1891-900 pubmed 出版商
  71. Codinach M, Blanco M, Ortega I, Lloret M, Reales L, Coca M, et al. Design and validation of a consistent and reproducible manufacture process for the production of clinical-grade bone marrow-derived multipotent mesenchymal stromal cells. Cytotherapy. 2016;18:1197-208 pubmed 出版商
  72. Peckova K, Michal M, Hadravsky L, Suster S, Damjanov I, Miesbauerova M, et al. Littoral cell angioma of the spleen: a study of 25 cases with confirmation of frequent association with visceral malignancies. Histopathology. 2016;69:762-774 pubmed 出版商
  73. Dirks M, Wall B, van de Valk B, Holloway T, Holloway G, Chabowski A, et al. One Week of Bed Rest Leads to Substantial Muscle Atrophy and Induces Whole-Body Insulin Resistance in the Absence of Skeletal Muscle Lipid Accumulation. Diabetes. 2016;65:2862-75 pubmed 出版商
  74. Seo H, Jeong H, Joo H, Choi S, Park C, Kim J, et al. Intrinsic FGF2 and FGF5 promotes angiogenesis of human aortic endothelial cells in 3D microfluidic angiogenesis system. Sci Rep. 2016;6:28832 pubmed 出版商
  75. Evrard S, Lecce L, Michelis K, Nomura Kitabayashi A, Pandey G, Purushothaman K, et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun. 2016;7:11853 pubmed 出版商
  76. Booth J, Duggan E, Patel V, Langer M, Wu W, Braun A, et al. Bacillus anthracis spore movement does not require a carrier cell and is not affected by lethal toxin in human lung models. Microbes Infect. 2016;18:615-626 pubmed 出版商
  77. Chen P, Qin L, Li G, Tellides G, Simons M. Smooth muscle FGF/TGFβ cross talk regulates atherosclerosis progression. EMBO Mol Med. 2016;8:712-28 pubmed 出版商
  78. Abu El Asrar A, Siddiquei M, Nawaz M, De Hertogh G, Mohammad G, Alam K, et al. Coexpression of heparanase activity, cathepsin L, tissue factor, tissue factor pathway inhibitor, and MMP-9 in proliferative diabetic retinopathy. Mol Vis. 2016;22:424-35 pubmed
  79. Preuße C, Allenbach Y, Hoffmann O, Goebel H, Pehl D, Radke J, et al. Differential roles of hypoxia and innate immunity in juvenile and adult dermatomyositis. Acta Neuropathol Commun. 2016;4:45 pubmed 出版商
  80. Jourdan M, Cren M, Schafer P, Robert N, Duperray C, Vincent L, et al. Differential effects of lenalidomide during plasma cell differentiation. Oncotarget. 2016;7:28096-111 pubmed 出版商
  81. Huang M, Liu T, Ma P, Mitteer R, Zhang Z, Kim H, et al. c-Met-mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma. J Clin Invest. 2016;126:1801-14 pubmed 出版商
  82. Wu S, Rupaimoole R, Shen F, Pradeep S, Pecot C, Ivan C, et al. A miR-192-EGR1-HOXB9 regulatory network controls the angiogenic switch in cancer. Nat Commun. 2016;7:11169 pubmed 出版商
  83. Zou L, Chen Q, Quanbeck Z, Bechtold J, Kaufman D. Angiogenic activity mediates bone repair from human pluripotent stem cell-derived osteogenic cells. Sci Rep. 2016;6:22868 pubmed 出版商
  84. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  85. Eriksson J, Le Joncour V, Nummela P, Jahkola T, Virolainen S, Laakkonen P, et al. Gene expression analyses of primary melanomas reveal CTHRC1 as an important player in melanoma progression. Oncotarget. 2016;7:15065-92 pubmed 出版商
  86. Walraven M, Talhout W, Beelen R, van Egmond M, Ulrich M. Healthy human second-trimester fetal skin is deficient in leukocytes and associated homing chemokines. Wound Repair Regen. 2016;24:533-41 pubmed 出版商
  87. Chang C, Hale S, Cox C, Blair A, Kronsteiner B, Grabowska R, et al. Junctional Adhesion Molecule-A Is Highly Expressed on Human Hematopoietic Repopulating Cells and Associates with the Key Hematopoietic Chemokine Receptor CXCR4. Stem Cells. 2016;34:1664-78 pubmed 出版商
  88. Val Bernal J, Mayorga M, Terán Villagrá N. Extracutaneous intravascular histiocytosis of the aortic valve: Report of two cases. Pathol Res Pract. 2016;212:258-63 pubmed 出版商
  89. Buzhdygan T, Lisinicchia J, Patel V, Johnson K, Neugebauer V, Paessler S, et al. Neuropsychological, Neurovirological and Neuroimmune Aspects of Abnormal GABAergic Transmission in HIV Infection. J Neuroimmune Pharmacol. 2016;11:279-93 pubmed 出版商
  90. Okamoto S, Nitta M, Maruyama T, Sawada T, Komori T, Okada Y, et al. Bevacizumab changes vascular structure and modulates the expression of angiogenic factors in recurrent malignant gliomas. Brain Tumor Pathol. 2016;33:129-36 pubmed 出版商
  91. Solomon I, O Reilly M, Ionescu L, Alphonse R, Rajabali S, Zhong S, et al. Functional Differences Between Placental Micro- and Macrovascular Endothelial Colony-Forming Cells. Stem Cells Transl Med. 2016;5:291-300 pubmed 出版商
  92. Heemskerk N, Schimmel L, Oort C, van Rijssel J, Yin T, Ma B, et al. F-actin-rich contractile endothelial pores prevent vascular leakage during leukocyte diapedesis through local RhoA signalling. Nat Commun. 2016;7:10493 pubmed 出版商
  93. Carvalho M, Pires I, Prada J, Raposo T, Gregório H, Lobo L, et al. High COX-2 expression is associated with increased angiogenesis, proliferation and tumoural inflammatory infiltrate in canine malignant mammary tumours: a multivariate survival study. Vet Comp Oncol. 2017;15:619-631 pubmed 出版商
  94. Pan H, Guan D, Liu X, Li J, Wang L, Wu J, et al. SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Res. 2016;26:190-205 pubmed 出版商
  95. Szulcek R, Happé C, Rol N, Fontijn R, Dickhoff C, Hartemink K, et al. Delayed Microvascular Shear Adaptation in Pulmonary Arterial Hypertension. Role of Platelet Endothelial Cell Adhesion Molecule-1 Cleavage. Am J Respir Crit Care Med. 2016;193:1410-20 pubmed 出版商
  96. Heo J, Choi Y, Kim H, Kim H. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med. 2016;37:115-25 pubmed 出版商
  97. Scholz A, Harter P, Cremer S, Yalcin B, Gurnik S, Yamaji M, et al. Endothelial cell-derived angiopoietin-2 is a therapeutic target in treatment-naive and bevacizumab-resistant glioblastoma. EMBO Mol Med. 2016;8:39-57 pubmed 出版商
  98. Weijer R, Broekgaarden M, Krekorian M, Alles L, van Wijk A, Mackaaij C, et al. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy. Oncotarget. 2016;7:3341-56 pubmed 出版商
  99. Laner Plamberger S, Lener T, Schmid D, Streif D, Salzer T, Öller M, et al. Mechanical fibrinogen-depletion supports heparin-free mesenchymal stem cell propagation in human platelet lysate. J Transl Med. 2015;13:354 pubmed 出版商
  100. Oliver Vila I, Coca M, Grau Vorster M, Pujals Fonts N, Caminal M, Casamayor Genescà A, et al. Evaluation of a cell-banking strategy for the production of clinical grade mesenchymal stromal cells from Wharton's jelly. Cytotherapy. 2016;18:25-35 pubmed 出版商
  101. Freedman B, Brooks C, Lam A, Fu H, Morizane R, Agrawal V, et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun. 2015;6:8715 pubmed 出版商
  102. Alam M, Gaida M, Bergmann F, Lasitschka F, Giese T, Giese N, et al. Selective inhibition of the p38 alternative activation pathway in infiltrating T cells inhibits pancreatic cancer progression. Nat Med. 2015;21:1337-43 pubmed 出版商
  103. Giampietro C, Deflorian G, Gallo S, di Matteo A, Pradella D, Bonomi S, et al. The alternative splicing factor Nova2 regulates vascular development and lumen formation. Nat Commun. 2015;6:8479 pubmed 出版商
  104. Takasato M, Er P, Chiu H, Maier B, Baillie G, Ferguson C, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015;526:564-8 pubmed 出版商
  105. Stokum J, Mehta R, Ivanova S, Yu E, Gerzanich V, Simard J. Heterogeneity of aquaporin-4 localization and expression after focal cerebral ischemia underlies differences in white versus grey matter swelling. Acta Neuropathol Commun. 2015;3:61 pubmed 出版商
  106. Farup J, De Lisio M, Rahbek S, Bjerre J, Vendelbo M, Boppart M, et al. Pericyte response to contraction mode-specific resistance exercise training in human skeletal muscle. J Appl Physiol (1985). 2015;119:1053-63 pubmed 出版商
  107. Carvalho M, Pires I, Dias M, Prada J, Gregório H, Lobo L, et al. Intratumoral CD3+ T-lymphocytes immunoexpression and its association with c-Kit, angiogenesis, and overall survival in malignant canine mammary tumors. Anal Cell Pathol (Amst). 2015;2015:920409 pubmed 出版商
  108. Alves C, Dariolli R, Jorge F, Monteiro M, Maximino J, Martins R, et al. Gene expression profiling for human iPS-derived motor neurons from sporadic ALS patients reveals a strong association between mitochondrial functions and neurodegeneration. Front Cell Neurosci. 2015;9:289 pubmed 出版商
  109. Kang R, Zhou Y, Tan S, Zhou G, Aagaard L, Xie L, et al. Mesenchymal stem cells derived from human induced pluripotent stem cells retain adequate osteogenicity and chondrogenicity but less adipogenicity. Stem Cell Res Ther. 2015;6:144 pubmed 出版商
  110. Kumar P, Thirkill T, Ji J, Monte L, Douglas G. Differential Effects of Sodium Butyrate and Lithium Chloride on Rhesus Monkey Trophoblast Differentiation. PLoS ONE. 2015;10:e0135089 pubmed 出版商
  111. Birket M, Ribeiro M, Verkerk A, Ward D, Leitoguinho A, Den Hartogh S, et al. Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells. Nat Biotechnol. 2015;33:970-9 pubmed 出版商
  112. Tajima S, Takashi Y, Ito N, Fukumoto S, Fukuyama M. ERG and FLI1 are useful immunohistochemical markers in phosphaturic mesenchymal tumors. Med Mol Morphol. 2016;49:203-209 pubmed
  113. Larsson K, Kock A, Idborg H, Arsenian Henriksson M, Martinsson T, Johnsen J, et al. COX/mPGES-1/PGE2 pathway depicts an inflammatory-dependent high-risk neuroblastoma subset. Proc Natl Acad Sci U S A. 2015;112:8070-5 pubmed 出版商
  114. Tasev D, van Wijhe M, Weijers E, van Hinsbergh V, Koolwijk P. Long-Term Expansion in Platelet Lysate Increases Growth of Peripheral Blood-Derived Endothelial-Colony Forming Cells and Their Growth Factor-Induced Sprouting Capacity. PLoS ONE. 2015;10:e0129935 pubmed 出版商
  115. James S, Fox J, Afsari F, Lee J, Clough S, Knight C, et al. Multiparameter Analysis of Human Bone Marrow Stromal Cells Identifies Distinct Immunomodulatory and Differentiation-Competent Subtypes. Stem Cell Reports. 2015;4:1004-15 pubmed 出版商
  116. Park I, Chung P, Ahn J. Enhancement of Ischemic Wound Healing by Spheroid Grafting of Human Adipose-Derived Stem Cells Treated with Low-Level Light Irradiation. PLoS ONE. 2015;10:e0122776 pubmed 出版商
  117. Minami H, Tashiro K, Okada A, Hirata N, Yamaguchi T, Takayama K, et al. Generation of Brain Microvascular Endothelial-Like Cells from Human Induced Pluripotent Stem Cells by Co-Culture with C6 Glioma Cells. PLoS ONE. 2015;10:e0128890 pubmed 出版商
  118. Jung S, Sielker S, Purcz N, Sproll C, Acil Y, Kleinheinz J. Analysis of angiogenic markers in oral squamous cell carcinoma-gene and protein expression. Head Face Med. 2015;11:19 pubmed 出版商
  119. Jäger W, Xue H, Hayashi T, Janssen C, Awrey S, Wyatt A, et al. Patient-derived bladder cancer xenografts in the preclinical development of novel targeted therapies. Oncotarget. 2015;6:21522-32 pubmed
  120. Maass P, Aydin A, Luft F, Schächterle C, Weise A, Stricker S, et al. PDE3A mutations cause autosomal dominant hypertension with brachydactyly. Nat Genet. 2015;47:647-53 pubmed 出版商
  121. Tsuneki M, Hardee S, Michaud M, Morotti R, Lavik E, Madri J. A hydrogel-endothelial cell implant mimics infantile hemangioma: modulation by survivin and the Hippo pathway. Lab Invest. 2015;95:765-80 pubmed 出版商
  122. Good R, Gilbane A, Trinder S, Denton C, Coghlan G, Abraham D, et al. Endothelial to Mesenchymal Transition Contributes to Endothelial Dysfunction in Pulmonary Arterial Hypertension. Am J Pathol. 2015;185:1850-8 pubmed 出版商
  123. Thiault N, Darrigues J, Adoue V, Gros M, Binet B, Pérals C, et al. Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors. Nat Immunol. 2015;16:628-34 pubmed 出版商
  124. Tate C, Mc Entire J, Pallini R, Vakana E, Wyss L, Blosser W, et al. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology. PLoS ONE. 2015;10:e0125697 pubmed 出版商
  125. Nakada S, Minato H, Takegami T, Kurose N, Ikeda H, Kobayashi M, et al. NAB2-STAT6 fusion gene analysis in two cases of meningeal solitary fibrous tumor/hemangiopericytoma with late distant metastases. Brain Tumor Pathol. 2015;32:268-74 pubmed 出版商
  126. Matsusaki M, Fujimoto K, Shirakata Y, Hirakawa S, Hashimoto K, Akashi M. Development of full-thickness human skin equivalents with blood and lymph-like capillary networks by cell coating technology. J Biomed Mater Res A. 2015;103:3386-96 pubmed 出版商
  127. Brunner P, Glitzner E, Reininger B, Klein I, Stary G, Mildner M, et al. CCL7 contributes to the TNF-alpha-dependent inflammation of lesional psoriatic skin. Exp Dermatol. 2015;24:522-8 pubmed 出版商
  128. Yarilin D, Xu K, Turkekul M, Fan N, Romin Y, Fijisawa S, et al. Machine-based method for multiplex in situ molecular characterization of tissues by immunofluorescence detection. Sci Rep. 2015;5:9534 pubmed 出版商
  129. Lechuga T, Zhang H, Sheibani L, Karim M, Jia J, Magness R, et al. Estrogen Replacement Therapy in Ovariectomized Nonpregnant Ewes Stimulates Uterine Artery Hydrogen Sulfide Biosynthesis by Selectively Up-Regulating Cystathionine β-Synthase Expression. Endocrinology. 2015;156:2288-98 pubmed 出版商
  130. Chen Z, Shojaee S, Buchner M, Geng H, Lee J, Klemm L, et al. Signalling thresholds and negative B-cell selection in acute lymphoblastic leukaemia. Nature. 2015;521:357-61 pubmed 出版商
  131. Melo E, Kasper J, Unger R, Farré R, Kirkpatrick C. Development of a Bronchial Wall Model: Triple Culture on a Decellularized Porcine Trachea. Tissue Eng Part C Methods. 2015;21:909-21 pubmed 出版商
  132. Perna F, Vu L, Themeli M, Kriks S, Hoya Arias R, Khanin R, et al. The polycomb group protein L3MBTL1 represses a SMAD5-mediated hematopoietic transcriptional program in human pluripotent stem cells. Stem Cell Reports. 2015;4:658-69 pubmed 出版商
  133. Sei Y, Mizuno M, Suzuki Y, Imai M, Higashide K, Harris C, et al. Expression of membrane complement regulators, CD46, CD55 and CD59, in mesothelial cells of patients on peritoneal dialysis therapy. Mol Immunol. 2015;65:302-9 pubmed 出版商
  134. Chang N, Gu J, Gu S, Osorio R, Concepcion W, Gu E. Arterial flow regulator enables transplantation and growth of human fetal kidneys in rats. Am J Transplant. 2015;15:1692-700 pubmed 出版商
  135. Ghiabi P, Jiang J, Pasquier J, Maleki M, Abu Kaoud N, Halabi N, et al. Breast cancer cells promote a notch-dependent mesenchymal phenotype in endothelial cells participating to a pro-tumoral niche. J Transl Med. 2015;13:27 pubmed 出版商
  136. Lankford L, Selby T, Becker J, Ryzhuk V, Long C, Farmer D, et al. Early gestation chorionic villi-derived stromal cells for fetal tissue engineering. World J Stem Cells. 2015;7:195-207 pubmed 出版商
  137. Heeren A, van Iperen L, Klootwijk D, De Melo Bernardo A, Roost M, Gomes Fernandes M, et al. Development of the follicular basement membrane during human gametogenesis and early folliculogenesis. BMC Dev Biol. 2015;15:4 pubmed 出版商
  138. Hou S, Nilchi L, Li X, Gangaraju S, Jiang S, Aylsworth A, et al. Semaphorin3A elevates vascular permeability and contributes to cerebral ischemia-induced brain damage. Sci Rep. 2015;5:7890 pubmed 出版商
  139. Zhou W, Ke S, Huang Z, Flavahan W, Fang X, Paul J, et al. Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol. 2015;17:170-82 pubmed 出版商
  140. Kim H, Huang L, Critser P, Yang Z, Chan R, Wang L, et al. Notch ligand Delta-like 1 promotes in vivo vasculogenesis in human cord blood-derived endothelial colony forming cells. Cytotherapy. 2015;17:579-92 pubmed 出版商
  141. Lee S, Lee K, Lee J, Kang S, Kim H, Asahara T, et al. Selective Interference Targeting of Lnk in Umbilical Cord-Derived Late Endothelial Progenitor Cells Improves Vascular Repair, Following Hind Limb Ischemic Injury, via Regulation of JAK2/STAT3 Signaling. Stem Cells. 2015;33:1490-500 pubmed 出版商
  142. Bigley V, McGovern N, Milne P, Dickinson R, Pagan S, Cookson S, et al. Langerin-expressing dendritic cells in human tissues are related to CD1c+ dendritic cells and distinct from Langerhans cells and CD141high XCR1+ dendritic cells. J Leukoc Biol. 2015;97:627-34 pubmed 出版商
  143. Rohringer S, Holnthoner W, Hackl M, Weihs A, Rünzler D, Skalicky S, et al. Molecular and cellular effects of in vitro shockwave treatment on lymphatic endothelial cells. PLoS ONE. 2014;9:e114806 pubmed 出版商
  144. Williams D, Anastos K, Morgello S, Berman J. JAM-A and ALCAM are therapeutic targets to inhibit diapedesis across the BBB of CD14+CD16+ monocytes in HIV-infected individuals. J Leukoc Biol. 2015;97:401-12 pubmed 出版商
  145. Meisen W, Dubin S, Sizemore S, Mathsyaraja H, Thies K, Lehman N, et al. Changes in BAI1 and nestin expression are prognostic indicators for survival and metastases in breast cancer and provide opportunities for dual targeted therapies. Mol Cancer Ther. 2015;14:307-14 pubmed 出版商
  146. Guerrero J, Oliveira H, Catros S, Siadous R, Derkaoui S, Bareille R, et al. The use of total human bone marrow fraction in a direct three-dimensional expansion approach for bone tissue engineering applications: focus on angiogenesis and osteogenesis. Tissue Eng Part A. 2015;21:861-74 pubmed 出版商
  147. Prasain N, Lee M, Vemula S, Meador J, Yoshimoto M, Ferkowicz M, et al. Differentiation of human pluripotent stem cells to cells similar to cord-blood endothelial colony-forming cells. Nat Biotechnol. 2014;32:1151-1157 pubmed 出版商
  148. Clement M, Fornasa G, Loyau S, Morvan M, Andreata F, Guedj K, et al. Upholding the T cell immune-regulatory function of CD31 inhibits the formation of T/B immunological synapses in vitro and attenuates the development of experimental autoimmune arthritis in vivo. J Autoimmun. 2015;56:23-33 pubmed 出版商
  149. Wang L, Gao T, Wang G. Verrucous hemangioma: a clinicopathological and immunohistochemical analysis of 74 cases. J Cutan Pathol. 2014;41:823-30 pubmed 出版商
  150. Kostić J, Orlić D, Borović M, Beleslin B, MilaÅ¡inović D, Dobrić M, et al. Coronary thrombi neovascularization in patients with ST-elevation myocardial infarction - clinical and angiographic implications. Thromb Res. 2014;134:1038-45 pubmed 出版商
  151. StrzÄ™pek A, Kaczmarczyk K, BiaÅ‚as M, Szpor J, Dyduch G, SzopiÅ„ski T, et al. ERG positive prostatic cancer may show a more angiogenetic phenotype. Pathol Res Pract. 2014;210:897-900 pubmed 出版商
  152. Yu J, Zuo Z, Zhang W, Yang Q, Zhang Y, Tang Y, et al. Identification of immunophenotypic subtypes with different prognoses in extranodal natural killer/T-cell lymphoma, nasal type. Hum Pathol. 2014;45:2255-62 pubmed 出版商
  153. Davey M, Morgan M, Liuzzi A, Tyler C, Khan M, Szakmany T, et al. Microbe-specific unconventional T cells induce human neutrophil differentiation into antigen cross-presenting cells. J Immunol. 2014;193:3704-3716 pubmed 出版商
  154. Lowe M, Faull R, Christie D, Waldvogel H. Distribution of the creatine transporter throughout the human brain reveals a spectrum of creatine transporter immunoreactivity. J Comp Neurol. 2015;523:699-725 pubmed 出版商
  155. Jeon Y, Moon K, Park S, Chung D. Primary pulmonary myxoid sarcomas with EWSR1-CREB1 translocation might originate from primitive peribronchial mesenchymal cells undergoing (myo)fibroblastic differentiation. Virchows Arch. 2014;465:453-61 pubmed 出版商
  156. Scherz Shouval R, Santagata S, Mendillo M, Sholl L, Ben Aharon I, Beck A, et al. The reprogramming of tumor stroma by HSF1 is a potent enabler of malignancy. Cell. 2014;158:564-78 pubmed 出版商
  157. Calabro S, Maczurek A, Morgan A, Tu T, Wen V, Yee C, et al. Hepatocyte produced matrix metalloproteinases are regulated by CD147 in liver fibrogenesis. PLoS ONE. 2014;9:e90571 pubmed 出版商
  158. Lytras D, Leontara V, Kefala M, Foukas P, Giannakou N, Pouliakis A, et al. Microvessel Landscape Assessment in Pancreatic Ductal Adenocarcinoma: Unclear Value of Targeting Endoglin (CD105) as Prognostic Factor of Clinical Outcome. Pancreas. 2015;44:87-92 pubmed 出版商
  159. Yuan S, Guo Y, Zhou X, Shen W, Chen H. PDGFR-? (+) perivascular cells from infantile hemangioma display the features of mesenchymal stem cells and show stronger adipogenic potential in vitro and in vivo. Int J Clin Exp Pathol. 2014;7:2861-70 pubmed
  160. Styring E, Seinen J, Dominguez Valentin M, Domanski H, Jonsson M, von Steyern F, et al. Key roles for MYC, KIT and RET signaling in secondary angiosarcomas. Br J Cancer. 2014;111:407-12 pubmed 出版商
  161. Hellesøy M, Blois A, Tiron C, Mannelqvist M, Akslen L, Lorens J. Akt1 activity regulates vessel maturation in a tissue engineering model of angiogenesis. Tissue Eng Part A. 2014;20:2590-603 pubmed 出版商
  162. Changchien Y, Bocskai P, Kovacs I, Hargitai Z, Kollár S, Torok M. Pleomorphic hyalinizing angiectatic tumor of soft parts: case report with unusual ganglion-like cells and review of the literature. Pathol Res Pract. 2014;210:1146-51 pubmed 出版商
  163. Fuereder T, Wacheck V, Strommer S, Horak P, Gerschpacher M, Lamm W, et al. Circulating endothelial progenitor cells in castration resistant prostate cancer: a randomized, controlled, biomarker study. PLoS ONE. 2014;9:e95310 pubmed 出版商
  164. Song Y, Stål P, Yu J, Lorentzon R, Backman C, Forsgren S. Inhibitors of endopeptidase and angiotensin-converting enzyme lead to an amplification of the morphological changes and an upregulation of the substance P system in a muscle overuse model. BMC Musculoskelet Disord. 2014;15:126 pubmed 出版商
  165. Pei M, Li J, Zhang Y, Liu G, Wei L, Zhang Y. Expansion on a matrix deposited by nonchondrogenic urine stem cells strengthens the chondrogenic capacity of repeated-passage bone marrow stromal cells. Cell Tissue Res. 2014;356:391-403 pubmed 出版商
  166. Stofas A, Levidou G, Piperi C, Adamopoulos C, Dalagiorgou G, Bamias A, et al. The role of CXC-chemokine receptor CXCR2 and suppressor of cytokine signaling-3 (SOCS-3) in renal cell carcinoma. BMC Cancer. 2014;14:149 pubmed 出版商
  167. Magri G, Miyajima M, Bascones S, Mortha A, Puga I, Cassis L, et al. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat Immunol. 2014;15:354-364 pubmed 出版商
  168. Boyer Di Ponio J, El Ayoubi F, Glacial F, Ganeshamoorthy K, Driancourt C, Godet M, et al. Instruction of circulating endothelial progenitors in vitro towards specialized blood-brain barrier and arterial phenotypes. PLoS ONE. 2014;9:e84179 pubmed 出版商
  169. Emara M, Turner A, Allalunis Turner J. Adult, embryonic and fetal hemoglobin are expressed in human glioblastoma cells. Int J Oncol. 2014;44:514-20 pubmed 出版商
  170. Fuentes T, Appleby N, Tsay E, Martinez J, Bailey L, Hasaniya N, et al. Human neonatal cardiovascular progenitors: unlocking the secret to regenerative ability. PLoS ONE. 2013;8:e77464 pubmed 出版商
  171. Jelen S, Parm Ulhøi B, Larsen A, Frøkiær J, Nielsen S, Rutzler M. AQP9 expression in glioblastoma multiforme tumors is limited to a small population of astrocytic cells and CD15(+)/CalB(+) leukocytes. PLoS ONE. 2013;8:e75764 pubmed 出版商
  172. Sigurdsson V, Ingthorsson S, Hilmarsdottir B, Gustafsdottir S, Franzdóttir S, Arason A, et al. Expression and functional role of sprouty-2 in breast morphogenesis. PLoS ONE. 2013;8:e60798 pubmed 出版商
  173. Farley A, Morris L, Vroegindeweij E, Depreter M, Vaidya H, Stenhouse F, et al. Dynamics of thymus organogenesis and colonization in early human development. Development. 2013;140:2015-26 pubmed 出版商
  174. Brana C, Frossard M, Pescini Gobert R, Martinier N, Boschert U, Seabrook T. Immunohistochemical detection of sphingosine-1-phosphate receptor 1 and 5 in human multiple sclerosis lesions. Neuropathol Appl Neurobiol. 2014;40:564-78 pubmed 出版商
  175. Iori V, Maroso M, Rizzi M, Iyer A, Vertemara R, Carli M, et al. Receptor for Advanced Glycation Endproducts is upregulated in temporal lobe epilepsy and contributes to experimental seizures. Neurobiol Dis. 2013;58:102-14 pubmed 出版商
  176. Brereton M, Wareing M, Jones R, Greenwood S. Characterisation of K+ channels in human fetoplacental vascular smooth muscle cells. PLoS ONE. 2013;8:e57451 pubmed 出版商
  177. Denecke B, Horsch L, Radtke S, Fischer J, Horn P, Giebel B. Human endothelial colony-forming cells expanded with an improved protocol are a useful endothelial cell source for scaffold-based tissue engineering. J Tissue Eng Regen Med. 2015;9:E84-97 pubmed 出版商
  178. Roubelakis M, Tsaknakis G, Pappa K, Anagnou N, Watt S. Spindle shaped human mesenchymal stem/stromal cells from amniotic fluid promote neovascularization. PLoS ONE. 2013;8:e54747 pubmed 出版商
  179. Suetta C, Frandsen U, Jensen L, Jensen M, Jespersen J, Hvid L, et al. Aging affects the transcriptional regulation of human skeletal muscle disuse atrophy. PLoS ONE. 2012;7:e51238 pubmed 出版商
  180. Criswell T, Corona B, Wang Z, Zhou Y, Niu G, Xu Y, et al. The role of endothelial cells in myofiber differentiation and the vascularization and innervation of bioengineered muscle tissue in vivo. Biomaterials. 2013;34:140-9 pubmed 出版商
  181. Büttner M, Kufer V, Brunner K, Hartmann A, Amann K, Agaimy A. Benign mesenchymal tumours and tumour-like lesions in end-stage renal disease. Histopathology. 2013;62:229-36 pubmed 出版商
  182. Kim S, Moon G, Cho Y, Kang H, Hyung N, Kim D, et al. Circulating mesenchymal stem cells microparticles in patients with cerebrovascular disease. PLoS ONE. 2012;7:e37036 pubmed 出版商
  183. Sölder E, Böckle B, Nguyen V, Fürhapter C, Obexer P, Erdel M, et al. Isolation and characterization of CD133+CD34+VEGFR-2+CD45- fetal endothelial cells from human term placenta. Microvasc Res. 2012;84:65-73 pubmed 出版商
  184. Lee C, Hwang I, Park C, Lee H, Park D, Kang S, et al. Innate immunity markers in culprit plaques of acute myocardial infarction or stable angina. Biomarkers. 2012;17:209-15 pubmed 出版商
  185. Yuan S, Chen R, Shen W, Chen H, Zhou X. Mesenchymal stem cells in infantile hemangioma reside in the perivascular region. Pediatr Dev Pathol. 2012;15:5-12 pubmed 出版商
  186. Sellheyer K, Krahl D. Spatiotemporal expression pattern of neuroepithelial stem cell marker nestin suggests a role in dermal homeostasis, neovasculogenesis, and tumor stroma development: a study on embryonic and adult human skin. J Am Acad Dermatol. 2010;63:93-113 pubmed 出版商
  187. Shirasaki H, Kanaizumi E, Himi T. Immunohistochemical localization of the bradykinin B1 and B2 receptors in human nasal mucosa. Mediators Inflamm. 2009;2009:102406 pubmed 出版商