这是一篇来自已证抗体库的有关人类 HIF-1甲 (HIF-1 alpha) 的综述,是根据248篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合HIF-1甲 抗体。
HIF-1甲 同义词: HIF-1-alpha; HIF-1A; HIF-1alpha; HIF1; HIF1-ALPHA; MOP1; PASD8; bHLHe78; hypoxia-inducible factor 1-alpha; ARNT interacting protein; PAS domain-containing protein 8; basic-helix-loop-helix-PAS protein MOP1; class E basic helix-loop-helix protein 78; hypoxia inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor); hypoxia-inducible factor 1 alpha isoform I.3; hypoxia-inducible factor1alpha; member of PAS protein 1; member of PAS superfamily 1

基因敲除验证
Novus Biologicals小鼠 单克隆(H1alpha67)
  • 免疫印迹 (基因敲除); 小鼠; 图2f
Novus BiologicalsHIF-1甲抗体(Novus, NB100-123)被用于免疫印迹 (基因敲除)在小鼠样品上 (图2f). Nat Commun (2016) ncbi
Novus Biologicals小鼠 单克隆(H1alpha67)
  • 免疫印迹 (基因敲减); 人类; 图3
  • 免疫印迹 (基因敲除); 小鼠; 图3
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫印迹 (基因敲减)在人类样品上 (图3) 和 免疫印迹 (基因敲除)在小鼠样品上 (图3). Sci Rep (2016) ncbi
Novus Biologicals兔 多克隆
  • 免疫印迹 (基因敲减); 人类; 图3
  • 免疫印迹 (基因敲除); 小鼠; 图3
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于免疫印迹 (基因敲减)在人类样品上 (图3) 和 免疫印迹 (基因敲除)在小鼠样品上 (图3). Sci Rep (2016) ncbi
碧迪BD小鼠 单克隆(54/HIF-1)
  • 免疫印迹 (基因敲除); 人类; 1:2000; 图7f
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹 (基因敲除)在人类样品上浓度为1:2000 (图7f). Nat Cell Biol (2015) ncbi
Novus Biologicals
兔 多克隆
  • 免疫印迹; 小鼠; 图5b
Novus BiologicalsHIF-1甲抗体(Novus, NB100-449)被用于免疫印迹在小鼠样品上 (图5b). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于免疫印迹在人类样品上 (图1a). Oncogenesis (2017) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹 (基因敲除); 小鼠; 图2f
Novus BiologicalsHIF-1甲抗体(Novus, NB100-123)被用于免疫印迹 (基因敲除)在小鼠样品上 (图2f). Nat Commun (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:500; 图s6
  • 细胞化学; 人类; 1:50; 图s4a
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于免疫印迹在人类样品上浓度为1:500 (图s6) 和 免疫细胞化学在人类样品上浓度为1:50 (图s4a). PLoS ONE (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫沉淀; 大鼠; 图4a
  • 免疫印迹; 大鼠; 图2d
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于免疫沉淀在大鼠样品上 (图4a) 和 免疫印迹在大鼠样品上 (图2d). Am J Transl Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图2c
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于免疫印迹在人类样品上浓度为1:1000 (图2c). Oncotarget (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-P; 人类; 1:50; 图1
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图1). Mol Clin Oncol (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 图s1b
  • 免疫印迹; 小鼠; 1:500; 图s7a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479B)被用于免疫组化-冰冻切片在小鼠样品上 (图s1b) 和 免疫印迹在小鼠样品上浓度为1:500 (图s7a). Arterioscler Thromb Vasc Biol (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 1:500; 图5
  • 细胞化学; 小鼠; 1:100; 图1
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, H1alpha67)被用于免疫印迹在小鼠样品上浓度为1:500 (图5) 和 免疫细胞化学在小鼠样品上浓度为1:100 (图1). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 细胞化学; 小鼠; 1:100; 图1
  • 免疫印迹; 小鼠; 1:500; 图5
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, H1alpha67)被用于免疫细胞化学在小鼠样品上浓度为1:100 (图1) 和 免疫印迹在小鼠样品上浓度为1:500 (图5). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 1:500; 图5
  • 细胞化学; 小鼠; 1:100; 图1
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, H1alpha67)被用于免疫印迹在小鼠样品上浓度为1:500 (图5) 和 免疫细胞化学在小鼠样品上浓度为1:100 (图1). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 细胞化学; 小鼠; 1:100; 图1
  • 免疫印迹; 小鼠; 1:500; 图5
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, H1alpha67)被用于免疫细胞化学在小鼠样品上浓度为1:100 (图1) 和 免疫印迹在小鼠样品上浓度为1:500 (图5). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 细胞化学; 小鼠; 1:100; 图1
  • 免疫印迹; 小鼠; 1:500; 图5
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, H1alpha67)被用于免疫细胞化学在小鼠样品上浓度为1:100 (图1) 和 免疫印迹在小鼠样品上浓度为1:500 (图5). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 细胞化学; 小鼠; 1:100; 图1
  • 免疫印迹; 小鼠; 1:500; 图5
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, H1alpha67)被用于免疫细胞化学在小鼠样品上浓度为1:100 (图1) 和 免疫印迹在小鼠样品上浓度为1:500 (图5). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 细胞化学; 小鼠; 1:100; 图1
  • 免疫印迹; 小鼠; 1:500; 图5
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, H1alpha67)被用于免疫细胞化学在小鼠样品上浓度为1:100 (图1) 和 免疫印迹在小鼠样品上浓度为1:500 (图5). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 细胞化学; 小鼠; 1:100; 图1
  • 免疫印迹; 小鼠; 1:500; 图5
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, H1alpha67)被用于免疫细胞化学在小鼠样品上浓度为1:100 (图1) 和 免疫印迹在小鼠样品上浓度为1:500 (图5). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 细胞化学; 小鼠; 1:100; 图1
  • 免疫印迹; 小鼠; 1:500; 图5
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, H1alpha67)被用于免疫细胞化学在小鼠样品上浓度为1:100 (图1) 和 免疫印迹在小鼠样品上浓度为1:500 (图5). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 1:500; 图5
  • 细胞化学; 小鼠; 1:100; 图1
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, H1alpha67)被用于免疫印迹在小鼠样品上浓度为1:500 (图5) 和 免疫细胞化学在小鼠样品上浓度为1:100 (图1). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 细胞化学; 小鼠; 1:100; 图1
  • 免疫印迹; 小鼠; 1:500; 图5
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, H1alpha67)被用于免疫细胞化学在小鼠样品上浓度为1:100 (图1) 和 免疫印迹在小鼠样品上浓度为1:500 (图5). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 细胞化学; 小鼠; 1:100; 图1
  • 免疫印迹; 小鼠; 1:500; 图5
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, H1alpha67)被用于免疫细胞化学在小鼠样品上浓度为1:100 (图1) 和 免疫印迹在小鼠样品上浓度为1:500 (图5). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 图1B
  • 免疫印迹; 人类; 1:500; 图1B
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于免疫组化在人类样品上 (图1B) 和 免疫印迹在人类样品上浓度为1:500 (图1B). Front Pharmacol (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-P; 人类; 1:100; 图1a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图1a). Nat Commun (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-P; 小鼠; 1:100; 图4
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图4). Theranostics (2016) ncbi
兔 多克隆
  • ChIP; 人类; 图4f
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB 10134)被用于染色质免疫沉淀 在人类样品上 (图4f). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化-P; 狗; 1:500; 图5
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于免疫组化-石蜡切片在狗样品上浓度为1:500 (图5). Brain Behav (2016) ncbi
兔 多克隆
  • ChIP; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus, NB100-134)被用于染色质免疫沉淀 在小鼠样品上. Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图2
Novus BiologicalsHIF-1甲抗体(Novus, NB100-449)被用于免疫印迹在小鼠样品上 (图2). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图s7a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-449)被用于免疫印迹在小鼠样品上 (图s7a). J Clin Invest (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 图2b
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫印迹在人类样品上 (图2b). Oncol Lett (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 图4
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于免疫组化在人类样品上 (图4). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 图3
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB-100-449)被用于免疫组化-冰冻切片在小鼠样品上 (图3). BMC Cancer (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于免疫印迹在人类样品上 (图1). Int J Cancer (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图5
Novus BiologicalsHIF-1甲抗体(Novus, NB100-479)被用于免疫印迹在大鼠样品上浓度为1:1000 (图5). Mol Med Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹 (基因敲减); 人类; 图3
  • 免疫印迹 (基因敲除); 小鼠; 图3
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫印迹 (基因敲减)在人类样品上 (图3) 和 免疫印迹 (基因敲除)在小鼠样品上 (图3). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹 (基因敲减); 人类; 图3
  • 免疫印迹 (基因敲除); 小鼠; 图3
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于免疫印迹 (基因敲减)在人类样品上 (图3) 和 免疫印迹 (基因敲除)在小鼠样品上 (图3). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于免疫印迹在人类样品上 (图2a). Cancer Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图2f
  • 免疫沉淀; 人类; 1:200; 图2f
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于免疫印迹在人类样品上浓度为1:1000 (图2f) 和 免疫沉淀在人类样品上浓度为1:200 (图2f). Nat Cell Biol (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:500; 图3
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫印迹在人类样品上浓度为1:500 (图3). J Cell Sci (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:500; 图3a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫印迹在人类样品上浓度为1:500 (图3a). Cell Tissue Res (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:500
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫印迹在人类样品上浓度为1:500. Nature (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 1:100; 图2b
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫组化在人类样品上浓度为1:100 (图2b). Oncotarget (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-P; 小鼠; 1:200; 图s5
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图s5). Cancer Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
Novus BiologicalsHIF-1甲抗体(Novus, NB100-134)被用于免疫印迹在人类样品上 (图1). J Cell Mol Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图3
  • 细胞化学; 人类; 1:100; 图4
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于免疫印迹在人类样品上浓度为1:500 (图3) 和 免疫细胞化学在人类样品上浓度为1:100 (图4). Oncol Rep (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:200; 图9A
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-449)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图9A). Antioxid Redox Signal (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:250; 图s1
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:250 (图s1). PLoS ONE (2015) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-P; 人类; 图2
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, ESEE122)被用于免疫组化-石蜡切片在人类样品上 (图2). J Cancer (2015) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-P; 人类; 图2
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, ESEE122)被用于免疫组化-石蜡切片在人类样品上 (图2). J Cancer (2015) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-P; 人类; 图2
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, ESEE122)被用于免疫组化-石蜡切片在人类样品上 (图2). J Cancer (2015) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-P; 人类; 图2
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, ESEE122)被用于免疫组化-石蜡切片在人类样品上 (图2). J Cancer (2015) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-P; 人类; 图2
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, ESEE122)被用于免疫组化-石蜡切片在人类样品上 (图2). J Cancer (2015) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-P; 人类; 图2
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, ESEE122)被用于免疫组化-石蜡切片在人类样品上 (图2). J Cancer (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:2000
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于免疫印迹在人类样品上浓度为1:2000. Life Sci (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 酶联免疫吸附测定; 人类; 图s4
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于酶联免疫吸附测定在人类样品上 (图s4). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图1e
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于免疫印迹在大鼠样品上 (图1e). J Clin Invest (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 表2
  • 免疫印迹; 人类; 表2
Novus BiologicalsHIF-1甲抗体(Novus, NB100-134)被用于免疫组化在人类样品上 (表2) 和 免疫印迹在人类样品上 (表2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:100
Novus BiologicalsHIF-1甲抗体(Novus, NB100-479)被用于免疫组化在大鼠样品上浓度为1:100. Int J Clin Exp Med (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:500
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫印迹在人类样品上浓度为1:500. Sci Rep (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 图4c
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫印迹在人类样品上 (图4c). Int J Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-449)被用于免疫印迹在小鼠样品上浓度为1:1000. Nat Commun (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹 (基因敲减); 人类; 图1
Novus BiologicalsHIF-1甲抗体(Biologicals, NB100-105)被用于免疫印迹 (基因敲减)在人类样品上 (图1). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:200; 表2
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫印迹在人类样品上浓度为1:200 (表2). PLoS ONE (2015) ncbi
兔 多克隆
  • ChIP; 小鼠; 图2
Novus BiologicalsHIF-1甲抗体(Novus, NB100-134)被用于染色质免疫沉淀 在小鼠样品上 (图2). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus, NB100-479)被用于免疫印迹在小鼠样品上. J Clin Invest (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于免疫印迹在人类样品上浓度为1:1000. Cells Tissues Organs (2014) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化; 人类
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-131)被用于. Acta Neuropathol Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:600
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于免疫印迹在小鼠样品上浓度为1:600. Mol Neurobiol (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于免疫印迹在小鼠样品上. Nature (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于免疫印迹在小鼠样品上. Neurosci Lett (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-F; 大鼠; 1:200; 图s2
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200 (图s2). J Cell Biochem (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 1:1000
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫印迹在小鼠样品上浓度为1:1000. Neuroreport (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus, NB100-479)被用于免疫印迹在小鼠样品上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(ESEE122)
  • 免疫印迹; 小鼠; 1:2000; 图2
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-131A1)被用于免疫印迹在小鼠样品上浓度为1:2000 (图2). Front Immunol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4a
  • 免疫沉淀; 人类; 图2a
Novus BiologicalsHIF-1甲抗体(Novus, NB100-479)被用于免疫印迹在人类样品上 (图4a) 和 免疫沉淀在人类样品上 (图2a). Genes Dev (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 细胞化学; 大鼠; 1:200
Novus BiologicalsHIF-1甲抗体(Novus Biological, NB-100-123)被用于免疫细胞化学在大鼠样品上浓度为1:200. Acta Neuropathol Commun (2014) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:100; 图4a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, 100-479)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图4a). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于免疫印迹在小鼠样品上. FASEB J (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于免疫印迹在大鼠样品上浓度为1:500. Lab Invest (2014) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于免疫组化-石蜡切片在小鼠样品上. Am J Pathol (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 1:250; 图6c
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于免疫组化在人类样品上浓度为1:250 (图6c). Nucleic Acids Res (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 大鼠
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫印迹在大鼠样品上. J Biol Chem (2013) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类
Novus BiologicalsHIF-1甲抗体(Novus, NB100-123)被用于免疫印迹在人类样品上. Cell Cycle (2012) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 大鼠; 1:500
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫印迹在大鼠样品上浓度为1:500. J Comp Neurol (2012) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-P; 人类; 1:200
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB 100-105)被用于免疫组化-石蜡切片在人类样品上浓度为1:200. J Histochem Cytochem (2007) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(mgc3)
  • 细胞化学; 人类; 1:200; 图e1a
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, AB16066)被用于免疫细胞化学在人类样品上浓度为1:200 (图e1a). Nature (2017) ncbi
兔 单克隆(EP1215Y)
  • 免疫印迹; 大鼠; 1:500; 图3b
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, EP1215Y)被用于免疫印迹在大鼠样品上浓度为1:500 (图3b). Heart Rhythm (2017) ncbi
小鼠 单克隆(mgc3)
  • 细胞化学; 人类; 图1
艾博抗(上海)贸易有限公司HIF-1甲抗体(abcam, ab16066)被用于免疫细胞化学在人类样品上 (图1). BMC Cancer (2016) ncbi
兔 多克隆
  • 免疫印迹 (基因敲减); 人类; 图s7
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, AB2185)被用于免疫印迹 (基因敲减)在人类样品上 (图s7). Oncotarget (2016) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-P; 人类; 1:250; 图2
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab8366)被用于免疫组化-石蜡切片在人类样品上浓度为1:250 (图2). Virchows Arch (2016) ncbi
小鼠 单克隆(ESEE122)
  • 细胞化学; 人类; 图1
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab8366)被用于免疫细胞化学在人类样品上 (图1). J Diabetes Res (2016) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-P; 人类; 表4
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ESEE122)被用于免疫组化-石蜡切片在人类样品上 (表4). Chin J Cancer (2016) ncbi
兔 多克隆
  • ChIP-Seq; 人类; 图2
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab2185)被用于ChIP-Seq在人类样品上 (图2). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(mgc3)
  • 免疫印迹; 人类; 1:500; 图3
艾博抗(上海)贸易有限公司HIF-1甲抗体(Santa Cruz Biotechnology, ab16066)被用于免疫印迹在人类样品上浓度为1:500 (图3). Exp Ther Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图6
艾博抗(上海)贸易有限公司HIF-1甲抗体(abcam, ab2185)被用于免疫印迹在小鼠样品上 (图6). Kidney Int (2016) ncbi
兔 多克隆
  • ChIP; 人类; 图2
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab2185)被用于染色质免疫沉淀 在人类样品上 (图2). Mol Med Rep (2015) ncbi
兔 单克隆(EP1215Y)
  • 免疫组化-P; 人类; 图6
  • 免疫印迹; 人类; 图2
  • 细胞化学; 人类; 图2
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab51608)被用于免疫组化-石蜡切片在人类样品上 (图6), 免疫印迹在人类样品上 (图2), 和 免疫细胞化学在人类样品上 (图2). Oncotarget (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 图1a
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab1)被用于免疫印迹在小鼠样品上 (图1a). PLoS ONE (2015) ncbi
小鼠 单克隆(mgc3)
  • 免疫组化-P; 小鼠; 图1b
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab16066)被用于免疫组化-石蜡切片在小鼠样品上 (图1b). PLoS ONE (2015) ncbi
兔 单克隆(EP1215Y)
  • 免疫印迹; 大鼠; 1:200; 图1
艾博抗(上海)贸易有限公司HIF-1甲抗体(abcam, ab51608)被用于免疫印迹在大鼠样品上浓度为1:200 (图1). Mol Med Rep (2015) ncbi
小鼠 单克隆(ESEE122)
  • 免疫印迹; 人类; 1:1000; 图3
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab8366)被用于免疫印迹在人类样品上浓度为1:1000 (图3). PLoS ONE (2015) ncbi
兔 单克隆(EP1215Y)
  • 酶联免疫吸附测定; 人类; 1:250; 图s4
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab51608)被用于酶联免疫吸附测定在人类样品上浓度为1:250 (图s4). PLoS ONE (2015) ncbi
兔 单克隆(EP1215Y)
  • 免疫组化-P; 人类; 1:100
  • 细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab51608)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 和 免疫细胞化学在人类样品上浓度为1:100. Mol Med Rep (2015) ncbi
兔 多克隆
  • ChIP; 人类; 图5
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab2185)被用于染色质免疫沉淀 在人类样品上 (图5). PLoS ONE (2015) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化; 人类; 1:500; 图6c
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab8366)被用于免疫组化在人类样品上浓度为1:500 (图6c). Oncotarget (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab1)被用于免疫印迹在人类样品上. Br J Pharmacol (2015) ncbi
兔 单克隆(EP1215Y)
  • 免疫印迹; 大鼠; 1:500; 图6
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab51608)被用于免疫印迹在大鼠样品上浓度为1:500 (图6). Mol Med Rep (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 1:500
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab1)被用于免疫组化在人类样品上浓度为1:500. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹 (基因敲减); 人类; 1:1000; 图4a
  • 细胞化学; 人类; 1:1000; 图s1c
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab2185)被用于免疫印迹 (基因敲减)在人类样品上浓度为1:1000 (图4a) 和 免疫细胞化学在人类样品上浓度为1:1000 (图s1c). Cancer Lett (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab2185)被用于免疫印迹在人类样品上浓度为1:500. Am J Pathol (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-P; 人类; 1:200
  • 免疫印迹; 人类; 1:5000
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab1)被用于免疫组化-石蜡切片在人类样品上浓度为1:200 和 免疫印迹在人类样品上浓度为1:5000. Stem Cells (2014) ncbi
兔 单克隆(EP1215Y)
  • 免疫组化-P; 人类; 1:100
  • 免疫印迹; 人类; 1:300
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab51608)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 和 免疫印迹在人类样品上浓度为1:300. Placenta (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab2185)被用于免疫印迹在人类样品上 (图2). J Biol Chem (2014) ncbi
小鼠 单克隆(ESEE122)
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab8366)被用于免疫印迹在大鼠样品上浓度为1:1000. Cell Signal (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 大鼠; 1:200
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, H1alpha67)被用于免疫印迹在大鼠样品上浓度为1:200. Lab Invest (2014) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:100
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, 2185)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100. Heredity (Edinb) (2014) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-P; 大鼠; 1:100
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab8366)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100. Stem Cells Dev (2014) ncbi
兔 多克隆
  • ChIP; 小鼠
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab2185)被用于染色质免疫沉淀 在小鼠样品上. Cardiovasc Res (2014) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:250
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab114977)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:250. Cardiovasc Res (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(28b)
  • 免疫印迹; 人类; 图2a
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-13515)被用于免疫印迹在人类样品上 (图2a). Am J Transl Res (2017) ncbi
小鼠 单克隆(28b)
  • 免疫印迹; 人类; 1:500; 图3A
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-13515)被用于免疫印迹在人类样品上浓度为1:500 (图3A). Oncol Lett (2017) ncbi
小鼠 单克隆(28b)
  • 免疫组化; 人类; 图1e
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-13515)被用于免疫组化在人类样品上 (图1e). Nat Commun (2016) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 人类; 图9d
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, H1alpha 67)被用于免疫印迹在人类样品上 (图9d). PLoS ONE (2016) ncbi
小鼠 单克隆(H1alpha 67)
  • 细胞化学; 人类; 1:50; 图2
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-53546)被用于免疫细胞化学在人类样品上浓度为1:50 (图2). Oncol Lett (2016) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫组化-P; 小鼠; 1:25; 图3
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, 67)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:25 (图3). Stem Cells Int (2016) ncbi
小鼠 单克隆(3C144)
  • 免疫印迹; 小鼠; 1:1000; 图2a
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-71247)被用于免疫印迹在小鼠样品上浓度为1:1000 (图2a). Mol Med Rep (2016) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫组化-P; 人类; 1:20; 图1
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于免疫组化-石蜡切片在人类样品上浓度为1:20 (图1). PLoS ONE (2016) ncbi
小鼠 单克隆(28b)
  • 免疫印迹; 人类; 1:1000; 图2f
  • 免疫沉淀; 人类; 1:200; 图2f
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-13515)被用于免疫印迹在人类样品上浓度为1:1000 (图2f) 和 免疫沉淀在人类样品上浓度为1:200 (图2f). Nat Cell Biol (2016) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫沉淀; 人类; 1:1000; 图5
  • 免疫印迹; 人类; 1:1000; 图4
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于免疫沉淀在人类样品上浓度为1:1000 (图5) 和 免疫印迹在人类样品上浓度为1:1000 (图4). J Cell Sci (2016) ncbi
小鼠 单克隆(28b)
  • 免疫印迹; 人类; 1:500; 图1
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-13515)被用于免疫印迹在人类样品上浓度为1:500 (图1). Mol Med Rep (2015) ncbi
小鼠 单克隆(28b)
  • 细胞化学; 人类; 图4
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-13515)被用于免疫细胞化学在人类样品上 (图4). PLoS ONE (2015) ncbi
小鼠 单克隆(3C144)
  • 免疫印迹; 人类
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-71247)被用于免疫印迹在人类样品上. PLoS ONE (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 人类; 图3
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-53546)被用于免疫印迹在人类样品上 (图3). EBioMedicine (2015) ncbi
小鼠 单克隆(28b)
  • 免疫组化-P; 人类; 1:200; 图1
  • 免疫印迹 (基因敲减); 人类; 1:1000; 图2
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-13515)被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图1) 和 免疫印迹 (基因敲减)在人类样品上浓度为1:1000 (图2). Oncotarget (2015) ncbi
小鼠 单克隆(28b)
  • 免疫组化-P; 人类; 图4
  • 免疫印迹; 人类; 图4
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-13515)被用于免疫组化-石蜡切片在人类样品上 (图4) 和 免疫印迹在人类样品上 (图4). PLoS ONE (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 人类; 图3
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-53546)被用于免疫印迹在人类样品上 (图3). Oncotarget (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 人类; 1:500; 图1
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-53546)被用于免疫印迹在人类样品上浓度为1:500 (图1). Mol Med Rep (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 细胞化学; 人类; 1:50; 图4
圣克鲁斯生物技术HIF-1甲抗体(anta Cruz, sc-53546)被用于免疫细胞化学在人类样品上浓度为1:50 (图4). Cell Cycle (2014) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 人类
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于免疫印迹在人类样品上. Oncotarget (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫组化; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:2000
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于免疫组化在大鼠样品上浓度为1:100 和 免疫印迹在大鼠样品上浓度为1:2000. Br J Neurosurg (2014) ncbi
小鼠 单克隆(28b)
  • EMSA; 人类; 1 ug
圣克鲁斯生物技术HIF-1甲抗体(Santa-Cruz Biotechnology Inc., sc13515)被用于EMSA在人类样品上浓度为1 ug. Liver Int (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于免疫印迹在大鼠样品上. Vascular (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于免疫印迹在大鼠样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫组化-P; 人类; 1:50; 表1
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, clone H1alpha67)被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (表1). Acta Histochem (2014) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫组化-P; 人类; 1:100
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Brain Tumor Pathol (2014) ncbi
赛默飞世尔
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图1b
赛默飞世尔HIF-1甲抗体(Thermo Scientific, PA1-16601)被用于免疫印迹在小鼠样品上浓度为1:1000 (图1b). Front Pharmacol (2017) ncbi
小鼠 单克隆(mgc3)
  • 细胞化学; 小鼠; 1:200; 图s1a
赛默飞世尔HIF-1甲抗体(Pierce, MA1-516)被用于免疫细胞化学在小鼠样品上浓度为1:200 (图s1a). Sci Rep (2017) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 图1b
赛默飞世尔HIF-1甲抗体(Thermo Fisher Scientific, H1alpha67)被用于免疫组化在人类样品上 (图1b). Oncogenesis (2017) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 图1b
赛默飞世尔HIF-1甲抗体(Thermo Fisher Scientific, H1alpha67)被用于免疫组化在人类样品上 (图1b). Oncogenesis (2017) ncbi
兔 单克隆(16H4L13)
  • 免疫印迹; 人类; 1:250; 图s1a
赛默飞世尔HIF-1甲抗体(Invitrogen, 16H4L13)被用于免疫印迹在人类样品上浓度为1:250 (图s1a). PLoS ONE (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 猪; 1:1000; 表1
赛默飞世尔HIF-1甲抗体(NeoMarkers, Ab-4)被用于免疫组化在猪样品上浓度为1:1000 (表1). Semin Thorac Cardiovasc Surg (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 猪; 1:1000; 表1
赛默飞世尔HIF-1甲抗体(NeoMarkers, Ab-4)被用于免疫组化在猪样品上浓度为1:1000 (表1). Semin Thorac Cardiovasc Surg (2016) ncbi
兔 多克隆
  • 免疫印迹 (基因敲减); 小鼠; 图3
赛默飞世尔HIF-1甲抗体(Thermo Fisher Scientific, PA1-16601)被用于免疫印迹 (基因敲减)在小鼠样品上 (图3). Cell Signal (2016) ncbi
小鼠 单克隆(mgc3)
  • 免疫印迹 (基因敲减); 人类; 图1a
赛默飞世尔HIF-1甲抗体(Affinity Bioreagents, mgc3)被用于免疫印迹 (基因敲减)在人类样品上 (图1a). FEBS Lett (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:1000; 图1
赛默飞世尔HIF-1甲抗体(Thermo Scientific, MA1-16504)被用于免疫印迹在人类样品上浓度为1:1000 (图1). FEBS Lett (2016) ncbi
兔 单克隆(16H4L13)
  • 免疫印迹; 人类; 1:500; 图6
赛默飞世尔HIF-1甲抗体(Fisher Scientific, 70050)被用于免疫印迹在人类样品上浓度为1:500 (图6). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图4
赛默飞世尔HIF-1甲抗体(ThermoFisher Scientific, PA1-16601)被用于免疫印迹在大鼠样品上 (图4). Mol Med Rep (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 1:200
赛默飞世尔HIF-1甲抗体(LabVision, H1alpha67)被用于免疫组化在人类样品上浓度为1:200. Int Urol Nephrol (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 1:200
赛默飞世尔HIF-1甲抗体(LabVision, H1alpha67)被用于免疫组化在人类样品上浓度为1:200. Int Urol Nephrol (2015) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:100; 图5
赛默飞世尔HIF-1甲抗体(Thermo Fisher Scientific, PA1-16601)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 (图5). Inflammation (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-P; 人类; 1:50
赛默飞世尔HIF-1甲抗体(Neomarkers, MS-1164)被用于免疫组化-石蜡切片在人类样品上浓度为1:50. Ann Surg Oncol (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-P; 人类; 1:50
赛默飞世尔HIF-1甲抗体(Neomarkers, MS-1164)被用于免疫组化-石蜡切片在人类样品上浓度为1:50. Ann Surg Oncol (2014) ncbi
小鼠 单克隆(mgc3)
  • EMSA; 小鼠
  • EMSA; 大鼠
赛默飞世尔HIF-1甲抗体(Thermo Scientific, MA1-516)被用于EMSA在小鼠样品上 和 在大鼠样品上. Am J Hum Genet (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-P; 大鼠; 1:200
赛默飞世尔HIF-1甲抗体(Thermo, MS-1164-P0)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:200. J Comp Neurol (2012) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-P; 大鼠; 1:200
赛默飞世尔HIF-1甲抗体(Thermo, MS-1164-P0)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:200. J Comp Neurol (2012) ncbi
安迪生物R&D
山羊 多克隆
  • 免疫组化-F; 小鼠; 1:100; 图2a
安迪生物R&DHIF-1甲抗体(R&D Systems, AF1935)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图2a). Nat Commun (2017) ncbi
小鼠 单克隆(241809)
  • 免疫印迹; 人类; 1:500; 图2a
安迪生物R&DHIF-1甲抗体(R&D Systems, MAB1536)被用于免疫印迹在人类样品上浓度为1:500 (图2a). Nat Commun (2016) ncbi
山羊 多克隆
  • 免疫印迹; 人类; 图4f
  • 免疫印迹; Domestic guinea pig; 图4f
安迪生物R&DHIF-1甲抗体(R&D Systems, AF1935)被用于免疫印迹在人类样品上 (图4f) 和 在Domestic guinea pig样品上 (图4f). Blood (2016) ncbi
小鼠 单克隆(241809)
  • 免疫印迹; 人类; 图7d
安迪生物R&DHIF-1甲抗体(R&D Systems, 241809)被用于免疫印迹在人类样品上 (图7d). Cell (2016) ncbi
山羊 多克隆
  • 免疫印迹; 人类; 1:500; 图4
安迪生物R&DHIF-1甲抗体(R&D, AF1935)被用于免疫印迹在人类样品上浓度为1:500 (图4). Front Oncol (2016) ncbi
小鼠 单克隆(241809)
  • 免疫印迹; 人类; 1:1000; 图7a
安迪生物R&DHIF-1甲抗体(R&D Systems, MAB1536)被用于免疫印迹在人类样品上浓度为1:1000 (图7a). FASEB J (2016) ncbi
小鼠 单克隆(241809)
  • 免疫印迹; 小鼠; 1:1000; 图1
安迪生物R&DHIF-1甲抗体(R&D, MAB1536)被用于免疫印迹在小鼠样品上浓度为1:1000 (图1). Sci Rep (2015) ncbi
山羊 多克隆
  • 免疫印迹; 人类; 1:500; 图5
安迪生物R&DHIF-1甲抗体(R&D Systems, AF1935)被用于免疫印迹在人类样品上浓度为1:500 (图5). J Biol Chem (2015) ncbi
小鼠 单克隆(241809)
  • 免疫印迹; 人类; 1:1000
安迪生物R&DHIF-1甲抗体(R&D Systems, MAB1536)被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2015) ncbi
GeneTex
兔 多克隆
  • 免疫印迹; 人类; 图2e
GeneTexHIF-1甲抗体(GeneTex, GTX127309)被用于免疫印迹在人类样品上 (图2e). Oncotarget (2016) ncbi
兔 多克隆
  • ChIP; 人类; 图2
  • 免疫印迹 (基因敲减); 人类; 图2
  • 免疫印迹; 小鼠; 图5
GeneTexHIF-1甲抗体(GeneTex, GTX127309)被用于染色质免疫沉淀 在人类样品上 (图2), 免疫印迹 (基因敲减)在人类样品上 (图2), 和 免疫印迹在小鼠样品上 (图5). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图5
GeneTexHIF-1甲抗体(Genetex, GTX127309)被用于免疫印迹在小鼠样品上 (图5). PLoS ONE (2016) ncbi
小鼠 单克隆(GT10211)
  • 免疫印迹; 人类; 图4d
GeneTexHIF-1甲抗体(Genetex, 628480)被用于免疫印迹在人类样品上 (图4d). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:800; 图s1
GeneTexHIF-1甲抗体(GeneTex, GTX127309)被用于免疫印迹在人类样品上浓度为1:800 (图s1). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
GeneTexHIF-1甲抗体(GeneTex, GTX30647)被用于免疫印迹在小鼠样品上浓度为1:1000. Exp Ther Med (2015) ncbi
小鼠 单克隆(GT10211)
  • 细胞化学; 人类; 1:100; 图5
GeneTexHIF-1甲抗体(GeneTex, GTX628480)被用于免疫细胞化学在人类样品上浓度为1:100 (图5). Nat Cell Biol (2015) ncbi
武汉三鹰
兔 多克隆
  • 免疫印迹; 大鼠; 1:800; 图4
武汉三鹰HIF-1甲抗体(ProteinTech, 20960-1-AP)被用于免疫印迹在大鼠样品上浓度为1:800 (图4). Braz J Med Biol Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
  • 细胞化学; 人类; 图4
武汉三鹰HIF-1甲抗体(ProteinTech, 20960-1-AP)被用于免疫印迹在人类样品上 (图4) 和 免疫细胞化学在人类样品上 (图4). Oncotarget (2015) ncbi
亚诺法生技股份有限公司
兔 多克隆
  • 免疫印迹; 小鼠
亚诺法生技股份有限公司HIF-1甲抗体(Abnova, PAB12138)被用于免疫印迹在小鼠样品上. Mol Cell Biol (2015) ncbi
小鼠 单克隆(H1alpha67)
  • ChIP; 人类; 图5
亚诺法生技股份有限公司HIF-1甲抗体(Abnova, MAB1892)被用于染色质免疫沉淀 在人类样品上 (图5). Nat Cell Biol (2015) ncbi
Active Motif
小鼠 单克隆(ESEE122)
  • 免疫印迹; 人类; 1:1000; 图4
Active MotifHIF-1甲抗体(Active Motif, 61275)被用于免疫印迹在人类样品上浓度为1:1000 (图4). Oncotarget (2016) ncbi
Bioss
兔 多克隆
  • 免疫组化-P; 人类; 1:500; 图1
  • 免疫印迹; 人类; 图5
BiossHIF-1甲抗体(Biosynthesis Biotechnology, bs0737R)被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图1) 和 免疫印迹在人类样品上 (图5). Oncol Rep (2015) ncbi
SICGEN
山羊 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图1
SICGENHIF-1甲抗体(Sicgen, AB0112-200)被用于免疫印迹在小鼠样品上浓度为1:1000 (图1). Sci Rep (2015) ncbi
Bethyl
兔 多克隆
  • 免疫印迹; 人类; 1:5000; 图2
BethylHIF-1甲抗体(Bethyl Laboratories, A300-286A)被用于免疫印迹在人类样品上浓度为1:5000 (图2). Cell Adh Migr (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
BethylHIF-1甲抗体(Bethyl, A300-286A)被用于免疫印迹在人类样品上 (图1). Science (2016) ncbi
兔 多克隆
  • ChIP; 人类; 图2
  • 免疫印迹 (基因敲减); 人类; 1:1000; 图2
  • 免疫印迹; 小鼠; 1:1000; 图2
BethylHIF-1甲抗体(Bethyl, A300-286A)被用于染色质免疫沉淀 在人类样品上 (图2) 和 免疫印迹 (基因敲减)在人类样品上浓度为1:1000 (图2). Nat Cell Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
BethylHIF-1甲抗体(Bethyl Laboratories, A300-286A)被用于免疫印迹在人类样品上 (图1). Biochem Biophys Res Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
BethylHIF-1甲抗体(Bethyl Laboratories, A300-286A)被用于免疫印迹在人类样品上. Cancer Res (2013) ncbi
碧迪BD
小鼠 单克隆(54/HIF-1)
  • 细胞化学; 人类; 1:100; 图5A
  • 免疫印迹; 人类; 1:1000; 图1E
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于免疫细胞化学在人类样品上浓度为1:100 (图5A) 和 免疫印迹在人类样品上浓度为1:1000 (图1E). elife (2017) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图5f
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹在人类样品上 (图5f). Br J Cancer (2017) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图2f
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于免疫印迹在人类样品上 (图2f). Oncotarget (2016) ncbi
小鼠 单克隆(29/HIF-1b)
  • 免疫印迹; 人类; 图1e
碧迪BDHIF-1甲抗体(BD Biosciences, 611078)被用于免疫印迹在人类样品上 (图1e). Oncogene (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图4b
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹在人类样品上 (图4b). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图2a
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610959)被用于免疫印迹在人类样品上 (图2a). Open Biol (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹 (基因敲减); 人类
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹 (基因敲减)在人类样品上. PLoS Pathog (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图s2a
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于免疫印迹在人类样品上 (图s2a). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图1c
碧迪BDHIF-1甲抗体(BD Bioscience, 610958)被用于免疫印迹在人类样品上 (图1c). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫组化; 人类; 1:400; 图2a
  • 免疫印迹; 人类; 图2b
碧迪BDHIF-1甲抗体(BD Transduction, 610958)被用于免疫组化在人类样品上浓度为1:400 (图2a) 和 免疫印迹在人类样品上 (图2b). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图5
碧迪BDHIF-1甲抗体(BD, 610959)被用于免疫印迹在人类样品上 (图5). PLoS ONE (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫组化-P; 人类; 1:100; 图4d
  • 免疫印迹; 人类; 图2b
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图4d) 和 免疫印迹在人类样品上 (图2b). Mol Cancer Ther (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹 (基因敲减); 人类; 1:1000; 图3a
碧迪BDHIF-1甲抗体(BD Bioscience, 610959)被用于免疫印迹 (基因敲减)在人类样品上浓度为1:1000 (图3a). Cell Death Dis (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫组化-P; 人类; 1:50; 表3
碧迪BDHIF-1甲抗体(BD TL, 610958)被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (表3). Oncol Lett (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹 (基因敲减); 人类; 1:1000; 图7b
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610958)被用于免疫印迹 (基因敲减)在人类样品上浓度为1:1000 (图7b). Autophagy (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图2
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹在人类样品上 (图2). Cell Rep (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图4e
碧迪BDHIF-1甲抗体(BD Bioscience, 610959)被用于免疫印迹在人类样品上 (图4e). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图3
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于免疫印迹在人类样品上 (图3). Cancer Res (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图13
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹在人类样品上 (图13). PLoS ONE (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图1
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹在人类样品上 (图1). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图1c
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹在人类样品上 (图1c). J Biol Chem (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图1
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹在人类样品上 (图1). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图1
碧迪BDHIF-1甲抗体(BD Transduction, 610958)被用于免疫印迹在人类样品上 (图1). Mol Oncol (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 其他; 人类; 图st1
碧迪BDHIF-1甲抗体(BD, 54)被用于其他在人类样品上 (图st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 其他; 人类; 图st1
碧迪BDHIF-1甲抗体(BD, 54)被用于其他在人类样品上 (图st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹 (基因敲减); 人类; 图4
碧迪BDHIF-1甲抗体(BD, 610959)被用于免疫印迹 (基因敲减)在人类样品上 (图4). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图4c
碧迪BDHIF-1甲抗体(BD Transduction, 610959)被用于免疫印迹在人类样品上 (图4c). Mol Cancer (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹 (基因敲减); 人类; 图 s1
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于免疫印迹 (基因敲减)在人类样品上 (图 s1). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:500; 图2b
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 54)被用于免疫印迹在人类样品上浓度为1:500 (图2b). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:500; 图2b
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 54)被用于免疫印迹在人类样品上浓度为1:500 (图2b). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图1
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于免疫印迹在人类样品上 (图1). Cell Cycle (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫沉淀; 人类; 1:1000; 图5
  • 免疫印迹; 人类; 1:1000; 图4
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫沉淀在人类样品上浓度为1:1000 (图5) 和 免疫印迹在人类样品上浓度为1:1000 (图4). J Cell Sci (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图s10b
碧迪BDHIF-1甲抗体(BD Biosciences, 54)被用于免疫印迹在人类样品上 (图s10b). J Clin Invest (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图s10b
碧迪BDHIF-1甲抗体(BD Biosciences, 54)被用于免疫印迹在人类样品上 (图s10b). J Clin Invest (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000; 图2a
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610959)被用于免疫印迹在人类样品上浓度为1:1000 (图2a). Radiat Oncol (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹 (基因敲除); 人类; 1:2000; 图7f
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹 (基因敲除)在人类样品上浓度为1:2000 (图7f). Nat Cell Biol (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹 (基因敲减); 人类; 图3
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹 (基因敲减)在人类样品上 (图3). Cardiovasc Res (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图9a
碧迪BDHIF-1甲抗体(BD, 610958)被用于免疫印迹在人类样品上 (图9a). Oncotarget (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000; 图9C
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于免疫印迹在人类样品上浓度为1:1000 (图9C). Antioxid Redox Signal (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图3c
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610959)被用于免疫印迹在人类样品上 (图3c). Mol Cancer (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000; 图9a
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹在人类样品上浓度为1:1000 (图9a). J Biol Chem (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:500; 图1
  • 细胞化学; 人类; 1:100; 图1
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹在人类样品上浓度为1:500 (图1) 和 免疫细胞化学在人类样品上浓度为1:100 (图1). Oncotarget (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000
碧迪BDHIF-1甲抗体(BD Biosciences, 61095)被用于免疫印迹在人类样品上浓度为1:1000. Nat Commun (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000
碧迪BDHIF-1甲抗体(BD Biosciences, 61095)被用于免疫印迹在人类样品上浓度为1:1000. Nat Commun (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000; 图3
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610958)被用于免疫印迹在人类样品上浓度为1:1000 (图3). PLoS ONE (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图3
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于免疫印迹在人类样品上 (图3). Sci Rep (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:250; 图6a
碧迪BDHIF-1甲抗体(Transduction Laboratories, 610959)被用于免疫印迹在人类样品上浓度为1:250 (图6a). PLoS ONE (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图4a
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹在人类样品上 (图4a). Gut (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图2c
碧迪BDHIF-1甲抗体(BD Bioscience, 610958)被用于免疫印迹在人类样品上 (图2c). PLoS ONE (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610958)被用于免疫印迹在人类样品上浓度为1:1000. Tumour Biol (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图1b
碧迪BDHIF-1甲抗体(BD Bioscience, 610959)被用于免疫印迹在人类样品上 (图1b). PLoS ONE (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫组化; 人类; 1:100; 图1
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫组化在人类样品上浓度为1:100 (图1). J Pathol (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图s3
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹在人类样品上 (图s3). Oncotarget (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫沉淀; 人类; 图1d
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于免疫沉淀在人类样品上 (图1d). PLoS ONE (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图s4
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于免疫印迹在人类样品上 (图s4). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 小鼠; 1:1000; 图5,6
碧迪BDHIF-1甲抗体(BD Bioscience, 54/HIF-1)被用于免疫印迹在小鼠样品上浓度为1:1000 (图5,6). Nat Commun (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 小鼠; 1:1000; 图5,6
碧迪BDHIF-1甲抗体(BD Bioscience, 54/HIF-1)被用于免疫印迹在小鼠样品上浓度为1:1000 (图5,6). Nat Commun (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:500
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于免疫印迹在人类样品上浓度为1:500. Oncol Lett (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图2
  • 免疫沉淀; 人类; 图5
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹在人类样品上 (图2) 和 免疫沉淀在人类样品上 (图5). Cell Cycle (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610959)被用于免疫印迹在人类样品上. Oncogene (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 小鼠; 图6
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于免疫印迹在小鼠样品上 (图6). Free Radic Biol Med (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图2a
碧迪BDHIF-1甲抗体(BD, 610958)被用于免疫印迹在人类样品上 (图2a). Nat Commun (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610958)被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000; 图4
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于免疫印迹在人类样品上浓度为1:1000 (图4). Int J Mol Med (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Bioscience, 610958)被用于免疫印迹在人类样品上. J Korean Med Sci (2014) ncbi
小鼠 单克隆(29/HIF-1b)
  • 免疫印迹 (基因敲减); 小鼠; 图3
碧迪BDHIF-1甲抗体(BD, 611078)被用于免疫印迹 (基因敲减)在小鼠样品上 (图3). Toxicol Sci (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫组化-P; 人类; 1:100; 图7
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图7). Cardiovasc Res (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图2a
  • 免疫印迹; 小鼠; 图2d
碧迪BDHIF-1甲抗体(BD, 610958)被用于免疫印迹在人类样品上 (图2a) 和 在小鼠样品上 (图2d). Genes Dev (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • ChIP; 人类; 图s1
  • 免疫印迹 (基因敲减); 人类; 1:1000; 图s2
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于染色质免疫沉淀 在人类样品上 (图s1) 和 免疫印迹 (基因敲减)在人类样品上浓度为1:1000 (图s2). Nat Med (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫组化-P; 人类
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Bioscience, 610958)被用于免疫组化-石蜡切片在人类样品上 和 免疫印迹在人类样品上. Oncotarget (2014) ncbi
小鼠 单克隆(29/HIF-1b)
  • 免疫印迹; 人类; 图4a
碧迪BDHIF-1甲抗体(BD, 611079)被用于免疫印迹在人类样品上 (图4a). Genes Dev (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹在人类样品上. Aging Cell (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Bioscience, 610959)被用于免疫印迹在人类样品上. Mol Cancer Res (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:250; 图1
碧迪BDHIF-1甲抗体(BD Biosciences, # 610958)被用于免疫印迹在人类样品上浓度为1:250 (图1). Cancer Res (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000
碧迪BDHIF-1甲抗体(BD, 610958)被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610959)被用于免疫印迹在人类样品上. Cell Cycle (2013) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Transduction, 610958)被用于免疫印迹在人类样品上. Cancer Res (2013) ncbi
小鼠 单克隆(54/HIF-1)
  • ChIP-Seq; 人类
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于ChIP-Seq在人类样品上 和 免疫印迹在人类样品上. J Biol Chem (2012) ncbi
赛信通(上海)生物试剂有限公司
兔 单克隆(D43B5)
  • 免疫印迹; 人类; 1:2000; 图7E
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell signaling, 3434)被用于免疫印迹在人类样品上浓度为1:2000 (图7E). elife (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:200; 图st1
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3716)被用于免疫印迹在人类样品上浓度为1:200 (图st1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图1
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3716)被用于免疫印迹在人类样品上浓度为1:1000 (图1). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图4
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signalling, 3716)被用于免疫印迹在人类样品上浓度为1:500 (图4). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell signaling, 3716)被用于免疫印迹在人类样品上 (图2). Nature (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3716S)被用于免疫印迹在人类样品上 (图2). Int J Oncol (2016) ncbi
兔 单克隆(D43B5)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3434S)被用于免疫印迹在小鼠样品上浓度为1:1000. Sci Transl Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signalling, 3716)被用于免疫印迹在人类样品上 (图3). Oncotarget (2016) ncbi
兔 单克隆(D43B5)
  • 免疫印迹; 人类; 1:5000; 图s1
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technology, 3434)被用于免疫印迹在人类样品上浓度为1:5000 (图s1). Nat Commun (2016) ncbi
兔 单克隆(D43B5)
  • 免疫印迹; 人类; 1:1000; 图4g
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3434)被用于免疫印迹在人类样品上浓度为1:1000 (图4g). Nat Cell Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:200; 图3
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3716)被用于免疫印迹在人类样品上浓度为1:200 (图3). J Cell Sci (2016) ncbi
兔 单克隆(D43B5)
  • 免疫印迹; 人类; 1:1000; 图4
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3434)被用于免疫印迹在人类样品上浓度为1:1000 (图4). J Cell Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell signaling, 3716S)被用于免疫印迹在人类样品上 (图1). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:1000; 图1g
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3716S)被用于免疫组化在人类样品上浓度为1:1000 (图1g). PLoS ONE (2015) ncbi
兔 单克隆(D43B5)
  • 免疫印迹; 人类; 1:500; 图3
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3434S)被用于免疫印迹在人类样品上浓度为1:500 (图3). PLoS ONE (2015) ncbi
兔 单克隆(D43B5)
  • 免疫沉淀; 人类; 图8
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell signaling, D43B5)被用于免疫沉淀在人类样品上 (图8). PLoS ONE (2015) ncbi
兔 单克隆(D43B5)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technology, 3434)被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Tech, 3716)被用于免疫印迹在人类样品上 (图6). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图7
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technology, 3716)被用于免疫印迹在人类样品上 (图7). Autophagy (2015) ncbi
兔 单克隆(D43B5)
  • 免疫印迹; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3434)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Nat Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technology, 3716S)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technology, 3716)被用于免疫印迹在人类样品上. Int J Cancer (2015) ncbi
兔 单克隆(D43B5)
  • 免疫印迹; 人类; 图2a
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3434)被用于免疫印迹在人类样品上 (图2a). Genes Dev (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:200
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3716)被用于免疫印迹在人类样品上浓度为1:200. Phlebology (2012) ncbi
西格玛奥德里奇
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 大鼠; 1:1000; 图8
西格玛奥德里奇HIF-1甲抗体(Sigma, H6536)被用于免疫印迹在大鼠样品上浓度为1:1000 (图8). PLoS ONE (2016) ncbi
小鼠 单克隆(OZ12)
  • 细胞化学; 人类; 1:100; 图2e
西格玛奥德里奇HIF-1甲抗体(Sigma, H 6411)被用于免疫细胞化学在人类样品上浓度为1:100 (图2e). Oncotarget (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:800; 图5
  • 免疫印迹; 小鼠; 1:800; 图6
  • 免疫组化; 人类; 图6
  • 免疫组化; 小鼠; 图6
西格玛奥德里奇HIF-1甲抗体(Sigma, H6536)被用于免疫印迹在人类样品上浓度为1:800 (图5) 和 在小鼠样品上浓度为1:800 (图6) 和 免疫组化在人类样品上 (图6) 和 在小鼠样品上 (图6). Nat Commun (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫沉淀; 小鼠
西格玛奥德里奇HIF-1甲抗体(Sigma Aldrich, 6536)被用于免疫沉淀在小鼠样品上. Kidney Int (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 1:1000; 图s12
西格玛奥德里奇HIF-1甲抗体(Sigma, H6536)被用于免疫印迹在小鼠样品上浓度为1:1000 (图s12). Antioxid Redox Signal (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 大鼠; 图6
西格玛奥德里奇HIF-1甲抗体(Sigma-Aldrich, H6536)被用于免疫印迹在大鼠样品上 (图6). J Biophotonics (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠
西格玛奥德里奇HIF-1甲抗体(Sigma-Aldrich, HPA001275)被用于免疫组化-冰冻切片在小鼠样品上. Neuroreport (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类
西格玛奥德里奇HIF-1甲抗体(Sigma-Aldrich, H6536)被用于免疫印迹在人类样品上. Surgery (2014) ncbi
默克密理博中国
小鼠 单克隆(H1alpha67)默克密理博中国HIF-1甲抗体(EMD Millipore, MAB5382)被用于. J Exp Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
默克密理博中国HIF-1甲抗体(Millipore, 07-1585)被用于免疫印迹在人类样品上浓度为1:1000. Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图3
默克密理博中国HIF-1甲抗体(Millipore, 07-1585)被用于免疫印迹在人类样品上浓度为1:1000 (图3). PLoS ONE (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 大鼠; 1:1000; 图 5
默克密理博中国HIF-1甲抗体(Millipore, MAB5382)被用于免疫印迹在大鼠样品上浓度为1:1000 (图 5). J Neurosci (2015) ncbi
兔 单克隆(EP1215Y)
  • 免疫印迹; 人类; 图1a
默克密理博中国HIF-1甲抗体(Merck Millipore, 04-1006)被用于免疫印迹在人类样品上 (图1a). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
默克密理博中国HIF-1甲抗体(Millipore, ABE 279)被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2015) ncbi
兔 单克隆(EP1215Y)
  • 细胞化学; 大鼠; 1:1000
默克密理博中国HIF-1甲抗体(Millipore Bioscience, 04-1006)被用于免疫细胞化学在大鼠样品上浓度为1:1000. Acta Neuropathol Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
默克密理博中国HIF-1甲抗体(Merck Millipore, ABE279)被用于免疫印迹在人类样品上浓度为1:1000. Liver Int (2015) ncbi
文章列表
  1. Giorgia Quadrato et al. (2017). "Cell diversity and network dynamics in photosensitive human brain organoids.".PMID 28445462
  2. Shi Jie Li et al. (2017). "MicroRNA-150 regulates glycolysis by targeting von Hippel-Lindau in glioma cells.".PMID 28386333
  3. Qing Guo et al. (2017). "TCN, an AKT inhibitor, exhibits potent antitumor activity and enhances radiosensitivity in hypoxic esophageal squamous cell carcinoma in vitro and in vivo.".PMID 28356983
  4. Anna L Miles et al. (2017). "The vacuolar-ATPase complex and assembly factors, TMEM199 and CCDC115, control HIF1α prolyl hydroxylation by regulating cellular iron levels.".PMID 28296633
  5. Patricia Himmels et al. (2017). "Motor neurons control blood vessel patterning in the developing spinal cord".PMID 28262664
  6. Na Xiao et al. (2017). "Ginsenoside Rg5 Inhibits Succinate-Associated Lipolysis in Adipose Tissue and Prevents Muscle Insulin Resistance".PMID 28261091
  7. Melanie M Mandl et al. (2017). "Inhibition of Cdk5 induces cell death of tumor-initiating cells.".PMID 28222068
  8. Eric Duong et al. (2017). "MicroRNA-135a regulates sodium-calcium exchanger gene expression and cardiac electrical activity.".PMID 28188930
  9. Mariko Omatsu-Kanbe et al. (2017). "Identification of cardiac progenitors that survive in the ischemic human heart after ventricular myocyte death".PMID 28120944
  10. Peter J Gardner et al. (2017). "Hypoxia inducible factors are dispensable for myeloid cell migration into the inflamed mouse eye".PMID 28112274
  11. A Murakami et al. (2017). "Context-dependent role for chromatin remodeling component PBRM1/BAF180 in clear cell renal cell carcinoma".PMID 28092369
  12. Nina Kozlova et al. (2016). "Hypoxia-inducible factor prolyl hydroxylase 2 (PHD2) is a direct regulator of epidermal growth factor receptor (EGFR) signaling in breast cancer".PMID 28038470
  13. Beata Jablonska et al. (2016). "Sirt1 regulates glial progenitor proliferation and regeneration in white matter after neonatal brain injury".PMID 27991597
  14. Zhixian Yu et al. (2016). "Tumor-Derived Factors and Reduced p53 Promote Endothelial Cell Centrosome Over-Duplication".PMID 27977771
  15. Eun Taex Oh et al. (2016). "NQO1 inhibits proteasome-mediated degradation of HIF-1α".PMID 27966538
  16. Fuhai Li et al. (2016). "Enhancement of early cardiac differentiation of dedifferentiated fat cells by dimethyloxalylglycine via notch signaling pathway".PMID 27904680
  17. Ryan Hunt et al. (2016). "A mechanistic investigation of thrombotic microangiopathy associated with intravenous abuse of Opana ER".PMID 27864296
  18. Gaurav K Keshri et al. (2016). "Photobiomodulation with Pulsed and Continuous Wave Near-Infrared Laser (810 nm, Al-Ga-As) Augments Dermal Wound Healing in Immunosuppressed Rats".PMID 27861614
  19. J M Thompson et al. (2016). "Rho-associated kinase 1 inhibition is synthetically lethal with von Hippel-Lindau deficiency in clear cell renal cell carcinoma".PMID 27841867
  20. Luis Lima et al. (2016). "Reference Genes for Addressing Gene Expression of Bladder Cancer Cell Models under Hypoxia: A Step Towards Transcriptomic Studies".PMID 27835695
  21. Valentina Bizzarro et al. (2016). "Hypoxia regulates ANXA1 expression to support prostate cancer cell invasion and aggressiveness".PMID 27834582
  22. Mathieu Veyrat et al. (2016). "Stimulation of the toll-like receptor 3 promotes metabolic reprogramming in head and neck carcinoma cells".PMID 27791989
  23. Luke J Fulcher et al. (2016). "An affinity-directed protein missile system for targeted proteolysis".PMID 27784791
  24. Kaijun Di et al. (2016). "Mitochondrial Lon is over-expressed in high-grade gliomas, and mediates hypoxic adaptation: potential role of Lon as a therapeutic target in glioma".PMID 27764809
  25. Shasha Li et al. (2016). "Fine-Tuning of the Kaposi's Sarcoma-Associated Herpesvirus Life Cycle in Neighboring Cells through the RTA-JAG1-Notch Pathway".PMID 27760204
  26. Shrikant Pradhan et al. (2016). "Scriptaid overcomes hypoxia-induced cisplatin resistance in both wild-type and mutant p53 lung cancer cells".PMID 27708247
  27. Peterson Kariuki Maina et al. (2016). "c-MYC drives histone demethylase PHF8 during neuroendocrine differentiation and in castration-resistant prostate cancer".PMID 27689328
  28. Fridolin Treindl et al. (2016). "A bead-based western for high-throughput cellular signal transduction analyses".PMID 27659302
  29. Oiva Arvola et al. (2016). "Remote Ischemic Preconditioning Reduces Cerebral Oxidative Stress Following Hypothermic Circulatory Arrest in a Porcine Model".PMID 27568144
  30. Daniel C Scott et al. (2016). "Two Distinct Types of E3 Ligases Work in Unison to Regulate Substrate Ubiquitylation".PMID 27565346
  31. Yeong Chin Jou et al. (2016). "Foxp3 enhances HIF-1α target gene expression in human bladder cancer through decreasing its ubiquitin-proteasomal degradation".PMID 27557492
  32. Lili Cao et al. (2016). "A Hybrid Chalcone Combining the Trimethoxyphenyl and Isatinyl Groups Targets Multiple Oncogenic Proteins and Pathways in Hepatocellular Carcinoma Cells".PMID 27525972
  33. Talita Antunes Guimarães et al. (2016). "Metformin increases PDH and suppresses HIF-1α under hypoxic conditions and induces cell death in oral squamous cell carcinoma".PMID 27474170
  34. Valentina Masola et al. (2016). "Heparanase: A Potential New Factor Involved in the Renal Epithelial Mesenchymal Transition (EMT) Induced by Ischemia/Reperfusion (I/R) Injury".PMID 27467172
  35. Yong Qin et al. (2016). "Hypoxia-Driven Mechanism of Vemurafenib Resistance in Melanoma".PMID 27458138
  36. Chihiro Takasaki et al. (2016). "Expression of hypoxia-inducible factor-1α affects tumor proliferation and antiapoptosis in surgically resected lung cancer".PMID 27446567
  37. Annemarie Aarup et al. (2016). "Hypoxia-Inducible Factor-1α Expression in Macrophages Promotes Development of Atherosclerosis".PMID 27444197
  38. J P Phelan et al. (2016). "Bile acids destabilise HIF-1α and promote anti-tumour phenotypes in cancer cell models".PMID 27416726
  39. X Li et al. (2016). "Quercetin alleviates pulmonary angiogenesis in a rat model of hepatopulmonary syndrome".PMID 27383124
  40. Ingrid Espinoza et al. (2016). "Hypoxia on the Expression of Hepatoma Upregulated Protein in Prostate Cancer Cells".PMID 27379206
  41. Shih Hung Tsai et al. (2016). "Inhibition of hypoxia inducible factor-1α attenuates abdominal aortic aneurysm progression through the down-regulation of matrix metalloproteinases".PMID 27363580
  42. M Mandl et al. (2016). "A HIF-1α-driven feed-forward loop augments HIF signalling in Hep3B cells by upregulation of ARNT".PMID 27362802
  43. Shiruyeh Schokrpur et al. (2016). "CRISPR-Mediated VHL Knockout Generates an Improved Model for Metastatic Renal Cell Carcinoma".PMID 27358011
  44. Pengcui Li et al. (2016). "Blockade of hypoxia-induced CXCR4 with AMD3100 inhibits production of OA-associated catabolic mediators IL-1β and MMP-13".PMID 27356492
  45. Jana Kudová et al. (2016). "HIF-1alpha Deficiency Attenuates the Cardiomyogenesis of Mouse Embryonic Stem Cells".PMID 27355368
  46. Lei Dai et al. (2016). "SARI inhibits angiogenesis and tumour growth of human colon cancer through directly targeting ceruloplasmin".PMID 27353863
  47. Jucimara Colombo et al. (2016). "Effects of melatonin on HIF-1α and VEGF expression and on the invasive properties of hepatocarcinoma cells".PMID 27347130
  48. Gesche Frohwitter et al. (2016). "Cytokeratin and protein expression patterns in squamous cell carcinoma of the oral cavity provide evidence for two distinct pathogenetic pathways".PMID 27347109
  49. Wenjun Zhao et al. (2016). "Metformin and resveratrol ameliorate muscle insulin resistance through preventing lipolysis and inflammation in hypoxic adipose tissue".PMID 27343375
  50. Yasuki Higashimura et al. (2016). "pVHL-mediated degradation of HIF-2α regulates estrogen receptor α expression in normoxic breast cancer cells".PMID 27323688
  51. Hyowon Choi et al. (2016). "Hypoxia promotes noncanonical autophagy in nucleus pulposus cells independent of MTOR and HIF1A signaling".PMID 27314664
  52. Grazia Maugeri et al. (2016). "PACAP and VIP Inhibit the Invasiveness of Glioblastoma Cells Exposed to Hypoxia through the Regulation of HIFs and EGFR Expression".PMID 27303300
  53. Rouven Hoefflin et al. (2016). "Spatial niche formation but not malignant progression is a driving force for intratumoural heterogeneity".PMID 27291893
  54. Alessia Lo Dico et al. (2016). "MiR675-5p Acts on HIF-1α to Sustain Hypoxic Responses: A New Therapeutic Strategy for Glioma".PMID 27279905
  55. Ji Hye Kwak et al. (2016). "HIF2α/EFEMP1 cascade mediates hypoxic effects on breast cancer stem cell hierarchy".PMID 27270657
  56. Marco Mineo et al. (2016). "The Long Non-coding RNA HIF1A-AS2 Facilitates the Maintenance of Mesenchymal Glioblastoma Stem-like Cells in Hypoxic Niches".PMID 27264189
  57. Valentina Salvi et al. (2016). "Dendritic cell-derived VEGF-A plays a role in inflammatory angiogenesis of human secondary lymphoid organs and is driven by the coordinated activation of multiple transcription factors".PMID 27256980
  58. Anna V Ivanina et al. (2016). "Intermittent hypoxia leads to functional reorganization of mitochondria and affects cellular bioenergetics in marine molluscs".PMID 27252455
  59. Ingo Spitzbarth et al. (2016). "Immunohistochemical and transcriptome analyses indicate complex breakdown of axonal transport mechanisms in canine distemper leukoencephalitis".PMID 27247850
  60. Nicolas Piton et al. (2016). "Endoplasmic reticulum stress, unfolded protein response and development of colon adenocarcinoma".PMID 27220766
  61. Sangbin Lim et al. (2016). "Immunoregulatory Protein B7-H3 Reprograms Glucose Metabolism in Cancer Cells by ROS-Mediated Stabilization of HIF1α".PMID 27197253
  62. Hiroaki Semba et al. (2016). "HIF-1α-PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity".PMID 27189088
  63. Motoharu Ono et al. (2016). "Enhanced snoMEN Vectors Facilitate Establishment of GFP-HIF-1α Protein Replacement Human Cell Lines".PMID 27128805
  64. Fiona McDonnell et al. (2016). "Hypoxia-Induced Changes in DNA Methylation Alter RASAL1 and TGFβ1 Expression in Human Trabecular Meshwork Cells".PMID 27124111
  65. Hiroko Okawa et al. (2016). "Scaffold-Free Fabrication of Osteoinductive Cellular Constructs Using Mouse Gingiva-Derived Induced Pluripotent Stem Cells".PMID 27110251
  66. E Bourseau-Guilmain et al. (2016). "Hypoxia regulates global membrane protein endocytosis through caveolin-1 in cancer cells".PMID 27094744
  67. Hanako Kobayashi et al. (2016). "Distinct subpopulations of FOXD1 stroma-derived cells regulate renal erythropoietin.".PMID 27088801
  68. Lei Jiang et al. (2016). "Reductive carboxylation supports redox homeostasis during anchorage-independent growth".PMID 27049945
  69. Chengping Li et al. (2016). "Inhibitory role of TRIP-Br1 oncoprotein in hypoxia-induced apoptosis in breast cancer cell lines".PMID 27035851
  70. Chuan Kai Chou et al. (2016). "Sciellin mediates mesenchymal-to-epithelial transition in colorectal cancer hepatic metastasis".PMID 27013588
  71. Xingbo Xu et al. (2016). "Hypoxia-induced endothelial-mesenchymal transition is associated with RASAL1 promoter hypermethylation in human coronary endothelial cells".PMID 27012941
  72. Seong Joon Park et al. (2016). "Estradiol, TGF-β1 and hypoxia promote breast cancer stemness and EMT-mediated breast cancer migration".PMID 26998096
  73. Suryatheja Ananthula et al. (2016). "Geminin overexpression-dependent recruitment and crosstalk with mesenchymal stem cells enhance aggressiveness in triple negative breast cancers".PMID 26989079
  74. Pradeep K Shukla et al. (2016). "Chronic ethanol feeding promotes azoxymethane and dextran sulfate sodium-induced colonic tumorigenesis potentially by enhancing mucosal inflammation".PMID 26951793
  75. Melanie Ruf et al. (2016). "PD-L1 expression is regulated by hypoxia inducible factor in clear cell renal cell carcinoma".PMID 26945902
  76. Saravanan S Karuppagounder et al. (2016). "Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models".PMID 26936506
  77. Fang Zhou et al. (2016). "SENP‑1 enhances hypoxia‑induced proliferation of rat pulmonary artery smooth muscle cells by regulating hypoxia‑inducible factor‑1α".PMID 26935971
  78. Sandra Tepper et al. (2016). "PARP activation promotes nuclear AID accumulation in lymphoma cells".PMID 26921193
  79. Isha H Jain et al. (2016). "Hypoxia as a therapy for mitochondrial disease".PMID 26917594
  80. Lauren W Wood et al. (2016). "Thyroid Transcription Factor 1 Reprograms Angiogenic Activities of Secretome".PMID 26912193
  81. Lena Edalat et al. (2016). "BK K+ channel blockade inhibits radiation-induced migration/brain infiltration of glioblastoma cells".PMID 26893360
  82. Helena H Chowdhury et al. (2016). "Hypoxia Alters the Expression of Dipeptidyl Peptidase 4 and Induces Developmental Remodeling of Human Preadipocytes".PMID 26881257
  83. Omanma Adighibe et al. (2016). "Why some tumours trigger neovascularisation and others don't: the story thus far".PMID 26873439
  84. Hiroyuki Mori et al. (2016). "Induction of WNT11 by hypoxia and hypoxia-inducible factor-1α regulates cell proliferation, migration and invasion".PMID 26861754
  85. Ming Ding et al. (2016). "Secreted IGFBP5 mediates mTORC1-dependent feedback inhibition of IGF-1 signalling".PMID 26854565
  86. Peng Wang et al. (2016). "Time-dependent homeostasis between glucose uptake and consumption in astrocytes exposed to CoCl₂ treatment".PMID 26847382
  87. Pardeep Heir et al. (2016). "Oxygen-dependent Regulation of Erythropoietin Receptor Turnover and Signaling".PMID 26846855
  88. Weibo Luo et al. (2016). "PRDX2 and PRDX4 are negative regulators of hypoxia-inducible factors under conditions of prolonged hypoxia".PMID 26837221
  89. Tarah M Regan Anderson et al. (2016). "Breast Tumor Kinase (Brk/PTK6) Is Induced by HIF, Glucocorticoid Receptor, and PELP1-Mediated Stress Signaling in Triple-Negative Breast Cancer".PMID 26825173
  90. Grete Hasvold et al. (2016). "Hypoxia-induced alterations of G2 checkpoint regulators".PMID 26791779
  91. Veronika Kanderová et al. (2016). "High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells".PMID 26785729
  92. Xiao Yang Dai et al. (2016). "Nuclear translocation and activation of YAP by hypoxia contributes to the chemoresistance of SN38 in hepatocellular carcinoma cells".PMID 26771844
  93. Hawa Nalwoga et al. (2016). "Strong Expression of Hypoxia-Inducible Factor-1α (HIF-1α) Is Associated with Axl Expression and Features of Aggressive Tumors in African Breast Cancer".PMID 26760782
  94. Yunho Kim et al. (2016). "Methylation-dependent regulation of HIF-1α stability restricts retinal and tumour angiogenesis".PMID 26757928
  95. Aifu Lin et al. (2016). "The LINK-A lncRNA activates normoxic HIF1α signalling in triple-negative breast cancer".PMID 26751287
  96. Ke Chen et al. (2016). "Regulation of glucose metabolism by p62/SQSTM1 through HIF1α".PMID 26743088
  97. Grazia Maugeri et al. (2016). "Parkin modulates expression of HIF-1α and HIF-3α during hypoxia in gliobastoma-derived cell lines in vitro".PMID 26742768
  98. Ninel Azoitei et al. (2016). "PKM2 promotes tumor angiogenesis by regulating HIF-1α through NF-κB activation".PMID 26739387
  99. Sang Bae Lee et al. (2016). "An ID2-dependent mechanism for VHL inactivation in cancer".PMID 26735018
  100. Yan Ming Xu et al. (2016). "Proteome profiling of cadmium-induced apoptosis by antibody array analyses in human bronchial epithelial cells".PMID 26716417
  101. Martyn A Sharpe et al. (2016). "Monoamine oxidase B levels are highly expressed in human gliomas and are correlated with the expression of HiF-1α and with transcription factors Sp1 and Sp3".PMID 26689994
  102. Alain de Bruin et al. (2016). "Genome-wide analysis reveals NRP1 as a direct HIF1α-E2F7 target in the regulation of motorneuron guidance in vivo".PMID 26681691
  103. Shotaro Yamano et al. (2016). "Role of deltaNp63(pos)CD44v(pos) cells in the development of N-nitroso-tris-chloroethylurea-induced peripheral-type mouse lung squamous cell carcinomas".PMID 26663681
  104. Ruud Weijer et al. (2016). "Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy".PMID 26657503
  105. M Gordian Adam et al. (2015). "SIAH ubiquitin ligases regulate breast cancer cell migration and invasion independent of the oxygen status".PMID 26654769
  106. Brian Ortmann et al. (2016). "CDK-dependent phosphorylation of PHD1 on serine 130 alters its substrate preference in cells".PMID 26644182
  107. Jessica L Bowser et al. (2016). "Loss of CD73-mediated actin polymerization promotes endometrial tumor progression".PMID 26642367
  108. Xiao yu Zheng et al. (2015). "Attenuation of oxygen fluctuation-induced endoplasmic reticulum stress in human lens epithelial cells".PMID 26640566
  109. Olivier G de Jong et al. (2016). "Exosomes from hypoxic endothelial cells have increased collagen crosslinking activity through up-regulation of lysyl oxidase-like 2".PMID 26612622
  110. Yasuhiko Murata et al. (2015). "Activation of mTORC1 under nutrient starvation conditions increases cellular radiosensitivity in human liver cancer cell lines, HepG2 and HuH6".PMID 26585486
  111. Markus Mandl et al. (2015). "The expression level of the transcription factor Aryl hydrocarbon receptor nuclear translocator (ARNT) determines cellular survival after radiation treatment".PMID 26572229
  112. Henrik Sperber et al. (2015). "The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition".PMID 26571212
  113. Arnoldo Aquino-Galvez et al. (2016). "Effects of 2-methoxyestradiol on apoptosis and HIF-1α and HIF-2α expression in lung cancer cells under normoxia and hypoxia".PMID 26548300
  114. Valentin David et al. (2016). "Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production".PMID 26535997
  115. David Labrousse-Arias et al. (2016). "HIF-2α-mediated induction of pulmonary thrombospondin-1 contributes to hypoxia-driven vascular remodelling and vasoconstriction".PMID 26503986
  116. Guomin Shen et al. (2015). "Adipose differentiation-related protein is not involved in hypoxia inducible factor-1-induced lipid accumulation under hypoxia".PMID 26498183
  117. Wenjie Qin et al. (2015). "Inhibition of autophagy promotes metastasis and glycolysis by inducing ROS in gastric cancer cells".PMID 26497999
  118. Siwei Zhang et al. (2015). "Anti-leukemic effects of the V-ATPase inhibitor Archazolid A".PMID 26496038
  119. Anja Konzack et al. (2015). "Mitochondrial Dysfunction Due to Lack of Manganese Superoxide Dismutase Promotes Hepatocarcinogenesis".PMID 26422659
  120. Yogesh Saini et al. (2015). "Loss of Hif-2α Rescues the Hif-1α Deletion Phenotype of Neonatal Respiratory Distress In Mice".PMID 26422241
  121. Shashi P Singh et al. (2015). "HIF-1α Plays a Critical Role in the Gestational Sidestream Smoke-Induced Bronchopulmonary Dysplasia in Mice".PMID 26361040
  122. Cristina E Rodríguez et al. (2015). "Autophagy Protects from Trastuzumab-Induced Cytotoxicity in HER2 Overexpressing Breast Tumor Spheroids".PMID 26360292
  123. Samil Jung et al. (2015). "TRIP-Br1 oncoprotein inhibits autophagy, apoptosis, and necroptosis under nutrient/serum-deprived condition".PMID 26334958
  124. Bal Krishan Sharma et al. (2016). "Inhibitor of differentiation 1 transcription factor promotes metabolic reprogramming in hepatocellular carcinoma cells".PMID 26330493
  125. Ya Yang et al. (2015). "Expression of RAP1B is associated with poor prognosis and promotes an aggressive phenotype in gastric cancer".PMID 26329876
  126. Fumiaki Ochi et al. (2015). "Carbonic Anhydrase XII as an Independent Prognostic Factor in Advanced Esophageal Squamous Cell Carcinoma".PMID 26316888
  127. Ting Chung Wang et al. (2015). "Characterization of highly proliferative secondary tumor clusters along host blood vessels in malignant glioma".PMID 26299849
  128. Jiang Huang et al. (2015). "Effect of CoCl₂ on fracture repair in a rat model of bone fracture".PMID 26239779
  129. Heidi Högel et al. (2015). "Hypoxia inducible prolyl hydroxylase PHD3 maintains carcinoma cell growth by decreasing the stability of p27".PMID 26223520
  130. Sujan Badal et al. (2015). "Nonantibiotic Effects of Fluoroquinolones in Mammalian Cells".PMID 26205818
  131. Filipa Morais-Santos et al. (2015). "Targeting lactate transport suppresses in vivo breast tumour growth".PMID 26203664
  132. D Chen et al. (2015). "MiR-373 drives the epithelial-to-mesenchymal transition and metastasis via the miR-373-TXNIP-HIF1α-TWIST signaling axis in breast cancer".PMID 26196741
  133. An Ping Lin et al. (2015). "D2HGDH regulates alpha-ketoglutarate levels and dioxygenase function by modulating IDH2".PMID 26178471
  134. I Kuan Wang et al. (2015). "MiR-20a-5p mediates hypoxia-induced autophagy by targeting ATG16L1 in ischemic kidney injury".PMID 26165754
  135. Heidi Kontro et al. (2015). "DAPIT Over-Expression Modulates Glucose Metabolism and Cell Behaviour in HEK293T Cells".PMID 26161955
  136. Euno Choi et al. (2015). "Implication of Leptin-Signaling Proteins and Epstein-Barr Virus in Gastric Carcinomas".PMID 26147886
  137. Mun Chiang Chan et al. (2015). "Potent and Selective Triazole-Based Inhibitors of the Hypoxia-Inducible Factor Prolyl-Hydroxylases with Activity in the Murine Brain".PMID 26147748
  138. Xin yu Yang et al. (2015). "Energy Metabolism Disorder as a Contributing Factor of Rheumatoid Arthritis: A Comparative Proteomic and Metabolomic Study".PMID 26147000
  139. Lifeng Jing et al. (2015). "Akt/hypoxia-inducible factor-1α signaling deficiency compromises skin wound healing in a type 1 diabetes mouse model".PMID 26136949
  140. Lu Yang et al. (2015). "Inhibition of ERBB2-overexpressing Tumors by Recombinant Human Prolidase and Its Enzymatically Inactive Mutant".PMID 26086037
  141. Xian Peng Li et al. (2015). "Co-expression of CXCL8 and HIF-1α is associated with metastasis and poor prognosis in hepatocellular carcinoma".PMID 26078356
  142. Liang Xie et al. (2015). "PHD2/3-dependent hydroxylation tunes cardiac response to β-adrenergic stress via phospholamban".PMID 26075818
  143. In Su Park et al. (2015). "Enhancement of Ischemic Wound Healing by Spheroid Grafting of Human Adipose-Derived Stem Cells Treated with Low-Level Light Irradiation".PMID 26065900
  144. Hatice Yorulmaz et al. (2015). "Effect of simvastatin on mitochondrial enzyme activities, ghrelin, hypoxia-inducible factor 1α in hepatic tissue during early phase of sepsis".PMID 26064259
  145. Flora Cimmino et al. (2015). "Inhibition of hypoxia inducible factors combined with all-trans retinoic acid treatment enhances glial transdifferentiation of neuroblastoma cells".PMID 26057707
  146. Fattah Sotoodehnejadnematalahi et al. (2015). "Mechanisms of Hypoxic Up-Regulation of Versican Gene Expression in Macrophages".PMID 26057378
  147. Judit Espana-Agusti et al. (2015). "A minimally invasive, lentiviral based method for the rapid and sustained genetic manipulation of renal tubules".PMID 26046460
  148. Bettina C Urban et al. (2016). "BCL-3 expression promotes colorectal tumorigenesis through activation of AKT signalling".PMID 26033966
  149. Thitinee Vanichapol et al. (2015). "Hypoxia enhances cholangiocarcinoma invasion through activation of hepatocyte growth factor receptor and the extracellular signal‑regulated kinase signaling pathway".PMID 26018028
  150. Yutaka Tojo et al. (2015). "Hypoxia Signaling Cascade for Erythropoietin Production in Hepatocytes".PMID 26012551
  151. Yeng F Her et al. (2015). "Oxygen concentration controls epigenetic effects in models of familial paraganglioma".PMID 25985299
  152. Parveen Kumar et al. (2015). "Myeloid translocation gene-16 co-repressor promotes degradation of hypoxia-inducible factor 1".PMID 25974097
  153. Luigi Formisano et al. (2015). "Sp3/REST/HDAC1/HDAC2 Complex Represses and Sp1/HIF-1/p300 Complex Activates ncx1 Gene Transcription, in Brain Ischemia and in Ischemic Brain Preconditioning, by Epigenetic Mechanism".PMID 25972164
  154. João Vasco Ferreira et al. (2015). "K63 linked ubiquitin chain formation is a signal for HIF1A degradation by Chaperone-Mediated Autophagy".PMID 25958982
  155. Martina Tholen et al. (2015). "Stress-resistant Translation of Cathepsin L mRNA in Breast Cancer Progression".PMID 25957406
  156. Hongzoo Park et al. (2015). "3,3'-Diindolylmethane inhibits VEGF expression through the HIF-1α and NF-κB pathways in human retinal pigment epithelial cells under chemical hypoxic conditions".PMID 25955241
  157. Gergely Bánfi et al. (2015). "Changes of protein expression in prostate cancer having lost its androgen sensitivity".PMID 25953123
  158. Samira M Sadowski et al. (2015). "Torin2 targets dysregulated pathways in anaplastic thyroid cancer and inhibits tumor growth and metastasis".PMID 25945839
  159. Mustafa Guven et al. (2015). "The Neuroprotective Effect of Coumaric Acid on Spinal Cord Ischemia/Reperfusion Injury in Rats".PMID 25943038
  160. Sanmitra Basu et al. (2015). "A study of molecular signals deregulating mismatch repair genes in prostate cancer compared to benign prostatic hyperplasia".PMID 25938433
  161. L Lemaire et al. (2015). "In vitro expansion of U87-MG human glioblastoma cells under hypoxic conditions affects glucose metabolism and subsequent in vivo growth".PMID 25934335
  162. Byung Hak Kim et al. (2015). "Imidazole-based alkaloid derivative LCB54-0009 suppresses ocular angiogenesis and lymphangiogenesis in models of experimental retinopathy and corneal neovascularization".PMID 25917462
  163. Shuxi Qiao et al. (2015). "A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity".PMID 25916556
  164. Xing Liu et al. (2015). "Repression of hypoxia-inducible factor α signaling by Set7-mediated methylation".PMID 25897119
  165. Hyunsung Choi et al. (2015). "Intermittent induction of HIF-1α produces lasting effects on malignant progression independent of its continued expression".PMID 25893706
  166. Nelma Pértega-Gomes et al. (2015). "A glycolytic phenotype is associated with prostate cancer progression and aggressiveness: a role for monocarboxylate transporters as metabolic targets for therapy".PMID 25875424
  167. Aijia Shang et al. (2015). "Upregulation of neuroglobin expression and changes in serum redox indices in a rat model of middle cerebral artery occlusion".PMID 25847303
  168. Yu Sun et al. (2015). "Dose-dependent effects of allopurinol on human foreskin fibroblast cells and human umbilical vein endothelial cells under hypoxia".PMID 25830774
  169. Shenghong Ma et al. (2015). "D-2-hydroxyglutarate is essential for maintaining oncogenic property of mutant IDH-containing cancer cells but dispensable for cell growth".PMID 25825982
  170. Shao Wen Li et al. (2015). "The differential expression of OCT4 isoforms in cervical carcinoma".PMID 25816351
  171. Daniel Verduzco et al. (2015). "Intermittent hypoxia selects for genotypes and phenotypes that increase survival, invasion, and therapy resistance".PMID 25811878
  172. Nymph Chan et al. (2015). "Attenuation of choroidal neovascularization by histone deacetylase inhibitor".PMID 25807249
  173. Stefan K Alig et al. (2015). "The tyrosine phosphatase SHP-1 regulates hypoxia inducible factor-1α (HIF-1α) protein levels in endothelial cells under hypoxia".PMID 25799543
  174. Han Seok Koh et al. (2015). "The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia".PMID 25790768
  175. Janani Panneerselvam et al. (2015). "IL-24 inhibits lung cancer cell migration and invasion by disrupting the SDF-1/CXCR4 signaling axis".PMID 25775124
  176. Jonas J Staudacher et al. (2015). "Hypoxia-induced gene expression results from selective mRNA partitioning to the endoplasmic reticulum".PMID 25753659
  177. Joachim Albers et al. (2015). "A versatile modular vector system for rapid combinatorial mammalian genetics".PMID 25751063
  178. Hiroko Kato et al. (2014). "Hypoxia induces an undifferentiated phenotype of oral keratinocytes in vitro".PMID 25720390
  179. Lifang Yang et al. (2015). "EBV-LMP1 targeted DNAzyme enhances radiosensitivity by inhibiting tumor angiogenesis via the JNKs/HIF-1 pathway in nasopharyngeal carcinoma".PMID 25714020
  180. Huey Wen Hsiao et al. (2015). "Deltex1 antagonizes HIF-1α and sustains the stability of regulatory T cells in vivo".PMID 25695215
  181. Zhiping He et al. (2015). "Selecting bioactive phenolic compounds as potential agents to inhibit proliferation and VEGF expression in human ovarian cancer cells".PMID 25663929
  182. Justin V Joseph et al. (2015). "Hypoxia enhances migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the HIF1α-ZEB1 axis".PMID 25592037
  183. Chao Yu et al. (2015). "Hypoxia disrupts the expression levels of circadian rhythm genes in hepatocellular carcinoma".PMID 25591621
  184. Ganesh M Shankar et al. (2014). "Sporadic hemangioblastomas are characterized by cryptic VHL inactivation".PMID 25589003
  185. Lorine J Wilkinson et al. (2015). "Renal developmental defects resulting from in utero hypoxia are associated with suppression of ureteric β-catenin signaling".PMID 25587709
  186. Sharon Mudie et al. (2014). "PITX1, a specificity determinant in the HIF-1α-mediated transcriptional response to hypoxia".PMID 25558831
  187. Hongzhi Zheng et al. (2015). "CNC-bZIP protein Nrf1-dependent regulation of glucose-stimulated insulin secretion".PMID 25556857
  188. Stefania Cannito et al. (2015). "Hypoxia up-regulates SERPINB3 through HIF-2α in human liver cancer cells".PMID 25544768
  189. Yu Hsing Hung et al. (2016). "Inhibitor of Differentiation-1 and Hypoxia-Inducible Factor-1 Mediate Sonic Hedgehog Induction by Amyloid Beta-Peptide in Rat Cortical Neurons".PMID 25502463
  190. D C Singleton et al. (2015). "Hypoxic regulation of RIOK3 is a major mechanism for cancer cell invasion and metastasis".PMID 25486436
  191. Sun Jung Cho et al. (2015). "SUMO1 promotes Aβ production via the modulation of autophagy".PMID 25484073
  192. Sascha Rutz et al. (2015). "Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells".PMID 25470037
  193. Adedamola Olayanju et al. (2015). "Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity-implications for therapeutic targeting of Nrf2".PMID 25445704
  194. Jared M Fine et al. (2015). "Intranasal deferoxamine engages multiple pathways to decrease memory loss in the APP/PS1 model of amyloid accumulation".PMID 25445365
  195. Biao Ma et al. (2015). "Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase".PMID 25438054
  196. Anne Theres Henze et al. (2014). "Loss of PHD3 allows tumours to overcome hypoxic growth inhibition and sustain proliferation through EGFR".PMID 25420773
  197. Jennifer Turner et al. (2014). "Metabolic profiling and flux analysis of MEL-2 human embryonic stem cells during exponential growth at physiological and atmospheric oxygen concentrations".PMID 25412279
  198. Byung Soo Kong et al. (2014). "G protein-coupled estrogen receptor-1 is involved in the protective effect of protocatechuic aldehyde against endothelial dysfunction".PMID 25411835
  199. Qi Lei et al. (2014). "Amelioration of hypoxia and LPS-induced intestinal epithelial barrier dysfunction by emodin through the suppression of the NF-κB and HIF-1α signaling pathways".PMID 25318952
  200. Sung Gyun Kim et al. (2014). "Bilirubin activates transcription of HIF-1α in human proximal tubular cells cultured in the physiologic oxygen content".PMID 25317019
  201. Kyriaki Bakirtzi et al. (2014). "The neurotensin-HIF-1α-VEGFα axis orchestrates hypoxia, colonic inflammation, and intestinal angiogenesis".PMID 25307345
  202. Kaitlin J Basham et al. (2015). "Dioxin exposure blocks lactation through a direct effect on mammary epithelial cells mediated by the aryl hydrocarbon receptor repressor".PMID 25265996
  203. Magdalena H Menhofer et al. (2014). "In vitro and in vivo characterization of the actin polymerizing compound chondramide as an angiogenic inhibitor".PMID 25239826
  204. Asheesh Gupta et al. (2015). "Superpulsed (Ga-As, 904 nm) low-level laser therapy (LLLT) attenuates inflammatory response and enhances healing of burn wounds".PMID 25207838
  205. Hyun Sun Lee et al. (2015). "Priming Wharton's jelly-derived mesenchymal stromal/stem cells with ROCK inhibitor improves recovery in an intracerebral hemorrhage model".PMID 25185536
  206. Xue Song Liu et al. (2014). "ZBTB7A acts as a tumor suppressor through the transcriptional repression of glycolysis".PMID 25184678
  207. Iryna Kolosenko et al. (2015). "Cell crowding induces interferon regulatory factor 9, which confers resistance to chemotherapeutic drugs".PMID 25156627
  208. Zhi Feng Miao et al. (2014). "Peritoneal milky spots serve as a hypoxic niche and favor gastric cancer stem/progenitor cell peritoneal dissemination through hypoxia-inducible factor 1α".PMID 25142304
  209. Min Xu et al. (2014). "An acetate switch regulates stress erythropoiesis".PMID 25108527
  210. Tao Huang et al. (2014). "Hypoxia-inducible factor-1α upregulation in microglia following hypoxia protects against ischemia-induced cerebral infarction".PMID 25089804
  211. Jun Ueda et al. (2014). "The hypoxia-inducible epigenetic regulators Jmjd1a and G9a provide a mechanistic link between angiogenesis and tumor growth".PMID 25071150
  212. W Wei et al. (2014). "Expression of hypoxia-regulated genes and glycometabolic genes in placenta from patients with intrahepatic cholestasis of pregnancy".PMID 25063250
  213. Paul Mésange et al. (2014). "Intrinsic bevacizumab resistance is associated with prolonged activation of autocrine VEGF signaling and hypoxia tolerance in colorectal cancer cells and can be overcome by nintedanib, a small molecule angiokinase inhibitor".PMID 25015210
  214. Casper Hempel et al. (2014). "Systemic and Cerebral Vascular Endothelial Growth Factor Levels Increase in Murine Cerebral Malaria along with Increased Calpain and Caspase Activity and Can be Reduced by Erythropoietin Treatment".PMID 24995009
  215. Xingnan Zheng et al. (2014). "Prolyl hydroxylation by EglN2 destabilizes FOXO3a by blocking its interaction with the USP9x deubiquitinase".PMID 24990963
  216. Ilkka Paatero et al. (2014). "Hypoxia-inducible factor-1α induces ErbB4 signaling in the differentiating mammary gland".PMID 24966332
  217. Chen Wang et al. (2014). "Local injection of deferoxamine improves neovascularization in ischemic diabetic random flap by increasing HIF-1α and VEGF expression".PMID 24963878
  218. Guang Jin et al. (2014). "Development of a novel neuroprotective strategy: combined treatment with hypothermia and valproic acid improves survival in hypoxic hippocampal cells".PMID 24950983
  219. L M A Schreurs et al. (2014). "Prognostic impact of clinicopathological features and expression of biomarkers related to (18)F-FDG uptake in esophageal cancer".PMID 24939624
  220. Prabhu Ramamoorthy et al. (2014). "Ischemia induces different levels of hypoxia inducible factor-1α protein expression in interneurons and pyramidal neurons".PMID 24887017
  221. Ajaz Ahmad Waza et al. (2014). "Protein kinase C (PKC) mediated interaction between conexin43 (Cx43) and K(+)(ATP) channel subunit (Kir6.1) in cardiomyocyte mitochondria: Implications in cytoprotection against hypoxia induced cell apoptosis".PMID 24815185
  222. Weichuan Wu et al. (2014). "A pre-injury high ethanol intake in rats promotes brain edema following traumatic brain injury".PMID 24814385
  223. Baomin Li et al. (2014). "Downregulation of the Werner syndrome protein induces a metabolic shift that compromises redox homeostasis and limits proliferation of cancer cells".PMID 24757718
  224. Carlos A Schaffner et al. (2015). "The organic solute transporters alpha and beta are induced by hypoxia in human hepatocytes".PMID 24703425
  225. Andrew S Zimmermann et al. (2014). "Epidermal or dermal specific knockout of PHD-2 enhances wound healing and minimizes ischemic injury".PMID 24695462
  226. John P Fahrenbach et al. (2014). "Abcc9 is required for the transition to oxidative metabolism in the newborn heart".PMID 24648545
  227. Volkan Aksu et al. (2015). "The effects of sildenafil and n-acetylcysteine on ischemia and reperfusion injury in gastrocnemius muscle and femoral artery endothelium".PMID 24642934
  228. Xuejun Sun et al. (2014). "Preconditioning of mesenchymal stem cells by sevoflurane to improve their therapeutic potential".PMID 24599264
  229. Mari Ekman et al. (2014). "HIF-mediated metabolic switching in bladder outlet obstruction mitigates the relaxing effect of mitochondrial inhibition".PMID 24589856
  230. J M Cheverud et al. (2014). "Fine-mapping quantitative trait loci affecting murine external ear tissue regeneration in the LG/J by SM/J advanced intercross line".PMID 24569637
  231. Johnny A Sena et al. (2014). "HIFs enhance the transcriptional activation and splicing of adrenomedullin".PMID 24523299
  232. Kotaro Takeda et al. (2014). "Improved vascular survival and growth in the mouse model of hindlimb ischemia by a remote signaling mechanism".PMID 24440788
  233. Jennifer R Kulzer et al. (2014). "A common functional regulatory variant at a type 2 diabetes locus upregulates ARAP1 expression in the pancreatic beta cell".PMID 24439111
  234. Ivraym B Barsoum et al. (2014). "A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells".PMID 24336068
  235. Tsung Ming Chen et al. (2014). "Overexpression of FGF9 in colon cancer cells is mediated by hypoxia-induced translational activation".PMID 24334956
  236. Hao Ding et al. (2014). "Dimethyloxaloylglycine increases the bone healing capacity of adipose-derived stem cells by promoting osteogenic differentiation and angiogenic potential".PMID 24328551
  237. Veli Pekka Ronkainen et al. (2014). "Hypoxia-inducible factor 1-induced G protein-coupled receptor 35 expression is an early marker of progressive cardiac remodelling".PMID 24095869
  238. Larissa Bazela Maschio et al. (2014). "Immunohistochemical investigation of the angiogenic proteins VEGF, HIF-1α and CD34 in invasive ductal carcinoma of the breast".PMID 23899963
  239. Liwei Xie et al. (2013). "Transcription factors Sp1 and Hif2α mediate induction of the copper-transporting ATPase (Atp7a) gene in intestinal epithelial cells during hypoxia".PMID 23814049
  240. Luke Gammon et al. (2013). "Sub-sets of cancer stem cells differ intrinsically in their patterns of oxygen metabolism".PMID 23638097
  241. Paola Avena et al. (2013). "Compartment-specific activation of PPARγ governs breast cancer tumor growth, via metabolic reprogramming and symbiosis".PMID 23574724
  242. Wei dong Cao et al. (2014). "Relationship of 14-3-3zeta (ζ), HIF-1α, and VEGF expression in human brain gliomas".PMID 23358800
  243. John T Isaacs et al. (2013). "Tasquinimod Is an Allosteric Modulator of HDAC4 survival signaling within the compromised cancer microenvironment".PMID 23149916
  244. Ahmed F Salem et al. (2012). "Downregulation of stromal BRCA1 drives breast cancer tumor growth via upregulation of HIF-1α, autophagy and ketone body production".PMID 23047605
  245. Chih Hsien Wu et al. (2012). "Nickel-induced epithelial-mesenchymal transition by reactive oxygen species generation and E-cadherin promoter hypermethylation".PMID 22648416
  246. Yueh Ling Hsieh et al. (2012). "Low-level laser therapy alleviates neuropathic pain and promotes function recovery in rats with chronic constriction injury: possible involvements in hypoxia-inducible factor 1α (HIF-1α)".PMID 22351621
  247. J D Lee et al. (2012). "Increased expression of hypoxia-inducible factor-1α and metallothionein in varicocele and varicose veins".PMID 22345328
  248. Frederick Groenman et al. (2007). "Hypoxia-inducible factors in the first trimester human lung".PMID 17189520