这是一篇来自已证抗体库的有关人类 HIF-1甲 (HIF-1 alpha) 的综述,是根据184篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合HIF-1甲 抗体。
HIF-1甲 同义词: HIF-1-alpha; HIF-1A; HIF-1alpha; HIF1; HIF1-ALPHA; MOP1; PASD8; bHLHe78; hypoxia-inducible factor 1-alpha; ARNT interacting protein; PAS domain-containing protein 8; basic-helix-loop-helix-PAS protein MOP1; class E basic helix-loop-helix protein 78; hypoxia inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor); hypoxia-inducible factor 1 alpha isoform I.3; hypoxia-inducible factor1alpha; member of PAS protein 1; member of PAS superfamily 1

基因敲除验证
Novus Biologicals小鼠 单克隆(H1alpha67)
  • 免疫印迹 (基因敲除); 小鼠; 图3
  • 免疫印迹 (基因敲减); 人类; 图3
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫印迹 (基因敲除)在小鼠样品上 (图3) 和 免疫印迹 (基因敲减)在人类样品上 (图3). Sci Rep (2016) ncbi
Novus Biologicals兔 多克隆
  • 免疫印迹 (基因敲除); 小鼠; 图3
  • 免疫印迹 (基因敲减); 人类; 图3
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于免疫印迹 (基因敲除)在小鼠样品上 (图3) 和 免疫印迹 (基因敲减)在人类样品上 (图3). Sci Rep (2016) ncbi
Novus Biologicals
小鼠 单克隆(H1alpha67)
  • 免疫组化-P; 人类; 1:50; 图1
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图1). Mol Clin Oncol (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 1:500; 图5
  • 细胞化学; 小鼠; 1:100; 图1
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, H1alpha67)被用于免疫印迹在小鼠样品上浓度为1:500 (图5) 和 免疫细胞化学在小鼠样品上浓度为1:100 (图1). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:500; 图1B
  • 免疫组化; 人类; 图1B
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于免疫印迹在人类样品上浓度为1:500 (图1B) 和 免疫组化在人类样品上 (图1B). Front Pharmacol (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-P; 小鼠; 1:100; 图4
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图4). Theranostics (2016) ncbi
兔 多克隆
  • 免疫组化-P; 狗; 1:500; 图5
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于免疫组化-石蜡切片在狗样品上浓度为1:500 (图5). Brain Behav (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 图4
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于免疫组化在人类样品上 (图4). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 图3
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB-100-449)被用于免疫组化-冰冻切片在小鼠样品上 (图3). BMC Cancer (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于免疫印迹在人类样品上 (图1). Int J Cancer (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图5
Novus BiologicalsHIF-1甲抗体(Novus, NB100-479)被用于免疫印迹在大鼠样品上浓度为1:1000 (图5). Mol Med Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹 (基因敲除); 小鼠; 图3
  • 免疫印迹 (基因敲减); 人类; 图3
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫印迹 (基因敲除)在小鼠样品上 (图3) 和 免疫印迹 (基因敲减)在人类样品上 (图3). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹 (基因敲除); 小鼠; 图3
  • 免疫印迹 (基因敲减); 人类; 图3
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于免疫印迹 (基因敲除)在小鼠样品上 (图3) 和 免疫印迹 (基因敲减)在人类样品上 (图3). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于免疫印迹在人类样品上 (图2a). Cancer Res (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:500; 图3a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫印迹在人类样品上浓度为1:500 (图3a). Cell Tissue Res (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:500
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫印迹在人类样品上浓度为1:500. Nature (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-P; 小鼠; 1:200; 图s5
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图s5). Cancer Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
Novus BiologicalsHIF-1甲抗体(Novus, NB100-134)被用于免疫印迹在人类样品上 (图1). J Cell Mol Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图3
  • 细胞化学; 人类; 1:100; 图4
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于免疫印迹在人类样品上浓度为1:500 (图3) 和 免疫细胞化学在人类样品上浓度为1:100 (图4). Oncol Rep (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:200; 图9A
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-449)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图9A). Antioxid Redox Signal (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:250; 图s1
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:250 (图s1). PLoS ONE (2015) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-P; 人类; 图2
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, ESEE122)被用于免疫组化-石蜡切片在人类样品上 (图2). J Cancer (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:2000
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于免疫印迹在人类样品上浓度为1:2000. Life Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图1e
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于免疫印迹在大鼠样品上 (图1e). J Clin Invest (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:100
Novus BiologicalsHIF-1甲抗体(Novus, NB100-479)被用于免疫组化在大鼠样品上浓度为1:100. Int J Clin Exp Med (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:500
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫印迹在人类样品上浓度为1:500. Sci Rep (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 图4c
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫印迹在人类样品上 (图4c). Int J Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-449)被用于免疫印迹在小鼠样品上浓度为1:1000. Nat Commun (2015) ncbi
兔 多克隆
  • ChIP; 小鼠; 图2
Novus BiologicalsHIF-1甲抗体(Novus, NB100-134)被用于染色质免疫沉淀 在小鼠样品上 (图2). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus, NB100-479)被用于免疫印迹在小鼠样品上. J Clin Invest (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于免疫印迹在人类样品上浓度为1:1000. Cells Tissues Organs (2014) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化; 人类
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-131)被用于. Acta Neuropathol Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:600
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于免疫印迹在小鼠样品上浓度为1:600. Mol Neurobiol (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于免疫印迹在小鼠样品上. Nature (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于免疫印迹在小鼠样品上. Neurosci Lett (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 1:1000
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫印迹在小鼠样品上浓度为1:1000. Neuroreport (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus, NB100-479)被用于免疫印迹在小鼠样品上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(ESEE122)
  • 免疫印迹; 小鼠; 1:2000; 图2
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-131A1)被用于免疫印迹在小鼠样品上浓度为1:2000 (图2). Front Immunol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4a
  • 免疫沉淀; 人类; 图2a
Novus BiologicalsHIF-1甲抗体(Novus, NB100-479)被用于免疫印迹在人类样品上 (图4a) 和 免疫沉淀在人类样品上 (图2a). Genes Dev (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 细胞化学; 大鼠; 1:200
Novus BiologicalsHIF-1甲抗体(Novus Biological, NB-100-123)被用于免疫细胞化学在大鼠样品上浓度为1:200. Acta Neuropathol Commun (2014) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:100; 图4a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, 100-479)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图4a). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于免疫印迹在小鼠样品上. FASEB J (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于免疫印迹在大鼠样品上浓度为1:500. Lab Invest (2014) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于免疫组化-石蜡切片在小鼠样品上. Am J Pathol (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 大鼠
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫印迹在大鼠样品上. J Biol Chem (2013) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类
Novus BiologicalsHIF-1甲抗体(Novus, NB100-123)被用于免疫印迹在人类样品上. Cell Cycle (2012) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 大鼠; 1:500
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫印迹在大鼠样品上浓度为1:500. J Comp Neurol (2012) ncbi
未注明
  • ChIP; 人类
为了研究PTPRZ1启动子上HIF结合及Ets结合的基序并且说明了HIF-2可以激活PTPRZ1,使用了Novus Biologicals公司的HIF1alpha抗体进行染色质免疫沉淀实验。PLoS ONE (2010) ncbi
未注明
  • 免疫沉淀; 人类
为了研究微管相关蛋白1轻链beta 3和与自噬相关基因5通过介导吞噬泡和自噬小体的形成而不是启动自噬,以及未折叠蛋白反应在肿瘤微环境缺氧的介导中有着重要作用,采用了Novus Biologicals公司缺氧诱导因子1抗体,进行免疫共沉淀实验。J Clin Invest (2010) ncbi
未注明
  • 免疫沉淀; 人类
为了研究HIF-1转录因子在调控氧流量转录反应中的作用,使用了Novus Biologicals公司的HIF-1alpha抗体,进行了免疫沉淀实验。Nucleic Acids Res (2009) ncbi
未注明
  • 免疫印迹; 人类
为探讨缺血状况下缺氧诱导因子1调控细胞生存的机制,将Novus提供的抗缺氧诱导因子1alpha抗体用于蛋白免疫印迹实验中。J Neurochem (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究低氧引起的能量应激在调控头颈扁平细胞瘤中mTOR信号通路中的作用,采用了 Novus Biologicals公司的鼠单克隆抗HIF1A 抗体产品,进行了免疫印迹实验。Neoplasia (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究UBXD7募集的p97在HIF1α降解的调节中的功能,使用了Novus公司的抗HIF1A抗体来进行免疫印迹分析。Cell (2008) ncbi
未注明
  • 免疫印迹; 人类
为了说明p97可以调节HIF1α的折叠,使用了Novus公司的抗HIF1alpha抗体进行蛋白印迹实验。Cell (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究VHL肿瘤抑制基因通过成纤维细胞生长因子受体信号通路对内皮功能的影响,采用了Novus Biologicals的鼠单抗HIF-1alpha抗体进行免疫印迹实验。Cancer Res (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究CUL2在缺氧诱导因子的活性和血管生成过程中所起的作用,使用了Novus Biologicals公司的抗HIF-1 alpha抗体来进行蛋白印迹分析。J Biol Chem (2008) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-P; 人类; 1:200
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB 100-105)被用于免疫组化-石蜡切片在人类样品上浓度为1:200. J Histochem Cytochem (2007) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(mgc3)
  • 细胞化学; 人类; 图1
艾博抗(上海)贸易有限公司HIF-1甲抗体(abcam, ab16066)被用于免疫细胞化学在人类样品上 (图1). BMC Cancer (2016) ncbi
兔 多克隆
  • ChIP-Seq; 人类; 图2
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab2185)被用于ChIP-Seq在人类样品上 (图2). Nucleic Acids Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图6
艾博抗(上海)贸易有限公司HIF-1甲抗体(abcam, ab2185)被用于免疫印迹在小鼠样品上 (图6). Kidney Int (2016) ncbi
兔 多克隆
  • ChIP; 人类; 图2
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab2185)被用于染色质免疫沉淀 在人类样品上 (图2). Mol Med Rep (2015) ncbi
兔 单克隆(EP1215Y)
  • 免疫印迹; 大鼠; 1:200; 图1
艾博抗(上海)贸易有限公司HIF-1甲抗体(abcam, ab51608)被用于免疫印迹在大鼠样品上浓度为1:200 (图1). Mol Med Rep (2015) ncbi
小鼠 单克隆(ESEE122)
  • 免疫印迹; 人类; 1:1000; 图3
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab8366)被用于免疫印迹在人类样品上浓度为1:1000 (图3). PLoS ONE (2015) ncbi
兔 单克隆(EP1215Y)
  • 免疫组化-P; 人类; 1:100
  • 细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab51608)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 和 免疫细胞化学在人类样品上浓度为1:100. Mol Med Rep (2015) ncbi
兔 多克隆
  • ChIP; 人类; 图5
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab2185)被用于染色质免疫沉淀 在人类样品上 (图5). PLoS ONE (2015) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化; 人类; 1:500; 图6c
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab8366)被用于免疫组化在人类样品上浓度为1:500 (图6c). Oncotarget (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab1)被用于免疫印迹在人类样品上. Br J Pharmacol (2015) ncbi
兔 单克隆(EP1215Y)
  • 免疫印迹; 大鼠; 1:500; 图6
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab51608)被用于免疫印迹在大鼠样品上浓度为1:500 (图6). Mol Med Rep (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 1:500
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab1)被用于免疫组化在人类样品上浓度为1:500. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab2185)被用于免疫印迹在人类样品上浓度为1:500. Am J Pathol (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-P; 人类; 1:200
  • 免疫印迹; 人类; 1:5000
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab1)被用于免疫组化-石蜡切片在人类样品上浓度为1:200 和 免疫印迹在人类样品上浓度为1:5000. Stem Cells (2014) ncbi
兔 单克隆(EP1215Y)
  • 免疫组化-P; 人类; 1:100
  • 免疫印迹; 人类; 1:300
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab51608)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 和 免疫印迹在人类样品上浓度为1:300. Placenta (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab2185)被用于免疫印迹在人类样品上 (图2). J Biol Chem (2014) ncbi
小鼠 单克隆(ESEE122)
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab8366)被用于免疫印迹在大鼠样品上浓度为1:1000. Cell Signal (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 大鼠; 1:200
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, H1alpha67)被用于免疫印迹在大鼠样品上浓度为1:200. Lab Invest (2014) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:100
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, 2185)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100. Heredity (Edinb) (2014) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-P; 大鼠; 1:100
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab8366)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100. Stem Cells Dev (2014) ncbi
兔 多克隆
  • ChIP; 小鼠
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab2185)被用于染色质免疫沉淀 在小鼠样品上. Cardiovasc Res (2014) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:250
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab114977)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:250. Cardiovasc Res (2014) ncbi
未注明
  • 免疫印迹; 人类
为了研究缺氧诱导因子(HIF)由氧的改变所导致的诱导,使用Abcam 公司抗HIF-1α 抗体进行western blot实验。BMC Cardiovasc Disord (2007) ncbi
圣克鲁斯生物技术
小鼠 单克隆(H1alpha 67)
  • 细胞化学; 人类; 1:50; 图2
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-53546)被用于免疫细胞化学在人类样品上浓度为1:50 (图2). Oncol Lett (2016) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫组化-P; 人类; 1:20; 图1
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于免疫组化-石蜡切片在人类样品上浓度为1:20 (图1). PLoS ONE (2016) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫沉淀; 人类; 1:1000; 图5
  • 免疫印迹; 人类; 1:1000; 图4
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于免疫沉淀在人类样品上浓度为1:1000 (图5) 和 免疫印迹在人类样品上浓度为1:1000 (图4). J Cell Sci (2016) ncbi
小鼠 单克隆(28b)
  • 免疫印迹; 人类; 1:500; 图1
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-13515)被用于免疫印迹在人类样品上浓度为1:500 (图1). Mol Med Rep (2015) ncbi
小鼠 单克隆(28b)
  • 细胞化学; 人类; 图4
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-13515)被用于免疫细胞化学在人类样品上 (图4). PLoS ONE (2015) ncbi
小鼠 单克隆(3C144)
  • 免疫印迹; 人类
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-71247)被用于免疫印迹在人类样品上. PLoS ONE (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 人类; 图3
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-53546)被用于免疫印迹在人类样品上 (图3). EBioMedicine (2015) ncbi
小鼠 单克隆(28b)
  • 免疫组化-P; 人类; 1:200; 图1
  • 免疫印迹 (基因敲减); 人类; 1:1000; 图2
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-13515)被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图1) 和 免疫印迹 (基因敲减)在人类样品上浓度为1:1000 (图2). Oncotarget (2015) ncbi
小鼠 单克隆(28b)
  • 免疫组化-P; 人类; 图4
  • 免疫印迹; 人类; 图4
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-13515)被用于免疫组化-石蜡切片在人类样品上 (图4) 和 免疫印迹在人类样品上 (图4). PLoS ONE (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 人类; 图3
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-53546)被用于免疫印迹在人类样品上 (图3). Oncotarget (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 人类; 1:500; 图1
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-53546)被用于免疫印迹在人类样品上浓度为1:500 (图1). Mol Med Rep (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 细胞化学; 人类; 1:50; 图4
圣克鲁斯生物技术HIF-1甲抗体(anta Cruz, sc-53546)被用于免疫细胞化学在人类样品上浓度为1:50 (图4). Cell Cycle (2014) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 人类
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于免疫印迹在人类样品上. Oncotarget (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 大鼠; 1:2000
  • 免疫组化; 大鼠; 1:100
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于免疫印迹在大鼠样品上浓度为1:2000 和 免疫组化在大鼠样品上浓度为1:100. Br J Neurosurg (2014) ncbi
小鼠 单克隆(28b)
  • EMSA; 人类; 1 ug
圣克鲁斯生物技术HIF-1甲抗体(Santa-Cruz Biotechnology Inc., sc13515)被用于EMSA在人类样品上浓度为1 ug. Liver Int (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于免疫印迹在大鼠样品上. Vascular (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于免疫印迹在大鼠样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫组化-P; 人类; 1:50; 表1
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, clone H1alpha67)被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (表1). Acta Histochem (2014) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫组化-P; 人类; 1:100
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Brain Tumor Pathol (2014) ncbi
未注明
  • 免疫印迹; 人类
为了证实蒽环霉素可以抑制HIF-1的转录表达以及肿瘤引起的血管生成细胞的动员,使用了Santa Cruz Biotechnology公司的抗HIF-1α抗体来进行免疫印迹试验。Proc Natl Acad Sci U S A (2009) ncbi
未注明
  • 免疫印迹; 人类
在蛋白印记实验中采用Santa Cruz Biotechnology HIF-1抗体,来描述羟肟酸衍生物LBH589在抑制血管生成及抗肿瘤中的作用。Clin Cancer Res (2006) ncbi
赛默飞世尔
兔 多克隆
  • 免疫印迹 (基因敲减); 小鼠; 图3
赛默飞世尔HIF-1甲抗体(Thermo Fisher Scientific, PA1-16601)被用于免疫印迹 (基因敲减)在小鼠样品上 (图3). Cell Signal (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:1000; 图1
赛默飞世尔HIF-1甲抗体(Thermo Scientific, MA1-16504)被用于免疫印迹在人类样品上浓度为1:1000 (图1). FEBS Lett (2016) ncbi
兔 单克隆(16H4L13)
  • 免疫印迹; 人类; 1:500; 图6
赛默飞世尔HIF-1甲抗体(Fisher Scientific, 70050)被用于免疫印迹在人类样品上浓度为1:500 (图6). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 1:200
赛默飞世尔HIF-1甲抗体(LabVision, H1alpha67)被用于免疫组化在人类样品上浓度为1:200. Int Urol Nephrol (2015) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:100; 图5
赛默飞世尔HIF-1甲抗体(Thermo Fisher Scientific, PA1-16601)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 (图5). Inflammation (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-P; 人类; 1:50
赛默飞世尔HIF-1甲抗体(Neomarkers, MS-1164)被用于免疫组化-石蜡切片在人类样品上浓度为1:50. Ann Surg Oncol (2014) ncbi
小鼠 单克隆(mgc3)
  • EMSA; 小鼠
  • EMSA; 大鼠
赛默飞世尔HIF-1甲抗体(Thermo Scientific, MA1-516)被用于EMSA在小鼠样品上 和 在大鼠样品上. Am J Hum Genet (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-P; 大鼠; 1:200
赛默飞世尔HIF-1甲抗体(Thermo, MS-1164-P0)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:200. J Comp Neurol (2012) ncbi
未注明
  • 免疫组化; 人类
为了研究人类发育过程中,跨膜碳酸酐酶,CAIX和CAXII的作用,采用了NeoMarkers的鼠抗HIF-1α单抗进行免疫组化实验。BMC Dev Biol (2009) ncbi
GeneTex
兔 多克隆
  • ChIP; 人类; 图2
  • 免疫印迹 (基因敲减); 人类; 图2
  • 免疫印迹; 小鼠; 图5
GeneTexHIF-1甲抗体(GeneTex, GTX127309)被用于染色质免疫沉淀 在人类样品上 (图2), 免疫印迹 (基因敲减)在人类样品上 (图2), 和 免疫印迹在小鼠样品上 (图5). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图5
GeneTexHIF-1甲抗体(Genetex, GTX127309)被用于免疫印迹在小鼠样品上 (图5). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:800; 图s1
GeneTexHIF-1甲抗体(GeneTex, GTX127309)被用于免疫印迹在人类样品上浓度为1:800 (图s1). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
GeneTexHIF-1甲抗体(GeneTex, GTX30647)被用于免疫印迹在小鼠样品上浓度为1:1000. Exp Ther Med (2015) ncbi
小鼠 单克隆(GT10211)
  • 细胞化学; 人类; 1:100; 图5
GeneTexHIF-1甲抗体(GeneTex, GTX628480)被用于免疫细胞化学在人类样品上浓度为1:100 (图5). Nat Cell Biol (2015) ncbi
武汉三鹰
兔 多克隆
  • 免疫印迹; 大鼠; 1:800; 图4
武汉三鹰HIF-1甲抗体(ProteinTech, 20960-1-AP)被用于免疫印迹在大鼠样品上浓度为1:800 (图4). Braz J Med Biol Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
  • 细胞化学; 人类; 图4
武汉三鹰HIF-1甲抗体(ProteinTech, 20960-1-AP)被用于免疫印迹在人类样品上 (图4) 和 免疫细胞化学在人类样品上 (图4). Oncotarget (2015) ncbi
亚诺法生技股份有限公司
兔 多克隆
  • 免疫印迹; 小鼠
亚诺法生技股份有限公司HIF-1甲抗体(Abnova, PAB12138)被用于免疫印迹在小鼠样品上. Mol Cell Biol (2015) ncbi
小鼠 单克隆(H1alpha67)
  • ChIP; 人类; 图5
亚诺法生技股份有限公司HIF-1甲抗体(Abnova, MAB1892)被用于染色质免疫沉淀 在人类样品上 (图5). Nat Cell Biol (2015) ncbi
Active Motif
小鼠 单克隆(ESEE122)
  • 免疫印迹; 人类; 1:1000; 图4
Active MotifHIF-1甲抗体(Active Motif, 61275)被用于免疫印迹在人类样品上浓度为1:1000 (图4). Oncotarget (2016) ncbi
SICGEN
山羊 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图1
SICGENHIF-1甲抗体(Sicgen, AB0112-200)被用于免疫印迹在小鼠样品上浓度为1:1000 (图1). Sci Rep (2015) ncbi
Bethyl
兔 多克隆
  • 免疫印迹; 人类; 图1
BethylHIF-1甲抗体(Bethyl, A300-286A)被用于免疫印迹在人类样品上 (图1). Science (2016) ncbi
兔 多克隆
  • ChIP; 人类; 图2
  • 免疫印迹 (基因敲减); 人类; 1:1000; 图2
  • 免疫印迹; 小鼠; 1:1000; 图2
BethylHIF-1甲抗体(Bethyl, A300-286A)被用于染色质免疫沉淀 在人类样品上 (图2) 和 免疫印迹 (基因敲减)在人类样品上浓度为1:1000 (图2). Nat Cell Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
BethylHIF-1甲抗体(Bethyl Laboratories, A300-286A)被用于免疫印迹在人类样品上 (图1). Biochem Biophys Res Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
BethylHIF-1甲抗体(Bethyl Laboratories, A300-286A)被用于免疫印迹在人类样品上. Cancer Res (2013) ncbi
碧迪BD
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图5
碧迪BDHIF-1甲抗体(BD, 610959)被用于免疫印迹在人类样品上 (图5). PLoS ONE (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫组化-P; 人类; 1:50; 表3
碧迪BDHIF-1甲抗体(BD TL, 610958)被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (表3). Oncol Lett (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图2
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹在人类样品上 (图2). Cell Rep (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图3
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于免疫印迹在人类样品上 (图3). Cancer Res (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图13
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹在人类样品上 (图13). PLoS ONE (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图1c
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹在人类样品上 (图1c). J Biol Chem (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图1
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹在人类样品上 (图1). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图1
碧迪BDHIF-1甲抗体(BD Transduction, 610958)被用于免疫印迹在人类样品上 (图1). Mol Oncol (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹 (基因敲减); 人类; 图4
碧迪BDHIF-1甲抗体(BD, 610959)被用于免疫印迹 (基因敲减)在人类样品上 (图4). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹 (基因敲减); 人类; 图 s1
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于免疫印迹 (基因敲减)在人类样品上 (图 s1). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000; 图4
  • 免疫沉淀; 人类; 1:1000; 图5
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹在人类样品上浓度为1:1000 (图4) 和 免疫沉淀在人类样品上浓度为1:1000 (图5). J Cell Sci (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000; 图2a
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610959)被用于免疫印迹在人类样品上浓度为1:1000 (图2a). Radiat Oncol (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000; 图9C
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于免疫印迹在人类样品上浓度为1:1000 (图9C). Antioxid Redox Signal (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:500; 图1
  • 细胞化学; 人类; 1:100; 图1
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹在人类样品上浓度为1:500 (图1) 和 免疫细胞化学在人类样品上浓度为1:100 (图1). Oncotarget (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000
碧迪BDHIF-1甲抗体(BD Biosciences, 61095)被用于免疫印迹在人类样品上浓度为1:1000. Nat Commun (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610958)被用于免疫印迹在人类样品上浓度为1:1000. Tumour Biol (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫组化; 人类; 1:100; 图1
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫组化在人类样品上浓度为1:100 (图1). J Pathol (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图s3
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹在人类样品上 (图s3). Oncotarget (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图s4
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于免疫印迹在人类样品上 (图s4). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 小鼠; 1:1000; 图5,6
碧迪BDHIF-1甲抗体(BD Bioscience, 54/HIF-1)被用于免疫印迹在小鼠样品上浓度为1:1000 (图5,6). Nat Commun (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:500
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于免疫印迹在人类样品上浓度为1:500. Oncol Lett (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图2
  • 免疫沉淀; 人类; 图5
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹在人类样品上 (图2) 和 免疫沉淀在人类样品上 (图5). Cell Cycle (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610959)被用于免疫印迹在人类样品上. Oncogene (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图2a
碧迪BDHIF-1甲抗体(BD, 610958)被用于免疫印迹在人类样品上 (图2a). Nat Commun (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610958)被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000; 图4
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于免疫印迹在人类样品上浓度为1:1000 (图4). Int J Mol Med (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Bioscience, 610958)被用于免疫印迹在人类样品上. J Korean Med Sci (2014) ncbi
小鼠 单克隆(29/HIF-1b)
  • 免疫印迹 (基因敲减); 小鼠; 图3
碧迪BDHIF-1甲抗体(BD, 611078)被用于免疫印迹 (基因敲减)在小鼠样品上 (图3). Toxicol Sci (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫组化-P; 人类; 1:100; 图7
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图7). Cardiovasc Res (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图2a
  • 免疫印迹; 小鼠; 图2d
碧迪BDHIF-1甲抗体(BD, 610958)被用于免疫印迹在人类样品上 (图2a) 和 在小鼠样品上 (图2d). Genes Dev (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • ChIP; 人类; 图s1
  • 免疫印迹 (基因敲减); 人类; 1:1000; 图s2
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于染色质免疫沉淀 在人类样品上 (图s1) 和 免疫印迹 (基因敲减)在人类样品上浓度为1:1000 (图s2). Nat Med (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫组化-P; 人类
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Bioscience, 610958)被用于免疫组化-石蜡切片在人类样品上 和 免疫印迹在人类样品上. Oncotarget (2014) ncbi
小鼠 单克隆(29/HIF-1b)
  • 免疫印迹; 人类; 图4a
碧迪BDHIF-1甲抗体(BD, 611079)被用于免疫印迹在人类样品上 (图4a). Genes Dev (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹在人类样品上. Aging Cell (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Bioscience, 610959)被用于免疫印迹在人类样品上. Mol Cancer Res (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:250; 图1
碧迪BDHIF-1甲抗体(BD Biosciences, # 610958)被用于免疫印迹在人类样品上浓度为1:250 (图1). Cancer Res (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000
碧迪BDHIF-1甲抗体(BD, 610958)被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610959)被用于免疫印迹在人类样品上. Cell Cycle (2013) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Transduction, 610958)被用于免疫印迹在人类样品上. Cancer Res (2013) ncbi
小鼠 单克隆(54/HIF-1)
  • ChIP-Seq; 人类
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于ChIP-Seq在人类样品上 和 免疫印迹在人类样品上. J Biol Chem (2012) ncbi
未注明
  • 免疫印迹; 人类
为了研究类鼻疽杆菌的CHBP蛋白作为真核细胞的泛素化途径的强抑制剂的功能,使用了BD Transduction Laboratories的抗HIF-1a抗体来进行免疫印迹分析。Science (2010) ncbi
未注明
  • 免疫印迹; 人类
为研究PGC-1α对骨骼肌细胞线粒体氧耗量的影响所导致的缺氧诱导因子1alpha的依赖性基因表达,将BD Transduction Laboratories提供的单克隆抗缺氧诱导因子1α抗体用于蛋白免疫印迹实验中。Proc Natl Acad Sci U S A (2009) ncbi
未注明
  • 免疫印迹; 人类
为了说明在肺癌细胞中ZEB-1可以抑制臂板蛋白3F肿瘤抑制基因,使用了BD Transduction Laboratories公司的抗HIF-1alpha抗体进行蛋白印迹实验。Neoplasia (2009) ncbi
未注明
  • 免疫印迹; 人类
为证明缺氧在p38MAPK的激活和非雄激素依赖性的受体稳定性和活性方面的作用,同时探讨由此可导致的前列腺癌细胞LNCaP的侵袭性增加,将BD Biosciences提供的抗缺氧诱导因子1alpha抗体用于蛋白免疫印迹实验中。Oncogene (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究头颈部鳞癌中线粒体ND2突变引起的ROS增多和PDK2升高并最终导致HIF1alpha的聚集,采用了BD Biosciences的鼠单抗HIF1alpha抗体进行免疫印迹实验。 Clin Cancer Res (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究天然鱼藤素的衍生物在癌症化疗和治疗过程中的作用,利用BD Pharmingen 公司的抗低氧诱导性因子1的单克隆抗体进行蛋白质免疫印迹实验。Cancer Prev Res (Phila) (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究天然鱼藤素的衍生物在癌症化疗和治疗过程中的作用,利用BD Pharmingen 公司的抗低氧诱导性因子1的单克隆抗体进行蛋白质免疫印迹实验。Cancer Prev Res (Phila) (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究缺氧诱导因子2alpha在调节肾癌对肿瘤细胞坏死因子相关凋亡诱导配体导致细胞凋亡的敏感性的作用,使用了BD Biosciences公司的缺氧诱导因子1alpha抗体进行蛋白印迹实验。Carcinogenesis (2008) ncbi
未注明
  • 免疫组化; 人类
BD Pharmingen 鼠抗人缺氧诱导因子1Α 抗体用于免疫组织化学技术来研究NF-κB在在卵巢癌微环境的PIK3CA致癌基因的转录调控。PLoS ONE (2008) ncbi
未注明
  • 免疫印迹; 人类
为了证明DIM能减少缺氧性肿瘤细胞株缺氧诱导因子的水平,在免疫印迹试验中使用了BD Pharmigen的肿瘤诱导因子α。Biochem Pharmacol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究氨酰基脯氨酸二肽酶在低氧诱导性因子-1(HIF-1)信号通路和细胞外基质中的重要作用,采用了BD Transduction Laboratories的鼠抗HIF-1alpha(1:500)抗体进行免疫印迹试验。Int J Cancer (2008) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
在蛋白印记实验中采用BD Biosciences单克隆反HIF-1抗体,来研究通过何种有效亚基识别机制来调节泛素连接酶的活性。J Biol Chem (2007) ncbi
未注明
  • 免疫印迹; 人类
为了研究人间质干细胞转化过程中对氧化磷酸化作用的依赖性,采用BD Biosciences公司的抗HIF1-alpha抗体进行免疫印迹实验。Proc Natl Acad Sci U S A (2007) ncbi
未注明
  • 免疫印迹; 人类
在蛋白印记实验中采用BD-Transduction Laboratories的稀释比1 : 500 HIF-1抗体,来研究SCH66336 是否能阻止消化道肿瘤细胞的血管生成。J Natl Cancer Inst (2005) ncbi
赛信通(上海)生物试剂有限公司
兔 单克隆(D43B5)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3434S)被用于免疫印迹在小鼠样品上浓度为1:1000. Sci Transl Med (2016) ncbi
兔 单克隆(D43B5)
  • 免疫印迹; 人类; 1:1000; 图4
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3434)被用于免疫印迹在人类样品上浓度为1:1000 (图4). J Cell Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell signaling, 3716S)被用于免疫印迹在人类样品上 (图1). Oncotarget (2015) ncbi
兔 单克隆(D43B5)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technology, 3434)被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图7
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technology, 3716)被用于免疫印迹在人类样品上 (图7). Autophagy (2015) ncbi
兔 单克隆(D43B5)
  • 免疫印迹; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3434)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Nat Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technology, 3716S)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technology, 3716)被用于免疫印迹在人类样品上. Int J Cancer (2015) ncbi
兔 单克隆(D43B5)
  • 免疫印迹; 人类; 图2a
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3434)被用于免疫印迹在人类样品上 (图2a). Genes Dev (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:200
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3716)被用于免疫印迹在人类样品上浓度为1:200. Phlebology (2012) ncbi
默克密理博中国
小鼠 单克隆(H1alpha67)默克密理博中国HIF-1甲抗体(EMD Millipore, MAB5382)被用于. J Exp Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
默克密理博中国HIF-1甲抗体(Millipore, 07-1585)被用于免疫印迹在人类样品上浓度为1:1000. Nat Commun (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 大鼠; 1:1000; 图 5
默克密理博中国HIF-1甲抗体(Millipore, MAB5382)被用于免疫印迹在大鼠样品上浓度为1:1000 (图 5). J Neurosci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
默克密理博中国HIF-1甲抗体(Millipore, ABE 279)被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2015) ncbi
兔 单克隆(EP1215Y)
  • 细胞化学; 大鼠; 1:1000
默克密理博中国HIF-1甲抗体(Millipore Bioscience, 04-1006)被用于免疫细胞化学在大鼠样品上浓度为1:1000. Acta Neuropathol Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
默克密理博中国HIF-1甲抗体(Merck Millipore, ABE279)被用于免疫印迹在人类样品上浓度为1:1000. Liver Int (2015) ncbi
未注明
  • 免疫沉淀; 人类
为了研究缺氧诱导因子(HIF)由氧的改变所导致的诱导,使用Chemicon公司抗HIF-1α 抗体进行免疫沉淀实验。BMC Cardiovasc Disord (2007) ncbi
西格玛奥德里奇
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:800; 图5
  • 免疫印迹; 小鼠; 1:800; 图6
  • 免疫组化; 人类; 图6
  • 免疫组化; 小鼠; 图6
西格玛奥德里奇HIF-1甲抗体(Sigma, H6536)被用于免疫印迹在人类样品上浓度为1:800 (图5) 和 在小鼠样品上浓度为1:800 (图6) 和 免疫组化在人类样品上 (图6) 和 在小鼠样品上 (图6). Nat Commun (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫沉淀; 小鼠
西格玛奥德里奇HIF-1甲抗体(Sigma Aldrich, 6536)被用于免疫沉淀在小鼠样品上. Kidney Int (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 1:1000; 图s12
西格玛奥德里奇HIF-1甲抗体(Sigma, H6536)被用于免疫印迹在小鼠样品上浓度为1:1000 (图s12). Antioxid Redox Signal (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 大鼠; 图6
西格玛奥德里奇HIF-1甲抗体(Sigma-Aldrich, H6536)被用于免疫印迹在大鼠样品上 (图6). J Biophotonics (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠
西格玛奥德里奇HIF-1甲抗体(Sigma-Aldrich, HPA001275)被用于免疫组化-冰冻切片在小鼠样品上. Neuroreport (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类
西格玛奥德里奇HIF-1甲抗体(Sigma-Aldrich, H6536)被用于免疫印迹在人类样品上. Surgery (2014) ncbi
安迪生物R&D
山羊 多克隆
  • 免疫印迹; 人类; 1:500; 图4
安迪生物R&DHIF-1甲抗体(R&D, AF1935)被用于免疫印迹在人类样品上浓度为1:500 (图4). Front Oncol (2016) ncbi
小鼠 单克隆(241809)
  • 免疫印迹; 人类; 1:1000; 图7a
安迪生物R&DHIF-1甲抗体(R&D Systems, MAB1536)被用于免疫印迹在人类样品上浓度为1:1000 (图7a). FASEB J (2016) ncbi
小鼠 单克隆(241809)
  • 免疫印迹; 小鼠; 1:1000; 图1
安迪生物R&DHIF-1甲抗体(R&D, MAB1536)被用于免疫印迹在小鼠样品上浓度为1:1000 (图1). Sci Rep (2015) ncbi
山羊 多克隆
  • 免疫印迹; 人类; 1:500; 图5
安迪生物R&DHIF-1甲抗体(R&D Systems, AF1935)被用于免疫印迹在人类样品上浓度为1:500 (图5). J Biol Chem (2015) ncbi
小鼠 单克隆(241809)
  • 免疫印迹; 人类; 1:1000
安迪生物R&DHIF-1甲抗体(R&D Systems, MAB1536)被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2015) ncbi
未注明
  • 免疫印迹; 人类
为了构建HIF-1α的稳定存在以及降解的实时构图,使用了RD Systems公司的anti-HIF-1α来进行免疫印迹实验。PLoS ONE (2009) ncbi
Bioss
兔 多克隆
  • 免疫组化-P; 人类; 1:500; 图1
  • 免疫印迹; 人类; 图5
BiossHIF-1甲抗体(Biosynthesis Biotechnology, bs0737R)被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图1) 和 免疫印迹在人类样品上 (图5). Oncol Rep (2015) ncbi
文章列表
  1. Valentina Masola et al. (2016). "Heparanase: A Potential New Factor Involved in the Renal Epithelial Mesenchymal Transition (EMT) Induced by Ischemia/Reperfusion (I/R) Injury".PMID 27467172
  2. Chihiro Takasaki et al. (2016). "Expression of hypoxia-inducible factor-1α affects tumor proliferation and antiapoptosis in surgically resected lung cancer".PMID 27446567
  3. J P Phelan et al. (2016). "Bile acids destabilise HIF-1α and promote anti-tumour phenotypes in cancer cell models".PMID 27416726
  4. X Li et al. (2016). "Quercetin alleviates pulmonary angiogenesis in a rat model of hepatopulmonary syndrome".PMID 27383124
  5. Ingrid Espinoza et al. (2016). "Hypoxia on the Expression of Hepatoma Upregulated Protein in Prostate Cancer Cells".PMID 27379206
  6. Shih Hung Tsai et al. (2016). "Inhibition of hypoxia inducible factor-1α attenuates abdominal aortic aneurysm progression through the down-regulation of matrix metalloproteinases".PMID 27363580
  7. Shiruyeh Schokrpur et al. (2016). "CRISPR-Mediated VHL Knockout Generates an Improved Model for Metastatic Renal Cell Carcinoma".PMID 27358011
  8. Jana Kudová et al. (2016). "HIF-1alpha Deficiency Attenuates the Cardiomyogenesis of Mouse Embryonic Stem Cells".PMID 27355368
  9. Lei Dai et al. (2016). "SARI inhibits angiogenesis and tumour growth of human colon cancer through directly targeting ceruloplasmin".PMID 27353863
  10. Jucimara Colombo et al. (2016). "Effects of melatonin on HIF-1α and VEGF expression and on the invasive properties of hepatocarcinoma cells".PMID 27347130
  11. Gesche Frohwitter et al. (2016). "Cytokeratin and protein expression patterns in squamous cell carcinoma of the oral cavity provide evidence for two distinct pathogenetic pathways".PMID 27347109
  12. Wenjun Zhao et al. (2016). "Metformin and resveratrol ameliorate muscle insulin resistance through preventing lipolysis and inflammation in hypoxic adipose tissue".PMID 27343375
  13. Grazia Maugeri et al. (2016). "PACAP and VIP Inhibit the Invasiveness of Glioblastoma Cells Exposed to Hypoxia through the Regulation of HIFs and EGFR Expression".PMID 27303300
  14. Alessia Lo Dico et al. (2016). "MiR675-5p Acts on HIF-1α to Sustain Hypoxic Responses: A New Therapeutic Strategy for Glioma".PMID 27279905
  15. Marco Mineo et al. (2016). "The Long Non-coding RNA HIF1A-AS2 Facilitates the Maintenance of Mesenchymal Glioblastoma Stem-like Cells in Hypoxic Niches".PMID 27264189
  16. Anna V Ivanina et al. (2016). "Intermittent hypoxia leads to functional reorganization of mitochondria and affects cellular bioenergetics in marine molluscs".PMID 27252455
  17. Ingo Spitzbarth et al. (2016). "Immunohistochemical and transcriptome analyses indicate complex breakdown of axonal transport mechanisms in canine distemper leukoencephalitis".PMID 27247850
  18. Sangbin Lim et al. (2016). "Immunoregulatory Protein B7-H3 Reprograms Glucose Metabolism in Cancer Cells by ROS-Mediated Stabilization of HIF1α".PMID 27197253
  19. Motoharu Ono et al. (2016). "Enhanced snoMEN Vectors Facilitate Establishment of GFP-HIF-1α Protein Replacement Human Cell Lines".PMID 27128805
  20. Xingbo Xu et al. (2016). "Hypoxia-induced endothelial-mesenchymal transition is associated with RASAL1 promoter hypermethylation in human coronary endothelial cells".PMID 27012941
  21. Suryatheja Ananthula et al. (2016). "Geminin overexpression-dependent recruitment and crosstalk with mesenchymal stem cells enhance aggressiveness in triple negative breast cancers".PMID 26989079
  22. Pradeep K Shukla et al. (2016). "Chronic ethanol feeding promotes azoxymethane and dextran sulfate sodium-induced colonic tumorigenesis potentially by enhancing mucosal inflammation".PMID 26951793
  23. Melanie Ruf et al. (2016). "PD-L1 expression is regulated by hypoxia inducible factor in clear cell renal cell carcinoma".PMID 26945902
  24. Saravanan S Karuppagounder et al. (2016). "Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models".PMID 26936506
  25. Fang Zhou et al. (2016). "SENP‑1 enhances hypoxia‑induced proliferation of rat pulmonary artery smooth muscle cells by regulating hypoxia‑inducible factor‑1α".PMID 26935971
  26. Isha H Jain et al. (2016). "Hypoxia as a therapy for mitochondrial disease".PMID 26917594
  27. Lauren W Wood et al. (2016). "Thyroid Transcription Factor 1 Reprograms Angiogenic Activities of Secretome".PMID 26912193
  28. Lena Edalat et al. (2016). "BK K+ channel blockade inhibits radiation-induced migration/brain infiltration of glioblastoma cells".PMID 26893360
  29. Hiroyuki Mori et al. (2016). "Induction of WNT11 by hypoxia and hypoxia-inducible factor-1α regulates cell proliferation, migration and invasion".PMID 26861754
  30. Ming Ding et al. (2016). "Secreted IGFBP5 mediates mTORC1-dependent feedback inhibition of IGF-1 signalling".PMID 26854565
  31. Pardeep Heir et al. (2016). "Oxygen-dependent Regulation of Erythropoietin Receptor Turnover and Signaling".PMID 26846855
  32. Weibo Luo et al. (2016). "PRDX2 and PRDX4 are negative regulators of hypoxia-inducible factors under conditions of prolonged hypoxia".PMID 26837221
  33. Tarah M Regan Anderson et al. (2016). "Breast Tumor Kinase (Brk/PTK6) Is Induced by HIF, Glucocorticoid Receptor, and PELP1-Mediated Stress Signaling in Triple-Negative Breast Cancer".PMID 26825173
  34. Grete Hasvold et al. (2016). "Hypoxia-induced alterations of G2 checkpoint regulators".PMID 26791779
  35. Xiao Yang Dai et al. (2016). "Nuclear translocation and activation of YAP by hypoxia contributes to the chemoresistance of SN38 in hepatocellular carcinoma cells".PMID 26771844
  36. Hawa Nalwoga et al. (2016). "Strong Expression of Hypoxia-Inducible Factor-1α (HIF-1α) Is Associated with Axl Expression and Features of Aggressive Tumors in African Breast Cancer".PMID 26760782
  37. Grazia Maugeri et al. (2016). "Parkin modulates expression of HIF-1α and HIF-3α during hypoxia in gliobastoma-derived cell lines in vitro".PMID 26742768
  38. Sang Bae Lee et al. (2016). "An ID2-dependent mechanism for VHL inactivation in cancer".PMID 26735018
  39. Yan Ming Xu et al. (2016). "Proteome profiling of cadmium-induced apoptosis by antibody array analyses in human bronchial epithelial cells".PMID 26716417
  40. Alain de Bruin et al. (2016). "Genome-wide analysis reveals NRP1 as a direct HIF1α-E2F7 target in the regulation of motorneuron guidance in vivo".PMID 26681691
  41. Shotaro Yamano et al. (2016). "Role of deltaNp63(pos) CD44v(pos) cells in the development of N-nitroso-tris-chloroethylurea-induced peripheral-type mouse lung squamous cell carcinomas".PMID 26663681
  42. Brian Ortmann et al. (2016). "CDK-dependent phosphorylation of PHD1 on serine 130 alters its substrate preference in cells".PMID 26644182
  43. Olivier G de Jong et al. (2016). "Exosomes from hypoxic endothelial cells have increased collagen crosslinking activity through up-regulation of lysyl oxidase-like 2".PMID 26612622
  44. Yasuhiko Murata et al. (2015). "Activation of mTORC1 under nutrient starvation conditions increases cellular radiosensitivity in human liver cancer cell lines, HepG2 and HuH6".PMID 26585486
  45. Markus Mandl et al. (2015). "The expression level of the transcription factor Aryl hydrocarbon receptor nuclear translocator (ARNT) determines cellular survival after radiation treatment".PMID 26572229
  46. Arnoldo Aquino-Galvez et al. (2016). "Effects of 2-methoxyestradiol on apoptosis and HIF-1α and HIF‑2α expression in lung cancer cells under normoxia and hypoxia".PMID 26548300
  47. Valentin David et al. (2016). "Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production".PMID 26535997
  48. Guomin Shen et al. (2015). "Adipose differentiation-related protein is not involved in hypoxia inducible factor-1-induced lipid accumulation under hypoxia".PMID 26498183
  49. Anja Konzack et al. (2015). "Mitochondrial Dysfunction Due to Lack of Manganese Superoxide Dismutase Promotes Hepatocarcinogenesis".PMID 26422659
  50. Yogesh Saini et al. (2015). "Loss of Hif-2α Rescues the Hif-1α Deletion Phenotype of Neonatal Respiratory Distress In Mice".PMID 26422241
  51. Cristina E Rodríguez et al. (2015). "Autophagy Protects from Trastuzumab-Induced Cytotoxicity in HER2 Overexpressing Breast Tumor Spheroids".PMID 26360292
  52. Samil Jung et al. (2015). "TRIP-Br1 oncoprotein inhibits autophagy, apoptosis, and necroptosis under nutrient/serum-deprived condition".PMID 26334958
  53. Bal Krishan Sharma et al. (2016). "Inhibitor of differentiation 1 transcription factor promotes metabolic reprogramming in hepatocellular carcinoma cells".PMID 26330493
  54. Ya Yang et al. (2015). "Expression of RAP1B is associated with poor prognosis and promotes an aggressive phenotype in gastric cancer".PMID 26329876
  55. Fumiaki Ochi et al. (2015). "Carbonic Anhydrase XII as an Independent Prognostic Factor in Advanced Esophageal Squamous Cell Carcinoma".PMID 26316888
  56. Ting Chung Wang et al. (2015). "Characterization of highly proliferative secondary tumor clusters along host blood vessels in malignant glioma".PMID 26299849
  57. Filipa Morais-Santos et al. (2015). "Targeting lactate transport suppresses in vivo breast tumour growth".PMID 26203664
  58. D Chen et al. (2015). "MiR-373 drives the epithelial-to-mesenchymal transition and metastasis via the miR-373-TXNIP-HIF1α-TWIST signaling axis in breast cancer".PMID 26196741
  59. An Ping Lin et al. (2015). "D2HGDH regulates alpha-ketoglutarate levels and dioxygenase function by modulating IDH2".PMID 26178471
  60. I Kuan Wang et al. (2015). "MiR-20a-5p mediates hypoxia-induced autophagy by targeting ATG16L1 in ischemic kidney injury".PMID 26165754
  61. Heidi Kontro et al. (2015). "DAPIT Over-Expression Modulates Glucose Metabolism and Cell Behaviour in HEK293T Cells".PMID 26161955
  62. Xin yu Yang et al. (2015). "Energy Metabolism Disorder as a Contributing Factor of Rheumatoid Arthritis: A Comparative Proteomic and Metabolomic Study".PMID 26147000
  63. Lifeng Jing et al. (2015). "Akt/hypoxia-inducible factor-1α signaling deficiency compromises skin wound healing in a type 1 diabetes mouse model".PMID 26136949
  64. Lu Yang et al. (2015). "Inhibition of ERBB2-overexpressing Tumors by Recombinant Human Prolidase and Its Enzymatically Inactive Mutant".PMID 26086037
  65. Xian Peng Li et al. (2015). "Co-expression of CXCL8 and HIF-1α is associated with metastasis and poor prognosis in hepatocellular carcinoma".PMID 26078356
  66. Liang Xie et al. (2015). "PHD2/3-dependent hydroxylation tunes cardiac response to β-adrenergic stress via phospholamban".PMID 26075818
  67. Hatice Yorulmaz et al. (2015). "Effect of simvastatin on mitochondrial enzyme activities, ghrelin, hypoxia-inducible factor 1α in hepatic tissue during early phase of sepsis".PMID 26064259
  68. Judit Espana-Agusti et al. (2015). "A minimally invasive, lentiviral based method for the rapid and sustained genetic manipulation of renal tubules".PMID 26046460
  69. Thitinee Vanichapol et al. (2015). "Hypoxia enhances cholangiocarcinoma invasion through activation of hepatocyte growth factor receptor and the extracellular signal‑regulated kinase signaling pathway".PMID 26018028
  70. Yutaka Tojo et al. (2015). "Hypoxia Signaling Cascade for Erythropoietin Production in Hepatocytes".PMID 26012551
  71. Parveen Kumar et al. (2015). "Myeloid translocation gene-16 co-repressor promotes degradation of hypoxia-inducible factor 1".PMID 25974097
  72. Luigi Formisano et al. (2015). "Sp3/REST/HDAC1/HDAC2 Complex Represses and Sp1/HIF-1/p300 Complex Activates ncx1 Gene Transcription, in Brain Ischemia and in Ischemic Brain Preconditioning, by Epigenetic Mechanism".PMID 25972164
  73. João Vasco Ferreira et al. (2015). "K63 linked ubiquitin chain formation is a signal for HIF1A degradation by Chaperone-Mediated Autophagy".PMID 25958982
  74. Martina Tholen et al. (2015). "Stress-resistant Translation of Cathepsin L mRNA in Breast Cancer Progression".PMID 25957406
  75. Hongzoo Park et al. (2015). "3,3'-Diindolylmethane inhibits VEGF expression through the HIF-1α and NF-κB pathways in human retinal pigment epithelial cells under chemical hypoxic conditions".PMID 25955241
  76. Gergely Bánfi et al. (2015). "Changes of protein expression in prostate cancer having lost its androgen sensitivity".PMID 25953123
  77. Samira M Sadowski et al. (2015). "Torin2 targets dysregulated pathways in anaplastic thyroid cancer and inhibits tumor growth and metastasis".PMID 25945839
  78. Mustafa Guven et al. (2015). "The Neuroprotective Effect of Coumaric Acid on Spinal Cord Ischemia/Reperfusion Injury in Rats".PMID 25943038
  79. Sanmitra Basu et al. (2015). "A study of molecular signals deregulating mismatch repair genes in prostate cancer compared to benign prostatic hyperplasia".PMID 25938433
  80. L Lemaire et al. (2015). "In vitro expansion of U87-MG human glioblastoma cells under hypoxic conditions affects glucose metabolism and subsequent in vivo growth".PMID 25934335
  81. Byung Hak Kim et al. (2015). "Imidazole-based alkaloid derivative LCB54-0009 suppresses ocular angiogenesis and lymphangiogenesis in models of experimental retinopathy and corneal neovascularization".PMID 25917462
  82. Shuxi Qiao et al. (2015). "A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity".PMID 25916556
  83. Nelma Pértega-Gomes et al. (2015). "A glycolytic phenotype is associated with prostate cancer progression and aggressiveness: a role for monocarboxylate transporters as metabolic targets for therapy".PMID 25875424
  84. Aijia Shang et al. (2015). "Upregulation of neuroglobin expression and changes in serum redox indices in a rat model of middle cerebral artery occlusion".PMID 25847303
  85. Yu Sun et al. (2015). "Dose-dependent effects of allopurinol on human foreskin fibroblast cells and human umbilical vein endothelial cells under hypoxia".PMID 25830774
  86. Shenghong Ma et al. (2015). "D-2-hydroxyglutarate is essential for maintaining oncogenic property of mutant IDH-containing cancer cells but dispensable for cell growth".PMID 25825982
  87. Daniel Verduzco et al. (2015). "Intermittent hypoxia selects for genotypes and phenotypes that increase survival, invasion, and therapy resistance".PMID 25811878
  88. Han Seok Koh et al. (2015). "The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia".PMID 25790768
  89. Janani Panneerselvam et al. (2015). "IL-24 inhibits lung cancer cell migration and invasion by disrupting the SDF-1/CXCR4 signaling axis".PMID 25775124
  90. Jonas J Staudacher et al. (2015). "Hypoxia-induced gene expression results from selective mRNA partitioning to the endoplasmic reticulum".PMID 25753659
  91. Joachim Albers et al. (2015). "A versatile modular vector system for rapid combinatorial mammalian genetics".PMID 25751063
  92. Hiroko Kato et al. (2014). "Hypoxia induces an undifferentiated phenotype of oral keratinocytes in vitro".PMID 25720390
  93. Lifang Yang et al. (2015). "EBV-LMP1 targeted DNAzyme enhances radiosensitivity by inhibiting tumor angiogenesis via the JNKs/HIF-1 pathway in nasopharyngeal carcinoma".PMID 25714020
  94. Huey Wen Hsiao et al. (2015). "Deltex1 antagonizes HIF-1α and sustains the stability of regulatory T cells in vivo".PMID 25695215
  95. Zhiping He et al. (2015). "Selecting bioactive phenolic compounds as potential agents to inhibit proliferation and VEGF expression in human ovarian cancer cells".PMID 25663929
  96. Chao Yu et al. (2015). "Hypoxia disrupts the expression levels of circadian rhythm genes in hepatocellular carcinoma".PMID 25591621
  97. Ganesh M Shankar et al. (2014). "Sporadic hemangioblastomas are characterized by cryptic VHL inactivation".PMID 25589003
  98. Lorine J Wilkinson et al. (2015). "Renal developmental defects resulting from in utero hypoxia are associated with suppression of ureteric β-catenin signaling".PMID 25587709
  99. Sharon Mudie et al. (2014). "PITX1, a specificity determinant in the HIF-1α-mediated transcriptional response to hypoxia".PMID 25558831
  100. Hongzhi Zheng et al. (2015). "CNC-bZIP protein Nrf1-dependent regulation of glucose-stimulated insulin secretion".PMID 25556857
  101. Stefania Cannito et al. (2015). "Hypoxia up-regulates SERPINB3 through HIF-2α in human liver cancer cells".PMID 25544768
  102. Yu Hsing Hung et al. (2016). "Inhibitor of Differentiation-1 and Hypoxia-Inducible Factor-1 Mediate Sonic Hedgehog Induction by Amyloid Beta-Peptide in Rat Cortical Neurons".PMID 25502463
  103. D C Singleton et al. (2015). "Hypoxic regulation of RIOK3 is a major mechanism for cancer cell invasion and metastasis".PMID 25486436
  104. Sun Jung Cho et al. (2015). "SUMO1 promotes Aβ production via the modulation of autophagy".PMID 25484073
  105. Sascha Rutz et al. (2015). "Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells".PMID 25470037
  106. Jared M Fine et al. (2015). "Intranasal deferoxamine engages multiple pathways to decrease memory loss in the APP/PS1 model of amyloid accumulation".PMID 25445365
  107. Biao Ma et al. (2015). "Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase".PMID 25438054
  108. Anne Theres Henze et al. (2014). "Loss of PHD3 allows tumours to overcome hypoxic growth inhibition and sustain proliferation through EGFR".PMID 25420773
  109. Jennifer Turner et al. (2014). "Metabolic profiling and flux analysis of MEL-2 human embryonic stem cells during exponential growth at physiological and atmospheric oxygen concentrations".PMID 25412279
  110. Byung Soo Kong et al. (2014). "G protein-coupled estrogen receptor-1 is involved in the protective effect of protocatechuic aldehyde against endothelial dysfunction".PMID 25411835
  111. Qi Lei et al. (2014). "Amelioration of hypoxia and LPS-induced intestinal epithelial barrier dysfunction by emodin through the suppression of the NF-κB and HIF-1α signaling pathways".PMID 25318952
  112. Sung Gyun Kim et al. (2014). "Bilirubin activates transcription of HIF-1α in human proximal tubular cells cultured in the physiologic oxygen content".PMID 25317019
  113. Kyriaki Bakirtzi et al. (2014). "The neurotensin-HIF-1α-VEGFα axis orchestrates hypoxia, colonic inflammation, and intestinal angiogenesis".PMID 25307345
  114. Kaitlin J Basham et al. (2015). "Dioxin exposure blocks lactation through a direct effect on mammary epithelial cells mediated by the aryl hydrocarbon receptor repressor".PMID 25265996
  115. Magdalena H Menhofer et al. (2014). "In vitro and in vivo characterization of the actin polymerizing compound chondramide as an angiogenic inhibitor".PMID 25239826
  116. Asheesh Gupta et al. (2015). "Superpulsed (Ga-As, 904 nm) low-level laser therapy (LLLT) attenuates inflammatory response and enhances healing of burn wounds".PMID 25207838
  117. Xue Song Liu et al. (2014). "ZBTB7A acts as a tumor suppressor through the transcriptional repression of glycolysis".PMID 25184678
  118. Iryna Kolosenko et al. (2015). "Cell crowding induces interferon regulatory factor 9, which confers resistance to chemotherapeutic drugs".PMID 25156627
  119. Zhi Feng Miao et al. (2014). "Peritoneal milky spots serve as a hypoxic niche and favor gastric cancer stem/progenitor cell peritoneal dissemination through hypoxia-inducible factor 1α".PMID 25142304
  120. Min Xu et al. (2014). "An acetate switch regulates stress erythropoiesis".PMID 25108527
  121. Tao Huang et al. (2014). "Hypoxia-inducible factor-1α upregulation in microglia following hypoxia protects against ischemia-induced cerebral infarction".PMID 25089804
  122. Jun Ueda et al. (2014). "The hypoxia-inducible epigenetic regulators Jmjd1a and G9a provide a mechanistic link between angiogenesis and tumor growth".PMID 25071150
  123. W Wei et al. (2014). "Expression of hypoxia-regulated genes and glycometabolic genes in placenta from patients with intrahepatic cholestasis of pregnancy".PMID 25063250
  124. Paul Mésange et al. (2014). "Intrinsic bevacizumab resistance is associated with prolonged activation of autocrine VEGF signaling and hypoxia tolerance in colorectal cancer cells and can be overcome by nintedanib, a small molecule angiokinase inhibitor".PMID 25015210
  125. Casper Hempel et al. (2014). "Systemic and Cerebral Vascular Endothelial Growth Factor Levels Increase in Murine Cerebral Malaria along with Increased Calpain and Caspase Activity and Can be Reduced by Erythropoietin Treatment".PMID 24995009
  126. Xingnan Zheng et al. (2014). "Prolyl hydroxylation by EglN2 destabilizes FOXO3a by blocking its interaction with the USP9x deubiquitinase".PMID 24990963
  127. Ilkka Paatero et al. (2014). "Hypoxia-inducible factor-1α induces ErbB4 signaling in the differentiating mammary gland".PMID 24966332
  128. Chen Wang et al. (2014). "Local injection of deferoxamine improves neovascularization in ischemic diabetic random flap by increasing HIF-1α and VEGF expression".PMID 24963878
  129. Guang Jin et al. (2014). "Development of a novel neuroprotective strategy: combined treatment with hypothermia and valproic acid improves survival in hypoxic hippocampal cells".PMID 24950983
  130. L M A Schreurs et al. (2014). "Prognostic impact of clinicopathological features and expression of biomarkers related to (18)F-FDG uptake in esophageal cancer".PMID 24939624
  131. Prabhu Ramamoorthy et al. (2014). "Ischemia induces different levels of hypoxia inducible factor-1α protein expression in interneurons and pyramidal neurons".PMID 24887017
  132. Ajaz Ahmad Waza et al. (2014). "Protein kinase C (PKC) mediated interaction between conexin43 (Cx43) and K(+)(ATP) channel subunit (Kir6.1) in cardiomyocyte mitochondria: Implications in cytoprotection against hypoxia induced cell apoptosis".PMID 24815185
  133. Weichuan Wu et al. (2014). "A pre-injury high ethanol intake in rats promotes brain edema following traumatic brain injury".PMID 24814385
  134. Baomin Li et al. (2014). "Downregulation of the Werner syndrome protein induces a metabolic shift that compromises redox homeostasis and limits proliferation of cancer cells".PMID 24757718
  135. Carlos A Schaffner et al. (2015). "The organic solute transporters alpha and beta are induced by hypoxia in human hepatocytes".PMID 24703425
  136. Andrew S Zimmermann et al. (2014). "Epidermal or dermal specific knockout of PHD-2 enhances wound healing and minimizes ischemic injury".PMID 24695462
  137. John P Fahrenbach et al. (2014). "Abcc9 is required for the transition to oxidative metabolism in the newborn heart".PMID 24648545
  138. Volkan Aksu et al. (2015). "The effects of sildenafil and n-acetylcysteine on ischemia and reperfusion injury in gastrocnemius muscle and femoral artery endothelium".PMID 24642934
  139. Xuejun Sun et al. (2014). "Preconditioning of mesenchymal stem cells by sevoflurane to improve their therapeutic potential".PMID 24599264
  140. Mari Ekman et al. (2014). "HIF-mediated metabolic switching in bladder outlet obstruction mitigates the relaxing effect of mitochondrial inhibition".PMID 24589856
  141. J M Cheverud et al. (2014). "Fine-mapping quantitative trait loci affecting murine external ear tissue regeneration in the LG/J by SM/J advanced intercross line".PMID 24569637
  142. Johnny A Sena et al. (2014). "HIFs enhance the transcriptional activation and splicing of adrenomedullin".PMID 24523299
  143. Kotaro Takeda et al. (2014). "Improved vascular survival and growth in the mouse model of hindlimb ischemia by a remote signaling mechanism".PMID 24440788
  144. Jennifer R Kulzer et al. (2014). "A common functional regulatory variant at a type 2 diabetes locus upregulates ARAP1 expression in the pancreatic beta cell".PMID 24439111
  145. Ivraym B Barsoum et al. (2014). "A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells".PMID 24336068
  146. Hao Ding et al. (2014). "Dimethyloxaloylglycine increases the bone healing capacity of adipose-derived stem cells by promoting osteogenic differentiation and angiogenic potential".PMID 24328551
  147. Veli Pekka Ronkainen et al. (2014). "Hypoxia-inducible factor 1-induced G protein-coupled receptor 35 expression is an early marker of progressive cardiac remodelling".PMID 24095869
  148. Larissa Bazela Maschio et al. (2014). "Immunohistochemical investigation of the angiogenic proteins VEGF, HIF-1α and CD34 in invasive ductal carcinoma of the breast".PMID 23899963
  149. Liwei Xie et al. (2013). "Transcription factors Sp1 and Hif2α mediate induction of the copper-transporting ATPase (Atp7a) gene in intestinal epithelial cells during hypoxia".PMID 23814049
  150. Luke Gammon et al. (2013). "Sub-sets of cancer stem cells differ intrinsically in their patterns of oxygen metabolism".PMID 23638097
  151. Paola Avena et al. (2013). "Compartment-specific activation of PPARγ governs breast cancer tumor growth, via metabolic reprogramming and symbiosis".PMID 23574724
  152. Wei dong Cao et al. (2014). "Relationship of 14-3-3zeta (ζ), HIF-1α, and VEGF expression in human brain gliomas".PMID 23358800
  153. John T Isaacs et al. (2013). "Tasquinimod Is an Allosteric Modulator of HDAC4 survival signaling within the compromised cancer microenvironment".PMID 23149916
  154. Ahmed F Salem et al. (2012). "Downregulation of stromal BRCA1 drives breast cancer tumor growth via upregulation of HIF-1α, autophagy and ketone body production".PMID 23047605
  155. Chih Hsien Wu et al. (2012). "Nickel-induced epithelial-mesenchymal transition by reactive oxygen species generation and E-cadherin promoter hypermethylation".PMID 22648416
  156. Yueh Ling Hsieh et al. (2012). "Low-level laser therapy alleviates neuropathic pain and promotes function recovery in rats with chronic constriction injury: possible involvements in hypoxia-inducible factor 1α (HIF-1α)".PMID 22351621
  157. J D Lee et al. (2012). "Increased expression of hypoxia-inducible factor-1α and metallothionein in varicocele and varicose veins".PMID 22345328
  158. Jixin Cui et al. (2010). "Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced by a bacterial effector family".PMID 20688984
  159. Victoria Wang et al. (2010). "Characterization of the activation of protein tyrosine phosphatase, receptor-type, Z polypeptide 1 (PTPRZ1) by hypoxia inducible factor-2 alpha".PMID 20224786
  160. Kasper M A Rouschop et al. (2010). "The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5".PMID 20038797
  161. Yair Benita et al. (2009). "An integrative genomics approach identifies Hypoxia Inducible Factor-1 (HIF-1)-target genes that form the core response to hypoxia".PMID 19491311
  162. Ekaterina Moroz et al. (2009). "Real-time imaging of HIF-1alpha stabilization and degradation".PMID 19347037
  163. Shu Yuan Liao et al. (2009). "Expression of transmembrane carbonic anhydrases, CAIX and CAXII, in human development".PMID 19291313
  164. Shuhong Guo et al. (2009). "Specific inhibition of hypoxia inducible factor 1 exaggerates cell injury induced by in vitro ischemia through deteriorating cellular redox environment".PMID 19183269
  165. Kathleen A O'Hagan et al. (2009). "PGC-1alpha is coupled to HIF-1alpha-dependent gene expression by increasing mitochondrial oxygen consumption in skeletal muscle cells".PMID 19179292
  166. Jonathan Clarhaut et al. (2009). "ZEB-1, a repressor of the semaphorin 3F tumor suppressor gene in lung cancer cells".PMID 19177200
  167. KangAe Lee et al. (2009). "Anthracycline chemotherapy inhibits HIF-1 transcriptional activity and tumor-induced mobilization of circulating angiogenic cells".PMID 19168635
  168. L Khandrika et al. (2009). "Hypoxia-associated p38 mitogen-activated protein kinase-mediated androgen receptor activation and increased HIF-1alpha levels contribute to emergence of an aggressive phenotype in prostate cancer".PMID 19151763
  169. Wenyue Sun et al. (2009). "Mitochondrial mutations contribute to HIF1alpha accumulation via increased reactive oxygen species and up-regulated pyruvate dehydrogenease kinase 2 in head and neck squamous cell carcinoma".PMID 19147752
  170. Woo Young Kim et al. (2008). "A novel derivative of the natural agent deguelin for cancer chemoprevention and therapy".PMID 19139008
  171. Abraham Schneider et al. (2008). "Hypoxia-induced energy stress inhibits the mTOR pathway by activating an AMPK/REDD1 signaling axis in head and neck squamous cell carcinoma".PMID 18953439
  172. Gabriela Alexandru et al. (2008). "UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1alpha turnover".PMID 18775313
  173. Kristen J Champion et al. (2008). "Endothelial function of von Hippel-Lindau tumor suppressor gene: control of fibroblast growth factor receptor signaling".PMID 18559510
  174. S Mahajan et al. (2008). "Hypoxia-inducible factor-2alpha regulates the expression of TRAIL receptor DR5 in renal cancer cells".PMID 18544564
  175. Yutaka Maeda et al. (2008). "CUL2 is required for the activity of hypoxia-inducible factor and vasculogenesis".PMID 18372249
  176. Nuo Yang et al. (2008). "Transcriptional regulation of PIK3CA oncogene by NF-kappaB in ovarian cancer microenvironment".PMID 18335034
  177. Jacques E Riby et al. (2008). "3,3'-diindolylmethane reduces levels of HIF-1alpha and HIF-1 activity in hypoxic cultured human cancer cells".PMID 18329003
  178. Arkadiusz Surazynski et al. (2008). "Extracellular matrix and HIF-1 signaling: the role of prolidase".PMID 17999410
  179. Eng Hui Chew et al. (2007). "Substrate-mediated regulation of cullin neddylation".PMID 17439941
  180. Juan M Funes et al. (2007). "Transformation of human mesenchymal stem cells increases their dependency on oxidative phosphorylation for energy production".PMID 17384149
  181. Chandrashekhar D Kamat et al. (2007). "A long-term "memory" of HIF induction in response to chronic mild decreased oxygen after oxygen normalization".PMID 17233898
  182. Frederick Groenman et al. (2007). "Hypoxia-inducible factors in the first trimester human lung".PMID 17189520
  183. David Z Qian et al. (2006). "Targeting tumor angiogenesis with histone deacetylase inhibitors: the hydroxamic acid derivative LBH589".PMID 16428510
  184. Ji Youn Han et al. (2005). "Hypoxia-inducible factor 1alpha and antiangiogenic activity of farnesyltransferase inhibitor SCH66336 in human aerodigestive tract cancer".PMID 16145048