这是一篇来自已证抗体库的有关人类 HIF-1甲 (HIF-1 alpha) 的综述,是根据348篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合HIF-1甲 抗体。
HIF-1甲 同义词: HIF-1-alpha; HIF-1A; HIF-1alpha; HIF1; HIF1-ALPHA; MOP1; PASD8; bHLHe78

Novus Biologicals
小鼠 单克隆(ESEE122)
  • proximity ligation assay; 小鼠; 图 8a
Novus BiologicalsHIF-1甲抗体(Novus, NB100-131)被用于被用于proximity ligation assay在小鼠样本上 (图 8a). Cell Mol Life Sci (2022) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 猕猴; 图 7a, 7b
  • 免疫印迹; 人类; 图 5a
Novus BiologicalsHIF-1甲抗体(Novus Biological Company, NB100-449)被用于被用于免疫印迹在猕猴样本上 (图 7a, 7b) 和 被用于免疫印迹在人类样本上 (图 5a). Aging Dis (2021) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 染色质免疫沉淀 ; 人类; 图 1d, s2
Novus BiologicalsHIF-1甲抗体(Novus, NB100-479)被用于被用于染色质免疫沉淀 在人类样本上 (图 1d, s2). Sci Adv (2021) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:1000
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6b
Novus BiologicalsHIF-1甲抗体(Novus, NB100-134)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6b). Bone Res (2021) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 大鼠; 1:1000; 图 3a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3a). Front Physiol (2021) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 图 6c
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于被用于免疫印迹在人类样本上 (图 6c). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫组化; 人类; 1:100; 图 s15
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s15). Adv Sci (Weinh) (2021) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 1:500; 图 4c
Novus BiologicalsHIF-1甲抗体(NovusBio, NBP100123)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4c). Cardiovasc Diabetol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:150; 图 5e
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 5a, 7a
Novus BiologicalsHIF-1甲抗体(Novus, NB100-134)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (图 5e) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 5a, 7a). Oncogene (2021) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 小鼠; 1:1000; 图 s7a
  • 免疫印迹; 人类; 1:1000; 图 5, s8a
Novus BiologicalsHIF-1甲抗体(Novus, NB100-479)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5, s8a). Cancer Sci (2021) ncbi
小鼠 单克隆(H1alpha67)
  • 其他; 人类; 1:50; 图 1d
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于其他在人类样本上浓度为1:50 (图 1d). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 8e
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 8e). Acta Neuropathol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 5a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5a). J Clin Invest (2020) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 小鼠; 1:200; 图 s4d
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s4d). Nat Commun (2020) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫组化; 大鼠; 1:200; 图 4a
  • 免疫印迹; 大鼠; 1:10,000; 图 s1a
Novus BiologicalsHIF-1甲抗体(Novus, NB100-479)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 4a) 和 被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 s1a). Int J Mol Med (2020) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:1000; 图 s13a
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s13a). Nat Commun (2019) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-石蜡切片; domestic rabbit; 1:100; 图 7
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:100 (图 7). Kidney Blood Press Res (2019) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 图 3a
Novus BiologicalsHIF-1甲抗体(Novus, NB100-479)被用于被用于免疫印迹在人类样本上 (图 3a). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于被用于免疫印迹在小鼠样本上 (图 4b). Cell Rep (2018) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹基因敲除验证; 人类; 图 5b
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 5b). Free Radic Biol Med (2019) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s4a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s4a). Am J Pathol (2018) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-石蜡切片; 人类; 图 10a
  • 免疫印迹; 人类; 图 9c
Novus BiologicalsHIF-1甲抗体(Novus Biologics, NB100-131)被用于被用于免疫组化-石蜡切片在人类样本上 (图 10a) 和 被用于免疫印迹在人类样本上 (图 9c). J Clin Invest (2018) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫组化-冰冻切片; 小鼠; 图 3a
Novus BiologicalsHIF-1甲抗体(Novus, NB100-449)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3a). Dis Model Mech (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 s4e
Novus BiologicalsHIF-1甲抗体(Novus Biological, NB100-134)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s4e). Nat Cell Biol (2018) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 小鼠; 1:500; 图 5e
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5e). Nature (2018) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 图 2f
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105SS)被用于被用于免疫印迹在小鼠样本上 (图 2f). Science (2018) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2o
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2o). Genes Dev (2018) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 1:500; 表 s1
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于被用于免疫印迹在人类样本上浓度为1:500 (表 s1). Stem Cell Reports (2017) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-石蜡切片; 人类; 图 1c
  • 免疫印迹; 人类; 1:600; 图 5f
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c) 和 被用于免疫印迹在人类样本上浓度为1:600 (图 5f). J Cell Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 3a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 3a). J Clin Invest (2017) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 图 s2a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在小鼠样本上 (图 s2a). elife (2017) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-石蜡切片; 小鼠; 图 5c
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5c). Cancer Res (2017) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 小鼠; 1:500; 图 s3a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s3a). Science (2017) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 小鼠; 图 5b
Novus BiologicalsHIF-1甲抗体(Novus, NB100-449)被用于被用于免疫印迹在小鼠样本上 (图 5b). Sci Rep (2017) ncbi
domestic rabbit 多克隆(14F468)
  • 免疫印迹; 小鼠; 1:200; 图 3a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB-100-654)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3a). Br J Cancer (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于被用于免疫印迹在人类样本上 (图 1a). Oncogenesis (2017) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹基因敲除验证; 小鼠; 图 2f
Novus BiologicalsHIF-1甲抗体(Novus, NB100-123)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 2f). Nat Commun (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫细胞化学; 人类; 1:50; 图 s4a
  • 免疫印迹; 人类; 1:500; 图 s6
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 s4a) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 s6). PLoS ONE (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫沉淀; 大鼠; 图 4a
  • 免疫印迹; 大鼠; 图 2d
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于被用于免疫沉淀在大鼠样本上 (图 4a) 和 被用于免疫印迹在大鼠样本上 (图 2d). Am J Transl Res (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 小鼠; 图 4a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于被用于免疫印迹在小鼠样本上 (图 4a). Mol Cell Biol (2017) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 小鼠; 1:500; 图 e4a
  • 免疫印迹; 小鼠; 1,000 ug/ml; 图 2b
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 e4a) 和 被用于免疫印迹在小鼠样本上浓度为1,000 ug/ml (图 2b). Nature (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 1:1000; 图 2c
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Oncotarget (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1). Mol Clin Oncol (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫细胞化学; 小鼠; 1:100; 图 1
  • 免疫印迹; 小鼠; 1:500; 图 5
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, H1alpha67)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 图 1B
  • 免疫印迹; 人类; 1:500; 图 1B
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于被用于免疫组化在人类样本上 (图 1B) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1B). Front Pharmacol (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1a). Nat Commun (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4). Theranostics (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4f
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB 10134)被用于被用于染色质免疫沉淀 在人类样本上 (图 4f). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 犬; 1:500; 图 5
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:500 (图 5). Brain Behav (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus, NB100-134)被用于被用于染色质免疫沉淀 在小鼠样本上. Nat Commun (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 小鼠; 图 2
Novus BiologicalsHIF-1甲抗体(Novus, NB100-449)被用于被用于免疫印迹在小鼠样本上 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 小鼠; 图 1b
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于被用于免疫组化在小鼠样本上 (图 1b). J Pathol (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 小鼠; 图 s7a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-449)被用于被用于免疫印迹在小鼠样本上 (图 s7a). J Clin Invest (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 图 2b
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在人类样本上 (图 2b). Oncol Lett (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 图 4
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于被用于免疫组化在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫组化-冰冻切片; 小鼠; 图 3
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB-100-449)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3). BMC Cancer (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 图 1
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于被用于免疫印迹在人类样本上 (图 1). Int J Cancer (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 大鼠; 1:1000; 图 5
Novus BiologicalsHIF-1甲抗体(Novus, NB100-479)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 图 3
  • 免疫印迹; 人类; 图 3
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 图 3
  • 免疫印迹基因敲除验证; 小鼠; 图 3
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在人类样本上 (图 3) 和 被用于免疫印迹基因敲除验证在小鼠样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 图 2a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于被用于免疫印迹在人类样本上 (图 2a). Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 1:200; 图 2f
  • 免疫印迹; 人类; 1:1000; 图 2f
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于被用于免疫沉淀在人类样本上浓度为1:200 (图 2f) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Nat Cell Biol (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:500; 图 3
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). J Cell Sci (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:500; 图 3a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3a). Cell Tissue Res (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:500
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在人类样本上浓度为1:500. Nature (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 1:100; 图 2b
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫组化在人类样本上浓度为1:100 (图 2b). Oncotarget (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s5
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s5). Cancer Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
Novus BiologicalsHIF-1甲抗体(Novus, NB100-134)被用于被用于免疫印迹在人类样本上 (图 1). J Cell Mol Med (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫细胞化学; 人类; 1:100; 图 4
  • 免疫印迹; 人类; 1:500; 图 3
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 3). Oncol Rep (2016) ncbi
domestic rabbit 多克隆
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于. Nucleic Acids Res (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-449)被用于. Antioxid Redox Signal (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-石蜡切片; 人类; 图 2
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, ESEE122)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). J Cancer (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:2000
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于被用于免疫印迹在人类样本上浓度为1:2000. Life Sci (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 酶联免疫吸附测定; 人类; 图 s4
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于酶联免疫吸附测定在人类样本上 (图 s4). PLoS ONE (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于. J Clin Invest (2015) ncbi
domestic rabbit 多克隆
Novus BiologicalsHIF-1甲抗体(Novus, NB100-134)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus BiologicalsHIF-1甲抗体(Novus, NB100-479)被用于. Int J Clin Exp Med (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 小鼠
  • 免疫印迹; 人类; 1:500
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫组化在小鼠样本上 和 被用于免疫印迹在人类样本上浓度为1:500. Sci Rep (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 图 3a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在人类样本上 (图 3a). Int J Biol Sci (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 图 4c
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在人类样本上 (图 4c). Int J Mol Med (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-449)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 图 1
Novus BiologicalsHIF-1甲抗体(Biologicals, NB100-105)被用于被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 表 2
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在人类样本上 (表 2). PLoS ONE (2015) ncbi
domestic rabbit 多克隆
Novus BiologicalsHIF-1甲抗体(Novus, NB100-134)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus BiologicalsHIF-1甲抗体(Novus, NB100-479)被用于. J Clin Invest (2015) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化; 人类
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-131)被用于被用于免疫组化在人类样本上. Acta Neuropathol Commun (2014) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:600
  • 免疫印迹; 大鼠
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于被用于免疫印迹在小鼠样本上浓度为1:600 和 被用于免疫印迹在大鼠样本上. Mol Neurobiol (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于被用于免疫印迹在小鼠样本上. Nature (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于. Neurosci Lett (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 s2
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 s2). J Cell Biochem (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 1:1000
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Neuroreport (2014) ncbi
小鼠 单克隆(ESEE122)
  • 免疫印迹; 小鼠; 1:2000; 图 2
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-131A1)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Front Immunol (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫细胞化学; 大鼠; 1:200
Novus BiologicalsHIF-1甲抗体(Novus Biological, NB-100-123)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200. Acta Neuropathol Commun (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 图 6c
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于被用于免疫组化在人类样本上 (图 6c). Nucleic Acids Res (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 大鼠
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在大鼠样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类
Novus BiologicalsHIF-1甲抗体(Novus, NB100-123)被用于被用于免疫印迹在人类样本上. Cell Cycle (2012) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 大鼠
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在大鼠样本上. J Comp Neurol (2012) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-石蜡切片; 人类; 1:200
  • 免疫组化; 人类
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB 100-105)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 和 被用于免疫组化在人类样本上. J Histochem Cytochem (2007) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(mgc3)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab16066)被用于被用于免疫印迹在人类样本上浓度为1:1000. Int J Mol Sci (2022) ncbi
domestic rabbit 单克隆(EPR16897)
  • 免疫组化; 小鼠; 图 s1j
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab179483)被用于被用于免疫组化在小鼠样本上 (图 s1j). Sci Rep (2022) ncbi
domestic rabbit 单克隆(EP1215Y)
  • 免疫印迹; 人类; 图 2d
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab51608)被用于被用于免疫印迹在人类样本上 (图 2d). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(H1alpha67)
  • 染色质免疫沉淀 ; 人类; 图 3e
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab1)被用于被用于染色质免疫沉淀 在人类样本上 (图 3e). Nat Commun (2022) ncbi
domestic rabbit 单克隆(EP1215Y)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s7g
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab51608)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s7g). Nat Commun (2022) ncbi
domestic rabbit 单克隆(EPR16897)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 7a
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab179483)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 7a). Mol Med Rep (2022) ncbi
小鼠 单克隆(mgc3)
  • 免疫组化; 人类; 1:100; 图 12
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab16066)被用于被用于免疫组化在人类样本上浓度为1:100 (图 12). Biomedicines (2021) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:3000; 图 4d
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab1)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 4d). Oncol Lett (2021) ncbi
小鼠 单克隆(mgc3)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 s12f
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab16066)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 s12f). Nat Commun (2021) ncbi
小鼠 单克隆(mgc3)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4f
  • 免疫印迹; 小鼠; 1:1000; 图 4e, 6c
  • 免疫组化-石蜡切片; 人类; 1:200; 图 7a
  • 免疫印迹; 人类; 1:1000; 图 6d
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, 16066)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4f), 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e, 6c), 被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 7a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Chin J Cancer Res (2021) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 大鼠; 1:100; 图 3c
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab1)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 3c). J Tissue Eng (2021) ncbi
domestic rabbit 单克隆(EPR16897)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 s2
  • 免疫印迹; 小鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab179483)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 s2) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Aging (Albany NY) (2021) ncbi
  • 免疫印迹; 小鼠; 图 3f
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab82832)被用于被用于免疫印迹在小鼠样本上 (图 3f). Cell Metab (2021) ncbi
domestic rabbit 单克隆(EPR16897)
  • 免疫细胞化学基因敲除验证; 人类; 1:100; 图 2a
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 2c
  • 免疫组化; 人类; 图 1b
艾博抗(上海)贸易有限公司HIF-1甲抗体(abcam, ab179483)被用于被用于免疫细胞化学基因敲除验证在人类样本上浓度为1:100 (图 2a), 被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 2c) 和 被用于免疫组化在人类样本上 (图 1b). Cell Death Dis (2021) ncbi
小鼠 单克隆(mgc3)
  • 免疫印迹; 小鼠; 图 6c
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab16066)被用于被用于免疫印迹在小鼠样本上 (图 6c). Theranostics (2021) ncbi
小鼠 单克隆(mgc3)
  • 免疫组化-石蜡切片; African green monkey; 4 ug/ml; 图 4b
  • 免疫印迹; African green monkey; 1:1000; 图 4d
  • 免疫细胞化学; 大鼠; 1:200; 图 7a
  • 免疫细胞化学; 人类; 1:200; 图 5c
  • 免疫印迹; 人类; 1:1000; 图 5e
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab16066)被用于被用于免疫组化-石蜡切片在African green monkey样本上浓度为4 ug/ml (图 4b), 被用于免疫印迹在African green monkey样本上浓度为1:1000 (图 4d), 被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 7a), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 5c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Commun Biol (2021) ncbi
domestic rabbit 单克隆(EPR16897)
  • 免疫印迹; 小鼠; 图 3e, 3f
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab179483)被用于被用于免疫印迹在小鼠样本上 (图 3e, 3f). EMBO J (2021) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:500; 图 5d
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam Technology, ab1)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5d). Oncogene (2021) ncbi
domestic rabbit 单克隆(EP1215Y)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5a
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab51608)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5a). Oncol Lett (2020) ncbi
小鼠 单克隆(H1alpha67)
  • 染色质免疫沉淀 ; 人类; 图 3k
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab1)被用于被用于染色质免疫沉淀 在人类样本上 (图 3k). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(EP1215Y)
  • 免疫组化-石蜡切片; 人类; 图 6j
  • 免疫印迹; 人类; 图 2b
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab51608)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6j) 和 被用于免疫印迹在人类样本上 (图 2b). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(EPR16897)
  • 免疫组化; 大鼠; 1:50; 图 5c
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab179483)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 5c). Cell Prolif (2020) ncbi
domestic rabbit 单克隆(EPR16897)
  • 免疫印迹; 小鼠; 图 5c
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab179483)被用于被用于免疫印迹在小鼠样本上 (图 5c). Cell (2019) ncbi
domestic rabbit 单克隆(EP1215Y)
  • 免疫印迹; 人类; 图 4c
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab51608)被用于被用于免疫印迹在人类样本上 (图 4c). Cancers (Basel) (2018) ncbi
domestic rabbit 单克隆(EPR16897)
  • 免疫印迹; 人类; 图 s6d
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, 179483)被用于被用于免疫印迹在人类样本上 (图 s6d). J Clin Invest (2019) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 1:100; 图 6a
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab1)被用于被用于免疫组化在人类样本上浓度为1:100 (图 6a). Nature (2018) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-冰冻切片; 小鼠; 图 1d
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab8366)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1d). J Clin Invest (2018) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 7b
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab8366)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 7b). J Histochem Cytochem (2018) ncbi
小鼠 单克隆(mgc3)
  • 免疫印迹; 人类; 图 2b
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab16066)被用于被用于免疫印迹在人类样本上 (图 2b). Tumour Biol (2017) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫细胞化学; 人类; 1:200; 图 1e
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab1)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1e) 和 被用于免疫印迹在人类样本上 (图 1d). Stem Cells Dev (2017) ncbi
小鼠 单克隆(mgc3)
  • 免疫组化-冰冻切片; 人类; 1:200
  • 免疫细胞化学; 人类; 1:200; 图 e1a
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, AB16066)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 和 被用于免疫细胞化学在人类样本上浓度为1:200 (图 e1a). Nature (2017) ncbi
domestic rabbit 单克隆(EPR16897)
  • 免疫组化-冰冻切片; 小鼠; 图 s6e
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, EPR16897)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s6e). Nature (2017) ncbi
domestic rabbit 单克隆(EP1215Y)
  • 免疫印迹; 大鼠; 1:500; 图 3b
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, EP1215Y)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3b). Heart Rhythm (2017) ncbi
小鼠 单克隆(mgc3)
  • 免疫细胞化学; 人类; 图 1
艾博抗(上海)贸易有限公司HIF-1甲抗体(abcam, ab16066)被用于被用于免疫细胞化学在人类样本上 (图 1). BMC Cancer (2016) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 2
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab8366)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 2). Virchows Arch (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 染色质免疫沉淀 ; 小鼠; 图 6g
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab1)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 6g). Nat Med (2016) ncbi
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab82832)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1). Autophagy (2016) ncbi
domestic rabbit 单克隆(EP1215Y)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 2
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, EP12154)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 2). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(ESEE122)
  • 免疫细胞化学; 人类; 图 1
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab8366)被用于被用于免疫细胞化学在人类样本上 (图 1). J Diabetes Res (2016) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-石蜡切片; 人类; 表 4
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ESEE122)被用于被用于免疫组化-石蜡切片在人类样本上 (表 4). Chin J Cancer (2016) ncbi
小鼠 单克隆(mgc3)
  • 免疫印迹; 人类; 1:500; 图 3
艾博抗(上海)贸易有限公司HIF-1甲抗体(Santa Cruz Biotechnology, ab16066)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Exp Ther Med (2015) ncbi
domestic rabbit 单克隆(EP1215Y)
  • 免疫组化-石蜡切片; 人类; 图 6
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab51608)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6), 被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
domestic rabbit 单克隆(EP1215Y)
  • 免疫印迹; 大鼠; 1:1000; 图 7a
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab51608)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7a). J Proteomics (2016) ncbi
小鼠 单克隆(mgc3)
  • 免疫组化-石蜡切片; 小鼠; 图 1b
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab16066)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1b). PLoS ONE (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 图 1a
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab1)被用于被用于免疫印迹在小鼠样本上 (图 1a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(EP1215Y)
  • 免疫印迹; 大鼠; 1:200; 图 1
艾博抗(上海)贸易有限公司HIF-1甲抗体(abcam, ab51608)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 1). Mol Med Rep (2015) ncbi
  • 免疫印迹; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司HIF-1甲抗体(abcam, ab82832)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(ESEE122)
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab8366)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(EP1215Y)
  • 酶联免疫吸附测定; 人类; 1:250; 图 s4
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab51608)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:250 (图 s4). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(EP1215Y)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab51608)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫细胞化学在人类样本上浓度为1:100. Mol Med Rep (2015) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化; 人类; 1:500; 图 6c
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab8366)被用于被用于免疫组化在人类样本上浓度为1:500 (图 6c). Oncotarget (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab1)被用于被用于免疫印迹在人类样本上. Br J Pharmacol (2015) ncbi
domestic rabbit 单克隆(EP1215Y)
  • 免疫印迹; 大鼠; 1:500; 图 6
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab51608)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 6). Mol Med Rep (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 1:500
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab1)被用于被用于免疫组化在人类样本上浓度为1:500. PLoS ONE (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-石蜡切片; 人类; 1:200
  • 免疫印迹; 人类; 1:5000
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 和 被用于免疫印迹在人类样本上浓度为1:5000. Stem Cells (2014) ncbi
domestic rabbit 单克隆(EP1215Y)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫印迹; 人类; 1:300
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab51608)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上浓度为1:300. Placenta (2014) ncbi
小鼠 单克隆(ESEE122)
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab8366)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Cell Signal (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 大鼠; 1:200
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, H1alpha67)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Lab Invest (2014) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-石蜡切片; 大鼠; 1:100
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab8366)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100. Stem Cells Dev (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(H1alpha 67)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6e
  • 免疫印迹; 人类; 1:2000; 图 6h
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-53546)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6e) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 6h). Front Oncol (2022) ncbi
小鼠 单克隆(28b)
  • 染色质免疫沉淀 ; 人类; 图 10e
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-13515)被用于被用于染色质免疫沉淀 在人类样本上 (图 10e). Theranostics (2021) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫细胞化学; 小鼠; 1:80; 图 5a
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-53546)被用于被用于免疫细胞化学在小鼠样本上浓度为1:80 (图 5a). Biomolecules (2020) ncbi
小鼠 单克隆(28b)
  • 免疫印迹; 人类; 1:300; 图 6a
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-13515)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 6a). PLoS ONE (2020) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4e
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, 28b)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4e). Chin Med J (Engl) (2020) ncbi
小鼠 单克隆(28b)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4e
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, 28b)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4e). Chin Med J (Engl) (2020) ncbi
小鼠 单克隆(28b)
  • 免疫组化; 小鼠; 1:100; 图 5a
  • 免疫印迹; 小鼠; 图 4g
圣克鲁斯生物技术HIF-1甲抗体(Santa, sc-13515)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5a) 和 被用于免疫印迹在小鼠样本上 (图 4g). Invest Ophthalmol Vis Sci (2019) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2a
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, 28b)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 2a). Arch Med Sci (2017) ncbi
小鼠 单克隆(28b)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2a
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, 28b)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 2a). Arch Med Sci (2017) ncbi
小鼠 单克隆(28b)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-13515)被用于被用于免疫印迹在人类样本上 (图 2a). Am J Transl Res (2017) ncbi
小鼠 单克隆(28b)
  • 免疫印迹; 人类; 1:500; 图 3A
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-13515)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3A). Oncol Lett (2017) ncbi
小鼠 单克隆(28b)
  • 免疫组化; 人类; 图 1e
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-13515)被用于被用于免疫组化在人类样本上 (图 1e). Nat Commun (2016) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 人类; 图 9d
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, H1alpha 67)被用于被用于免疫印迹在人类样本上 (图 9d). PLoS ONE (2016) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫细胞化学; 人类; 1:50; 图 2
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-53546)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2). Oncol Lett (2016) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫组化-石蜡切片; 小鼠; 1:25; 图 3
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, 67)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:25 (图 3). Stem Cells Int (2016) ncbi
小鼠 单克隆(3C144)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-71247)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Mol Med Rep (2016) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫组化-石蜡切片; 人类; 1:20; 图 1
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(28b)
  • 免疫沉淀; 人类; 1:200; 图 2f
  • 免疫印迹; 人类; 1:1000; 图 2f
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-13515)被用于被用于免疫沉淀在人类样本上浓度为1:200 (图 2f) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Nat Cell Biol (2016) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫沉淀; 人类; 1:1000; 图 5
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于被用于免疫沉淀在人类样本上浓度为1:1000 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4). J Cell Sci (2016) ncbi
小鼠 单克隆(28b)
  • 免疫印迹; 人类; 1:500; 图 1
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-13515)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). Mol Med Rep (2015) ncbi
小鼠 单克隆(28b)
  • 免疫细胞化学; 人类; 图 4
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-13515)被用于被用于免疫细胞化学在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(3C144)
  • 免疫印迹; 人类
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-71247)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-53546)被用于被用于免疫印迹在人类样本上 (图 3). EBioMedicine (2015) ncbi
小鼠 单克隆(28b)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-13515)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(28b)
  • 免疫组化-石蜡切片; 人类; 图 4
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-13515)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 3). Mol Med Rep (2015) ncbi
小鼠 单克隆(28b)
  • 免疫组化-石蜡切片; 人类; 图 4
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-13515)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-53546)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 人类; 1:500; 图 1
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-53546)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). Mol Med Rep (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫细胞化学; 人类; 1:50; 图 4
圣克鲁斯生物技术HIF-1甲抗体(anta Cruz, sc-53546)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 4). Cell Cycle (2014) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 人类
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫组化-石蜡切片; 人类; 图 4
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4). Front Physiol (2014) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫组化; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:2000
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于被用于免疫组化在大鼠样本上浓度为1:100 和 被用于免疫印迹在大鼠样本上浓度为1:2000. Br J Neurosurg (2014) ncbi
小鼠 单克隆(28b)
  • EMSA; 人类; 1 ug
圣克鲁斯生物技术HIF-1甲抗体(Santa-Cruz Biotechnology Inc., sc13515)被用于被用于EMSA在人类样本上浓度为1 ug. Liver Int (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于被用于免疫印迹在大鼠样本上. Vascular (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 1
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, clone H1alpha67)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 1). Acta Histochem (2014) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫组化-石蜡切片; 人类; 1:100
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Brain Tumor Pathol (2014) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1b
赛默飞世尔HIF-1甲抗体(Thermo Scientific, PA1-16601)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Front Pharmacol (2017) ncbi
小鼠 单克隆(mgc3)
  • 免疫细胞化学; 小鼠; 1:200; 图 s1a
赛默飞世尔HIF-1甲抗体(Pierce, MA1-516)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s1a). Sci Rep (2017) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 图 1b
赛默飞世尔HIF-1甲抗体(Thermo Fisher Scientific, H1alpha67)被用于被用于免疫组化在人类样本上 (图 1b). Oncogenesis (2017) ncbi
domestic rabbit 重组(16H4L13)
  • 免疫印迹; 人类; 1:250; 图 s1a
赛默飞世尔HIF-1甲抗体(Invitrogen, 16H4L13)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 s1a). PLoS ONE (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; pigs ; 1:1000; 表 1
赛默飞世尔HIF-1甲抗体(NeoMarkers, Ab-4)被用于被用于免疫组化在pigs 样本上浓度为1:1000 (表 1). Semin Thorac Cardiovasc Surg (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔HIF-1甲抗体(Thermo Fisher Scientific, PA1-16601)被用于被用于免疫印迹在小鼠样本上 (图 3). Cell Signal (2016) ncbi
小鼠 单克隆(mgc3)
  • 免疫印迹; 人类; 图 1a
赛默飞世尔HIF-1甲抗体(Affinity Bioreagents, mgc3)被用于被用于免疫印迹在人类样本上 (图 1a). FEBS Lett (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔HIF-1甲抗体(Thermo Scientific, MA1-16504)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). FEBS Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 9a
赛默飞世尔HIF-1甲抗体(Thermo Fisher, PA3-16521)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 9a). Transplantation (2016) ncbi
domestic rabbit 重组(16H4L13)
  • 免疫印迹; 人类; 1:500; 图 6
赛默飞世尔HIF-1甲抗体(Fisher Scientific, 70050)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔HIF-1甲抗体(ThermoFisher Scientific, PA1-16601)被用于. Mol Med Rep (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 1:200
赛默飞世尔HIF-1甲抗体(LabVision, H1alpha67)被用于被用于免疫组化在人类样本上浓度为1:200. Int Urol Nephrol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔HIF-1甲抗体(Thermo Fisher Scientific, PA1-16601)被用于. Inflammation (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔HIF-1甲抗体(Neomarkers, MS-1164)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Ann Surg Oncol (2014) ncbi
小鼠 单克隆(mgc3)
  • EMSA; 大鼠
  • EMSA; 小鼠
赛默飞世尔HIF-1甲抗体(Thermo Scientific, MA1-516)被用于被用于EMSA在大鼠样本上 和 被用于EMSA在小鼠样本上. Am J Hum Genet (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 大鼠; 1:200
赛默飞世尔HIF-1甲抗体(Thermo, MS-1164-P0)被用于被用于免疫组化在大鼠样本上浓度为1:200. J Comp Neurol (2012) ncbi
GeneTex
小鼠 单克隆(GT10211)
  • 免疫印迹; 人类; 图 4d
GeneTexHIF-1甲抗体(Genetex, 628480)被用于被用于免疫印迹在人类样本上 (图 4d). Nat Commun (2016) ncbi
小鼠 单克隆(GT10211)
  • 免疫细胞化学; 人类; 1:100; 图 5
GeneTexHIF-1甲抗体(GeneTex, GTX628480)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5). Nat Cell Biol (2015) ncbi
安迪生物R&D
domestic goat 多克隆
  • 免疫印迹; 人类; 图 4e, 5e
安迪生物R&DHIF-1甲抗体(R&D Systems, AF1935)被用于被用于免疫印迹在人类样本上 (图 4e, 5e). Cancer Cell Int (2021) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 人类; 1:20; 图 s4
安迪生物R&DHIF-1甲抗体(R&D Systems, AF1935)被用于被用于免疫细胞化学在人类样本上浓度为1:20 (图 s4). Commun Biol (2021) ncbi
SICGEN
domestic goat 多克隆
SICGENHIF-1甲抗体(Sicgen, AB0112-200)被用于. Sci Rep (2015) ncbi
Active Motif
小鼠 单克隆(ESEE122)
  • 免疫印迹; 人类; 1:1000; 图 4
Active MotifHIF-1甲抗体(Active Motif, 61275)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncotarget (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D2U3T)
  • 免疫印迹; 小鼠; 图 6i
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technology, 14179)被用于被用于免疫印迹在小鼠样本上 (图 6i). Sci Adv (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 人类; 图 s2a
  • 免疫印迹; 人类; 图 s8
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3716)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 s2a) 和 被用于免疫印迹在人类样本上 (图 s8). Nat Commun (2022) ncbi
domestic rabbit 单克隆(D1S7W)
  • 免疫印迹; 人类; 图 6i
赛信通(上海)生物试剂有限公司HIF-1甲抗体(CST, 36169)被用于被用于免疫印迹在人类样本上 (图 6i). Mol Ther Nucleic Acids (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s5-1j
  • 免疫印迹; 小鼠; 1:1000; 图 s5-1k
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technologies, 3716S)被用于被用于免疫印迹在人类样本上 (图 s5-1j) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5-1k). elife (2021) ncbi
domestic rabbit 单克隆(D2U3T)
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 14179)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Cell Rep (2021) ncbi
domestic rabbit 单克隆(D2U3T)
  • 免疫印迹基因敲除验证; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 14179)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 1a). Mediators Inflamm (2021) ncbi
domestic rabbit 单克隆(D2U3T)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司HIF-1甲抗体(CST, 14179S)被用于被用于免疫印迹在人类样本上 (图 3a). Oncogenesis (2021) ncbi
domestic rabbit 单克隆(D1S7W)
  • 免疫印迹; 人类; 1:1000; 图 1f
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technology, 36169)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1f). Int J Biol Sci (2021) ncbi
domestic rabbit 单克隆(D2U3T)
  • 免疫印迹; 人类; 1:2000; 图 1k
赛信通(上海)生物试剂有限公司HIF-1甲抗体(CST, 14179)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1k). Stem Cell Res Ther (2021) ncbi
domestic rabbit 单克隆(D1S7W)
  • 免疫印迹; 人类; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technology, 36169)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6c). Cancer Commun (Lond) (2021) ncbi
domestic rabbit 单克隆(D2U3T)
  • 免疫印迹; 人类; 1:1000; 图 s3c
赛信通(上海)生物试剂有限公司HIF-1甲抗体(CST, 14179)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3c). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(D43B5)
  • 免疫印迹; 人类; 1:1000; 图 3d
  • 免疫印迹; 小鼠; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3434)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). Oncogene (2021) ncbi
domestic rabbit 单克隆(D2U3T)
  • 免疫印迹; 人类; 1:1000; 图 1f
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technologies, 14179)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1f). Respir Res (2021) ncbi
domestic rabbit 单克隆(D1S7W)
  • 流式细胞仪; 小鼠; 1:100
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technology, 36169)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2021) ncbi
domestic rabbit 单克隆(D1S7W)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司HIF-1甲抗体(CST, 36169S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Redox Biol (2021) ncbi
domestic rabbit 单克隆(D1S7W)
  • 免疫印迹; 人类; 图 s1d
赛信通(上海)生物试剂有限公司HIF-1甲抗体(CST, 36169)被用于被用于免疫印迹在人类样本上 (图 s1d). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(D2U3T)
  • 免疫印迹; 小鼠; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technology, 14179)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7b). Sci Rep (2021) ncbi
domestic rabbit 单克隆(D43B5)
  • 免疫印迹; 人类; 1:1000; 图 s6b
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3434)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s6b). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D1S7W)
  • 免疫印迹; 人类; 1:1000; 图 s6b
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 36169)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s6b). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D2U3T)
  • 免疫印迹; 小鼠; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technology, D2U3T)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). Front Cell Dev Biol (2020) ncbi
domestic rabbit 单克隆(D2U3T)
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technology, 14179)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D2U3T)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technology, 14179)被用于被用于免疫印迹在人类样本上. Nat Commun (2020) ncbi
domestic rabbit 单克隆(D2U3T)
  • 免疫印迹; 人类; 1:500; 图 s3a
赛信通(上海)生物试剂有限公司HIF-1甲抗体(CST, 14179)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s3a). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D1S7W)
  • 染色质免疫沉淀 ; 人类; 图 6l
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 36169)被用于被用于染色质免疫沉淀 在人类样本上 (图 6l) 和 被用于免疫印迹在人类样本上 (图 6f). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(D2U3T)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 4b
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 14179)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 4b) 和 被用于免疫印迹在人类样本上 (图 2c). Cancers (Basel) (2020) ncbi
domestic rabbit 单克隆(D1S7W)
  • 免疫细胞化学; 小鼠; 图 1i
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, D1S7W)被用于被用于免疫细胞化学在小鼠样本上 (图 1i). Nature (2019) ncbi
domestic rabbit 单克隆(D2U3T)
  • 免疫印迹; 小鼠; 图 1h
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, D2U3T)被用于被用于免疫印迹在小鼠样本上 (图 1h). Nature (2019) ncbi
domestic rabbit 单克隆(D2U3T)
  • 免疫印迹; 大鼠; 1:500; 图 5a
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technology, D2U3T)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 5a). Biomed Res Int (2019) ncbi
domestic rabbit 单克隆(D2U3T)
  • 免疫印迹; 人类; 1:2000; 图 s3
  • 免疫印迹; 大鼠; 1:2000; 图 4a, s3
赛信通(上海)生物试剂有限公司HIF-1甲抗体(CST, 14179)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s3) 和 被用于免疫印迹在大鼠样本上浓度为1:2000 (图 4a, s3). BMC Neurosci (2019) ncbi
domestic rabbit 单克隆(D43B5)
  • 免疫印迹; 人类; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3434)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7c). Hypoxia (Auckl) (2019) ncbi
domestic rabbit 单克隆(D2U3T)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technology, 14179)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Science (2019) ncbi
domestic rabbit 单克隆(D43B5)
  • 免疫印迹; 人类; 1:500; 图 4b
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3434)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D2U3T)
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 14179S)被用于被用于免疫印迹在小鼠样本上 (图 6c). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(D43B5)
  • 免疫印迹; 人类; 图 8e
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technology, 3434)被用于被用于免疫印迹在人类样本上 (图 8e). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3716)被用于被用于免疫印迹在人类样本上 (图 1c). Oncogene (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3716)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8a). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D43B5)
  • 免疫组化-冰冻切片; 小鼠; 图 s3g
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, D43B5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s3g). Science (2017) ncbi
domestic rabbit 单克隆(D43B5)
  • 免疫印迹; 人类; 1:2000; 图 7E
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell signaling, 3434)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7E). elife (2017) ncbi
domestic rabbit 单克隆(D2U3T)
  • 免疫印迹; pigs ; 图 3a
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司HIF-1甲抗体(CST, 14179)被用于被用于免疫印迹在pigs 样本上 (图 3a) 和 被用于免疫印迹在小鼠样本上 (图 3a). Front Immunol (2016) ncbi
domestic rabbit 单克隆(D2U3T)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司HIF-1甲抗体(cell signalling, 14179)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3716)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3716)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3716)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signalling, 3716)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell signaling, 3716)被用于被用于免疫印迹在人类样本上 (图 2). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3716S)被用于被用于免疫印迹在人类样本上 (图 2). Int J Oncol (2016) ncbi
domestic rabbit 单克隆(D43B5)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3434S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Sci Transl Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signalling, 3716)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D43B5)
  • 免疫印迹; 人类; 1:5000; 图 s1
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technology, 3434)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D43B5)
  • 免疫印迹; 人类; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3434)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4g). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 3
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3716)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3716)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D43B5)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3434)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). J Cell Sci (2016) ncbi
domestic rabbit 单克隆(D2U3T)
  • 免疫印迹; 人类; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 14179)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Mol Cancer (2015) ncbi
domestic rabbit 单克隆(D43B5)
  • 免疫印迹; 人类; 1:500; 图 3
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3434S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D43B5)
  • 免疫沉淀; 人类; 图 8
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell signaling, D43B5)被用于被用于免疫沉淀在人类样本上 (图 8). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D43B5)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technology, 3434)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D43B5)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3434)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Cell Biol (2015) ncbi
domestic rabbit 单克隆(D43B5)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3434)被用于被用于免疫印迹在人类样本上 (图 2a). Genes Dev (2014) ncbi
Cayman Chemical
多克隆
  • 免疫印迹; 人类; 1:1000; 图 1a
开曼群岛化学品HIF-1甲抗体(Cayman, 10006421)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Sci Adv (2021) ncbi
多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2d
  • 免疫印迹; 人类; 1:1000; 图 2a, 2b, 3g, 5c
开曼群岛化学品HIF-1甲抗体(开曼群岛化学品, 10006421)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2a, 2b, 3g, 5c). Oncogene (2021) ncbi
多克隆
  • 染色质免疫沉淀 ; 大鼠; ; 图 11b
开曼群岛化学品HIF-1甲抗体(开曼群岛化学品, 10006421)被用于被用于染色质免疫沉淀 在大鼠样本上浓度为 (图 11b). J Neurosci (2021) ncbi
多克隆
  • 免疫细胞化学; 小鼠; 图 s4b
  • 免疫印迹; 小鼠; 图 s4c
开曼群岛化学品HIF-1甲抗体(开曼群岛化学品, 10006421)被用于被用于免疫细胞化学在小鼠样本上 (图 s4b) 和 被用于免疫印迹在小鼠样本上 (图 s4c). J Am Soc Nephrol (2019) ncbi
多克隆
  • 免疫印迹; 人类; 图 s2a
  • 免疫印迹; 小鼠; 图 s2n
开曼群岛化学品HIF-1甲抗体(开曼群岛化学品, 10006421)被用于被用于免疫印迹在人类样本上 (图 s2a) 和 被用于免疫印迹在小鼠样本上 (图 s2n). Cell (2018) ncbi
多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1c
开曼群岛化学品HIF-1甲抗体(开曼群岛化学品, 10006421)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1c). PLoS ONE (2017) ncbi
多克隆
  • 免疫印迹; 小鼠; 1:200; 图 1b
开曼群岛化学品HIF-1甲抗体(开曼群岛化学品, 10006421)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 1b). J Biol Chem (2018) ncbi
多克隆
  • 免疫印迹; 小鼠; 1:500; 图 2a
开曼群岛化学品HIF-1甲抗体(Cayman, 10006421)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2a). PLoS ONE (2016) ncbi
多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3b
开曼群岛化学品HIF-1甲抗体(Caymen Chemical, 10006421)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Nat Immunol (2016) ncbi
多克隆
  • 免疫印迹; 小鼠; 1:3000; 图 s2a
开曼群岛化学品HIF-1甲抗体(开曼群岛化学品产品, 10006421)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 s2a). Nature (2016) ncbi
多克隆
  • 染色质免疫沉淀 ; 人类; 图 4c
  • 免疫印迹; 人类; 图 4a
开曼群岛化学品HIF-1甲抗体(开曼群岛化学品, 10006421)被用于被用于染色质免疫沉淀 在人类样本上 (图 4c) 和 被用于免疫印迹在人类样本上 (图 4a). BMC Cancer (2016) ncbi
多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:10,000; 图 s4d
  • 免疫印迹; 小鼠; 图 s4i
开曼群岛化学品HIF-1甲抗体(Cayman Chemical Co., 10006421)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:10,000 (图 s4d) 和 被用于免疫印迹在小鼠样本上 (图 s4i). J Clin Invest (2016) ncbi
多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4f
开曼群岛化学品HIF-1甲抗体(开曼群岛化学品, 1006421)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4f). Nat Commun (2016) ncbi
碧迪BD
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:500; 图 3a, 5a, s5e, s5k
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3a, 5a, s5e, s5k). Oncogenesis (2022) ncbi
小鼠 单克隆(29/HIF-1b)
  • 免疫印迹; 人类; 图 1f
碧迪BDHIF-1甲抗体(BD实验室, 611078)被用于被用于免疫印迹在人类样本上 (图 1f). Cell Rep (2021) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫细胞化学; 人类; 图 4h
碧迪BDHIF-1甲抗体(BD, 610959)被用于被用于免疫细胞化学在人类样本上 (图 4h). Int J Biol Sci (2021) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:500; 图 s2d
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s2d). Int J Mol Sci (2021) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫组化-石蜡切片; 人类; 图 s7o
  • 染色质免疫沉淀 ; 人类; 图 5b
  • 免疫印迹; 人类; 1:1000; 图 1l, s1a
碧迪BDHIF-1甲抗体(BD, 610959)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s7o), 被用于染色质免疫沉淀 在人类样本上 (图 5b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1l, s1a). Nat Commun (2021) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 1a
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610959)被用于被用于免疫印迹在人类样本上 (图 1a). Sci Rep (2020) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:500; 图 s5a
碧迪BDHIF-1甲抗体(BD, 610958)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s5a). Nat Commun (2020) ncbi
小鼠 单克隆(54/HIF-1)
  • 其他; 人类; 1:1000; 图 s4-1d
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于其他在人类样本上浓度为1:1000 (图 s4-1d). elife (2020) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 4b
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于免疫印迹在人类样本上 (图 4b). J Clin Invest (2020) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 小鼠; 图 1a, 9b
  • 免疫印迹; 人类; 图 1a
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在小鼠样本上 (图 1a, 9b) 和 被用于免疫印迹在人类样本上 (图 1a). Cancers (Basel) (2020) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 1a
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于免疫印迹在人类样本上 (图 1a). Science (2019) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:800; 图 3
碧迪BDHIF-1甲抗体(BD Biosciences, BD610958)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 3). Hypoxia (Auckl) (2019) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 6a
碧迪BDHIF-1甲抗体(BD, 610959)被用于被用于免疫印迹在人类样本上 (图 6a). Front Immunol (2019) ncbi
小鼠 单克隆(54/HIF-1)
  • 染色质免疫沉淀 ; 人类
  • 免疫印迹; 人类; 1:1000
碧迪BDHIF-1甲抗体(BD, 610959)被用于被用于染色质免疫沉淀 在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:1000. EMBO Mol Med (2018) ncbi
小鼠 单克隆(54/HIF-1)
  • 其他; 人类; 图 4c
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫细胞化学; 人类; 1:100; 图 5A
  • 免疫印迹; 人类; 1:1000; 图 1E
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5A) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1E). elife (2017) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 3b
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于免疫印迹在人类样本上 (图 3b). Nat Chem Biol (2017) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 5f
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样本上 (图 5f). Br J Cancer (2017) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 2f
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于免疫印迹在人类样本上 (图 2f). Oncotarget (2017) ncbi
小鼠 单克隆(29/HIF-1b)
  • 免疫印迹; 人类; 图 1e
碧迪BDHIF-1甲抗体(BD Biosciences, 611078)被用于被用于免疫印迹在人类样本上 (图 1e). Oncogene (2017) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 4b
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 2a
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610959)被用于被用于免疫印迹在人类样本上 (图 2a). Open Biol (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样本上. PLoS Pathog (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 s2a
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于免疫印迹在人类样本上 (图 s2a). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 1c
碧迪BDHIF-1甲抗体(BD Bioscience, 610958)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:2000; 图 1g
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1g). Nat Med (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫组化; 人类; 1:400; 图 2a
  • 免疫印迹; 人类; 图 2b
碧迪BDHIF-1甲抗体(BD Transduction, 610958)被用于被用于免疫组化在人类样本上浓度为1:400 (图 2a) 和 被用于免疫印迹在人类样本上 (图 2b). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 5
碧迪BDHIF-1甲抗体(BD, 610959)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4d
  • 免疫印迹; 人类; 图 2b
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4d) 和 被用于免疫印迹在人类样本上 (图 2b). Mol Cancer Ther (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000; 图 s11a
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 54)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s11a). Nat Commun (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000; 图 3a
碧迪BDHIF-1甲抗体(BD Bioscience, 610959)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Cell Death Dis (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 3
碧迪BDHIF-1甲抗体(BD TL, 610958)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 3). Oncol Lett (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000; 图 7b
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610958)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7b). Autophagy (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 2
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样本上 (图 2). Cell Rep (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 4e
碧迪BDHIF-1甲抗体(BD Bioscience, 610959)被用于被用于免疫印迹在人类样本上 (图 4e). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 3
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于免疫印迹在人类样本上 (图 3). Cancer Res (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 6a
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样本上 (图 6a). J Biol Chem (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 13
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样本上 (图 13). PLoS ONE (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 1
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 1c
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样本上 (图 1c). J Biol Chem (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 1
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 1
碧迪BDHIF-1甲抗体(BD Transduction, 610958)被用于被用于免疫印迹在人类样本上 (图 1). Mol Oncol (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 其他; 人类; 图 st1
碧迪BDHIF-1甲抗体(BD, 54)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 4
碧迪BDHIF-1甲抗体(BD, 610959)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 4c
碧迪BDHIF-1甲抗体(BD Transduction, 610959)被用于被用于免疫印迹在人类样本上 (图 4c). Mol Cancer (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图  s1
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于免疫印迹在人类样本上 (图  s1). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:500; 图 2b
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 54)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 1
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫沉淀; 人类; 1:1000; 图 5
  • 免疫印迹; 人类; 1:1000; 图 4
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫沉淀在人类样本上浓度为1:1000 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4). J Cell Sci (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 s10b
碧迪BDHIF-1甲抗体(BD Biosciences, 54)被用于被用于免疫印迹在人类样本上 (图 s10b). J Clin Invest (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000; 图 2a
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610959)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Radiat Oncol (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹基因敲除验证; 人类; 1:2000; 图 7f
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:2000 (图 7f). Nat Cell Biol (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 3
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样本上 (图 3). Cardiovasc Res (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 9a
碧迪BDHIF-1甲抗体(BD, 610958)被用于被用于免疫印迹在人类样本上 (图 9a). Oncotarget (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000; 图 9C
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 9C). Antioxid Redox Signal (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 3c
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610959)被用于被用于免疫印迹在人类样本上 (图 3c). Mol Cancer (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000; 图 9a
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 9a). J Biol Chem (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫细胞化学; 人类; 1:100; 图 1
  • 免疫印迹; 人类; 1:500; 图 1
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000
碧迪BDHIF-1甲抗体(BD Biosciences, 61095)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000; 图 3
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610958)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 3
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:250; 图 6a
碧迪BDHIF-1甲抗体(Transduction Laboratories, 610959)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 6a). PLoS ONE (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 4a
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样本上 (图 4a). Gut (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 2c
碧迪BDHIF-1甲抗体(BD Bioscience, 610958)被用于被用于免疫印迹在人类样本上 (图 2c). PLoS ONE (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610958)被用于被用于免疫印迹在人类样本上浓度为1:1000. Tumour Biol (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 1b
碧迪BDHIF-1甲抗体(BD Bioscience, 610959)被用于被用于免疫印迹在人类样本上 (图 1b). PLoS ONE (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫组化; 人类; 1:100; 图 1
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1). J Pathol (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 s3
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样本上 (图 s3). Oncotarget (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫沉淀; 人类; 图 1d
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于免疫沉淀在人类样本上 (图 1d). PLoS ONE (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 s4
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于免疫印迹在人类样本上 (图 s4). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 小鼠; 1:1000; 图 5,6
碧迪BDHIF-1甲抗体(BD Bioscience, 54/HIF-1)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5,6). Nat Commun (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:500
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于免疫印迹在人类样本上浓度为1:500. Oncol Lett (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫沉淀; 人类; 图 5
  • 免疫印迹; 人类; 图 2
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫沉淀在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 2). Cell Cycle (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610959)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 小鼠; 图 6
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于免疫印迹在小鼠样本上 (图 6). Free Radic Biol Med (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 2a
碧迪BDHIF-1甲抗体(BD, 610958)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Commun (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610958)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000; 图 4
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Int J Mol Med (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Bioscience, 610958)被用于被用于免疫印迹在人类样本上. J Korean Med Sci (2014) ncbi
小鼠 单克隆(29/HIF-1b)
  • 免疫印迹; 小鼠; 图 3
碧迪BDHIF-1甲抗体(BD, 611078)被用于被用于免疫印迹在小鼠样本上 (图 3). Toxicol Sci (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 7
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 7). Cardiovasc Res (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 2a
  • 免疫印迹; 小鼠; 图 2d
碧迪BDHIF-1甲抗体(BD, 610958)被用于被用于免疫印迹在人类样本上 (图 2a) 和 被用于免疫印迹在小鼠样本上 (图 2d). Genes Dev (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 染色质免疫沉淀 ; 人类; 图 s1
  • 免疫印迹; 人类; 1:1000; 图 s2
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于染色质免疫沉淀 在人类样本上 (图 s1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s2). Nat Med (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫组化-石蜡切片; 人类
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Bioscience, 610958)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(29/HIF-1b)
  • 免疫印迹; 人类; 图 4a
碧迪BDHIF-1甲抗体(BD, 611079)被用于被用于免疫印迹在人类样本上 (图 4a). Genes Dev (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样本上. Aging Cell (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Bioscience, 610959)被用于被用于免疫印迹在人类样本上. Mol Cancer Res (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:250; 图 1
碧迪BDHIF-1甲抗体(BD Biosciences, # 610958)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 1). Cancer Res (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000
碧迪BDHIF-1甲抗体(BD, 610958)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610959)被用于被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Transduction, 610958)被用于被用于免疫印迹在人类样本上. Cancer Res (2013) ncbi
小鼠 单克隆(54/HIF-1)
  • ChIP-Seq; 人类
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于ChIP-Seq在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2012) ncbi
西格玛奥德里奇
小鼠 单克隆(OZ12)
  • 免疫细胞化学; 人类; 1:100; 图 2e
西格玛奥德里奇HIF-1甲抗体(Sigma, H 6411)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2e). Oncotarget (2016) ncbi
文章列表
  1. Aboouf M, Armbruster J, Thiersch M, Guscetti F, Kristiansen G, Schraml P, et al. Pro-Apoptotic and Anti-Invasive Properties Underscore the Tumor-Suppressing Impact of Myoglobin on a Subset of Human Breast Cancer Cells. Int J Mol Sci. 2022;23: pubmed 出版商
  2. Pandey S, Shteinfer Kuzmine A, Chalifa Caspi V, Shoshan Barmatz V. Non-apoptotic activity of the mitochondrial protein SMAC/Diablo in lung cancer: Novel target to disrupt survival, inflammation, and immunosuppression. Front Oncol. 2022;12:992260 pubmed 出版商
  3. Phillips E, Balss J, Bethke F, Pusch S, Christen S, Hielscher T, et al. PFKFB4 interacts with FBXO28 to promote HIF-1α signaling in glioblastoma. Oncogenesis. 2022;11:57 pubmed 出版商
  4. Yoshida Y, Shimizu I, Shimada A, Nakahara K, Yanagisawa S, Kubo M, et al. Brown adipose tissue dysfunction promotes heart failure via a trimethylamine N-oxide-dependent mechanism. Sci Rep. 2022;12:14883 pubmed 出版商
  5. Singh N, Das B, Zhou J, Hu X, Yan R. Targeted BACE-1 inhibition in microglia enhances amyloid clearance and improved cognitive performance. Sci Adv. 2022;8:eabo3610 pubmed 出版商
  6. Ka N, Lim G, Kim S, Hwang S, Han J, Lee Y, et al. Type I IFN stimulates IFI16-mediated aromatase expression in adipocytes that promotes E2-dependent growth of ER-positive breast cancer. Cell Mol Life Sci. 2022;79:306 pubmed 出版商
  7. Wu T, Zhang X, Zhang Q, Zou Y, Ma J, Chen L, et al. Gasdermin-E Mediated Pyroptosis-A Novel Mechanism Regulating Migration, Invasion and Release of Inflammatory Cytokines in Rheumatoid Arthritis Fibroblast-like Synoviocytes. Front Cell Dev Biol. 2021;9:810635 pubmed 出版商
  8. Zhang M, Cui J, Lee D, Yuen V, Chiu D, Goh C, et al. Hypoxia-induced macropinocytosis represents a metabolic route for liver cancer. Nat Commun. 2022;13:954 pubmed 出版商
  9. Theocharidis G, Thomas B, Sarkar D, Mumme H, Pilcher W, Dwivedi B, et al. Single cell transcriptomic landscape of diabetic foot ulcers. Nat Commun. 2022;13:181 pubmed 出版商
  10. Méndez Solís O, Bendjennat M, Naipauer J, Theodoridis P, Ho J, Verdun R, et al. Kaposi's sarcoma herpesvirus activates the hypoxia response to usurp HIF2α-dependent translation initiation for replication and oncogenesis. Cell Rep. 2021;37:110144 pubmed 出版商
  11. Yeh C, Liu H, Lee M, Leu Y, Chiang W, Chang H, et al. Phytochemical‑rich herbal formula ATG‑125 protects against sucrose‑induced gastrocnemius muscle atrophy by rescuing Akt signaling and improving mitochondrial dysfunction in young adult mice. Mol Med Rep. 2022;25: pubmed 出版商
  12. Lin Y, Kuo T, Lo C, Cheng W, Chang W, Tseng G, et al. ADAM9 functions as a transcriptional regulator to drive angiogenesis in esophageal squamous cell carcinoma. Int J Biol Sci. 2021;17:3898-3910 pubmed 出版商
  13. Sil S, Singh S, Chemparathy D, Chivero E, Gordon L, Buch S. Astrocytes & Astrocyte derived Extracellular Vesicles in Morphine Induced Amyloidopathy: Implications for Cognitive Deficits in Opiate Abusers. Aging Dis. 2021;12:1389-1408 pubmed 出版商
  14. Sun Z, Sun D, Feng Y, Zhang B, Sun P, Zhou B, et al. Exosomal linc-ROR mediates crosstalk between cancer cells and adipocytes to promote tumor growth in pancreatic cancer. Mol Ther Nucleic Acids. 2021;26:253-268 pubmed 出版商
  15. Solano Fonseca R, Metang P, Egge N, Liu Y, Zuurbier K, Sivaprakasam K, et al. Glycolytic preconditioning in astrocytes mitigates trauma-induced neurodegeneration. elife. 2021;10: pubmed 出版商
  16. Wang Y, Lyu Y, Tu K, Xu Q, Yang Y, Salman S, et al. Histone citrullination by PADI4 is required for HIF-dependent transcriptional responses to hypoxia and tumor vascularization. Sci Adv. 2021;7: pubmed 出版商
  17. Aleksandrovych V, Wrona A, Bereza T, Pitynski K, Gil K. Oviductal Telocytes in Patients with Uterine Myoma. Biomedicines. 2021;9: pubmed 出版商
  18. Tang X, Li G, Shi L, Su F, Qian M, Liu Z, et al. Combined intermittent fasting and ERK inhibition enhance the anti-tumor effects of chemotherapy via the GSK3β-SIRT7 axis. Nat Commun. 2021;12:5058 pubmed 出版商
  19. Wu Q, Zhang W, Liu Y, Huang Y, Wu H, Ma C. Histone deacetylase 1 facilitates aerobic glycolysis and growth of endometrial cancer. Oncol Lett. 2021;22:721 pubmed 出版商
  20. Ma S, Mangala L, Hu W, Bayaktar E, Yokoi A, Hu W, et al. CD63-mediated cloaking of VEGF in small extracellular vesicles contributes to anti-VEGF therapy resistance. Cell Rep. 2021;36:109549 pubmed 出版商
  21. Otto N, Pereverzeva L, Léopold V, Ramirez Moral I, Roelofs J, van Heijst J, et al. Hypoxia-Inducible Factor-1α in Macrophages, but Not in Neutrophils, Is Important for Host Defense during Klebsiella pneumoniae-Induced Pneumosepsis. Mediators Inflamm. 2021;2021:9958281 pubmed 出版商
  22. Ashok C, Ahuja N, Natua S, Mishra J, Samaiya A, Shukla S. E2F1 and epigenetic modifiers orchestrate breast cancer progression by regulating oxygen-dependent ESRP1 expression. Oncogenesis. 2021;10:58 pubmed 出版商
  23. Cho A, Jin Y, An Y, Kim J, Choi Y, Lee J, et al. Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat Commun. 2021;12:4730 pubmed 出版商
  24. Jia Y, Li H, Wang Y, Wang J, Zhu J, Wei Y, et al. Crosstalk between hypoxia-sensing ULK1/2 and YAP-driven glycolysis fuels pancreatic ductal adenocarcinoma development. Int J Biol Sci. 2021;17:2772-2794 pubmed 出版商
  25. You D, Du D, Zhao X, Li X, Ying M, Hu X. Mitochondrial malic enzyme 2 promotes breast cancer metastasis via stabilizing HIF-1α under hypoxia. Chin J Cancer Res. 2021;33:308-322 pubmed 出版商
  26. Shen J, Sun Y, Liu X, Zhu Y, Bao B, Gao T, et al. EGFL6 regulates angiogenesis and osteogenesis in distraction osteogenesis via Wnt/β-catenin signaling. Stem Cell Res Ther. 2021;12:415 pubmed 出版商
  27. Han E, Wang J, Kural M, Jiang B, Leiby K, Chowdhury N, et al. Development of a Bioartificial Vascular Pancreas. J Tissue Eng. 2021;12:20417314211027714 pubmed 出版商
  28. Shao R, Zhang Z, Xu Z, Ouyang H, Wang L, Ouyang H, et al. H3K36 methyltransferase NSD1 regulates chondrocyte differentiation for skeletal development and fracture repair. Bone Res. 2021;9:30 pubmed 出版商
  29. Wang N, Peng Y, Su X, Prabhakar N, Nanduri J. Histone Deacetylase 5 Is an Early Epigenetic Regulator of Intermittent Hypoxia Induced Sympathetic Nerve Activation and Blood Pressure. Front Physiol. 2021;12:688322 pubmed 出版商
  30. Pan W, Song X, Hu Q, Zhang Y. miR-485 inhibits histone deacetylase HDAC5, HIF1α and PFKFB3 expression to alleviate epilepsy in cellular and rodent models. Aging (Albany NY). 2021;13:14416-14432 pubmed 出版商
  31. Wang J, Zhu W, Han J, Yang X, Zhou R, Lu H, et al. The role of the HIF-1α/ALYREF/PKM2 axis in glycolysis and tumorigenesis of bladder cancer. Cancer Commun (Lond). 2021;41:560-575 pubmed 出版商
  32. Li Q, Liu M, Sun Y, Jin T, Zhu P, Wan X, et al. SLC6A8-mediated intracellular creatine accumulation enhances hypoxic breast cancer cell survival via ameliorating oxidative stress. J Exp Clin Cancer Res. 2021;40:168 pubmed 出版商
  33. Gruber T, Pan C, Contreras R, Wiedemann T, Morgan D, Skowronski A, et al. Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension. Cell Metab. 2021;33:1155-1170.e10 pubmed 出版商
  34. Gómez Ferrer M, Villanueva Badenas E, Sánchez Sánchez R, Sánchez López C, Baquero M, Sepulveda P, et al. HIF-1α and Pro-Inflammatory Signaling Improves the Immunomodulatory Activity of MSC-Derived Extracellular Vesicles. Int J Mol Sci. 2021;22: pubmed 出版商
  35. Sánchez del Campo L, Martí Díaz R, Montenegro M, González Guerrero R, Hernández Caselles T, Martínez Barba E, et al. MITF induces escape from innate immunity in melanoma. J Exp Clin Cancer Res. 2021;40:117 pubmed 出版商
  36. Wang P, Zhao L, Gong S, Xiong S, Wang J, Zou D, et al. HIF1α/HIF2α-Sox2/Klf4 promotes the malignant progression of glioblastoma via the EGFR-PI3K/AKT signalling pathway with positive feedback under hypoxia. Cell Death Dis. 2021;12:312 pubmed 出版商
  37. Du J, Yu Q, Liu Y, Du S, Huang L, Xu D, et al. A novel role of kallikrein-related peptidase 8 in the pathogenesis of diabetic cardiac fibrosis. Theranostics. 2021;11:4207-4231 pubmed 出版商
  38. Lou P, Bi X, Tian Y, Li G, Kang Q, Lv C, et al. MiR-22 modulates brown adipocyte thermogenesis by synergistically activating the glycolytic and mTORC1 signaling pathways. Theranostics. 2021;11:3607-3623 pubmed 出版商
  39. Fan X, Zhao Z, Song J, Zhang D, Wu F, Tu J, et al. LncRNA-SNHG6 promotes the progression of hepatocellular carcinoma by targeting miR-6509-5p and HIF1A. Cancer Cell Int. 2021;21:150 pubmed 出版商
  40. Choi Y, Kim Y, Oh S, Suh K, Kim Y, Lee G, et al. Senescent Tumor Cells Build a Cytokine Shield in Colorectal Cancer. Adv Sci (Weinh). 2021;8:2002497 pubmed 出版商
  41. Zheng F, Chen J, Zhang X, Wang Z, Chen J, Lin X, et al. The HIF-1α antisense long non-coding RNA drives a positive feedback loop of HIF-1α mediated transactivation and glycolysis. Nat Commun. 2021;12:1341 pubmed 出版商
  42. Saw E, Pearson J, Schwenke D, Munasinghe P, Tsuchimochi H, Rawal S, et al. Activation of the cardiac non-neuronal cholinergic system prevents the development of diabetes-associated cardiovascular complications. Cardiovasc Diabetol. 2021;20:50 pubmed 出版商
  43. Turgu B, Zhang F, El Naggar A, Negri G, Kogler M, Tortola L, et al. HACE1 blocks HIF1α accumulation under hypoxia in a RAC1 dependent manner. Oncogene. 2021;40:1988-2001 pubmed 出版商
  44. Hao S, Zhu X, Liu Z, Wu X, Li S, Jiang P, et al. Chronic intermittent hypoxia promoted lung cancer stem cell-like properties via enhancing Bach1 expression. Respir Res. 2021;22:58 pubmed 出版商
  45. Sun Z, Yao Y, You M, Liu J, Guo W, Qi Z, et al. The kinase PDK1 is critical for promoting T follicular helper cell differentiation. elife. 2021;10: pubmed 出版商
  46. Liu M, Li N, Qu C, Gao Y, Wu L, Hu L. Amylin deposition activates HIF1α and 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3) signaling in failing hearts of non-human primates. Commun Biol. 2021;4:188 pubmed 出版商
  47. Naguib S, Backstrom J, Gil M, Calkins D, Rex T. Retinal oxidative stress activates the NRF2/ARE pathway: An early endogenous protective response to ocular hypertension. Redox Biol. 2021;42:101883 pubmed 出版商
  48. Yagi M, Toshima T, Amamoto R, Do Y, Hirai H, Setoyama D, et al. Mitochondrial translation deficiency impairs NAD+ -mediated lysosomal acidification. EMBO J. 2021;40:e105268 pubmed 出版商
  49. Isomura H, Taguchi A, Kajino T, Asai N, Nakatochi M, Kato S, et al. Conditional Ror1 knockout reveals crucial involvement in lung adenocarcinoma development and identifies novel HIF-1α regulator. Cancer Sci. 2021;: pubmed 出版商
  50. Chen F, Xu B, Li J, Yang X, Gu J, Yao X, et al. Hypoxic tumour cell-derived exosomal miR-340-5p promotes radioresistance of oesophageal squamous cell carcinoma via KLF10. J Exp Clin Cancer Res. 2021;40:38 pubmed 出版商
  51. Fujita Y, Ichikawa D, Sugaya T, Ohata K, Tanabe J, Inoue K, et al. Angiotensin II type 1a receptor loss ameliorates chronic tubulointerstitial damage after renal ischemia reperfusion. Sci Rep. 2021;11:982 pubmed 出版商
  52. Wang Z, Shi Y, Ying C, Jiang Y, Hu J. Hypoxia-induced PLOD1 overexpression contributes to the malignant phenotype of glioblastoma via NF-κB signaling. Oncogene. 2021;: pubmed 出版商
  53. Guo S, Chen Y, Yang Y, Zhang X, Ma L, Xue X, et al. TRIB2 modulates proteasome function to reduce ubiquitin stability and protect liver cancer cells against oxidative stress. Cell Death Dis. 2021;12:42 pubmed 出版商
  54. Rivas S, SILVA P, Reyes M, Sepulveda H, Solano L, Acuña J, et al. The RabGEF ALS2 is a hypoxia inducible target associated with the acquisition of aggressive traits in tumor cells. Sci Rep. 2020;10:22302 pubmed 出版商
  55. Torretta S, Scagliola A, Ricci L, Mainini F, Di Marco S, Cuccovillo I, et al. D-mannose suppresses macrophage IL-1β production. Nat Commun. 2020;11:6343 pubmed 出版商
  56. Cirillo F, Resmini G, Angelino E, Ferrara M, Tarantino A, Piccoli M, et al. HIF-1α Directly Controls WNT7A Expression During Myogenesis. Front Cell Dev Biol. 2020;8:593508 pubmed 出版商
  57. Zhang S, Wang Y, Xu J, Kim B, Deng W, Guo F. HIFα Regulates Developmental Myelination Independent of Autocrine Wnt Signaling. J Neurosci. 2021;41:251-268 pubmed 出版商
  58. Cheng C, Wooten J, Gibbs Z, McGlynn K, Mishra P, Whitehurst A. Sperm-specific COX6B2 enhances oxidative phosphorylation, proliferation, and survival in human lung adenocarcinoma. elife. 2020;9: pubmed 出版商
  59. Capaci V, Bascetta L, Fantuz M, Beznoussenko G, Sommaggio R, Cancila V, et al. Mutant p53 induces Golgi tubulo-vesiculation driving a prometastatic secretome. Nat Commun. 2020;11:3945 pubmed 出版商
  60. Li Z, Zhang H, Huang Y, Huang J, Sun P, Zhou N, et al. Autophagy deficiency promotes triple-negative breast cancer resistance to T cell-mediated cytotoxicity by blocking tenascin-C degradation. Nat Commun. 2020;11:3806 pubmed 出版商
  61. Devraj G, Guérit S, Seele J, Spitzer D, Macas J, Khel M, et al. HIF-1α is involved in blood-brain barrier dysfunction and paracellular migration of bacteria in pneumococcal meningitis. Acta Neuropathol. 2020;140:183-208 pubmed 出版商
  62. Dmitrieva N, Walts A, Nguyen D, Grubb A, Zhang X, Wang X, et al. Impaired angiogenesis and extracellular matrix metabolism in autosomal-dominant hyper-IgE syndrome. J Clin Invest. 2020;130:4167-4181 pubmed 出版商
  63. Zhang S, Kim B, Zhu X, Gui X, Wang Y, Lan Z, et al. Glial type specific regulation of CNS angiogenesis by HIFα-activated different signaling pathways. Nat Commun. 2020;11:2027 pubmed 出版商
  64. Lan F, Yue X, Xia T. Exosomal microRNA-210 is a potentially non-invasive biomarker for the diagnosis and prognosis of glioma. Oncol Lett. 2020;19:1967-1974 pubmed 出版商
  65. Mahameed M, Boukeileh S, Obiedat A, Darawshi O, Dipta P, Rimon A, et al. Pharmacological induction of selective endoplasmic reticulum retention as a strategy for cancer therapy. Nat Commun. 2020;11:1304 pubmed 出版商
  66. Zhou Y, Huang Y, Hu K, Zhang Z, Yang J, Wang Z. HIF1A activates the transcription of lncRNA RAET1K to modulate hypoxia-induced glycolysis in hepatocellular carcinoma cells via miR-100-5p. Cell Death Dis. 2020;11:176 pubmed 出版商
  67. Wang S, Qi Y, Gao X, Qiu W, Liu Q, Guo X, et al. Hypoxia-induced lncRNA PDIA3P1 promotes mesenchymal transition via sponging of miR-124-3p in glioma. Cell Death Dis. 2020;11:168 pubmed 出版商
  68. Li J, Tao T, Xu J, Liu Z, Zou Z, Jin M. HIF‑1α attenuates neuronal apoptosis by upregulating EPO expression following cerebral ischemia‑reperfusion injury in a rat MCAO model. Int J Mol Med. 2020;45:1027-1036 pubmed 出版商
  69. Merlo S, Luaces J, Spampinato S, Toro Urrego N, Caruso G, D Amico F, et al. SIRT1 Mediates Melatonin's Effects on Microglial Activation in Hypoxia: In Vitro and In Vivo Evidence. Biomolecules. 2020;10: pubmed 出版商
  70. Garza Morales R, Rendon B, Malik M, Garza Cabrales J, Aucouturier A, Bermúdez Humarán L, et al. Targeting Melanoma Hypoxia with the Food-Grade Lactic Acid Bacterium Lactococcus Lactis. Cancers (Basel). 2020;12: pubmed 出版商
  71. Lai S, Lin H, Liu Y, Yang L, Lu D. Monocarboxylate Transporter 4 Regulates Glioblastoma Motility and Monocyte Binding Ability. Cancers (Basel). 2020;12: pubmed 出版商
  72. Potilinski M, Ortiz G, Salica J, Lopez E, Fernández Acquier M, Chuluyan E, et al. Elucidating the mechanism of action of alpha-1-antitrypsin using retinal pigment epithelium cells exposed to high glucose. Potential use in diabetic retinopathy. PLoS ONE. 2020;15:e0228895 pubmed 出版商
  73. Yang W, Chen Z, Ma X, Ouyang X, Fang J, Wei H. Co-overexpression of VEGF and GDNF in adipose-derived stem cells optimizes therapeutic effect in neurogenic erectile dysfunction model. Cell Prolif. 2020;53:e12756 pubmed 出版商
  74. Tang H, Feng H, Wang M, Zhu Q, Liu Y, Jiang Y. In vivo longitudinal and multimodal imaging of hypoxia-inducible factor 1α and angiogenesis in breast cancer. Chin Med J (Engl). 2020;133:205-211 pubmed 出版商
  75. Ghezzi C, Wong A, Chen B, Ribalet B, Damoiseaux R, Clark P. A high-throughput screen identifies that CDK7 activates glucose consumption in lung cancer cells. Nat Commun. 2019;10:5444 pubmed 出版商
  76. Wang Y, Chiang I, Ohara T, Fujii S, Cheng J, Muegge B, et al. Long-Term Culture Captures Injury-Repair Cycles of Colonic Stem Cells. Cell. 2019;179:1144-1159.e15 pubmed 出版商
  77. Solis A, Bielecki P, Steach H, Sharma L, Harman C, Yun S, et al. Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature. 2019;573:69-74 pubmed 出版商
  78. Yin Y, Zhang Q, Zhao Q, Ding G, Wei C, Chang L, et al. Tongxinluo Attenuates Myocardiac Fibrosis after Acute Myocardial Infarction in Rats via Inhibition of Endothelial-to-Mesenchymal Transition. Biomed Res Int. 2019;2019:6595437 pubmed 出版商
  79. Thiele R, Osuru H, Paila U, Ikeda K, Zuo Z. Impact of inflammation on brain subcellular energetics in anesthetized rats. BMC Neurosci. 2019;20:34 pubmed 出版商
  80. Masson N, Keeley T, Giuntoli B, White M, Puerta M, Perata P, et al. Conserved N-terminal cysteine dioxygenases transduce responses to hypoxia in animals and plants. Science. 2019;365:65-69 pubmed 出版商
  81. Wang Y, Zhang X, Hua Z, Xie L, Jiang X, Wang R, et al. Blood Oxygen Level-Dependent Imaging and Intravoxel Incoherent Motion MRI of Early Contrast-Induced Acute Kidney Injury in a Rabbit Model. Kidney Blood Press Res. 2019;44:496-512 pubmed 出版商
  82. Wohlrab C, Kuiper C, Vissers M, Phillips E, Robinson B, Dachs G. Ascorbate modulates the hypoxic pathway by increasing intracellular activity of the HIF hydroxylases in renal cell carcinoma cells. Hypoxia (Auckl). 2019;7:17-31 pubmed 出版商
  83. Chakraborty A, Laukka T, Myllykoski M, Ringel A, Booker M, Tolstorukov M, et al. Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate. Science. 2019;363:1217-1222 pubmed 出版商
  84. Ignarski M, Rill C, Kaiser R, Kaldirim M, Neuhaus R, Esmaillie R, et al. The RNA-Protein Interactome of Differentiated Kidney Tubular Epithelial Cells. J Am Soc Nephrol. 2019;30:564-576 pubmed 出版商
  85. Kurelac I, Iommarini L, Vatrinet R, Amato L, De Luise M, Leone G, et al. Inducing cancer indolence by targeting mitochondrial Complex I is potentiated by blocking macrophage-mediated adaptive responses. Nat Commun. 2019;10:903 pubmed 出版商
  86. Schnack L, Sohrabi Y, Lagache S, Kahles F, Bruemmer D, Waltenberger J, et al. Mechanisms of Trained Innate Immunity in oxLDL Primed Human Coronary Smooth Muscle Cells. Front Immunol. 2019;10:13 pubmed 出版商
  87. Guo H, Ci X, Ahmed M, Hua J, Soares F, Lin D, et al. ONECUT2 is a driver of neuroendocrine prostate cancer. Nat Commun. 2019;10:278 pubmed 出版商
  88. Jassim A, Inman D. Evidence of Hypoxic Glial Cells in a Model of Ocular Hypertension. Invest Ophthalmol Vis Sci. 2019;60:1-15 pubmed 出版商
  89. Qiu L, Wang M, Hu S, Ru X, Ren Y, Zhang Z, et al. Oncogenic Activation of Nrf2, Though as a Master Antioxidant Transcription Factor, Liberated by Specific Knockout of the Full-Length Nrf1α that Acts as a Dominant Tumor Repressor. Cancers (Basel). 2018;10: pubmed 出版商
  90. Cheng Y, Sun M, Chen L, Li Y, Lin L, Yao B, et al. Ten-Eleven Translocation Proteins Modulate the Response to Environmental Stress in Mice. Cell Rep. 2018;25:3194-3203.e4 pubmed 出版商
  91. Liu N, Luo J, Kuang D, Xu S, Duan Y, Xia Y, et al. Lactate inhibits ATP6V0d2 expression in tumor-associated macrophages to promote HIF-2α-mediated tumor progression. J Clin Invest. 2019;129:631-646 pubmed 出版商
  92. Lee M, Wang C, Jin S, Labrecque M, Beischlag T, Brockman M, et al. Expression of human inducible nitric oxide synthase in response to cytokines is regulated by hypoxia-inducible factor-1. Free Radic Biol Med. 2019;130:278-287 pubmed 出版商
  93. Schwartz A, Das N, Ramakrishnan S, Jain C, Jurkovic M, Wu J, et al. Hepatic hepcidin/intestinal HIF-2α axis maintains iron absorption during iron deficiency and overload. J Clin Invest. 2019;129:336-348 pubmed 出版商
  94. Aoki A, Nakashima A, Kusabiraki T, Ono Y, Yoshino O, Muto M, et al. Trophoblast-Specific Conditional Atg7 Knockout Mice Develop Gestational Hypertension. Am J Pathol. 2018;188:2474-2486 pubmed 出版商
  95. Greenhough A, Bagley C, Heesom K, Gurevich D, Gay D, Bond M, et al. Cancer cell adaptation to hypoxia involves a HIF-GPRC5A-YAP axis. EMBO Mol Med. 2018;10: pubmed 出版商
  96. Song K, Kim J, Lee Y, Bae H, Lee H, Woo S, et al. Mitochondrial reprogramming via ATP5H loss promotes multimodal cancer therapy resistance. J Clin Invest. 2018;128:4098-4114 pubmed 出版商
  97. Kim Y, Lee M, Gu H, Kim J, Jeong S, Yeo S, et al. HIF-1α activation in myeloid cells accelerates dextran sodium sulfate-induced colitis progression in mice. Dis Model Mech. 2018;11: pubmed 出版商
  98. Rapino F, Delaunay S, Rambow F, Zhou Z, Tharun L, de Tullio P, et al. Codon-specific translation reprogramming promotes resistance to targeted therapy. Nature. 2018;558:605-609 pubmed 出版商
  99. Chhipa R, Fan Q, Anderson J, Muraleedharan R, Huang Y, Ciraolo G, et al. AMP kinase promotes glioblastoma bioenergetics and tumour growth. Nat Cell Biol. 2018;20:823-835 pubmed 出版商
  100. Wendeln A, Degenhardt K, Kaurani L, Gertig M, Ulas T, Jain G, et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature. 2018;556:332-338 pubmed 出版商
  101. Kornberg M, Bhargava P, Kim P, Putluri V, Snowman A, Putluri N, et al. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science. 2018;360:449-453 pubmed 出版商
  102. Longchamp A, Mirabella T, Arduini A, MacArthur M, Das A, Treviño Villarreal J, et al. Amino Acid Restriction Triggers Angiogenesis via GCN2/ATF4 Regulation of VEGF and H2S Production. Cell. 2018;173:117-129.e14 pubmed 出版商
  103. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  104. Takai K, Drain A, Lawson D, Littlepage L, Karpuj M, Kessenbrock K, et al. Discoidin domain receptor 1 (DDR1) ablation promotes tissue fibrosis and hypoxia to induce aggressive basal-like breast cancers. Genes Dev. 2018;32:244-257 pubmed 出版商
  105. Liang H, Xiao J, Zhou Z, Wu J, Ge F, Li Z, et al. Hypoxia induces miR-153 through the IRE1α-XBP1 pathway to fine tune the HIF1α/VEGFA axis in breast cancer angiogenesis. Oncogene. 2018;37:1961-1975 pubmed 出版商
  106. La Porta S, Roth L, Singhal M, Mogler C, Spegg C, Schieb B, et al. Endothelial Tie1-mediated angiogenesis and vascular abnormalization promote tumor progression and metastasis. J Clin Invest. 2018;128:834-845 pubmed 出版商
  107. Hira V, Wormer J, Kakar H, Breznik B, van der Swaan B, Hulsbos R, et al. Periarteriolar Glioblastoma Stem Cell Niches Express Bone Marrow Hematopoietic Stem Cell Niche Proteins. J Histochem Cytochem. 2018;66:155-173 pubmed 出版商
  108. Bäcker V, Cheung F, Siveke J, Fandrey J, Winning S. Knockdown of myeloid cell hypoxia-inducible factor-1? ameliorates the acute pathology in DSS-induced colitis. PLoS ONE. 2017;12:e0190074 pubmed 出版商
  109. Badowska Kozakiewicz A, Sobol M, Patera J. Expression of multidrug resistance protein P-glycoprotein in correlation with markers of hypoxia (HIF-1?, EPO, EPO-R) in invasive breast cancer with metastasis to lymph nodes. Arch Med Sci. 2017;13:1303-1314 pubmed 出版商
  110. Sala M, Chen C, Zhang Q, Do Umehara H, Wu W, Misharin A, et al. JNK2 up-regulates hypoxia-inducible factors and contributes to hypoxia-induced erythropoiesis and pulmonary hypertension. J Biol Chem. 2018;293:271-284 pubmed 出版商
  111. Caino M, Seo J, Wang Y, Rivadeneira D, Gabrilovich D, Kim E, et al. Syntaphilin controls a mitochondrial rheostat for proliferation-motility decisions in cancer. J Clin Invest. 2017;127:3755-3769 pubmed 出版商
  112. Ho L, van Dijk M, Chye S, Messerschmidt D, Chng S, Ong S, et al. ELABELA deficiency promotes preeclampsia and cardiovascular malformations in mice. Science. 2017;357:707-713 pubmed 出版商
  113. Ye M, Fang Z, Gu H, Song R, Ye J, Li H, et al. Histone deacetylase 5 promotes the migration and invasion of hepatocellular carcinoma via increasing the transcription of hypoxia-inducible factor-1? under hypoxia condition. Tumour Biol. 2017;39:1010428317705034 pubmed 出版商
  114. Yasui T, Uezono N, Nakashima H, Noguchi H, Matsuda T, Noda Andoh T, et al. Hypoxia Epigenetically Confers Astrocytic Differentiation Potential on Human Pluripotent Cell-Derived Neural Precursor Cells. Stem Cell Reports. 2017;8:1743-1756 pubmed 出版商
  115. Li W, Chen C, Zhao X, Ye H, Zhao Y, Fu Z, et al. HIF-2? regulates non-canonical glutamine metabolism via activation of PI3K/mTORC2 pathway in human pancreatic ductal adenocarcinoma. J Cell Mol Med. 2017;21:2896-2908 pubmed 出版商
  116. Ciria M, García N, Ontoria Oviedo I, González King H, Carrero R, de la Pompa J, et al. Mesenchymal Stem Cell Migration and Proliferation Are Mediated by Hypoxia-Inducible Factor-1α Upstream of Notch and SUMO Pathways. Stem Cells Dev. 2017;26:973-985 pubmed 出版商
  117. Quadrato G, Nguyen T, Macosko E, Sherwood J, Min Yang S, Berger D, et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 2017;545:48-53 pubmed 出版商
  118. Yuan X, Qi H, Li X, Wu F, Fang J, Bober E, et al. Disruption of spatiotemporal hypoxic signaling causes congenital heart disease in mice. J Clin Invest. 2017;127:2235-2248 pubmed 出版商
  119. Li S, Liu H, Tang S, Li X, Wang X. MicroRNA-150 regulates glycolysis by targeting von Hippel-Lindau in glioma cells. Am J Transl Res. 2017;9:1058-1066 pubmed
  120. Tian L, Goldstein A, Wang H, Ching Lo H, Sun Kim I, Welte T, et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature. 2017;544:250-254 pubmed 出版商
  121. Guo Q, He J, Shen F, Zhang W, Yang X, Zhang C, et al. TCN, an AKT inhibitor, exhibits potent antitumor activity and enhances radiosensitivity in hypoxic esophageal squamous cell carcinoma in vitro and in vivo. Oncol Lett. 2017;13:949-954 pubmed 出版商
  122. An Y, Sun K, Joffin N, Zhang F, Deng Y, Donze O, et al. Angiopoietin-2 in white adipose tissue improves metabolic homeostasis through enhanced angiogenesis. elife. 2017;6: pubmed 出版商
  123. Liao L, Song M, Li X, Tang L, Zhang T, Zhang L, et al. E3 Ubiquitin Ligase UBR5 Drives the Growth and Metastasis of Triple-Negative Breast Cancer. Cancer Res. 2017;77:2090-2101 pubmed 出版商
  124. Miles A, Burr S, Grice G, Nathan J. The vacuolar-ATPase complex and assembly factors, TMEM199 and CCDC115, control HIF1? prolyl hydroxylation by regulating cellular iron levels. elife. 2017;6: pubmed 出版商
  125. Xiao N, Yang L, Yang Y, Liu L, Li J, Liu B, et al. Ginsenoside Rg5 Inhibits Succinate-Associated Lipolysis in Adipose Tissue and Prevents Muscle Insulin Resistance. Front Pharmacol. 2017;8:43 pubmed 出版商
  126. Li J, Yakushi T, Parlati F, MacKinnon A, Pérez C, Ma Y, et al. Capzimin is a potent and specific inhibitor of proteasome isopeptidase Rpn11. Nat Chem Biol. 2017;13:486-493 pubmed 出版商
  127. Mandl M, Zhang S, Ulrich M, Schmoeckel E, Mayr D, Vollmar A, et al. Inhibition of Cdk5 induces cell death of tumor-initiating cells. Br J Cancer. 2017;116:912-922 pubmed 出版商
  128. Williams P, Harder J, Foxworth N, Cochran K, Philip V, Porciatti V, et al. Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science. 2017;355:756-760 pubmed 出版商
  129. Duong E, Xiao J, Qi X, Nattel S. MicroRNA-135a regulates sodium-calcium exchanger gene expression and cardiac electrical activity. Heart Rhythm. 2017;14:739-748 pubmed 出版商
  130. Ren W, Yin J, Xiao H, Chen S, Liu G, Tan B, et al. Intestinal Microbiota-Derived GABA Mediates Interleukin-17 Expression during Enterotoxigenic Escherichia coli Infection. Front Immunol. 2016;7:685 pubmed 出版商
  131. Omatsu Kanbe M, Nozuchi N, Nishino Y, Mukaisho K, Sugihara H, Matsuura H. Identification of cardiac progenitors that survive in the ischemic human heart after ventricular myocyte death. Sci Rep. 2017;7:41318 pubmed 出版商
  132. Gardner P, Liyanage S, Cristante E, Sampson R, Dick A, Ali R, et al. Hypoxia inducible factors are dispensable for myeloid cell migration into the inflamed mouse eye. Sci Rep. 2017;7:40830 pubmed 出版商
  133. Bouchard G, Therriault H, Geha S, Bujold R, Saucier C, Paquette B. Radiation-induced lung metastasis development is MT1-MMP-dependent in a triple-negative breast cancer mouse model. Br J Cancer. 2017;116:479-488 pubmed 出版商
  134. Murakami A, Wang L, Kalhorn S, Schraml P, Rathmell W, Tan A, et al. Context-dependent role for chromatin remodeling component PBRM1/BAF180 in clear cell renal cell carcinoma. Oncogenesis. 2017;6:e287 pubmed 出版商
  135. Wang M, Li G, Yang Z, Wang L, Zhang L, Wang T, et al. Uncoupling protein 2 downregulation by hypoxia through repression of peroxisome proliferator-activated receptor γ promotes chemoresistance of non-small cell lung cancer. Oncotarget. 2017;8:8083-8094 pubmed 出版商
  136. Kozlova N, Wottawa M, Katschinski D, Kristiansen G, Kietzmann T. Hypoxia-inducible factor prolyl hydroxylase 2 (PHD2) is a direct regulator of epidermal growth factor receptor (EGFR) signaling in breast cancer. Oncotarget. 2017;8:9885-9898 pubmed 出版商
  137. Jablonska B, Gierdalski M, Chew L, Hawley T, Catron M, Lichauco A, et al. Sirt1 regulates glial progenitor proliferation and regeneration in white matter after neonatal brain injury. Nat Commun. 2016;7:13866 pubmed 出版商
  138. Yu Z, Mouillesseaux K, Kushner E, Bautch V. Tumor-Derived Factors and Reduced p53 Promote Endothelial Cell Centrosome Over-Duplication. PLoS ONE. 2016;11:e0168334 pubmed 出版商
  139. Oh E, Kim J, Kim J, Kim S, Lee J, Hong S, et al. NQO1 inhibits proteasome-mediated degradation of HIF-1α. Nat Commun. 2016;7:13593 pubmed 出版商
  140. Li F, Li Z, Jiang Z, Tian Y, Wang Z, Yi W, et al. Enhancement of early cardiac differentiation of dedifferentiated fat cells by dimethyloxalylglycine via notch signaling pathway. Am J Transl Res. 2016;8:4791-4801 pubmed
  141. Lajko M, Cardona H, Taylor J, Shah R, Farrow K, Fawzi A. Hyperoxia-Induced Proliferative Retinopathy: Early Interruption of Retinal Vascular Development with Severe and Irreversible Neurovascular Disruption. PLoS ONE. 2016;11:e0166886 pubmed 出版商
  142. Thompson J, Nguyen Q, Singh M, Pavesic M, Nesterenko I, Nelson L, et al. Rho-associated kinase 1 inhibition is synthetically lethal with von Hippel-Lindau deficiency in clear cell renal cell carcinoma. Oncogene. 2017;36:1080-1089 pubmed 出版商
  143. Lima L, Gaiteiro C, Peixoto A, Soares J, Neves M, Santos L, et al. Reference Genes for Addressing Gene Expression of Bladder Cancer Cell Models under Hypoxia: A Step Towards Transcriptomic Studies. PLoS ONE. 2016;11:e0166120 pubmed 出版商
  144. Myllymäki M, Määttä J, Dimova E, Izzi V, Väisänen T, Myllyharju J, et al. Notch Downregulation and Extramedullary Erythrocytosis in Hypoxia-Inducible Factor Prolyl 4-Hydroxylase 2-Deficient Mice. Mol Cell Biol. 2017;37: pubmed 出版商
  145. Veyrat M, Durand S, Classe M, Glavan T, Oker N, Kapetanakis N, et al. Stimulation of the toll-like receptor 3 promotes metabolic reprogramming in head and neck carcinoma cells. Oncotarget. 2016;7:82580-82593 pubmed 出版商
  146. Fulcher L, MacArtney T, Bozatzi P, Hornberger A, Rojas Fernandez A, Sapkota G. An affinity-directed protein missile system for targeted proteolysis. Open Biol. 2016;6: pubmed
  147. Li S, Hu H, He Z, Liang D, Sun R, Lan K. Fine-Tuning of the Kaposi's Sarcoma-Associated Herpesvirus Life Cycle in Neighboring Cells through the RTA-JAG1-Notch Pathway. PLoS Pathog. 2016;12:e1005900 pubmed 出版商
  148. Pradhan S, Mahajan D, Kaur P, Pandey N, Sharma C, Srivastava T. Scriptaid overcomes hypoxia-induced cisplatin resistance in both wild-type and mutant p53 lung cancer cells. Oncotarget. 2016;7:71841-71855 pubmed 出版商
  149. Gerriets V, Kishton R, Johnson M, Cohen S, Siska P, Nichols A, et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat Immunol. 2016;17:1459-1466 pubmed 出版商
  150. Maina P, Shao P, Liu Q, Fazli L, Tyler S, Nasir M, et al. c-MYC drives histone demethylase PHF8 during neuroendocrine differentiation and in castration-resistant prostate cancer. Oncotarget. 2016;7:75585-75602 pubmed 出版商
  151. Choi Y, Maki T, Mandeville E, Koh S, Hayakawa K, Arai K, et al. Dual effects of carbon monoxide on pericytes and neurogenesis in traumatic brain injury. Nat Med. 2016;22:1335-1341 pubmed 出版商
  152. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  153. Chen W, Hill H, Christie A, Kim M, Holloman E, Pavía Jiménez A, et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature. 2016;539:112-117 pubmed 出版商
  154. Arvola O, Haapanen H, Herajärvi J, Anttila T, Puistola U, Karihtala P, et al. Remote Ischemic Preconditioning Reduces Cerebral Oxidative Stress Following Hypothermic Circulatory Arrest in a Porcine Model. Semin Thorac Cardiovasc Surg. 2016;28:92-102 pubmed 出版商
  155. Jou Y, Tsai Y, Lin C, Tung C, Shen C, Tsai H, et al. Foxp3 enhances HIF-1α target gene expression in human bladder cancer through decreasing its ubiquitin-proteasomal degradation. Oncotarget. 2016;7:65403-65417 pubmed 出版商
  156. Thienpont B, Steinbacher J, Zhao H, D Anna F, Kuchnio A, Ploumakis A, et al. Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature. 2016;537:63-68 pubmed 出版商
  157. Cao L, Zhang L, Zhao X, Zhang Y. A Hybrid Chalcone Combining the Trimethoxyphenyl and Isatinyl Groups Targets Multiple Oncogenic Proteins and Pathways in Hepatocellular Carcinoma Cells. PLoS ONE. 2016;11:e0161025 pubmed 出版商
  158. Ramakrishnan S, Ku S, Ciamporcero E, Miles K, Attwood K, Chintala S, et al. HDAC 1 and 6 modulate cell invasion and migration in clear cell renal cell carcinoma. BMC Cancer. 2016;16:617 pubmed 出版商
  159. Guimarães T, Farias L, Santos E, De Carvalho Fraga C, Orsini L, de Freitas Teles L, et al. Metformin increases PDH and suppresses HIF-1? under hypoxic conditions and induces cell death in oral squamous cell carcinoma. Oncotarget. 2016;7:55057-55068 pubmed 出版商
  160. Masola V, Zaza G, Gambaro G, Onisto M, Bellin G, Vischini G, et al. Heparanase: A Potential New Factor Involved in the Renal Epithelial Mesenchymal Transition (EMT) Induced by Ischemia/Reperfusion (I/R) Injury. PLoS ONE. 2016;11:e0160074 pubmed 出版商
  161. Qin Y, Roszik J, Chattopadhyay C, Hashimoto Y, Liu C, Cooper Z, et al. Hypoxia-Driven Mechanism of Vemurafenib Resistance in Melanoma. Mol Cancer Ther. 2016;15:2442-2454 pubmed
  162. Takasaki C, Kobayashi M, Ishibashi H, Akashi T, Okubo K. Expression of hypoxia-inducible factor-1? affects tumor proliferation and antiapoptosis in surgically resected lung cancer. Mol Clin Oncol. 2016;5:295-300 pubmed
  163. Phelan J, Reen F, Dunphy N, O CONNOR R, O Gara F. Bile acids destabilise HIF-1? and promote anti-tumour phenotypes in cancer cell models. BMC Cancer. 2016;16:476 pubmed 出版商
  164. Bigot P, Colli L, Machiela M, Jessop L, Myers T, Carrouget J, et al. Functional characterization of the 12p12.1 renal cancer-susceptibility locus implicates BHLHE41. Nat Commun. 2016;7:12098 pubmed 出版商
  165. Mandl M, Lieberum M, Depping R. A HIF-1α-driven feed-forward loop augments HIF signalling in Hep3B cells by upregulation of ARNT. Cell Death Dis. 2016;7:e2284 pubmed 出版商
  166. Schokrpur S, Hu J, Moughon D, Liu P, Lin L, Hermann K, et al. CRISPR-Mediated VHL Knockout Generates an Improved Model for Metastatic Renal Cell Carcinoma. Sci Rep. 2016;6:29032 pubmed 出版商
  167. Li P, Deng J, Wei X, Jayasuriya C, Zhou J, Chen Q, et al. Blockade of hypoxia-induced CXCR4 with AMD3100 inhibits production of OA-associated catabolic mediators IL-1? and MMP-13. Mol Med Rep. 2016;14:1475-82 pubmed 出版商
  168. Colombo J, Maciel J, Ferreira L, da Silva R, Zuccari D. Effects of melatonin on HIF-1? and VEGF expression and on the invasive properties of hepatocarcinoma cells. Oncol Lett. 2016;12:231-237 pubmed
  169. Frohwitter G, Buerger H, van Diest P, Korsching E, Kleinheinz J, Fillies T. Cytokeratin and protein expression patterns in squamous cell carcinoma of the oral cavity provide evidence for two distinct pathogenetic pathways. Oncol Lett. 2016;12:107-113 pubmed
  170. Zhao W, Li A, Feng X, Hou T, Liu K, Liu B, et al. Metformin and resveratrol ameliorate muscle insulin resistance through preventing lipolysis and inflammation in hypoxic adipose tissue. Cell Signal. 2016;28:1401-11 pubmed 出版商
  171. Higashimura Y, Kitakaze T, Harada N, Inui H, Nakano Y, Yamaji R. pVHL-mediated degradation of HIF-2? regulates estrogen receptor ? expression in normoxic breast cancer cells. FEBS Lett. 2016;590:2690-9 pubmed 出版商
  172. Choi H, Merceron C, Mangiavini L, Seifert E, Schipani E, Shapiro I, et al. Hypoxia promotes noncanonical autophagy in nucleus pulposus cells independent of MTOR and HIF1A signaling. Autophagy. 2016;12:1631-46 pubmed 出版商
  173. Maugeri G, D Amico A, Reitano R, Magro G, Cavallaro S, Salomone S, et al. PACAP and VIP Inhibit the Invasiveness of Glioblastoma Cells Exposed to Hypoxia through the Regulation of HIFs and EGFR Expression. Front Pharmacol. 2016;7:139 pubmed 出版商
  174. Hoefflin R, Lahrmann B, Warsow G, Hübschmann D, Spath C, Walter B, et al. Spatial niche formation but not malignant progression is a driving force for intratumoural heterogeneity. Nat Commun. 2016;7:ncomms11845 pubmed 出版商
  175. Lo Dico A, Costa V, Martelli C, Diceglie C, Rajata F, Rizzo A, et al. MiR675-5p Acts on HIF-1? to Sustain Hypoxic Responses: A New Therapeutic Strategy for Glioma. Theranostics. 2016;6:1105-18 pubmed 出版商
  176. Mineo M, Ricklefs F, Rooj A, Lyons S, Ivanov P, Ansari K, et al. The Long Non-coding RNA HIF1A-AS2 Facilitates the Maintenance of Mesenchymal Glioblastoma Stem-like Cells in Hypoxic Niches. Cell Rep. 2016;15:2500-9 pubmed 出版商
  177. Salvi V, Vermi W, Gianello V, Lonardi S, Gagliostro V, Naldini A, et al. Dendritic cell-derived VEGF-A plays a role in inflammatory angiogenesis of human secondary lymphoid organs and is driven by the coordinated activation of multiple transcription factors. Oncotarget. 2016;7:39256-39269 pubmed 出版商
  178. Spitzbarth I, Lempp C, Kegler K, Ulrich R, Kalkuhl A, Deschl U, et al. Immunohistochemical and transcriptome analyses indicate complex breakdown of axonal transport mechanisms in canine distemper leukoencephalitis. Brain Behav. 2016;6:e00472 pubmed 出版商
  179. Piton N, Wason J, Colasse É, Cornic M, Lemoine F, Le Pessot F, et al. Endoplasmic reticulum stress, unfolded protein response and development of colon adenocarcinoma. Virchows Arch. 2016;469:145-54 pubmed 出版商
  180. Lim S, Liu H, Madeira da Silva L, Arora R, Liu Z, Phillips J, et al. Immunoregulatory Protein B7-H3 Reprograms Glucose Metabolism in Cancer Cells by ROS-Mediated Stabilization of HIF1?. Cancer Res. 2016;76:2231-42 pubmed 出版商
  181. Semba H, Takeda N, Isagawa T, Sugiura Y, Honda K, Wake M, et al. HIF-1?-PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity. Nat Commun. 2016;7:11635 pubmed 出版商
  182. Cherepanova O, Gomez D, Shankman L, Swiatlowska P, Williams J, Sarmento O, et al. Activation of the pluripotency factor OCT4 in smooth muscle cells is atheroprotective. Nat Med. 2016;22:657-65 pubmed 出版商
  183. Ma X, Guo P, Qiu Y, Mu K, Zhu L, Zhao W, et al. Loss of AIM2 expression promotes hepatocarcinoma progression through activation of mTOR-S6K1 pathway. Oncotarget. 2016;7:36185-36197 pubmed 出版商
  184. Xue H, Yuan G, Guo X, Liu Q, Zhang J, Gao X, et al. A novel tumor-promoting mechanism of IL6 and the therapeutic efficacy of tocilizumab: Hypoxia-induced IL6 is a potent autophagy initiator in glioblastoma via the p-STAT3-MIR155-3p-CREBRF pathway. Autophagy. 2016;12:1129-52 pubmed 出版商
  185. Wynn M, Yates J, Evans C, Van Wassenhove L, Wu Z, Bridges S, et al. RhoC GTPase Is a Potent Regulator of Glutamine Metabolism and N-Acetylaspartate Production in Inflammatory Breast Cancer Cells. J Biol Chem. 2016;291:13715-29 pubmed 出版商
  186. Ono M, Yamada K, Bensaddek D, Afzal V, Biddlestone J, Ortmann B, et al. Enhanced snoMEN Vectors Facilitate Establishment of GFP-HIF-1α Protein Replacement Human Cell Lines. PLoS ONE. 2016;11:e0154759 pubmed 出版商
  187. Guinot A, Lehmann H, Wild P, Frew I. Combined deletion of Vhl, Trp53 and Kif3a causes cystic and neoplastic renal lesions. J Pathol. 2016;239:365-73 pubmed 出版商
  188. McDonnell F, Irnaten M, Clark A, O Brien C, Wallace D. Hypoxia-Induced Changes in DNA Methylation Alter RASAL1 and TGFβ1 Expression in Human Trabecular Meshwork Cells. PLoS ONE. 2016;11:e0153354 pubmed 出版商
  189. Preuße C, Allenbach Y, Hoffmann O, Goebel H, Pehl D, Radke J, et al. Differential roles of hypoxia and innate immunity in juvenile and adult dermatomyositis. Acta Neuropathol Commun. 2016;4:45 pubmed 出版商
  190. Okawa H, Kayashima H, Sasaki J, Miura J, Kamano Y, Kosaka Y, et al. Scaffold-Free Fabrication of Osteoinductive Cellular Constructs Using Mouse Gingiva-Derived Induced Pluripotent Stem Cells. Stem Cells Int. 2016;2016:6240794 pubmed 出版商
  191. Bourseau Guilmain E, Menard J, Lindqvist E, Indira Chandran V, Christianson H, Cerezo Magaña M, et al. Hypoxia regulates global membrane protein endocytosis through caveolin-1 in cancer cells. Nat Commun. 2016;7:11371 pubmed 出版商
  192. Kobayashi H, Liu Q, Binns T, Urrutia A, Davidoff O, Kapitsinou P, et al. Distinct subpopulations of FOXD1 stroma-derived cells regulate renal erythropoietin. J Clin Invest. 2016;126:1926-38 pubmed 出版商
  193. Jiang L, Shestov A, Swain P, Yang C, Parker S, Wang Q, et al. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature. 2016;532:255-8 pubmed 出版商
  194. Li C, Jung S, Yang Y, Kim K, Lim J, Cheon C, et al. Inhibitory role of TRIP-Br1 oncoprotein in hypoxia-induced apoptosis in breast cancer cell lines. Int J Oncol. 2016;48:2639-46 pubmed 出版商
  195. Chou C, Fan C, Lin P, Liao P, Tung J, Hsieh C, et al. Sciellin mediates mesenchymal-to-epithelial transition in colorectal cancer hepatic metastasis. Oncotarget. 2016;7:25742-54 pubmed 出版商
  196. Xu X, Tan X, Hulshoff M, Wilhelmi T, Zeisberg M, Zeisberg E. Hypoxia-induced endothelial-mesenchymal transition is associated with RASAL1 promoter hypermethylation in human coronary endothelial cells. FEBS Lett. 2016;590:1222-33 pubmed 出版商
  197. Park S, Kim J, Kim N, Yang K, Shim J, Heo K. Estradiol, TGF-?1 and hypoxia promote breast cancer stemness and EMT-mediated breast cancer migration. Oncol Lett. 2016;11:1895-1902 pubmed
  198. Ananthula S, Sinha A, El Gassim M, Batth S, Marshall G, Gardner L, et al. Geminin overexpression-dependent recruitment and crosstalk with mesenchymal stem cells enhance aggressiveness in triple negative breast cancers. Oncotarget. 2016;7:20869-89 pubmed 出版商
  199. Shukla P, Chaudhry K, Mir H, Gangwar R, Yadav N, Manda B, et al. Chronic ethanol feeding promotes azoxymethane and dextran sulfate sodium-induced colonic tumorigenesis potentially by enhancing mucosal inflammation. BMC Cancer. 2016;16:189 pubmed 出版商
  200. Djamali A, Wilson N, Sadowski E, Zha W, Niles D, Hafez O, et al. Nox2 and Cyclosporine-Induced Renal Hypoxia. Transplantation. 2016;100:1198-210 pubmed 出版商
  201. Ruf M, Moch H, Schraml P. PD-L1 expression is regulated by hypoxia inducible factor in clear cell renal cell carcinoma. Int J Cancer. 2016;139:396-403 pubmed 出版商
  202. Karuppagounder S, Alim I, Khim S, Bourassa M, Sleiman S, John R, et al. Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models. Sci Transl Med. 2016;8:328ra29 pubmed 出版商
  203. Zhou F, Dai A, Jiang Y, Tan X, Zhang X. SENP‑1 enhances hypoxia‑induced proliferation of rat pulmonary artery smooth muscle cells by regulating hypoxia‑inducible factor‑1α. Mol Med Rep. 2016;13:3482-90 pubmed 出版商
  204. Tepper S, Jeschke J, Böttcher K, Schmidt A, Davari K, Müller P, et al. PARP activation promotes nuclear AID accumulation in lymphoma cells. Oncotarget. 2016;7:13197-208 pubmed 出版商
  205. Wood L, Cox N, Phelps C, Lai S, Poddar A, Talbot C, et al. Thyroid Transcription Factor 1 Reprograms Angiogenic Activities of Secretome. Sci Rep. 2016;6:19857 pubmed 出版商
  206. Edalat L, Stegen B, Klumpp L, Haehl E, Schilbach K, Lukowski R, et al. BK K+ channel blockade inhibits radiation-induced migration/brain infiltration of glioblastoma cells. Oncotarget. 2016;7:14259-78 pubmed 出版商
  207. Chowdhury H, Velebit J, Radić N, Frančič V, Kreft M, Zorec R. Hypoxia Alters the Expression of Dipeptidyl Peptidase 4 and Induces Developmental Remodeling of Human Preadipocytes. J Diabetes Res. 2016;2016:7481470 pubmed 出版商
  208. Adighibe O, Leek R, Fernandez Mercado M, Hu J, Snell C, Gatter K, et al. Why some tumours trigger neovascularisation and others don't: the story thus far. Chin J Cancer. 2016;35:18 pubmed 出版商
  209. Mori H, Yao Y, Learman B, Kurozumi K, Ishida J, Ramakrishnan S, et al. Induction of WNT11 by hypoxia and hypoxia-inducible factor-1α regulates cell proliferation, migration and invasion. Sci Rep. 2016;6:21520 pubmed 出版商
  210. Wang P, Li L, Zhang Z, Kan Q, Chen S, Gao F. Time-dependent homeostasis between glucose uptake and consumption in astrocytes exposed to CoClâ‚‚ treatment. Mol Med Rep. 2016;13:2909-17 pubmed 出版商
  211. Heir P, Srikumar T, Bikopoulos G, Bunda S, Poon B, Lee J, et al. Oxygen-dependent Regulation of Erythropoietin Receptor Turnover and Signaling. J Biol Chem. 2016;291:7357-72 pubmed 出版商
  212. Nakazawa M, Eisinger Mathason T, Sadri N, Ochocki J, Gade T, Amin R, et al. Epigenetic re-expression of HIF-2α suppresses soft tissue sarcoma growth. Nat Commun. 2016;7:10539 pubmed 出版商
  213. Luo W, Chen I, Chen Y, Alkam D, Wang Y, Semenza G. PRDX2 and PRDX4 are negative regulators of hypoxia-inducible factors under conditions of prolonged hypoxia. Oncotarget. 2016;7:6379-97 pubmed 出版商
  214. Regan Anderson T, Ma S, Raj G, Cidlowski J, Helle T, Knutson T, et al. Breast Tumor Kinase (Brk/PTK6) Is Induced by HIF, Glucocorticoid Receptor, and PELP1-Mediated Stress Signaling in Triple-Negative Breast Cancer. Cancer Res. 2016;76:1653-63 pubmed 出版商
  215. Hasvold G, Lund Andersen C, Lando M, Patzke S, Hauge S, Suo Z, et al. Hypoxia-induced alterations of G2 checkpoint regulators. Mol Oncol. 2016;10:764-73 pubmed 出版商
  216. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  217. Dai X, Zhuang L, Wang D, Zhou T, Chang L, Gai R, et al. Nuclear translocation and activation of YAP by hypoxia contributes to the chemoresistance of SN38 in hepatocellular carcinoma cells. Oncotarget. 2016;7:6933-47 pubmed 出版商
  218. Nalwoga H, Ahmed L, Arnes J, Wabinga H, Akslen L. Strong Expression of Hypoxia-Inducible Factor-1α (HIF-1α) Is Associated with Axl Expression and Features of Aggressive Tumors in African Breast Cancer. PLoS ONE. 2016;11:e0146823 pubmed 出版商
  219. Kim Y, Nam H, Lee J, Park D, Kim C, Yu Y, et al. Methylation-dependent regulation of HIF-1α stability restricts retinal and tumour angiogenesis. Nat Commun. 2016;7:10347 pubmed 出版商
  220. Lin A, Li C, Xing Z, Hu Q, Liang K, Han L, et al. The LINK-A lncRNA activates normoxic HIF1? signalling in triple-negative breast cancer. Nat Cell Biol. 2016;18:213-24 pubmed 出版商
  221. Chen K, Zeng J, Xiao H, Huang C, Hu J, Yao W, et al. Regulation of glucose metabolism by p62/SQSTM1 through HIF1α. J Cell Sci. 2016;129:817-30 pubmed 出版商
  222. Maugeri G, D Amico A, Reitano R, Saccone S, Federico C, Cavallaro S, et al. Parkin modulates expression of HIF-1α and HIF-3α during hypoxia in gliobastoma-derived cell lines in vitro. Cell Tissue Res. 2016;364:465-474 pubmed 出版商
  223. Azoitei N, Becher A, Steinestel K, Rouhi A, Diepold K, Genze F, et al. PKM2 promotes tumor angiogenesis by regulating HIF-1α through NF-κB activation. Mol Cancer. 2016;15:3 pubmed 出版商
  224. Lee S, Frattini V, Bansal M, Castano A, Sherman D, Hutchinson K, et al. An ID2-dependent mechanism for VHL inactivation in cancer. Nature. 2016;529:172-7 pubmed 出版商
  225. Lv H, Zhang Z, Wu X, Wang Y, Li C, Gong W, et al. Preclinical Evaluation of Liposomal C8 Ceramide as a Potent anti-Hepatocellular Carcinoma Agent. PLoS ONE. 2016;11:e0145195 pubmed 出版商
  226. Sharpe M, Baskin D. Monoamine oxidase B levels are highly expressed in human gliomas and are correlated with the expression of HiF-1α and with transcription factors Sp1 and Sp3. Oncotarget. 2016;7:3379-93 pubmed 出版商
  227. de Bruin A, A Cornelissen P, Kirchmaier B, Mokry M, Iich E, Nirmala E, et al. Genome-wide analysis reveals NRP1 as a direct HIF1?-E2F7 target in the regulation of motorneuron guidance in vivo. Nucleic Acids Res. 2016;44:3549-66 pubmed 出版商
  228. Yamano S, Gi M, Tago Y, Doi K, Okada S, Hirayama Y, et al. Role of deltaNp63(pos)CD44v(pos) cells in the development of N-nitroso-tris-chloroethylurea-induced peripheral-type mouse lung squamous cell carcinomas. Cancer Sci. 2016;107:123-32 pubmed 出版商
  229. Weijer R, Broekgaarden M, Krekorian M, Alles L, van Wijk A, Mackaaij C, et al. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy. Oncotarget. 2016;7:3341-56 pubmed 出版商
  230. Adam M, Matt S, Christian S, Hess Stumpp H, Haegebarth A, Hofmann T, et al. SIAH ubiquitin ligases regulate breast cancer cell migration and invasion independent of the oxygen status. Cell Cycle. 2015;14:3734-47 pubmed 出版商
  231. Ortmann B, Bensaddek D, Carvalhal S, Moser S, Mudie S, Griffis E, et al. CDK-dependent phosphorylation of PHD1 on serine 130 alters its substrate preference in cells. J Cell Sci. 2016;129:191-205 pubmed 出版商
  232. Bowser J, Blackburn M, Shipley G, Molina J, Dunner K, Broaddus R. Loss of CD73-mediated actin polymerization promotes endometrial tumor progression. J Clin Invest. 2016;126:220-38 pubmed 出版商
  233. Zheng X, Xu J, Chen X, Li W, Wang T. Attenuation of oxygen fluctuation-induced endoplasmic reticulum stress in human lens epithelial cells. Exp Ther Med. 2015;10:1883-1887 pubmed
  234. de Jong O, van Balkom B, Gremmels H, Verhaar M. Exosomes from hypoxic endothelial cells have increased collagen crosslinking activity through up-regulation of lysyl oxidase-like 2. J Cell Mol Med. 2016;20:342-50 pubmed 出版商
  235. Mandl M, Lieberum M, Dunst J, Depping R. The expression level of the transcription factor Aryl hydrocarbon receptor nuclear translocator (ARNT) determines cellular survival after radiation treatment. Radiat Oncol. 2015;10:229 pubmed 出版商
  236. Sperber H, Mathieu J, Wang Y, Ferreccio A, Hesson J, Xu Z, et al. The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat Cell Biol. 2015;17:1523-35 pubmed 出版商
  237. Aquino Gálvez A, González Ávila G, Delgado Tello J, Castillejos López M, Mendoza Milla C, Zúñiga J, et al. Effects of 2-methoxyestradiol on apoptosis and HIF-1α and HIF-2α expression in lung cancer cells under normoxia and hypoxia. Oncol Rep. 2016;35:577-83 pubmed 出版商
  238. Labrousse Arias D, Castillo González R, Rogers N, Torres Capelli M, Barreira B, Aragonés J, et al. HIF-2α-mediated induction of pulmonary thrombospondin-1 contributes to hypoxia-driven vascular remodelling and vasoconstriction. Cardiovasc Res. 2016;109:115-30 pubmed 出版商
  239. Shen G, Ning N, Zhao X, Liu X, Wang G, Wang T, et al. Adipose differentiation-related protein is not involved in hypoxia inducible factor-1-induced lipid accumulation under hypoxia. Mol Med Rep. 2015;12:8055-61 pubmed 出版商
  240. Qin W, Li C, Zheng W, Guo Q, Zhang Y, Kang M, et al. Inhibition of autophagy promotes metastasis and glycolysis by inducing ROS in gastric cancer cells. Oncotarget. 2015;6:39839-54 pubmed 出版商
  241. Zhang S, Schneider L, Vick B, Grunert M, Jeremias I, Menche D, et al. Anti-leukemic effects of the V-ATPase inhibitor Archazolid A. Oncotarget. 2015;6:43508-28 pubmed 出版商
  242. Chen P, Weng J, Hsu P, Shew J, Huang Y, Lee W. NPGPx modulates CPEB2-controlled HIF-1α RNA translation in response to oxidative stress. Nucleic Acids Res. 2015;43:9393-404 pubmed 出版商
  243. Xu Z, Chen X, Jin X, Meng X, Zhou X, Fan F, et al. SILAC-based proteomic analysis reveals that salidroside antagonizes cobalt chloride-induced hypoxic effects by restoring the tricarboxylic acid cycle in cardiomyocytes. J Proteomics. 2016;130:211-20 pubmed 出版商
  244. Konzack A, Jakupovic M, Kubaichuk K, Görlach A, Dombrowski F, Miinalainen I, et al. Mitochondrial Dysfunction Due to Lack of Manganese Superoxide Dismutase Promotes Hepatocarcinogenesis. Antioxid Redox Signal. 2015;23:1059-75 pubmed 出版商
  245. Saini Y, Proper S, Dornbos P, Greenwood K, Kopec A, Lynn S, et al. Loss of Hif-2α Rescues the Hif-1α Deletion Phenotype of Neonatal Respiratory Distress In Mice. PLoS ONE. 2015;10:e0139270 pubmed 出版商
  246. Singh S, Chand H, Gundavarapu S, Saeed A, Langley R, Tesfaigzi Y, et al. HIF-1α Plays a Critical Role in the Gestational Sidestream Smoke-Induced Bronchopulmonary Dysplasia in Mice. PLoS ONE. 2015;10:e0137757 pubmed 出版商
  247. Rodríguez C, Reidel S, Bal de Kier Joffé E, Jasnis M, Fiszman G. Autophagy Protects from Trastuzumab-Induced Cytotoxicity in HER2 Overexpressing Breast Tumor Spheroids. PLoS ONE. 2015;10:e0137920 pubmed 出版商
  248. Ochi F, Shiozaki A, Ichikawa D, Fujiwara H, Nakashima S, Takemoto K, et al. Carbonic Anhydrase XII as an Independent Prognostic Factor in Advanced Esophageal Squamous Cell Carcinoma. J Cancer. 2015;6:922-9 pubmed 出版商
  249. Wang T, Cheng C, Yang W, Chen W, Chang P. Characterization of highly proliferative secondary tumor clusters along host blood vessels in malignant glioma. Mol Med Rep. 2015;12:6435-44 pubmed 出版商
  250. Mughal A, Grieg Z, Skjellegrind H, Fayzullin A, Lamkhannat M, Joel M, et al. Knockdown of NAT12/NAA30 reduces tumorigenic features of glioblastoma-initiating cells. Mol Cancer. 2015;14:160 pubmed 出版商
  251. Huang J, Liu L, Feng M, An S, Zhou M, Li Z, et al. Effect of CoClâ‚‚ on fracture repair in a rat model of bone fracture. Mol Med Rep. 2015;12:5951-6 pubmed 出版商
  252. Högel H, Miikkulainen P, Bino L, Jaakkola P. Hypoxia inducible prolyl hydroxylase PHD3 maintains carcinoma cell growth by decreasing the stability of p27. Mol Cancer. 2015;14:143 pubmed 出版商
  253. Badal S, Her Y, Maher L. Nonantibiotic Effects of Fluoroquinolones in Mammalian Cells. J Biol Chem. 2015;290:22287-97 pubmed 出版商
  254. Morais Santos F, Granja S, Miranda Gonçalves V, Moreira A, Queirós S, Vilaça J, et al. Targeting lactate transport suppresses in vivo breast tumour growth. Oncotarget. 2015;6:19177-89 pubmed
  255. Wu H, Jiang Z, Ding P, Shao L, Liu R. Hypoxia-induced autophagy mediates cisplatin resistance in lung cancer cells. Sci Rep. 2015;5:12291 pubmed 出版商
  256. Lin A, Abbas S, Kim S, Ortega M, Bouamar H, Escobedo Y, et al. D2HGDH regulates alpha-ketoglutarate levels and dioxygenase function by modulating IDH2. Nat Commun. 2015;6:7768 pubmed 出版商
  257. Wang I, Sun K, Tsai T, Chen C, Chang S, Yu T, et al. MiR-20a-5p mediates hypoxia-induced autophagy by targeting ATG16L1 in ischemic kidney injury. Life Sci. 2015;136:133-41 pubmed 出版商
  258. Kontro H, Cannino G, Rustin P, Dufour E, Kainulainen H. DAPIT Over-Expression Modulates Glucose Metabolism and Cell Behaviour in HEK293T Cells. PLoS ONE. 2015;10:e0131990 pubmed 出版商
  259. Chan M, Atasoylu O, Hodson E, Tumber A, Leung I, Chowdhury R, et al. Potent and Selective Triazole-Based Inhibitors of the Hypoxia-Inducible Factor Prolyl-Hydroxylases with Activity in the Murine Brain. PLoS ONE. 2015;10:e0132004 pubmed 出版商
  260. Yang X, Zheng K, Lin K, Zheng G, Zou H, Wang J, et al. Energy Metabolism Disorder as a Contributing Factor of Rheumatoid Arthritis: A Comparative Proteomic and Metabolomic Study. PLoS ONE. 2015;10:e0132695 pubmed 出版商
  261. Yang L, Li Y, Bhattacharya A, Zhang Y. Inhibition of ERBB2-overexpressing Tumors by Recombinant Human Prolidase and Its Enzymatically Inactive Mutant. EBioMedicine. 2015;2:396-405 pubmed
  262. Li X, Yang X, Biskup E, Zhou J, Li H, Wu Y, et al. Co-expression of CXCL8 and HIF-1α is associated with metastasis and poor prognosis in hepatocellular carcinoma. Oncotarget. 2015;6:22880-9 pubmed
  263. Xie L, Pi X, Townley Tilson W, Li N, Wehrens X, Entman M, et al. PHD2/3-dependent hydroxylation tunes cardiac response to β-adrenergic stress via phospholamban. J Clin Invest. 2015;125:2759-71 pubmed 出版商
  264. Park I, Chung P, Ahn J. Enhancement of Ischemic Wound Healing by Spheroid Grafting of Human Adipose-Derived Stem Cells Treated with Low-Level Light Irradiation. PLoS ONE. 2015;10:e0122776 pubmed 出版商
  265. Yorulmaz H, Ozkok E, Erguven M, Ates G, Aydın I, Tamer S. Effect of simvastatin on mitochondrial enzyme activities, ghrelin, hypoxia-inducible factor 1α in hepatic tissue during early phase of sepsis. Int J Clin Exp Med. 2015;8:3640-50 pubmed
  266. Cimmino F, Pezone L, Avitabile M, Acierno G, Andolfo I, Capasso M, et al. Inhibition of hypoxia inducible factors combined with all-trans retinoic acid treatment enhances glial transdifferentiation of neuroblastoma cells. Sci Rep. 2015;5:11158 pubmed 出版商
  267. Sotoodehnejadnematalahi F, Staples K, Chrysanthou E, Pearson H, Ziegler Heitbrock L, Burke B. Mechanisms of Hypoxic Up-Regulation of Versican Gene Expression in Macrophages. PLoS ONE. 2015;10:e0125799 pubmed 出版商
  268. Espana Agusti J, Tuveson D, Adams D, Matakidou A. A minimally invasive, lentiviral based method for the rapid and sustained genetic manipulation of renal tubules. Sci Rep. 2015;5:11061 pubmed 出版商
  269. Urban B, Collard T, Eagle C, Southern S, Greenhough A, Hamdollah Zadeh M, et al. BCL-3 expression promotes colorectal tumorigenesis through activation of AKT signalling. Gut. 2016;65:1151-64 pubmed 出版商
  270. Vanichapol T, Leelawat K, Hongeng S. Hypoxia enhances cholangiocarcinoma invasion through activation of hepatocyte growth factor receptor and the extracellular signal?regulated kinase signaling pathway. Mol Med Rep. 2015;12:3265-3272 pubmed 出版商
  271. Sun L, Xu C, Chen G, Yu M, Yang S, Qiu Y, et al. A Novel Role of OS-9 in the Maintenance of Intestinal Barrier Function from Hypoxia-induced Injury via p38-dependent Pathway. Int J Biol Sci. 2015;11:664-71 pubmed 出版商
  272. Her Y, Nelson Holte M, MAHER L. Oxygen concentration controls epigenetic effects in models of familial paraganglioma. PLoS ONE. 2015;10:e0127471 pubmed 出版商
  273. Zhang Y, Fan N, Yang J. Expression and clinical significance of hypoxia-inducible factor 1?, Snail and E-cadherin in human ovarian cancer cell lines. Mol Med Rep. 2015;12:3393-3399 pubmed 出版商
  274. Kumar P, Gullberg U, Olsson I, Ajore R. Myeloid translocation gene-16 co-repressor promotes degradation of hypoxia-inducible factor 1. PLoS ONE. 2015;10:e0123725 pubmed 出版商
  275. Ferreira J, Soares A, Ramalho J, Pereira P, Girao H. K63 linked ubiquitin chain formation is a signal for HIF1A degradation by Chaperone-Mediated Autophagy. Sci Rep. 2015;5:10210 pubmed 出版商
  276. Park H, Lee D, Yim M, Choi Y, Park S, Seo S, et al. 3,3'-Diindolylmethane inhibits VEGF expression through the HIF-1α and NF-κB pathways in human retinal pigment epithelial cells under chemical hypoxic conditions. Int J Mol Med. 2015;36:301-8 pubmed 出版商
  277. Bánfi G, Teleki I, Nyirády P, Keszthelyi A, Romics I, Fintha A, et al. Changes of protein expression in prostate cancer having lost its androgen sensitivity. Int Urol Nephrol. 2015;47:1149-54 pubmed 出版商
  278. Sadowski S, Boufraqech M, Zhang L, Mehta A, Kapur P, Zhang Y, et al. Torin2 targets dysregulated pathways in anaplastic thyroid cancer and inhibits tumor growth and metastasis. Oncotarget. 2015;6:18038-49 pubmed
  279. Guven M, Sehitoglu M, Yüksel Y, Tokmak M, Aras A, Akman T, et al. The Neuroprotective Effect of Coumaric Acid on Spinal Cord Ischemia/Reperfusion Injury in Rats. Inflammation. 2015;38:1986-95 pubmed 出版商
  280. Basu S, Majumder S, Bhowal A, Ghosh A, Naskar S, Nandy S, et al. A study of molecular signals deregulating mismatch repair genes in prostate cancer compared to benign prostatic hyperplasia. PLoS ONE. 2015;10:e0125560 pubmed 出版商
  281. Lemaire L, Franconi F, Siegler B, Legendre C, Garcion E. In vitro expansion of U87-MG human glioblastoma cells under hypoxic conditions affects glucose metabolism and subsequent in vivo growth. Tumour Biol. 2015;36:7699-710 pubmed 出版商
  282. Kim B, Lee J, Choi J, Park D, Song H, Park T, et al. Imidazole-based alkaloid derivative LCB54-0009 suppresses ocular angiogenesis and lymphangiogenesis in models of experimental retinopathy and corneal neovascularization. Br J Pharmacol. 2015;172:3875-89 pubmed 出版商
  283. Qiao S, Dennis M, Song X, Vadysirisack D, Salunke D, Nash Z, et al. A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity. Nat Commun. 2015;6:7014 pubmed 出版商
  284. Liu X, Chen Z, Xu C, Leng X, Cao H, Ouyang G, et al. Repression of hypoxia-inducible factor α signaling by Set7-mediated methylation. Nucleic Acids Res. 2015;43:5081-98 pubmed 出版商
  285. Choi H, Gillespie D, Berg S, Rice C, Couldwell S, Gu J, et al. Intermittent induction of HIF-1α produces lasting effects on malignant progression independent of its continued expression. PLoS ONE. 2015;10:e0125125 pubmed 出版商
  286. Pértega Gomes N, Felisbino S, Massie C, Vizcaíno J, Coelho R, Sandi C, et al. A glycolytic phenotype is associated with prostate cancer progression and aggressiveness: a role for monocarboxylate transporters as metabolic targets for therapy. J Pathol. 2015;236:517-30 pubmed 出版商
  287. Shang A, Yang Y, Wang H, Wang J, Hang X, Wang Z, et al. Upregulation of neuroglobin expression and changes in serum redox indices in a rat model of middle cerebral artery occlusion. Mol Med Rep. 2015;12:1693-8 pubmed 出版商
  288. Sun Y, George J, Rocha S. Dose-dependent effects of allopurinol on human foreskin fibroblast cells and human umbilical vein endothelial cells under hypoxia. PLoS ONE. 2015;10:e0123649 pubmed 出版商
  289. Ma S, Jiang B, Deng W, Gu Z, Wu F, Li T, et al. D-2-hydroxyglutarate is essential for maintaining oncogenic property of mutant IDH-containing cancer cells but dispensable for cell growth. Oncotarget. 2015;6:8606-20 pubmed
  290. Verduzco D, Lloyd M, Xu L, Ibrahim Hashim A, Balagurunathan Y, Gatenby R, et al. Intermittent hypoxia selects for genotypes and phenotypes that increase survival, invasion, and therapy resistance. PLoS ONE. 2015;10:e0120958 pubmed 出版商
  291. Chan N, He S, Spee C, Ishikawa K, Hinton D. Attenuation of choroidal neovascularization by histone deacetylase inhibitor. PLoS ONE. 2015;10:e0120587 pubmed 出版商
  292. Alig S, Stampnik Y, Pircher J, Rotter R, Gaitzsch E, Ribeiro A, et al. The tyrosine phosphatase SHP-1 regulates hypoxia inducible factor-1α (HIF-1α) protein levels in endothelial cells under hypoxia. PLoS ONE. 2015;10:e0121113 pubmed 出版商
  293. Koh H, Chang C, Jeon S, Yoon H, Ahn Y, Kim H, et al. The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia. Nat Commun. 2015;6:6340 pubmed 出版商
  294. Staudacher J, Naarmann de Vries I, Ujvari S, Klinger B, Kasim M, Benko E, et al. Hypoxia-induced gene expression results from selective mRNA partitioning to the endoplasmic reticulum. Nucleic Acids Res. 2015;43:3219-36 pubmed 出版商
  295. Albers J, Danzer C, Rechsteiner M, Lehmann H, Brandt L, Hejhal T, et al. A versatile modular vector system for rapid combinatorial mammalian genetics. J Clin Invest. 2015;125:1603-19 pubmed 出版商
  296. Yang L, Liu L, Xu Z, Liao W, Feng D, Dong X, et al. EBV-LMP1 targeted DNAzyme enhances radiosensitivity by inhibiting tumor angiogenesis via the JNKs/HIF-1 pathway in nasopharyngeal carcinoma. Oncotarget. 2015;6:5804-17 pubmed
  297. Hsiao H, Hsu T, Liu W, Hsieh W, Chou T, Wu Y, et al. Deltex1 antagonizes HIF-1α and sustains the stability of regulatory T cells in vivo. Nat Commun. 2015;6:6353 pubmed 出版商
  298. He Z, Li B, Rankin G, Rojanasakul Y, Chen Y. Selecting bioactive phenolic compounds as potential agents to inhibit proliferation and VEGF expression in human ovarian cancer cells. Oncol Lett. 2015;9:1444-1450 pubmed
  299. Yu C, Yang S, Fang X, Jiang J, Sun C, Huang T. Hypoxia disrupts the expression levels of circadian rhythm genes in hepatocellular carcinoma. Mol Med Rep. 2015;11:4002-8 pubmed 出版商
  300. Shankar G, Taylor Weiner A, Lelic N, Jones R, Kim J, FRANCIS J, et al. Sporadic hemangioblastomas are characterized by cryptic VHL inactivation. Acta Neuropathol Commun. 2014;2:167 pubmed 出版商
  301. Mudie S, Bandarra D, Batie M, Biddlestone J, Moniz S, Ortmann B, et al. PITX1, a specificity determinant in the HIF-1α-mediated transcriptional response to hypoxia. Cell Cycle. 2014;13:3878-91 pubmed 出版商
  302. Cannito S, Turato C, Paternostro C, Biasiolo A, Colombatto S, Cambieri I, et al. Hypoxia up-regulates SERPINB3 through HIF-2α in human liver cancer cells. Oncotarget. 2015;6:2206-21 pubmed
  303. Hung Y, Chang S, Huang C, Yin J, Hwang C, Yang L, et al. Inhibitor of Differentiation-1 and Hypoxia-Inducible Factor-1 Mediate Sonic Hedgehog Induction by Amyloid Beta-Peptide in Rat Cortical Neurons. Mol Neurobiol. 2016;53:793-809 pubmed 出版商
  304. Singleton D, Rouhi P, Zois C, Haider S, Li J, Kessler B, et al. Hypoxic regulation of RIOK3 is a major mechanism for cancer cell invasion and metastasis. Oncogene. 2015;34:4713-22 pubmed 出版商
  305. Rutz S, Kayagaki N, Phung Q, Eidenschenk C, Noubade R, Wang X, et al. Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells. Nature. 2015;518:417-21 pubmed 出版商
  306. Olayanju A, Copple I, Bryan H, Edge G, Sison R, Wong M, et al. Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity-implications for therapeutic targeting of Nrf2. Free Radic Biol Med. 2015;78:202-12 pubmed 出版商
  307. Fine J, Renner D, Forsberg A, Cameron R, Galick B, Le C, et al. Intranasal deferoxamine engages multiple pathways to decrease memory loss in the APP/PS1 model of amyloid accumulation. Neurosci Lett. 2015;584:362-7 pubmed 出版商
  308. Ma B, Chen Y, Chen L, Cheng H, Mu C, Li J, et al. Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase. Nat Cell Biol. 2015;17:95-103 pubmed 出版商
  309. Henze A, Garvalov B, Seidel S, Cuesta A, Ritter M, Filatova A, et al. Loss of PHD3 allows tumours to overcome hypoxic growth inhibition and sustain proliferation through EGFR. Nat Commun. 2014;5:5582 pubmed 出版商
  310. Turner J, Quek L, Titmarsh D, Krömer J, Kao L, Nielsen L, et al. Metabolic profiling and flux analysis of MEL-2 human embryonic stem cells during exponential growth at physiological and atmospheric oxygen concentrations. PLoS ONE. 2014;9:e112757 pubmed 出版商
  311. Mazzatenta A, Marconi G, Zara S, Cataldi A, Porzionato A, Di Giulio C. In the carotid body, galanin is a signal for neurogenesis in young, and for neurodegeneration in the old and in drug-addicted subjects. Front Physiol. 2014;5:427 pubmed 出版商
  312. Lei Q, Qiang F, Chao D, Di W, Guoqian Z, Bo Y, et al. Amelioration of hypoxia and LPS-induced intestinal epithelial barrier dysfunction by emodin through the suppression of the NF-κB and HIF-1α signaling pathways. Int J Mol Med. 2014;34:1629-39 pubmed 出版商
  313. Kim S, Ahn S, Lee E, Kim S, Na K, Chae D, et al. Bilirubin activates transcription of HIF-1α in human proximal tubular cells cultured in the physiologic oxygen content. J Korean Med Sci. 2014;29 Suppl 2:S146-54 pubmed 出版商
  314. Basham K, Leonard C, Kieffer C, Shelton D, McDowell M, Bhonde V, et al. Dioxin exposure blocks lactation through a direct effect on mammary epithelial cells mediated by the aryl hydrocarbon receptor repressor. Toxicol Sci. 2015;143:36-45 pubmed 出版商
  315. Menhofer M, Bartel D, Liebl J, Kubisch R, Busse J, Wagner E, et al. In vitro and in vivo characterization of the actin polymerizing compound chondramide as an angiogenic inhibitor. Cardiovasc Res. 2014;104:303-14 pubmed 出版商
  316. Lee H, Kim K, Lim H, Choi M, Kim H, Ahn H, et al. Priming Wharton's jelly-derived mesenchymal stromal/stem cells with ROCK inhibitor improves recovery in an intracerebral hemorrhage model. J Cell Biochem. 2015;116:310-9 pubmed 出版商
  317. Liu X, Haines J, Mehanna E, Genet M, Ben Sahra I, Asara J, et al. ZBTB7A acts as a tumor suppressor through the transcriptional repression of glycolysis. Genes Dev. 2014;28:1917-28 pubmed 出版商
  318. Miao Z, Wang Z, Zhao T, Xu Y, Gao J, Miao F, et al. Peritoneal milky spots serve as a hypoxic niche and favor gastric cancer stem/progenitor cell peritoneal dissemination through hypoxia-inducible factor 1α. Stem Cells. 2014;32:3062-74 pubmed 出版商
  319. Xu M, Nagati J, Xie J, Li J, Walters H, Moon Y, et al. An acetate switch regulates stress erythropoiesis. Nat Med. 2014;20:1018-26 pubmed 出版商
  320. Huang T, Huang W, Zhang Z, Yu L, Xie C, Zhu D, et al. Hypoxia-inducible factor-1? upregulation in microglia following hypoxia protects against ischemia-induced cerebral infarction. Neuroreport. 2014;25:1122-8 pubmed 出版商
  321. Wei W, Hu Y. Expression of hypoxia-regulated genes and glycometabolic genes in placenta from patients with intrahepatic cholestasis of pregnancy. Placenta. 2014;35:732-6 pubmed 出版商
  322. Mésange P, Poindessous V, Sabbah M, Escargueil A, de Gramont A, Larsen A. Intrinsic bevacizumab resistance is associated with prolonged activation of autocrine VEGF signaling and hypoxia tolerance in colorectal cancer cells and can be overcome by nintedanib, a small molecule angiokinase inhibitor. Oncotarget. 2014;5:4709-21 pubmed
  323. Hempel C, Hoyer N, Kildemoes A, Jendresen C, Kurtzhals J. Systemic and Cerebral Vascular Endothelial Growth Factor Levels Increase in Murine Cerebral Malaria along with Increased Calpain and Caspase Activity and Can be Reduced by Erythropoietin Treatment. Front Immunol. 2014;5:291 pubmed 出版商
  324. Zheng X, Zhai B, Koivunen P, Shin S, Lu G, Liu J, et al. Prolyl hydroxylation by EglN2 destabilizes FOXO3a by blocking its interaction with the USP9x deubiquitinase. Genes Dev. 2014;28:1429-44 pubmed 出版商
  325. Schreurs L, Smit J, Pavlov K, Pultrum B, Pruim J, Groen H, et al. Prognostic impact of clinicopathological features and expression of biomarkers related to (18)F-FDG uptake in esophageal cancer. Ann Surg Oncol. 2014;21:3751-7 pubmed 出版商
  326. Ramamoorthy P, Shi H. Ischemia induces different levels of hypoxia inducible factor-1? protein expression in interneurons and pyramidal neurons. Acta Neuropathol Commun. 2014;2:51 pubmed 出版商
  327. Waza A, Andrabi K, Hussain M. Protein kinase C (PKC) mediated interaction between conexin43 (Cx43) and K(+)(ATP) channel subunit (Kir6.1) in cardiomyocyte mitochondria: Implications in cytoprotection against hypoxia induced cell apoptosis. Cell Signal. 2014;26:1909-17 pubmed 出版商
  328. Wu W, Tian R, Hao S, Xu F, Mao X, Liu B. A pre-injury high ethanol intake in rats promotes brain edema following traumatic brain injury. Br J Neurosurg. 2014;28:739-45 pubmed 出版商
  329. Li B, Iglesias Pedraz J, Chen L, Yin F, Cadenas E, Reddy S, et al. Downregulation of the Werner syndrome protein induces a metabolic shift that compromises redox homeostasis and limits proliferation of cancer cells. Aging Cell. 2014;13:367-78 pubmed
  330. Schaffner C, Mwinyi J, Gai Z, Thasler W, Eloranta J, Kullak Ublick G. The organic solute transporters alpha and beta are induced by hypoxia in human hepatocytes. Liver Int. 2015;35:1152-61 pubmed 出版商
  331. Aksu V, Yuksel V, Chousein S, Tastekin E, Iscan S, Sagiroglu G, et al. The effects of sildenafil and n-acetylcysteine on ischemia and reperfusion injury in gastrocnemius muscle and femoral artery endothelium. Vascular. 2015;23:21-30 pubmed 出版商
  332. Sun X, Fang B, Zhao X, Zhang G, Ma H. Preconditioning of mesenchymal stem cells by sevoflurane to improve their therapeutic potential. PLoS ONE. 2014;9:e90667 pubmed 出版商
  333. Ekman M, Uvelius B, Albinsson S, Swärd K. HIF-mediated metabolic switching in bladder outlet obstruction mitigates the relaxing effect of mitochondrial inhibition. Lab Invest. 2014;94:557-68 pubmed 出版商
  334. Sena J, Wang L, Pawlus M, Hu C. HIFs enhance the transcriptional activation and splicing of adrenomedullin. Mol Cancer Res. 2014;12:728-41 pubmed 出版商
  335. Kulzer J, Stitzel M, Morken M, Huyghe J, Fuchsberger C, Kuusisto J, et al. A common functional regulatory variant at a type 2 diabetes locus upregulates ARAP1 expression in the pancreatic beta cell. Am J Hum Genet. 2014;94:186-97 pubmed 出版商
  336. Barsoum I, Smallwood C, Siemens D, Graham C. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res. 2014;74:665-74 pubmed 出版商
  337. Chen T, Shih Y, Tseng J, Lai M, Wu C, Li Y, et al. Overexpression of FGF9 in colon cancer cells is mediated by hypoxia-induced translational activation. Nucleic Acids Res. 2014;42:2932-44 pubmed 出版商
  338. Ding H, Gao Y, Wang Y, Hu C, Sun Y, Zhang C. Dimethyloxaloylglycine increases the bone healing capacity of adipose-derived stem cells by promoting osteogenic differentiation and angiogenic potential. Stem Cells Dev. 2014;23:990-1000 pubmed 出版商
  339. Maschio L, Madallozo B, Capellasso B, Jardim B, Moschetta M, Jampietro J, et al. Immunohistochemical investigation of the angiogenic proteins VEGF, HIF-1? and CD34 in invasive ductal carcinoma of the breast. Acta Histochem. 2014;116:148-57 pubmed 出版商
  340. Xie L, Collins J. Transcription factors Sp1 and Hif2α mediate induction of the copper-transporting ATPase (Atp7a) gene in intestinal epithelial cells during hypoxia. J Biol Chem. 2013;288:23943-52 pubmed 出版商
  341. Gammon L, Biddle A, Heywood H, Johannessen A, Mackenzie I. Sub-sets of cancer stem cells differ intrinsically in their patterns of oxygen metabolism. PLoS ONE. 2013;8:e62493 pubmed 出版商
  342. Avena P, Anselmo W, Whitaker Menezes D, Wang C, Pestell R, Lamb R, et al. Compartment-specific activation of PPAR? governs breast cancer tumor growth, via metabolic reprogramming and symbiosis. Cell Cycle. 2013;12:1360-70 pubmed 出版商
  343. Cao W, Kawai N, Miyake K, Zhang X, Fei Z, Tamiya T. Relationship of 14-3-3zeta (?), HIF-1?, and VEGF expression in human brain gliomas. Brain Tumor Pathol. 2014;31:1-10 pubmed 出版商
  344. Isaacs J, Antony L, Dalrymple S, Brennen W, Gerber S, Hammers H, et al. Tasquinimod Is an Allosteric Modulator of HDAC4 survival signaling within the compromised cancer microenvironment. Cancer Res. 2013;73:1386-99 pubmed 出版商
  345. Salem A, Howell A, Sartini M, Sotgia F, Lisanti M. Downregulation of stromal BRCA1 drives breast cancer tumor growth via upregulation of HIF-1?, autophagy and ketone body production. Cell Cycle. 2012;11:4167-73 pubmed 出版商
  346. Wu C, Tang S, Wang P, Lee H, Ko J. Nickel-induced epithelial-mesenchymal transition by reactive oxygen species generation and E-cadherin promoter hypermethylation. J Biol Chem. 2012;287:25292-302 pubmed 出版商
  347. Hsieh Y, Chou L, Chang P, Yang C, Kao M, Hong C. Low-level laser therapy alleviates neuropathic pain and promotes function recovery in rats with chronic constriction injury: possible involvements in hypoxia-inducible factor 1? (HIF-1?). J Comp Neurol. 2012;520:2903-16 pubmed 出版商
  348. Groenman F, Rutter M, Caniggia I, Tibboel D, Post M. Hypoxia-inducible factors in the first trimester human lung. J Histochem Cytochem. 2007;55:355-63 pubmed