这是一篇来自已证抗体库的有关人类 HIF-1甲 (HIF-1 alpha) 的综述,是根据164篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合HIF-1甲 抗体。
HIF-1甲 同义词: HIF-1-alpha; HIF-1A; HIF-1alpha; HIF1; HIF1-ALPHA; MOP1; PASD8; bHLHe78; hypoxia-inducible factor 1-alpha; ARNT interacting protein; PAS domain-containing protein 8; basic-helix-loop-helix-PAS protein MOP1; class E basic helix-loop-helix protein 78; hypoxia inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor); hypoxia-inducible factor 1 alpha isoform I.3; hypoxia-inducible factor1alpha; member of PAS protein 1; member of PAS superfamily 1

基因敲除验证
Novus Biologicals小鼠 单克隆(H1alpha67)
  • 免疫印迹 (基因敲减); 人类; 图3
  • 免疫印迹 (基因敲除); 小鼠; 图3
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫印迹 (基因敲减)在人类样品上 (图3) 和 免疫印迹 (基因敲除)在小鼠样品上 (图3). Sci Rep (2016) ncbi
Novus Biologicals兔 多克隆
  • 免疫印迹 (基因敲除); 小鼠; 图3
  • 免疫印迹 (基因敲减); 人类; 图3
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于免疫印迹 (基因敲除)在小鼠样品上 (图3) 和 免疫印迹 (基因敲减)在人类样品上 (图3). Sci Rep (2016) ncbi
Novus Biologicals
小鼠 单克隆(H1alpha67)
  • 免疫组化-P; 人类; 1:50; 图1
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图1). Mol Clin Oncol (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 1:500; 图5
  • 细胞化学; 小鼠; 1:100; 图1
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, H1alpha67)被用于免疫印迹在小鼠样品上浓度为1:500 (图5) 和 免疫细胞化学在小鼠样品上浓度为1:100 (图1). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 细胞化学; 小鼠; 1:100; 图1
  • 免疫印迹; 小鼠; 1:500; 图5
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, H1alpha67)被用于免疫细胞化学在小鼠样品上浓度为1:100 (图1) 和 免疫印迹在小鼠样品上浓度为1:500 (图5). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 1:500; 图5
  • 细胞化学; 小鼠; 1:100; 图1
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, H1alpha67)被用于免疫印迹在小鼠样品上浓度为1:500 (图5) 和 免疫细胞化学在小鼠样品上浓度为1:100 (图1). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 细胞化学; 小鼠; 1:100; 图1
  • 免疫印迹; 小鼠; 1:500; 图5
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, H1alpha67)被用于免疫细胞化学在小鼠样品上浓度为1:100 (图1) 和 免疫印迹在小鼠样品上浓度为1:500 (图5). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 1:500; 图5
  • 细胞化学; 小鼠; 1:100; 图1
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, H1alpha67)被用于免疫印迹在小鼠样品上浓度为1:500 (图5) 和 免疫细胞化学在小鼠样品上浓度为1:100 (图1). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 细胞化学; 小鼠; 1:100; 图1
  • 免疫印迹; 小鼠; 1:500; 图5
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, H1alpha67)被用于免疫细胞化学在小鼠样品上浓度为1:100 (图1) 和 免疫印迹在小鼠样品上浓度为1:500 (图5). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 1:500; 图5
  • 细胞化学; 小鼠; 1:100; 图1
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, H1alpha67)被用于免疫印迹在小鼠样品上浓度为1:500 (图5) 和 免疫细胞化学在小鼠样品上浓度为1:100 (图1). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 细胞化学; 小鼠; 1:100; 图1
  • 免疫印迹; 小鼠; 1:500; 图5
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, H1alpha67)被用于免疫细胞化学在小鼠样品上浓度为1:100 (图1) 和 免疫印迹在小鼠样品上浓度为1:500 (图5). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 1:500; 图5
  • 细胞化学; 小鼠; 1:100; 图1
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, H1alpha67)被用于免疫印迹在小鼠样品上浓度为1:500 (图5) 和 免疫细胞化学在小鼠样品上浓度为1:100 (图1). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 细胞化学; 小鼠; 1:100; 图1
  • 免疫印迹; 小鼠; 1:500; 图5
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, H1alpha67)被用于免疫细胞化学在小鼠样品上浓度为1:100 (图1) 和 免疫印迹在小鼠样品上浓度为1:500 (图5). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 细胞化学; 小鼠; 1:100; 图1
  • 免疫印迹; 小鼠; 1:500; 图5
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, H1alpha67)被用于免疫细胞化学在小鼠样品上浓度为1:100 (图1) 和 免疫印迹在小鼠样品上浓度为1:500 (图5). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 1:500; 图5
  • 细胞化学; 小鼠; 1:100; 图1
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, H1alpha67)被用于免疫印迹在小鼠样品上浓度为1:500 (图5) 和 免疫细胞化学在小鼠样品上浓度为1:100 (图1). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:500; 图1B
  • 免疫组化; 人类; 图1B
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于免疫印迹在人类样品上浓度为1:500 (图1B) 和 免疫组化在人类样品上 (图1B). Front Pharmacol (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-P; 小鼠; 1:100; 图4
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图4). Theranostics (2016) ncbi
兔 多克隆
  • 免疫组化-P; 狗; 1:500; 图5
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于免疫组化-石蜡切片在狗样品上浓度为1:500 (图5). Brain Behav (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 图4
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于免疫组化在人类样品上 (图4). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 图3
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB-100-449)被用于免疫组化-冰冻切片在小鼠样品上 (图3). BMC Cancer (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于免疫印迹在人类样品上 (图1). Int J Cancer (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图5
Novus BiologicalsHIF-1甲抗体(Novus, NB100-479)被用于免疫印迹在大鼠样品上浓度为1:1000 (图5). Mol Med Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹 (基因敲减); 人类; 图3
  • 免疫印迹 (基因敲除); 小鼠; 图3
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫印迹 (基因敲减)在人类样品上 (图3) 和 免疫印迹 (基因敲除)在小鼠样品上 (图3). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹 (基因敲除); 小鼠; 图3
  • 免疫印迹 (基因敲减); 人类; 图3
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于免疫印迹 (基因敲除)在小鼠样品上 (图3) 和 免疫印迹 (基因敲减)在人类样品上 (图3). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于免疫印迹在人类样品上 (图2a). Cancer Res (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:500; 图3a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫印迹在人类样品上浓度为1:500 (图3a). Cell Tissue Res (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:500
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫印迹在人类样品上浓度为1:500. Nature (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-P; 小鼠; 1:200; 图s5
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图s5). Cancer Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
Novus BiologicalsHIF-1甲抗体(Novus, NB100-134)被用于免疫印迹在人类样品上 (图1). J Cell Mol Med (2016) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:100; 图4
  • 免疫印迹; 人类; 1:500; 图3
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于免疫细胞化学在人类样品上浓度为1:100 (图4) 和 免疫印迹在人类样品上浓度为1:500 (图3). Oncol Rep (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:200; 图9A
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-449)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图9A). Antioxid Redox Signal (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:250; 图s1
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:250 (图s1). PLoS ONE (2015) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-P; 人类; 图2
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, ESEE122)被用于免疫组化-石蜡切片在人类样品上 (图2). J Cancer (2015) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-P; 人类; 图2
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, ESEE122)被用于免疫组化-石蜡切片在人类样品上 (图2). J Cancer (2015) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-P; 人类; 图2
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, ESEE122)被用于免疫组化-石蜡切片在人类样品上 (图2). J Cancer (2015) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-P; 人类; 图2
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, ESEE122)被用于免疫组化-石蜡切片在人类样品上 (图2). J Cancer (2015) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-P; 人类; 图2
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, ESEE122)被用于免疫组化-石蜡切片在人类样品上 (图2). J Cancer (2015) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-P; 人类; 图2
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, ESEE122)被用于免疫组化-石蜡切片在人类样品上 (图2). J Cancer (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:2000
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于免疫印迹在人类样品上浓度为1:2000. Life Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图1e
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于免疫印迹在大鼠样品上 (图1e). J Clin Invest (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:100
Novus BiologicalsHIF-1甲抗体(Novus, NB100-479)被用于免疫组化在大鼠样品上浓度为1:100. Int J Clin Exp Med (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:500
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫印迹在人类样品上浓度为1:500. Sci Rep (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 图4c
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫印迹在人类样品上 (图4c). Int J Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-449)被用于免疫印迹在小鼠样品上浓度为1:1000. Nat Commun (2015) ncbi
兔 多克隆
  • ChIP; 小鼠; 图2
Novus BiologicalsHIF-1甲抗体(Novus, NB100-134)被用于染色质免疫沉淀 在小鼠样品上 (图2). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus, NB100-479)被用于免疫印迹在小鼠样品上. J Clin Invest (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于免疫印迹在人类样品上浓度为1:1000. Cells Tissues Organs (2014) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化; 人类
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-131)被用于. Acta Neuropathol Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:600
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于免疫印迹在小鼠样品上浓度为1:600. Mol Neurobiol (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus, NB100-105)被用于免疫印迹在小鼠样品上. Nature (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于免疫印迹在小鼠样品上. Neurosci Lett (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 1:1000
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫印迹在小鼠样品上浓度为1:1000. Neuroreport (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus, NB100-479)被用于免疫印迹在小鼠样品上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(ESEE122)
  • 免疫印迹; 小鼠; 1:2000; 图2
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-131A1)被用于免疫印迹在小鼠样品上浓度为1:2000 (图2). Front Immunol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4a
  • 免疫沉淀; 人类; 图2a
Novus BiologicalsHIF-1甲抗体(Novus, NB100-479)被用于免疫印迹在人类样品上 (图4a) 和 免疫沉淀在人类样品上 (图2a). Genes Dev (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 细胞化学; 大鼠; 1:200
Novus BiologicalsHIF-1甲抗体(Novus Biological, NB-100-123)被用于免疫细胞化学在大鼠样品上浓度为1:200. Acta Neuropathol Commun (2014) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:100; 图4a
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, 100-479)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图4a). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于免疫印迹在小鼠样品上. FASEB J (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-479)被用于免疫印迹在大鼠样品上浓度为1:500. Lab Invest (2014) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-134)被用于免疫组化-石蜡切片在小鼠样品上. Am J Pathol (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 大鼠
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫印迹在大鼠样品上. J Biol Chem (2013) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类
Novus BiologicalsHIF-1甲抗体(Novus, NB100-123)被用于免疫印迹在人类样品上. Cell Cycle (2012) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 大鼠; 1:500
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB100-105)被用于免疫印迹在大鼠样品上浓度为1:500. J Comp Neurol (2012) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-P; 人类; 1:200
Novus BiologicalsHIF-1甲抗体(Novus Biologicals, NB 100-105)被用于免疫组化-石蜡切片在人类样品上浓度为1:200. J Histochem Cytochem (2007) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(mgc3)
  • 细胞化学; 人类; 图1
艾博抗(上海)贸易有限公司HIF-1甲抗体(abcam, ab16066)被用于免疫细胞化学在人类样品上 (图1). BMC Cancer (2016) ncbi
兔 多克隆
  • ChIP-Seq; 人类; 图2
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab2185)被用于ChIP-Seq在人类样品上 (图2). Nucleic Acids Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图6
艾博抗(上海)贸易有限公司HIF-1甲抗体(abcam, ab2185)被用于免疫印迹在小鼠样品上 (图6). Kidney Int (2016) ncbi
兔 多克隆
  • ChIP; 人类; 图2
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab2185)被用于染色质免疫沉淀 在人类样品上 (图2). Mol Med Rep (2015) ncbi
兔 单克隆(EP1215Y)
  • 免疫印迹; 大鼠; 1:200; 图1
艾博抗(上海)贸易有限公司HIF-1甲抗体(abcam, ab51608)被用于免疫印迹在大鼠样品上浓度为1:200 (图1). Mol Med Rep (2015) ncbi
小鼠 单克隆(ESEE122)
  • 免疫印迹; 人类; 1:1000; 图3
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab8366)被用于免疫印迹在人类样品上浓度为1:1000 (图3). PLoS ONE (2015) ncbi
兔 单克隆(EP1215Y)
  • 免疫组化-P; 人类; 1:100
  • 细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab51608)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 和 免疫细胞化学在人类样品上浓度为1:100. Mol Med Rep (2015) ncbi
兔 多克隆
  • ChIP; 人类; 图5
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab2185)被用于染色质免疫沉淀 在人类样品上 (图5). PLoS ONE (2015) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化; 人类; 1:500; 图6c
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab8366)被用于免疫组化在人类样品上浓度为1:500 (图6c). Oncotarget (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab1)被用于免疫印迹在人类样品上. Br J Pharmacol (2015) ncbi
兔 单克隆(EP1215Y)
  • 免疫印迹; 大鼠; 1:500; 图6
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab51608)被用于免疫印迹在大鼠样品上浓度为1:500 (图6). Mol Med Rep (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 1:500
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab1)被用于免疫组化在人类样品上浓度为1:500. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab2185)被用于免疫印迹在人类样品上浓度为1:500. Am J Pathol (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-P; 人类; 1:200
  • 免疫印迹; 人类; 1:5000
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab1)被用于免疫组化-石蜡切片在人类样品上浓度为1:200 和 免疫印迹在人类样品上浓度为1:5000. Stem Cells (2014) ncbi
兔 单克隆(EP1215Y)
  • 免疫组化-P; 人类; 1:100
  • 免疫印迹; 人类; 1:300
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab51608)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 和 免疫印迹在人类样品上浓度为1:300. Placenta (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab2185)被用于免疫印迹在人类样品上 (图2). J Biol Chem (2014) ncbi
小鼠 单克隆(ESEE122)
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab8366)被用于免疫印迹在大鼠样品上浓度为1:1000. Cell Signal (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 大鼠; 1:200
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, H1alpha67)被用于免疫印迹在大鼠样品上浓度为1:200. Lab Invest (2014) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:100
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, 2185)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100. Heredity (Edinb) (2014) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-P; 大鼠; 1:100
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab8366)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100. Stem Cells Dev (2014) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:250
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab114977)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:250. Cardiovasc Res (2014) ncbi
兔 多克隆
  • ChIP; 小鼠
艾博抗(上海)贸易有限公司HIF-1甲抗体(Abcam, ab2185)被用于染色质免疫沉淀 在小鼠样品上. Cardiovasc Res (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(H1alpha 67)
  • 细胞化学; 人类; 1:50; 图2
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-53546)被用于免疫细胞化学在人类样品上浓度为1:50 (图2). Oncol Lett (2016) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫组化-P; 人类; 1:20; 图1
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于免疫组化-石蜡切片在人类样品上浓度为1:20 (图1). PLoS ONE (2016) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫沉淀; 人类; 1:1000; 图5
  • 免疫印迹; 人类; 1:1000; 图4
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于免疫沉淀在人类样品上浓度为1:1000 (图5) 和 免疫印迹在人类样品上浓度为1:1000 (图4). J Cell Sci (2016) ncbi
小鼠 单克隆(28b)
  • 免疫印迹; 人类; 1:500; 图1
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-13515)被用于免疫印迹在人类样品上浓度为1:500 (图1). Mol Med Rep (2015) ncbi
小鼠 单克隆(28b)
  • 细胞化学; 人类; 图4
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-13515)被用于免疫细胞化学在人类样品上 (图4). PLoS ONE (2015) ncbi
小鼠 单克隆(3C144)
  • 免疫印迹; 人类
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-71247)被用于免疫印迹在人类样品上. PLoS ONE (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 人类; 图3
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-53546)被用于免疫印迹在人类样品上 (图3). EBioMedicine (2015) ncbi
小鼠 单克隆(28b)
  • 免疫组化-P; 人类; 1:200; 图1
  • 免疫印迹 (基因敲减); 人类; 1:1000; 图2
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-13515)被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图1) 和 免疫印迹 (基因敲减)在人类样品上浓度为1:1000 (图2). Oncotarget (2015) ncbi
小鼠 单克隆(28b)
  • 免疫组化-P; 人类; 图4
  • 免疫印迹; 人类; 图4
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-13515)被用于免疫组化-石蜡切片在人类样品上 (图4) 和 免疫印迹在人类样品上 (图4). PLoS ONE (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 人类; 图3
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-53546)被用于免疫印迹在人类样品上 (图3). Oncotarget (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 人类; 1:500; 图1
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz, sc-53546)被用于免疫印迹在人类样品上浓度为1:500 (图1). Mol Med Rep (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 细胞化学; 人类; 1:50; 图4
圣克鲁斯生物技术HIF-1甲抗体(anta Cruz, sc-53546)被用于免疫细胞化学在人类样品上浓度为1:50 (图4). Cell Cycle (2014) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 人类
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于免疫印迹在人类样品上. Oncotarget (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫组化; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:2000
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于免疫组化在大鼠样品上浓度为1:100 和 免疫印迹在大鼠样品上浓度为1:2000. Br J Neurosurg (2014) ncbi
小鼠 单克隆(28b)
  • EMSA; 人类; 1 ug
圣克鲁斯生物技术HIF-1甲抗体(Santa-Cruz Biotechnology Inc., sc13515)被用于EMSA在人类样品上浓度为1 ug. Liver Int (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于免疫印迹在大鼠样品上. Vascular (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于免疫印迹在大鼠样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫组化-P; 人类; 1:50; 表1
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, clone H1alpha67)被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (表1). Acta Histochem (2014) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫组化-P; 人类; 1:100
圣克鲁斯生物技术HIF-1甲抗体(Santa Cruz Biotechnology, sc-53546)被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Brain Tumor Pathol (2014) ncbi
赛默飞世尔
兔 多克隆
  • 免疫印迹 (基因敲减); 小鼠; 图3
赛默飞世尔HIF-1甲抗体(Thermo Fisher Scientific, PA1-16601)被用于免疫印迹 (基因敲减)在小鼠样品上 (图3). Cell Signal (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:1000; 图1
赛默飞世尔HIF-1甲抗体(Thermo Scientific, MA1-16504)被用于免疫印迹在人类样品上浓度为1:1000 (图1). FEBS Lett (2016) ncbi
兔 单克隆(16H4L13)
  • 免疫印迹; 人类; 1:500; 图6
赛默飞世尔HIF-1甲抗体(Fisher Scientific, 70050)被用于免疫印迹在人类样品上浓度为1:500 (图6). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 1:200
赛默飞世尔HIF-1甲抗体(LabVision, H1alpha67)被用于免疫组化在人类样品上浓度为1:200. Int Urol Nephrol (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 1:200
赛默飞世尔HIF-1甲抗体(LabVision, H1alpha67)被用于免疫组化在人类样品上浓度为1:200. Int Urol Nephrol (2015) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:100; 图5
赛默飞世尔HIF-1甲抗体(Thermo Fisher Scientific, PA1-16601)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 (图5). Inflammation (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-P; 人类; 1:50
赛默飞世尔HIF-1甲抗体(Neomarkers, MS-1164)被用于免疫组化-石蜡切片在人类样品上浓度为1:50. Ann Surg Oncol (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-P; 人类; 1:50
赛默飞世尔HIF-1甲抗体(Neomarkers, MS-1164)被用于免疫组化-石蜡切片在人类样品上浓度为1:50. Ann Surg Oncol (2014) ncbi
小鼠 单克隆(mgc3)
  • EMSA; 小鼠
  • EMSA; 大鼠
赛默飞世尔HIF-1甲抗体(Thermo Scientific, MA1-516)被用于EMSA在小鼠样品上 和 在大鼠样品上. Am J Hum Genet (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-P; 大鼠; 1:200
赛默飞世尔HIF-1甲抗体(Thermo, MS-1164-P0)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:200. J Comp Neurol (2012) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-P; 大鼠; 1:200
赛默飞世尔HIF-1甲抗体(Thermo, MS-1164-P0)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:200. J Comp Neurol (2012) ncbi
GeneTex
兔 多克隆
  • ChIP; 人类; 图2
  • 免疫印迹 (基因敲减); 人类; 图2
  • 免疫印迹; 小鼠; 图5
GeneTexHIF-1甲抗体(GeneTex, GTX127309)被用于染色质免疫沉淀 在人类样品上 (图2), 免疫印迹 (基因敲减)在人类样品上 (图2), 和 免疫印迹在小鼠样品上 (图5). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图5
GeneTexHIF-1甲抗体(Genetex, GTX127309)被用于免疫印迹在小鼠样品上 (图5). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:800; 图s1
GeneTexHIF-1甲抗体(GeneTex, GTX127309)被用于免疫印迹在人类样品上浓度为1:800 (图s1). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
GeneTexHIF-1甲抗体(GeneTex, GTX30647)被用于免疫印迹在小鼠样品上浓度为1:1000. Exp Ther Med (2015) ncbi
小鼠 单克隆(GT10211)
  • 细胞化学; 人类; 1:100; 图5
GeneTexHIF-1甲抗体(GeneTex, GTX628480)被用于免疫细胞化学在人类样品上浓度为1:100 (图5). Nat Cell Biol (2015) ncbi
安迪生物R&D
山羊 多克隆
  • 免疫印迹; 人类; 1:500; 图4
安迪生物R&DHIF-1甲抗体(R&D, AF1935)被用于免疫印迹在人类样品上浓度为1:500 (图4). Front Oncol (2016) ncbi
小鼠 单克隆(241809)
  • 免疫印迹; 人类; 1:1000; 图7a
安迪生物R&DHIF-1甲抗体(R&D Systems, MAB1536)被用于免疫印迹在人类样品上浓度为1:1000 (图7a). FASEB J (2016) ncbi
小鼠 单克隆(241809)
  • 免疫印迹; 小鼠; 1:1000; 图1
安迪生物R&DHIF-1甲抗体(R&D, MAB1536)被用于免疫印迹在小鼠样品上浓度为1:1000 (图1). Sci Rep (2015) ncbi
山羊 多克隆
  • 免疫印迹; 人类; 1:500; 图5
安迪生物R&DHIF-1甲抗体(R&D Systems, AF1935)被用于免疫印迹在人类样品上浓度为1:500 (图5). J Biol Chem (2015) ncbi
小鼠 单克隆(241809)
  • 免疫印迹; 人类; 1:1000
安迪生物R&DHIF-1甲抗体(R&D Systems, MAB1536)被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2015) ncbi
武汉三鹰
兔 多克隆
  • 免疫印迹; 大鼠; 1:800; 图4
武汉三鹰HIF-1甲抗体(ProteinTech, 20960-1-AP)被用于免疫印迹在大鼠样品上浓度为1:800 (图4). Braz J Med Biol Res (2016) ncbi
兔 多克隆
  • 细胞化学; 人类; 图4
  • 免疫印迹; 人类; 图4
武汉三鹰HIF-1甲抗体(ProteinTech, 20960-1-AP)被用于免疫细胞化学在人类样品上 (图4) 和 免疫印迹在人类样品上 (图4). Oncotarget (2015) ncbi
亚诺法生技股份有限公司
兔 多克隆
  • 免疫印迹; 小鼠
亚诺法生技股份有限公司HIF-1甲抗体(Abnova, PAB12138)被用于免疫印迹在小鼠样品上. Mol Cell Biol (2015) ncbi
小鼠 单克隆(H1alpha67)
  • ChIP; 人类; 图5
亚诺法生技股份有限公司HIF-1甲抗体(Abnova, MAB1892)被用于染色质免疫沉淀 在人类样品上 (图5). Nat Cell Biol (2015) ncbi
Active Motif
小鼠 单克隆(ESEE122)
  • 免疫印迹; 人类; 1:1000; 图4
Active MotifHIF-1甲抗体(Active Motif, 61275)被用于免疫印迹在人类样品上浓度为1:1000 (图4). Oncotarget (2016) ncbi
Bioss
兔 多克隆
  • 免疫组化-P; 人类; 1:500; 图1
  • 免疫印迹; 人类; 图5
BiossHIF-1甲抗体(Biosynthesis Biotechnology, bs0737R)被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图1) 和 免疫印迹在人类样品上 (图5). Oncol Rep (2015) ncbi
SICGEN
山羊 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图1
SICGENHIF-1甲抗体(Sicgen, AB0112-200)被用于免疫印迹在小鼠样品上浓度为1:1000 (图1). Sci Rep (2015) ncbi
Bethyl
兔 多克隆
  • 免疫印迹; 人类; 图1
BethylHIF-1甲抗体(Bethyl, A300-286A)被用于免疫印迹在人类样品上 (图1). Science (2016) ncbi
兔 多克隆
  • ChIP; 人类; 图2
  • 免疫印迹 (基因敲减); 人类; 1:1000; 图2
  • 免疫印迹; 小鼠; 1:1000; 图2
BethylHIF-1甲抗体(Bethyl, A300-286A)被用于染色质免疫沉淀 在人类样品上 (图2) 和 免疫印迹 (基因敲减)在人类样品上浓度为1:1000 (图2). Nat Cell Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
BethylHIF-1甲抗体(Bethyl Laboratories, A300-286A)被用于免疫印迹在人类样品上 (图1). Biochem Biophys Res Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
BethylHIF-1甲抗体(Bethyl Laboratories, A300-286A)被用于免疫印迹在人类样品上. Cancer Res (2013) ncbi
碧迪BD
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图5
碧迪BDHIF-1甲抗体(BD, 610959)被用于免疫印迹在人类样品上 (图5). PLoS ONE (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫组化-P; 人类; 1:50; 表3
碧迪BDHIF-1甲抗体(BD TL, 610958)被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (表3). Oncol Lett (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图2
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹在人类样品上 (图2). Cell Rep (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图3
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于免疫印迹在人类样品上 (图3). Cancer Res (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图13
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹在人类样品上 (图13). PLoS ONE (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图1c
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹在人类样品上 (图1c). J Biol Chem (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图1
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹在人类样品上 (图1). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图1
碧迪BDHIF-1甲抗体(BD Transduction, 610958)被用于免疫印迹在人类样品上 (图1). Mol Oncol (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹 (基因敲减); 人类; 图4
碧迪BDHIF-1甲抗体(BD, 610959)被用于免疫印迹 (基因敲减)在人类样品上 (图4). Oncotarget (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹 (基因敲减); 人类; 图 s1
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于免疫印迹 (基因敲减)在人类样品上 (图 s1). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000; 图4
  • 免疫沉淀; 人类; 1:1000; 图5
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹在人类样品上浓度为1:1000 (图4) 和 免疫沉淀在人类样品上浓度为1:1000 (图5). J Cell Sci (2016) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000; 图2a
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610959)被用于免疫印迹在人类样品上浓度为1:1000 (图2a). Radiat Oncol (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000; 图9C
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于免疫印迹在人类样品上浓度为1:1000 (图9C). Antioxid Redox Signal (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:500; 图1
  • 细胞化学; 人类; 1:100; 图1
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹在人类样品上浓度为1:500 (图1) 和 免疫细胞化学在人类样品上浓度为1:100 (图1). Oncotarget (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000
碧迪BDHIF-1甲抗体(BD Biosciences, 61095)被用于免疫印迹在人类样品上浓度为1:1000. Nat Commun (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000
碧迪BDHIF-1甲抗体(BD Biosciences, 61095)被用于免疫印迹在人类样品上浓度为1:1000. Nat Commun (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610958)被用于免疫印迹在人类样品上浓度为1:1000. Tumour Biol (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫组化; 人类; 1:100; 图1
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫组化在人类样品上浓度为1:100 (图1). J Pathol (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图s3
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹在人类样品上 (图s3). Oncotarget (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图s4
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于免疫印迹在人类样品上 (图s4). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 小鼠; 1:1000; 图5,6
碧迪BDHIF-1甲抗体(BD Bioscience, 54/HIF-1)被用于免疫印迹在小鼠样品上浓度为1:1000 (图5,6). Nat Commun (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 小鼠; 1:1000; 图5,6
碧迪BDHIF-1甲抗体(BD Bioscience, 54/HIF-1)被用于免疫印迹在小鼠样品上浓度为1:1000 (图5,6). Nat Commun (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:500
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于免疫印迹在人类样品上浓度为1:500. Oncol Lett (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图2
  • 免疫沉淀; 人类; 图5
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹在人类样品上 (图2) 和 免疫沉淀在人类样品上 (图5). Cell Cycle (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610959)被用于免疫印迹在人类样品上. Oncogene (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图2a
碧迪BDHIF-1甲抗体(BD, 610958)被用于免疫印迹在人类样品上 (图2a). Nat Commun (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610958)被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000; 图4
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于免疫印迹在人类样品上浓度为1:1000 (图4). Int J Mol Med (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Bioscience, 610958)被用于免疫印迹在人类样品上. J Korean Med Sci (2014) ncbi
小鼠 单克隆(29/HIF-1b)
  • 免疫印迹 (基因敲减); 小鼠; 图3
碧迪BDHIF-1甲抗体(BD, 611078)被用于免疫印迹 (基因敲减)在小鼠样品上 (图3). Toxicol Sci (2015) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫组化-P; 人类; 1:100; 图7
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图7). Cardiovasc Res (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 图2a
  • 免疫印迹; 小鼠; 图2d
碧迪BDHIF-1甲抗体(BD, 610958)被用于免疫印迹在人类样品上 (图2a) 和 在小鼠样品上 (图2d). Genes Dev (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • ChIP; 人类; 图s1
  • 免疫印迹 (基因敲减); 人类; 1:1000; 图s2
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于染色质免疫沉淀 在人类样品上 (图s1) 和 免疫印迹 (基因敲减)在人类样品上浓度为1:1000 (图s2). Nat Med (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫组化-P; 人类
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Bioscience, 610958)被用于免疫组化-石蜡切片在人类样品上 和 免疫印迹在人类样品上. Oncotarget (2014) ncbi
小鼠 单克隆(29/HIF-1b)
  • 免疫印迹; 人类; 图4a
碧迪BDHIF-1甲抗体(BD, 611079)被用于免疫印迹在人类样品上 (图4a). Genes Dev (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Biosciences, 610958)被用于免疫印迹在人类样品上. Aging Cell (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Bioscience, 610959)被用于免疫印迹在人类样品上. Mol Cancer Res (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:250; 图1
碧迪BDHIF-1甲抗体(BD Biosciences, # 610958)被用于免疫印迹在人类样品上浓度为1:250 (图1). Cancer Res (2014) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类; 1:1000
碧迪BDHIF-1甲抗体(BD, 610958)被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Transduction Laboratories, 610959)被用于免疫印迹在人类样品上. Cell Cycle (2013) ncbi
小鼠 单克隆(54/HIF-1)
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Transduction, 610958)被用于免疫印迹在人类样品上. Cancer Res (2013) ncbi
小鼠 单克隆(54/HIF-1)
  • ChIP-Seq; 人类
  • 免疫印迹; 人类
碧迪BDHIF-1甲抗体(BD Biosciences, 610959)被用于ChIP-Seq在人类样品上 和 免疫印迹在人类样品上. J Biol Chem (2012) ncbi
赛信通(上海)生物试剂有限公司
兔 多克隆
  • 免疫印迹; 人类; 1:200; 图st1
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3716)被用于免疫印迹在人类样品上浓度为1:200 (图st1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图1
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3716)被用于免疫印迹在人类样品上浓度为1:1000 (图1). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图4
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signalling, 3716)被用于免疫印迹在人类样品上浓度为1:500 (图4). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell signaling, 3716)被用于免疫印迹在人类样品上 (图2). Nature (2016) ncbi
兔 单克隆(D43B5)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3434S)被用于免疫印迹在小鼠样品上浓度为1:1000. Sci Transl Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signalling, 3716)被用于免疫印迹在人类样品上 (图3). Oncotarget (2016) ncbi
兔 单克隆(D43B5)
  • 免疫印迹; 人类; 1:1000; 图4
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3434)被用于免疫印迹在人类样品上浓度为1:1000 (图4). J Cell Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell signaling, 3716S)被用于免疫印迹在人类样品上 (图1). Oncotarget (2015) ncbi
兔 单克隆(D43B5)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technology, 3434)被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Tech, 3716)被用于免疫印迹在人类样品上 (图6). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图7
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technology, 3716)被用于免疫印迹在人类样品上 (图7). Autophagy (2015) ncbi
兔 单克隆(D43B5)
  • 免疫印迹; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3434)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Nat Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technology, 3716S)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling Technology, 3716)被用于免疫印迹在人类样品上. Int J Cancer (2015) ncbi
兔 单克隆(D43B5)
  • 免疫印迹; 人类; 图2a
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3434)被用于免疫印迹在人类样品上 (图2a). Genes Dev (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:200
赛信通(上海)生物试剂有限公司HIF-1甲抗体(Cell Signaling, 3716)被用于免疫印迹在人类样品上浓度为1:200. Phlebology (2012) ncbi
默克密理博中国
小鼠 单克隆(H1alpha67)默克密理博中国HIF-1甲抗体(EMD Millipore, MAB5382)被用于. J Exp Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
默克密理博中国HIF-1甲抗体(Millipore, 07-1585)被用于免疫印迹在人类样品上浓度为1:1000. Nat Commun (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 大鼠; 1:1000; 图 5
默克密理博中国HIF-1甲抗体(Millipore, MAB5382)被用于免疫印迹在大鼠样品上浓度为1:1000 (图 5). J Neurosci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
默克密理博中国HIF-1甲抗体(Millipore, ABE 279)被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2015) ncbi
兔 单克隆(EP1215Y)
  • 细胞化学; 大鼠; 1:1000
默克密理博中国HIF-1甲抗体(Millipore Bioscience, 04-1006)被用于免疫细胞化学在大鼠样品上浓度为1:1000. Acta Neuropathol Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
默克密理博中国HIF-1甲抗体(Merck Millipore, ABE279)被用于免疫印迹在人类样品上浓度为1:1000. Liver Int (2015) ncbi
西格玛奥德里奇
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 图6
  • 免疫组化; 小鼠; 图6
  • 免疫印迹; 人类; 1:800; 图5
  • 免疫印迹; 小鼠; 1:800; 图6
西格玛奥德里奇HIF-1甲抗体(Sigma, H6536)被用于免疫组化在人类样品上 (图6) 和 在小鼠样品上 (图6) 和 免疫印迹在人类样品上浓度为1:800 (图5) 和 在小鼠样品上浓度为1:800 (图6). Nat Commun (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫沉淀; 小鼠
西格玛奥德里奇HIF-1甲抗体(Sigma Aldrich, 6536)被用于免疫沉淀在小鼠样品上. Kidney Int (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 1:1000; 图s12
西格玛奥德里奇HIF-1甲抗体(Sigma, H6536)被用于免疫印迹在小鼠样品上浓度为1:1000 (图s12). Antioxid Redox Signal (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 大鼠; 图6
西格玛奥德里奇HIF-1甲抗体(Sigma-Aldrich, H6536)被用于免疫印迹在大鼠样品上 (图6). J Biophotonics (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠
西格玛奥德里奇HIF-1甲抗体(Sigma-Aldrich, HPA001275)被用于免疫组化-冰冻切片在小鼠样品上. Neuroreport (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类
西格玛奥德里奇HIF-1甲抗体(Sigma-Aldrich, H6536)被用于免疫印迹在人类样品上. Surgery (2014) ncbi
文章列表
  1. Fridolin Treindl et al. (2016). "A bead-based western for high-throughput cellular signal transduction analyses".PMID 27659302
  2. Valentina Masola et al. (2016). "Heparanase: A Potential New Factor Involved in the Renal Epithelial Mesenchymal Transition (EMT) Induced by Ischemia/Reperfusion (I/R) Injury".PMID 27467172
  3. Chihiro Takasaki et al. (2016). "Expression of hypoxia-inducible factor-1α affects tumor proliferation and antiapoptosis in surgically resected lung cancer".PMID 27446567
  4. J P Phelan et al. (2016). "Bile acids destabilise HIF-1α and promote anti-tumour phenotypes in cancer cell models".PMID 27416726
  5. X Li et al. (2016). "Quercetin alleviates pulmonary angiogenesis in a rat model of hepatopulmonary syndrome".PMID 27383124
  6. Ingrid Espinoza et al. (2016). "Hypoxia on the Expression of Hepatoma Upregulated Protein in Prostate Cancer Cells".PMID 27379206
  7. Shih Hung Tsai et al. (2016). "Inhibition of hypoxia inducible factor-1α attenuates abdominal aortic aneurysm progression through the down-regulation of matrix metalloproteinases".PMID 27363580
  8. Shiruyeh Schokrpur et al. (2016). "CRISPR-Mediated VHL Knockout Generates an Improved Model for Metastatic Renal Cell Carcinoma".PMID 27358011
  9. Pengcui Li et al. (2016). "Blockade of hypoxia-induced CXCR4 with AMD3100 inhibits production of OA-associated catabolic mediators IL-1β and MMP-13".PMID 27356492
  10. Jana Kudová et al. (2016). "HIF-1alpha Deficiency Attenuates the Cardiomyogenesis of Mouse Embryonic Stem Cells".PMID 27355368
  11. Lei Dai et al. (2016). "SARI inhibits angiogenesis and tumour growth of human colon cancer through directly targeting ceruloplasmin".PMID 27353863
  12. Jucimara Colombo et al. (2016). "Effects of melatonin on HIF-1α and VEGF expression and on the invasive properties of hepatocarcinoma cells".PMID 27347130
  13. Gesche Frohwitter et al. (2016). "Cytokeratin and protein expression patterns in squamous cell carcinoma of the oral cavity provide evidence for two distinct pathogenetic pathways".PMID 27347109
  14. Wenjun Zhao et al. (2016). "Metformin and resveratrol ameliorate muscle insulin resistance through preventing lipolysis and inflammation in hypoxic adipose tissue".PMID 27343375
  15. Grazia Maugeri et al. (2016). "PACAP and VIP Inhibit the Invasiveness of Glioblastoma Cells Exposed to Hypoxia through the Regulation of HIFs and EGFR Expression".PMID 27303300
  16. Alessia Lo Dico et al. (2016). "MiR675-5p Acts on HIF-1α to Sustain Hypoxic Responses: A New Therapeutic Strategy for Glioma".PMID 27279905
  17. Marco Mineo et al. (2016). "The Long Non-coding RNA HIF1A-AS2 Facilitates the Maintenance of Mesenchymal Glioblastoma Stem-like Cells in Hypoxic Niches".PMID 27264189
  18. Anna V Ivanina et al. (2016). "Intermittent hypoxia leads to functional reorganization of mitochondria and affects cellular bioenergetics in marine molluscs".PMID 27252455
  19. Ingo Spitzbarth et al. (2016). "Immunohistochemical and transcriptome analyses indicate complex breakdown of axonal transport mechanisms in canine distemper leukoencephalitis".PMID 27247850
  20. Sangbin Lim et al. (2016). "Immunoregulatory Protein B7-H3 Reprograms Glucose Metabolism in Cancer Cells by ROS-Mediated Stabilization of HIF1α".PMID 27197253
  21. Motoharu Ono et al. (2016). "Enhanced snoMEN Vectors Facilitate Establishment of GFP-HIF-1α Protein Replacement Human Cell Lines".PMID 27128805
  22. Fiona McDonnell et al. (2016). "Hypoxia-Induced Changes in DNA Methylation Alter RASAL1 and TGFβ1 Expression in Human Trabecular Meshwork Cells".PMID 27124111
  23. Lei Jiang et al. (2016). "Reductive carboxylation supports redox homeostasis during anchorage-independent growth".PMID 27049945
  24. Xingbo Xu et al. (2016). "Hypoxia-induced endothelial-mesenchymal transition is associated with RASAL1 promoter hypermethylation in human coronary endothelial cells".PMID 27012941
  25. Suryatheja Ananthula et al. (2016). "Geminin overexpression-dependent recruitment and crosstalk with mesenchymal stem cells enhance aggressiveness in triple negative breast cancers".PMID 26989079
  26. Pradeep K Shukla et al. (2016). "Chronic ethanol feeding promotes azoxymethane and dextran sulfate sodium-induced colonic tumorigenesis potentially by enhancing mucosal inflammation".PMID 26951793
  27. Melanie Ruf et al. (2016). "PD-L1 expression is regulated by hypoxia inducible factor in clear cell renal cell carcinoma".PMID 26945902
  28. Saravanan S Karuppagounder et al. (2016). "Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models".PMID 26936506
  29. Fang Zhou et al. (2016). "SENP‑1 enhances hypoxia‑induced proliferation of rat pulmonary artery smooth muscle cells by regulating hypoxia‑inducible factor‑1α".PMID 26935971
  30. Sandra Tepper et al. (2016). "PARP activation promotes nuclear AID accumulation in lymphoma cells".PMID 26921193
  31. Isha H Jain et al. (2016). "Hypoxia as a therapy for mitochondrial disease".PMID 26917594
  32. Lauren W Wood et al. (2016). "Thyroid Transcription Factor 1 Reprograms Angiogenic Activities of Secretome".PMID 26912193
  33. Lena Edalat et al. (2016). "BK K+ channel blockade inhibits radiation-induced migration/brain infiltration of glioblastoma cells".PMID 26893360
  34. Hiroyuki Mori et al. (2016). "Induction of WNT11 by hypoxia and hypoxia-inducible factor-1α regulates cell proliferation, migration and invasion".PMID 26861754
  35. Ming Ding et al. (2016). "Secreted IGFBP5 mediates mTORC1-dependent feedback inhibition of IGF-1 signalling".PMID 26854565
  36. Pardeep Heir et al. (2016). "Oxygen-dependent Regulation of Erythropoietin Receptor Turnover and Signaling".PMID 26846855
  37. Weibo Luo et al. (2016). "PRDX2 and PRDX4 are negative regulators of hypoxia-inducible factors under conditions of prolonged hypoxia".PMID 26837221
  38. Tarah M Regan Anderson et al. (2016). "Breast Tumor Kinase (Brk/PTK6) Is Induced by HIF, Glucocorticoid Receptor, and PELP1-Mediated Stress Signaling in Triple-Negative Breast Cancer".PMID 26825173
  39. Grete Hasvold et al. (2016). "Hypoxia-induced alterations of G2 checkpoint regulators".PMID 26791779
  40. Xiao Yang Dai et al. (2016). "Nuclear translocation and activation of YAP by hypoxia contributes to the chemoresistance of SN38 in hepatocellular carcinoma cells".PMID 26771844
  41. Hawa Nalwoga et al. (2016). "Strong Expression of Hypoxia-Inducible Factor-1α (HIF-1α) Is Associated with Axl Expression and Features of Aggressive Tumors in African Breast Cancer".PMID 26760782
  42. Grazia Maugeri et al. (2016). "Parkin modulates expression of HIF-1α and HIF-3α during hypoxia in gliobastoma-derived cell lines in vitro".PMID 26742768
  43. Sang Bae Lee et al. (2016). "An ID2-dependent mechanism for VHL inactivation in cancer".PMID 26735018
  44. Yan Ming Xu et al. (2016). "Proteome profiling of cadmium-induced apoptosis by antibody array analyses in human bronchial epithelial cells".PMID 26716417
  45. Alain de Bruin et al. (2016). "Genome-wide analysis reveals NRP1 as a direct HIF1α-E2F7 target in the regulation of motorneuron guidance in vivo".PMID 26681691
  46. Shotaro Yamano et al. (2016). "Role of deltaNp63(pos)CD44v(pos) cells in the development of N-nitroso-tris-chloroethylurea-induced peripheral-type mouse lung squamous cell carcinomas".PMID 26663681
  47. Brian Ortmann et al. (2016). "CDK-dependent phosphorylation of PHD1 on serine 130 alters its substrate preference in cells".PMID 26644182
  48. Olivier G de Jong et al. (2016). "Exosomes from hypoxic endothelial cells have increased collagen crosslinking activity through up-regulation of lysyl oxidase-like 2".PMID 26612622
  49. Yasuhiko Murata et al. (2015). "Activation of mTORC1 under nutrient starvation conditions increases cellular radiosensitivity in human liver cancer cell lines, HepG2 and HuH6".PMID 26585486
  50. Markus Mandl et al. (2015). "The expression level of the transcription factor Aryl hydrocarbon receptor nuclear translocator (ARNT) determines cellular survival after radiation treatment".PMID 26572229
  51. Arnoldo Aquino-Galvez et al. (2016). "Effects of 2-methoxyestradiol on apoptosis and HIF-1α and HIF-2α expression in lung cancer cells under normoxia and hypoxia".PMID 26548300
  52. Valentin David et al. (2016). "Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production".PMID 26535997
  53. Guomin Shen et al. (2015). "Adipose differentiation-related protein is not involved in hypoxia inducible factor-1-induced lipid accumulation under hypoxia".PMID 26498183
  54. Anja Konzack et al. (2015). "Mitochondrial Dysfunction Due to Lack of Manganese Superoxide Dismutase Promotes Hepatocarcinogenesis".PMID 26422659
  55. Yogesh Saini et al. (2015). "Loss of Hif-2α Rescues the Hif-1α Deletion Phenotype of Neonatal Respiratory Distress In Mice".PMID 26422241
  56. Cristina E Rodríguez et al. (2015). "Autophagy Protects from Trastuzumab-Induced Cytotoxicity in HER2 Overexpressing Breast Tumor Spheroids".PMID 26360292
  57. Samil Jung et al. (2015). "TRIP-Br1 oncoprotein inhibits autophagy, apoptosis, and necroptosis under nutrient/serum-deprived condition".PMID 26334958
  58. Bal Krishan Sharma et al. (2016). "Inhibitor of differentiation 1 transcription factor promotes metabolic reprogramming in hepatocellular carcinoma cells".PMID 26330493
  59. Ya Yang et al. (2015). "Expression of RAP1B is associated with poor prognosis and promotes an aggressive phenotype in gastric cancer".PMID 26329876
  60. Fumiaki Ochi et al. (2015). "Carbonic Anhydrase XII as an Independent Prognostic Factor in Advanced Esophageal Squamous Cell Carcinoma".PMID 26316888
  61. Ting Chung Wang et al. (2015). "Characterization of highly proliferative secondary tumor clusters along host blood vessels in malignant glioma".PMID 26299849
  62. Filipa Morais-Santos et al. (2015). "Targeting lactate transport suppresses in vivo breast tumour growth".PMID 26203664
  63. D Chen et al. (2015). "MiR-373 drives the epithelial-to-mesenchymal transition and metastasis via the miR-373-TXNIP-HIF1α-TWIST signaling axis in breast cancer".PMID 26196741
  64. An Ping Lin et al. (2015). "D2HGDH regulates alpha-ketoglutarate levels and dioxygenase function by modulating IDH2".PMID 26178471
  65. I Kuan Wang et al. (2015). "MiR-20a-5p mediates hypoxia-induced autophagy by targeting ATG16L1 in ischemic kidney injury".PMID 26165754
  66. Heidi Kontro et al. (2015). "DAPIT Over-Expression Modulates Glucose Metabolism and Cell Behaviour in HEK293T Cells".PMID 26161955
  67. Xin yu Yang et al. (2015). "Energy Metabolism Disorder as a Contributing Factor of Rheumatoid Arthritis: A Comparative Proteomic and Metabolomic Study".PMID 26147000
  68. Lifeng Jing et al. (2015). "Akt/hypoxia-inducible factor-1α signaling deficiency compromises skin wound healing in a type 1 diabetes mouse model".PMID 26136949
  69. Lu Yang et al. (2015). "Inhibition of ERBB2-overexpressing Tumors by Recombinant Human Prolidase and Its Enzymatically Inactive Mutant".PMID 26086037
  70. Xian Peng Li et al. (2015). "Co-expression of CXCL8 and HIF-1α is associated with metastasis and poor prognosis in hepatocellular carcinoma".PMID 26078356
  71. Liang Xie et al. (2015). "PHD2/3-dependent hydroxylation tunes cardiac response to β-adrenergic stress via phospholamban".PMID 26075818
  72. Hatice Yorulmaz et al. (2015). "Effect of simvastatin on mitochondrial enzyme activities, ghrelin, hypoxia-inducible factor 1α in hepatic tissue during early phase of sepsis".PMID 26064259
  73. Judit Espana-Agusti et al. (2015). "A minimally invasive, lentiviral based method for the rapid and sustained genetic manipulation of renal tubules".PMID 26046460
  74. Thitinee Vanichapol et al. (2015). "Hypoxia enhances cholangiocarcinoma invasion through activation of hepatocyte growth factor receptor and the extracellular signal‑regulated kinase signaling pathway".PMID 26018028
  75. Yutaka Tojo et al. (2015). "Hypoxia Signaling Cascade for Erythropoietin Production in Hepatocytes".PMID 26012551
  76. Parveen Kumar et al. (2015). "Myeloid translocation gene-16 co-repressor promotes degradation of hypoxia-inducible factor 1".PMID 25974097
  77. Luigi Formisano et al. (2015). "Sp3/REST/HDAC1/HDAC2 Complex Represses and Sp1/HIF-1/p300 Complex Activates ncx1 Gene Transcription, in Brain Ischemia and in Ischemic Brain Preconditioning, by Epigenetic Mechanism".PMID 25972164
  78. João Vasco Ferreira et al. (2015). "K63 linked ubiquitin chain formation is a signal for HIF1A degradation by Chaperone-Mediated Autophagy".PMID 25958982
  79. Martina Tholen et al. (2015). "Stress-resistant Translation of Cathepsin L mRNA in Breast Cancer Progression".PMID 25957406
  80. Hongzoo Park et al. (2015). "3,3'-Diindolylmethane inhibits VEGF expression through the HIF-1α and NF-κB pathways in human retinal pigment epithelial cells under chemical hypoxic conditions".PMID 25955241
  81. Gergely Bánfi et al. (2015). "Changes of protein expression in prostate cancer having lost its androgen sensitivity".PMID 25953123
  82. Samira M Sadowski et al. (2015). "Torin2 targets dysregulated pathways in anaplastic thyroid cancer and inhibits tumor growth and metastasis".PMID 25945839
  83. Mustafa Guven et al. (2015). "The Neuroprotective Effect of Coumaric Acid on Spinal Cord Ischemia/Reperfusion Injury in Rats".PMID 25943038
  84. Sanmitra Basu et al. (2015). "A study of molecular signals deregulating mismatch repair genes in prostate cancer compared to benign prostatic hyperplasia".PMID 25938433
  85. L Lemaire et al. (2015). "In vitro expansion of U87-MG human glioblastoma cells under hypoxic conditions affects glucose metabolism and subsequent in vivo growth".PMID 25934335
  86. Byung Hak Kim et al. (2015). "Imidazole-based alkaloid derivative LCB54-0009 suppresses ocular angiogenesis and lymphangiogenesis in models of experimental retinopathy and corneal neovascularization".PMID 25917462
  87. Shuxi Qiao et al. (2015). "A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity".PMID 25916556
  88. Nelma Pértega-Gomes et al. (2015). "A glycolytic phenotype is associated with prostate cancer progression and aggressiveness: a role for monocarboxylate transporters as metabolic targets for therapy".PMID 25875424
  89. Aijia Shang et al. (2015). "Upregulation of neuroglobin expression and changes in serum redox indices in a rat model of middle cerebral artery occlusion".PMID 25847303
  90. Yu Sun et al. (2015). "Dose-dependent effects of allopurinol on human foreskin fibroblast cells and human umbilical vein endothelial cells under hypoxia".PMID 25830774
  91. Shenghong Ma et al. (2015). "D-2-hydroxyglutarate is essential for maintaining oncogenic property of mutant IDH-containing cancer cells but dispensable for cell growth".PMID 25825982
  92. Shao Wen Li et al. (2015). "The differential expression of OCT4 isoforms in cervical carcinoma".PMID 25816351
  93. Daniel Verduzco et al. (2015). "Intermittent hypoxia selects for genotypes and phenotypes that increase survival, invasion, and therapy resistance".PMID 25811878
  94. Han Seok Koh et al. (2015). "The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia".PMID 25790768
  95. Janani Panneerselvam et al. (2015). "IL-24 inhibits lung cancer cell migration and invasion by disrupting the SDF-1/CXCR4 signaling axis".PMID 25775124
  96. Jonas J Staudacher et al. (2015). "Hypoxia-induced gene expression results from selective mRNA partitioning to the endoplasmic reticulum".PMID 25753659
  97. Joachim Albers et al. (2015). "A versatile modular vector system for rapid combinatorial mammalian genetics".PMID 25751063
  98. Hiroko Kato et al. (2014). "Hypoxia induces an undifferentiated phenotype of oral keratinocytes in vitro".PMID 25720390
  99. Lifang Yang et al. (2015). "EBV-LMP1 targeted DNAzyme enhances radiosensitivity by inhibiting tumor angiogenesis via the JNKs/HIF-1 pathway in nasopharyngeal carcinoma".PMID 25714020
  100. Huey Wen Hsiao et al. (2015). "Deltex1 antagonizes HIF-1α and sustains the stability of regulatory T cells in vivo".PMID 25695215
  101. Zhiping He et al. (2015). "Selecting bioactive phenolic compounds as potential agents to inhibit proliferation and VEGF expression in human ovarian cancer cells".PMID 25663929
  102. Chao Yu et al. (2015). "Hypoxia disrupts the expression levels of circadian rhythm genes in hepatocellular carcinoma".PMID 25591621
  103. Ganesh M Shankar et al. (2014). "Sporadic hemangioblastomas are characterized by cryptic VHL inactivation".PMID 25589003
  104. Lorine J Wilkinson et al. (2015). "Renal developmental defects resulting from in utero hypoxia are associated with suppression of ureteric β-catenin signaling".PMID 25587709
  105. Sharon Mudie et al. (2014). "PITX1, a specificity determinant in the HIF-1α-mediated transcriptional response to hypoxia".PMID 25558831
  106. Hongzhi Zheng et al. (2015). "CNC-bZIP protein Nrf1-dependent regulation of glucose-stimulated insulin secretion".PMID 25556857
  107. Stefania Cannito et al. (2015). "Hypoxia up-regulates SERPINB3 through HIF-2α in human liver cancer cells".PMID 25544768
  108. Yu Hsing Hung et al. (2016). "Inhibitor of Differentiation-1 and Hypoxia-Inducible Factor-1 Mediate Sonic Hedgehog Induction by Amyloid Beta-Peptide in Rat Cortical Neurons".PMID 25502463
  109. D C Singleton et al. (2015). "Hypoxic regulation of RIOK3 is a major mechanism for cancer cell invasion and metastasis".PMID 25486436
  110. Sun Jung Cho et al. (2015). "SUMO1 promotes Aβ production via the modulation of autophagy".PMID 25484073
  111. Sascha Rutz et al. (2015). "Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells".PMID 25470037
  112. Jared M Fine et al. (2015). "Intranasal deferoxamine engages multiple pathways to decrease memory loss in the APP/PS1 model of amyloid accumulation".PMID 25445365
  113. Biao Ma et al. (2015). "Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase".PMID 25438054
  114. Anne Theres Henze et al. (2014). "Loss of PHD3 allows tumours to overcome hypoxic growth inhibition and sustain proliferation through EGFR".PMID 25420773
  115. Jennifer Turner et al. (2014). "Metabolic profiling and flux analysis of MEL-2 human embryonic stem cells during exponential growth at physiological and atmospheric oxygen concentrations".PMID 25412279
  116. Byung Soo Kong et al. (2014). "G protein-coupled estrogen receptor-1 is involved in the protective effect of protocatechuic aldehyde against endothelial dysfunction".PMID 25411835
  117. Qi Lei et al. (2014). "Amelioration of hypoxia and LPS-induced intestinal epithelial barrier dysfunction by emodin through the suppression of the NF-κB and HIF-1α signaling pathways".PMID 25318952
  118. Sung Gyun Kim et al. (2014). "Bilirubin activates transcription of HIF-1α in human proximal tubular cells cultured in the physiologic oxygen content".PMID 25317019
  119. Kyriaki Bakirtzi et al. (2014). "The neurotensin-HIF-1α-VEGFα axis orchestrates hypoxia, colonic inflammation, and intestinal angiogenesis".PMID 25307345
  120. Kaitlin J Basham et al. (2015). "Dioxin exposure blocks lactation through a direct effect on mammary epithelial cells mediated by the aryl hydrocarbon receptor repressor".PMID 25265996
  121. Magdalena H Menhofer et al. (2014). "In vitro and in vivo characterization of the actin polymerizing compound chondramide as an angiogenic inhibitor".PMID 25239826
  122. Asheesh Gupta et al. (2015). "Superpulsed (Ga-As, 904 nm) low-level laser therapy (LLLT) attenuates inflammatory response and enhances healing of burn wounds".PMID 25207838
  123. Xue Song Liu et al. (2014). "ZBTB7A acts as a tumor suppressor through the transcriptional repression of glycolysis".PMID 25184678
  124. Iryna Kolosenko et al. (2015). "Cell crowding induces interferon regulatory factor 9, which confers resistance to chemotherapeutic drugs".PMID 25156627
  125. Zhi Feng Miao et al. (2014). "Peritoneal milky spots serve as a hypoxic niche and favor gastric cancer stem/progenitor cell peritoneal dissemination through hypoxia-inducible factor 1α".PMID 25142304
  126. Min Xu et al. (2014). "An acetate switch regulates stress erythropoiesis".PMID 25108527
  127. Tao Huang et al. (2014). "Hypoxia-inducible factor-1α upregulation in microglia following hypoxia protects against ischemia-induced cerebral infarction".PMID 25089804
  128. Jun Ueda et al. (2014). "The hypoxia-inducible epigenetic regulators Jmjd1a and G9a provide a mechanistic link between angiogenesis and tumor growth".PMID 25071150
  129. W Wei et al. (2014). "Expression of hypoxia-regulated genes and glycometabolic genes in placenta from patients with intrahepatic cholestasis of pregnancy".PMID 25063250
  130. Paul Mésange et al. (2014). "Intrinsic bevacizumab resistance is associated with prolonged activation of autocrine VEGF signaling and hypoxia tolerance in colorectal cancer cells and can be overcome by nintedanib, a small molecule angiokinase inhibitor".PMID 25015210
  131. Casper Hempel et al. (2014). "Systemic and Cerebral Vascular Endothelial Growth Factor Levels Increase in Murine Cerebral Malaria along with Increased Calpain and Caspase Activity and Can be Reduced by Erythropoietin Treatment".PMID 24995009
  132. Xingnan Zheng et al. (2014). "Prolyl hydroxylation by EglN2 destabilizes FOXO3a by blocking its interaction with the USP9x deubiquitinase".PMID 24990963
  133. Ilkka Paatero et al. (2014). "Hypoxia-inducible factor-1α induces ErbB4 signaling in the differentiating mammary gland".PMID 24966332
  134. Chen Wang et al. (2014). "Local injection of deferoxamine improves neovascularization in ischemic diabetic random flap by increasing HIF-1α and VEGF expression".PMID 24963878
  135. Guang Jin et al. (2014). "Development of a novel neuroprotective strategy: combined treatment with hypothermia and valproic acid improves survival in hypoxic hippocampal cells".PMID 24950983
  136. L M A Schreurs et al. (2014). "Prognostic impact of clinicopathological features and expression of biomarkers related to (18)F-FDG uptake in esophageal cancer".PMID 24939624
  137. Prabhu Ramamoorthy et al. (2014). "Ischemia induces different levels of hypoxia inducible factor-1α protein expression in interneurons and pyramidal neurons".PMID 24887017
  138. Ajaz Ahmad Waza et al. (2014). "Protein kinase C (PKC) mediated interaction between conexin43 (Cx43) and K(+)(ATP) channel subunit (Kir6.1) in cardiomyocyte mitochondria: Implications in cytoprotection against hypoxia induced cell apoptosis".PMID 24815185
  139. Weichuan Wu et al. (2014). "A pre-injury high ethanol intake in rats promotes brain edema following traumatic brain injury".PMID 24814385
  140. Baomin Li et al. (2014). "Downregulation of the Werner syndrome protein induces a metabolic shift that compromises redox homeostasis and limits proliferation of cancer cells".PMID 24757718
  141. Carlos A Schaffner et al. (2015). "The organic solute transporters alpha and beta are induced by hypoxia in human hepatocytes".PMID 24703425
  142. Andrew S Zimmermann et al. (2014). "Epidermal or dermal specific knockout of PHD-2 enhances wound healing and minimizes ischemic injury".PMID 24695462
  143. John P Fahrenbach et al. (2014). "Abcc9 is required for the transition to oxidative metabolism in the newborn heart".PMID 24648545
  144. Volkan Aksu et al. (2015). "The effects of sildenafil and n-acetylcysteine on ischemia and reperfusion injury in gastrocnemius muscle and femoral artery endothelium".PMID 24642934
  145. Xuejun Sun et al. (2014). "Preconditioning of mesenchymal stem cells by sevoflurane to improve their therapeutic potential".PMID 24599264
  146. Mari Ekman et al. (2014). "HIF-mediated metabolic switching in bladder outlet obstruction mitigates the relaxing effect of mitochondrial inhibition".PMID 24589856
  147. J M Cheverud et al. (2014). "Fine-mapping quantitative trait loci affecting murine external ear tissue regeneration in the LG/J by SM/J advanced intercross line".PMID 24569637
  148. Johnny A Sena et al. (2014). "HIFs enhance the transcriptional activation and splicing of adrenomedullin".PMID 24523299
  149. Kotaro Takeda et al. (2014). "Improved vascular survival and growth in the mouse model of hindlimb ischemia by a remote signaling mechanism".PMID 24440788
  150. Jennifer R Kulzer et al. (2014). "A common functional regulatory variant at a type 2 diabetes locus upregulates ARAP1 expression in the pancreatic beta cell".PMID 24439111
  151. Ivraym B Barsoum et al. (2014). "A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells".PMID 24336068
  152. Hao Ding et al. (2014). "Dimethyloxaloylglycine increases the bone healing capacity of adipose-derived stem cells by promoting osteogenic differentiation and angiogenic potential".PMID 24328551
  153. Veli Pekka Ronkainen et al. (2014). "Hypoxia-inducible factor 1-induced G protein-coupled receptor 35 expression is an early marker of progressive cardiac remodelling".PMID 24095869
  154. Larissa Bazela Maschio et al. (2014). "Immunohistochemical investigation of the angiogenic proteins VEGF, HIF-1α and CD34 in invasive ductal carcinoma of the breast".PMID 23899963
  155. Liwei Xie et al. (2013). "Transcription factors Sp1 and Hif2α mediate induction of the copper-transporting ATPase (Atp7a) gene in intestinal epithelial cells during hypoxia".PMID 23814049
  156. Luke Gammon et al. (2013). "Sub-sets of cancer stem cells differ intrinsically in their patterns of oxygen metabolism".PMID 23638097
  157. Paola Avena et al. (2013). "Compartment-specific activation of PPARγ governs breast cancer tumor growth, via metabolic reprogramming and symbiosis".PMID 23574724
  158. Wei dong Cao et al. (2014). "Relationship of 14-3-3zeta (ζ), HIF-1α, and VEGF expression in human brain gliomas".PMID 23358800
  159. John T Isaacs et al. (2013). "Tasquinimod Is an Allosteric Modulator of HDAC4 survival signaling within the compromised cancer microenvironment".PMID 23149916
  160. Ahmed F Salem et al. (2012). "Downregulation of stromal BRCA1 drives breast cancer tumor growth via upregulation of HIF-1α, autophagy and ketone body production".PMID 23047605
  161. Chih Hsien Wu et al. (2012). "Nickel-induced epithelial-mesenchymal transition by reactive oxygen species generation and E-cadherin promoter hypermethylation".PMID 22648416
  162. Yueh Ling Hsieh et al. (2012). "Low-level laser therapy alleviates neuropathic pain and promotes function recovery in rats with chronic constriction injury: possible involvements in hypoxia-inducible factor 1α (HIF-1α)".PMID 22351621
  163. J D Lee et al. (2012). "Increased expression of hypoxia-inducible factor-1α and metallothionein in varicocele and varicose veins".PMID 22345328
  164. Frederick Groenman et al. (2007). "Hypoxia-inducible factors in the first trimester human lung".PMID 17189520