这是一篇来自已证抗体库的有关人类 HER2的综述,是根据207篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合HER2 抗体。
HER2 同义词: CD340; HER-2; HER-2/neu; HER2; MLN 19; NEU; NGL; TKR1; receptor tyrosine-protein kinase erbB-2; c-erb B2/neu protein; herstatin; human epidermal growth factor receptor 2; metastatic lymph node gene 19 protein; neuro/glioblastoma derived oncogene homolog; neuroblastoma/glioblastoma derived oncogene homolog; p185erbB2; proto-oncogene Neu; proto-oncogene c-ErbB-2; tyrosine kinase-type cell surface receptor HER2; v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2; v-erb-b2 avian erythroblastic leukemia viral oncoprotein 2; v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, neuro/glioblastoma derived oncogene homolog

赛默飞世尔
小鼠 单克隆(e2-4001)
  • 其他; 人类; 图 4c
赛默飞世尔 HER2抗体(Lab Vision, MS-325-P1)被用于被用于其他在人类样品上 (图 4c). Cancer Cell (2018) ncbi
兔 单克隆(SP3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2a
赛默飞世尔 HER2抗体(Thermo Fisher Scientific, RM-9103-S1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 2a). Cell (2018) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 0.36 ug/ml; 图 3d
赛默飞世尔 HER2抗体(Thermo Fisher, PA5-16305)被用于被用于免疫组化-石蜡切片在人类样品上浓度为0.36 ug/ml (图 3d). Sci Rep (2017) ncbi
小鼠 单克隆(CB11)
  • 免疫细胞化学; 人类; 图 1d
  • 免疫印迹; 人类; 图 1b
赛默飞世尔 HER2抗体(Thermo Scientific, MA1-35720)被用于被用于免疫细胞化学在人类样品上 (图 1d) 和 被用于免疫印迹在人类样品上 (图 1b). PLoS ONE (2017) ncbi
小鼠 单克隆(e2-4001)
  • 免疫印迹; 人类; 1:10; 图 2a
赛默飞世尔 HER2抗体(Pierce, MA513105)被用于被用于免疫印迹在人类样品上浓度为1:10 (图 2a). Nat Commun (2017) ncbi
小鼠 单克隆(e2-4001)
  • reverse phase protein lysate microarray; 人类; 图 7a
赛默飞世尔 HER2抗体(Lab Vision, MS-325-P1)被用于被用于reverse phase protein lysate microarray在人类样品上 (图 7a). Cancer Cell (2017) ncbi
小鼠 单克隆(CB11)
  • 免疫沉淀; 人类; 图 2j
  • 免疫细胞化学; 人类; 图 2b
  • 免疫组化; 人类; 图 1d
  • 免疫印迹; 人类; 图 2j
  • 免疫组化; 小鼠; 图 1b
赛默飞世尔 HER2抗体(Thermo Scientific, MA1-35720)被用于被用于免疫沉淀在人类样品上 (图 2j), 被用于免疫细胞化学在人类样品上 (图 2b), 被用于免疫组化在人类样品上 (图 1d), 被用于免疫印迹在人类样品上 (图 2j) 和 被用于免疫组化在小鼠样品上 (图 1b). J Biol Chem (2017) ncbi
小鼠 单克隆(e2-4001)
  • reverse phase protein lysate microarray; 人类; 图 3a
赛默飞世尔 HER2抗体(Lab Vision, MS-325-P1)被用于被用于reverse phase protein lysate microarray在人类样品上 (图 3a). Nature (2017) ncbi
小鼠 单克隆(e2-4001)
  • 免疫印迹; 人类
赛默飞世尔 HER2抗体(Lab Vision, MS-325-P1)被用于被用于免疫印迹在人类样品上. Cell Syst (2017) ncbi
兔 单克隆(K.929.9)
  • 免疫组化-石蜡切片; 小鼠; 图 1b
赛默飞世尔 HER2抗体(Thermo Scientific, MA5-15050)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 1b). Oncogenesis (2016) ncbi
小鼠 单克隆(9G6.10)
  • 免疫组化; 人类; 图 3a
赛默飞世尔 HER2抗体(Thermo Scientific, MS-229-PABX)被用于被用于免疫组化在人类样品上 (图 3a). PLoS ONE (2016) ncbi
兔 单克隆(SP3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1c
赛默飞世尔 HER2抗体(Thermo Fisher Scientific, SP3)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 1c). MAbs (2017) ncbi
小鼠 单克隆(N12)
  • 免疫细胞化学; 小鼠; 1:100; 图 s7
  • 免疫印迹; 小鼠; 1:100; 图 s7
  • 免疫细胞化学; 人类; 1:100; 图 s8
  • 免疫印迹; 人类; 1:100; 图 s8
赛默飞世尔 HER2抗体(Neomarkers, MA5-12998)被用于被用于免疫细胞化学在小鼠样品上浓度为1:100 (图 s7), 被用于免疫印迹在小鼠样品上浓度为1:100 (图 s7), 被用于免疫细胞化学在人类样品上浓度为1:100 (图 s8) 和 被用于免疫印迹在人类样品上浓度为1:100 (图 s8). Nat Commun (2016) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫细胞化学; 人类; 图 1b
  • 免疫组化; 人类; 图 2a
赛默飞世尔 HER2抗体(ThermoScientific, e2-4001+3B5)被用于被用于免疫细胞化学在人类样品上 (图 1b) 和 被用于免疫组化在人类样品上 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(PN2A)
  • 免疫印迹; 人类; 1:500; 图 2d
赛默飞世尔 HER2抗体(Fisher, MS-1072-P0)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 2d). Oncotarget (2016) ncbi
兔 单克隆(SP3)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 5
赛默飞世尔 HER2抗体(Neomarkers, SP3)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (表 5). Oncol Lett (2016) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫组化; 人类
赛默飞世尔 HER2抗体(Thermo Fisher Scientific, e2-4001+3B5)被用于被用于免疫组化在人类样品上. PLoS ONE (2016) ncbi
小鼠 单克隆(e2-4001)
  • 免疫印迹; 人类; 图 5A
赛默飞世尔 HER2抗体(Thermo Scientific Pierce Antibodies, e2-4001)被用于被用于免疫印迹在人类样品上 (图 5A). J Immunother (2016) ncbi
兔 单克隆(SP3)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 1
赛默飞世尔 HER2抗体(Thermo, SP3)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (表 1). Medicine (Baltimore) (2016) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫印迹; 人类; 1:2000
赛默飞世尔 HER2抗体(Thermo Fisher, MS730P0)被用于被用于免疫印迹在人类样品上浓度为1:2000. Nat Commun (2016) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫沉淀; 人类; 图 2b
  • 免疫细胞化学; 人类; 1:100; 图 3b
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔 HER2抗体(Thermo Fisher Scientific, Ab-17)被用于被用于免疫沉淀在人类样品上 (图 2b), 被用于免疫细胞化学在人类样品上浓度为1:100 (图 3b) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 1). Biochem J (2016) ncbi
兔 单克隆(SP3)
  • 免疫组化; 人类; 1:200
赛默飞世尔 HER2抗体(Thermoscientific, SP3)被用于被用于免疫组化在人类样品上浓度为1:200. Breast Cancer Res Treat (2016) ncbi
小鼠 单克隆(CB11)
  • 免疫组化-石蜡切片; 猫; 1:200; 表 3
赛默飞世尔 HER2抗体(Invitrogen, CB11)被用于被用于免疫组化-石蜡切片在猫样品上浓度为1:200 (表 3). Oncotarget (2016) ncbi
小鼠 单克隆(CB11)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 HER2抗体(Thermo Fisher, CB11)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50. Exp Ther Med (2016) ncbi
小鼠 单克隆(2G11)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 HER2抗体(eBioscience, BMS120FI)被用于被用于流式细胞仪在人类样品上 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(9G6.10)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 HER2抗体(Thermo Scientific, MS-229-PABX)被用于被用于流式细胞仪在人类样品上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(CB11)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛默飞世尔 HER2抗体(Thermo Scientific, MA1-35720)被用于被用于免疫细胞化学在人类样品上 (图 1) 和 被用于免疫印迹在人类样品上 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(e2-4001)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 2
赛默飞世尔 HER2抗体(Invitrogen, AHO1011)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (图 2). Dis Model Mech (2016) ncbi
小鼠 单克隆(CB11)
  • 免疫组化; 人类; 1:100; 图 1
赛默飞世尔 HER2抗体(Invitrogen, CB11)被用于被用于免疫组化在人类样品上浓度为1:100 (图 1). Tumour Biol (2016) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫组化-石蜡切片; 人类; 1:400; 表 4
赛默飞世尔 HER2抗体(Thermo Scientific, MS-730)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:400 (表 4). Neoplasia (2015) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 1
赛默飞世尔 HER2抗体(Thermo Scientific, e2-4001 + 3B5)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (表 1). Pathol Oncol Res (2016) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 HER2抗体(Thermo Scientific, MS-730-P1)被用于被用于免疫印迹在人类样品上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(CB11)
  • 免疫组化; 猫; 1:200; 图 1c
赛默飞世尔 HER2抗体(Invitrogen, CB11)被用于被用于免疫组化在猫样品上浓度为1:200 (图 1c). Tumour Biol (2016) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔 HER2抗体(Thermo Fisher Scientific, e2-4001 + 3B5)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 2). BMC Cancer (2015) ncbi
兔 单克隆(EP1045Y)
  • 免疫组化; 人类; ready to use
赛默飞世尔 HER2抗体(Thermo Scientific, RM-2111-R7)被用于被用于免疫组化在人类样品上浓度为ready to use. Pathol Res Pract (2015) ncbi
兔 单克隆(SP3)
  • 免疫组化; 人类; ready to use
赛默飞世尔 HER2抗体(Thermo Scientific, RM-9103-R7)被用于被用于免疫组化在人类样品上浓度为ready to use. Pathol Res Pract (2015) ncbi
兔 单克隆(SP3)
  • 免疫组化-石蜡切片; 人类; 图 1f
赛默飞世尔 HER2抗体(Thermo Fisher, MA5-14509)被用于被用于免疫组化-石蜡切片在人类样品上 (图 1f). Appl Immunohistochem Mol Morphol (2016) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔 HER2抗体(Thermo Scientific, MS-730-PCS)被用于被用于免疫细胞化学在人类样品上 (图 3). Sci Rep (2015) ncbi
兔 单克隆(SP3)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 2
赛默飞世尔 HER2抗体(Thermo Lab Vision, RM-9103-S)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (表 2). Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(PN2A)
  • 免疫印迹; 人类; 1:200; 图 1
赛默飞世尔 HER2抗体(Thermo Scientific, MS-1072-P1)被用于被用于免疫印迹在人类样品上浓度为1:200 (图 1). PLoS ONE (2015) ncbi
兔 单克隆(SP3)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 HER2抗体(Thermo Scientific Lab Vision, RM-9103-S)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫沉淀; 人类; 1 ug/time
赛默飞世尔 HER2抗体(Thermo Scientific, MA5-14057)被用于被用于免疫沉淀在人类样品上浓度为1 ug/time. Oncogene (2016) ncbi
兔 单克隆(SP3)
  • 免疫组化; 人类; 1:100
赛默飞世尔 HER2抗体(Thermo Scientific, SP3)被用于被用于免疫组化在人类样品上浓度为1:100. Breast (2015) ncbi
小鼠 单克隆(e2-4001)
  • 免疫组化; 人类; 1:200
赛默飞世尔 HER2抗体(Lab vision, MS-325-PO)被用于被用于免疫组化在人类样品上浓度为1:200. Hum Pathol (2015) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫印迹; 人类; 1:1000; 图 2b
赛默飞世尔 HER2抗体(Thermo Fisher Scientific, e2-4001 + 3B5)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 2b). Oncol Rep (2015) ncbi
兔 单克隆(SP3)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 HER2抗体(Thermo Scientific Lab Vision, SP3)被用于被用于免疫组化-石蜡切片在人类样品上. Niger J Clin Pract (2015) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫组化-石蜡切片; 人类; 1:500
赛默飞世尔 HER2抗体(Thermo Scientific, e2-4001-3B5)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500. Turk J Gastroenterol (2014) ncbi
小鼠 单克隆(e2-4001)
  • 免疫组化-石蜡切片; 人类; 图 2
赛默飞世尔 HER2抗体(Thermo Scientific, MS325B0)被用于被用于免疫组化-石蜡切片在人类样品上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 HER2抗体(Lab Vision, e2-4001+ 3B5)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. World J Urol (2015) ncbi
小鼠 单克隆(e2-4001)
  • 免疫组化; 人类
赛默飞世尔 HER2抗体(LabVision, Ab8)被用于被用于免疫组化在人类样品上. Breast Cancer Res (2015) ncbi
小鼠 单克隆(3B5)
  • 免疫组化; 人类
赛默飞世尔 HER2抗体(LabVision, Ab15)被用于被用于免疫组化在人类样品上. Breast Cancer Res (2015) ncbi
兔 单克隆(SP3)
  • 免疫组化-石蜡切片; 人类; 表 2
赛默飞世尔 HER2抗体(Thermo Scientific, SP3)被用于被用于免疫组化-石蜡切片在人类样品上 (表 2). Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 HER2抗体(Thermo, e2 4001+3B5)被用于被用于免疫组化-石蜡切片在人类样品上. Jpn J Clin Oncol (2015) ncbi
兔 单克隆(SP3)
  • 免疫组化; 人类; 1:200
赛默飞世尔 HER2抗体(Neomarker, RM-9103-R7)被用于被用于免疫组化在人类样品上浓度为1:200. Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫沉淀; 人类; 图 3D
  • 免疫印迹; 人类; 图 3D
赛默飞世尔 HER2抗体(Neomarkers, Ab8)被用于被用于免疫沉淀在人类样品上 (图 3D) 和 被用于免疫印迹在人类样品上 (图 3D). Oncotarget (2015) ncbi
小鼠 单克隆(e2-4001)
  • 免疫沉淀; 人类; 图 3D
  • 免疫印迹; 人类; 图 3D
赛默飞世尔 HER2抗体(Neomarkers, Ab8)被用于被用于免疫沉淀在人类样品上 (图 3D) 和 被用于免疫印迹在人类样品上 (图 3D). Oncotarget (2015) ncbi
小鼠 单克隆(CB11)
  • 免疫印迹; 人类
赛默飞世尔 HER2抗体(Thermo Fisher Scientific, MS-441-S)被用于被用于免疫印迹在人类样品上. Cell Oncol (Dordr) (2015) ncbi
小鼠 单克隆(CB11)
  • 免疫组化; 人类; 1:600
赛默飞世尔 HER2抗体(Zymed, CB11)被用于被用于免疫组化在人类样品上浓度为1:600. Breast Cancer Res Treat (2015) ncbi
兔 单克隆(SP3)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 HER2抗体(Lab Vision Corporation, SP3)被用于被用于免疫组化-石蜡切片在人类样品上. Exp Ther Med (2015) ncbi
小鼠 单克隆(CB11)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 1
赛默飞世尔 HER2抗体(Invitrogen, CB11)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (表 1). BMC Cancer (2014) ncbi
兔 单克隆(SP3)
  • 免疫组化; 人类; 1:100
赛默飞世尔 HER2抗体(Thermo Scientific, SP3)被用于被用于免疫组化在人类样品上浓度为1:100. BMC Womens Health (2014) ncbi
小鼠 单克隆(9G6.10)
  • 免疫印迹; 人类
赛默飞世尔 HER2抗体(Thermo Scientific, 9G6.10)被用于被用于免疫印迹在人类样品上. J Biol Chem (2014) ncbi
小鼠 单克隆(e2-4001)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
赛默飞世尔 HER2抗体(NeoMarkers, e2-4001)被用于被用于免疫沉淀在人类样品上 和 被用于免疫印迹在人类样品上. Oncogene (2015) ncbi
小鼠 单克隆(e2-4001, 3B5)
赛默飞世尔 HER2抗体(Thermo Fisher Scientific, Ab-17)被用于. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(e2-4001)
  • 免疫组化-石蜡切片; 人类; 1:300
赛默飞世尔 HER2抗体(LabVision, e2-4001)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:300. Head Neck (2015) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 HER2抗体(LabVision, Ab-17)被用于被用于免疫组化-石蜡切片在人类样品上. Neuro Oncol (2014) ncbi
小鼠 单克隆(PN2A)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 HER2抗体(Thermo, PN2A)被用于被用于免疫组化-石蜡切片在人类样品上. Lab Invest (2014) ncbi
兔 单克隆(SP3)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 HER2抗体(Thermo, SP3)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(e2-4001, 3B5)
赛默飞世尔 HER2抗体(Thermo Scientific, Ab-17)被用于. Genes Cells (2014) ncbi
兔 单克隆(EP1045Y)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
赛默飞世尔 HER2抗体(Lab Vision, EP1045Y)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (表 2). Sci Rep (2013) ncbi
兔 单克隆(SP3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
赛默飞世尔 HER2抗体(Neomarkers, SP3)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 2). Cell Oncol (Dordr) (2013) ncbi
小鼠 单克隆(CB11)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔 HER2抗体(生活技术, CB11)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 1). Tumour Biol (2013) ncbi
小鼠 单克隆(CB11)
  • 免疫组化-石蜡切片; 人类; 1:600; 图 2
赛默飞世尔 HER2抗体(Zymed, clone CB11)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:600 (图 2). Int J Clin Exp Pathol (2013) ncbi
兔 单克隆(SP3)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 1
赛默飞世尔 HER2抗体(Thermo Scientific, SP3)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (表 1). Clinics (Sao Paulo) (2013) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫组化; 小鼠; 1:1000
赛默飞世尔 HER2抗体(Thermo Fisher Scientific, Ab-17)被用于被用于免疫组化在小鼠样品上浓度为1:1000. Mol Carcinog (2014) ncbi
小鼠 单克隆(e2-4001)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 1
赛默飞世尔 HER2抗体(Thermo, Ab-8 (clone e2-4001))被用于被用于免疫细胞化学在人类样品上 (图 3) 和 被用于免疫印迹在人类样品上 (图 1). Carcinogenesis (2013) ncbi
小鼠 单克隆(CB11)
  • 免疫组化; 人类; 图 3
赛默飞世尔 HER2抗体(Zymed, CB11)被用于被用于免疫组化在人类样品上 (图 3). Int J Surg Pathol (2014) ncbi
小鼠 单克隆(CB11)
  • 免疫组化-石蜡切片; 人类; 图 2
赛默飞世尔 HER2抗体(生活技术, Clone CB11)被用于被用于免疫组化-石蜡切片在人类样品上 (图 2). PLoS ONE (2013) ncbi
小鼠 单克隆(e2-4001, 3B5)
赛默飞世尔 HER2抗体(Thermo SCIENTIFIC, MS-730-P0)被用于. J Cell Mol Med (2013) ncbi
小鼠 单克隆(e2-4001)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 HER2抗体(Biosource, AHO1011)被用于被用于流式细胞仪在人类样品上 (图 5). Biochim Biophys Acta (2012) ncbi
兔 单克隆(SP3)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 HER2抗体(Neomarker, RM9103-S)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Breast Cancer Res (2011) ncbi
小鼠 单克隆(CB11)
  • 免疫印迹; 人类; 图 2a
赛默飞世尔 HER2抗体(Thermo Fisher Scientific, MS-441-S)被用于被用于免疫印迹在人类样品上 (图 2a). J Cell Mol Med (2011) ncbi
小鼠 单克隆(3B5)
  • 免疫沉淀; 人类; 图 7d
  • 免疫印迹; 人类; 图 6a
赛默飞世尔 HER2抗体(Fisher, 3B5)被用于被用于免疫沉淀在人类样品上 (图 7d) 和 被用于免疫印迹在人类样品上 (图 6a). J Biol Chem (2010) ncbi
兔 单克隆(SP3)
  • 免疫组化-石蜡切片; 人类; 1:400; 表 3
  • 免疫组化; 人类; 1:400
赛默飞世尔 HER2抗体(NeoMarkers, SP3)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:400 (表 3) 和 被用于免疫组化在人类样品上浓度为1:400. Histopathology (2008) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
赛默飞世尔 HER2抗体(Lab Vision, e2-4001 + 3B5)被用于被用于免疫沉淀在人类样品上 和 被用于免疫印迹在人类样品上. J Biol Chem (2008) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫印迹; 人类; 1:3000; 图 7
赛默飞世尔 HER2抗体(Neomarkers, Ab-17)被用于被用于免疫印迹在人类样品上浓度为1:3000 (图 7). J Cell Sci (2006) ncbi
小鼠 单克隆(9G6.10)
  • 酶联免疫吸附测定; 人类; 表 2
赛默飞世尔 HER2抗体(NeoMarkers, MS229-PABX)被用于被用于酶联免疫吸附测定在人类样品上 (表 2). Cancer Res (2004) ncbi
小鼠 单克隆(CB11)
  • 免疫组化-石蜡切片; 人类; 1:3
赛默飞世尔 HER2抗体(Zymed, CB11)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:3. Cancer (2002) ncbi
圣克鲁斯生物技术
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 s4b
圣克鲁斯生物技术 HER2抗体(Santa Cruz, sc-33684)被用于被用于流式细胞仪在人类样品上 (图 s4b). MBio (2017) ncbi
小鼠 单克隆
  • ChIP-Seq; 小鼠; 图 s3a
  • 染色质免疫沉淀 ; 小鼠; 图 s3b
  • ChIP-Seq; 人类; 图 s3c
  • 染色质免疫沉淀 ; 人类; 图 s3e
圣克鲁斯生物技术 HER2抗体(Santa Cruz Biotechnology, 3B5)被用于被用于ChIP-Seq在小鼠样品上 (图 s3a), 被用于染色质免疫沉淀 在小鼠样品上 (图 s3b), 被用于ChIP-Seq在人类样品上 (图 s3c) 和 被用于染色质免疫沉淀 在人类样品上 (图 s3e). PLoS Genet (2017) ncbi
小鼠 单克隆(3B5)
  • ChIP-Seq; 人类; 图 s3c
  • 染色质免疫沉淀 ; 人类; 图 s3e
  • ChIP-Seq; 小鼠; 图 s3a
  • 染色质免疫沉淀 ; 小鼠; 图 s3b
圣克鲁斯生物技术 HER2抗体(Santa Cruz Biotechnology, 3B5)被用于被用于ChIP-Seq在人类样品上 (图 s3c), 被用于染色质免疫沉淀 在人类样品上 (图 s3e), 被用于ChIP-Seq在小鼠样品上 (图 s3a) 和 被用于染色质免疫沉淀 在小鼠样品上 (图 s3b). PLoS Genet (2017) ncbi
小鼠 单克隆(9G6)
  • 免疫印迹; 人类; 1:500; 图 5d
圣克鲁斯生物技术 HER2抗体(Santa Cruz, sc-08)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 5d). Sci Rep (2017) ncbi
小鼠 单克隆(3B5)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 HER2抗体(Santa Cruz, sc-33684)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(19G5)
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术 HER2抗体(Santa Cruz, 19G5)被用于被用于免疫印迹在人类样品上 (图 5c). J Cell Mol Med (2016) ncbi
小鼠 单克隆(7F8)
  • 免疫印迹; 小鼠; 1:500; 图 2
圣克鲁斯生物技术 HER2抗体(Santa Cruz, sc-81508)被用于被用于免疫印迹在小鼠样品上浓度为1:500 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(3B5)
  • 免疫印迹; 小鼠; 1:500; 图 2
圣克鲁斯生物技术 HER2抗体(Santa Cruz, sc-33684)被用于被用于免疫印迹在小鼠样品上浓度为1:500 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(F-11)
  • 免疫沉淀; 人类; 图 1
圣克鲁斯生物技术 HER2抗体(Santa Cruz, sc-7301)被用于被用于免疫沉淀在人类样品上 (图 1). Oncogenesis (2016) ncbi
小鼠 单克隆(24D2)
  • 流式细胞仪; 小鼠; 图 5
圣克鲁斯生物技术 HER2抗体(Santa Cruz Biotechnology, SC-23864)被用于被用于流式细胞仪在小鼠样品上 (图 5). Analyst (2015) ncbi
小鼠 单克隆(3B5)
  • 免疫组化-石蜡切片; 人类; 表 3
圣克鲁斯生物技术 HER2抗体(SantaCruz, sc-33684)被用于被用于免疫组化-石蜡切片在人类样品上 (表 3). Genes Cancer (2015) ncbi
小鼠 单克隆(F-11)
  • 免疫印迹; 人类; 图 3A
圣克鲁斯生物技术 HER2抗体(Santa Cruz, sc-7301)被用于被用于免疫印迹在人类样品上 (图 3A). Oncotarget (2015) ncbi
小鼠 单克隆(3B5)
  • 免疫印迹; 人类
圣克鲁斯生物技术 HER2抗体(Santa Cruz Biotechnology, sc-33684)被用于被用于免疫印迹在人类样品上. Int J Oncol (2014) ncbi
小鼠 单克隆(9G6)
  • 免疫组化-石蜡切片; 人类; 1:100
圣克鲁斯生物技术 HER2抗体(Santa Cruz, sc-08)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. J Biol Chem (2014) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(3B5)
  • 免疫组化; 小鼠; 图 2g
艾博抗(上海)贸易有限公司 HER2抗体(Abcam, AB16901)被用于被用于免疫组化在小鼠样品上 (图 2g). Nature (2017) ncbi
兔 单克隆(EP1045Y)
  • 免疫组化-石蜡切片; 人类; 0.024 ug/ml; 图 3d
艾博抗(上海)贸易有限公司 HER2抗体(Abcam, ab134182)被用于被用于免疫组化-石蜡切片在人类样品上浓度为0.024 ug/ml (图 3d). Sci Rep (2017) ncbi
兔 单克隆(SP101)
  • 免疫细胞化学; scFv; 1:100; 表 1
艾博抗(上海)贸易有限公司 HER2抗体(abcam, ab135376)被用于被用于免疫细胞化学在scFv样品上浓度为1:100 (表 1). PLoS ONE (2017) ncbi
小鼠 单克隆(9G6)
  • 免疫细胞化学; scFv; 1:100; 表 1
艾博抗(上海)贸易有限公司 HER2抗体(abcam, ab16899)被用于被用于免疫细胞化学在scFv样品上浓度为1:100 (表 1). PLoS ONE (2017) ncbi
兔 单克隆(EP2324Y)
  • 免疫组化; 小鼠; 1:100; 图 5a
艾博抗(上海)贸易有限公司 HER2抗体(Abcam, ab108371)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 5a). J Clin Invest (2016) ncbi
兔 单克隆(SP3)
  • 免疫组化-石蜡切片; 人类; 图 2b
艾博抗(上海)贸易有限公司 HER2抗体(Abcam, SP3)被用于被用于免疫组化-石蜡切片在人类样品上 (图 2b). Clin Cancer Res (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6
艾博抗(上海)贸易有限公司 HER2抗体(Abcam, ab47262)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 6). Oncotarget (2016) ncbi
安迪生物R&D
兔 多克隆
  • 其他; 人类; 图 4c
安迪生物R&D HER2抗体(R&D Systems, AF1768)被用于被用于其他在人类样品上 (图 4c). Cancer Cell (2018) ncbi
山羊 多克隆
  • 其他; 人类; 表 1
安迪生物R&D HER2抗体(R&D, BAF1129)被用于被用于其他在人类样品上 (表 1). Dis Markers (2016) ncbi
小鼠 单克隆(191924)
  • 流式细胞仪; 人类; 图 s2a
安迪生物R&D HER2抗体(R&D systems, 191924)被用于被用于流式细胞仪在人类样品上 (图 s2a). Nat Microbiol (2016) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 图 11e
  • 免疫印迹; 仓鼠; 图 7a
安迪生物R&D HER2抗体(R&D Systems, AF1129)被用于被用于免疫细胞化学在人类样品上 (图 11e) 和 被用于免疫印迹在仓鼠样品上 (图 7a). J Biol Chem (2015) ncbi
北京傲锐东源
小鼠 单克隆(UMAB36)
  • 免疫印迹; 人类; 1:2000; 图 1c
北京傲锐东源 HER2抗体(OriGene Technologies, UMAB36)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 1c). Biochem Biophys Res Commun (2017) ncbi
小鼠 单克隆(OTI4F10)
  • 免疫印迹; 人类; 1:1000; 图 s8
北京傲锐东源 HER2抗体(OriGene, TA503443)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 s8). Nat Commun (2016) ncbi
BioLegend
小鼠 单克隆(24D2)
  • 其他; 人类; 500 ug/ml; 图 1
BioLegend HER2抗体(BioLegend, 324402)被用于被用于其他在人类样品上浓度为500 ug/ml (图 1). J Extracell Vesicles (2016) ncbi
小鼠 单克隆(24D2)
  • 流式细胞仪; 人类; 图 2
BioLegend HER2抗体(BioLegend, 24D2)被用于被用于流式细胞仪在人类样品上 (图 2). BMC Cancer (2015) ncbi
小鼠 单克隆(24D2)
  • 流式细胞仪; 人类; 图 4
BioLegend HER2抗体(BioLegend, 24D2)被用于被用于流式细胞仪在人类样品上 (图 4). Oncol Rep (2015) ncbi
Enzo Life Sciences
小鼠 单克隆(MGR2)
  • 免疫细胞化学; 人类; 图 2b
Enzo Life Sciences HER2抗体(Enzo Life Sciences, MGR2)被用于被用于免疫细胞化学在人类样品上 (图 2b). Mol Ther (2015) ncbi
赛信通(上海)生物试剂有限公司
兔 单克隆(29D8)
  • 免疫印迹; 人类; 图 s3b
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165)被用于被用于免疫印迹在人类样品上 (图 s3b). Oncogene (2018) ncbi
兔 单克隆(6B12)
  • 免疫印迹; 人类; 图 s3b
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2243)被用于被用于免疫印迹在人类样品上 (图 s3b). Oncogene (2018) ncbi
兔 单克隆(D8F12)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 4290)被用于被用于免疫印迹在人类样品上 (图 5e). Cell Res (2018) ncbi
兔 单克隆(6B12)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2243)被用于被用于免疫印迹在人类样品上 (图 5e). Cell Res (2018) ncbi
兔 单克隆(D8F12)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6c
赛信通(上海)生物试剂有限公司 HER2抗体(CST, 4290)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 6c). Nat Commun (2018) ncbi
兔 单克隆(D8F12)
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 4290)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 1e). Science (2018) ncbi
兔 单克隆(6B12)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2243)被用于被用于免疫印迹在人类样品上 (图 2b). Oncotarget (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2247)被用于被用于免疫印迹在人类样品上 (图 2b). Oncotarget (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2242)被用于被用于免疫印迹在人类样品上 (图 1c). Oncotarget (2017) ncbi
兔 单克隆(29D8)
  • 免疫印迹; 小鼠; 1:1000; 图 1g
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 1g). Cell Death Dis (2017) ncbi
兔 单克隆(D8F12)
  • 免疫组化; 人类; 1:500; 图 7b
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 4290)被用于被用于免疫组化在人类样品上浓度为1:500 (图 7b) 和 被用于免疫印迹在人类样品上 (图 3c). Oncogene (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 2247)被用于被用于免疫印迹在人类样品上 (图 3c). Oncogene (2017) ncbi
兔 单克隆(D66B7)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 6942)被用于被用于免疫印迹在人类样品上 (图 5a). Am J Respir Crit Care Med (2017) ncbi
兔 单克隆(D8F12)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 4290)被用于被用于免疫印迹在人类样品上 (图 5a). Am J Respir Crit Care Med (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s6
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2241)被用于被用于免疫印迹在人类样品上 (图 s6). Sci Rep (2016) ncbi
兔 单克隆(6B12)
  • 免疫印迹; 人类; 图 s6
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2243)被用于被用于免疫印迹在人类样品上 (图 s6). Sci Rep (2016) ncbi
兔 单克隆(D8F12)
  • 免疫细胞化学; 人类; 1:100; 图 2b
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 4290)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 2b) 和 被用于免疫印迹在人类样品上 (图 2a). Sci Rep (2016) ncbi
兔 单克隆(29D8)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3). J Cancer Res Clin Oncol (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2247)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3). J Cancer Res Clin Oncol (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2241)被用于被用于免疫印迹在人类样品上 (图 3a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 s6a
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2242)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 s6a). Nat Cell Biol (2016) ncbi
兔 单克隆(29D8)
  • 免疫印迹; 人类; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165S)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4g). J Biol Chem (2016) ncbi
兔 单克隆(6B12)
  • 免疫印迹; 人类; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2243S)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4g). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2241)被用于被用于免疫印迹在人类样品上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
兔 单克隆(29D8)
  • 流式细胞仪; 人类; 图 1a
  • 免疫细胞化学; 人类
  • 免疫组化; 人类
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 29D8)被用于被用于流式细胞仪在人类样品上 (图 1a), 被用于免疫细胞化学在人类样品上 和 被用于免疫组化在人类样品上. Nature (2016) ncbi
兔 单克隆(29D8)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165)被用于被用于免疫印迹在人类样品上 (图 2a). Breast Cancer Res (2016) ncbi
兔 单克隆(D8F12)
  • 免疫组化-石蜡切片; 人类; 表 1
赛信通(上海)生物试剂有限公司 HER2抗体(Cell signaling, D8F12)被用于被用于免疫组化-石蜡切片在人类样品上 (表 1). Oncotarget (2016) ncbi
兔 单克隆(29D8)
  • 免疫沉淀; 人类; 图 s8
赛信通(上海)生物试剂有限公司 HER2抗体(Cell signaling, 29D8)被用于被用于免疫沉淀在人类样品上 (图 s8). J Cell Mol Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2242S)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 2c). Oncotarget (2016) ncbi
兔 单克隆(29D8)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 HER2抗体(Cell signaling, 2165)被用于被用于免疫印迹在人类样品上 (图 1a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 s2
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2249)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 s2). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2247)被用于被用于免疫印迹在人类样品上 (图 3a). Oncogene (2017) ncbi
兔 单克隆(6B12)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 HER2抗体(cell signalling, 2243)被用于被用于免疫印迹在人类样品上 (图 4b). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 HER2抗体(cell signalling, 2242)被用于被用于免疫印迹在人类样品上 (图 4a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5f
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signalling, 2247)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 5f). Nat Commun (2016) ncbi
兔 单克隆(29D8)
  • 免疫细胞化学; scFv; 图 4
赛信通(上海)生物试剂有限公司 HER2抗体(CST, 2165S)被用于被用于免疫细胞化学在scFv样品上 (图 4). Oncogenesis (2016) ncbi
兔 单克隆(29D8)
  • 免疫印迹; 人类; 1:500; 图 2
赛信通(上海)生物试剂有限公司 HER2抗体(Cell signaling, 2165)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 2). elife (2016) ncbi
兔 单克隆(D8F12)
  • 免疫组化-石蜡切片; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 4290)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 6). Oncotarget (2016) ncbi
兔 单克隆(6B12)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2243)被用于被用于免疫印迹在人类样品上 (图 1). Oncogenesis (2016) ncbi
兔 单克隆(29D8)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165)被用于被用于免疫印迹在人类样品上 (图 1b). PLoS ONE (2016) ncbi
兔 单克隆(29D8)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 2165)被用于被用于免疫印迹在人类样品上 (图 1). Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2249)被用于被用于免疫印迹在人类样品上 (图 3b). Oncogene (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 s2
  • 免疫印迹; 人类; 图 s3a
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2242)被用于被用于免疫细胞化学在人类样品上 (图 s2) 和 被用于免疫印迹在人类样品上 (图 s3a). Oncogene (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 2242)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图 2). Oncogenesis (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signalling, 2241S)被用于被用于免疫印迹在人类样品上 (图 4) 和 被用于免疫细胞化学在小鼠样品上. Oxid Med Cell Longev (2016) ncbi
兔 单克隆(29D8)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signalling, 2165S)被用于被用于免疫细胞化学在人类样品上 (图 2) 和 被用于免疫印迹在人类样品上 (图 2). Oxid Med Cell Longev (2016) ncbi
兔 单克隆(6B12)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 2243)被用于被用于免疫细胞化学在人类样品上 (图 1) 和 被用于免疫印迹在人类样品上 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
兔 单克隆(29D8)
  • 免疫印迹; 人类; 1:200; 图 2b
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165)被用于被用于免疫印迹在人类样品上浓度为1:200 (图 2b). Nat Commun (2016) ncbi
小鼠 单克隆(44E7)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2248)被用于被用于免疫印迹在人类样品上浓度为1:1000. Dis Model Mech (2016) ncbi
兔 单克隆(6B12)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 HER2抗体(Cell signaling, 2243)被用于被用于免疫印迹在人类样品上 (图 3a). Oncotarget (2016) ncbi
兔 单克隆(D8F12)
  • 免疫印迹; 狗; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 4290S)被用于被用于免疫印迹在狗样品上浓度为1:1000 (图 5). PLoS ONE (2015) ncbi
兔 单克隆(29D8)
  • 免疫印迹; 人类; 1:1000; 图 7e
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 7e). J Natl Cancer Inst (2016) ncbi
兔 单克隆(6B12)
  • 免疫印迹; 人类; 1:1000; 图 7e
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2243)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 7e). J Natl Cancer Inst (2016) ncbi
兔 单克隆(29D8)
  • 免疫印迹; 人类; 1:1000; 图 5C; S6B
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Sgnaling, 29D8)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 5C; S6B). Mol Oncol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5C; S6B
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Sgnaling, 2247)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 5C; S6B). Mol Oncol (2016) ncbi
兔 多克隆
  • 免疫印迹; scFv; 图 3
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2249)被用于被用于免疫印迹在scFv样品上 (图 3). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2242)被用于被用于免疫印迹在人类样品上 (图 6). Mol Ther (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2247)被用于被用于免疫细胞化学在人类样品上 (图 4). PLoS ONE (2015) ncbi
兔 单克隆(29D8)
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165)被用于被用于免疫细胞化学在人类样品上 (图 4). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2247)被用于被用于免疫印迹在人类样品上. Br J Cancer (2015) ncbi
兔 单克隆(D66B7)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 HER2抗体(Cell signaling, 6942)被用于被用于免疫印迹在人类样品上 (图 2a). J Biol Chem (2015) ncbi
兔 单克隆(D8F12)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 HER2抗体(Cell signaling, 4290)被用于被用于免疫印迹在人类样品上 (图 4a). J Biol Chem (2015) ncbi
兔 单克隆(29D8)
  • 免疫组化-石蜡切片; 人类; 图 1f
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 29D8)被用于被用于免疫组化-石蜡切片在人类样品上 (图 1f). Appl Immunohistochem Mol Morphol (2016) ncbi
小鼠 单克隆(44E7)
  • 免疫印迹; 小鼠; 图 5b
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 2248)被用于被用于免疫印迹在小鼠样品上 (图 5b) 和 被用于免疫印迹在人类样品上 (图 5b). Mol Ther (2015) ncbi
兔 单克隆(6B12)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 2243)被用于被用于免疫印迹在小鼠样品上 (图 5b). Mol Ther (2015) ncbi
兔 单克隆(6B12)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2243)被用于被用于免疫印迹在人类样品上 (图 4). EBioMedicine (2015) ncbi
兔 单克隆(29D8)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165)被用于被用于免疫印迹在人类样品上 (图 4). EBioMedicine (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s3
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2242)被用于被用于免疫印迹在人类样品上 (图 s3). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2247)被用于被用于免疫印迹在人类样品上 (图 2). Oncotarget (2015) ncbi
兔 单克隆(6B12)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2243)被用于被用于免疫印迹在人类样品上 (图 2). Oncotarget (2015) ncbi
兔 单克隆(29D8)
  • 免疫组化-石蜡切片; 人类; 1:25
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:25. Oncotarget (2015) ncbi
兔 单克隆(29D8)
  • 免疫印迹; 人类; 1:100
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, #2165)被用于被用于免疫印迹在人类样品上浓度为1:100. Mol Cancer (2015) ncbi
兔 单克隆(29D8)
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 5b). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2241)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 5b). PLoS ONE (2015) ncbi
兔 单克隆(29D8)
  • 免疫印迹; 人类; 图 4f, 4g, 4h
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 2165)被用于被用于免疫印迹在人类样品上 (图 4f, 4g, 4h). Oncotarget (2015) ncbi
兔 单克隆(29D8)
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 2165)被用于. J Extracell Vesicles (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2242S)被用于被用于免疫印迹在人类样品上浓度为1:500. Breast Cancer Res Treat (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4a,b
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 2249)被用于被用于免疫印迹在人类样品上 (图 4a,b). Onco Targets Ther (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4a,b
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 2242)被用于被用于免疫印迹在人类样品上 (图 4a,b). Onco Targets Ther (2015) ncbi
兔 单克隆(6B12)
  • 免疫印迹; 人类; 图 3A
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2243)被用于被用于免疫印迹在人类样品上 (图 3A). Oncotarget (2015) ncbi
兔 单克隆(29D8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 2165)被用于被用于免疫印迹在人类样品上. J Diabetes (2016) ncbi
兔 单克隆(29D8)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165)被用于被用于免疫细胞化学在人类样品上 (图 3) 和 被用于免疫印迹在人类样品上 (图 1). Breast Cancer Res (2015) ncbi
兔 单克隆(29D8)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165)被用于被用于免疫印迹在人类样品上 (图 s1). Oncogene (2015) ncbi
小鼠 单克隆(44E7)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 2248)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 2). elife (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 2241)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 2). elife (2014) ncbi
兔 单克隆(6B12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technologies, 2243)被用于被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 单克隆(29D8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technologies, 2165)被用于被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 单克隆(D8F12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 4290)被用于被用于免疫印迹在人类样品上. Cancer Res (2014) ncbi
兔 单克隆(D66B7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 6942)被用于被用于免疫印迹在人类样品上. Cancer Res (2014) ncbi
兔 单克隆(6B12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 2243)被用于被用于免疫印迹在人类样品上. Cancer Res (2014) ncbi
兔 单克隆(6B12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HER2抗体(cell signaling, 2243S)被用于被用于免疫印迹在人类样品上. Oncogene (2015) ncbi
小鼠 单克隆(44E7)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2248)被用于被用于免疫印迹在人类样品上浓度为1:1000. Front Endocrinol (Lausanne) (2014) ncbi
兔 单克隆(29D8)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 29D8)被用于被用于免疫细胞化学在人类样品上 和 被用于免疫印迹在人类样品上. Biochim Biophys Acta (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 2242)被用于被用于免疫印迹在人类样品上 (图 4c). Mol Cancer Ther (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 2249)被用于被用于免疫印迹在人类样品上 (图 4c). Mol Cancer Ther (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 HER2抗体(Cell signaling Technology, 2242)被用于被用于免疫印迹在人类样品上浓度为1:500. PLoS Genet (2014) ncbi
兔 单克隆(29D8)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 HER2抗体(Cell signaling, 2165)被用于被用于免疫印迹在人类样品上 (图 1a). Int J Oncol (2014) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:200
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2242)被用于被用于免疫组化在人类样品上浓度为1:200. Cancer Discov (2014) ncbi
兔 单克隆(29D8)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165)被用于被用于免疫印迹在人类样品上 (图 2). Mol Carcinog (2014) ncbi
兔 单克隆(6B12)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2243)被用于被用于免疫印迹在人类样品上 (图 2). Mol Carcinog (2014) ncbi
兔 单克隆(29D8)
  • 免疫细胞化学; 小鼠; 1:200
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 29D8)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200 和 被用于免疫印迹在小鼠样品上浓度为1:1000. Dev Biol (2013) ncbi
兔 单克隆(29D8)
  • 免疫细胞化学; 人类; 1:150
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 29D8)被用于被用于免疫细胞化学在人类样品上浓度为1:150. Breast Cancer Res (2011) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 2249)被用于被用于免疫印迹在人类样品上. Am J Physiol Endocrinol Metab (2011) ncbi
丹科医疗器械技术服务(上海)有限公司
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1.6 ug/ml; 图 3d
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1.6 ug/ml (图 3d). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3a
丹科医疗器械技术服务(上海)有限公司 HER2抗体(DAKO, A0485)被用于被用于免疫印迹在人类样品上 (图 3a). Mol Cancer Ther (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6c
丹科医疗器械技术服务(上海)有限公司 HER2抗体(DAKO, A0485)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 6c). Breast Cancer Res (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1a
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 1a). Cancer Res (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 图 1
丹科医疗器械技术服务(上海)有限公司 HER2抗体(DAKO, A0485)被用于被用于免疫组化-石蜡切片在大鼠样品上 (图 1). J Radiat Res (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:200; 图 st1
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫印迹在人类样品上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s1
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫印迹在人类样品上 (图 s1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:250; 表 1
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:250 (表 1). BMC Cancer (2016) ncbi
兔 多克隆
  • 免疫沉淀; 人类; 图 1b
  • 免疫细胞化学; 人类; 图 1a
  • 免疫印迹; 人类; 图 1b
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫沉淀在人类样品上 (图 1b), 被用于免疫细胞化学在人类样品上 (图 1a) 和 被用于免疫印迹在人类样品上 (图 1b). Oncogene (2017) ncbi
兔 多克隆
  • 免疫印迹; 狗; 1:1000; 图 1a
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫印迹在狗样品上浓度为1:1000 (图 1a). Vet Comp Oncol (2017) ncbi
兔 多克隆
  • 免疫组化; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫组化在人类样品上 (图 1). Mol Imaging Biol (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:400; 图 s1
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:400 (图 s1). BMC Cancer (2016) ncbi
兔 多克隆
  • 免疫印迹; 猫; 1:3500; 图 5b
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫印迹在猫样品上浓度为1:3500 (图 5b). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1.28 ug/ml; 表 s2
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1.28 ug/ml (表 s2). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500. PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1500; 图 2
丹科医疗器械技术服务(上海)有限公司 HER2抗体(DAKO, A0485)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:1500 (图 2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:2000
丹科医疗器械技术服务(上海)有限公司 HER2抗体(DakoCytomation, A0485)被用于被用于免疫组化在人类样品上浓度为1:2000. Mol Clin Oncol (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:25; 图 2
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:25 (图 2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1a
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫印迹在人类样品上 (图 1a). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1500; 表 3
丹科医疗器械技术服务(上海)有限公司 HER2抗体(DAKO, A0485)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:1500 (表 3). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3f
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A485)被用于被用于免疫印迹在小鼠样品上 (图 3f). Cancer Chemother Pharmacol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫印迹在人类样品上. J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 表 3
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫组化-石蜡切片在人类样品上 (表 3). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫印迹在人类样品上 (图 3). Int J Oncol (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 HER2抗体(DAKO, A0485)被用于被用于免疫组化-石蜡切片在人类样品上. Mol Oncol (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫组化在人类样品上浓度为1:200. Tumour Biol (2014) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫组化在人类样品上浓度为1:200. Anticancer Res (2014) ncbi
兔 多克隆
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫组化在人类样品上. PLoS ONE (2014) ncbi
Ventana
兔 单克隆(4B5)
  • 免疫组化-石蜡切片; 人类; 表 s1
Ventana HER2抗体(Ventana, 4B5)被用于被用于免疫组化-石蜡切片在人类样品上 (表 s1). Am J Pathol (2017) ncbi
兔 单克隆(4B5)
  • 免疫组化-石蜡切片; 人类; 图 1g
  • 免疫印迹; 人类; 1:10; 图 1c
Ventana HER2抗体(Ventana, 4B5)被用于被用于免疫组化-石蜡切片在人类样品上 (图 1g) 和 被用于免疫印迹在人类样品上浓度为1:10 (图 1c). Biochem Biophys Res Commun (2017) ncbi
兔 单克隆(4B5)
  • 免疫组化-石蜡切片; 人类; 表 3
Ventana HER2抗体(Ventana, 4B5)被用于被用于免疫组化-石蜡切片在人类样品上 (表 3). Virchows Arch (2016) ncbi
兔 单克隆(4B5)
  • 免疫组化; 人类
Ventana HER2抗体(Ventana, 4B5)被用于被用于免疫组化在人类样品上. Gut Liver (2016) ncbi
兔 单克隆(4B5)
  • 免疫组化; 人类
Ventana HER2抗体(Ventana, 4B5)被用于被用于免疫组化在人类样品上. Ecancermedicalscience (2015) ncbi
兔 单克隆(4B5)
  • 免疫组化-石蜡切片; 人类; 图 6c
Ventana HER2抗体(Ventana, 4B5)被用于被用于免疫组化-石蜡切片在人类样品上 (图 6c). Oncotarget (2014) ncbi
Roche Applied Science
(4B5)
  • 免疫细胞化学; 人类; 图 4a
Roche Applied Science HER2抗体(Ventana Medical Systems, Inc, 790-2991)被用于被用于免疫细胞化学在人类样品上 (图 4a). Oncotarget (2018) ncbi
大鼠 单克隆(4B5)
  • 免疫组化; 人类; 图 1c
Roche Applied Science HER2抗体(Roche, 790-4493)被用于被用于免疫组化在人类样品上 (图 1c). Science (2018) ncbi
(4B5)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2e
Roche Applied Science HER2抗体(Ventana Medical System, 790-2991)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 2e). Sci Rep (2016) ncbi
(4B5)
  • 免疫组化-石蜡切片; 人类; 图 1a
Roche Applied Science HER2抗体(Ventana Medical Systems, 4B5)被用于被用于免疫组化-石蜡切片在人类样品上 (图 1a). MAbs (2017) ncbi
(4B5)
  • 免疫组化; 人类; 图 1a
Roche Applied Science HER2抗体(Ventana, 790-2991)被用于被用于免疫组化在人类样品上 (图 1a). Oncotarget (2016) ncbi
(4B5)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1a
Roche Applied Science HER2抗体(Ventana Medical Systems, 4B5)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图 1a). Mol Cancer Res (2016) ncbi
(4B5)
  • 免疫印迹; 猫; 1:20; 图 5b
Roche Applied Science HER2抗体(Ventana Medical Systems, 4B5)被用于被用于免疫印迹在猫样品上浓度为1:20 (图 5b). Oncotarget (2016) ncbi
(4B5)
  • 免疫组化-石蜡切片; 人类; 1:60
Roche Applied Science HER2抗体(Ventana, 790-2991)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:60. Clin Cancer Res (2015) ncbi
(4B5)
  • 免疫组化-石蜡切片; 人类; 表 4
Roche Applied Science HER2抗体(Ventana, 790-2991)被用于被用于免疫组化-石蜡切片在人类样品上 (表 4). BMC Cancer (2015) ncbi
碧迪BD
小鼠 单克隆(42/c-erbB-2)
  • 免疫印迹; 人类; 图 3a
碧迪BD HER2抗体(BD, 610162)被用于被用于免疫印迹在人类样品上 (图 3a). Oncogene (2018) ncbi
小鼠 单克隆(Neu 24.7)
  • 流式细胞仪; 人类; 图 2a
碧迪BD HER2抗体(BD Biosciences, 340553)被用于被用于流式细胞仪在人类样品上 (图 2a). Cell Stress Chaperones (2017) ncbi
小鼠 单克隆(Neu 24.7)
  • 流式细胞仪; 人类; 1:133; 图 4a
碧迪BD HER2抗体(B.D, Neu24.7)被用于被用于流式细胞仪在人类样品上浓度为1:133 (图 4a). Cancer Res (2017) ncbi
小鼠 单克隆(42/c-erbB-2)
  • 免疫印迹; 人类; 图 3b
碧迪BD HER2抗体(BD Biosciences, 42)被用于被用于免疫印迹在人类样品上 (图 3b). J Cell Mol Med (2016) ncbi
小鼠 单克隆(Neu 24.7)
  • 流式细胞仪; 人类; 图 st1
碧迪BD HER2抗体(BD, 340552)被用于被用于流式细胞仪在人类样品上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(Neu 24.7)
  • 流式细胞仪; 人类; 1:50; 图 1
碧迪BD HER2抗体(BD Biosciences, 340552)被用于被用于流式细胞仪在人类样品上浓度为1:50 (图 1). Cell Death Dis (2016) ncbi
小鼠 单克隆(9G6)
  • 其他; 人类; 图 st1
碧迪BD HER2抗体(BD, 9G6)被用于被用于其他在人类样品上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(3B5)
  • 免疫细胞化学; 人类; 1:100
  • 免疫印迹; 人类
碧迪BD HER2抗体(BD Transduction, 554299)被用于被用于免疫细胞化学在人类样品上浓度为1:100 和 被用于免疫印迹在人类样品上. Clin Exp Metastasis (2015) ncbi
西格玛奥德里奇
小鼠 单克隆(HER2-96)
  • 免疫细胞化学; 人类; 图 1a
西格玛奥德里奇 HER2抗体(Sigma, E2777)被用于被用于免疫细胞化学在人类样品上 (图 1a). Int J Mol Sci (2017) ncbi
文章列表
  1. Zhao H, Martin E, Matalkah F, Shah N, Ivanov A, Ruppert J, et al. Conditional knockout of SHP2 in ErbB2 transgenic mice or inhibition in HER2-amplified breast cancer cell lines blocks oncogene expression and tumorigenesis. Oncogene. 2018;: pubmed 出版商
  2. Espinoza Sánchez N, Enciso J, Pelayo R, Fuentes Panana E. An NF?B-dependent mechanism of tumor cell plasticity and lateral transmission of aggressive features. Oncotarget. 2018;9:26679-26700 pubmed 出版商
  3. Xue Z, Vis D, Bruna A, Sustic T, van Wageningen S, Batra A, et al. MAP3K1 and MAP2K4 mutations are associated with sensitivity to MEK inhibitors in multiple cancer models. Cell Res. 2018;28:719-729 pubmed 出版商
  4. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  5. Poli V, Fagnocchi L, Fasciani A, Cherubini A, Mazzoleni S, Ferrillo S, et al. MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state. Nat Commun. 2018;9:1024 pubmed 出版商
  6. Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández Mateos J, Khan K, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359:920-926 pubmed 出版商
  7. Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, et al. A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity. Cell. 2018;172:373-386.e10 pubmed 出版商
  8. Thaler S, Schmidt M, Roβwag S, Thiede G, Schad A, Sleeman J. Proteasome inhibitors prevent bi-directional HER2/estrogen-receptor cross-talk leading to cell death in endocrine and lapatinib-resistant HER2+/ER+ breast cancer cells. Oncotarget. 2017;8:72281-72301 pubmed 出版商
  9. Goel S, Decristo M, Watt A, BrinJones H, Sceneay J, Li B, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017;548:471-475 pubmed 出版商
  10. Doebar S, Sieuwerts A, de Weerd V, Stoop H, Martens J, van Deurzen C. Gene Expression Differences between Ductal Carcinoma in Situ with and without Progression to Invasive Breast Cancer. Am J Pathol. 2017;187:1648-1655 pubmed 出版商
  11. Kwon S, Cho C, Kwon Y, Lee E, Park J. A Microfluidic Immunostaining System Enables Quality Assured and Standardized Immunohistochemical Biomarker Analysis. Sci Rep. 2017;7:45968 pubmed 出版商
  12. Jeong J, Kim W, Kim L, VanHouten J, Wysolmerski J. HER2 signaling regulates HER2 localization and membrane retention. PLoS ONE. 2017;12:e0174849 pubmed 出版商
  13. Sinkala E, Sollier Christen E, Renier C, Rosàs Canyelles E, Che J, Heirich K, et al. Profiling protein expression in circulating tumour cells using microfluidic western blotting. Nat Commun. 2017;8:14622 pubmed 出版商
  14. Solis N, Swidergall M, Bruno V, Gaffen S, Filler S. The Aryl Hydrocarbon Receptor Governs Epithelial Cell Invasion during Oropharyngeal Candidiasis. MBio. 2017;8: pubmed 出版商
  15. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  16. Lee S, Dempsey Hibbert N, Vimalachandran D, Wardle T, Sutton P, Williams J. Re-examining HSPC1 inhibitors. Cell Stress Chaperones. 2017;22:293-306 pubmed 出版商
  17. Seberg H, Van Otterloo E, Loftus S, Liu H, Bonde G, Sompallae R, et al. TFAP2 paralogs regulate melanocyte differentiation in parallel with MITF. PLoS Genet. 2017;13:e1006636 pubmed 出版商
  18. Jeong J, VanHouten J, Kim W, Dann P, Sullivan C, Choi J, et al. The scaffolding protein NHERF1 regulates the stability and activity of the tyrosine kinase HER2. J Biol Chem. 2017;292:6555-6568 pubmed 出版商
  19. Gomes de Castro M, Hobartner C, Opazo F. Aptamers provide superior stainings of cellular receptors studied under super-resolution microscopy. PLoS ONE. 2017;12:e0173050 pubmed 出版商
  20. Schumacher M, Hedl M, Abraham C, Bernard J, Lozano P, Hsieh J, et al. ErbB4 signaling stimulates pro-inflammatory macrophage apoptosis and limits colonic inflammation. Cell Death Dis. 2017;8:e2622 pubmed 出版商
  21. Peiris D, Spector A, Lomax Browne H, Azimi T, Ramesh B, Loizidou M, et al. Cellular glycosylation affects Herceptin binding and sensitivity of breast cancer cells to doxorubicin and growth factors. Sci Rep. 2017;7:43006 pubmed 出版商
  22. Jin L, Chun J, Pan C, Alesi G, Li D, Magliocca K, et al. Phosphorylation-mediated activation of LDHA promotes cancer cell invasion and tumour metastasis. Oncogene. 2017;36:3797-3806 pubmed 出版商
  23. Pilarczyk G, Nesnidal I, Gunkel M, Bach M, Bestvater F, Hausmann M. Localisation Microscopy of Breast Epithelial ErbB-2 Receptors and Gap Junctions: Trafficking after ?-Irradiation, Neuregulin-1?, and Trastuzumab Application. Int J Mol Sci. 2017;18: pubmed 出版商
  24. Radder J, Zhang Y, Gregory A, Yu S, Kelly N, Leader J, et al. Extreme Trait Whole-Genome Sequencing Identifies PTPRO as a Novel Candidate Gene in Emphysema with Severe Airflow Obstruction. Am J Respir Crit Care Med. 2017;196:159-171 pubmed 出版商
  25. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed 出版商
  26. Qi L, Zhou L, Lu M, Yuan K, Li Z, Wu G, et al. Development of a highly specific HER2 monoclonal antibody for immunohistochemistry using protein microarray chips. Biochem Biophys Res Commun. 2017;484:248-254 pubmed 出版商
  27. Andreev J, Thambi N, Perez Bay A, Delfino F, Martin J, Kelly M, et al. Bispecific Antibodies and Antibody-Drug Conjugates (ADCs) Bridging HER2 and Prolactin Receptor Improve Efficacy of HER2 ADCs. Mol Cancer Ther. 2017;16:681-693 pubmed 出版商
  28. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  29. Ohtsuka T, Sakaguchi M, Yamamoto H, Tomida S, Takata K, Shien K, et al. Interaction of cytokeratin 19 head domain and HER2 in the cytoplasm leads to activation of HER2-Erk pathway. Sci Rep. 2016;6:39557 pubmed 出版商
  30. Lloyd Lewis B, Davis F, Harris O, Hitchcock J, Lourenco F, Pasche M, et al. Imaging the mammary gland and mammary tumours in 3D: optical tissue clearing and immunofluorescence methods. Breast Cancer Res. 2016;18:127 pubmed
  31. Kneissl J, Hartmann A, Pfarr N, Erlmeier F, Lorber T, Keller S, et al. Influence of the HER receptor ligand system on sensitivity to cetuximab and trastuzumab in gastric cancer cell lines. J Cancer Res Clin Oncol. 2017;143:573-600 pubmed 出版商
  32. Torgersen M, Klokk T, Kavaliauskiene S, Klose C, Simons K, Skotland T, et al. The anti-tumor drug 2-hydroxyoleic acid (Minerval) stimulates signaling and retrograde transport. Oncotarget. 2016;7:86871-86888 pubmed 出版商
  33. Sheen M, Marotti J, Allegrezza M, Rutkowski M, Conejo Garcia J, Fiering S. Constitutively activated PI3K accelerates tumor initiation and modifies histopathology of breast cancer. Oncogenesis. 2016;5:e267 pubmed 出版商
  34. Day K, Lorenzatti Hiles G, Kozminsky M, Dawsey S, Paul A, Broses L, et al. HER2 and EGFR Overexpression Support Metastatic Progression of Prostate Cancer to Bone. Cancer Res. 2017;77:74-85 pubmed 出版商
  35. Parrales A, Ranjan A, Iyer S, Padhye S, Weir S, Roy A, et al. DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway. Nat Cell Biol. 2016;18:1233-1243 pubmed 出版商
  36. Shekhar A, Lin X, Liu F, Zhang J, Mo H, Bastarache L, et al. Transcription factor ETV1 is essential for rapid conduction in the heart. J Clin Invest. 2016;126:4444-4459 pubmed 出版商
  37. Showler K, Nishimura M, Daino K, Imaoka T, Nishimura Y, Morioka T, et al. Analysis of genes involved in the PI3K/Akt pathway in radiation- and MNU-induced rat mammary carcinomas. J Radiat Res. 2017;58:183-194 pubmed 出版商
  38. Mitra S, Ghosh B, Gayen N, Roy J, Mandal A. Bipartite Role of Heat Shock Protein 90 (Hsp90) Keeps CRAF Kinase Poised for Activation. J Biol Chem. 2016;291:24579-24593 pubmed
  39. Kang S, Wang Y, Reder N, Liu J. Multiplexed Molecular Imaging of Biomarker-Targeted SERS Nanoparticles on Fresh Tissue Specimens with Channel-Compressed Spectrometry. PLoS ONE. 2016;11:e0163473 pubmed 出版商
  40. Dobosz M, Haupt U, Scheuer W. Improved decision making for prioritizing tumor targeting antibodies in human xenografts: Utility of fluorescence imaging to verify tumor target expression, antibody binding and optimization of dosage and application schedule. MAbs. 2017;9:140-153 pubmed 出版商
  41. De Paoli M, Gogalic S, Sauer U, Preininger C, Pandha H, Simpson G, et al. Multiplatform Biomarker Discovery for Bladder Cancer Recurrence Diagnosis. Dis Markers. 2016;2016:4591910 pubmed
  42. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  43. Lee H, Noh H, Mun J, Gu C, Sever S, Park S. Anks1a regulates COPII-mediated anterograde transport of receptor tyrosine kinases critical for tumorigenesis. Nat Commun. 2016;7:12799 pubmed 出版商
  44. Weitsman G, Barber P, Nguyen L, Lawler K, Patel G, Woodman N, et al. HER2-HER3 dimer quantification by FLIM-FRET predicts breast cancer metastatic relapse independently of HER2 IHC status. Oncotarget. 2016;7:51012-51026 pubmed 出版商
  45. Nielsen T, Jensen M, Burugu S, Gao D, Jørgensen C, Balslev E, et al. High-Risk Premenopausal Luminal A Breast Cancer Patients Derive no Benefit from Adjuvant Cyclophosphamide-based Chemotherapy: Results from the DBCG77B Clinical Trial. Clin Cancer Res. 2017;23:946-953 pubmed 出版商
  46. Chung I, Reichelt M, Shao L, Akita R, Koeppen H, Rangell L, et al. High cell-surface density of HER2 deforms cell membranes. Nat Commun. 2016;7:12742 pubmed 出版商
  47. Min L, Zhang C, Ma R, Li X, Yuan H, Li Y, et al. Overexpression of synuclein-? predicts lack of benefit from radiotherapy for breast cancer patients. BMC Cancer. 2016;16:717 pubmed 出版商
  48. Kabanova A, Marcandalli J, Zhou T, Bianchi S, Baxa U, Tsybovsky Y, et al. Platelet-derived growth factor-α receptor is the cellular receptor for human cytomegalovirus gHgLgO trimer. Nat Microbiol. 2016;1:16082 pubmed 出版商
  49. Jordan N, Bardia A, Wittner B, Benes C, Ligorio M, Zheng Y, et al. HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature. 2016;537:102-106 pubmed 出版商
  50. LAW M, Ferreira R, Davis B, Higgins P, Kim J, Castellano R, et al. CUB domain-containing protein 1 and the epidermal growth factor receptor cooperate to induce cell detachment. Breast Cancer Res. 2016;18:80 pubmed 出版商
  51. Di Franco S, Turdo A, Benfante A, Colorito M, Gaggianesi M, Apuzzo T, et al. ?Np63 drives metastasis in breast cancer cells via PI3K/CD44v6 axis. Oncotarget. 2016;7:54157-54173 pubmed 出版商
  52. Jiang Q, Chen S, Hu C, Huang P, Shen H, Zhao W. Neuregulin-1 (Nrg1) signaling has a preventive role and is altered in the frontal cortex under the pathological conditions of Alzheimer's disease. Mol Med Rep. 2016;14:2614-24 pubmed 出版商
  53. Ladd B, Mazzola A, Bihani T, Lai Z, BRADFORD J, Collins M, et al. Effective combination therapies in preclinical endocrine resistant breast cancer models harboring ER mutations. Oncotarget. 2016;7:54120-54136 pubmed 出版商
  54. Szymanska M, Fosdahl A, Nikolaysen F, Pedersen M, Grandal M, Stang E, et al. A combination of two antibodies recognizing non-overlapping epitopes of HER2 induces kinase activity-dependent internalization of HER2. J Cell Mol Med. 2016;20:1999-2011 pubmed 出版商
  55. Merry C, McMahon S, Forrest M, Bartels C, Saiakhova A, Bartel C, et al. Transcriptome-wide identification of mRNAs and lincRNAs associated with trastuzumab-resistance in HER2-positive breast cancer. Oncotarget. 2016;7:53230-53244 pubmed 出版商
  56. Liu Y, Wang K, Xing H, Zhai X, Wang L, Wang W. Attempt towards a novel classification of triple-negative breast cancer using immunohistochemical markers. Oncol Lett. 2016;12:1240-1256 pubmed
  57. Saisana M, Griffin S, May F. Importance of the type I insulin-like growth factor receptor in HER2, FGFR2 and MET-unamplified gastric cancer with and without Ras pathway activation. Oncotarget. 2016;7:54445-54462 pubmed 出版商
  58. Deblois G, Smith H, Tam I, Gravel S, Caron M, Savage P, et al. ERR? mediates metabolic adaptations driving lapatinib resistance in breast cancer. Nat Commun. 2016;7:12156 pubmed 出版商
  59. Rowley M, Coolen A, Vojnovic B, Barber P. Robust Bayesian Fluorescence Lifetime Estimation, Decay Model Selection and Instrument Response Determination for Low-Intensity FLIM Imaging. PLoS ONE. 2016;11:e0158404 pubmed 出版商
  60. Khan S, Sikander M, Ebeling M, Ganju A, Kumari S, Yallapu M, et al. MUC13 interaction with receptor tyrosine kinase HER2 drives pancreatic ductal adenocarcinoma progression. Oncogene. 2017;36:491-500 pubmed 出版商
  61. Gray M, Lee S, McDowell A, Erskine M, Loh Q, Grice O, et al. Dual targeting of EGFR and ERBB2 pathways produces a synergistic effect on cancer cell proliferation and migration in vitro. Vet Comp Oncol. 2017;15:890-909 pubmed 出版商
  62. Sochaj Gregorczyk A, Serwotka Suszczak A, Otlewski J. A Novel Affibody-Auristatin E Conjugate With a Potent and Selective Activity Against HER2+ Cell Lines. J Immunother. 2016;39:223-32 pubmed 出版商
  63. Leo F, Bartels S, Mägel L, Framke T, Büsche G, Jonigk D, et al. Prognostic factors in the myoepithelial-like spindle cell type of metaplastic breast cancer. Virchows Arch. 2016;469:191-201 pubmed 出版商
  64. Yang Z, Jiang Q, Chen S, Hu C, Shen H, Huang P, et al. Differential changes in Neuregulin-1 signaling in major brain regions in a lipopolysaccharide-induced neuroinflammation mouse model. Mol Med Rep. 2016;14:790-6 pubmed 出版商
  65. Chung M, Lee J, Kim S, Suh Y, Choi H. Simple Prediction Model of Axillary Lymph Node Positivity After Analyzing Molecular and Clinical Factors in Early Breast Cancer. Medicine (Baltimore). 2016;95:e3689 pubmed 出版商
  66. Hsieh M, Yang P, Wong L, Lee J. The AXL receptor tyrosine kinase is associated with adverse prognosis and distant metastasis in esophageal squamous cell carcinoma. Oncotarget. 2016;7:36956-36970 pubmed 出版商
  67. de Geus S, Boogerd L, Swijnenburg R, Mieog J, Tummers W, Prevoo H, et al. Selecting Tumor-Specific Molecular Targets in Pancreatic Adenocarcinoma: Paving the Way for Image-Guided Pancreatic Surgery. Mol Imaging Biol. 2016;18:807-819 pubmed
  68. Song M, Park Y, Song H, Park S, Ahn J, Choi K, et al. Prognosis of Pregnancy-Associated Gastric Cancer: An Age-, Sex-, and Stage-Matched Case-Control Study. Gut Liver. 2016;10:731-8 pubmed 出版商
  69. Yard B, Adams D, Chie E, Tamayo P, Battaglia J, Gopal P, et al. A genetic basis for the variation in the vulnerability of cancer to DNA damage. Nat Commun. 2016;7:11428 pubmed 出版商
  70. Belov L, Matic K, Hallal S, Best O, Mulligan S, Christopherson R. Extensive surface protein profiles of extracellular vesicles from cancer cells may provide diagnostic signatures from blood samples. J Extracell Vesicles. 2016;5:25355 pubmed 出版商
  71. Marcus E, Tokhtaeva E, Turdikulova S, Capri J, Whitelegge J, Scott D, et al. Septin oligomerization regulates persistent expression of ErbB2/HER2 in gastric cancer cells. Biochem J. 2016;473:1703-18 pubmed 出版商
  72. Papadakis E, Barker C, Syed H, Reeves T, Schwaiger S, Stuppner H, et al. The Bag-1 inhibitor, Thio-2, reverses an atypical 3D morphology driven by Bag-1L overexpression in a MCF-10A model of ductal carcinoma in situ. Oncogenesis. 2016;5:e215 pubmed 出版商
  73. Gschweitl M, Ulbricht A, Barnes C, Enchev R, Stoffel Studer I, Meyer Schaller N, et al. A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes. elife. 2016;5:e13841 pubmed 出版商
  74. Mancini M, Lien E, Toker A. Oncogenic AKT1(E17K) mutation induces mammary hyperplasia but prevents HER2-driven tumorigenesis. Oncotarget. 2016;7:17301-13 pubmed 出版商
  75. Shen F, Zhang Y, Jernigan D, Feng X, Yan J, Garcia F, et al. Novel Small-Molecule CX3CR1 Antagonist Impairs Metastatic Seeding and Colonization of Breast Cancer Cells. Mol Cancer Res. 2016;14:518-27 pubmed 出版商
  76. Meng Y, Zheng L, Yang Y, Wang H, Dong J, Wang C, et al. A monoclonal antibody targeting ErbB2 domain III inhibits ErbB2 signaling and suppresses the growth of ErbB2-overexpressing breast tumors. Oncogenesis. 2016;5:e211 pubmed 出版商
  77. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  78. Koussounadis A, Langdon S, Um I, Kay C, Francis K, Harrison D, et al. Dynamic modulation of phosphoprotein expression in ovarian cancer xenograft models. BMC Cancer. 2016;16:205 pubmed 出版商
  79. Matsumoto H, Thike A, Li H, Yeong J, Koo S, Dent R, et al. Increased CD4 and CD8-positive T cell infiltrate signifies good prognosis in a subset of triple-negative breast cancer. Breast Cancer Res Treat. 2016;156:237-47 pubmed 出版商
  80. Choi W, de Poot S, Lee J, Kim J, Han D, Kim Y, et al. Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation. Nat Commun. 2016;7:10963 pubmed 出版商
  81. Soares M, Ribeiro R, Najmudin S, Gameiro A, Rodrigues R, Cardoso F, et al. Serum HER2 levels are increased in cats with mammary carcinomas and predict tissue HER2 status. Oncotarget. 2016;7:17314-26 pubmed 出版商
  82. Li H, Shen P, Liang Y, Zhang F. Fibroblastic reticular cell tumor of the breast: A case report and review of the literature. Exp Ther Med. 2016;11:561-564 pubmed
  83. Stindt S, Cebula P, Albrecht U, Keitel V, Schulte Am Esch J, Knoefel W, et al. Hepatitis C Virus Activates a Neuregulin-Driven Circuit to Modify Surface Expression of Growth Factor Receptors of the ErbB Family. PLoS ONE. 2016;11:e0148711 pubmed 出版商
  84. Wang Y, Kang S, Khan A, Ruttner G, Leigh S, Murray M, et al. Quantitative molecular phenotyping with topically applied SERS nanoparticles for intraoperative guidance of breast cancer lumpectomy. Sci Rep. 2016;6:21242 pubmed 出版商
  85. Kim D, Helfman D. Loss of MLCK leads to disruption of cell-cell adhesion and invasive behavior of breast epithelial cells via increased expression of EGFR and ERK/JNK signaling. Oncogene. 2016;35:4495-508 pubmed 出版商
  86. Dupouy D, Ciftlik A, Fiche M, Heintze D, Bisig B, de Leval L, et al. Continuous quantification of HER2 expression by microfluidic precision immunofluorescence estimates HER2 gene amplification in breast cancer. Sci Rep. 2016;6:20277 pubmed 出版商
  87. Evans M, Sauer S, Nath S, Robinson T, Morse M, Devi G. X-linked inhibitor of apoptosis protein mediates tumor cell resistance to antibody-dependent cellular cytotoxicity. Cell Death Dis. 2016;7:e2073 pubmed 出版商
  88. Teng Y, Pi W, Wang Y, Cowell J. WASF3 provides the conduit to facilitate invasion and metastasis in breast cancer cells through HER2/HER3 signaling. Oncogene. 2016;35:4633-40 pubmed 出版商
  89. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  90. Roßner F, Gieseler C, Morkel M, Royer H, Rivera M, Bläker H, et al. Uncoupling of EGFR-RAS signaling and nuclear localization of YBX1 in colorectal cancer. Oncogenesis. 2016;5:e187 pubmed 出版商
  91. Khalil H, Langdon S, Kankia I, Bown J, Deeni Y. NRF2 Regulates HER2 and HER3 Signaling Pathway to Modulate Sensitivity to Targeted Immunotherapies. Oxid Med Cell Longev. 2016;2016:4148791 pubmed 出版商
  92. Nalwoga H, Ahmed L, Arnes J, Wabinga H, Akslen L. Strong Expression of Hypoxia-Inducible Factor-1α (HIF-1α) Is Associated with Axl Expression and Features of Aggressive Tumors in African Breast Cancer. PLoS ONE. 2016;11:e0146823 pubmed 出版商
  93. Jeong J, VanHouten J, Dann P, Kim W, Sullivan C, Yu H, et al. PMCA2 regulates HER2 protein kinase localization and signaling and promotes HER2-mediated breast cancer. Proc Natl Acad Sci U S A. 2016;113:E282-90 pubmed 出版商
  94. Yamaguchi T, Lu C, Ida L, Yanagisawa K, Usukura J, Cheng J, et al. ROR1 sustains caveolae and survival signalling as a scaffold of cavin-1 and caveolin-1. Nat Commun. 2016;7:10060 pubmed 出版商
  95. Creedon H, Balderstone L, Muir M, Balla J, Gómez Cuadrado L, Tracey N, et al. Use of a genetically engineered mouse model as a preclinical tool for HER2 breast cancer. Dis Model Mech. 2016;9:131-40 pubmed 出版商
  96. Liu X, Feng C, Liu J, Zhao L, Liu J, Zhang W, et al. Heat shock protein 27 and gross cystic disease fluid protein 15 play critical roles in molecular apocrine breast cancer. Tumour Biol. 2016;37:8027-36 pubmed 出版商
  97. Siegfried J, Lin Y, Diergaarde B, Lin H, Dacic S, Pennathur A, et al. Expression of PAM50 Genes in Lung Cancer: Evidence that Interactions between Hormone Receptors and HER2/HER3 Contribute to Poor Outcome. Neoplasia. 2015;17:817-25 pubmed 出版商
  98. El Gendi S, Mostafa M. Runx2 Expression as a Potential Prognostic Marker in Invasive Ductal Breast Carcinoma. Pathol Oncol Res. 2016;22:461-70 pubmed 出版商
  99. Chen J, Chen Y, Yen C, Chen W, Huang W. HBx sensitizes hepatocellular carcinoma cells to lapatinib by up-regulating ErbB3. Oncotarget. 2016;7:473-89 pubmed 出版商
  100. Clemente Vicario F, Alvarez C, ROWELL J, Roy S, London C, Kisseberth W, et al. Human Genetic Relevance and Potent Antitumor Activity of Heat Shock Protein 90 Inhibition in Canine Lung Adenocarcinoma Cell Lines. PLoS ONE. 2015;10:e0142007 pubmed 出版商
  101. Askoxylakis V, Ferraro G, Kodack D, Badeaux M, Shankaraiah R, Seano G, et al. Preclinical Efficacy of Ado-trastuzumab Emtansine in the Brain Microenvironment. J Natl Cancer Inst. 2016;108: pubmed 出版商
  102. Pai P, Rachagani S, Lakshmanan I, Macha M, Sheinin Y, Smith L, et al. The canonical Wnt pathway regulates the metastasis-promoting mucin MUC4 in pancreatic ductal adenocarcinoma. Mol Oncol. 2016;10:224-39 pubmed 出版商
  103. Prince T, Kijima T, Tatokoro M, Lee S, Tsutsumi S, Yim K, et al. Client Proteins and Small Molecule Inhibitors Display Distinct Binding Preferences for Constitutive and Stress-Induced HSP90 Isoforms and Their Conformationally Restricted Mutants. PLoS ONE. 2015;10:e0141786 pubmed 出版商
  104. Soares M, Correia J, Peleteiro M, Ferreira F. St Gallen molecular subtypes in feline mammary carcinoma and paired metastases-disease progression and clinical implications from a 3-year follow-up study. Tumour Biol. 2016;37:4053-64 pubmed 出版商
  105. Kan S, Koido S, Okamoto M, Hayashi K, Ito M, Kamata Y, et al. Up-regulation of HER2 by gemcitabine enhances the antitumor effect of combined gemcitabine and trastuzumab emtansine treatment on pancreatic ductal adenocarcinoma cells. BMC Cancer. 2015;15:726 pubmed 出版商
  106. Moody P, Sayers E, Magnusson J, Alexander C, Borri P, Watson P, et al. Receptor Crosslinking: A General Method to Trigger Internalization and Lysosomal Targeting of Therapeutic Receptor:Ligand Complexes. Mol Ther. 2015;23:1888-98 pubmed 出版商
  107. Rodríguez C, Reidel S, Bal de Kier Joffé E, Jasnis M, Fiszman G. Autophagy Protects from Trastuzumab-Induced Cytotoxicity in HER2 Overexpressing Breast Tumor Spheroids. PLoS ONE. 2015;10:e0137920 pubmed 出版商
  108. Jung Y, Kim H, Koo J. Expression of Lipid Metabolism-Related Proteins in Metastatic Breast Cancer. PLoS ONE. 2015;10:e0137204 pubmed 出版商
  109. Wu Y, Deng W, Klinke D. Exosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst. 2015;140:6631-42 pubmed 出版商
  110. Black J, Lopez S, Cocco E, Bellone S, Altwerger G, Schwab C, et al. PIK3CA oncogenic mutations represent a major mechanism of resistance to trastuzumab in HER2/neu overexpressing uterine serous carcinomas. Br J Cancer. 2015;113:1020-6 pubmed 出版商
  111. Gómez R, Ossa C, Montoya M, Echeverri C, Ángel G, Ascuntar J, et al. Impact of immunohistochemistry-based molecular subtype on chemosensitivity and survival in Hispanic breast cancer patients following neoadjuvant chemotherapy. Ecancermedicalscience. 2015;9:562 pubmed 出版商
  112. KapucuoÄŸlu N, Bozkurt K, BaÅŸpınar Å, Koçer M, EroÄŸlu H, Akdeniz R, et al. The clinicopathological and prognostic significance of CD24, CD44, CD133, ALDH1 expressions in invasive ductal carcinoma of the breast: CD44/CD24 expression in breast cancer. Pathol Res Pract. 2015;211:740-7 pubmed 出版商
  113. Capparelli C, Rosenbaum S, Berger A, Aplin A. Fibroblast-derived neuregulin 1 promotes compensatory ErbB3 receptor signaling in mutant BRAF melanoma. J Biol Chem. 2015;290:24267-77 pubmed 出版商
  114. Wang D, Pang Z, Clarke G, Nofech Mozes S, Liu K, Cheung A, et al. Ki-67 Membranous Staining: Biologically Relevant or an Artifact of Multiplexed Immunofluorescent Staining. Appl Immunohistochem Mol Morphol. 2016;24:447-52 pubmed 出版商
  115. McBryan J, Fagan A, McCartan D, Bane F, VareÅ¡lija D, Cocchiglia S, et al. Transcriptomic Profiling of Sequential Tumors from Breast Cancer Patients Provides a Global View of Metastatic Expression Changes Following Endocrine Therapy. Clin Cancer Res. 2015;21:5371-9 pubmed 出版商
  116. Leung K, Batey S, Rowlands R, Isaac S, Jones P, Drewett V, et al. A HER2-specific Modified Fc Fragment (Fcab) Induces Antitumor Effects Through Degradation of HER2 and Apoptosis. Mol Ther. 2015;23:1722-1733 pubmed 出版商
  117. Abdel Latif G, Al Abd A, Tadros M, Al Abbasi F, Khalifa A, Abdel Naim A. The chemomodulatory effects of resveratrol and didox on herceptin cytotoxicity in breast cancer cell lines. Sci Rep. 2015;5:12054 pubmed 出版商
  118. Mundim F, Pasini F, Brentani M, Soares F, Nonogaki S, Waitzberg A. MYC is expressed in the stromal and epithelial cells of primary breast carcinoma and paired nodal metastases. Mol Clin Oncol. 2015;3:506-514 pubmed
  119. Hagrass H, Sharaf S, Pasha H, Tantawy E, Mohamed R, Kassem R. Circulating microRNAs - a new horizon in molecular diagnosis of breast cancer. Genes Cancer. 2015;6:281-7 pubmed
  120. Cheung S, Boey Y, Koh V, Thike A, Lim J, Iqbal J, et al. Role of epithelial-mesenchymal transition markers in triple-negative breast cancer. Breast Cancer Res Treat. 2015;152:489-98 pubmed 出版商
  121. Blancafort A, Giró Perafita A, Oliveras G, Palomeras S, Turrado C, Campuzano Ã, et al. Dual fatty acid synthase and HER2 signaling blockade shows marked antitumor activity against breast cancer models resistant to anti-HER2 drugs. PLoS ONE. 2015;10:e0131241 pubmed 出版商
  122. Yang L, Li Y, Bhattacharya A, Zhang Y. Inhibition of ERBB2-overexpressing Tumors by Recombinant Human Prolidase and Its Enzymatically Inactive Mutant. EBioMedicine. 2015;2:396-405 pubmed
  123. Hutchinson K, Johnson D, Johnson A, Sanchez V, Kuba M, Lu P, et al. ERBB activation modulates sensitivity to MEK1/2 inhibition in a subset of driver-negative melanoma. Oncotarget. 2015;6:22348-60 pubmed
  124. Koh V, Lim J, Thike A, Cheok P, Thu M, Tan V, et al. Characteristics and behaviour of screen-detected ductal carcinoma in situ of the breast: comparison with symptomatic patients. Breast Cancer Res Treat. 2015;152:293-304 pubmed 出版商
  125. Kurppa K, Denessiouk K, Johnson M, Elenius K. Activating ERBB4 mutations in non-small cell lung cancer. Oncogene. 2016;35:1283-91 pubmed 出版商
  126. Jäger W, Xue H, Hayashi T, Janssen C, Awrey S, Wyatt A, et al. Patient-derived bladder cancer xenografts in the preclinical development of novel targeted therapies. Oncotarget. 2015;6:21522-32 pubmed
  127. Hofmann B, Schlüter L, Lange P, Mercanoglu B, Ewald F, Fölster A, et al. COSMC knockdown mediated aberrant O-glycosylation promotes oncogenic properties in pancreatic cancer. Mol Cancer. 2015;14:109 pubmed 出版商
  128. de Deus Moura R, Carvalho F, Bacchi C. Breast cancer in very young women: Clinicopathological study of 149 patients ≤25 years old. Breast. 2015;24:461-7 pubmed 出版商
  129. Demicco E, Wani K, Fox P, Bassett R, Young E, Lev D, et al. Histologic variability in solitary fibrous tumors reflects angiogenic and growth factor signaling pathway alterations. Hum Pathol. 2015;46:1015-26 pubmed 出版商
  130. Kan S, Koido S, Okamoto M, Hayashi K, Ito M, Kamata Y, et al. Gemcitabine treatment enhances HER2 expression in low HER2-expressing breast cancer cells and enhances the antitumor effects of trastuzumab emtansine. Oncol Rep. 2015;34:504-10 pubmed 出版商
  131. Nwafor C, Keshinro S. Pattern of hormone receptors and human epidermal growth factor receptor 2 status in sub-Saharan breast cancer cases: Private practice experience. Niger J Clin Pract. 2015;18:553-8 pubmed 出版商
  132. UgraÅŸ N, Özgün G, OcakoÄŸlu G, Yerci Ã, Öztürk E. Relationship between HER-2, COX-2, p53 and clinicopathologic features in gastric adenocarcinoma. Do these biomarkers have any prognostic significance?. Turk J Gastroenterol. 2014;25 Suppl 1:176-81 pubmed 出版商
  133. Liu H, Du L, Wang R, Wei C, Liu B, Zhu L, et al. High frequency of loss of PTEN expression in human solid salivary adenoid cystic carcinoma and its implication for targeted therapy. Oncotarget. 2015;6:11477-91 pubmed
  134. Ding W, Tong S, Gou Y, Sun C, Wang H, Chen Z, et al. Human epidermal growth factor receptor 2: a significant indicator for predicting progression in non-muscle-invasive bladder cancer especially in high-risk groups. World J Urol. 2015;33:1951-7 pubmed 出版商
  135. Yardley D, Kaufman P, Huang W, Krekow L, Savin M, Lawler W, et al. Quantitative measurement of HER2 expression in breast cancers: comparison with 'real-world' routine HER2 testing in a multicenter Collaborative Biomarker Study and correlation with overall survival. Breast Cancer Res. 2015;17:41 pubmed 出版商
  136. Figenschau S, Fismen S, Fenton K, Fenton C, Mortensen E. Tertiary lymphoid structures are associated with higher tumor grade in primary operable breast cancer patients. BMC Cancer. 2015;15:101 pubmed 出版商
  137. Deleyrolle L, Sabourin J, Rothhut B, Fujita H, Guichet P, Teigell M, et al. OCAM regulates embryonic spinal cord stem cell proliferation by modulating ErbB2 receptor. PLoS ONE. 2015;10:e0122337 pubmed 出版商
  138. Ferreira R, Law M, Jahn S, Davis B, Heldermon C, Reinhard M, et al. Novel agents that downregulate EGFR, HER2, and HER3 in parallel. Oncotarget. 2015;6:10445-59 pubmed
  139. Jørgensen M, Bæk R, Varming K. Potentials and capabilities of the Extracellular Vesicle (EV) Array. J Extracell Vesicles. 2015;4:26048 pubmed 出版商
  140. Dodbiba L, Teichman J, Fleet A, Thai H, Starmans M, Navab R, et al. Appropriateness of using patient-derived xenograft models for pharmacologic evaluation of novel therapies for esophageal/gastro-esophageal junction cancers. PLoS ONE. 2015;10:e0121872 pubmed 出版商
  141. Savci Heijink C, Halfwerk H, Hooijer G, Horlings H, Wesseling J, van de Vijver M. Retrospective analysis of metastatic behaviour of breast cancer subtypes. Breast Cancer Res Treat. 2015;150:547-57 pubmed 出版商
  142. Falkenberg N, Anastasov N, Schaub A, Radulovic V, Schmitt M, Magdolen V, et al. Secreted uPAR isoform 2 (uPAR7b) is a novel direct target of miR-221. Oncotarget. 2015;6:8103-14 pubmed
  143. Kim S, Lee Y, Koo J. Differential expression of lipid metabolism-related proteins in different breast cancer subtypes. PLoS ONE. 2015;10:e0119473 pubmed 出版商
  144. Merry C, McMahon S, Thompson C, Miskimen K, Harris L, Khalil A. Integrative transcriptome-wide analyses reveal critical HER2-regulated mRNAs and lincRNAs in HER2+ breast cancer. Breast Cancer Res Treat. 2015;150:321-34 pubmed 出版商
  145. Gumusay O, Benekli M, Ekinci O, Baykara M, Ozet A, Coskun U, et al. Discordances in HER2 status between primary gastric cancer and corresponding metastatic sites. Jpn J Clin Oncol. 2015;45:416-21 pubmed 出版商
  146. Meneses Lorente G, Friess T, Kolm I, Hölzlwimmer G, Bader S, Meille C, et al. Preclinical pharmacokinetics, pharmacodynamics, and efficacy of RG7116: a novel humanized, glycoengineered anti-HER3 antibody. Cancer Chemother Pharmacol. 2015;75:837-50 pubmed 出版商
  147. Rayavarapu R, Heiden B, Pagani N, Shaw M, Shuff S, Zhang S, et al. The role of multicellular aggregation in the survival of ErbB2-positive breast cancer cells during extracellular matrix detachment. J Biol Chem. 2015;290:8722-33 pubmed 出版商
  148. Heskamp S, Boerman O, Molkenboer Kuenen J, Wauters C, Strobbe L, Mandigers C, et al. Upregulation of IGF-1R expression during neoadjuvant therapy predicts poor outcome in breast cancer patients. PLoS ONE. 2015;10:e0117745 pubmed 出版商
  149. Fumagalli I, Dugue D, Bibault J, Clémenson C, Vozenin M, Mondini M, et al. Cytotoxic effect of lapatinib is restricted to human papillomavirus-positive head and neck squamous cell carcinoma cell lines. Onco Targets Ther. 2015;8:335-45 pubmed 出版商
  150. Oon M, Thike A, Tan S, Tan P. Cancer stem cell and epithelial-mesenchymal transition markers predict worse outcome in metaplastic carcinoma of the breast. Breast Cancer Res Treat. 2015;150:31-41 pubmed 出版商
  151. Cuello Carrión F, Shortrede J, Alvarez Olmedo D, Cayado Gutiérrez N, Castro G, Zoppino F, et al. HER2 and β-catenin protein location: importance in the prognosis of breast cancer patients and their correlation when breast cancer cells suffer stressful situations. Clin Exp Metastasis. 2015;32:151-68 pubmed 出版商
  152. Hu S, Sun Y, Meng Y, Wang X, Yang W, Fu W, et al. Molecular architecture of the ErbB2 extracellular domain homodimer. Oncotarget. 2015;6:1695-706 pubmed
  153. Hole S, Pedersen A, Hansen S, Lundqvist J, Yde C, Lykkesfeldt A. New cell culture model for aromatase inhibitor-resistant breast cancer shows sensitivity to fulvestrant treatment and cross-resistance between letrozole and exemestane. Int J Oncol. 2015;46:1481-90 pubmed 出版商
  154. Yoo J, Kim T, Kong S, Lee J, Choi W, Kim K, et al. Role of Mig-6 in hepatic glucose metabolism. J Diabetes. 2016;8:86-97 pubmed 出版商
  155. Liu Z, Leng E, Gunasekaran K, Pentony M, Shen M, Howard M, et al. A novel antibody engineering strategy for making monovalent bispecific heterodimeric IgG antibodies by electrostatic steering mechanism. J Biol Chem. 2015;290:7535-62 pubmed 出版商
  156. Blanchard Z, Paul B, Craft B, ElShamy W. BRCA1-IRIS inactivation overcomes paclitaxel resistance in triple negative breast cancers. Breast Cancer Res. 2015;17:5 pubmed 出版商
  157. Papanikolaou V, Stefanou N, Dubos S, Papathanasiou I, Palianopoulou M, Valiakou V, et al. Synergy of leptin/STAT3 with HER2 receptor induces tamoxifen resistance in breast cancer cells through regulation of apoptosis-related genes. Cell Oncol (Dordr). 2015;38:155-64 pubmed 出版商
  158. Kumar S, Das S, Rachagani S, Kaur S, Joshi S, Johansson S, et al. NCOA3-mediated upregulation of mucin expression via transcriptional and post-translational changes during the development of pancreatic cancer. Oncogene. 2015;34:4879-89 pubmed 出版商
  159. Liu J, Yu Y, Sun J, He S, Wang X, Yin J, et al. Clinicopathologic characteristics and prognosis of primary squamous cell carcinoma of the breast. Breast Cancer Res Treat. 2015;149:133-40 pubmed 出版商
  160. Tu J, Yu Y, Liu W, Chen S. Significance of human epidermal growth factor receptor 2 expression in colorectal cancer. Exp Ther Med. 2015;9:17-24 pubmed
  161. Katz Y, Li F, Lambert N, Sokol E, Tam W, Cheng A, et al. Musashi proteins are post-transcriptional regulators of the epithelial-luminal cell state. elife. 2014;3:e03915 pubmed 出版商
  162. Hong Y, Kim J, Pectasides E, Fox C, Hong S, Ma Q, et al. Src mutation induces acquired lapatinib resistance in ERBB2-amplified human gastroesophageal adenocarcinoma models. PLoS ONE. 2014;9:e109440 pubmed 出版商
  163. Falkenberg N, Anastasov N, Höfig I, Bashkueva K, Lindner K, Höfler H, et al. Additive impact of HER2-/PTK6-RNAi on interactions with HER3 or IGF-1R leads to reduced breast cancer progression in vivo. Mol Oncol. 2015;9:282-94 pubmed 出版商
  164. Li J, Zhang Y, Zhang W, Gao Y, Jia S, Guo J. Contrast enhanced computed tomography is indicative for angiogenesis pattern and display prognostic significance in breast cancer. BMC Cancer. 2014;14:672 pubmed 出版商
  165. Thomas G, Chardès T, Gaborit N, Mollevi C, Leconet W, Robert B, et al. HER3 as biomarker and therapeutic target in pancreatic cancer: new insights in pertuzumab therapy in preclinical models. Oncotarget. 2014;5:7138-48 pubmed
  166. Carvalho F, Bacchi L, Pincerato K, van de Rijn M, Bacchi C. Geographic differences in the distribution of molecular subtypes of breast cancer in Brazil. BMC Womens Health. 2014;14:102 pubmed 出版商
  167. Mahajan K, Lawrence H, Lawrence N, Mahajan N. ACK1 tyrosine kinase interacts with histone demethylase KDM3A to regulate the mammary tumor oncogene HOXA1. J Biol Chem. 2014;289:28179-91 pubmed 出版商
  168. Wang Q, Zhou J, Guo J, Teng R, Shen J, Huang Y, et al. Lin28 promotes Her2 expression and Lin28/Her2 predicts poorer survival in gastric cancer. Tumour Biol. 2014;35:11513-21 pubmed 出版商
  169. Cha Y, Han S, Seol H, Oh D, Im S, Bang Y, et al. Immunohistochemical features associated with sensitivity to lapatinib-plus-capecitabine and resistance to trastuzumab in HER2-positive breast cancer. Anticancer Res. 2014;34:4275-80 pubmed
  170. Kugel C, Hartsough E, Davies M, Setiady Y, Aplin A. Function-blocking ERBB3 antibody inhibits the adaptive response to RAF inhibitor. Cancer Res. 2014;74:4122-32 pubmed 出版商
  171. Wang J, Mikse O, Liao R, Li Y, Tan L, Jänne P, et al. Ligand-associated ERBB2/3 activation confers acquired resistance to FGFR inhibition in FGFR3-dependent cancer cells. Oncogene. 2015;34:2167-77 pubmed 出版商
  172. Zeng L, Holly J, Perks C. Effects of physiological levels of the green tea extract epigallocatechin-3-gallate on breast cancer cells. Front Endocrinol (Lausanne). 2014;5:61 pubmed 出版商
  173. Jung S, Ohk J, Jeong D, Li C, Lee S, Duan J, et al. Distinct regulatory effect of the p34SEI-1 oncoprotein on cancer metastasis in HER2/neu-positive and -negative cells. Int J Oncol. 2014;45:189-96 pubmed 出版商
  174. Asp N, Pust S, Sandvig K. Flotillin depletion affects ErbB protein levels in different human breast cancer cells. Biochim Biophys Acta. 2014;1843:1987-96 pubmed 出版商
  175. Mountzios G, Aivazi D, Kostopoulos I, Kourea H, Kouvatseas G, Timotheadou E, et al. Differential expression of the insulin-like growth factor receptor among early breast cancer subtypes. PLoS ONE. 2014;9:e91407 pubmed 出版商
  176. Zhang L, Castanaro C, Luan B, Yang K, Fan L, Fairhurst J, et al. ERBB3/HER2 signaling promotes resistance to EGFR blockade in head and neck and colorectal cancer models. Mol Cancer Ther. 2014;13:1345-55 pubmed 出版商
  177. Chen D, Sun Y, Yuan Y, Han Z, Zhang P, Zhang J, et al. miR-100 induces epithelial-mesenchymal transition but suppresses tumorigenesis, migration and invasion. PLoS Genet. 2014;10:e1004177 pubmed 出版商
  178. Jakob J, Kies M, Glisson B, Kupferman M, Liu D, Lee J, et al. Phase II study of gefitinib in patients with advanced salivary gland cancers. Head Neck. 2015;37:644-9 pubmed 出版商
  179. Boin A, Couvelard A, Couderc C, Brito I, Filipescu D, Kalamarides M, et al. Proteomic screening identifies a YAP-driven signaling network linked to tumor cell proliferation in human schwannomas. Neuro Oncol. 2014;16:1196-209 pubmed 出版商
  180. Neumeister V, Parisi F, England A, Siddiqui S, Anagnostou V, Zarrella E, et al. A tissue quality index: an intrinsic control for measurement of effects of preanalytical variables on FFPE tissue. Lab Invest. 2014;94:467-74 pubmed 出版商
  181. Jackson D, Atkinson J, Guevara C, Zhang C, Kery V, Moon S, et al. In vitro and in vivo evaluation of cysteine and site specific conjugated herceptin antibody-drug conjugates. PLoS ONE. 2014;9:e83865 pubmed 出版商
  182. Xia Q, Cai Y, Peng R, Wu G, Shi Y, Jiang W. The CDK1 inhibitor RO3306 improves the response of BRCA-pro?cient breast cancer cells to PARP inhibition. Int J Oncol. 2014;44:735-44 pubmed 出版商
  183. Balko J, Giltnane J, Wang K, Schwarz L, Young C, Cook R, et al. Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets. Cancer Discov. 2014;4:232-45 pubmed 出版商
  184. Xu C, Chen H, Wang X, Gao J, Che Y, Li Y, et al. S100A14, a member of the EF-hand calcium-binding proteins, is overexpressed in breast cancer and acts as a modulator of HER2 signaling. J Biol Chem. 2014;289:827-37 pubmed 出版商
  185. Wakatsuki S, Araki T, Sehara Fujisawa A. Neuregulin-1/glial growth factor stimulates Schwann cell migration by inducing ?5 ?1 integrin-ErbB2-focal adhesion kinase complex formation. Genes Cells. 2014;19:66-77 pubmed 出版商
  186. Qiu S, Wei X, Huang W, Wu M, Qin Y, Li Y, et al. Diagnostic and therapeutic strategy and the most efficient prognostic factors of breast malignant fibrous histiocytoma. Sci Rep. 2013;3:2529 pubmed 出版商
  187. Vlug E, van de Ven R, Vermeulen J, Bult P, van Diest P, Derksen P. Nuclear localization of the transcriptional coactivator YAP is associated with invasive lobular breast cancer. Cell Oncol (Dordr). 2013;36:375-84 pubmed 出版商
  188. Ren J, Jin F, Yu Z, Zhao L, Wang L, Bai X, et al. MYC overexpression and poor prognosis in sporadic breast cancer with BRCA1 deficiency. Tumour Biol. 2013;34:3945-58 pubmed 出版商
  189. Zhang J, Wang Y, Yin Q, Zhang W, Zhang T, Niu Y. An associated classification of triple negative breast cancer: the risk of relapse and the response to chemotherapy. Int J Clin Exp Pathol. 2013;6:1380-91 pubmed
  190. Aguiar F, Mendes H, Cirqueira C, Bacchi C, Carvalho F. Basal cytokeratin as a potential marker of low risk of invasion in ductal carcinoma in situ. Clinics (Sao Paulo). 2013;68:638-43 pubmed 出版商
  191. Brouxhon S, Kyrkanides S, Teng X, O Banion M, Clarke R, Byers S, et al. Soluble-E-cadherin activates HER and IAP family members in HER2+ and TNBC human breast cancers. Mol Carcinog. 2014;53:893-906 pubmed 出版商
  192. Sak M, Szymanska M, Bertelsen V, Hasmann M, Madshus I, Stang E. Pertuzumab counteracts the inhibitory effect of ErbB2 on degradation of ErbB3. Carcinogenesis. 2013;34:2031-8 pubmed 出版商
  193. Zhao Y, Li W, Lang R, Yang Y, Gao X, Zheng Y, et al. Primary acinic cell carcinoma of the breast: a case report and review of the literature. Int J Surg Pathol. 2014;22:177-81 pubmed 出版商
  194. Pereira C, Leal M, de Souza C, Montenegro R, Rey J, Carvalho A, et al. Prognostic and predictive significance of MYC and KRAS alterations in breast cancer from women treated with neoadjuvant chemotherapy. PLoS ONE. 2013;8:e60576 pubmed 出版商
  195. Liu T, Sun B, Zhao X, Gu Q, Dong X, Yao Z, et al. HER2/neu expression correlates with vasculogenic mimicry in invasive breast carcinoma. J Cell Mol Med. 2013;17:116-22 pubmed 出版商
  196. Harmelink C, Peng Y, Debenedittis P, Chen H, Shou W, Jiao K. Myocardial Mycn is essential for mouse ventricular wall morphogenesis. Dev Biol. 2013;373:53-63 pubmed 出版商
  197. Cadenas C, Vosbeck S, Hein E, Hellwig B, Langer A, Hayen H, et al. Glycerophospholipid profile in oncogene-induced senescence. Biochim Biophys Acta. 2012;1821:1256-68 pubmed 出版商
  198. Lindberg K, Helguero L, Omoto Y, Gustafsson J, Haldosén L. Estrogen receptor ? represses Akt signaling in breast cancer cells via downregulation of HER2/HER3 and upregulation of PTEN: implications for tamoxifen sensitivity. Breast Cancer Res. 2011;13:R43 pubmed 出版商
  199. Teng Y, Tan W, Thike A, Cheok P, Tse G, Wong N, et al. Mutations in the epidermal growth factor receptor (EGFR) gene in triple negative breast cancer: possible implications for targeted therapy. Breast Cancer Res. 2011;13:R35 pubmed 出版商
  200. Hsu F, Yang M, Lin E, Tseng C, Lin H. The significance of Her2 on androgen receptor protein stability in the transition of androgen requirement in prostate cancer cells. Am J Physiol Endocrinol Metab. 2011;300:E902-8 pubmed 出版商
  201. Papanikolaou V, Iliopoulos D, Dimou I, Dubos S, Kappas C, Kitsiou Tzeli S, et al. Survivin regulation by HER2 through NF-?B and c-myc in irradiated breast cancer cells. J Cell Mol Med. 2011;15:1542-50 pubmed 出版商
  202. Wang H, Leavitt L, Ramaswamy R, Rapraeger A. Interaction of syndecan and alpha6beta4 integrin cytoplasmic domains: regulation of ErbB2-mediated integrin activation. J Biol Chem. 2010;285:13569-79 pubmed 出版商
  203. Kim T, Huh J, Lee S, Kang H, Kim G, An H. Down-regulation of claudin-2 in breast carcinomas is associated with advanced disease. Histopathology. 2008;53:48-55 pubmed 出版商
  204. Najy A, Day K, Day M. The ectodomain shedding of E-cadherin by ADAM15 supports ErbB receptor activation. J Biol Chem. 2008;283:18393-401 pubmed 出版商
  205. Lerdrup M, Hommelgaard A, Grandal M, van Deurs B. Geldanamycin stimulates internalization of ErbB2 in a proteasome-dependent way. J Cell Sci. 2006;119:85-95 pubmed
  206. Traxler P, Allegrini P, Brandt R, Brueggen J, Cozens R, Fabbro D, et al. AEE788: a dual family epidermal growth factor receptor/ErbB2 and vascular endothelial growth factor receptor tyrosine kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res. 2004;64:4931-41 pubmed
  207. Ng W. Fine-needle aspiration cytology findings of an uncommon micropapillary variant of pure mucinous carcinoma of the breast: review of patients over an 8-year period. Cancer. 2002;96:280-8 pubmed