这是一篇来自已证抗体库的有关人类 HER2的综述,是根据222篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合HER2 抗体。
HER2 同义词: CD340; HER-2; HER-2/neu; HER2; MLN 19; NEU; NGL; TKR1

赛默飞世尔
小鼠 单克隆(e2-4001, 3B5)
  • 免疫印迹; 人类; 1:1000; 图 5s2a
赛默飞世尔 HER2抗体(ThermoFisher, MA5-14057)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5s2a). elife (2020) ncbi
domestic rabbit 单克隆(K.929.9)
  • 其他; 人类; 1:100; 图 1b, 1s1a
赛默飞世尔 HER2抗体(Thermo Fisher, MA5-15050)被用于被用于其他在人类样本上浓度为1:100 (图 1b, 1s1a). elife (2020) ncbi
小鼠 单克隆(2G11)
  • 其他; 人类; 1:100; 图 4c
赛默飞世尔 HER2抗体(Thermo Fisher, BMS120BT)被用于被用于其他在人类样本上浓度为1:100 (图 4c). elife (2020) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫细胞化学; 人类; 1:200; 图 4a
  • 免疫印迹; 人类; 1:500; 图 1
赛默飞世尔 HER2抗体(Thermo Fisher, MA5-14057)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4a) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1). Biomolecules (2020) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫印迹; 人类; 图 1a
赛默飞世尔 HER2抗体(Thermo Scientific, MA5-14057)被用于被用于免疫印迹在人类样本上 (图 1a). Nat Commun (2019) ncbi
小鼠 单克隆(e2-4001)
  • 其他; 人类; 图 4c
赛默飞世尔 HER2抗体(Lab Vision, MS-325-P1)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 重组(SP3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2a
赛默飞世尔 HER2抗体(Thermo Fisher Scientific, RM-9103-S1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2a). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 0.36 ug/ml; 图 3d
赛默飞世尔 HER2抗体(Thermo Fisher, PA5-16305)被用于被用于免疫组化-石蜡切片在人类样本上浓度为0.36 ug/ml (图 3d). Sci Rep (2017) ncbi
小鼠 单克隆(CB11)
  • 免疫细胞化学; 人类; 图 1d
  • 免疫印迹; 人类; 图 1b
赛默飞世尔 HER2抗体(Thermo Scientific, MA1-35720)被用于被用于免疫细胞化学在人类样本上 (图 1d) 和 被用于免疫印迹在人类样本上 (图 1b). PLoS ONE (2017) ncbi
小鼠 单克隆(e2-4001)
  • 免疫印迹; 人类; 1:10; 图 2a
赛默飞世尔 HER2抗体(Pierce, MA513105)被用于被用于免疫印迹在人类样本上浓度为1:10 (图 2a). Nat Commun (2017) ncbi
小鼠 单克隆(e2-4001)
  • reverse phase protein lysate microarray; 人类; 图 7a
赛默飞世尔 HER2抗体(Lab Vision, MS-325-P1)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 7a). Cancer Cell (2017) ncbi
小鼠 单克隆(CB11)
  • 免疫沉淀; 人类; 图 2j
  • 免疫细胞化学; 人类; 图 2b
  • 免疫组化; 人类; 图 1d
  • 免疫印迹; 人类; 图 2j
  • 免疫组化; 小鼠; 图 1b
赛默飞世尔 HER2抗体(Thermo Scientific, MA1-35720)被用于被用于免疫沉淀在人类样本上 (图 2j), 被用于免疫细胞化学在人类样本上 (图 2b), 被用于免疫组化在人类样本上 (图 1d), 被用于免疫印迹在人类样本上 (图 2j) 和 被用于免疫组化在小鼠样本上 (图 1b). J Biol Chem (2017) ncbi
小鼠 单克隆(e2-4001)
  • reverse phase protein lysate microarray; 人类; 图 3a
赛默飞世尔 HER2抗体(Lab Vision, MS-325-P1)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 3a). Nature (2017) ncbi
小鼠 单克隆(e2-4001)
  • 免疫印迹; 人类
赛默飞世尔 HER2抗体(Lab Vision, MS-325-P1)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
domestic rabbit 单克隆(K.929.9)
  • 免疫组化-石蜡切片; 小鼠; 图 1b
赛默飞世尔 HER2抗体(Thermo Scientific, MA5-15050)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1b). Oncogenesis (2016) ncbi
小鼠 单克隆(9G6.10)
  • 免疫组化; 人类; 图 3a
赛默飞世尔 HER2抗体(Thermo Scientific, MS-229-PABX)被用于被用于免疫组化在人类样本上 (图 3a). PLoS ONE (2016) ncbi
domestic rabbit 重组(SP3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1c
赛默飞世尔 HER2抗体(Thermo Fisher Scientific, SP3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1c). MAbs (2017) ncbi
小鼠 单克隆(N12)
  • 免疫细胞化学; 小鼠; 1:100; 图 s7
  • 免疫印迹; 小鼠; 1:100; 图 s7
  • 免疫细胞化学; 人类; 1:100; 图 s8
  • 免疫印迹; 人类; 1:100; 图 s8
赛默飞世尔 HER2抗体(Neomarkers, MA5-12998)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s7), 被用于免疫印迹在小鼠样本上浓度为1:100 (图 s7), 被用于免疫细胞化学在人类样本上浓度为1:100 (图 s8) 和 被用于免疫印迹在人类样本上浓度为1:100 (图 s8). Nat Commun (2016) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫细胞化学; 人类; 图 1b
  • 免疫组化; 人类; 图 2a
赛默飞世尔 HER2抗体(ThermoScientific, e2-4001+3B5)被用于被用于免疫细胞化学在人类样本上 (图 1b) 和 被用于免疫组化在人类样本上 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(PN2A)
  • 免疫印迹; 人类; 1:500; 图 2d
赛默飞世尔 HER2抗体(Fisher, MS-1072-P0)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2d). Oncotarget (2016) ncbi
domestic rabbit 重组(SP3)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 5
赛默飞世尔 HER2抗体(Neomarkers, SP3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 5). Oncol Lett (2016) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫组化; 人类
赛默飞世尔 HER2抗体(Thermo Fisher Scientific, e2-4001+3B5)被用于被用于免疫组化在人类样本上. PLoS ONE (2016) ncbi
小鼠 单克隆(e2-4001)
  • 免疫印迹; 人类; 图 5A
赛默飞世尔 HER2抗体(Thermo Scientific Pierce Antibodies, e2-4001)被用于被用于免疫印迹在人类样本上 (图 5A). J Immunother (2016) ncbi
domestic rabbit 重组(SP3)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 1
赛默飞世尔 HER2抗体(Thermo, SP3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 1). Medicine (Baltimore) (2016) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫印迹; 人类; 1:2000
赛默飞世尔 HER2抗体(Thermo Fisher, MS730P0)被用于被用于免疫印迹在人类样本上浓度为1:2000. Nat Commun (2016) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫沉淀; 人类; 图 2b
  • 免疫细胞化学; 人类; 1:100; 图 3b
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔 HER2抗体(Thermo Fisher Scientific, Ab-17)被用于被用于免疫沉淀在人类样本上 (图 2b), 被用于免疫细胞化学在人类样本上浓度为1:100 (图 3b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Biochem J (2016) ncbi
domestic rabbit 重组(SP3)
  • 免疫组化; 人类; 1:200
赛默飞世尔 HER2抗体(Thermoscientific, SP3)被用于被用于免疫组化在人类样本上浓度为1:200. Breast Cancer Res Treat (2016) ncbi
小鼠 单克隆(CB11)
  • 免疫组化-石蜡切片; 猫; 1:200; 表 3
赛默飞世尔 HER2抗体(Invitrogen, CB11)被用于被用于免疫组化-石蜡切片在猫样本上浓度为1:200 (表 3). Oncotarget (2016) ncbi
小鼠 单克隆(CB11)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 HER2抗体(Thermo Fisher, CB11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Exp Ther Med (2016) ncbi
小鼠 单克隆(2G11)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 HER2抗体(eBioscience, BMS120FI)被用于被用于流式细胞仪在人类样本上 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(9G6.10)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 HER2抗体(Thermo Scientific, MS-229-PABX)被用于被用于流式细胞仪在人类样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(CB11)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛默飞世尔 HER2抗体(Thermo Scientific, MA1-35720)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(e2-4001)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 2
赛默飞世尔 HER2抗体(Invitrogen, AHO1011)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 2). Dis Model Mech (2016) ncbi
小鼠 单克隆(CB11)
  • 免疫组化; 人类; 1:100; 图 1
赛默飞世尔 HER2抗体(Invitrogen, CB11)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1). Tumour Biol (2016) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫组化-石蜡切片; 人类; 1:400; 表 4
赛默飞世尔 HER2抗体(Thermo Scientific, MS-730)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (表 4). Neoplasia (2015) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 1
赛默飞世尔 HER2抗体(Thermo Scientific, e2-4001 + 3B5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 1). Pathol Oncol Res (2016) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 HER2抗体(Thermo Scientific, MS-730-P1)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(CB11)
  • 免疫组化; 猫; 1:200; 图 1c
赛默飞世尔 HER2抗体(Invitrogen, CB11)被用于被用于免疫组化在猫样本上浓度为1:200 (图 1c). Tumour Biol (2016) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔 HER2抗体(Thermo Fisher Scientific, e2-4001 + 3B5)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). BMC Cancer (2015) ncbi
domestic rabbit 重组(SP3)
  • 免疫组化; 人类; ready to use
赛默飞世尔 HER2抗体(Thermo Scientific, RM-9103-R7)被用于被用于免疫组化在人类样本上浓度为ready to use. Pathol Res Pract (2015) ncbi
domestic rabbit 单克隆(EP1045Y)
  • 免疫组化; 人类; ready to use
赛默飞世尔 HER2抗体(Thermo Scientific, RM-2111-R7)被用于被用于免疫组化在人类样本上浓度为ready to use. Pathol Res Pract (2015) ncbi
domestic rabbit 重组(SP3)
  • 免疫组化-石蜡切片; 人类; 图 1f
赛默飞世尔 HER2抗体(Thermo Fisher, MA5-14509)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1f). Appl Immunohistochem Mol Morphol (2016) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔 HER2抗体(Thermo Scientific, MS-730-PCS)被用于被用于免疫细胞化学在人类样本上 (图 3). Sci Rep (2015) ncbi
domestic rabbit 重组(SP3)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 2
赛默飞世尔 HER2抗体(Thermo Lab Vision, RM-9103-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 2). Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(PN2A)
  • 免疫印迹; 人类; 1:200; 图 1
赛默飞世尔 HER2抗体(Thermo Scientific, MS-1072-P1)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 重组(SP3)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 HER2抗体(Thermo Scientific Lab Vision, RM-9103-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫沉淀; 人类; 1 ug/time
赛默飞世尔 HER2抗体(Thermo Scientific, MA5-14057)被用于被用于免疫沉淀在人类样本上浓度为1 ug/time. Oncogene (2016) ncbi
domestic rabbit 重组(SP3)
  • 免疫组化; 人类; 1:100
赛默飞世尔 HER2抗体(Thermo Scientific, SP3)被用于被用于免疫组化在人类样本上浓度为1:100. Breast (2015) ncbi
小鼠 单克隆(e2-4001)
  • 免疫组化; 人类; 1:200
赛默飞世尔 HER2抗体(Lab vision, MS-325-PO)被用于被用于免疫组化在人类样本上浓度为1:200. Hum Pathol (2015) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫印迹; 人类; 1:1000; 图 2b
赛默飞世尔 HER2抗体(Thermo Fisher Scientific, e2-4001 + 3B5)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Oncol Rep (2015) ncbi
domestic rabbit 重组(SP3)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 HER2抗体(Thermo Scientific Lab Vision, SP3)被用于被用于免疫组化-石蜡切片在人类样本上. Niger J Clin Pract (2015) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫组化-石蜡切片; 人类; 1:500
赛默飞世尔 HER2抗体(Thermo Scientific, e2-4001-3B5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. Turk J Gastroenterol (2014) ncbi
小鼠 单克隆(e2-4001)
  • 免疫组化-石蜡切片; 人类; 图 2
赛默飞世尔 HER2抗体(Thermo Scientific, MS325B0)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 HER2抗体(Lab Vision, e2-4001+ 3B5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. World J Urol (2015) ncbi
小鼠 单克隆(3B5)
  • 免疫组化; 人类
赛默飞世尔 HER2抗体(LabVision, Ab15)被用于被用于免疫组化在人类样本上. Breast Cancer Res (2015) ncbi
小鼠 单克隆(e2-4001)
  • 免疫组化; 人类
赛默飞世尔 HER2抗体(LabVision, Ab8)被用于被用于免疫组化在人类样本上. Breast Cancer Res (2015) ncbi
domestic rabbit 重组(SP3)
  • 免疫组化-石蜡切片; 人类; 表 2
赛默飞世尔 HER2抗体(Thermo Scientific, SP3)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2). Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 HER2抗体(Thermo, e2 4001+3B5)被用于被用于免疫组化-石蜡切片在人类样本上. Jpn J Clin Oncol (2015) ncbi
domestic rabbit 重组(SP3)
  • 免疫组化; 人类; 1:200
赛默飞世尔 HER2抗体(Neomarker, RM-9103-R7)被用于被用于免疫组化在人类样本上浓度为1:200. Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(e2-4001)
  • 免疫沉淀; 人类; 图 3D
  • 免疫印迹; 人类; 图 3D
赛默飞世尔 HER2抗体(Neomarkers, Ab8)被用于被用于免疫沉淀在人类样本上 (图 3D) 和 被用于免疫印迹在人类样本上 (图 3D). Oncotarget (2015) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫沉淀; 人类; 图 3D
  • 免疫印迹; 人类; 图 3D
赛默飞世尔 HER2抗体(Neomarkers, Ab8)被用于被用于免疫沉淀在人类样本上 (图 3D) 和 被用于免疫印迹在人类样本上 (图 3D). Oncotarget (2015) ncbi
小鼠 单克隆(CB11)
  • 免疫印迹; 人类
赛默飞世尔 HER2抗体(Thermo Fisher Scientific, MS-441-S)被用于被用于免疫印迹在人类样本上. Cell Oncol (Dordr) (2015) ncbi
小鼠 单克隆(CB11)
  • 免疫组化; 人类; 1:600
赛默飞世尔 HER2抗体(Zymed, CB11)被用于被用于免疫组化在人类样本上浓度为1:600. Breast Cancer Res Treat (2015) ncbi
domestic rabbit 重组(SP3)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 HER2抗体(Lab Vision Corporation, SP3)被用于被用于免疫组化-石蜡切片在人类样本上. Exp Ther Med (2015) ncbi
小鼠 单克隆(CB11)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 1
赛默飞世尔 HER2抗体(Invitrogen, CB11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 1). BMC Cancer (2014) ncbi
domestic rabbit 重组(SP3)
  • 免疫组化; 人类; 1:100
赛默飞世尔 HER2抗体(Thermo Scientific, SP3)被用于被用于免疫组化在人类样本上浓度为1:100. BMC Womens Health (2014) ncbi
小鼠 单克隆(9G6.10)
  • 免疫印迹; 人类
赛默飞世尔 HER2抗体(Thermo Scientific, 9G6.10)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(e2-4001)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
赛默飞世尔 HER2抗体(NeoMarkers, e2-4001)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
小鼠 单克隆(e2-4001, 3B5)
赛默飞世尔 HER2抗体(Thermo Fisher Scientific, Ab-17)被用于. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(e2-4001)
  • 免疫组化-石蜡切片; 人类; 1:300
赛默飞世尔 HER2抗体(LabVision, e2-4001)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300. Head Neck (2015) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 HER2抗体(LabVision, Ab-17)被用于被用于免疫组化-石蜡切片在人类样本上. Neuro Oncol (2014) ncbi
小鼠 单克隆(PN2A)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 HER2抗体(Thermo, PN2A)被用于被用于免疫组化-石蜡切片在人类样本上. Lab Invest (2014) ncbi
domestic rabbit 重组(SP3)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 HER2抗体(Thermo, SP3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(e2-4001, 3B5)
赛默飞世尔 HER2抗体(Thermo Scientific, Ab-17)被用于. Genes Cells (2014) ncbi
domestic rabbit 单克隆(EP1045Y)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
赛默飞世尔 HER2抗体(Lab Vision, EP1045Y)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). Sci Rep (2013) ncbi
domestic rabbit 重组(SP3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
赛默飞世尔 HER2抗体(Neomarkers, SP3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Cell Oncol (Dordr) (2013) ncbi
小鼠 单克隆(CB11)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔 HER2抗体(生活技术, CB11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Tumour Biol (2013) ncbi
小鼠 单克隆(CB11)
  • 免疫组化-石蜡切片; 人类; 1:600; 图 2
赛默飞世尔 HER2抗体(Zymed, clone CB11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:600 (图 2). Int J Clin Exp Pathol (2013) ncbi
domestic rabbit 重组(SP3)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 1
赛默飞世尔 HER2抗体(Thermo Scientific, SP3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 1). Clinics (Sao Paulo) (2013) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫组化; 小鼠; 1:1000
赛默飞世尔 HER2抗体(Thermo Fisher Scientific, Ab-17)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Mol Carcinog (2014) ncbi
小鼠 单克隆(e2-4001)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 1
赛默飞世尔 HER2抗体(Thermo, Ab-8 (clone e2-4001))被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 1). Carcinogenesis (2013) ncbi
小鼠 单克隆(CB11)
  • 免疫组化; 人类; 图 3
赛默飞世尔 HER2抗体(Zymed, CB11)被用于被用于免疫组化在人类样本上 (图 3). Int J Surg Pathol (2014) ncbi
小鼠 单克隆(CB11)
  • 免疫组化-石蜡切片; 人类; 图 2
赛默飞世尔 HER2抗体(生活技术, Clone CB11)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). PLoS ONE (2013) ncbi
小鼠 单克隆(e2-4001, 3B5)
赛默飞世尔 HER2抗体(Thermo SCIENTIFIC, MS-730-P0)被用于. J Cell Mol Med (2013) ncbi
小鼠 单克隆(e2-4001)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 HER2抗体(Biosource, AHO1011)被用于被用于流式细胞仪在人类样本上 (图 5). Biochim Biophys Acta (2012) ncbi
domestic rabbit 重组(SP3)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 HER2抗体(Neomarker, RM9103-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Breast Cancer Res (2011) ncbi
小鼠 单克隆(CB11)
  • 免疫印迹; 人类; 图 2a
赛默飞世尔 HER2抗体(Thermo Fisher Scientific, MS-441-S)被用于被用于免疫印迹在人类样本上 (图 2a). J Cell Mol Med (2011) ncbi
小鼠 单克隆(3B5)
  • 免疫沉淀; 人类; 图 7d
  • 免疫印迹; 人类; 图 6a
赛默飞世尔 HER2抗体(Fisher, 3B5)被用于被用于免疫沉淀在人类样本上 (图 7d) 和 被用于免疫印迹在人类样本上 (图 6a). J Biol Chem (2010) ncbi
domestic rabbit 重组(SP3)
  • 免疫组化-石蜡切片; 人类; 1:400; 表 3
  • 免疫组化; 人类; 1:400
赛默飞世尔 HER2抗体(NeoMarkers, SP3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (表 3) 和 被用于免疫组化在人类样本上浓度为1:400. Histopathology (2008) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
赛默飞世尔 HER2抗体(Lab Vision, e2-4001 + 3B5)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2008) ncbi
小鼠 单克隆(e2-4001, 3B5)
  • 免疫印迹; 人类; 1:3000; 图 7
赛默飞世尔 HER2抗体(Neomarkers, Ab-17)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 7). J Cell Sci (2006) ncbi
小鼠 单克隆(9G6.10)
  • 酶联免疫吸附测定; 人类; 表 2
赛默飞世尔 HER2抗体(NeoMarkers, MS229-PABX)被用于被用于酶联免疫吸附测定在人类样本上 (表 2). Cancer Res (2004) ncbi
小鼠 单克隆(CB11)
  • 免疫组化-石蜡切片; 人类; 1:3
赛默飞世尔 HER2抗体(Zymed, CB11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:3. Cancer (2002) ncbi
圣克鲁斯生物技术
小鼠 单克隆
  • 免疫组化; 小鼠; 1:50; 图 4b
圣克鲁斯生物技术 HER2抗体(Santa Cruz, 3B5)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 4b). BMC Dev Biol (2021) ncbi
小鼠 单克隆(3B5)
  • 免疫组化; 小鼠; 1:50; 图 4b
圣克鲁斯生物技术 HER2抗体(Santa Cruz, 3B5)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 4b). BMC Dev Biol (2021) ncbi
小鼠 单克隆(3B5)
  • 免疫印迹; 人类; 图 4g
圣克鲁斯生物技术 HER2抗体(Santa Cruz, sc-33684)被用于被用于免疫印迹在人类样本上 (图 4g). Theranostics (2021) ncbi
小鼠 单克隆(3B5)
  • 流式细胞仪; 人类; 图 s4b
圣克鲁斯生物技术 HER2抗体(Santa Cruz, sc-33684)被用于被用于流式细胞仪在人类样本上 (图 s4b). MBio (2017) ncbi
小鼠 单克隆(3B5)
  • ChIP-Seq; 小鼠; 图 s3a
  • 染色质免疫沉淀 ; 小鼠; 图 s3b
  • ChIP-Seq; 人类; 图 s3c
  • 染色质免疫沉淀 ; 人类; 图 s3e
圣克鲁斯生物技术 HER2抗体(Santa Cruz Biotechnology, 3B5)被用于被用于ChIP-Seq在小鼠样本上 (图 s3a), 被用于染色质免疫沉淀 在小鼠样本上 (图 s3b), 被用于ChIP-Seq在人类样本上 (图 s3c) 和 被用于染色质免疫沉淀 在人类样本上 (图 s3e). PLoS Genet (2017) ncbi
小鼠 单克隆
  • ChIP-Seq; 小鼠; 图 s3a
  • 染色质免疫沉淀 ; 小鼠; 图 s3b
  • ChIP-Seq; 人类; 图 s3c
  • 染色质免疫沉淀 ; 人类; 图 s3e
圣克鲁斯生物技术 HER2抗体(Santa Cruz Biotechnology, 3B5)被用于被用于ChIP-Seq在小鼠样本上 (图 s3a), 被用于染色质免疫沉淀 在小鼠样本上 (图 s3b), 被用于ChIP-Seq在人类样本上 (图 s3c) 和 被用于染色质免疫沉淀 在人类样本上 (图 s3e). PLoS Genet (2017) ncbi
小鼠 单克隆(9G6)
  • 免疫印迹; 人类; 1:500; 图 5d
圣克鲁斯生物技术 HER2抗体(Santa Cruz, sc-08)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5d). Sci Rep (2017) ncbi
小鼠 单克隆(3B5)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 HER2抗体(Santa Cruz, sc-33684)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(19G5)
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术 HER2抗体(Santa Cruz, 19G5)被用于被用于免疫印迹在人类样本上 (图 5c). J Cell Mol Med (2016) ncbi
小鼠 单克隆(7F8)
  • 免疫印迹; 小鼠; 1:500; 图 2
圣克鲁斯生物技术 HER2抗体(Santa Cruz, sc-81508)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(3B5)
  • 免疫印迹; 小鼠; 1:500; 图 2
圣克鲁斯生物技术 HER2抗体(Santa Cruz, sc-33684)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(F-11)
  • 免疫沉淀; 人类; 图 1
圣克鲁斯生物技术 HER2抗体(Santa Cruz, sc-7301)被用于被用于免疫沉淀在人类样本上 (图 1). Oncogenesis (2016) ncbi
小鼠 单克隆(24D2)
  • 流式细胞仪; 小鼠; 图 5
圣克鲁斯生物技术 HER2抗体(Santa Cruz Biotechnology, SC-23864)被用于被用于流式细胞仪在小鼠样本上 (图 5). Analyst (2015) ncbi
小鼠 单克隆(3B5)
  • 免疫组化-石蜡切片; 人类; 表 3
圣克鲁斯生物技术 HER2抗体(SantaCruz, sc-33684)被用于被用于免疫组化-石蜡切片在人类样本上 (表 3). Genes Cancer (2015) ncbi
小鼠 单克隆(F-11)
  • 免疫印迹; 人类; 图 3A
圣克鲁斯生物技术 HER2抗体(Santa Cruz, sc-7301)被用于被用于免疫印迹在人类样本上 (图 3A). Oncotarget (2015) ncbi
小鼠 单克隆(3B5)
  • 免疫印迹; 人类
圣克鲁斯生物技术 HER2抗体(Santa Cruz Biotechnology, sc-33684)被用于被用于免疫印迹在人类样本上. Int J Oncol (2014) ncbi
小鼠 单克隆(9G6)
  • 免疫组化-石蜡切片; 人类; 1:100
圣克鲁斯生物技术 HER2抗体(Santa Cruz, sc-08)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. J Biol Chem (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR19547-12)
  • 免疫组化; 人类; 1:1000; 图 s4
艾博抗(上海)贸易有限公司 HER2抗体(Abcam, ab214275)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 s4). NPJ Breast Cancer (2021) ncbi
domestic rabbit 单克隆(EP1045Y)
  • 免疫印迹; 人类; 1:1000; 图 7c
艾博抗(上海)贸易有限公司 HER2抗体(Abcam, ab134182)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7c). Theranostics (2020) ncbi
domestic rabbit 单克隆
  • 其他; 人类; 1:100; 图 2d
艾博抗(上海)贸易有限公司 HER2抗体(Abcam, ab53290)被用于被用于其他在人类样本上浓度为1:100 (图 2d). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 5a
艾博抗(上海)贸易有限公司 HER2抗体(Abcam, ab47262)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 5a). Biomed Res Int (2019) ncbi
小鼠 单克隆(3B5)
  • 免疫组化; 小鼠; 图 2g
艾博抗(上海)贸易有限公司 HER2抗体(Abcam, AB16901)被用于被用于免疫组化在小鼠样本上 (图 2g). Nature (2017) ncbi
domestic rabbit 单克隆(EP1045Y)
  • 免疫组化-石蜡切片; 人类; 0.024 ug/ml; 图 3d
艾博抗(上海)贸易有限公司 HER2抗体(Abcam, ab134182)被用于被用于免疫组化-石蜡切片在人类样本上浓度为0.024 ug/ml (图 3d). Sci Rep (2017) ncbi
小鼠 单克隆(9G6)
艾博抗(上海)贸易有限公司 HER2抗体(abcam, ab16899)被用于. PLoS ONE (2017) ncbi
domestic rabbit 单克隆(EP2324Y)
  • 免疫组化; 小鼠; 1:100; 图 5a
艾博抗(上海)贸易有限公司 HER2抗体(Abcam, ab108371)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5a). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(SP3)
  • 免疫组化-石蜡切片; 人类; 图 2b
艾博抗(上海)贸易有限公司 HER2抗体(Abcam, SP3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2b). Clin Cancer Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6
艾博抗(上海)贸易有限公司 HER2抗体(Abcam, ab47262)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Oncotarget (2016) ncbi
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 HER2抗体(Abcam, ab131104)被用于被用于免疫印迹在人类样本上 (图 1). Breast Cancer Res (2015) ncbi
BioLegend
小鼠 单克隆(24D2)
  • 流式细胞仪; 人类; 图 2
BioLegend HER2抗体(BioLegend, 324412)被用于被用于流式细胞仪在人类样本上 (图 2). Life (Basel) (2021) ncbi
小鼠 单克隆(24D2)
  • 免疫印迹; 人类; 1:100; 图 ex7d
BioLegend HER2抗体(BioLegend, cat324412)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 ex7d). Nat Med (2019) ncbi
小鼠 单克隆(24D2)
  • 流式细胞仪; 小鼠; 1:100; 图 1m
BioLegend HER2抗体(Biolegend, 324412)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1m). Nat Cell Biol (2019) ncbi
小鼠 单克隆(24D2)
  • 其他; 人类; 500 ug/ml; 图 1
BioLegend HER2抗体(BioLegend, 324402)被用于被用于其他在人类样本上浓度为500 ug/ml (图 1). J Extracell Vesicles (2016) ncbi
小鼠 单克隆(24D2)
BioLegend HER2抗体(Biolegend, 324405)被用于. Sci Rep (2015) ncbi
小鼠 单克隆(24D2)
  • 流式细胞仪; 人类; 图 2
BioLegend HER2抗体(BioLegend, 24D2)被用于被用于流式细胞仪在人类样本上 (图 2). BMC Cancer (2015) ncbi
小鼠 单克隆(24D2)
  • 流式细胞仪; 人类; 图 4
BioLegend HER2抗体(BioLegend, 24D2)被用于被用于流式细胞仪在人类样本上 (图 4). Oncol Rep (2015) ncbi
北京傲锐东源
小鼠 单克隆(UMAB36)
  • 免疫印迹; 人类; 1:2000; 图 1c
北京傲锐东源 HER2抗体(OriGene Technologies, UMAB36)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1c). Biochem Biophys Res Commun (2017) ncbi
小鼠 单克隆(OTI4F10)
  • 免疫印迹; 人类; 1:1000; 图 s8
北京傲锐东源 HER2抗体(OriGene, TA503443)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s8). Nat Commun (2016) ncbi
Enzo Life Sciences
小鼠 单克隆(MGR2)
  • 免疫细胞化学; 人类; 图 2b
Enzo Life Sciences HER2抗体(Enzo Life Sciences, MGR2)被用于被用于免疫细胞化学在人类样本上 (图 2b). Mol Ther (2015) ncbi
Novus Biologicals
domestic rabbit 多克隆(MT1/410)
  • 免疫组化; 小鼠; 图 6a
Novus Biologicals HER2抗体(Novus Biologicals, NBP1-84584)被用于被用于免疫组化在小鼠样本上 (图 6a). Cell Mol Gastroenterol Hepatol (2019) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(29D8)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
  • 免疫印迹; 人类; 1:1000; 图 3b, s4c
赛信通(上海)生物试剂有限公司 HER2抗体(Cell signaling, 29D8)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3b, s4c). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(D8F12)
  • 免疫印迹; 人类; 1:1000; 图 s1a
赛信通(上海)生物试剂有限公司 HER2抗体(CST, 4290)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1a). NPJ Breast Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 HER2抗体(CST, 3250s)被用于被用于免疫印迹在小鼠样本上 (图 4b). J Cell Mol Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:50
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 2242S)被用于被用于免疫组化在人类样本上浓度为1:50. BMC Cancer (2021) ncbi
domestic rabbit 单克隆(D8F12)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 4290)被用于被用于免疫印迹在人类样本上 (图 6a). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(D8F12)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 4290)被用于被用于免疫印迹在人类样本上 (图 1c). Am J Cancer Res (2021) ncbi
domestic rabbit 单克隆(D8F12)
  • 免疫印迹; 小鼠; 1:1000; 图 3c, 3e, 3f
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 4290)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c, 3e, 3f). Arterioscler Thromb Vasc Biol (2021) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫组化; 小鼠; 1:500; 图 1g
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1g). Oncogene (2021) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫细胞化学; 人类; 图 2b
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 2165)被用于被用于免疫细胞化学在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上 (图 2c). Theranostics (2021) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫印迹基因敲除验证; 人类; 1:200; 图 1a
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 2165)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:200 (图 1a). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(6B12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2243)被用于被用于免疫印迹在小鼠样本上. Cell Rep (2021) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫组化; 小鼠; 图 s2a
  • 免疫印迹; 小鼠; 图 s2b
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165)被用于被用于免疫组化在小鼠样本上 (图 s2a) 和 被用于免疫印迹在小鼠样本上 (图 s2b). Cell Rep (2021) ncbi
domestic rabbit 单克隆(6B12)
  • 其他; 人类; 1:100; 图 2d
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2243S)被用于被用于其他在人类样本上浓度为1:100 (图 2d). elife (2020) ncbi
domestic rabbit 单克隆(D66B7)
  • 其他; 人类; 1:100; 图 2d
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 6942S)被用于被用于其他在人类样本上浓度为1:100 (图 2d). elife (2020) ncbi
domestic rabbit 单克隆(D8F12)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 4290)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). BMC Cancer (2020) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫印迹; 人类; 图 1b, 2b
赛信通(上海)生物试剂有限公司 HER2抗体(CST, 29D8)被用于被用于免疫印迹在人类样本上 (图 1b, 2b). EBioMedicine (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s1d
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2242)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1d). Nat Commun (2019) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 HER2抗体(CST, 2165)被用于被用于免疫印迹在人类样本上 (图 1a). Cell Commun Signal (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signalling Technology, 2241)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(6B12)
  • 免疫印迹; 人类; 1:1000; 图 3c, 3d, s8b
赛信通(上海)生物试剂有限公司 HER2抗体(CST, 2243S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c, 3d, s8b). Science (2019) ncbi
domestic rabbit 单克隆(6B12)
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2243)被用于被用于免疫印迹在人类样本上 (图 5f). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(D8F12)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signalling, D8F12)被用于被用于免疫印迹在小鼠样本上 (图 4c). Nutrients (2019) ncbi
domestic rabbit 单克隆(D8F12)
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 4290)被用于被用于免疫印迹在人类样本上 (图 s2). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(6B12)
  • 免疫印迹; 人类; 图 s3b
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2243)被用于被用于免疫印迹在人类样本上 (图 s3b). Oncogene (2019) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫印迹; 人类; 图 s3b
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165)被用于被用于免疫印迹在人类样本上 (图 s3b). Oncogene (2019) ncbi
domestic rabbit 单克隆(D8F12)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 4290)被用于被用于免疫印迹在人类样本上 (图 5e). Cell Res (2018) ncbi
domestic rabbit 单克隆(6B12)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2243)被用于被用于免疫印迹在人类样本上 (图 5e). Cell Res (2018) ncbi
domestic rabbit 单克隆(D8F12)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6c
赛信通(上海)生物试剂有限公司 HER2抗体(CST, 4290)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6c). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D8F12)
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 4290)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Science (2018) ncbi
domestic rabbit 单克隆(6B12)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2243)被用于被用于免疫印迹在人类样本上 (图 2b). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2242)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2247)被用于被用于免疫印迹在人类样本上 (图 2b). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 HER2抗体(cell signaling, 2249)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Oncogene (2017) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫印迹; 小鼠; 1:1000; 图 1g
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1g). Cell Death Dis (2017) ncbi
domestic rabbit 单克隆(D8F12)
  • 免疫组化; 人类; 1:500; 图 7b
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 4290)被用于被用于免疫组化在人类样本上浓度为1:500 (图 7b) 和 被用于免疫印迹在人类样本上 (图 3c). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 2247)被用于被用于免疫印迹在人类样本上 (图 3c). Oncogene (2017) ncbi
domestic rabbit 单克隆(D66B7)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 6942)被用于被用于免疫印迹在人类样本上 (图 5a). Am J Respir Crit Care Med (2017) ncbi
domestic rabbit 单克隆(D8F12)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 4290)被用于被用于免疫印迹在人类样本上 (图 5a). Am J Respir Crit Care Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s6
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2241)被用于被用于免疫印迹在人类样本上 (图 s6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D8F12)
  • 免疫细胞化学; 人类; 1:100; 图 2b
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 4290)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2b) 和 被用于免疫印迹在人类样本上 (图 2a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(6B12)
  • 免疫印迹; 人类; 图 s6
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2243)被用于被用于免疫印迹在人类样本上 (图 s6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2247)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Cancer Res Clin Oncol (2017) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Cancer Res Clin Oncol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2241)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 s6a
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2242)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s6a). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(6B12)
  • 免疫印迹; 人类; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2243S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4g). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫印迹; 人类; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4g). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2241)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(29D8)
  • 流式细胞仪; 人类; 图 1a
  • 免疫细胞化学; 人类
  • 免疫组化; 人类
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 29D8)被用于被用于流式细胞仪在人类样本上 (图 1a), 被用于免疫细胞化学在人类样本上 和 被用于免疫组化在人类样本上. Nature (2016) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165)被用于被用于免疫印迹在人类样本上 (图 2a). Breast Cancer Res (2016) ncbi
domestic rabbit 单克隆(D8F12)
  • 免疫组化-石蜡切片; 人类; 表 1
赛信通(上海)生物试剂有限公司 HER2抗体(Cell signaling, D8F12)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫沉淀; 人类; 图 s8
赛信通(上海)生物试剂有限公司 HER2抗体(Cell signaling, 29D8)被用于被用于免疫沉淀在人类样本上 (图 s8). J Cell Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2242S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 HER2抗体(Cell signaling, 2165)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 s2
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2249)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2247)被用于被用于免疫印迹在人类样本上 (图 3a). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 HER2抗体(cell signalling, 2242)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(6B12)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 HER2抗体(cell signalling, 2243)被用于被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5f
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signalling, 2247)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5f). Nat Commun (2016) ncbi
domestic rabbit 单克隆(29D8)
赛信通(上海)生物试剂有限公司 HER2抗体(CST, 2165S)被用于. Oncogenesis (2016) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫印迹; 人类; 1:500; 图 2
赛信通(上海)生物试剂有限公司 HER2抗体(Cell signaling, 2165)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). elife (2016) ncbi
domestic rabbit 单克隆(D8F12)
  • 免疫组化-石蜡切片; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 4290)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(6B12)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2243)被用于被用于免疫印迹在人类样本上 (图 1). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165)被用于被用于免疫印迹在人类样本上 (图 1b). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 2165)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s2
  • 免疫印迹; 人类; 图 s3a
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2242)被用于被用于免疫细胞化学在人类样本上 (图 s2) 和 被用于免疫印迹在人类样本上 (图 s3a). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2249)被用于被用于免疫印迹在人类样本上 (图 3b). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 2242)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 2). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signalling, 2165S)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signalling, 2241S)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在人类样本上 (图 4). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 单克隆(6B12)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 2243)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫印迹; 人类; 1:200; 图 2b
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2b). Nat Commun (2016) ncbi
小鼠 单克隆(44E7)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2248)被用于被用于免疫印迹在人类样本上浓度为1:1000. Dis Model Mech (2016) ncbi
domestic rabbit 单克隆(6B12)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 HER2抗体(Cell signaling, 2243)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D8F12)
  • 免疫印迹; 犬; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 4290S)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫印迹; 人类; 1:1000; 图 7e
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7e). J Natl Cancer Inst (2016) ncbi
domestic rabbit 单克隆(6B12)
  • 免疫印迹; 人类; 1:1000; 图 7e
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2243)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7e). J Natl Cancer Inst (2016) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫印迹; 人类; 1:1000; 图 5C; S6B
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Sgnaling, 29D8)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5C; S6B). Mol Oncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5C; S6B
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Sgnaling, 2247)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5C; S6B). Mol Oncol (2016) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165)被用于被用于免疫细胞化学在人类样本上 (图 4). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D66B7)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 HER2抗体(Cell signaling, 6942)被用于被用于免疫印迹在人类样本上 (图 2a). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D8F12)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 HER2抗体(Cell signaling, 4290)被用于被用于免疫印迹在人类样本上 (图 4a). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫组化-石蜡切片; 人类; 图 1f
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 29D8)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1f). Appl Immunohistochem Mol Morphol (2016) ncbi
小鼠 单克隆(44E7)
  • 免疫印迹; 人类; 图 5b
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 2248)被用于被用于免疫印迹在人类样本上 (图 5b) 和 被用于免疫印迹在小鼠样本上 (图 5b). Mol Ther (2015) ncbi
domestic rabbit 单克隆(6B12)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 2243)被用于被用于免疫印迹在小鼠样本上 (图 5b). Mol Ther (2015) ncbi
domestic rabbit 单克隆(6B12)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2243)被用于被用于免疫印迹在人类样本上 (图 4). EBioMedicine (2015) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165)被用于被用于免疫印迹在人类样本上 (图 4). EBioMedicine (2015) ncbi
domestic rabbit 单克隆(6B12)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2243)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫组化-石蜡切片; 人类; 1:25
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25. Oncotarget (2015) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫印迹; 人类; 1:100
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, #2165)被用于被用于免疫印迹在人类样本上浓度为1:100. Mol Cancer (2015) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫印迹; 人类; 图 4f, 4g, 4h
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 2165)被用于被用于免疫印迹在人类样本上 (图 4f, 4g, 4h). Oncotarget (2015) ncbi
domestic rabbit 单克隆(29D8)
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 2165)被用于. J Extracell Vesicles (2015) ncbi
domestic rabbit 单克隆(6B12)
  • 免疫印迹; 人类; 图 3A
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2243)被用于被用于免疫印迹在人类样本上 (图 3A). Oncotarget (2015) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 2165)被用于被用于免疫印迹在人类样本上. J Diabetes (2016) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 1). Breast Cancer Res (2015) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165)被用于被用于免疫印迹在人类样本上 (图 s1). Oncogene (2015) ncbi
小鼠 单克隆(44E7)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 2248)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). elife (2014) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technologies, 2165)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(6B12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technologies, 2243)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D8F12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 4290)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
domestic rabbit 单克隆(6B12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 2243)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
domestic rabbit 单克隆(D66B7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 6942)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
domestic rabbit 单克隆(6B12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HER2抗体(cell signaling, 2243S)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
小鼠 单克隆(44E7)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2248)被用于被用于免疫印迹在人类样本上浓度为1:1000. Front Endocrinol (Lausanne) (2014) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 29D8)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Biochim Biophys Acta (2014) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 HER2抗体(Cell signaling, 2165)被用于被用于免疫印迹在人类样本上 (图 1a). Int J Oncol (2014) ncbi
domestic rabbit 单克隆(6B12)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2243)被用于被用于免疫印迹在人类样本上 (图 2). Mol Carcinog (2014) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 2165)被用于被用于免疫印迹在人类样本上 (图 2). Mol Carcinog (2014) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫细胞化学; 小鼠; 1:200
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling, 29D8)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Dev Biol (2013) ncbi
domestic rabbit 单克隆(29D8)
  • 免疫细胞化学; 人类; 1:150
赛信通(上海)生物试剂有限公司 HER2抗体(Cell Signaling Technology, 29D8)被用于被用于免疫细胞化学在人类样本上浓度为1:150. Breast Cancer Res (2011) ncbi
Ventana
domestic rabbit 单克隆(4B5)
  • 免疫组化-石蜡切片; 小鼠
Ventana HER2抗体(Ventana, 4B5)被用于被用于免疫组化-石蜡切片在小鼠样本上. Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 单克隆(4B5)
  • 免疫组化-石蜡切片; 人类; 图 3d
Ventana HER2抗体(Ventana, 4B5)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3d). Sci Rep (2021) ncbi
domestic rabbit 单克隆(4B5)
  • 免疫组化; 人类; 1:250
Ventana HER2抗体(Ventana, 4B5)被用于被用于免疫组化在人类样本上浓度为1:250. Mod Pathol (2020) ncbi
domestic rabbit 单克隆(4B5)
  • 免疫组化-石蜡切片; 人类; 图 1d
Ventana HER2抗体(Ventana, 4B5)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1d). Sci Rep (2020) ncbi
domestic rabbit 单克隆(4B5)
  • 免疫细胞化学; 人类; 图 1c
Ventana HER2抗体(Ventana, 4B5)被用于被用于免疫细胞化学在人类样本上 (图 1c). Nat Commun (2019) ncbi
domestic rabbit 单克隆(4B5)
  • 免疫组化-石蜡切片; 人类; 表 s1
Ventana HER2抗体(Ventana, 4B5)被用于被用于免疫组化-石蜡切片在人类样本上 (表 s1). Am J Pathol (2017) ncbi
domestic rabbit 单克隆(4B5)
  • 免疫组化-石蜡切片; 人类; 图 1g
  • 免疫印迹; 人类; 1:10; 图 1c
Ventana HER2抗体(Ventana, 4B5)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1g) 和 被用于免疫印迹在人类样本上浓度为1:10 (图 1c). Biochem Biophys Res Commun (2017) ncbi
domestic rabbit 单克隆(4B5)
  • 免疫组化-石蜡切片; 人类; 表 3
Ventana HER2抗体(Ventana, 4B5)被用于被用于免疫组化-石蜡切片在人类样本上 (表 3). Virchows Arch (2016) ncbi
domestic rabbit 单克隆(4B5)
  • 免疫组化; 人类
Ventana HER2抗体(Ventana, 4B5)被用于被用于免疫组化在人类样本上. Gut Liver (2016) ncbi
domestic rabbit 单克隆(4B5)
  • 免疫组化; 人类
Ventana HER2抗体(Ventana, 4B5)被用于被用于免疫组化在人类样本上. Ecancermedicalscience (2015) ncbi
domestic rabbit 单克隆(4B5)
  • 免疫组化-石蜡切片; 人类; 图 6c
Ventana HER2抗体(Ventana, 4B5)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6c). Oncotarget (2014) ncbi
丹科医疗器械技术服务(上海)有限公司
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 s2a
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 s2a). Cancer Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1.6 ug/ml; 图 3d
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1.6 ug/ml (图 3d). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
丹科医疗器械技术服务(上海)有限公司 HER2抗体(DAKO, A0485)被用于被用于免疫印迹在人类样本上 (图 3a). Mol Cancer Ther (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6c
丹科医疗器械技术服务(上海)有限公司 HER2抗体(DAKO, A0485)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6c). Breast Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1a
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1a). Cancer Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 图 1
丹科医疗器械技术服务(上海)有限公司 HER2抗体(DAKO, A0485)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 1). J Radiat Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 st1
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫印迹在人类样本上 (图 s1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:250; 表 1
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (表 1). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 图 1b
  • 免疫细胞化学; 人类; 图 1a
  • 免疫印迹; 人类; 图 1b
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫沉淀在人类样本上 (图 1b), 被用于免疫细胞化学在人类样本上 (图 1a) 和 被用于免疫印迹在人类样本上 (图 1b). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 犬; 1:1000; 图 1a
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 1a). Vet Comp Oncol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫组化在人类样本上 (图 1). Mol Imaging Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:400; 图 s1
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 s1). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 猫; 1:3500; 图 5b
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫印迹在猫样本上浓度为1:3500 (图 5b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1.28 ug/ml; 表 s2
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1.28 ug/ml (表 s2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司 HER2抗体(Dako, A0485)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. PLoS ONE (2016) ncbi
碧迪BD
小鼠 单克隆(3B5)
  • mass cytometry; 人类; 图 3a
碧迪BD HER2抗体(BD Biosciences, 554299)被用于被用于mass cytometry在人类样本上 (图 3a). Cell (2019) ncbi
小鼠 单克隆(42/c-erbB-2)
  • 免疫印迹; 人类; 图 3a
碧迪BD HER2抗体(BD, 610162)被用于被用于免疫印迹在人类样本上 (图 3a). Oncogene (2019) ncbi
小鼠 单克隆(Neu 24.7)
  • 流式细胞仪; 人类; 图 2a
碧迪BD HER2抗体(BD Biosciences, 340553)被用于被用于流式细胞仪在人类样本上 (图 2a). Cell Stress Chaperones (2017) ncbi
小鼠 单克隆(Neu 24.7)
  • 免疫细胞化学; 人类; 1:20; 图 5c
碧迪BD HER2抗体(Becton Dickinson, 340554)被用于被用于免疫细胞化学在人类样本上浓度为1:20 (图 5c). J Clin Invest (2017) ncbi
小鼠 单克隆(Neu 24.7)
  • 流式细胞仪; 人类; 1:133; 图 4a
碧迪BD HER2抗体(B.D, Neu24.7)被用于被用于流式细胞仪在人类样本上浓度为1:133 (图 4a). Cancer Res (2017) ncbi
小鼠 单克隆(42/c-erbB-2)
  • 免疫印迹; 人类; 图 3b
碧迪BD HER2抗体(BD Biosciences, 42)被用于被用于免疫印迹在人类样本上 (图 3b). J Cell Mol Med (2016) ncbi
小鼠 单克隆(Neu 24.7)
  • 流式细胞仪; 人类; 图 st1
碧迪BD HER2抗体(BD, 340552)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(Neu 24.7)
  • 流式细胞仪; 人类; 1:50; 图 1
碧迪BD HER2抗体(BD Biosciences, 340552)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1). Cell Death Dis (2016) ncbi
小鼠 单克隆(9G6)
  • 其他; 人类; 图 st1
碧迪BD HER2抗体(BD, 9G6)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(3B5)
  • 免疫细胞化学; 人类; 1:100
  • 免疫印迹; 人类
碧迪BD HER2抗体(BD Transduction, 554299)被用于被用于免疫细胞化学在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上. Clin Exp Metastasis (2015) ncbi
徕卡显微系统(上海)贸易有限公司
小鼠 单克隆(CB11)
  • 免疫组化-石蜡切片; 猫; 图 1c
徕卡显微系统(上海)贸易有限公司 HER2抗体(Novocastra, CB11)被用于被用于免疫组化-石蜡切片在猫样本上 (图 1c). Sci Rep (2020) ncbi
小鼠 单克隆(CB11)
  • 免疫细胞化学; 人类; 1:500; 图 s1
徕卡显微系统(上海)贸易有限公司 HER2抗体(Leica Biosystems, CB11)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s1). FASEB J (2016) ncbi
小鼠 单克隆(CB11)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 2
徕卡显微系统(上海)贸易有限公司 HER2抗体(Novocastra Laboratories, NCL-CB11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 2). Braz J Med Biol Res (2016) ncbi
单克隆
  • 免疫组化; 人类; 1:50
徕卡显微系统(上海)贸易有限公司 HER2抗体(Novocastra, NCL-L-CB11)被用于被用于免疫组化在人类样本上浓度为1:50. Pathol Oncol Res (2015) ncbi
小鼠 单克隆(CB11)
  • 免疫组化-石蜡切片; 人类
徕卡显微系统(上海)贸易有限公司 HER2抗体(Novocastra, NCL-CB11)被用于被用于免疫组化-石蜡切片在人类样本上. J Clin Pathol (2015) ncbi
文章列表
  1. Khasawneh R, Kist R, Queen R, Hussain R, Coxhead J, Schneider J, et al. Msx1 haploinsufficiency modifies the Pax9-deficient cardiovascular phenotype. BMC Dev Biol. 2021;21:14 pubmed 出版商
  2. Goyette M, Elkholi I, Apcher C, Kuasne H, Rothlin C, Muller W, et al. Targeting Axl favors an antitumorigenic microenvironment that enhances immunotherapy responses by decreasing Hif-1α levels. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  3. Joh D, Heggestad J, Zhang S, Anderson G, Bhattacharyya J, Wardell S, et al. Cellphone enabled point-of-care assessment of breast tumor cytology and molecular HER2 expression from fine-needle aspirates. NPJ Breast Cancer. 2021;7:85 pubmed 出版商
  4. Xie C, Ye F, Zhang N, Huang Y, Pan Y, Xie X. CCL7 contributes to angiotensin II-induced abdominal aortic aneurysm by promoting macrophage infiltration and pro-inflammatory phenotype. J Cell Mol Med. 2021;25:7280-7293 pubmed 出版商
  5. Pham Q, Taniyama D, Sekino Y, Akabane S, Babasaki T, Kobayashi G, et al. Clinicopathologic features of TDO2 overexpression in renal cell carcinoma. BMC Cancer. 2021;21:737 pubmed 出版商
  6. Laine A, Nagelli S, Farrington C, Butt U, Cvrljevic A, Vainonen J, et al. CIP2A Interacts with TopBP1 and Drives Basal-Like Breast Cancer Tumorigenesis. Cancer Res. 2021;81:4319-4331 pubmed 出版商
  7. Zhu J, Cai T, Zhou J, Du W, Zeng Y, Liu T, et al. CD151 drives cancer progression depending on integrin α3β1 through EGFR signaling in non-small cell lung cancer. J Exp Clin Cancer Res. 2021;40:192 pubmed 出版商
  8. Wang J, Zhang Y, Xiao Y, Yuan X, Li P, Wang X, et al. Boosting immune surveillance by low-dose PI3K inhibitor facilitates early intervention of breast cancer. Am J Cancer Res. 2021;11:2005-2024 pubmed
  9. Kundumani Sridharan V, Subramani J, Owens C, Das K. Nrg1β Released in Remote Ischemic Preconditioning Improves Myocardial Perfusion and Decreases Ischemia/Reperfusion Injury via ErbB2-Mediated Rescue of Endothelial Nitric Oxide Synthase and Abrogation of Trx2 Autophagy. Arterioscler Thromb Vasc Biol. 2021;41:2293-2314 pubmed 出版商
  10. Prokakis E, Dyas A, Grün R, Fritzsche S, Bedi U, Kazerouni Z, et al. USP22 promotes HER2-driven mammary carcinoma aggressiveness by suppressing the unfolded protein response. Oncogene. 2021;40:4004-4018 pubmed 出版商
  11. Bi Y, Chen X, Wei B, Wang L, Gong L, Li H, et al. DEPTOR stabilizes ErbB2 to promote the proliferation and survival of ErbB2-positive breast cancer cells. Theranostics. 2021;11:6355-6369 pubmed 出版商
  12. Murray E, Cheng X, Krishna A, Jin X, Ohara T, Stappenbeck T, et al. HER2 and APC Mutations Promote Altered Crypt-Villus Morphology and Marked Hyperplasia in the Intestinal Epithelium. Cell Mol Gastroenterol Hepatol. 2021;12:1105-1120 pubmed 出版商
  13. Strobel S, Machiraju D, Hülsmeyer I, Becker J, Paschen A, Jager D, et al. Expression of Potential Targets for Cell-Based Therapies on Melanoma Cells. Life (Basel). 2021;11: pubmed 出版商
  14. Chen Y, Wang R, Huang S, Henson E, Bi J, Gibson S. Erb-b2 Receptor Tyrosine Kinase 2 (ERBB2) Promotes ATG12-Dependent Autophagy Contributing to Treatment Resistance of Breast Cancer Cells. Cancers (Basel). 2021;13: pubmed 出版商
  15. Yang Y, Leonard M, Luo Z, Yeo S, Bick G, Hao M, et al. Functional cooperation between co-amplified genes promotes aggressive phenotypes of HER2-positive breast cancer. Cell Rep. 2021;34:108822 pubmed 出版商
  16. Watanabe M, Kuwata T, Setsuda A, Tokunaga M, Kaito A, Sugita S, et al. Molecular and pathological analyses of gastric stump cancer by next-generation sequencing and immunohistochemistry. Sci Rep. 2021;11:4165 pubmed 出版商
  17. Zhang L, Gao Y, Zhang X, Guo M, Yang J, Cui H, et al. TSTA3 facilitates esophageal squamous cell carcinoma progression through regulating fucosylation of LAMP2 and ERBB2. Theranostics. 2020;10:11339-11358 pubmed 出版商
  18. Rogerson C, Ogden S, Britton E, Ang Y, Sharrocks A. Repurposing of KLF5 activates a cell cycle signature during the progression from a precursor state to oesophageal adenocarcinoma. elife. 2020;9: pubmed 出版商
  19. Christgen M, Bartels S, van Luttikhuizen J, Bublitz J, Rieger L, Christgen H, et al. E-cadherin to P-cadherin switching in lobular breast cancer with tubular elements. Mod Pathol. 2020;33:2483-2498 pubmed 出版商
  20. Choi B, Cha M, Eun G, Lee D, Lee S, Ehsan M, et al. Single-molecule functional anatomy of endogenous HER2-HER3 heterodimers. elife. 2020;9: pubmed 出版商
  21. Padthaisong S, Thanee M, Namwat N, Phetcharaburanin J, Klanrit P, Khuntikeo N, et al. A panel of protein kinase high expression is associated with postoperative recurrence in cholangiocarcinoma. BMC Cancer. 2020;20:154 pubmed 出版商
  22. Hryciuk B, Pęksa R, Bieńkowski M, Szymanowski B, Radecka B, Winnik K, et al. Expression of Female Sex Hormone Receptors, Connective Tissue Growth Factor and HER2 in Gallbladder Cancer. Sci Rep. 2020;10:1871 pubmed 出版商
  23. Biri Kovács B, Adorján A, Szabo I, Szeder B, Bosze S, Mezo G. Structure-Activity Relationship of HER2 Receptor Targeting Peptide and Its Derivatives in Targeted Tumor Therapy. Biomolecules. 2020;10: pubmed 出版商
  24. Granados Soler J, Bornemann Kolatzki K, Beck J, Brenig B, Schütz E, Betz D, et al. Analysis of Copy-Number Variations and Feline Mammary Carcinoma Survival. Sci Rep. 2020;10:1003 pubmed 出版商
  25. Liu Q, Borcherding N, Shao P, Maina P, Zhang W, Qi H. Contribution of synergism between PHF8 and HER2 signalling to breast cancer development and drug resistance. EBioMedicine. 2020;51:102612 pubmed 出版商
  26. Bueno M, Jimenez Renard V, Samino S, Capellades J, Junza A, López Rodríguez M, et al. Essentiality of fatty acid synthase in the 2D to anchorage-independent growth transition in transforming cells. Nat Commun. 2019;10:5011 pubmed 出版商
  27. Jiang S, Zhang M, Zhang Y, Zhou W, Zhu T, Ruan Q, et al. WNT5B governs the phenotype of basal-like breast cancer by activating WNT signaling. Cell Commun Signal. 2019;17:109 pubmed 出版商
  28. Nagpal A, Redvers R, Ling X, Ayton S, Fuentes M, Tavancheh E, et al. Neoadjuvant neratinib promotes ferroptosis and inhibits brain metastasis in a novel syngeneic model of spontaneous HER2+ve breast cancer metastasis. Breast Cancer Res. 2019;21:94 pubmed 出版商
  29. Yin Y, Zhang Q, Zhao Q, Ding G, Wei C, Chang L, et al. Tongxinluo Attenuates Myocardiac Fibrosis after Acute Myocardial Infarction in Rats via Inhibition of Endothelial-to-Mesenchymal Transition. Biomed Res Int. 2019;2019:6595437 pubmed 出版商
  30. Pietila M, Sahgal P, Peuhu E, Jäntti N, Paatero I, Närvä E, et al. SORLA regulates endosomal trafficking and oncogenic fitness of HER2. Nat Commun. 2019;10:2340 pubmed 出版商
  31. Chung H, Zou X, Bajar B, Brand V, Huo Y, Alcudia J, et al. A compact synthetic pathway rewires cancer signaling to therapeutic effector release. Science. 2019;364: pubmed 出版商
  32. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  33. Kennedy S, Han J, Portman N, Nobis M, Hastings J, Murphy K, et al. Targeting promiscuous heterodimerization overcomes innate resistance to ERBB2 dimerization inhibitors in breast cancer. Breast Cancer Res. 2019;21:43 pubmed 出版商
  34. Logtenberg M, Jansen J, Raaben M, Toebes M, Franke K, Brandsma A, et al. Glutaminyl cyclase is an enzymatic modifier of the CD47- SIRPα axis and a target for cancer immunotherapy. Nat Med. 2019;25:612-619 pubmed 出版商
  35. Kaya P, Lee S, Lee Y, Kwon S, Yang H, Lee H, et al. Curcumae Radix Extract Decreases Mammary Tumor-Derived Lung Metastasis via Suppression of C-C Chemokine Receptor Type 7 Expression. Nutrients. 2019;11: pubmed 出版商
  36. Greer Y, Gilbert S, Gril B, Narwal R, Peacock Brooks D, Tice D, et al. MEDI3039, a novel highly potent tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptor 2 agonist, causes regression of orthotopic tumors and inhibits outgrowth of metastatic triple-negative breast cancer. Breast Cancer Res. 2019;21:27 pubmed 出版商
  37. Keklikoglou I, Cianciaruso C, Güç E, Squadrito M, Spring L, Tazzyman S, et al. Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nat Cell Biol. 2019;21:190-202 pubmed 出版商
  38. Steele N, Chakrabarti J, Wang J, Biesiada J, Holokai L, Chang J, et al. An Organoid-Based Preclinical Model of Human Gastric Cancer. Cell Mol Gastroenterol Hepatol. 2019;7:161-184 pubmed 出版商
  39. Zhao H, Martin E, Matalkah F, Shah N, Ivanov A, Ruppert J, et al. Conditional knockout of SHP2 in ErbB2 transgenic mice or inhibition in HER2-amplified breast cancer cell lines blocks oncogene expression and tumorigenesis. Oncogene. 2019;38:2275-2290 pubmed 出版商
  40. Xue Z, Vis D, Bruna A, Sustic T, van Wageningen S, Batra A, et al. MAP3K1 and MAP2K4 mutations are associated with sensitivity to MEK inhibitors in multiple cancer models. Cell Res. 2018;28:719-729 pubmed 出版商
  41. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  42. Poli V, Fagnocchi L, Fasciani A, Cherubini A, Mazzoleni S, Ferrillo S, et al. MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state. Nat Commun. 2018;9:1024 pubmed 出版商
  43. Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández Mateos J, Khan K, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359:920-926 pubmed 出版商
  44. Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, et al. A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity. Cell. 2018;172:373-386.e10 pubmed 出版商
  45. Thaler S, Schmidt M, Roβwag S, Thiede G, Schad A, Sleeman J. Proteasome inhibitors prevent bi-directional HER2/estrogen-receptor cross-talk leading to cell death in endocrine and lapatinib-resistant HER2+/ER+ breast cancer cells. Oncotarget. 2017;8:72281-72301 pubmed 出版商
  46. Goel S, Decristo M, Watt A, BrinJones H, Sceneay J, Li B, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017;548:471-475 pubmed 出版商
  47. Simond A, Rao T, Zuo D, Zhao J, Muller W. ErbB2-positive mammary tumors can escape PI3K-p110α loss through downregulation of the Pten tumor suppressor. Oncogene. 2017;36:6059-6066 pubmed 出版商
  48. Doebar S, Sieuwerts A, de Weerd V, Stoop H, Martens J, van Deurzen C. Gene Expression Differences between Ductal Carcinoma in Situ with and without Progression to Invasive Breast Cancer. Am J Pathol. 2017;187:1648-1655 pubmed 出版商
  49. Kwon S, Cho C, Kwon Y, Lee E, Park J. A Microfluidic Immunostaining System Enables Quality Assured and Standardized Immunohistochemical Biomarker Analysis. Sci Rep. 2017;7:45968 pubmed 出版商
  50. Jeong J, Kim W, Kim L, VanHouten J, Wysolmerski J. HER2 signaling regulates HER2 localization and membrane retention. PLoS ONE. 2017;12:e0174849 pubmed 出版商
  51. Sinkala E, Sollier Christen E, Renier C, Rosàs Canyelles E, Che J, Heirich K, et al. Profiling protein expression in circulating tumour cells using microfluidic western blotting. Nat Commun. 2017;8:14622 pubmed 出版商
  52. Solis N, Swidergall M, Bruno V, Gaffen S, Filler S. The Aryl Hydrocarbon Receptor Governs Epithelial Cell Invasion during Oropharyngeal Candidiasis. MBio. 2017;8: pubmed 出版商
  53. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  54. Lee S, Dempsey Hibbert N, Vimalachandran D, Wardle T, Sutton P, Williams J. Re-examining HSPC1 inhibitors. Cell Stress Chaperones. 2017;22:293-306 pubmed 出版商
  55. Seberg H, Van Otterloo E, Loftus S, Liu H, Bonde G, Sompallae R, et al. TFAP2 paralogs regulate melanocyte differentiation in parallel with MITF. PLoS Genet. 2017;13:e1006636 pubmed 出版商
  56. Jeong J, VanHouten J, Kim W, Dann P, Sullivan C, Choi J, et al. The scaffolding protein NHERF1 regulates the stability and activity of the tyrosine kinase HER2. J Biol Chem. 2017;292:6555-6568 pubmed 出版商
  57. Gomes de Castro M, Hobartner C, Opazo F. Aptamers provide superior stainings of cellular receptors studied under super-resolution microscopy. PLoS ONE. 2017;12:e0173050 pubmed 出版商
  58. Schumacher M, Hedl M, Abraham C, Bernard J, Lozano P, Hsieh J, et al. ErbB4 signaling stimulates pro-inflammatory macrophage apoptosis and limits colonic inflammation. Cell Death Dis. 2017;8:e2622 pubmed 出版商
  59. Peiris D, Spector A, Lomax Browne H, Azimi T, Ramesh B, Loizidou M, et al. Cellular glycosylation affects Herceptin binding and sensitivity of breast cancer cells to doxorubicin and growth factors. Sci Rep. 2017;7:43006 pubmed 出版商
  60. Jin L, Chun J, Pan C, Alesi G, Li D, Magliocca K, et al. Phosphorylation-mediated activation of LDHA promotes cancer cell invasion and tumour metastasis. Oncogene. 2017;36:3797-3806 pubmed 出版商
  61. Radder J, Zhang Y, Gregory A, Yu S, Kelly N, Leader J, et al. Extreme Trait Whole-Genome Sequencing Identifies PTPRO as a Novel Candidate Gene in Emphysema with Severe Airflow Obstruction. Am J Respir Crit Care Med. 2017;196:159-171 pubmed 出版商
  62. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed 出版商
  63. Qi L, Zhou L, Lu M, Yuan K, Li Z, Wu G, et al. Development of a highly specific HER2 monoclonal antibody for immunohistochemistry using protein microarray chips. Biochem Biophys Res Commun. 2017;484:248-254 pubmed 出版商
  64. Andreev J, Thambi N, Perez Bay A, Delfino F, Martin J, Kelly M, et al. Bispecific Antibodies and Antibody-Drug Conjugates (ADCs) Bridging HER2 and Prolactin Receptor Improve Efficacy of HER2 ADCs. Mol Cancer Ther. 2017;16:681-693 pubmed 出版商
  65. Hirai M, Arita Y, McGlade C, Lee K, Chen J, Evans S. Adaptor proteins NUMB and NUMBL promote cell cycle withdrawal by targeting ERBB2 for degradation. J Clin Invest. 2017;127:569-582 pubmed 出版商
  66. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  67. Ohtsuka T, Sakaguchi M, Yamamoto H, Tomida S, Takata K, Shien K, et al. Interaction of cytokeratin 19 head domain and HER2 in the cytoplasm leads to activation of HER2-Erk pathway. Sci Rep. 2016;6:39557 pubmed 出版商
  68. Lloyd Lewis B, Davis F, Harris O, Hitchcock J, Lourenco F, Pasche M, et al. Imaging the mammary gland and mammary tumours in 3D: optical tissue clearing and immunofluorescence methods. Breast Cancer Res. 2016;18:127 pubmed
  69. Kneissl J, Hartmann A, Pfarr N, Erlmeier F, Lorber T, Keller S, et al. Influence of the HER receptor ligand system on sensitivity to cetuximab and trastuzumab in gastric cancer cell lines. J Cancer Res Clin Oncol. 2017;143:573-600 pubmed 出版商
  70. Torgersen M, Klokk T, Kavaliauskiene S, Klose C, Simons K, Skotland T, et al. The anti-tumor drug 2-hydroxyoleic acid (Minerval) stimulates signaling and retrograde transport. Oncotarget. 2016;7:86871-86888 pubmed 出版商
  71. Sheen M, Marotti J, Allegrezza M, Rutkowski M, Conejo Garcia J, Fiering S. Constitutively activated PI3K accelerates tumor initiation and modifies histopathology of breast cancer. Oncogenesis. 2016;5:e267 pubmed 出版商
  72. Day K, Lorenzatti Hiles G, Kozminsky M, Dawsey S, Paul A, Broses L, et al. HER2 and EGFR Overexpression Support Metastatic Progression of Prostate Cancer to Bone. Cancer Res. 2017;77:74-85 pubmed 出版商
  73. Parrales A, Ranjan A, Iyer S, Padhye S, Weir S, Roy A, et al. DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway. Nat Cell Biol. 2016;18:1233-1243 pubmed 出版商
  74. Shekhar A, Lin X, Liu F, Zhang J, Mo H, Bastarache L, et al. Transcription factor ETV1 is essential for rapid conduction in the heart. J Clin Invest. 2016;126:4444-4459 pubmed 出版商
  75. Showler K, Nishimura M, Daino K, Imaoka T, Nishimura Y, Morioka T, et al. Analysis of genes involved in the PI3K/Akt pathway in radiation- and MNU-induced rat mammary carcinomas. J Radiat Res. 2017;58:183-194 pubmed 出版商
  76. Mitra S, Ghosh B, Gayen N, Roy J, Mandal A. Bipartite Role of Heat Shock Protein 90 (Hsp90) Keeps CRAF Kinase Poised for Activation. J Biol Chem. 2016;291:24579-24593 pubmed
  77. Kang S, Wang Y, Reder N, Liu J. Multiplexed Molecular Imaging of Biomarker-Targeted SERS Nanoparticles on Fresh Tissue Specimens with Channel-Compressed Spectrometry. PLoS ONE. 2016;11:e0163473 pubmed 出版商
  78. Dobosz M, Haupt U, Scheuer W. Improved decision making for prioritizing tumor targeting antibodies in human xenografts: Utility of fluorescence imaging to verify tumor target expression, antibody binding and optimization of dosage and application schedule. MAbs. 2017;9:140-153 pubmed 出版商
  79. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  80. Lee H, Noh H, Mun J, Gu C, Sever S, Park S. Anks1a regulates COPII-mediated anterograde transport of receptor tyrosine kinases critical for tumorigenesis. Nat Commun. 2016;7:12799 pubmed 出版商
  81. Weitsman G, Barber P, Nguyen L, Lawler K, Patel G, Woodman N, et al. HER2-HER3 dimer quantification by FLIM-FRET predicts breast cancer metastatic relapse independently of HER2 IHC status. Oncotarget. 2016;7:51012-51026 pubmed 出版商
  82. Nielsen T, Jensen M, Burugu S, Gao D, Jørgensen C, Balslev E, et al. High-Risk Premenopausal Luminal A Breast Cancer Patients Derive no Benefit from Adjuvant Cyclophosphamide-based Chemotherapy: Results from the DBCG77B Clinical Trial. Clin Cancer Res. 2017;23:946-953 pubmed 出版商
  83. Chung I, Reichelt M, Shao L, Akita R, Koeppen H, Rangell L, et al. High cell-surface density of HER2 deforms cell membranes. Nat Commun. 2016;7:12742 pubmed 出版商
  84. Min L, Zhang C, Ma R, Li X, Yuan H, Li Y, et al. Overexpression of synuclein-? predicts lack of benefit from radiotherapy for breast cancer patients. BMC Cancer. 2016;16:717 pubmed 出版商
  85. Jordan N, Bardia A, Wittner B, Benes C, Ligorio M, Zheng Y, et al. HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature. 2016;537:102-106 pubmed 出版商
  86. LAW M, Ferreira R, Davis B, Higgins P, Kim J, Castellano R, et al. CUB domain-containing protein 1 and the epidermal growth factor receptor cooperate to induce cell detachment. Breast Cancer Res. 2016;18:80 pubmed 出版商
  87. Deniz M, Kaufmann J, Stahl A, Gundelach T, Janni W, Hoffmann I, et al. In vitro model for DNA double-strand break repair analysis in breast cancer reveals cell type-specific associations with age and prognosis. FASEB J. 2016;30:3786-3799 pubmed
  88. Di Franco S, Turdo A, Benfante A, Colorito M, Gaggianesi M, Apuzzo T, et al. ?Np63 drives metastasis in breast cancer cells via PI3K/CD44v6 axis. Oncotarget. 2016;7:54157-54173 pubmed 出版商
  89. Jiang Q, Chen S, Hu C, Huang P, Shen H, Zhao W. Neuregulin-1 (Nrg1) signaling has a preventive role and is altered in the frontal cortex under the pathological conditions of Alzheimer's disease. Mol Med Rep. 2016;14:2614-24 pubmed 出版商
  90. Szymanska M, Fosdahl A, Nikolaysen F, Pedersen M, Grandal M, Stang E, et al. A combination of two antibodies recognizing non-overlapping epitopes of HER2 induces kinase activity-dependent internalization of HER2. J Cell Mol Med. 2016;20:1999-2011 pubmed 出版商
  91. Merry C, McMahon S, Forrest M, Bartels C, Saiakhova A, Bartel C, et al. Transcriptome-wide identification of mRNAs and lincRNAs associated with trastuzumab-resistance in HER2-positive breast cancer. Oncotarget. 2016;7:53230-53244 pubmed 出版商
  92. Liu Y, Wang K, Xing H, Zhai X, Wang L, Wang W. Attempt towards a novel classification of triple-negative breast cancer using immunohistochemical markers. Oncol Lett. 2016;12:1240-1256 pubmed
  93. Saisana M, Griffin S, May F. Importance of the type I insulin-like growth factor receptor in HER2, FGFR2 and MET-unamplified gastric cancer with and without Ras pathway activation. Oncotarget. 2016;7:54445-54462 pubmed 出版商
  94. Deblois G, Smith H, Tam I, Gravel S, Caron M, Savage P, et al. ERR? mediates metabolic adaptations driving lapatinib resistance in breast cancer. Nat Commun. 2016;7:12156 pubmed 出版商
  95. Rowley M, Coolen A, Vojnovic B, Barber P. Robust Bayesian Fluorescence Lifetime Estimation, Decay Model Selection and Instrument Response Determination for Low-Intensity FLIM Imaging. PLoS ONE. 2016;11:e0158404 pubmed 出版商
  96. Khan S, Sikander M, Ebeling M, Ganju A, Kumari S, Yallapu M, et al. MUC13 interaction with receptor tyrosine kinase HER2 drives pancreatic ductal adenocarcinoma progression. Oncogene. 2017;36:491-500 pubmed 出版商
  97. Gray M, Lee S, McDowell A, Erskine M, Loh Q, Grice O, et al. Dual targeting of EGFR and ERBB2 pathways produces a synergistic effect on cancer cell proliferation and migration in vitro. Vet Comp Oncol. 2017;15:890-909 pubmed 出版商
  98. Sochaj Gregorczyk A, Serwotka Suszczak A, Otlewski J. A Novel Affibody-Auristatin E Conjugate With a Potent and Selective Activity Against HER2+ Cell Lines. J Immunother. 2016;39:223-32 pubmed 出版商
  99. Leo F, Bartels S, Mägel L, Framke T, Büsche G, Jonigk D, et al. Prognostic factors in the myoepithelial-like spindle cell type of metaplastic breast cancer. Virchows Arch. 2016;469:191-201 pubmed 出版商
  100. Yang Z, Jiang Q, Chen S, Hu C, Shen H, Huang P, et al. Differential changes in Neuregulin-1 signaling in major brain regions in a lipopolysaccharide-induced neuroinflammation mouse model. Mol Med Rep. 2016;14:790-6 pubmed 出版商
  101. Chung M, Lee J, Kim S, Suh Y, Choi H. Simple Prediction Model of Axillary Lymph Node Positivity After Analyzing Molecular and Clinical Factors in Early Breast Cancer. Medicine (Baltimore). 2016;95:e3689 pubmed 出版商
  102. Hsieh M, Yang P, Wong L, Lee J. The AXL receptor tyrosine kinase is associated with adverse prognosis and distant metastasis in esophageal squamous cell carcinoma. Oncotarget. 2016;7:36956-36970 pubmed 出版商
  103. de Geus S, Boogerd L, Swijnenburg R, Mieog J, Tummers W, Prevoo H, et al. Selecting Tumor-Specific Molecular Targets in Pancreatic Adenocarcinoma: Paving the Way for Image-Guided Pancreatic Surgery. Mol Imaging Biol. 2016;18:807-819 pubmed
  104. Song M, Park Y, Song H, Park S, Ahn J, Choi K, et al. Prognosis of Pregnancy-Associated Gastric Cancer: An Age-, Sex-, and Stage-Matched Case-Control Study. Gut Liver. 2016;10:731-8 pubmed 出版商
  105. Yard B, Adams D, Chie E, Tamayo P, Battaglia J, Gopal P, et al. A genetic basis for the variation in the vulnerability of cancer to DNA damage. Nat Commun. 2016;7:11428 pubmed 出版商
  106. Belov L, Matic K, Hallal S, Best O, Mulligan S, Christopherson R. Extensive surface protein profiles of extracellular vesicles from cancer cells may provide diagnostic signatures from blood samples. J Extracell Vesicles. 2016;5:25355 pubmed 出版商
  107. Marcus E, Tokhtaeva E, Turdikulova S, Capri J, Whitelegge J, Scott D, et al. Septin oligomerization regulates persistent expression of ErbB2/HER2 in gastric cancer cells. Biochem J. 2016;473:1703-18 pubmed 出版商
  108. Papadakis E, Barker C, Syed H, Reeves T, Schwaiger S, Stuppner H, et al. The Bag-1 inhibitor, Thio-2, reverses an atypical 3D morphology driven by Bag-1L overexpression in a MCF-10A model of ductal carcinoma in situ. Oncogenesis. 2016;5:e215 pubmed 出版商
  109. Gschweitl M, Ulbricht A, Barnes C, Enchev R, Stoffel Studer I, Meyer Schaller N, et al. A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes. elife. 2016;5:e13841 pubmed 出版商
  110. Ongaratti B, Silva C, Trott G, Haag T, Leães C, Ferreira N, et al. Expression of merlin, NDRG2, ERBB2, and c-MYC in meningiomas: relationship with tumor grade and recurrence. Braz J Med Biol Res. 2016;49:e5125 pubmed 出版商
  111. Mancini M, Lien E, Toker A. Oncogenic AKT1(E17K) mutation induces mammary hyperplasia but prevents HER2-driven tumorigenesis. Oncotarget. 2016;7:17301-13 pubmed 出版商
  112. Meng Y, Zheng L, Yang Y, Wang H, Dong J, Wang C, et al. A monoclonal antibody targeting ErbB2 domain III inhibits ErbB2 signaling and suppresses the growth of ErbB2-overexpressing breast tumors. Oncogenesis. 2016;5:e211 pubmed 出版商
  113. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  114. Koussounadis A, Langdon S, Um I, Kay C, Francis K, Harrison D, et al. Dynamic modulation of phosphoprotein expression in ovarian cancer xenograft models. BMC Cancer. 2016;16:205 pubmed 出版商
  115. Matsumoto H, Thike A, Li H, Yeong J, Koo S, Dent R, et al. Increased CD4 and CD8-positive T cell infiltrate signifies good prognosis in a subset of triple-negative breast cancer. Breast Cancer Res Treat. 2016;156:237-47 pubmed 出版商
  116. Choi W, de Poot S, Lee J, Kim J, Han D, Kim Y, et al. Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation. Nat Commun. 2016;7:10963 pubmed 出版商
  117. Soares M, Ribeiro R, Najmudin S, Gameiro A, Rodrigues R, Cardoso F, et al. Serum HER2 levels are increased in cats with mammary carcinomas and predict tissue HER2 status. Oncotarget. 2016;7:17314-26 pubmed 出版商
  118. Li H, Shen P, Liang Y, Zhang F. Fibroblastic reticular cell tumor of the breast: A case report and review of the literature. Exp Ther Med. 2016;11:561-564 pubmed
  119. Stindt S, Cebula P, Albrecht U, Keitel V, Schulte Am Esch J, Knoefel W, et al. Hepatitis C Virus Activates a Neuregulin-Driven Circuit to Modify Surface Expression of Growth Factor Receptors of the ErbB Family. PLoS ONE. 2016;11:e0148711 pubmed 出版商
  120. Wang Y, Kang S, Khan A, Ruttner G, Leigh S, Murray M, et al. Quantitative molecular phenotyping with topically applied SERS nanoparticles for intraoperative guidance of breast cancer lumpectomy. Sci Rep. 2016;6:21242 pubmed 出版商
  121. Kim D, Helfman D. Loss of MLCK leads to disruption of cell-cell adhesion and invasive behavior of breast epithelial cells via increased expression of EGFR and ERK/JNK signaling. Oncogene. 2016;35:4495-508 pubmed 出版商
  122. Dupouy D, Ciftlik A, Fiche M, Heintze D, Bisig B, de Leval L, et al. Continuous quantification of HER2 expression by microfluidic precision immunofluorescence estimates HER2 gene amplification in breast cancer. Sci Rep. 2016;6:20277 pubmed 出版商
  123. Evans M, Sauer S, Nath S, Robinson T, Morse M, Devi G. X-linked inhibitor of apoptosis protein mediates tumor cell resistance to antibody-dependent cellular cytotoxicity. Cell Death Dis. 2016;7:e2073 pubmed 出版商
  124. Teng Y, Pi W, Wang Y, Cowell J. WASF3 provides the conduit to facilitate invasion and metastasis in breast cancer cells through HER2/HER3 signaling. Oncogene. 2016;35:4633-40 pubmed 出版商
  125. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  126. Roßner F, Gieseler C, Morkel M, Royer H, Rivera M, Bläker H, et al. Uncoupling of EGFR-RAS signaling and nuclear localization of YBX1 in colorectal cancer. Oncogenesis. 2016;5:e187 pubmed 出版商
  127. Khalil H, Langdon S, Kankia I, Bown J, Deeni Y. NRF2 Regulates HER2 and HER3 Signaling Pathway to Modulate Sensitivity to Targeted Immunotherapies. Oxid Med Cell Longev. 2016;2016:4148791 pubmed 出版商
  128. Nalwoga H, Ahmed L, Arnes J, Wabinga H, Akslen L. Strong Expression of Hypoxia-Inducible Factor-1α (HIF-1α) Is Associated with Axl Expression and Features of Aggressive Tumors in African Breast Cancer. PLoS ONE. 2016;11:e0146823 pubmed 出版商
  129. Jeong J, VanHouten J, Dann P, Kim W, Sullivan C, Yu H, et al. PMCA2 regulates HER2 protein kinase localization and signaling and promotes HER2-mediated breast cancer. Proc Natl Acad Sci U S A. 2016;113:E282-90 pubmed 出版商
  130. Yamaguchi T, Lu C, Ida L, Yanagisawa K, Usukura J, Cheng J, et al. ROR1 sustains caveolae and survival signalling as a scaffold of cavin-1 and caveolin-1. Nat Commun. 2016;7:10060 pubmed 出版商
  131. Creedon H, Balderstone L, Muir M, Balla J, Gómez Cuadrado L, Tracey N, et al. Use of a genetically engineered mouse model as a preclinical tool for HER2 breast cancer. Dis Model Mech. 2016;9:131-40 pubmed 出版商
  132. Liu X, Feng C, Liu J, Zhao L, Liu J, Zhang W, et al. Heat shock protein 27 and gross cystic disease fluid protein 15 play critical roles in molecular apocrine breast cancer. Tumour Biol. 2016;37:8027-36 pubmed 出版商
  133. Siegfried J, Lin Y, Diergaarde B, Lin H, Dacic S, Pennathur A, et al. Expression of PAM50 Genes in Lung Cancer: Evidence that Interactions between Hormone Receptors and HER2/HER3 Contribute to Poor Outcome. Neoplasia. 2015;17:817-25 pubmed 出版商
  134. Vishnoi M, Peddibhotla S, Yin W, T Scamardo A, George G, Hong D, et al. The isolation and characterization of CTC subsets related to breast cancer dormancy. Sci Rep. 2015;5:17533 pubmed 出版商
  135. El Gendi S, Mostafa M. Runx2 Expression as a Potential Prognostic Marker in Invasive Ductal Breast Carcinoma. Pathol Oncol Res. 2016;22:461-70 pubmed 出版商
  136. Chen J, Chen Y, Yen C, Chen W, Huang W. HBx sensitizes hepatocellular carcinoma cells to lapatinib by up-regulating ErbB3. Oncotarget. 2016;7:473-89 pubmed 出版商
  137. Clemente Vicario F, Alvarez C, ROWELL J, Roy S, London C, Kisseberth W, et al. Human Genetic Relevance and Potent Antitumor Activity of Heat Shock Protein 90 Inhibition in Canine Lung Adenocarcinoma Cell Lines. PLoS ONE. 2015;10:e0142007 pubmed 出版商
  138. Askoxylakis V, Ferraro G, Kodack D, Badeaux M, Shankaraiah R, Seano G, et al. Preclinical Efficacy of Ado-trastuzumab Emtansine in the Brain Microenvironment. J Natl Cancer Inst. 2016;108: pubmed 出版商
  139. Pai P, Rachagani S, Lakshmanan I, Macha M, Sheinin Y, Smith L, et al. The canonical Wnt pathway regulates the metastasis-promoting mucin MUC4 in pancreatic ductal adenocarcinoma. Mol Oncol. 2016;10:224-39 pubmed 出版商
  140. Prince T, Kijima T, Tatokoro M, Lee S, Tsutsumi S, Yim K, et al. Client Proteins and Small Molecule Inhibitors Display Distinct Binding Preferences for Constitutive and Stress-Induced HSP90 Isoforms and Their Conformationally Restricted Mutants. PLoS ONE. 2015;10:e0141786 pubmed 出版商
  141. Soares M, Correia J, Peleteiro M, Ferreira F. St Gallen molecular subtypes in feline mammary carcinoma and paired metastases-disease progression and clinical implications from a 3-year follow-up study. Tumour Biol. 2016;37:4053-64 pubmed 出版商
  142. Kan S, Koido S, Okamoto M, Hayashi K, Ito M, Kamata Y, et al. Up-regulation of HER2 by gemcitabine enhances the antitumor effect of combined gemcitabine and trastuzumab emtansine treatment on pancreatic ductal adenocarcinoma cells. BMC Cancer. 2015;15:726 pubmed 出版商
  143. Rodríguez C, Reidel S, Bal de Kier Joffé E, Jasnis M, Fiszman G. Autophagy Protects from Trastuzumab-Induced Cytotoxicity in HER2 Overexpressing Breast Tumor Spheroids. PLoS ONE. 2015;10:e0137920 pubmed 出版商
  144. Wu Y, Deng W, Klinke D. Exosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst. 2015;140:6631-42 pubmed 出版商
  145. Gómez R, Ossa C, Montoya M, Echeverri C, Ángel G, Ascuntar J, et al. Impact of immunohistochemistry-based molecular subtype on chemosensitivity and survival in Hispanic breast cancer patients following neoadjuvant chemotherapy. Ecancermedicalscience. 2015;9:562 pubmed 出版商
  146. KapucuoÄŸlu N, Bozkurt K, BaÅŸpınar Å, Koçer M, EroÄŸlu H, Akdeniz R, et al. The clinicopathological and prognostic significance of CD24, CD44, CD133, ALDH1 expressions in invasive ductal carcinoma of the breast: CD44/CD24 expression in breast cancer. Pathol Res Pract. 2015;211:740-7 pubmed 出版商
  147. Capparelli C, Rosenbaum S, Berger A, Aplin A. Fibroblast-derived neuregulin 1 promotes compensatory ErbB3 receptor signaling in mutant BRAF melanoma. J Biol Chem. 2015;290:24267-77 pubmed 出版商
  148. Wang D, Pang Z, Clarke G, Nofech Mozes S, Liu K, Cheung A, et al. Ki-67 Membranous Staining: Biologically Relevant or an Artifact of Multiplexed Immunofluorescent Staining. Appl Immunohistochem Mol Morphol. 2016;24:447-52 pubmed 出版商
  149. Leung K, Batey S, Rowlands R, Isaac S, Jones P, Drewett V, et al. A HER2-specific Modified Fc Fragment (Fcab) Induces Antitumor Effects Through Degradation of HER2 and Apoptosis. Mol Ther. 2015;23:1722-1733 pubmed 出版商
  150. Abdel Latif G, Al Abd A, Tadros M, Al Abbasi F, Khalifa A, Abdel Naim A. The chemomodulatory effects of resveratrol and didox on herceptin cytotoxicity in breast cancer cell lines. Sci Rep. 2015;5:12054 pubmed 出版商
  151. Hagrass H, Sharaf S, Pasha H, Tantawy E, Mohamed R, Kassem R. Circulating microRNAs - a new horizon in molecular diagnosis of breast cancer. Genes Cancer. 2015;6:281-7 pubmed
  152. Cheung S, Boey Y, Koh V, Thike A, Lim J, Iqbal J, et al. Role of epithelial-mesenchymal transition markers in triple-negative breast cancer. Breast Cancer Res Treat. 2015;152:489-98 pubmed 出版商
  153. Blancafort A, Giró Perafita A, Oliveras G, Palomeras S, Turrado C, Campuzano Ã, et al. Dual fatty acid synthase and HER2 signaling blockade shows marked antitumor activity against breast cancer models resistant to anti-HER2 drugs. PLoS ONE. 2015;10:e0131241 pubmed 出版商
  154. Yang L, Li Y, Bhattacharya A, Zhang Y. Inhibition of ERBB2-overexpressing Tumors by Recombinant Human Prolidase and Its Enzymatically Inactive Mutant. EBioMedicine. 2015;2:396-405 pubmed
  155. Hutchinson K, Johnson D, Johnson A, Sanchez V, Kuba M, Lu P, et al. ERBB activation modulates sensitivity to MEK1/2 inhibition in a subset of driver-negative melanoma. Oncotarget. 2015;6:22348-60 pubmed
  156. Koh V, Lim J, Thike A, Cheok P, Thu M, Tan V, et al. Characteristics and behaviour of screen-detected ductal carcinoma in situ of the breast: comparison with symptomatic patients. Breast Cancer Res Treat. 2015;152:293-304 pubmed 出版商
  157. Winczura P, SosiÅ„ska Mielcarek K, Duchnowska R, Badzio A, Lakomy J, Majewska H, et al. Immunohistochemical Predictors of Bone Metastases in Breast Cancer Patients. Pathol Oncol Res. 2015;21:1229-36 pubmed 出版商
  158. Kurppa K, Denessiouk K, Johnson M, Elenius K. Activating ERBB4 mutations in non-small cell lung cancer. Oncogene. 2016;35:1283-91 pubmed 出版商
  159. Jäger W, Xue H, Hayashi T, Janssen C, Awrey S, Wyatt A, et al. Patient-derived bladder cancer xenografts in the preclinical development of novel targeted therapies. Oncotarget. 2015;6:21522-32 pubmed
  160. Hofmann B, Schlüter L, Lange P, Mercanoglu B, Ewald F, Fölster A, et al. COSMC knockdown mediated aberrant O-glycosylation promotes oncogenic properties in pancreatic cancer. Mol Cancer. 2015;14:109 pubmed 出版商
  161. de Deus Moura R, Carvalho F, Bacchi C. Breast cancer in very young women: Clinicopathological study of 149 patients ≤25 years old. Breast. 2015;24:461-7 pubmed 出版商
  162. Demicco E, Wani K, Fox P, Bassett R, Young E, Lev D, et al. Histologic variability in solitary fibrous tumors reflects angiogenic and growth factor signaling pathway alterations. Hum Pathol. 2015;46:1015-26 pubmed 出版商
  163. Kan S, Koido S, Okamoto M, Hayashi K, Ito M, Kamata Y, et al. Gemcitabine treatment enhances HER2 expression in low HER2-expressing breast cancer cells and enhances the antitumor effects of trastuzumab emtansine. Oncol Rep. 2015;34:504-10 pubmed 出版商
  164. Nwafor C, Keshinro S. Pattern of hormone receptors and human epidermal growth factor receptor 2 status in sub-Saharan breast cancer cases: Private practice experience. Niger J Clin Pract. 2015;18:553-8 pubmed 出版商
  165. UgraÅŸ N, Özgün G, OcakoÄŸlu G, Yerci Ã, Öztürk E. Relationship between HER-2, COX-2, p53 and clinicopathologic features in gastric adenocarcinoma. Do these biomarkers have any prognostic significance?. Turk J Gastroenterol. 2014;25 Suppl 1:176-81 pubmed 出版商
  166. Liu H, Du L, Wang R, Wei C, Liu B, Zhu L, et al. High frequency of loss of PTEN expression in human solid salivary adenoid cystic carcinoma and its implication for targeted therapy. Oncotarget. 2015;6:11477-91 pubmed
  167. Ding W, Tong S, Gou Y, Sun C, Wang H, Chen Z, et al. Human epidermal growth factor receptor 2: a significant indicator for predicting progression in non-muscle-invasive bladder cancer especially in high-risk groups. World J Urol. 2015;33:1951-7 pubmed 出版商
  168. Yardley D, Kaufman P, Huang W, Krekow L, Savin M, Lawler W, et al. Quantitative measurement of HER2 expression in breast cancers: comparison with 'real-world' routine HER2 testing in a multicenter Collaborative Biomarker Study and correlation with overall survival. Breast Cancer Res. 2015;17:41 pubmed 出版商
  169. Deleyrolle L, Sabourin J, Rothhut B, Fujita H, Guichet P, Teigell M, et al. OCAM regulates embryonic spinal cord stem cell proliferation by modulating ErbB2 receptor. PLoS ONE. 2015;10:e0122337 pubmed 出版商
  170. Ferreira R, Law M, Jahn S, Davis B, Heldermon C, Reinhard M, et al. Novel agents that downregulate EGFR, HER2, and HER3 in parallel. Oncotarget. 2015;6:10445-59 pubmed
  171. Jørgensen M, Bæk R, Varming K. Potentials and capabilities of the Extracellular Vesicle (EV) Array. J Extracell Vesicles. 2015;4:26048 pubmed 出版商
  172. Savci Heijink C, Halfwerk H, Hooijer G, Horlings H, Wesseling J, van de Vijver M. Retrospective analysis of metastatic behaviour of breast cancer subtypes. Breast Cancer Res Treat. 2015;150:547-57 pubmed 出版商
  173. Gumusay O, Benekli M, Ekinci O, Baykara M, Ozet A, Coskun U, et al. Discordances in HER2 status between primary gastric cancer and corresponding metastatic sites. Jpn J Clin Oncol. 2015;45:416-21 pubmed 出版商
  174. Oon M, Thike A, Tan S, Tan P. Cancer stem cell and epithelial-mesenchymal transition markers predict worse outcome in metaplastic carcinoma of the breast. Breast Cancer Res Treat. 2015;150:31-41 pubmed 出版商
  175. Cuello Carrión F, Shortrede J, Alvarez Olmedo D, Cayado Gutiérrez N, Castro G, Zoppino F, et al. HER2 and β-catenin protein location: importance in the prognosis of breast cancer patients and their correlation when breast cancer cells suffer stressful situations. Clin Exp Metastasis. 2015;32:151-68 pubmed 出版商
  176. Hu S, Sun Y, Meng Y, Wang X, Yang W, Fu W, et al. Molecular architecture of the ErbB2 extracellular domain homodimer. Oncotarget. 2015;6:1695-706 pubmed
  177. Tökés A, Szász A, Geszti F, Lukács L, Kenessey I, Turányi E, et al. Expression of proliferation markers Ki67, cyclin A, geminin and aurora-kinase A in primary breast carcinomas and corresponding distant metastases. J Clin Pathol. 2015;68:274-82 pubmed 出版商
  178. Yoo J, Kim T, Kong S, Lee J, Choi W, Kim K, et al. Role of Mig-6 in hepatic glucose metabolism. J Diabetes. 2016;8:86-97 pubmed 出版商
  179. Blanchard Z, Paul B, Craft B, ElShamy W. BRCA1-IRIS inactivation overcomes paclitaxel resistance in triple negative breast cancers. Breast Cancer Res. 2015;17:5 pubmed 出版商
  180. Papanikolaou V, Stefanou N, Dubos S, Papathanasiou I, Palianopoulou M, Valiakou V, et al. Synergy of leptin/STAT3 with HER2 receptor induces tamoxifen resistance in breast cancer cells through regulation of apoptosis-related genes. Cell Oncol (Dordr). 2015;38:155-64 pubmed 出版商
  181. Kumar S, Das S, Rachagani S, Kaur S, Joshi S, Johansson S, et al. NCOA3-mediated upregulation of mucin expression via transcriptional and post-translational changes during the development of pancreatic cancer. Oncogene. 2015;34:4879-89 pubmed 出版商
  182. Liu J, Yu Y, Sun J, He S, Wang X, Yin J, et al. Clinicopathologic characteristics and prognosis of primary squamous cell carcinoma of the breast. Breast Cancer Res Treat. 2015;149:133-40 pubmed 出版商
  183. Tu J, Yu Y, Liu W, Chen S. Significance of human epidermal growth factor receptor 2 expression in colorectal cancer. Exp Ther Med. 2015;9:17-24 pubmed
  184. Katz Y, Li F, Lambert N, Sokol E, Tam W, Cheng A, et al. Musashi proteins are post-transcriptional regulators of the epithelial-luminal cell state. elife. 2014;3:e03915 pubmed 出版商
  185. Hong Y, Kim J, Pectasides E, Fox C, Hong S, Ma Q, et al. Src mutation induces acquired lapatinib resistance in ERBB2-amplified human gastroesophageal adenocarcinoma models. PLoS ONE. 2014;9:e109440 pubmed 出版商
  186. Li J, Zhang Y, Zhang W, Gao Y, Jia S, Guo J. Contrast enhanced computed tomography is indicative for angiogenesis pattern and display prognostic significance in breast cancer. BMC Cancer. 2014;14:672 pubmed 出版商
  187. Thomas G, Chardès T, Gaborit N, Mollevi C, Leconet W, Robert B, et al. HER3 as biomarker and therapeutic target in pancreatic cancer: new insights in pertuzumab therapy in preclinical models. Oncotarget. 2014;5:7138-48 pubmed
  188. Carvalho F, Bacchi L, Pincerato K, van de Rijn M, Bacchi C. Geographic differences in the distribution of molecular subtypes of breast cancer in Brazil. BMC Womens Health. 2014;14:102 pubmed 出版商
  189. Mahajan K, Lawrence H, Lawrence N, Mahajan N. ACK1 tyrosine kinase interacts with histone demethylase KDM3A to regulate the mammary tumor oncogene HOXA1. J Biol Chem. 2014;289:28179-91 pubmed 出版商
  190. Kugel C, Hartsough E, Davies M, Setiady Y, Aplin A. Function-blocking ERBB3 antibody inhibits the adaptive response to RAF inhibitor. Cancer Res. 2014;74:4122-32 pubmed 出版商
  191. Wang J, Mikse O, Liao R, Li Y, Tan L, Jänne P, et al. Ligand-associated ERBB2/3 activation confers acquired resistance to FGFR inhibition in FGFR3-dependent cancer cells. Oncogene. 2015;34:2167-77 pubmed 出版商
  192. Zeng L, Holly J, Perks C. Effects of physiological levels of the green tea extract epigallocatechin-3-gallate on breast cancer cells. Front Endocrinol (Lausanne). 2014;5:61 pubmed 出版商
  193. Jung S, Ohk J, Jeong D, Li C, Lee S, Duan J, et al. Distinct regulatory effect of the p34SEI-1 oncoprotein on cancer metastasis in HER2/neu-positive and -negative cells. Int J Oncol. 2014;45:189-96 pubmed 出版商
  194. Asp N, Pust S, Sandvig K. Flotillin depletion affects ErbB protein levels in different human breast cancer cells. Biochim Biophys Acta. 2014;1843:1987-96 pubmed 出版商
  195. Jakob J, Kies M, Glisson B, Kupferman M, Liu D, Lee J, et al. Phase II study of gefitinib in patients with advanced salivary gland cancers. Head Neck. 2015;37:644-9 pubmed 出版商
  196. Boin A, Couvelard A, Couderc C, Brito I, Filipescu D, Kalamarides M, et al. Proteomic screening identifies a YAP-driven signaling network linked to tumor cell proliferation in human schwannomas. Neuro Oncol. 2014;16:1196-209 pubmed 出版商
  197. Neumeister V, Parisi F, England A, Siddiqui S, Anagnostou V, Zarrella E, et al. A tissue quality index: an intrinsic control for measurement of effects of preanalytical variables on FFPE tissue. Lab Invest. 2014;94:467-74 pubmed 出版商
  198. Jackson D, Atkinson J, Guevara C, Zhang C, Kery V, Moon S, et al. In vitro and in vivo evaluation of cysteine and site specific conjugated herceptin antibody-drug conjugates. PLoS ONE. 2014;9:e83865 pubmed 出版商
  199. Xia Q, Cai Y, Peng R, Wu G, Shi Y, Jiang W. The CDK1 inhibitor RO3306 improves the response of BRCA-pro?cient breast cancer cells to PARP inhibition. Int J Oncol. 2014;44:735-44 pubmed 出版商
  200. Xu C, Chen H, Wang X, Gao J, Che Y, Li Y, et al. S100A14, a member of the EF-hand calcium-binding proteins, is overexpressed in breast cancer and acts as a modulator of HER2 signaling. J Biol Chem. 2014;289:827-37 pubmed 出版商
  201. Wakatsuki S, Araki T, Sehara Fujisawa A. Neuregulin-1/glial growth factor stimulates Schwann cell migration by inducing ?5 ?1 integrin-ErbB2-focal adhesion kinase complex formation. Genes Cells. 2014;19:66-77 pubmed 出版商
  202. Qiu S, Wei X, Huang W, Wu M, Qin Y, Li Y, et al. Diagnostic and therapeutic strategy and the most efficient prognostic factors of breast malignant fibrous histiocytoma. Sci Rep. 2013;3:2529 pubmed 出版商
  203. Vlug E, van de Ven R, Vermeulen J, Bult P, van Diest P, Derksen P. Nuclear localization of the transcriptional coactivator YAP is associated with invasive lobular breast cancer. Cell Oncol (Dordr). 2013;36:375-84 pubmed 出版商
  204. Ren J, Jin F, Yu Z, Zhao L, Wang L, Bai X, et al. MYC overexpression and poor prognosis in sporadic breast cancer with BRCA1 deficiency. Tumour Biol. 2013;34:3945-58 pubmed 出版商
  205. Zhang J, Wang Y, Yin Q, Zhang W, Zhang T, Niu Y. An associated classification of triple negative breast cancer: the risk of relapse and the response to chemotherapy. Int J Clin Exp Pathol. 2013;6:1380-91 pubmed
  206. Aguiar F, Mendes H, Cirqueira C, Bacchi C, Carvalho F. Basal cytokeratin as a potential marker of low risk of invasion in ductal carcinoma in situ. Clinics (Sao Paulo). 2013;68:638-43 pubmed 出版商
  207. Brouxhon S, Kyrkanides S, Teng X, O Banion M, Clarke R, Byers S, et al. Soluble-E-cadherin activates HER and IAP family members in HER2+ and TNBC human breast cancers. Mol Carcinog. 2014;53:893-906 pubmed 出版商
  208. Sak M, Szymanska M, Bertelsen V, Hasmann M, Madshus I, Stang E. Pertuzumab counteracts the inhibitory effect of ErbB2 on degradation of ErbB3. Carcinogenesis. 2013;34:2031-8 pubmed 出版商
  209. Zhao Y, Li W, Lang R, Yang Y, Gao X, Zheng Y, et al. Primary acinic cell carcinoma of the breast: a case report and review of the literature. Int J Surg Pathol. 2014;22:177-81 pubmed 出版商
  210. Pereira C, Leal M, de Souza C, Montenegro R, Rey J, Carvalho A, et al. Prognostic and predictive significance of MYC and KRAS alterations in breast cancer from women treated with neoadjuvant chemotherapy. PLoS ONE. 2013;8:e60576 pubmed 出版商
  211. Liu T, Sun B, Zhao X, Gu Q, Dong X, Yao Z, et al. HER2/neu expression correlates with vasculogenic mimicry in invasive breast carcinoma. J Cell Mol Med. 2013;17:116-22 pubmed 出版商
  212. Harmelink C, Peng Y, Debenedittis P, Chen H, Shou W, Jiao K. Myocardial Mycn is essential for mouse ventricular wall morphogenesis. Dev Biol. 2013;373:53-63 pubmed 出版商
  213. Cadenas C, Vosbeck S, Hein E, Hellwig B, Langer A, Hayen H, et al. Glycerophospholipid profile in oncogene-induced senescence. Biochim Biophys Acta. 2012;1821:1256-68 pubmed 出版商
  214. Lindberg K, Helguero L, Omoto Y, Gustafsson J, Haldosén L. Estrogen receptor ? represses Akt signaling in breast cancer cells via downregulation of HER2/HER3 and upregulation of PTEN: implications for tamoxifen sensitivity. Breast Cancer Res. 2011;13:R43 pubmed 出版商
  215. Teng Y, Tan W, Thike A, Cheok P, Tse G, Wong N, et al. Mutations in the epidermal growth factor receptor (EGFR) gene in triple negative breast cancer: possible implications for targeted therapy. Breast Cancer Res. 2011;13:R35 pubmed 出版商
  216. Papanikolaou V, Iliopoulos D, Dimou I, Dubos S, Kappas C, Kitsiou Tzeli S, et al. Survivin regulation by HER2 through NF-?B and c-myc in irradiated breast cancer cells. J Cell Mol Med. 2011;15:1542-50 pubmed 出版商
  217. Wang H, Leavitt L, Ramaswamy R, Rapraeger A. Interaction of syndecan and alpha6beta4 integrin cytoplasmic domains: regulation of ErbB2-mediated integrin activation. J Biol Chem. 2010;285:13569-79 pubmed 出版商
  218. Kim T, Huh J, Lee S, Kang H, Kim G, An H. Down-regulation of claudin-2 in breast carcinomas is associated with advanced disease. Histopathology. 2008;53:48-55 pubmed 出版商
  219. Najy A, Day K, Day M. The ectodomain shedding of E-cadherin by ADAM15 supports ErbB receptor activation. J Biol Chem. 2008;283:18393-401 pubmed 出版商
  220. Lerdrup M, Hommelgaard A, Grandal M, van Deurs B. Geldanamycin stimulates internalization of ErbB2 in a proteasome-dependent way. J Cell Sci. 2006;119:85-95 pubmed
  221. Traxler P, Allegrini P, Brandt R, Brueggen J, Cozens R, Fabbro D, et al. AEE788: a dual family epidermal growth factor receptor/ErbB2 and vascular endothelial growth factor receptor tyrosine kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res. 2004;64:4931-41 pubmed
  222. Ng W. Fine-needle aspiration cytology findings of an uncommon micropapillary variant of pure mucinous carcinoma of the breast: review of patients over an 8-year period. Cancer. 2002;96:280-8 pubmed