这是一篇来自已证抗体库的有关人类 HIF-1甲 (HIF-1 alpha) 的综述,是根据290篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合HIF-1甲 抗体。
HIF-1甲 同义词: HIF-1-alpha; HIF-1A; HIF-1alpha; HIF1; HIF1-ALPHA; MOP1; PASD8; bHLHe78; hypoxia-inducible factor 1-alpha; ARNT interacting protein; PAS domain-containing protein 8; basic-helix-loop-helix-PAS protein MOP1; class E basic helix-loop-helix protein 78; hypoxia inducible factor 1 alpha subunit; hypoxia inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor); hypoxia-inducible factor 1 alpha isoform I.3; hypoxia-inducible factor1alpha; member of PAS protein 1; member of PAS superfamily 1

Novus Biologicals
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s4a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图 s4a). Am J Pathol (2018) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 图 2f
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105SS)被用于被用于免疫印迹在小鼠样品上 (图 2f). Science (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 表 s1
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于被用于免疫印迹在人类样品上浓度为1:500 (表 s1). Stem Cell Reports (2017) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-石蜡切片; 人类; 图 1c
  • 免疫印迹; 人类; 1:600; 图 5f
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫组化-石蜡切片在人类样品上 (图 1c) 和 被用于免疫印迹在人类样品上浓度为1:600 (图 5f). J Cell Mol Med (2017) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:1000; 图 5a
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105H)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 5a). Science (2017) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 3a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于被用于染色质免疫沉淀 在小鼠样品上 (图 3a). J Clin Invest (2017) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 图 s2a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在小鼠样品上 (图 s2a). elife (2017) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-石蜡切片; 小鼠; 图 5c
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 5c). Cancer Res (2017) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 小鼠; 1:500; 图 s3a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 s3a). Science (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5b
Novus BiologicalsHIF-1甲抗体(Novus, NB100-449)被用于被用于免疫印迹在小鼠样品上 (图 5b). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:200; 图 3a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB-100-654)被用于被用于免疫印迹在小鼠样品上浓度为1:200 (图 3a). Br J Cancer (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于被用于免疫印迹在人类样品上 (图 1a). Oncogenesis (2017) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹基因敲除验证; 小鼠; 图 2f
Novus BiologicalsHIF-1甲抗体(Novus, NB100-123)被用于被用于免疫印迹基因敲除验证在小鼠样品上 (图 2f). Nat Commun (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫细胞化学; 人类; 1:50; 图 s4a
  • 免疫印迹; 人类; 1:500; 图 s6
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于被用于免疫细胞化学在人类样品上浓度为1:50 (图 s4a) 和 被用于免疫印迹在人类样品上浓度为1:500 (图 s6). PLoS ONE (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫沉淀; 大鼠; 图 4a
  • 免疫印迹; 大鼠; 图 2d
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于被用于免疫沉淀在大鼠样品上 (图 4a) 和 被用于免疫印迹在大鼠样品上 (图 2d). Am J Transl Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于被用于免疫印迹在小鼠样品上 (图 4a). Mol Cell Biol (2017) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 小鼠; 1:500; 图 e4a
  • 免疫印迹; 小鼠; 1 mg/ml; 图 2b
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 e4a) 和 被用于免疫印迹在小鼠样品上浓度为1 mg/ml (图 2b). Nature (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2c
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 2c). Oncotarget (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图 1). Mol Clin Oncol (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s1b
  • 免疫印迹; 小鼠; 1:500; 图 s7a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479B)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 s1b) 和 被用于免疫印迹在小鼠样品上浓度为1:500 (图 s7a). Arterioscler Thromb Vasc Biol (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫细胞化学; 小鼠; 1:100; 图 1
  • 免疫印迹; 小鼠; 1:500; 图 5
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, H1alpha67)被用于被用于免疫细胞化学在小鼠样品上浓度为1:100 (图 1) 和 被用于免疫印迹在小鼠样品上浓度为1:500 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 图 1B
  • 免疫印迹; 人类; 1:500; 图 1B
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于被用于免疫组化在人类样品上 (图 1B) 和 被用于免疫印迹在人类样品上浓度为1:500 (图 1B). Front Pharmacol (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 1a). Nat Commun (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 4). Theranostics (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4f
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB 10134)被用于被用于染色质免疫沉淀 在人类样品上 (图 4f). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 狗; 1:500; 图 5
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于被用于免疫组化-石蜡切片在狗样品上浓度为1:500 (图 5). Brain Behav (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2
Novus BiologicalsHIF-1甲抗体(Novus, NB100-449)被用于被用于免疫印迹在小鼠样品上 (图 2). Nat Commun (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus, NB100-134)被用于被用于染色质免疫沉淀 在小鼠样品上. Nat Commun (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 小鼠; 图 1b
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于被用于免疫组化在小鼠样品上 (图 1b). J Pathol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s7a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-449)被用于被用于免疫印迹在小鼠样品上 (图 s7a). J Clin Invest (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 图 2b
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在人类样品上 (图 2b). Oncol Lett (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 图 4
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于被用于免疫组化在人类样品上 (图 4). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 3
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB-100-449)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 3). BMC Cancer (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于被用于免疫印迹在人类样品上 (图 1). Int J Cancer (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5
Novus BiologicalsHIF-1甲抗体(Novus, NB100-479)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 5). Mol Med Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹基因敲除验证; 小鼠; 图 3
  • 免疫印迹; 人类; 图 3
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹基因敲除验证在小鼠样品上 (图 3) 和 被用于免疫印迹在人类样品上 (图 3). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
  • 免疫印迹基因敲除验证; 小鼠; 图 3
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于被用于免疫印迹在人类样品上 (图 3) 和 被用于免疫印迹基因敲除验证在小鼠样品上 (图 3). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于被用于免疫印迹在人类样品上 (图 2a). Cancer Res (2016) ncbi
兔 多克隆
  • 免疫沉淀; 人类; 1:200; 图 2f
  • 免疫印迹; 人类; 1:1000; 图 2f
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于被用于免疫沉淀在人类样品上浓度为1:200 (图 2f) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 2f). Nat Cell Biol (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:500; 图 3
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 3). J Cell Sci (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:500; 图 3a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 3a). Cell Tissue Res (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:500
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在人类样品上浓度为1:500. Nature (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 1:100; 图 2b
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫组化在人类样品上浓度为1:100 (图 2b). Oncotarget (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s5
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图 s5). Cancer Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
Novus BiologicalsHIF-1甲抗体(Novus, NB100-134)被用于被用于免疫印迹在人类样品上 (图 1). J Cell Mol Med (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 4
  • 免疫印迹; 人类; 1:500; 图 3
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 4) 和 被用于免疫印迹在人类样品上浓度为1:500 (图 3). Oncol Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 7c
  • 免疫印迹; 人类; 图 5d
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于被用于免疫印迹在小鼠样品上 (图 7c) 和 被用于免疫印迹在人类样品上 (图 5d). Nucleic Acids Res (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 9A
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-449)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图 9A). Antioxid Redox Signal (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 s1
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:250 (图 s1). PLoS ONE (2015) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-石蜡切片; 人类; 图 2
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, ESEE122)被用于被用于免疫组化-石蜡切片在人类样品上 (图 2). J Cancer (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:2000
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于被用于免疫印迹在人类样品上浓度为1:2000. Life Sci (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 酶联免疫吸附测定; 人类; 图 s4
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于酶联免疫吸附测定在人类样品上 (图 s4). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 1e
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于被用于免疫印迹在大鼠样品上 (图 1e). J Clin Invest (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 表 2
  • 免疫印迹; 人类; 表 2
Novus BiologicalsHIF-1甲抗体(Novus, NB100-134)被用于被用于免疫组化在人类样品上 (表 2) 和 被用于免疫印迹在人类样品上 (表 2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠
Novus BiologicalsHIF-1甲抗体(Novus, NB100-479)被用于被用于免疫组化在大鼠样品上. Int J Clin Exp Med (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:500
  • 免疫组化; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在人类样品上浓度为1:500 和 被用于免疫组化在小鼠样品上. Sci Rep (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 图 3a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在人类样品上 (图 3a). Int J Biol Sci (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 图 4c
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在人类样品上 (图 4c). Int J Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-449)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Nat Commun (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 图 1
Novus BiologicalsHIF-1甲抗体(Biologicals, NB100-105)被用于被用于免疫印迹在人类样品上 (图 1). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 表 2
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在人类样品上 (表 2). PLoS ONE (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 2
Novus BiologicalsHIF-1甲抗体(Novus, NB100-134)被用于被用于染色质免疫沉淀 在小鼠样品上 (图 2). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus, NB100-479)被用于被用于免疫印迹在小鼠样品上. J Clin Invest (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于被用于免疫印迹在人类样品上浓度为1:1000. Cells Tissues Organs (2014) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化; 人类
  • 免疫组化; scFv
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-131)被用于被用于免疫组化在人类样品上 和 被用于免疫组化在scFv样品上. Acta Neuropathol Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
  • 免疫印迹; 小鼠; 1:600
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于被用于免疫印迹在大鼠样品上 和 被用于免疫印迹在小鼠样品上浓度为1:600. Mol Neurobiol (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于被用于免疫印迹在小鼠样品上. Nature (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于被用于免疫印迹在小鼠样品上. Neurosci Lett (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 s2
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200 (图 s2). J Cell Biochem (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 1:1000
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Neuroreport (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus, NB100-479)被用于被用于免疫印迹在小鼠样品上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(ESEE122)
  • 免疫印迹; 小鼠; 1:2000; 图 2
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-131A1)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 2). Front Immunol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
  • 免疫沉淀; 人类; 图 2a
  • 免疫印迹; 人类; 图 4a
Novus BiologicalsHIF-1甲抗体(Novus, NB100-479)被用于被用于免疫印迹在小鼠样品上, 被用于免疫沉淀在人类样品上 (图 2a) 和 被用于免疫印迹在人类样品上 (图 4a). Genes Dev (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫细胞化学; 大鼠; 1:200
Novus BiologicalsHIF-1甲抗体(Novus Biological, NB-100-123)被用于被用于免疫细胞化学在大鼠样品上浓度为1:200. Acta Neuropathol Commun (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, 100-479)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 4a). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠
  • 免疫印迹; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于被用于免疫组化-冰冻切片在小鼠样品上 和 被用于免疫印迹在小鼠样品上. FASEB J (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于被用于免疫印迹在大鼠样品上浓度为1:500. Lab Invest (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠
  • 免疫组化-石蜡切片; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于被用于免疫组化-冰冻切片在小鼠样品上 和 被用于免疫组化-石蜡切片在小鼠样品上. Am J Pathol (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 图 6c
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于被用于免疫组化在人类样品上 (图 6c). Nucleic Acids Res (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 大鼠
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在大鼠样品上. J Biol Chem (2013) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类
Novus BiologicalsHIF-1甲抗体(Novus, NB100-123)被用于被用于免疫印迹在人类样品上. Cell Cycle (2012) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 大鼠
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在大鼠样品上. J Comp Neurol (2012) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-石蜡切片; 人类; 1:200
  • 免疫组化; 人类
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB 100-105)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 和 被用于免疫组化在人类样品上. J Histochem Cytochem (2007) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(mgc3)
  • 免疫印迹; 人类; 图 2b
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab16066)被用于被用于免疫印迹在人类样品上 (图 2b). Tumour Biol (2017) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫细胞化学; 人类; 1:200; 图 1e
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab1)被用于被用于免疫细胞化学在人类样品上浓度为1:200 (图 1e) 和 被用于免疫印迹在人类样品上 (图 1d). Stem Cells Dev (2017) ncbi
小鼠 单克隆(mgc3)
  • 免疫组化-冰冻切片; 人类; 1:200
  • 免疫细胞化学; 人类; 1:200; 图 e1a
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, AB16066)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:200 和 被用于免疫细胞化学在人类样品上浓度为1:200 (图 e1a). Nature (2017) ncbi
兔 单克隆(EPR16897)
  • 免疫组化-冰冻切片; 小鼠; 图 s6e
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, EPR16897)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 s6e). Nature (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:8000; 图 9c
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab2185)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:8000 (图 9c). J Biol Chem (2017) ncbi
兔 单克隆(EP1215Y)
  • 免疫印迹; 大鼠; 1:500; 图 3b
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, EP1215Y)被用于被用于免疫印迹在大鼠样品上浓度为1:500 (图 3b). Heart Rhythm (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 8a
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab2185)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 8a). PLoS ONE (2016) ncbi
小鼠 单克隆(mgc3)
  • 免疫细胞化学; 人类; 图 1
艾博抗(上海)贸易有限公司HIF-1甲抗体(abcam, ab16066)被用于被用于免疫细胞化学在人类样品上 (图 1). BMC Cancer (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s7
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, AB2185)被用于被用于免疫印迹在人类样品上 (图 s7). Oncotarget (2016) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 2
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab8366)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:250 (图 2). Virchows Arch (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 染色质免疫沉淀 ; 小鼠; 图 6g
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab1)被用于被用于染色质免疫沉淀 在小鼠样品上 (图 6g). Nat Med (2016) ncbi
兔 单克隆(EP1215Y)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 2
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, EP12154)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:100 (图 2). Acta Neuropathol Commun (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 1:150; 图 3b
  • 免疫细胞化学; 人类; 1:500; 图 6b
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab2185)被用于被用于染色质免疫沉淀 在人类样品上浓度为1:150 (图 3b) 和 被用于免疫细胞化学在人类样品上浓度为1:500 (图 6b). Mol Cancer (2016) ncbi
小鼠 单克隆(ESEE122)
  • 免疫细胞化学; 人类; 图 1
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab8366)被用于被用于免疫细胞化学在人类样品上 (图 1). J Diabetes Res (2016) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-石蜡切片; 人类; 表 4
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ESEE122)被用于被用于免疫组化-石蜡切片在人类样品上 (表 4). Chin J Cancer (2016) ncbi
兔 多克隆
  • ChIP-Seq; 人类; 图 2
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab2185)被用于被用于ChIP-Seq在人类样品上 (图 2). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(mgc3)
  • 免疫印迹; 人类; 1:500; 图 3
艾博抗(上海)贸易有限公司HIF-1甲抗体(Santa Cruz Biotechnology, ab16066)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 3). Exp Ther Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6
艾博抗(上海)贸易有限公司HIF-1甲抗体(abcam, ab2185)被用于被用于免疫印迹在小鼠样品上 (图 6). Kidney Int (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 2
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab2185)被用于被用于染色质免疫沉淀 在人类样品上 (图 2). Mol Med Rep (2015) ncbi
兔 单克隆(EP1215Y)
  • 免疫组化-石蜡切片; 人类; 图 6
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab51608)被用于被用于免疫组化-石蜡切片在人类样品上 (图 6), 被用于免疫细胞化学在人类样品上 (图 2) 和 被用于免疫印迹在人类样品上 (图 2). Oncotarget (2015) ncbi
兔 单克隆(EP1215Y)
  • 免疫印迹; 大鼠; 1:1000; 图 7a
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab51608)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 7a). J Proteomics (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 图 1a
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab1)被用于被用于免疫印迹在小鼠样品上 (图 1a). PLoS ONE (2015) ncbi
小鼠 单克隆(mgc3)
  • 免疫组化-石蜡切片; 小鼠; 图 1b
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab16066)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 1b). PLoS ONE (2015) ncbi
兔 单克隆(EP1215Y)
  • 免疫印迹; 大鼠; 1:200; 图 1
艾博抗(上海)贸易有限公司HIF-1甲抗体(abcam, ab51608)被用于被用于免疫印迹在大鼠样品上浓度为1:200 (图 1). Mol Med Rep (2015) ncbi
小鼠 单克隆(ESEE122)
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab8366)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3). PLoS ONE (2015) ncbi
兔 单克隆(EP1215Y)
  • 酶联免疫吸附测定; 人类; 1:250; 图 s4
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab51608)被用于被用于酶联免疫吸附测定在人类样品上浓度为1:250 (图 s4). PLoS ONE (2015) ncbi
兔 单克隆(EP1215Y)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab51608)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 和 被用于免疫细胞化学在人类样品上浓度为1:100. Mol Med Rep (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 5
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab2185)被用于被用于染色质免疫沉淀 在人类样品上 (图 5), 被用于免疫沉淀在人类样品上 和 被用于免疫印迹在人类样品上. PLoS ONE (2015) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化; 人类; 1:500; 图 6c
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab8366)被用于被用于免疫组化在人类样品上浓度为1:500 (图 6c). Oncotarget (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab1)被用于被用于免疫印迹在人类样品上. Br J Pharmacol (2015) ncbi
兔 单克隆(EP1215Y)
  • 免疫印迹; 大鼠; 1:500; 图 6
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab51608)被用于被用于免疫印迹在大鼠样品上浓度为1:500 (图 6). Mol Med Rep (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 1:500
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab1)被用于被用于免疫组化在人类样品上浓度为1:500. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 s1c
  • 免疫印迹; 人类; 1:1000; 图 4a
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab2185)被用于被用于免疫细胞化学在人类样品上浓度为1:1000 (图 s1c) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 4a). Cancer Lett (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab2185)被用于被用于免疫印迹在人类样品上浓度为1:500. Am J Pathol (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-石蜡切片; 人类; 1:200
  • 免疫印迹; 人类; 1:5000
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 和 被用于免疫印迹在人类样品上浓度为1:5000. Stem Cells (2014) ncbi
兔 单克隆(EP1215Y)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫印迹; 人类; 1:300
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab51608)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 和 被用于免疫印迹在人类样品上浓度为1:300. Placenta (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab2185)被用于被用于免疫印迹在人类样品上 (图 2). J Biol Chem (2014) ncbi
小鼠 单克隆(ESEE122)
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab8366)被用于被用于免疫印迹在大鼠样品上浓度为1:1000. Cell Signal (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 大鼠; 1:200
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, H1alpha67)被用于被用于免疫印迹在大鼠样品上浓度为1:200. Lab Invest (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, 2185)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100. Heredity (Edinb) (2014) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-石蜡切片; 大鼠; 1:100
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab8366)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100. Stem Cells Dev (2014) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab2185)被用于被用于染色质免疫沉淀 在小鼠样品上. Cardiovasc Res (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:250
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab114977)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:250. Cardiovasc Res (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2a
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, 28b)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图 2a). Arch Med Sci (2017) ncbi
小鼠 单克隆(28b)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2a
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, 28b)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图 2a). Arch Med Sci (2017) ncbi
小鼠 单克隆(28b)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-13515)被用于被用于免疫印迹在人类样品上 (图 2a). Am J Transl Res (2017) ncbi
小鼠 单克隆(28b)
  • 免疫印迹; 人类; 1:500; 图 3A
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-13515)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 3A). Oncol Lett (2017) ncbi
小鼠 单克隆(28b)
  • 免疫组化; 人类; 图 1e
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-13515)被用于被用于免疫组化在人类样品上 (图 1e). Nat Commun (2016) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 人类; 图 9d
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, H1alpha 67)被用于被用于免疫印迹在人类样品上 (图 9d). PLoS ONE (2016) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫细胞化学; 人类; 1:50; 图 2
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-53546)被用于被用于免疫细胞化学在人类样品上浓度为1:50 (图 2). Oncol Lett (2016) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫组化-石蜡切片; 小鼠; 1:25; 图 3
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, 67)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:25 (图 3). Stem Cells Int (2016) ncbi
小鼠 单克隆(3C144)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-71247)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 2a). Mol Med Rep (2016) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫组化-石蜡切片; 人类; 1:20; 图 1
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:20 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(28b)
  • 免疫沉淀; 人类; 1:200; 图 2f
  • 免疫印迹; 人类; 1:1000; 图 2f
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-13515)被用于被用于免疫沉淀在人类样品上浓度为1:200 (图 2f) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 2f). Nat Cell Biol (2016) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫沉淀; 人类; 1:1000; 图 5
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于被用于免疫沉淀在人类样品上浓度为1:1000 (图 5) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 4). J Cell Sci (2016) ncbi
小鼠 单克隆(28b)
  • 免疫印迹; 人类; 1:500; 图 1
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-13515)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 1). Mol Med Rep (2015) ncbi
小鼠 单克隆(28b)
  • 免疫细胞化学; 人类; 图 4
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-13515)被用于被用于免疫细胞化学在人类样品上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(3C144)
  • 免疫印迹; 人类
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-71247)被用于被用于免疫印迹在人类样品上. PLoS ONE (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-53546)被用于被用于免疫印迹在人类样品上 (图 3). EBioMedicine (2015) ncbi
小鼠 单克隆(28b)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-13515)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 1) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(28b)
  • 免疫组化-石蜡切片; 人类; 图 4
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-13515)被用于被用于免疫组化-石蜡切片在人类样品上 (图 4) 和 被用于免疫印迹在人类样品上 (图 3). Mol Med Rep (2015) ncbi
小鼠 单克隆(28b)
  • 免疫组化-石蜡切片; 人类; 图 4
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-13515)被用于被用于免疫组化-石蜡切片在人类样品上 (图 4) 和 被用于免疫印迹在人类样品上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-53546)被用于被用于免疫印迹在人类样品上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 人类; 1:500; 图 1
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-53546)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 1). Mol Med Rep (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫细胞化学; 人类; 1:50; 图 4
圣克鲁斯生物技术HIF-1甲抗体(anta Cruz, sc-53546)被用于被用于免疫细胞化学在人类样品上浓度为1:50 (图 4). Cell Cycle (2014) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 人类
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于被用于免疫印迹在人类样品上. Oncotarget (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫组化-石蜡切片; 人类; 图 4
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于被用于免疫组化-石蜡切片在人类样品上 (图 4). Front Physiol (2014) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫组化; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:2000
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于被用于免疫组化在大鼠样品上浓度为1:100 和 被用于免疫印迹在大鼠样品上浓度为1:2000. Br J Neurosurg (2014) ncbi
小鼠 单克隆(28b)
  • EMSA; 人类; 1 ug
圣克鲁斯生物技术HIF-1甲抗体(Santa-Cruz Biotechnology Inc., sc13515)被用于被用于EMSA在人类样品上浓度为1 ug. Liver Int (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于被用于免疫印迹在大鼠样品上. Vascular (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于被用于免疫印迹在大鼠样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 1
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, clone H1alpha67)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (表 1). Acta Histochem (2014) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫组化-石蜡切片; 人类; 1:100
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Brain Tumor Pathol (2014) ncbi
赛默飞世尔
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1b
赛默飞世尔HIF-1甲抗体(Thermo Scientific, PA1-16601)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 1b). Front Pharmacol (2017) ncbi
小鼠 单克隆(mgc3)
  • 免疫细胞化学; 小鼠; 1:200; 图 s1a
赛默飞世尔HIF-1甲抗体(Pierce, MA1-516)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200 (图 s1a). Sci Rep (2017) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 图 1b
赛默飞世尔HIF-1甲抗体(Thermo Fisher Scientific, H1alpha67)被用于被用于免疫组化在人类样品上 (图 1b). Oncogenesis (2017) ncbi
兔 单克隆(16H4L13)
  • 免疫印迹; 人类; 1:250; 图 s1a
赛默飞世尔HIF-1甲抗体(Invitrogen, 16H4L13)被用于被用于免疫印迹在人类样品上浓度为1:250 (图 s1a). PLoS ONE (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 猪; 1:1000; 表 1
赛默飞世尔HIF-1甲抗体(NeoMarkers, Ab-4)被用于被用于免疫组化在猪样品上浓度为1:1000 (表 1). Semin Thorac Cardiovasc Surg (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔HIF-1甲抗体(Thermo Fisher Scientific, PA1-16601)被用于被用于免疫印迹在小鼠样品上 (图 3). Cell Signal (2016) ncbi
小鼠 单克隆(mgc3)
  • 免疫印迹; 人类; 图 1a
赛默飞世尔HIF-1甲抗体(Affinity Bioreagents, mgc3)被用于被用于免疫印迹在人类样品上 (图 1a). FEBS Lett (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔HIF-1甲抗体(Thermo Scientific, MA1-16504)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 1). FEBS Lett (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 9a
赛默飞世尔HIF-1甲抗体(Thermo Fisher, PA3-16521)被用于被用于免疫印迹在小鼠样品上浓度为1:500 (图 9a). Transplantation (2016) ncbi
兔 单克隆(16H4L13)
  • 免疫印迹; 人类; 1:500; 图 6
赛默飞世尔HIF-1甲抗体(Fisher Scientific, 70050)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 6). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 4
赛默飞世尔HIF-1甲抗体(ThermoFisher Scientific, PA1-16601)被用于被用于免疫印迹在大鼠样品上 (图 4). Mol Med Rep (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 1:200
赛默飞世尔HIF-1甲抗体(LabVision, H1alpha67)被用于被用于免疫组化在人类样品上浓度为1:200. Int Urol Nephrol (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 5
赛默飞世尔HIF-1甲抗体(Thermo Fisher Scientific, PA1-16601)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 (图 5). Inflammation (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔HIF-1甲抗体(Neomarkers, MS-1164)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50. Ann Surg Oncol (2014) ncbi
小鼠 单克隆(mgc3)
  • EMSA; 大鼠
  • EMSA; 小鼠
赛默飞世尔HIF-1甲抗体(Thermo Scientific, MA1-516)被用于被用于EMSA在大鼠样品上 和 被用于EMSA在小鼠样品上. Am J Hum Genet (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 大鼠; 1:200
赛默飞世尔HIF-1甲抗体(Thermo, MS-1164-P0)被用于被用于免疫组化在大鼠样品上浓度为1:200. J Comp Neurol (2012) ncbi
安迪生物R&D
小鼠 单克隆(241812)
  • 流式细胞仪; 小鼠; 图 4a
安迪生物R&DHIF-1甲抗体(R&D Systems, 241812)被用于被用于流式细胞仪在小鼠样品上 (图 4a). QJM (2018) ncbi
山羊 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2a
安迪生物R&DHIF-1甲抗体(R&D Systems, AF1935)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图 2a). Nat Commun (2017) ncbi
小鼠 单克隆(241809)
  • 免疫印迹; 人类; 图 2b
安迪生物R&DHIF-1甲抗体(R&D Systems, 241809)被用于被用于免疫印迹在人类样品上 (图 2b). J Cell Biol (2017) ncbi
小鼠 单克隆(241809)
  • 免疫印迹; 人类; 1:500; 图 2a
安迪生物R&DHIF-1甲抗体(R&D Systems, MAB1536)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 2a). Nat Commun (2016) ncbi
山羊 多克隆
  • 免疫印迹; Domestic guinea pig; 图 4f
  • 免疫印迹; 人类; 图 4f
安迪生物R&DHIF-1甲抗体(R&D Systems, AF1935)被用于被用于免疫印迹在Domestic guinea pig样品上 (图 4f) 和 被用于免疫印迹在人类样品上 (图 4f). Blood (2017) ncbi
小鼠 单克隆(241809)
  • 免疫印迹; 人类; 图 7d
安迪生物R&DHIF-1甲抗体(R&D Systems, 241809)被用于被用于免疫印迹在人类样品上 (图 7d). Cell (2016) ncbi
山羊 多克隆
  • 免疫印迹; 人类; 1:500; 图 4
安迪生物R&DHIF-1甲抗体(R&D, AF1935)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 4). Front Oncol (2016) ncbi
小鼠 单克隆(241809)
  • 免疫印迹; 大鼠; 图 5a
安迪生物R&DHIF-1甲抗体(R&D Systems, MAB1536)被用于被用于免疫印迹在大鼠样品上 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(241809)
  • 免疫印迹; 人类; 1:1000; 图 7a
安迪生物R&DHIF-1甲抗体(R&D Systems, MAB1536)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 7a). FASEB J (2016) ncbi
小鼠 单克隆(241809)
  • 免疫印迹; 小鼠; 1:1000; 图 1
安迪生物R&DHIF-1甲抗体(R&D, MAB1536)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 1). Sci Rep (2015) ncbi
山羊 多克隆
  • 免疫印迹; 人类; 1:500; 图 5
安迪生物R&DHIF-1甲抗体(R&D Systems, AF1935)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 5). J Biol Chem (2015) ncbi
小鼠 单克隆(241809)
  • 免疫印迹; 人类; 1:1000
安迪生物R&DHIF-1甲抗体(R&D Systems, MAB1536)被用于被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2015) ncbi
GeneTex
兔 多克隆
  • 免疫印迹; 人类; 图 2e
GeneTexHIF-1甲抗体(GeneTex, GTX127309)被用于被用于免疫印迹在人类样品上 (图 2e). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5
  • 染色质免疫沉淀 ; 人类; 图 2
  • 免疫印迹; 人类; 图 2
GeneTexHIF-1甲抗体(GeneTex, GTX127309)被用于被用于免疫印迹在小鼠样品上 (图 5), 被用于染色质免疫沉淀 在人类样品上 (图 2) 和 被用于免疫印迹在人类样品上 (图 2). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5
GeneTexHIF-1甲抗体(Genetex, GTX127309)被用于被用于免疫印迹在小鼠样品上 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(GT10211)
  • 免疫印迹; 人类; 图 4d
GeneTexHIF-1甲抗体(Genetex, 628480)被用于被用于免疫印迹在人类样品上 (图 4d). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s10e
GeneTexHIF-1甲抗体(GeneTex, GTX127309)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 s10e). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:800; 图 s1
GeneTexHIF-1甲抗体(GeneTex, GTX127309)被用于被用于免疫印迹在人类样品上浓度为1:800 (图 s1). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
GeneTexHIF-1甲抗体(GeneTex, GTX30647)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Exp Ther Med (2015) ncbi
小鼠 单克隆(GT10211)
  • 免疫细胞化学; 人类; 1:100; 图 5
GeneTexHIF-1甲抗体(GeneTex, GTX628480)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 5). Nat Cell Biol (2015) ncbi
Bethyl
兔 多克隆
  • 免疫印迹; 小鼠; 图 1b
BethylHIF-1甲抗体(Bethyl, A300-286A)被用于被用于免疫印迹在小鼠样品上 (图 1b). J Clin Invest (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000; 图 2
BethylHIF-1甲抗体(Bethyl Laboratories, A300-286A)被用于被用于免疫印迹在人类样品上浓度为1:5000 (图 2). Cell Adh Migr (2017) ncbi
兔 多克隆
  • proximity ligation assay; 小鼠; 1:1000; 图 2a
BethylHIF-1甲抗体(Bethyl, A300-286A)被用于被用于proximity ligation assay在小鼠样品上浓度为1:1000 (图 2a). Nature (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
BethylHIF-1甲抗体(Bethyl, A300-286A)被用于被用于免疫印迹在人类样品上 (图 1). Science (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 2
  • 免疫印迹; 人类; 1:1000; 图 2
  • 免疫印迹; 小鼠; 1:1000; 图 2
BethylHIF-1甲抗体(Bethyl, A300-286A)被用于被用于染色质免疫沉淀 在人类样品上 (图 2), 被用于免疫印迹在人类样品上浓度为1:1000 (图 2) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 2). Nat Cell Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
BethylHIF-1甲抗体(Bethyl Laboratories, A300-286A)被用于被用于免疫印迹在人类样品上 (图 1). Biochem Biophys Res Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
BethylHIF-1甲抗体(Bethyl Laboratories, A300-286A)被用于被用于免疫印迹在人类样品上. Cancer Res (2013) ncbi
Active Motif
小鼠 单克隆(ESEE122)
  • 免疫印迹; 人类; 1:1000; 图 4
Active MotifHIF-1甲抗体(Active Motif, 61275)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4). Oncotarget (2016) ncbi
武汉三鹰
兔 多克隆
  • 免疫印迹; 人类; 图 4a
武汉三鹰HIF-1甲抗体(Proteintech, 20960-1-AP)被用于被用于免疫印迹在人类样品上 (图 4a). Cell Death Dis (2018) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:800; 图 4
武汉三鹰HIF-1甲抗体(ProteinTech, 20960-1-AP)被用于被用于免疫印迹在大鼠样品上浓度为1:800 (图 4). Braz J Med Biol Res (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 4
武汉三鹰HIF-1甲抗体(ProteinTech, 20960-1-AP)被用于被用于免疫细胞化学在人类样品上 (图 4) 和 被用于免疫印迹在人类样品上 (图 4). Oncotarget (2015) ncbi
SICGEN
山羊 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
SICGENHIF-1甲抗体(Sicgen, AB0112-200)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 1). Sci Rep (2015) ncbi
Bioss
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1
  • 免疫印迹; 人类; 图 5
BiossHIF-1甲抗体(Biosynthesis Biotechnology, bs0737R)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图 1) 和 被用于免疫印迹在人类样品上 (图 5). Oncol Rep (2015) ncbi
赛信通(上海)生物试剂有限公司
兔 单克隆(D43B5)
  • 免疫组化-冰冻切片; 小鼠; 图 s3g
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, D43B5)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 s3g). Science (2017) ncbi
兔 单克隆(D43B5)
  • 免疫印迹; 人类; 1:2000; 图 7E
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell signaling, 3434)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 7E). elife (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3716)被用于被用于免疫印迹在人类样品上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3716)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 1). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3716)被用于被用于免疫印迹在人类样品上 (图 5a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 4
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signalling, 3716)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 4). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell signaling, 3716)被用于被用于免疫印迹在人类样品上 (图 2). Nature (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3716S)被用于被用于免疫印迹在人类样品上 (图 2). Int J Oncol (2016) ncbi
兔 单克隆(D43B5)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3434S)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Sci Transl Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signalling, 3716)被用于被用于免疫印迹在人类样品上 (图 3). Oncotarget (2016) ncbi
兔 单克隆(D43B5)
  • 免疫印迹; 人类; 1:5000; 图 s1
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technology, 3434)被用于被用于免疫印迹在人类样品上浓度为1:5000 (图 s1). Nat Commun (2016) ncbi
兔 单克隆(D43B5)
  • 免疫印迹; 人类; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3434)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4g). Nat Cell Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:200; 图 3
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3716)被用于被用于免疫印迹在人类样品上浓度为1:200 (图 3). J Cell Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3716)被用于被用于免疫印迹在人类样品上 (图 4a). PLoS ONE (2016) ncbi
兔 单克隆(D43B5)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3434)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4). J Cell Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell signaling, 3716S)被用于被用于免疫印迹在人类样品上 (图 1). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:1000; 图 1g
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3716S)被用于被用于免疫组化在人类样品上浓度为1:1000 (图 1g). PLoS ONE (2015) ncbi
兔 单克隆(D43B5)
  • 免疫印迹; 人类; 1:500; 图 3
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3434S)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 3). PLoS ONE (2015) ncbi
兔 单克隆(D43B5)
  • 免疫沉淀; 人类; 图 8
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell signaling, D43B5)被用于被用于免疫沉淀在人类样品上 (图 8). PLoS ONE (2015) ncbi
兔 单克隆(D43B5)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technology, 3434)被用于被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Tech, 3716)被用于被用于免疫印迹在人类样品上 (图 6). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technology, 3716)被用于被用于免疫印迹在人类样品上 (图 7). Autophagy (2015) ncbi
兔 单克隆(D43B5)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3434)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3). Nat Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technology, 3716S)被用于被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technology, 3716)被用于被用于免疫印迹在人类样品上. Int J Cancer (2015) ncbi
兔 单克隆(D43B5)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3434)被用于被用于免疫印迹在人类样品上 (图 2a). Genes Dev (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3716)被用于被用于免疫印迹在人类样品上 (图 1b). Oncotarget (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:200
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3716)被用于被用于免疫印迹在人类样品上浓度为1:200. Phlebology (2012) ncbi
西格玛奥德里奇
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 大鼠; 1:1000; 图 8
西格玛奥德里奇HIF-1甲抗体(Sigma, H6536)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 8). PLoS ONE (2016) ncbi
小鼠 单克隆(OZ12)
  • 免疫细胞化学; 人类; 1:100; 图 2e
西格玛奥德里奇HIF-1甲抗体(Sigma, H 6411)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 2e). Oncotarget (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 图 6
  • 免疫印迹; 人类; 1:800; 图 5
  • 免疫组化; 小鼠; 图 6
  • 免疫印迹; 小鼠; 1:800; 图 6
西格玛奥德里奇HIF-1甲抗体(Sigma, H6536)被用于被用于免疫组化在人类样品上 (图 6), 被用于免疫印迹在人类样品上浓度为1:800 (图 5), 被用于免疫组化在小鼠样品上 (图 6) 和 被用于免疫印迹在小鼠样品上浓度为1:800 (图 6). Nat Commun (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫沉淀; 小鼠
西格玛奥德里奇HIF-1甲抗体(Sigma Aldrich, 6536)被用于被用于免疫沉淀在小鼠样品上. Kidney Int (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 1:1000; 图 s12
西格玛奥德里奇HIF-1甲抗体(Sigma, H6536)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 s12). Antioxid Redox Signal (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 大鼠; 图 6
西格玛奥德里奇HIF-1甲抗体(Sigma-Aldrich, H6536)被用于被用于免疫印迹在大鼠样品上 (图 6). J Biophotonics (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠
西格玛奥德里奇HIF-1甲抗体(Sigma-Aldrich, HPA001275)被用于被用于免疫组化-冰冻切片在小鼠样品上. Neuroreport (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类
西格玛奥德里奇HIF-1甲抗体(Sigma-Aldrich, H6536)被用于被用于免疫印迹在人类样品上. Surgery (2014) ncbi
默克密理博中国
小鼠 单克隆(H1alpha67)
  • 免疫印迹; scFv; 图 7
默克密理博中国HIF-1甲抗体(EMD Millipore, MAB5382)被用于被用于免疫印迹在scFv样品上 (图 7). J Exp Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
默克密理博中国HIF-1甲抗体(Millipore, 07-1585)被用于被用于免疫印迹在人类样品上浓度为1:1000. Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
默克密理博中国HIF-1甲抗体(Millipore, 07-1585)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 染色质免疫沉淀 ; 大鼠
  • 免疫印迹; 大鼠; 1:1000; 图  5
默克密理博中国HIF-1甲抗体(Millipore, MAB5382)被用于被用于染色质免疫沉淀 在大鼠样品上 和 被用于免疫印迹在大鼠样品上浓度为1:1000 (图  5). J Neurosci (2015) ncbi
兔 单克隆(EP1215Y)
  • 免疫印迹; 人类; 图 1a
默克密理博中国HIF-1甲抗体(Merck Millipore, 04-1006)被用于被用于免疫印迹在人类样品上 (图 1a). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
默克密理博中国HIF-1甲抗体(Millipore, ABE 279)被用于被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2015) ncbi
兔 单克隆(EP1215Y)
  • 免疫细胞化学; 大鼠; 1:1000
默克密理博中国HIF-1甲抗体(Millipore Bioscience, 04-1006)被用于被用于免疫细胞化学在大鼠样品上浓度为1:1000. Acta Neuropathol Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
默克密理博中国HIF-1甲抗体(Merck Millipore, ABE279)被用于被用于免疫印迹在人类样品上浓度为1:1000. Liver Int (2015) ncbi
碧迪BD
小鼠 单克隆(54/HIF-1)
  • 染色质免疫沉淀 ; 人类
  • 免疫印迹; 人类; 1:1000
碧迪BDHIF-1甲抗体(BD, 610959)被用于被用于染色质免疫沉淀 在人类样品上 和 被用于免疫印迹在人类样品上浓度为1:1000. EMBO Mol Med (2018) ncbi
小鼠 单克隆(54/HIF-1)
  • 其他; 人类; 图 4c
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于其他在人类样品上 (图 4c). Cancer Cell (2018) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫细胞化学; 人类; 1:100; 图 5A
  • 免疫印迹; 人类; 1:1000; 图 1E
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 5A) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 1E). elife (2017) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 3b
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于免疫印迹在人类样品上 (图 3b). Nat Chem Biol (2017) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 5f
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样品上 (图 5f). Br J Cancer (2017) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 2f
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于免疫印迹在人类样品上 (图 2f). Oncotarget (2017) ncbi
小鼠 单克隆(29/HIF-1b)
  • 免疫印迹; 人类; 图 1e
碧迪BDHIF-1甲抗体(BD Biosciences, 611078)被用于被用于免疫印迹在人类样品上 (图 1e). Oncogene (2017) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 4b
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样品上 (图 4b). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 2a
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610959)被用于被用于免疫印迹在人类样品上 (图 2a). Open Biol (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样品上. PLoS Pathog (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 s2a
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于免疫印迹在人类样品上 (图 s2a). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 1c
碧迪BDHIF-1甲抗体(BD Bioscience, 610958)被用于被用于免疫印迹在人类样品上 (图 1c). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:2000; 图 1g
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 1g). Nat Med (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫组化; 人类; 1:400; 图 2a
  • 免疫印迹; 人类; 图 2b
碧迪BDHIF-1甲抗体(BD Transduction, 610958)被用于被用于免疫组化在人类样品上浓度为1:400 (图 2a) 和 被用于免疫印迹在人类样品上 (图 2b). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 5
碧迪BDHIF-1甲抗体(BD, 610959)被用于被用于免疫印迹在人类样品上 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4d
  • 免疫印迹; 人类; 图 2b
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 4d) 和 被用于免疫印迹在人类样品上 (图 2b). Mol Cancer Ther (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000; 图 s11a
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 54)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 s11a). Nat Commun (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000; 图 3a
碧迪BDHIF-1甲抗体(BD Bioscience, 610959)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3a). Cell Death Dis (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 3
碧迪BDHIF-1甲抗体(BD TL, 610958)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (表 3). Oncol Lett (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000; 图 7b
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610958)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 7b). Autophagy (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 2
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样品上 (图 2). Cell Rep (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 4e
碧迪BDHIF-1甲抗体(BD Bioscience, 610959)被用于被用于免疫印迹在人类样品上 (图 4e). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 3
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于免疫印迹在人类样品上 (图 3). Cancer Res (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 6a
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样品上 (图 6a). J Biol Chem (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 13
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样品上 (图 13). PLoS ONE (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 1
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样品上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 1c
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样品上 (图 1c). J Biol Chem (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 1
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样品上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 1
碧迪BDHIF-1甲抗体(BD Transduction, 610958)被用于被用于免疫印迹在人类样品上 (图 1). Mol Oncol (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 其他; 人类; 图 st1
碧迪BDHIF-1甲抗体(BD, 54)被用于被用于其他在人类样品上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 4
碧迪BDHIF-1甲抗体(BD, 610959)被用于被用于免疫印迹在人类样品上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 4c
碧迪BDHIF-1甲抗体(BD Transduction, 610959)被用于被用于免疫印迹在人类样品上 (图 4c). Mol Cancer (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图  s1
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于免疫印迹在人类样品上 (图  s1). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:500; 图 2b
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 54)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 2b). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 1
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于免疫印迹在人类样品上 (图 1). Cell Cycle (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫沉淀; 人类; 1:1000; 图 5
  • 免疫印迹; 人类; 1:1000; 图 4
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫沉淀在人类样品上浓度为1:1000 (图 5) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 4). J Cell Sci (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 s10b
碧迪BDHIF-1甲抗体(BD Biosciences, 54)被用于被用于免疫印迹在人类样品上 (图 s10b). J Clin Invest (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000; 图 2a
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610959)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 2a). Radiat Oncol (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹基因敲除验证; 人类; 1:2000; 图 7f
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹基因敲除验证在人类样品上浓度为1:2000 (图 7f). Nat Cell Biol (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 3
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样品上 (图 3). Cardiovasc Res (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 9a
碧迪BDHIF-1甲抗体(BD, 610958)被用于被用于免疫印迹在人类样品上 (图 9a). Oncotarget (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000; 图 9C
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 9C). Antioxid Redox Signal (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 3c
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610959)被用于被用于免疫印迹在人类样品上 (图 3c). Mol Cancer (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000; 图 9a
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 9a). J Biol Chem (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫细胞化学; 人类; 1:100; 图 1
  • 免疫印迹; 人类; 1:500; 图 1
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 1) 和 被用于免疫印迹在人类样品上浓度为1:500 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000
碧迪BDHIF-1甲抗体(BD Biosciences, 61095)被用于被用于免疫印迹在人类样品上浓度为1:1000. Nat Commun (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000; 图 3
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610958)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 3
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于免疫印迹在人类样品上 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:250; 图 6a
碧迪BDHIF-1甲抗体(Transduction Laboratories, 610959)被用于被用于免疫印迹在人类样品上浓度为1:250 (图 6a). PLoS ONE (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 4a
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样品上 (图 4a). Gut (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 2c
碧迪BDHIF-1甲抗体(BD Bioscience, 610958)被用于被用于免疫印迹在人类样品上 (图 2c). PLoS ONE (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610958)被用于被用于免疫印迹在人类样品上浓度为1:1000. Tumour Biol (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 1b
碧迪BDHIF-1甲抗体(BD Bioscience, 610959)被用于被用于免疫印迹在人类样品上 (图 1b). PLoS ONE (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫组化; 人类; 1:100; 图 1
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫组化在人类样品上浓度为1:100 (图 1). J Pathol (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 s3
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样品上 (图 s3). Oncotarget (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫沉淀; 人类; 图 1d
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于免疫沉淀在人类样品上 (图 1d). PLoS ONE (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 s4
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于免疫印迹在人类样品上 (图 s4). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 小鼠; 1:1000; 图 5,6
碧迪BDHIF-1甲抗体(BD Bioscience, 54/HIF-1)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 5,6). Nat Commun (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:500
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于免疫印迹在人类样品上浓度为1:500. Oncol Lett (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫沉淀; 人类; 图 5
  • 免疫印迹; 人类; 图 2
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫沉淀在人类样品上 (图 5) 和 被用于免疫印迹在人类样品上 (图 2). Cell Cycle (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610959)被用于被用于免疫印迹在人类样品上. Oncogene (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 小鼠; 图 6
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于免疫印迹在小鼠样品上 (图 6). Free Radic Biol Med (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图 2a
碧迪BDHIF-1甲抗体(BD, 610958)被用于被用于免疫印迹在人类样品上 (图 2a). Nat Commun (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610958)被用于被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000; 图 4
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4). Int J Mol Med (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Bioscience, 610958)被用于被用于免疫印迹在人类样品上. J Korean Med Sci (2014) ncbi
小鼠 单克隆(29/HIF-1b)
  • 免疫印迹; 小鼠; 图 3
碧迪BDHIF-1甲抗体(BD, 611078)被用于被用于免疫印迹在小鼠样品上 (图 3). Toxicol Sci (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 7
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 7). Cardiovasc Res (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 小鼠; 图 2d
  • 免疫印迹; 人类; 图 2a
碧迪BDHIF-1甲抗体(BD, 610958)被用于被用于免疫印迹在小鼠样品上 (图 2d) 和 被用于免疫印迹在人类样品上 (图 2a). Genes Dev (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 染色质免疫沉淀 ; 人类; 图 s1
  • 免疫印迹; 人类; 1:1000; 图 s2
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于染色质免疫沉淀 在人类样品上 (图 s1) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 s2). Nat Med (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫组化-石蜡切片; 人类
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Bioscience, 610958)被用于被用于免疫组化-石蜡切片在人类样品上 和 被用于免疫印迹在人类样品上. Oncotarget (2014) ncbi
小鼠 单克隆(29/HIF-1b)
  • 免疫印迹; 人类; 图 4a
碧迪BDHIF-1甲抗体(BD, 611079)被用于被用于免疫印迹在人类样品上 (图 4a). Genes Dev (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于被用于免疫印迹在人类样品上. Aging Cell (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Bioscience, 610959)被用于被用于免疫印迹在人类样品上. Mol Cancer Res (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:250; 图 1
碧迪BDHIF-1甲抗体(BD Biosciences, # 610958)被用于被用于免疫印迹在人类样品上浓度为1:250 (图 1). Cancer Res (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000
碧迪BDHIF-1甲抗体(BD, 610958)被用于被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610959)被用于被用于免疫印迹在人类样品上. Cell Cycle (2013) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Transduction, 610958)被用于被用于免疫印迹在人类样品上. Cancer Res (2013) ncbi
小鼠 单克隆(54/HIF-1)
  • ChIP-Seq; 人类
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于被用于ChIP-Seq在人类样品上 和 被用于免疫印迹在人类样品上. J Biol Chem (2012) ncbi
文章列表
  1. Aoki A, Nakashima A, Kusabiraki T, Ono Y, Yoshino O, Muto M, et al. Trophoblast-Specific Conditional Atg7 Knockout Mice Develop Gestational Hypertension. Am J Pathol. 2018;188:2474-2486 pubmed 出版商
  2. Greenhough A, Bagley C, Heesom K, Gurevich D, Gay D, Bond M, et al. Cancer cell adaptation to hypoxia involves a HIF-GPRC5A-YAP axis. EMBO Mol Med. 2018;10: pubmed 出版商
  3. Huang Y, Zhao C, Chen J, Su X. Deficiency of HIF-1? in myeloid cells protects E. coli or LPS-induced acute lung injury. QJM. 2018;: pubmed 出版商
  4. Kornberg M, Bhargava P, Kim P, Putluri V, Snowman A, Putluri N, et al. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science. 2018;360:449-453 pubmed 出版商
  5. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  6. Xiang J, Hu Q, Qin Y, Ji S, Xu W, Liu W, et al. TCF7L2 positively regulates aerobic glycolysis via the EGLN2/HIF-1α axis and indicates prognosis in pancreatic cancer. Cell Death Dis. 2018;9:321 pubmed 出版商
  7. Badowska Kozakiewicz A, Sobol M, Patera J. Expression of multidrug resistance protein P-glycoprotein in correlation with markers of hypoxia (HIF-1?, EPO, EPO-R) in invasive breast cancer with metastasis to lymph nodes. Arch Med Sci. 2017;13:1303-1314 pubmed 出版商
  8. Ho L, van Dijk M, Chye S, Messerschmidt D, Chng S, Ong S, et al. ELABELA deficiency promotes preeclampsia and cardiovascular malformations in mice. Science. 2017;357:707-713 pubmed 出版商
  9. Ye M, Fang Z, Gu H, Song R, Ye J, Li H, et al. Histone deacetylase 5 promotes the migration and invasion of hepatocellular carcinoma via increasing the transcription of hypoxia-inducible factor-1? under hypoxia condition. Tumour Biol. 2017;39:1010428317705034 pubmed 出版商
  10. Yasui T, Uezono N, Nakashima H, Noguchi H, Matsuda T, Noda Andoh T, et al. Hypoxia Epigenetically Confers Astrocytic Differentiation Potential on Human Pluripotent Cell-Derived Neural Precursor Cells. Stem Cell Reports. 2017;8:1743-1756 pubmed 出版商
  11. Li W, Chen C, Zhao X, Ye H, Zhao Y, Fu Z, et al. HIF-2? regulates non-canonical glutamine metabolism via activation of PI3K/mTORC2 pathway in human pancreatic ductal adenocarcinoma. J Cell Mol Med. 2017;21:2896-2908 pubmed 出版商
  12. Ciria M, García N, Ontoria Oviedo I, González King H, Carrero R, de la Pompa J, et al. Mesenchymal Stem Cell Migration and Proliferation Are Mediated by Hypoxia-Inducible Factor-1α Upstream of Notch and SUMO Pathways. Stem Cells Dev. 2017;26:973-985 pubmed 出版商
  13. Grillo A, SantaMaria A, Kafina M, Cioffi A, Huston N, Han M, et al. Restored iron transport by a small molecule promotes absorption and hemoglobinization in animals. Science. 2017;356:608-616 pubmed 出版商
  14. Quadrato G, Nguyen T, Macosko E, Sherwood J, Min Yang S, Berger D, et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 2017;545:48-53 pubmed 出版商
  15. Yuan X, Qi H, Li X, Wu F, Fang J, Bober E, et al. Disruption of spatiotemporal hypoxic signaling causes congenital heart disease in mice. J Clin Invest. 2017;127:2235-2248 pubmed 出版商
  16. Li S, Liu H, Tang S, Li X, Wang X. MicroRNA-150 regulates glycolysis by targeting von Hippel-Lindau in glioma cells. Am J Transl Res. 2017;9:1058-1066 pubmed
  17. Tian L, Goldstein A, Wang H, Ching Lo H, Sun Kim I, Welte T, et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature. 2017;544:250-254 pubmed 出版商
  18. Guo Q, He J, Shen F, Zhang W, Yang X, Zhang C, et al. TCN, an AKT inhibitor, exhibits potent antitumor activity and enhances radiosensitivity in hypoxic esophageal squamous cell carcinoma in vitro and in vivo. Oncol Lett. 2017;13:949-954 pubmed 出版商
  19. An Y, Sun K, Joffin N, Zhang F, Deng Y, Donze O, et al. Angiopoietin-2 in white adipose tissue improves metabolic homeostasis through enhanced angiogenesis. elife. 2017;6: pubmed 出版商
  20. Liao L, Song M, Li X, Tang L, Zhang T, Zhang L, et al. E3 Ubiquitin Ligase UBR5 Drives the Growth and Metastasis of Triple-Negative Breast Cancer. Cancer Res. 2017;77:2090-2101 pubmed 出版商
  21. Juhasz A, Markel S, Gaur S, Liu H, Lu J, Jiang G, et al. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. J Biol Chem. 2017;292:7866-7887 pubmed 出版商
  22. Miles A, Burr S, Grice G, Nathan J. The vacuolar-ATPase complex and assembly factors, TMEM199 and CCDC115, control HIF1? prolyl hydroxylation by regulating cellular iron levels. elife. 2017;6: pubmed 出版商
  23. Himmels P, Paredes I, Adler H, Karakatsani A, Luck R, Marti H, et al. Motor neurons control blood vessel patterning in the developing spinal cord. Nat Commun. 2017;8:14583 pubmed 出版商
  24. Xiao N, Yang L, Yang Y, Liu L, Li J, Liu B, et al. Ginsenoside Rg5 Inhibits Succinate-Associated Lipolysis in Adipose Tissue and Prevents Muscle Insulin Resistance. Front Pharmacol. 2017;8:43 pubmed 出版商
  25. Li J, Yakushi T, Parlati F, MacKinnon A, Pérez C, Ma Y, et al. Capzimin is a potent and specific inhibitor of proteasome isopeptidase Rpn11. Nat Chem Biol. 2017;13:486-493 pubmed 出版商
  26. Labrousse Arias D, Martínez Alonso E, Corral Escariz M, Bienes Martínez R, Berridy J, Serrano Oviedo L, et al. VHL promotes immune response against renal cell carcinoma via NF-κB-dependent regulation of VCAM-1. J Cell Biol. 2017;216:835-847 pubmed 出版商
  27. Mandl M, Zhang S, Ulrich M, Schmoeckel E, Mayr D, Vollmar A, et al. Inhibition of Cdk5 induces cell death of tumor-initiating cells. Br J Cancer. 2017;116:912-922 pubmed 出版商
  28. Williams P, Harder J, Foxworth N, Cochran K, Philip V, Porciatti V, et al. Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science. 2017;355:756-760 pubmed 出版商
  29. Duong E, Xiao J, Qi X, Nattel S. MicroRNA-135a regulates sodium-calcium exchanger gene expression and cardiac electrical activity. Heart Rhythm. 2017;14:739-748 pubmed 出版商
  30. Omatsu Kanbe M, Nozuchi N, Nishino Y, Mukaisho K, Sugihara H, Matsuura H. Identification of cardiac progenitors that survive in the ischemic human heart after ventricular myocyte death. Sci Rep. 2017;7:41318 pubmed 出版商
  31. Gardner P, Liyanage S, Cristante E, Sampson R, Dick A, Ali R, et al. Hypoxia inducible factors are dispensable for myeloid cell migration into the inflamed mouse eye. Sci Rep. 2017;7:40830 pubmed 出版商
  32. Bouchard G, Therriault H, Geha S, Bujold R, Saucier C, Paquette B. Radiation-induced lung metastasis development is MT1-MMP-dependent in a triple-negative breast cancer mouse model. Br J Cancer. 2017;116:479-488 pubmed 出版商
  33. Murakami A, Wang L, Kalhorn S, Schraml P, Rathmell W, Tan A, et al. Context-dependent role for chromatin remodeling component PBRM1/BAF180 in clear cell renal cell carcinoma. Oncogenesis. 2017;6:e287 pubmed 出版商
  34. Kozlova N, Wottawa M, Katschinski D, Kristiansen G, Kietzmann T. Hypoxia-inducible factor prolyl hydroxylase 2 (PHD2) is a direct regulator of epidermal growth factor receptor (EGFR) signaling in breast cancer. Oncotarget. 2017;8:9885-9898 pubmed 出版商
  35. Jablonska B, Gierdalski M, Chew L, Hawley T, Catron M, Lichauco A, et al. Sirt1 regulates glial progenitor proliferation and regeneration in white matter after neonatal brain injury. Nat Commun. 2016;7:13866 pubmed 出版商
  36. Yu Z, Mouillesseaux K, Kushner E, Bautch V. Tumor-Derived Factors and Reduced p53 Promote Endothelial Cell Centrosome Over-Duplication. PLoS ONE. 2016;11:e0168334 pubmed 出版商
  37. Oh E, Kim J, Kim J, Kim S, Lee J, Hong S, et al. NQO1 inhibits proteasome-mediated degradation of HIF-1?. Nat Commun. 2016;7:13593 pubmed 出版商
  38. Li F, Li Z, Jiang Z, Tian Y, Wang Z, Yi W, et al. Enhancement of early cardiac differentiation of dedifferentiated fat cells by dimethyloxalylglycine via notch signaling pathway. Am J Transl Res. 2016;8:4791-4801 pubmed
  39. Hunt R, Yalamanoglu A, Tumlin J, Schiller T, Baek J, Wu A, et al. A mechanistic investigation of thrombotic microangiopathy associated with IV abuse of Opana ER. Blood. 2017;129:896-905 pubmed 出版商
  40. Keshri G, Gupta A, Yadav A, Sharma S, Singh S. Photobiomodulation with Pulsed and Continuous Wave Near-Infrared Laser (810 nm, Al-Ga-As) Augments Dermal Wound Healing in Immunosuppressed Rats. PLoS ONE. 2016;11:e0166705 pubmed 出版商
  41. Lajko M, Cardona H, Taylor J, Shah R, Farrow K, Fawzi A. Hyperoxia-Induced Proliferative Retinopathy: Early Interruption of Retinal Vascular Development with Severe and Irreversible Neurovascular Disruption. PLoS ONE. 2016;11:e0166886 pubmed 出版商
  42. Thompson J, Nguyen Q, Singh M, Pavesic M, Nesterenko I, Nelson L, et al. Rho-associated kinase 1 inhibition is synthetically lethal with von Hippel-Lindau deficiency in clear cell renal cell carcinoma. Oncogene. 2017;36:1080-1089 pubmed 出版商
  43. Lima L, Gaiteiro C, Peixoto A, Soares J, Neves M, Santos L, et al. Reference Genes for Addressing Gene Expression of Bladder Cancer Cell Models under Hypoxia: A Step Towards Transcriptomic Studies. PLoS ONE. 2016;11:e0166120 pubmed 出版商
  44. Bizzarro V, Belvedere R, Migliaro V, Romano E, Parente L, Petrella A. Hypoxia regulates ANXA1 expression to support prostate cancer cell invasion and aggressiveness. Cell Adh Migr. 2017;11:247-260 pubmed 出版商
  45. Myllymäki M, Määttä J, Dimova E, Izzi V, Väisänen T, Myllyharju J, et al. Notch Downregulation and Extramedullary Erythrocytosis in Hypoxia-Inducible Factor Prolyl 4-Hydroxylase 2-Deficient Mice. Mol Cell Biol. 2017;37: pubmed 出版商
  46. Veyrat M, Durand S, Classe M, Glavan T, Oker N, Kapetanakis N, et al. Stimulation of the toll-like receptor 3 promotes metabolic reprogramming in head and neck carcinoma cells. Oncotarget. 2016;7:82580-82593 pubmed 出版商
  47. Fulcher L, MacArtney T, Bozatzi P, Hornberger A, Rojas Fernandez A, Sapkota G. An affinity-directed protein missile system for targeted proteolysis. Open Biol. 2016;6: pubmed
  48. Di K, Lomeli N, Wood S, Vanderwal C, Bota D. Mitochondrial Lon is over-expressed in high-grade gliomas, and mediates hypoxic adaptation: potential role of Lon as a therapeutic target in glioma. Oncotarget. 2016;7:77457-77467 pubmed 出版商
  49. Li S, Hu H, He Z, Liang D, Sun R, Lan K. Fine-Tuning of the Kaposi's Sarcoma-Associated Herpesvirus Life Cycle in Neighboring Cells through the RTA-JAG1-Notch Pathway. PLoS Pathog. 2016;12:e1005900 pubmed 出版商
  50. Pradhan S, Mahajan D, Kaur P, Pandey N, Sharma C, Srivastava T. Scriptaid overcomes hypoxia-induced cisplatin resistance in both wild-type and mutant p53 lung cancer cells. Oncotarget. 2016;7:71841-71855 pubmed 出版商
  51. Maina P, Shao P, Liu Q, Fazli L, Tyler S, Nasir M, et al. c-MYC drives histone demethylase PHF8 during neuroendocrine differentiation and in castration-resistant prostate cancer. Oncotarget. 2016;7:75585-75602 pubmed 出版商
  52. Choi Y, Maki T, Mandeville E, Koh S, Hayakawa K, Arai K, et al. Dual effects of carbon monoxide on pericytes and neurogenesis in traumatic brain injury. Nat Med. 2016;22:1335-1341 pubmed 出版商
  53. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  54. Chen W, Hill H, Christie A, Kim M, Holloman E, Pavía Jiménez A, et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature. 2016;539:112-117 pubmed 出版商
  55. Arvola O, Haapanen H, Herajärvi J, Anttila T, Puistola U, Karihtala P, et al. Remote Ischemic Preconditioning Reduces Cerebral Oxidative Stress Following Hypothermic Circulatory Arrest in a Porcine Model. Semin Thorac Cardiovasc Surg. 2016;28:92-102 pubmed 出版商
  56. Scott D, Rhee D, Duda D, Kelsall I, Olszewski J, Paulo J, et al. Two Distinct Types of E3 Ligases Work in Unison to Regulate Substrate Ubiquitylation. Cell. 2016;166:1198-1214.e24 pubmed 出版商
  57. Jou Y, Tsai Y, Lin C, Tung C, Shen C, Tsai H, et al. Foxp3 enhances HIF-1α target gene expression in human bladder cancer through decreasing its ubiquitin-proteasomal degradation. Oncotarget. 2016;7:65403-65417 pubmed 出版商
  58. Cao L, Zhang L, Zhao X, Zhang Y. A Hybrid Chalcone Combining the Trimethoxyphenyl and Isatinyl Groups Targets Multiple Oncogenic Proteins and Pathways in Hepatocellular Carcinoma Cells. PLoS ONE. 2016;11:e0161025 pubmed 出版商
  59. Guimarães T, Farias L, Santos E, De Carvalho Fraga C, Orsini L, de Freitas Teles L, et al. Metformin increases PDH and suppresses HIF-1? under hypoxic conditions and induces cell death in oral squamous cell carcinoma. Oncotarget. 2016;7:55057-55068 pubmed 出版商
  60. Masola V, Zaza G, Gambaro G, Onisto M, Bellin G, Vischini G, et al. Heparanase: A Potential New Factor Involved in the Renal Epithelial Mesenchymal Transition (EMT) Induced by Ischemia/Reperfusion (I/R) Injury. PLoS ONE. 2016;11:e0160074 pubmed 出版商
  61. Qin Y, Roszik J, Chattopadhyay C, Hashimoto Y, Liu C, Cooper Z, et al. Hypoxia-Driven Mechanism of Vemurafenib Resistance in Melanoma. Mol Cancer Ther. 2016;15:2442-2454 pubmed
  62. Takasaki C, Kobayashi M, Ishibashi H, Akashi T, Okubo K. Expression of hypoxia-inducible factor-1? affects tumor proliferation and antiapoptosis in surgically resected lung cancer. Mol Clin Oncol. 2016;5:295-300 pubmed
  63. Aarup A, Pedersen T, Junker N, Christoffersen C, Bartels E, Madsen M, et al. Hypoxia-Inducible Factor-1? Expression in Macrophages Promotes Development of Atherosclerosis. Arterioscler Thromb Vasc Biol. 2016;36:1782-90 pubmed 出版商
  64. Phelan J, Reen F, Dunphy N, O CONNOR R, O Gara F. Bile acids destabilise HIF-1? and promote anti-tumour phenotypes in cancer cell models. BMC Cancer. 2016;16:476 pubmed 出版商
  65. Bigot P, Colli L, Machiela M, Jessop L, Myers T, Carrouget J, et al. Functional characterization of the 12p12.1 renal cancer-susceptibility locus implicates BHLHE41. Nat Commun. 2016;7:12098 pubmed 出版商
  66. Li X, Chen Y, Wang L, Shang G, Zhang C, Zhao Z, et al. Quercetin alleviates pulmonary angiogenesis in a rat model of hepatopulmonary syndrome. Braz J Med Biol Res. 2016;49: pubmed 出版商
  67. Espinoza I, Sakiyama M, Ma T, Fair L, Zhou X, Hassan M, et al. Hypoxia on the Expression of Hepatoma Upregulated Protein in Prostate Cancer Cells. Front Oncol. 2016;6:144 pubmed 出版商
  68. Tsai S, Huang P, Hsu Y, Peng Y, Lee C, Wang J, et al. Inhibition of hypoxia inducible factor-1α attenuates abdominal aortic aneurysm progression through the down-regulation of matrix metalloproteinases. Sci Rep. 2016;6:28612 pubmed 出版商
  69. Mandl M, Lieberum M, Depping R. A HIF-1α-driven feed-forward loop augments HIF signalling in Hep3B cells by upregulation of ARNT. Cell Death Dis. 2016;7:e2284 pubmed 出版商
  70. Schokrpur S, Hu J, Moughon D, Liu P, Lin L, Hermann K, et al. CRISPR-Mediated VHL Knockout Generates an Improved Model for Metastatic Renal Cell Carcinoma. Sci Rep. 2016;6:29032 pubmed 出版商
  71. Li P, Deng J, Wei X, Jayasuriya C, Zhou J, Chen Q, et al. Blockade of hypoxia-induced CXCR4 with AMD3100 inhibits production of OA-associated catabolic mediators IL-1? and MMP-13. Mol Med Rep. 2016;14:1475-82 pubmed 出版商
  72. Kudová J, Prochazkova J, Vašíček O, Perecko T, Sedláčková M, Pesl M, et al. HIF-1alpha Deficiency Attenuates the Cardiomyogenesis of Mouse Embryonic Stem Cells. PLoS ONE. 2016;11:e0158358 pubmed 出版商
  73. Dai L, Cui X, Zhang X, Cheng L, Liu Y, Yang Y, et al. SARI inhibits angiogenesis and tumour growth of human colon cancer through directly targeting ceruloplasmin. Nat Commun. 2016;7:11996 pubmed 出版商
  74. Colombo J, Maciel J, Ferreira L, da Silva R, Zuccari D. Effects of melatonin on HIF-1? and VEGF expression and on the invasive properties of hepatocarcinoma cells. Oncol Lett. 2016;12:231-237 pubmed
  75. Frohwitter G, Buerger H, van Diest P, Korsching E, Kleinheinz J, Fillies T. Cytokeratin and protein expression patterns in squamous cell carcinoma of the oral cavity provide evidence for two distinct pathogenetic pathways. Oncol Lett. 2016;12:107-113 pubmed
  76. Zhao W, Li A, Feng X, Hou T, Liu K, Liu B, et al. Metformin and resveratrol ameliorate muscle insulin resistance through preventing lipolysis and inflammation in hypoxic adipose tissue. Cell Signal. 2016;28:1401-11 pubmed 出版商
  77. Higashimura Y, Kitakaze T, Harada N, Inui H, Nakano Y, Yamaji R. pVHL-mediated degradation of HIF-2? regulates estrogen receptor ? expression in normoxic breast cancer cells. FEBS Lett. 2016;590:2690-9 pubmed 出版商
  78. Choi H, Merceron C, Mangiavini L, Seifert E, Schipani E, Shapiro I, et al. Hypoxia promotes noncanonical autophagy in nucleus pulposus cells independent of MTOR and HIF1A signaling. Autophagy. 2016;12:1631-46 pubmed 出版商
  79. Maugeri G, D Amico A, Reitano R, Magro G, Cavallaro S, Salomone S, et al. PACAP and VIP Inhibit the Invasiveness of Glioblastoma Cells Exposed to Hypoxia through the Regulation of HIFs and EGFR Expression. Front Pharmacol. 2016;7:139 pubmed 出版商
  80. Hoefflin R, Lahrmann B, Warsow G, Hübschmann D, Spath C, Walter B, et al. Spatial niche formation but not malignant progression is a driving force for intratumoural heterogeneity. Nat Commun. 2016;7:ncomms11845 pubmed 出版商
  81. Lo Dico A, Costa V, Martelli C, Diceglie C, Rajata F, Rizzo A, et al. MiR675-5p Acts on HIF-1? to Sustain Hypoxic Responses: A New Therapeutic Strategy for Glioma. Theranostics. 2016;6:1105-18 pubmed 出版商
  82. Kwak J, Lee N, Lee H, Hong I, Nam J. HIF2?/EFEMP1 cascade mediates hypoxic effects on breast cancer stem cell hierarchy. Oncotarget. 2016;7:43518-43533 pubmed 出版商
  83. Mineo M, Ricklefs F, Rooj A, Lyons S, Ivanov P, Ansari K, et al. The Long Non-coding RNA HIF1A-AS2 Facilitates the Maintenance of Mesenchymal Glioblastoma Stem-like Cells in Hypoxic Niches. Cell Rep. 2016;15:2500-9 pubmed 出版商
  84. Salvi V, Vermi W, Gianello V, Lonardi S, Gagliostro V, Naldini A, et al. Dendritic cell-derived VEGF-A plays a role in inflammatory angiogenesis of human secondary lymphoid organs and is driven by the coordinated activation of multiple transcription factors. Oncotarget. 2016;7:39256-39269 pubmed 出版商
  85. Ivanina A, Nesmelova I, Leamy L, Sokolov E, Sokolova I. Intermittent hypoxia leads to functional reorganization of mitochondria and affects cellular bioenergetics in marine molluscs. J Exp Biol. 2016;219:1659-74 pubmed 出版商
  86. Spitzbarth I, Lempp C, Kegler K, Ulrich R, Kalkuhl A, Deschl U, et al. Immunohistochemical and transcriptome analyses indicate complex breakdown of axonal transport mechanisms in canine distemper leukoencephalitis. Brain Behav. 2016;6:e00472 pubmed 出版商
  87. Piton N, Wason J, Colasse É, Cornic M, Lemoine F, Le Pessot F, et al. Endoplasmic reticulum stress, unfolded protein response and development of colon adenocarcinoma. Virchows Arch. 2016;469:145-54 pubmed 出版商
  88. Lim S, Liu H, Madeira da Silva L, Arora R, Liu Z, Phillips J, et al. Immunoregulatory Protein B7-H3 Reprograms Glucose Metabolism in Cancer Cells by ROS-Mediated Stabilization of HIF1?. Cancer Res. 2016;76:2231-42 pubmed 出版商
  89. Semba H, Takeda N, Isagawa T, Sugiura Y, Honda K, Wake M, et al. HIF-1?-PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity. Nat Commun. 2016;7:11635 pubmed 出版商
  90. Cherepanova O, Gomez D, Shankman L, Swiatlowska P, Williams J, Sarmento O, et al. Activation of the pluripotency factor OCT4 in smooth muscle cells is atheroprotective. Nat Med. 2016;22:657-65 pubmed 出版商
  91. Ma X, Guo P, Qiu Y, Mu K, Zhu L, Zhao W, et al. Loss of AIM2 expression promotes hepatocarcinoma progression through activation of mTOR-S6K1 pathway. Oncotarget. 2016;7:36185-36197 pubmed 出版商
  92. Wynn M, Yates J, Evans C, Van Wassenhove L, Wu Z, Bridges S, et al. RhoC GTPase Is a Potent Regulator of Glutamine Metabolism and N-Acetylaspartate Production in Inflammatory Breast Cancer Cells. J Biol Chem. 2016;291:13715-29 pubmed 出版商
  93. Ono M, Yamada K, Bensaddek D, Afzal V, Biddlestone J, Ortmann B, et al. Enhanced snoMEN Vectors Facilitate Establishment of GFP-HIF-1? Protein Replacement Human Cell Lines. PLoS ONE. 2016;11:e0154759 pubmed 出版商
  94. Guinot A, Lehmann H, Wild P, Frew I. Combined deletion of Vhl, Trp53 and Kif3a causes cystic and neoplastic renal lesions. J Pathol. 2016;239:365-73 pubmed 出版商
  95. McDonnell F, Irnaten M, Clark A, O Brien C, Wallace D. Hypoxia-Induced Changes in DNA Methylation Alter RASAL1 and TGF?1 Expression in Human Trabecular Meshwork Cells. PLoS ONE. 2016;11:e0153354 pubmed 出版商
  96. Preuße C, Allenbach Y, Hoffmann O, Goebel H, Pehl D, Radke J, et al. Differential roles of hypoxia and innate immunity in juvenile and adult dermatomyositis. Acta Neuropathol Commun. 2016;4:45 pubmed 出版商
  97. Okawa H, Kayashima H, Sasaki J, Miura J, Kamano Y, Kosaka Y, et al. Scaffold-Free Fabrication of Osteoinductive Cellular Constructs Using Mouse Gingiva-Derived Induced Pluripotent Stem Cells. Stem Cells Int. 2016;2016:6240794 pubmed 出版商
  98. Bourseau Guilmain E, Menard J, Lindqvist E, Indira Chandran V, Christianson H, Cerezo Magaña M, et al. Hypoxia regulates global membrane protein endocytosis through caveolin-1 in cancer cells. Nat Commun. 2016;7:11371 pubmed 出版商
  99. Kobayashi H, Liu Q, Binns T, Urrutia A, Davidoff O, Kapitsinou P, et al. Distinct subpopulations of FOXD1 stroma-derived cells regulate renal erythropoietin. J Clin Invest. 2016;126:1926-38 pubmed 出版商
  100. Jiang L, Shestov A, Swain P, Yang C, Parker S, Wang Q, et al. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature. 2016;532:255-8 pubmed 出版商
  101. Suyama K, Silagi E, Choi H, Sakabe K, Mochida J, Shapiro I, et al. Circadian factors BMAL1 and ROR? control HIF-1? transcriptional activity in nucleus pulposus cells: implications in maintenance of intervertebral disc health. Oncotarget. 2016;7:23056-71 pubmed 出版商
  102. Li C, Jung S, Yang Y, Kim K, Lim J, Cheon C, et al. Inhibitory role of TRIP-Br1 oncoprotein in hypoxia-induced apoptosis in breast cancer cell lines. Int J Oncol. 2016;48:2639-46 pubmed 出版商
  103. Chou C, Fan C, Lin P, Liao P, Tung J, Hsieh C, et al. Sciellin mediates mesenchymal-to-epithelial transition in colorectal cancer hepatic metastasis. Oncotarget. 2016;7:25742-54 pubmed 出版商
  104. Xu X, Tan X, Hulshoff M, Wilhelmi T, Zeisberg M, Zeisberg E. Hypoxia-induced endothelial-mesenchymal transition is associated with RASAL1 promoter hypermethylation in human coronary endothelial cells. FEBS Lett. 2016;590:1222-33 pubmed 出版商
  105. Brooks D, Schwab L, Krutilina R, Parke D, Sethuraman A, Hoogewijs D, et al. ITGA6 is directly regulated by hypoxia-inducible factors and enriches for cancer stem cell activity and invasion in metastatic breast cancer models. Mol Cancer. 2016;15:26 pubmed 出版商
  106. Park S, Kim J, Kim N, Yang K, Shim J, Heo K. Estradiol, TGF-?1 and hypoxia promote breast cancer stemness and EMT-mediated breast cancer migration. Oncol Lett. 2016;11:1895-1902 pubmed
  107. Ananthula S, Sinha A, El Gassim M, Batth S, Marshall G, Gardner L, et al. Geminin overexpression-dependent recruitment and crosstalk with mesenchymal stem cells enhance aggressiveness in triple negative breast cancers. Oncotarget. 2016;7:20869-89 pubmed 出版商
  108. Shukla P, Chaudhry K, Mir H, Gangwar R, Yadav N, Manda B, et al. Chronic ethanol feeding promotes azoxymethane and dextran sulfate sodium-induced colonic tumorigenesis potentially by enhancing mucosal inflammation. BMC Cancer. 2016;16:189 pubmed 出版商
  109. Djamali A, Wilson N, Sadowski E, Zha W, Niles D, Hafez O, et al. Nox2 and Cyclosporine-Induced Renal Hypoxia. Transplantation. 2016;100:1198-210 pubmed 出版商
  110. Ruf M, Moch H, Schraml P. PD-L1 expression is regulated by hypoxia inducible factor in clear cell renal cell carcinoma. Int J Cancer. 2016;139:396-403 pubmed 出版商
  111. Karuppagounder S, Alim I, Khim S, Bourassa M, Sleiman S, John R, et al. Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models. Sci Transl Med. 2016;8:328ra29 pubmed 出版商
  112. Zhou F, Dai A, Jiang Y, Tan X, Zhang X. SENP‑1 enhances hypoxia‑induced proliferation of rat pulmonary artery smooth muscle cells by regulating hypoxia‑inducible factor‑1α. Mol Med Rep. 2016;13:3482-90 pubmed 出版商
  113. Tepper S, Jeschke J, Böttcher K, Schmidt A, Davari K, Müller P, et al. PARP activation promotes nuclear AID accumulation in lymphoma cells. Oncotarget. 2016;7:13197-208 pubmed 出版商
  114. Jain I, Zazzeron L, Goli R, Alexa K, Schatzman Bone S, Dhillon H, et al. Hypoxia as a therapy for mitochondrial disease. Science. 2016;352:54-61 pubmed 出版商
  115. Wood L, Cox N, Phelps C, Lai S, Poddar A, Talbot C, et al. Thyroid Transcription Factor 1 Reprograms Angiogenic Activities of Secretome. Sci Rep. 2016;6:19857 pubmed 出版商
  116. Edalat L, Stegen B, Klumpp L, Haehl E, Schilbach K, Lukowski R, et al. BK K+ channel blockade inhibits radiation-induced migration/brain infiltration of glioblastoma cells. Oncotarget. 2016;7:14259-78 pubmed 出版商
  117. Chowdhury H, Velebit J, Radić N, Frančič V, Kreft M, Zorec R. Hypoxia Alters the Expression of Dipeptidyl Peptidase 4 and Induces Developmental Remodeling of Human Preadipocytes. J Diabetes Res. 2016;2016:7481470 pubmed 出版商
  118. Adighibe O, Leek R, Fernandez Mercado M, Hu J, Snell C, Gatter K, et al. Why some tumours trigger neovascularisation and others don't: the story thus far. Chin J Cancer. 2016;35:18 pubmed 出版商
  119. Demetriades C, Plescher M, Teleman A. Lysosomal recruitment of TSC2 is a universal response to cellular stress. Nat Commun. 2016;7:10662 pubmed 出版商
  120. Mori H, Yao Y, Learman B, Kurozumi K, Ishida J, Ramakrishnan S, et al. Induction of WNT11 by hypoxia and hypoxia-inducible factor-1α regulates cell proliferation, migration and invasion. Sci Rep. 2016;6:21520 pubmed 出版商
  121. Ding M, Bruick R, Yu Y. Secreted IGFBP5 mediates mTORC1-dependent feedback inhibition of IGF-1 signalling. Nat Cell Biol. 2016;18:319-27 pubmed 出版商
  122. Wang P, Li L, Zhang Z, Kan Q, Chen S, Gao F. Time-dependent homeostasis between glucose uptake and consumption in astrocytes exposed to CoClâ‚‚ treatment. Mol Med Rep. 2016;13:2909-17 pubmed 出版商
  123. Heir P, Srikumar T, Bikopoulos G, Bunda S, Poon B, Lee J, et al. Oxygen-dependent Regulation of Erythropoietin Receptor Turnover and Signaling. J Biol Chem. 2016;291:7357-72 pubmed 出版商
  124. Luo W, Chen I, Chen Y, Alkam D, Wang Y, Semenza G. PRDX2 and PRDX4 are negative regulators of hypoxia-inducible factors under conditions of prolonged hypoxia. Oncotarget. 2016;7:6379-97 pubmed 出版商
  125. Regan Anderson T, Ma S, Raj G, Cidlowski J, Helle T, Knutson T, et al. Breast Tumor Kinase (Brk/PTK6) Is Induced by HIF, Glucocorticoid Receptor, and PELP1-Mediated Stress Signaling in Triple-Negative Breast Cancer. Cancer Res. 2016;76:1653-63 pubmed 出版商
  126. Hasvold G, Lund Andersen C, Lando M, Patzke S, Hauge S, Suo Z, et al. Hypoxia-induced alterations of G2 checkpoint regulators. Mol Oncol. 2016;10:764-73 pubmed 出版商
  127. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  128. Dai X, Zhuang L, Wang D, Zhou T, Chang L, Gai R, et al. Nuclear translocation and activation of YAP by hypoxia contributes to the chemoresistance of SN38 in hepatocellular carcinoma cells. Oncotarget. 2016;7:6933-47 pubmed 出版商
  129. Nalwoga H, Ahmed L, Arnes J, Wabinga H, Akslen L. Strong Expression of Hypoxia-Inducible Factor-1α (HIF-1α) Is Associated with Axl Expression and Features of Aggressive Tumors in African Breast Cancer. PLoS ONE. 2016;11:e0146823 pubmed 出版商
  130. Kim Y, Nam H, Lee J, Park D, Kim C, Yu Y, et al. Methylation-dependent regulation of HIF-1α stability restricts retinal and tumour angiogenesis. Nat Commun. 2016;7:10347 pubmed 出版商
  131. Lin A, Li C, Xing Z, Hu Q, Liang K, Han L, et al. The LINK-A lncRNA activates normoxic HIF1? signalling in triple-negative breast cancer. Nat Cell Biol. 2016;18:213-24 pubmed 出版商
  132. Chen K, Zeng J, Xiao H, Huang C, Hu J, Yao W, et al. Regulation of glucose metabolism by p62/SQSTM1 through HIF1α. J Cell Sci. 2016;129:817-30 pubmed 出版商
  133. Maugeri G, D Amico A, Reitano R, Saccone S, Federico C, Cavallaro S, et al. Parkin modulates expression of HIF-1α and HIF-3α during hypoxia in gliobastoma-derived cell lines in vitro. Cell Tissue Res. 2016;364:465-74 pubmed 出版商
  134. Azoitei N, Becher A, Steinestel K, Rouhi A, Diepold K, Genze F, et al. PKM2 promotes tumor angiogenesis by regulating HIF-1α through NF-κB activation. Mol Cancer. 2016;15:3 pubmed 出版商
  135. Lee S, Frattini V, Bansal M, Castano A, Sherman D, Hutchinson K, et al. An ID2-dependent mechanism for VHL inactivation in cancer. Nature. 2016;529:172-7 pubmed 出版商
  136. Lv H, Zhang Z, Wu X, Wang Y, Li C, Gong W, et al. Preclinical Evaluation of Liposomal C8 Ceramide as a Potent anti-Hepatocellular Carcinoma Agent. PLoS ONE. 2016;11:e0145195 pubmed 出版商
  137. Xu Y, Wu D, Zheng W, Yu F, Yang F, Yao Y, et al. Proteome profiling of cadmium-induced apoptosis by antibody array analyses in human bronchial epithelial cells. Oncotarget. 2016;7:6146-58 pubmed 出版商
  138. Sharpe M, Baskin D. Monoamine oxidase B levels are highly expressed in human gliomas and are correlated with the expression of HiF-1α and with transcription factors Sp1 and Sp3. Oncotarget. 2016;7:3379-93 pubmed 出版商
  139. de Bruin A, A Cornelissen P, Kirchmaier B, Mokry M, Iich E, Nirmala E, et al. Genome-wide analysis reveals NRP1 as a direct HIF1?-E2F7 target in the regulation of motorneuron guidance in vivo. Nucleic Acids Res. 2016;44:3549-66 pubmed 出版商
  140. Yamano S, Gi M, Tago Y, Doi K, Okada S, Hirayama Y, et al. Role of deltaNp63(pos)CD44v(pos) cells in the development of N-nitroso-tris-chloroethylurea-induced peripheral-type mouse lung squamous cell carcinomas. Cancer Sci. 2016;107:123-32 pubmed 出版商
  141. Weijer R, Broekgaarden M, Krekorian M, Alles L, van Wijk A, Mackaaij C, et al. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy. Oncotarget. 2016;7:3341-56 pubmed 出版商
  142. Adam M, Matt S, Christian S, Hess Stumpp H, Haegebarth A, Hofmann T, et al. SIAH ubiquitin ligases regulate breast cancer cell migration and invasion independent of the oxygen status. Cell Cycle. 2015;14:3734-47 pubmed 出版商
  143. Ortmann B, Bensaddek D, Carvalhal S, Moser S, Mudie S, Griffis E, et al. CDK-dependent phosphorylation of PHD1 on serine 130 alters its substrate preference in cells. J Cell Sci. 2016;129:191-205 pubmed 出版商
  144. Bowser J, Blackburn M, Shipley G, Molina J, Dunner K, Broaddus R. Loss of CD73-mediated actin polymerization promotes endometrial tumor progression. J Clin Invest. 2016;126:220-38 pubmed 出版商
  145. Zheng X, Xu J, Chen X, Li W, Wang T. Attenuation of oxygen fluctuation-induced endoplasmic reticulum stress in human lens epithelial cells. Exp Ther Med. 2015;10:1883-1887 pubmed
  146. de Jong O, van Balkom B, Gremmels H, Verhaar M. Exosomes from hypoxic endothelial cells have increased collagen crosslinking activity through up-regulation of lysyl oxidase-like 2. J Cell Mol Med. 2016;20:342-50 pubmed 出版商
  147. Murata Y, Uehara Y, Hosoi Y. Activation of mTORC1 under nutrient starvation conditions increases cellular radiosensitivity in human liver cancer cell lines, HepG2 and HuH6. Biochem Biophys Res Commun. 2015;468:684-90 pubmed 出版商
  148. Mandl M, Lieberum M, Dunst J, Depping R. The expression level of the transcription factor Aryl hydrocarbon receptor nuclear translocator (ARNT) determines cellular survival after radiation treatment. Radiat Oncol. 2015;10:229 pubmed 出版商
  149. Sperber H, Mathieu J, Wang Y, Ferreccio A, Hesson J, Xu Z, et al. The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat Cell Biol. 2015;17:1523-35 pubmed 出版商
  150. Aquino Gálvez A, González Ávila G, Delgado Tello J, Castillejos López M, Mendoza Milla C, Zúñiga J, et al. Effects of 2-methoxyestradiol on apoptosis and HIF-1α and HIF-2α expression in lung cancer cells under normoxia and hypoxia. Oncol Rep. 2016;35:577-83 pubmed 出版商
  151. David V, Martin A, Isakova T, Spaulding C, Qi L, Ramirez V, et al. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int. 2016;89:135-46 pubmed 出版商
  152. Labrousse Arias D, Castillo González R, Rogers N, Torres Capelli M, Barreira B, Aragonés J, et al. HIF-2α-mediated induction of pulmonary thrombospondin-1 contributes to hypoxia-driven vascular remodelling and vasoconstriction. Cardiovasc Res. 2016;109:115-30 pubmed 出版商
  153. Shen G, Ning N, Zhao X, Liu X, Wang G, Wang T, et al. Adipose differentiation-related protein is not involved in hypoxia inducible factor-1-induced lipid accumulation under hypoxia. Mol Med Rep. 2015;12:8055-61 pubmed 出版商
  154. Qin W, Li C, Zheng W, Guo Q, Zhang Y, Kang M, et al. Inhibition of autophagy promotes metastasis and glycolysis by inducing ROS in gastric cancer cells. Oncotarget. 2015;6:39839-54 pubmed 出版商
  155. Zhang S, Schneider L, Vick B, Grunert M, Jeremias I, Menche D, et al. Anti-leukemic effects of the V-ATPase inhibitor Archazolid A. Oncotarget. 2015;6:43508-28 pubmed 出版商
  156. Chen P, Weng J, Hsu P, Shew J, Huang Y, Lee W. NPGPx modulates CPEB2-controlled HIF-1α RNA translation in response to oxidative stress. Nucleic Acids Res. 2015;43:9393-404 pubmed 出版商
  157. Xu Z, Chen X, Jin X, Meng X, Zhou X, Fan F, et al. SILAC-based proteomic analysis reveals that salidroside antagonizes cobalt chloride-induced hypoxic effects by restoring the tricarboxylic acid cycle in cardiomyocytes. J Proteomics. 2016;130:211-20 pubmed 出版商
  158. Konzack A, Jakupovic M, Kubaichuk K, Görlach A, Dombrowski F, Miinalainen I, et al. Mitochondrial Dysfunction Due to Lack of Manganese Superoxide Dismutase Promotes Hepatocarcinogenesis. Antioxid Redox Signal. 2015;23:1059-75 pubmed 出版商
  159. Saini Y, Proper S, Dornbos P, Greenwood K, Kopec A, Lynn S, et al. Loss of Hif-2α Rescues the Hif-1α Deletion Phenotype of Neonatal Respiratory Distress In Mice. PLoS ONE. 2015;10:e0139270 pubmed 出版商
  160. Singh S, Chand H, Gundavarapu S, Saeed A, Langley R, Tesfaigzi Y, et al. HIF-1α Plays a Critical Role in the Gestational Sidestream Smoke-Induced Bronchopulmonary Dysplasia in Mice. PLoS ONE. 2015;10:e0137757 pubmed 出版商
  161. Rodríguez C, Reidel S, Bal de Kier Joffé E, Jasnis M, Fiszman G. Autophagy Protects from Trastuzumab-Induced Cytotoxicity in HER2 Overexpressing Breast Tumor Spheroids. PLoS ONE. 2015;10:e0137920 pubmed 出版商
  162. Jung S, Li C, Duan J, Lee S, Kim K, Park Y, et al. TRIP-Br1 oncoprotein inhibits autophagy, apoptosis, and necroptosis under nutrient/serum-deprived condition. Oncotarget. 2015;6:29060-75 pubmed 出版商
  163. Sharma B, Kolhe R, Black S, Keller J, Mivechi N, Satyanarayana A. Inhibitor of differentiation 1 transcription factor promotes metabolic reprogramming in hepatocellular carcinoma cells. FASEB J. 2016;30:262-75 pubmed 出版商
  164. Yang Y, Li M, Yan Y, Zhang J, Sun K, Qu J, et al. Expression of RAP1B is associated with poor prognosis and promotes an aggressive phenotype in gastric cancer. Oncol Rep. 2015;34:2385-94 pubmed 出版商
  165. Ochi F, Shiozaki A, Ichikawa D, Fujiwara H, Nakashima S, Takemoto K, et al. Carbonic Anhydrase XII as an Independent Prognostic Factor in Advanced Esophageal Squamous Cell Carcinoma. J Cancer. 2015;6:922-9 pubmed 出版商
  166. Wang T, Cheng C, Yang W, Chen W, Chang P. Characterization of highly proliferative secondary tumor clusters along host blood vessels in malignant glioma. Mol Med Rep. 2015;12:6435-44 pubmed 出版商
  167. Huang J, Liu L, Feng M, An S, Zhou M, Li Z, et al. Effect of CoClâ‚‚ on fracture repair in a rat model of bone fracture. Mol Med Rep. 2015;12:5951-6 pubmed 出版商
  168. Högel H, Miikkulainen P, Bino L, Jaakkola P. Hypoxia inducible prolyl hydroxylase PHD3 maintains carcinoma cell growth by decreasing the stability of p27. Mol Cancer. 2015;14:143 pubmed 出版商
  169. Badal S, Her Y, Maher L. Nonantibiotic Effects of Fluoroquinolones in Mammalian Cells. J Biol Chem. 2015;290:22287-97 pubmed 出版商
  170. Morais Santos F, Granja S, Miranda Gonçalves V, Moreira A, Queirós S, Vilaça J, et al. Targeting lactate transport suppresses in vivo breast tumour growth. Oncotarget. 2015;6:19177-89 pubmed
  171. Chen D, Dang B, Huang J, Chen M, Wu D, Xu M, et al. MiR-373 drives the epithelial-to-mesenchymal transition and metastasis via the miR-373-TXNIP-HIF1α-TWIST signaling axis in breast cancer. Oncotarget. 2015;6:32701-12 pubmed 出版商
  172. Lin A, Abbas S, Kim S, Ortega M, Bouamar H, Escobedo Y, et al. D2HGDH regulates alpha-ketoglutarate levels and dioxygenase function by modulating IDH2. Nat Commun. 2015;6:7768 pubmed 出版商
  173. Wang I, Sun K, Tsai T, Chen C, Chang S, Yu T, et al. MiR-20a-5p mediates hypoxia-induced autophagy by targeting ATG16L1 in ischemic kidney injury. Life Sci. 2015;136:133-41 pubmed 出版商
  174. Kontro H, Cannino G, Rustin P, Dufour E, Kainulainen H. DAPIT Over-Expression Modulates Glucose Metabolism and Cell Behaviour in HEK293T Cells. PLoS ONE. 2015;10:e0131990 pubmed 出版商
  175. Choi E, Byeon S, Kim S, Lee H, Kwon H, Ahn H, et al. Implication of Leptin-Signaling Proteins and Epstein-Barr Virus in Gastric Carcinomas. PLoS ONE. 2015;10:e0130839 pubmed 出版商
  176. Chan M, Atasoylu O, Hodson E, Tumber A, Leung I, Chowdhury R, et al. Potent and Selective Triazole-Based Inhibitors of the Hypoxia-Inducible Factor Prolyl-Hydroxylases with Activity in the Murine Brain. PLoS ONE. 2015;10:e0132004 pubmed 出版商
  177. Yang X, Zheng K, Lin K, Zheng G, Zou H, Wang J, et al. Energy Metabolism Disorder as a Contributing Factor of Rheumatoid Arthritis: A Comparative Proteomic and Metabolomic Study. PLoS ONE. 2015;10:e0132695 pubmed 出版商
  178. Jing L, Li S, Li Q. Akt/hypoxia-inducible factor-1α signaling deficiency compromises skin wound healing in a type 1 diabetes mouse model. Exp Ther Med. 2015;9:2141-2146 pubmed
  179. Yang L, Li Y, Bhattacharya A, Zhang Y. Inhibition of ERBB2-overexpressing Tumors by Recombinant Human Prolidase and Its Enzymatically Inactive Mutant. EBioMedicine. 2015;2:396-405 pubmed
  180. Li X, Yang X, Biskup E, Zhou J, Li H, Wu Y, et al. Co-expression of CXCL8 and HIF-1α is associated with metastasis and poor prognosis in hepatocellular carcinoma. Oncotarget. 2015;6:22880-9 pubmed
  181. Xie L, Pi X, Townley Tilson W, Li N, Wehrens X, Entman M, et al. PHD2/3-dependent hydroxylation tunes cardiac response to β-adrenergic stress via phospholamban. J Clin Invest. 2015;125:2759-71 pubmed 出版商
  182. Park I, Chung P, Ahn J. Enhancement of Ischemic Wound Healing by Spheroid Grafting of Human Adipose-Derived Stem Cells Treated with Low-Level Light Irradiation. PLoS ONE. 2015;10:e0122776 pubmed 出版商
  183. Yorulmaz H, Ozkok E, Erguven M, Ates G, Aydın I, Tamer S. Effect of simvastatin on mitochondrial enzyme activities, ghrelin, hypoxia-inducible factor 1α in hepatic tissue during early phase of sepsis. Int J Clin Exp Med. 2015;8:3640-50 pubmed
  184. Cimmino F, Pezone L, Avitabile M, Acierno G, Andolfo I, Capasso M, et al. Inhibition of hypoxia inducible factors combined with all-trans retinoic acid treatment enhances glial transdifferentiation of neuroblastoma cells. Sci Rep. 2015;5:11158 pubmed 出版商
  185. Sotoodehnejadnematalahi F, Staples K, Chrysanthou E, Pearson H, Ziegler Heitbrock L, Burke B. Mechanisms of Hypoxic Up-Regulation of Versican Gene Expression in Macrophages. PLoS ONE. 2015;10:e0125799 pubmed 出版商
  186. Espana Agusti J, Tuveson D, Adams D, Matakidou A. A minimally invasive, lentiviral based method for the rapid and sustained genetic manipulation of renal tubules. Sci Rep. 2015;5:11061 pubmed 出版商
  187. Urban B, Collard T, Eagle C, Southern S, Greenhough A, Hamdollah Zadeh M, et al. BCL-3 expression promotes colorectal tumorigenesis through activation of AKT signalling. Gut. 2016;65:1151-64 pubmed 出版商
  188. Vanichapol T, Leelawat K, Hongeng S. Hypoxia enhances cholangiocarcinoma invasion through activation of hepatocyte growth factor receptor and the extracellular signal?regulated kinase signaling pathway. Mol Med Rep. 2015;12:3265-3272 pubmed 出版商
  189. Sun L, Xu C, Chen G, Yu M, Yang S, Qiu Y, et al. A Novel Role of OS-9 in the Maintenance of Intestinal Barrier Function from Hypoxia-induced Injury via p38-dependent Pathway. Int J Biol Sci. 2015;11:664-71 pubmed 出版商
  190. Her Y, Nelson Holte M, MAHER L. Oxygen concentration controls epigenetic effects in models of familial paraganglioma. PLoS ONE. 2015;10:e0127471 pubmed 出版商
  191. Zhang Y, Fan N, Yang J. Expression and clinical significance of hypoxia-inducible factor 1?, Snail and E-cadherin in human ovarian cancer cell lines. Mol Med Rep. 2015;12:3393-3399 pubmed 出版商
  192. Kumar P, Gullberg U, Olsson I, Ajore R. Myeloid translocation gene-16 co-repressor promotes degradation of hypoxia-inducible factor 1. PLoS ONE. 2015;10:e0123725 pubmed 出版商
  193. Formisano L, Guida N, Valsecchi V, Cantile M, Cuomo O, Vinciguerra A, et al. Sp3/REST/HDAC1/HDAC2 Complex Represses and Sp1/HIF-1/p300 Complex Activates ncx1 Gene Transcription, in Brain Ischemia and in Ischemic Brain Preconditioning, by Epigenetic Mechanism. J Neurosci. 2015;35:7332-48 pubmed 出版商
  194. Ferreira J, Soares A, Ramalho J, Pereira P, Girao H. K63 linked ubiquitin chain formation is a signal for HIF1A degradation by Chaperone-Mediated Autophagy. Sci Rep. 2015;5:10210 pubmed 出版商
  195. Tholen M, Wolanski J, Stolze B, Chiabudini M, Gajda M, Bronsert P, et al. Stress-resistant Translation of Cathepsin L mRNA in Breast Cancer Progression. J Biol Chem. 2015;290:15758-69 pubmed 出版商
  196. Park H, Lee D, Yim M, Choi Y, Park S, Seo S, et al. 3,3'-Diindolylmethane inhibits VEGF expression through the HIF-1α and NF-κB pathways in human retinal pigment epithelial cells under chemical hypoxic conditions. Int J Mol Med. 2015;36:301-8 pubmed 出版商
  197. Bánfi G, Teleki I, Nyirády P, Keszthelyi A, Romics I, Fintha A, et al. Changes of protein expression in prostate cancer having lost its androgen sensitivity. Int Urol Nephrol. 2015;47:1149-54 pubmed 出版商
  198. Sadowski S, Boufraqech M, Zhang L, Mehta A, Kapur P, Zhang Y, et al. Torin2 targets dysregulated pathways in anaplastic thyroid cancer and inhibits tumor growth and metastasis. Oncotarget. 2015;6:18038-49 pubmed
  199. Guven M, Sehitoglu M, Yüksel Y, Tokmak M, Aras A, Akman T, et al. The Neuroprotective Effect of Coumaric Acid on Spinal Cord Ischemia/Reperfusion Injury in Rats. Inflammation. 2015;38:1986-95 pubmed 出版商
  200. Basu S, Majumder S, Bhowal A, Ghosh A, Naskar S, Nandy S, et al. A study of molecular signals deregulating mismatch repair genes in prostate cancer compared to benign prostatic hyperplasia. PLoS ONE. 2015;10:e0125560 pubmed 出版商
  201. Lemaire L, Franconi F, Siegler B, Legendre C, Garcion E. In vitro expansion of U87-MG human glioblastoma cells under hypoxic conditions affects glucose metabolism and subsequent in vivo growth. Tumour Biol. 2015;36:7699-710 pubmed 出版商
  202. Kim B, Lee J, Choi J, Park D, Song H, Park T, et al. Imidazole-based alkaloid derivative LCB54-0009 suppresses ocular angiogenesis and lymphangiogenesis in models of experimental retinopathy and corneal neovascularization. Br J Pharmacol. 2015;172:3875-89 pubmed 出版商
  203. Qiao S, Dennis M, Song X, Vadysirisack D, Salunke D, Nash Z, et al. A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity. Nat Commun. 2015;6:7014 pubmed 出版商
  204. Liu X, Chen Z, Xu C, Leng X, Cao H, Ouyang G, et al. Repression of hypoxia-inducible factor α signaling by Set7-mediated methylation. Nucleic Acids Res. 2015;43:5081-98 pubmed 出版商
  205. Choi H, Gillespie D, Berg S, Rice C, Couldwell S, Gu J, et al. Intermittent induction of HIF-1α produces lasting effects on malignant progression independent of its continued expression. PLoS ONE. 2015;10:e0125125 pubmed 出版商
  206. Pértega Gomes N, Felisbino S, Massie C, Vizcaíno J, Coelho R, Sandi C, et al. A glycolytic phenotype is associated with prostate cancer progression and aggressiveness: a role for monocarboxylate transporters as metabolic targets for therapy. J Pathol. 2015;236:517-30 pubmed 出版商
  207. Shang A, Yang Y, Wang H, Wang J, Hang X, Wang Z, et al. Upregulation of neuroglobin expression and changes in serum redox indices in a rat model of middle cerebral artery occlusion. Mol Med Rep. 2015;12:1693-8 pubmed 出版商
  208. Sun Y, George J, Rocha S. Dose-dependent effects of allopurinol on human foreskin fibroblast cells and human umbilical vein endothelial cells under hypoxia. PLoS ONE. 2015;10:e0123649 pubmed 出版商
  209. Ma S, Jiang B, Deng W, Gu Z, Wu F, Li T, et al. D-2-hydroxyglutarate is essential for maintaining oncogenic property of mutant IDH-containing cancer cells but dispensable for cell growth. Oncotarget. 2015;6:8606-20 pubmed
  210. Li S, Wu X, Dong C, Xie X, Wu J, Zhang X. The differential expression of OCT4 isoforms in cervical carcinoma. PLoS ONE. 2015;10:e0118033 pubmed 出版商
  211. Verduzco D, Lloyd M, Xu L, Ibrahim Hashim A, Balagurunathan Y, Gatenby R, et al. Intermittent hypoxia selects for genotypes and phenotypes that increase survival, invasion, and therapy resistance. PLoS ONE. 2015;10:e0120958 pubmed 出版商
  212. Chan N, He S, Spee C, Ishikawa K, Hinton D. Attenuation of choroidal neovascularization by histone deacetylase inhibitor. PLoS ONE. 2015;10:e0120587 pubmed 出版商
  213. Alig S, Stampnik Y, Pircher J, Rotter R, Gaitzsch E, Ribeiro A, et al. The tyrosine phosphatase SHP-1 regulates hypoxia inducible factor-1α (HIF-1α) protein levels in endothelial cells under hypoxia. PLoS ONE. 2015;10:e0121113 pubmed 出版商
  214. Koh H, Chang C, Jeon S, Yoon H, Ahn Y, Kim H, et al. The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia. Nat Commun. 2015;6:6340 pubmed 出版商
  215. Panneerselvam J, Jin J, Shanker M, Lauderdale J, BATES J, Wang Q, et al. IL-24 inhibits lung cancer cell migration and invasion by disrupting the SDF-1/CXCR4 signaling axis. PLoS ONE. 2015;10:e0122439 pubmed 出版商
  216. Staudacher J, Naarmann de Vries I, Ujvari S, Klinger B, Kasim M, Benko E, et al. Hypoxia-induced gene expression results from selective mRNA partitioning to the endoplasmic reticulum. Nucleic Acids Res. 2015;43:3219-36 pubmed 出版商
  217. Albers J, Danzer C, Rechsteiner M, Lehmann H, Brandt L, Hejhal T, et al. A versatile modular vector system for rapid combinatorial mammalian genetics. J Clin Invest. 2015;125:1603-19 pubmed 出版商
  218. Kato H, Izumi K, Uenoyama A, Shiomi A, Kuo S, Feinberg S. Hypoxia induces an undifferentiated phenotype of oral keratinocytes in vitro. Cells Tissues Organs. 2014;199:393-404 pubmed 出版商
  219. Yang L, Liu L, Xu Z, Liao W, Feng D, Dong X, et al. EBV-LMP1 targeted DNAzyme enhances radiosensitivity by inhibiting tumor angiogenesis via the JNKs/HIF-1 pathway in nasopharyngeal carcinoma. Oncotarget. 2015;6:5804-17 pubmed
  220. Hsiao H, Hsu T, Liu W, Hsieh W, Chou T, Wu Y, et al. Deltex1 antagonizes HIF-1α and sustains the stability of regulatory T cells in vivo. Nat Commun. 2015;6:6353 pubmed 出版商
  221. He Z, Li B, Rankin G, Rojanasakul Y, Chen Y. Selecting bioactive phenolic compounds as potential agents to inhibit proliferation and VEGF expression in human ovarian cancer cells. Oncol Lett. 2015;9:1444-1450 pubmed
  222. Joseph J, Conroy S, Pavlov K, Sontakke P, Tomar T, Eggens Meijer E, et al. Hypoxia enhances migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the HIF1α-ZEB1 axis. Cancer Lett. 2015;359:107-16 pubmed 出版商
  223. Yu C, Yang S, Fang X, Jiang J, Sun C, Huang T. Hypoxia disrupts the expression levels of circadian rhythm genes in hepatocellular carcinoma. Mol Med Rep. 2015;11:4002-8 pubmed 出版商
  224. Shankar G, Taylor Weiner A, Lelic N, Jones R, Kim J, FRANCIS J, et al. Sporadic hemangioblastomas are characterized by cryptic VHL inactivation. Acta Neuropathol Commun. 2014;2:167 pubmed 出版商
  225. Wilkinson L, Neal C, Singh R, Sparrow D, Kurniawan N, Ju A, et al. Renal developmental defects resulting from in utero hypoxia are associated with suppression of ureteric β-catenin signaling. Kidney Int. 2015;87:975-83 pubmed 出版商
  226. Mudie S, Bandarra D, Batie M, Biddlestone J, Moniz S, Ortmann B, et al. PITX1, a specificity determinant in the HIF-1α-mediated transcriptional response to hypoxia. Cell Cycle. 2014;13:3878-91 pubmed 出版商
  227. Zheng H, Fu J, Xue P, Zhao R, Dong J, Liu D, et al. CNC-bZIP protein Nrf1-dependent regulation of glucose-stimulated insulin secretion. Antioxid Redox Signal. 2015;22:819-31 pubmed 出版商
  228. Cannito S, Turato C, Paternostro C, Biasiolo A, Colombatto S, Cambieri I, et al. Hypoxia up-regulates SERPINB3 through HIF-2α in human liver cancer cells. Oncotarget. 2015;6:2206-21 pubmed
  229. Hung Y, Chang S, Huang C, Yin J, Hwang C, Yang L, et al. Inhibitor of Differentiation-1 and Hypoxia-Inducible Factor-1 Mediate Sonic Hedgehog Induction by Amyloid Beta-Peptide in Rat Cortical Neurons. Mol Neurobiol. 2016;53:793-809 pubmed 出版商
  230. Singleton D, Rouhi P, Zois C, Haider S, Li J, Kessler B, et al. Hypoxic regulation of RIOK3 is a major mechanism for cancer cell invasion and metastasis. Oncogene. 2015;34:4713-22 pubmed 出版商
  231. Cho S, Yun S, Jo C, Lee D, Choi K, Song J, et al. SUMO1 promotes Aβ production via the modulation of autophagy. Autophagy. 2015;11:100-12 pubmed 出版商
  232. Rutz S, Kayagaki N, Phung Q, Eidenschenk C, Noubade R, Wang X, et al. Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells. Nature. 2015;518:417-21 pubmed 出版商
  233. Olayanju A, Copple I, Bryan H, Edge G, Sison R, Wong M, et al. Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity-implications for therapeutic targeting of Nrf2. Free Radic Biol Med. 2015;78:202-12 pubmed 出版商
  234. Fine J, Renner D, Forsberg A, Cameron R, Galick B, Le C, et al. Intranasal deferoxamine engages multiple pathways to decrease memory loss in the APP/PS1 model of amyloid accumulation. Neurosci Lett. 2015;584:362-7 pubmed 出版商
  235. Ma B, Chen Y, Chen L, Cheng H, Mu C, Li J, et al. Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase. Nat Cell Biol. 2015;17:95-103 pubmed 出版商
  236. Henze A, Garvalov B, Seidel S, Cuesta A, Ritter M, Filatova A, et al. Loss of PHD3 allows tumours to overcome hypoxic growth inhibition and sustain proliferation through EGFR. Nat Commun. 2014;5:5582 pubmed 出版商
  237. Turner J, Quek L, Titmarsh D, Krömer J, Kao L, Nielsen L, et al. Metabolic profiling and flux analysis of MEL-2 human embryonic stem cells during exponential growth at physiological and atmospheric oxygen concentrations. PLoS ONE. 2014;9:e112757 pubmed 出版商
  238. Kong B, Cho Y, Lee E. G protein-coupled estrogen receptor-1 is involved in the protective effect of protocatechuic aldehyde against endothelial dysfunction. PLoS ONE. 2014;9:e113242 pubmed 出版商
  239. Mazzatenta A, Marconi G, Zara S, Cataldi A, Porzionato A, Di Giulio C. In the carotid body, galanin is a signal for neurogenesis in young, and for neurodegeneration in the old and in drug-addicted subjects. Front Physiol. 2014;5:427 pubmed 出版商
  240. Lei Q, Qiang F, Chao D, Di W, Guoqian Z, Bo Y, et al. Amelioration of hypoxia and LPS-induced intestinal epithelial barrier dysfunction by emodin through the suppression of the NF-κB and HIF-1α signaling pathways. Int J Mol Med. 2014;34:1629-39 pubmed 出版商
  241. Kim S, Ahn S, Lee E, Kim S, Na K, Chae D, et al. Bilirubin activates transcription of HIF-1α in human proximal tubular cells cultured in the physiologic oxygen content. J Korean Med Sci. 2014;29 Suppl 2:S146-54 pubmed 出版商
  242. Bakirtzi K, West G, Fiocchi C, Law I, Iliopoulos D, Pothoulakis C. The neurotensin-HIF-1α-VEGFα axis orchestrates hypoxia, colonic inflammation, and intestinal angiogenesis. Am J Pathol. 2014;184:3405-14 pubmed 出版商
  243. Basham K, Leonard C, Kieffer C, Shelton D, McDowell M, Bhonde V, et al. Dioxin exposure blocks lactation through a direct effect on mammary epithelial cells mediated by the aryl hydrocarbon receptor repressor. Toxicol Sci. 2015;143:36-45 pubmed 出版商
  244. Menhofer M, Bartel D, Liebl J, Kubisch R, Busse J, Wagner E, et al. In vitro and in vivo characterization of the actin polymerizing compound chondramide as an angiogenic inhibitor. Cardiovasc Res. 2014;104:303-14 pubmed 出版商
  245. Gupta A, Keshri G, Yadav A, Gola S, Chauhan S, Salhan A, et al. Superpulsed (Ga-As, 904 nm) low-level laser therapy (LLLT) attenuates inflammatory response and enhances healing of burn wounds. J Biophotonics. 2015;8:489-501 pubmed 出版商
  246. Lee H, Kim K, Lim H, Choi M, Kim H, Ahn H, et al. Priming Wharton's jelly-derived mesenchymal stromal/stem cells with ROCK inhibitor improves recovery in an intracerebral hemorrhage model. J Cell Biochem. 2015;116:310-9 pubmed 出版商
  247. Liu X, Haines J, Mehanna E, Genet M, Ben Sahra I, Asara J, et al. ZBTB7A acts as a tumor suppressor through the transcriptional repression of glycolysis. Genes Dev. 2014;28:1917-28 pubmed 出版商
  248. Kolosenko I, Fryknäs M, Forsberg S, Johnsson P, Cheon H, Holvey Bates E, et al. Cell crowding induces interferon regulatory factor 9, which confers resistance to chemotherapeutic drugs. Int J Cancer. 2015;136:E51-61 pubmed 出版商
  249. Miao Z, Wang Z, Zhao T, Xu Y, Gao J, Miao F, et al. Peritoneal milky spots serve as a hypoxic niche and favor gastric cancer stem/progenitor cell peritoneal dissemination through hypoxia-inducible factor 1α. Stem Cells. 2014;32:3062-74 pubmed 出版商
  250. Xu M, Nagati J, Xie J, Li J, Walters H, Moon Y, et al. An acetate switch regulates stress erythropoiesis. Nat Med. 2014;20:1018-26 pubmed 出版商
  251. Huang T, Huang W, Zhang Z, Yu L, Xie C, Zhu D, et al. Hypoxia-inducible factor-1? upregulation in microglia following hypoxia protects against ischemia-induced cerebral infarction. Neuroreport. 2014;25:1122-8 pubmed 出版商
  252. Ueda J, Ho J, Lee K, Kitajima S, Yang H, Sun W, et al. The hypoxia-inducible epigenetic regulators Jmjd1a and G9a provide a mechanistic link between angiogenesis and tumor growth. Mol Cell Biol. 2014;34:3702-20 pubmed 出版商
  253. Wei W, Hu Y. Expression of hypoxia-regulated genes and glycometabolic genes in placenta from patients with intrahepatic cholestasis of pregnancy. Placenta. 2014;35:732-6 pubmed 出版商
  254. Mésange P, Poindessous V, Sabbah M, Escargueil A, de Gramont A, Larsen A. Intrinsic bevacizumab resistance is associated with prolonged activation of autocrine VEGF signaling and hypoxia tolerance in colorectal cancer cells and can be overcome by nintedanib, a small molecule angiokinase inhibitor. Oncotarget. 2014;5:4709-21 pubmed
  255. Hempel C, Hoyer N, Kildemoes A, Jendresen C, Kurtzhals J. Systemic and Cerebral Vascular Endothelial Growth Factor Levels Increase in Murine Cerebral Malaria along with Increased Calpain and Caspase Activity and Can be Reduced by Erythropoietin Treatment. Front Immunol. 2014;5:291 pubmed 出版商
  256. Zheng X, Zhai B, Koivunen P, Shin S, Lu G, Liu J, et al. Prolyl hydroxylation by EglN2 destabilizes FOXO3a by blocking its interaction with the USP9x deubiquitinase. Genes Dev. 2014;28:1429-44 pubmed 出版商
  257. Paatero I, Seagroves T, Vaparanta K, Han W, Jones F, Johnson R, et al. Hypoxia-inducible factor-1? induces ErbB4 signaling in the differentiating mammary gland. J Biol Chem. 2014;289:22459-69 pubmed 出版商
  258. Wang C, Cai Y, Zhang Y, Xiong Z, Li G, Cui L. Local injection of deferoxamine improves neovascularization in ischemic diabetic random flap by increasing HIF-1? and VEGF expression. PLoS ONE. 2014;9:e100818 pubmed 出版商
  259. Jin G, Liu B, You Z, Bambakidis T, Dekker S, Maxwell J, et al. Development of a novel neuroprotective strategy: combined treatment with hypothermia and valproic acid improves survival in hypoxic hippocampal cells. Surgery. 2014;156:221-8 pubmed 出版商
  260. Schreurs L, Smit J, Pavlov K, Pultrum B, Pruim J, Groen H, et al. Prognostic impact of clinicopathological features and expression of biomarkers related to (18)F-FDG uptake in esophageal cancer. Ann Surg Oncol. 2014;21:3751-7 pubmed 出版商
  261. Ramamoorthy P, Shi H. Ischemia induces different levels of hypoxia inducible factor-1? protein expression in interneurons and pyramidal neurons. Acta Neuropathol Commun. 2014;2:51 pubmed 出版商
  262. Raimondi L, Amodio N, Di Martino M, Altomare E, Leotta M, Caracciolo D, et al. Targeting of multiple myeloma-related angiogenesis by miR-199a-5p mimics: in vitro and in vivo anti-tumor activity. Oncotarget. 2014;5:3039-54 pubmed
  263. Waza A, Andrabi K, Hussain M. Protein kinase C (PKC) mediated interaction between conexin43 (Cx43) and K(+)(ATP) channel subunit (Kir6.1) in cardiomyocyte mitochondria: Implications in cytoprotection against hypoxia induced cell apoptosis. Cell Signal. 2014;26:1909-17 pubmed 出版商
  264. Wu W, Tian R, Hao S, Xu F, Mao X, Liu B. A pre-injury high ethanol intake in rats promotes brain edema following traumatic brain injury. Br J Neurosurg. 2014;28:739-45 pubmed 出版商
  265. Li B, Iglesias Pedraz J, Chen L, Yin F, Cadenas E, Reddy S, et al. Downregulation of the Werner syndrome protein induces a metabolic shift that compromises redox homeostasis and limits proliferation of cancer cells. Aging Cell. 2014;13:367-78 pubmed
  266. Schaffner C, Mwinyi J, Gai Z, Thasler W, Eloranta J, Kullak Ublick G. The organic solute transporters alpha and beta are induced by hypoxia in human hepatocytes. Liver Int. 2015;35:1152-61 pubmed 出版商
  267. Zimmermann A, Morrison S, Hu M, Li S, Nauta A, Sorkin M, et al. Epidermal or dermal specific knockout of PHD-2 enhances wound healing and minimizes ischemic injury. PLoS ONE. 2014;9:e93373 pubmed 出版商
  268. Fahrenbach J, Stoller D, Kim G, Aggarwal N, Yerokun B, Earley J, et al. Abcc9 is required for the transition to oxidative metabolism in the newborn heart. FASEB J. 2014;28:2804-15 pubmed 出版商
  269. Aksu V, Yuksel V, Chousein S, Tastekin E, Iscan S, Sagiroglu G, et al. The effects of sildenafil and n-acetylcysteine on ischemia and reperfusion injury in gastrocnemius muscle and femoral artery endothelium. Vascular. 2015;23:21-30 pubmed 出版商
  270. Sun X, Fang B, Zhao X, Zhang G, Ma H. Preconditioning of mesenchymal stem cells by sevoflurane to improve their therapeutic potential. PLoS ONE. 2014;9:e90667 pubmed 出版商
  271. Ekman M, Uvelius B, Albinsson S, Swärd K. HIF-mediated metabolic switching in bladder outlet obstruction mitigates the relaxing effect of mitochondrial inhibition. Lab Invest. 2014;94:557-68 pubmed 出版商
  272. Cheverud J, Lawson H, Bouckaert K, Kossenkov A, Showe L, Cort L, et al. Fine-mapping quantitative trait loci affecting murine external ear tissue regeneration in the LG/J by SM/J advanced intercross line. Heredity (Edinb). 2014;112:508-18 pubmed 出版商
  273. Sena J, Wang L, Pawlus M, Hu C. HIFs enhance the transcriptional activation and splicing of adrenomedullin. Mol Cancer Res. 2014;12:728-41 pubmed 出版商
  274. Takeda K, Duan L, Takeda H, Fong G. Improved vascular survival and growth in the mouse model of hindlimb ischemia by a remote signaling mechanism. Am J Pathol. 2014;184:686-96 pubmed 出版商
  275. Kulzer J, Stitzel M, Morken M, Huyghe J, Fuchsberger C, Kuusisto J, et al. A common functional regulatory variant at a type 2 diabetes locus upregulates ARAP1 expression in the pancreatic beta cell. Am J Hum Genet. 2014;94:186-97 pubmed 出版商
  276. Barsoum I, Smallwood C, Siemens D, Graham C. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res. 2014;74:665-74 pubmed 出版商
  277. Chen T, Shih Y, Tseng J, Lai M, Wu C, Li Y, et al. Overexpression of FGF9 in colon cancer cells is mediated by hypoxia-induced translational activation. Nucleic Acids Res. 2014;42:2932-44 pubmed 出版商
  278. Ding H, Gao Y, Wang Y, Hu C, Sun Y, Zhang C. Dimethyloxaloylglycine increases the bone healing capacity of adipose-derived stem cells by promoting osteogenic differentiation and angiogenic potential. Stem Cells Dev. 2014;23:990-1000 pubmed 出版商
  279. Ronkainen V, Tuomainen T, Huusko J, Laidinen S, Malinen M, Palvimo J, et al. Hypoxia-inducible factor 1-induced G protein-coupled receptor 35 expression is an early marker of progressive cardiac remodelling. Cardiovasc Res. 2014;101:69-77 pubmed 出版商
  280. Maschio L, Madallozo B, Capellasso B, Jardim B, Moschetta M, Jampietro J, et al. Immunohistochemical investigation of the angiogenic proteins VEGF, HIF-1? and CD34 in invasive ductal carcinoma of the breast. Acta Histochem. 2014;116:148-57 pubmed 出版商
  281. Xie L, Collins J. Transcription factors Sp1 and Hif2? mediate induction of the copper-transporting ATPase (Atp7a) gene in intestinal epithelial cells during hypoxia. J Biol Chem. 2013;288:23943-52 pubmed 出版商
  282. Gammon L, Biddle A, Heywood H, Johannessen A, Mackenzie I. Sub-sets of cancer stem cells differ intrinsically in their patterns of oxygen metabolism. PLoS ONE. 2013;8:e62493 pubmed 出版商
  283. Avena P, Anselmo W, Whitaker Menezes D, Wang C, Pestell R, Lamb R, et al. Compartment-specific activation of PPAR? governs breast cancer tumor growth, via metabolic reprogramming and symbiosis. Cell Cycle. 2013;12:1360-70 pubmed 出版商
  284. Cao W, Kawai N, Miyake K, Zhang X, Fei Z, Tamiya T. Relationship of 14-3-3zeta (?), HIF-1?, and VEGF expression in human brain gliomas. Brain Tumor Pathol. 2014;31:1-10 pubmed 出版商
  285. Isaacs J, Antony L, Dalrymple S, Brennen W, Gerber S, Hammers H, et al. Tasquinimod Is an Allosteric Modulator of HDAC4 survival signaling within the compromised cancer microenvironment. Cancer Res. 2013;73:1386-99 pubmed 出版商
  286. Salem A, Howell A, Sartini M, Sotgia F, Lisanti M. Downregulation of stromal BRCA1 drives breast cancer tumor growth via upregulation of HIF-1?, autophagy and ketone body production. Cell Cycle. 2012;11:4167-73 pubmed 出版商
  287. Wu C, Tang S, Wang P, Lee H, Ko J. Nickel-induced epithelial-mesenchymal transition by reactive oxygen species generation and E-cadherin promoter hypermethylation. J Biol Chem. 2012;287:25292-302 pubmed 出版商
  288. Hsieh Y, Chou L, Chang P, Yang C, Kao M, Hong C. Low-level laser therapy alleviates neuropathic pain and promotes function recovery in rats with chronic constriction injury: possible involvements in hypoxia-inducible factor 1? (HIF-1?). J Comp Neurol. 2012;520:2903-16 pubmed 出版商
  289. Lee J, Lai C, Yang W, Lee T. Increased expression of hypoxia-inducible factor-1? and metallothionein in varicocele and varicose veins. Phlebology. 2012;27:409-15 pubmed 出版商
  290. Groenman F, Rutter M, Caniggia I, Tibboel D, Post M. Hypoxia-inducible factors in the first trimester human lung. J Histochem Cytochem. 2007;55:355-63 pubmed