这是一篇来自已证抗体库的有关人类 HIST1H3D的综述,是根据764篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合HIST1H3D 抗体。
HIST1H3D 同义词: H3/b; H3FB; histone H3.1; H3 histone family, member B; histone 1, H3d; histone H3/b; histone cluster 1, H3d

艾博抗(上海)贸易有限公司
小鼠 单克隆(mAbcam 1220)
  • 免疫细胞化学; 人类; 图 s7a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫细胞化学在人类样本上 (图 s7a). Nature (2019) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s5d
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab47915)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5d). Nat Commun (2019) ncbi
兔 多克隆
  • ChIP-Seq; 人类; 图 4f
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于ChIP-Seq在人类样本上 (图 4f). Nat Commun (2019) ncbi
兔 多克隆
  • ChIP-Seq; 小鼠; 图 3j
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, AB8580)被用于被用于ChIP-Seq在小鼠样本上 (图 3j). Nat Commun (2019) ncbi
兔 多克隆
  • ChIP-Seq; 小鼠; 图 2
艾博抗(上海)贸易有限公司 HIST1H3D抗体(abcam, ab8580)被用于被用于ChIP-Seq在小鼠样本上 (图 2). Nucleic Acids Res (2019) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:300; 图 s4b
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 s4b). J Clin Invest (2019) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1d
  • 免疫印迹; 小鼠; 1:1000; 图 1a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). Brain (2019) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫印迹; 小鼠; 图 s16b
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫印迹在小鼠样本上 (图 s16b). Science (2019) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 s1e
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab47915)被用于被用于染色质免疫沉淀 在人类样本上 (图 s1e). Nature (2018) ncbi
兔 多克隆
  • 流式细胞仪; 小鼠; 图 1f
艾博抗(上海)贸易有限公司 HIST1H3D抗体(AbCam, ab8580)被用于被用于流式细胞仪在小鼠样本上 (图 1f). Genome Biol (2018) ncbi
兔 多克隆
  • 其他; 小鼠; 图 3g
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于其他在小鼠样本上 (图 3g). J Biol Chem (2018) ncbi
兔 多克隆
  • 其他; 小鼠; 图 5d
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1191)被用于被用于其他在小鼠样本上 (图 5d). J Biol Chem (2018) ncbi
兔 多克隆
  • ChIP-Seq; 人类; 图 5b
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于ChIP-Seq在人类样本上 (图 5b). Cancer Cell (2018) ncbi
兔 多克隆
  • ChIP-Seq; 人类; 图 5b
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab7766)被用于被用于ChIP-Seq在人类样本上 (图 5b). Cancer Cell (2018) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫印迹; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫印迹在小鼠样本上 (图 5a). Biochimie (2018) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 7a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于免疫细胞化学在小鼠样本上 (图 7a). J Cell Physiol (2018) ncbi
兔 单克隆
  • 免疫印迹; 小鼠; 图 s4a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab176842)被用于被用于免疫印迹在小鼠样本上 (图 s4a). Sci Rep (2018) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫细胞化学; 小鼠; 图 s8a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫细胞化学在小鼠样本上 (图 s8a). Sci Rep (2018) ncbi
小鼠 单克隆(mAbcam 1220)
  • ChIP-Seq; fission yeast; 图 e3e
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于ChIP-Seq在fission yeast样本上 (图 e3e). Nature (2018) ncbi
兔 多克隆
  • ChIP-Seq; 人类; 图 1d
  • 免疫细胞化学; 人类; 图 s5a
  • 免疫印迹; 人类; 图 s3a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于ChIP-Seq在人类样本上 (图 1d), 被用于免疫细胞化学在人类样本上 (图 s5a) 和 被用于免疫印迹在人类样本上 (图 s3a). J Biol Chem (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1f
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于免疫印迹在小鼠样本上 (图 1f). Cell (2018) ncbi
兔 多克隆
  • 免疫沉淀; 人类; 图 6c
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于免疫沉淀在人类样本上 (图 6c). Br J Cancer (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s3h
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于免疫印迹在人类样本上 (图 s3h). Cell (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1k
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于免疫印迹在小鼠样本上 (图 1k). FASEB J (2018) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 小鼠; 1:500; 图 7g
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为1:500 (图 7g). Diabetes (2018) ncbi
兔 多克隆
  • ChIP-Seq; 人类; 1:200; 图 s5a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于ChIP-Seq在人类样本上浓度为1:200 (图 s5a). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫印迹; 拟南芥; 图 s6a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于免疫印迹在拟南芥样本上 (图 s6a). Science (2017) ncbi
兔 多克隆
  • ChIP-Seq; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于ChIP-Seq在小鼠样本上 (图 2a). J Biol Chem (2017) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 小鼠; 图 4g
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 4g). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • ChIP-Seq; 人类; 1:100; 图 4b
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于ChIP-Seq在人类样本上浓度为1:100 (图 4b). Nat Commun (2017) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 s17c
艾博抗(上海)贸易有限公司 HIST1H3D抗体(abcam, ab8580)被用于被用于染色质免疫沉淀 在人类样本上 (图 s17c). Science (2017) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 4g
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, 8580)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 4g). J Exp Med (2017) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 4c
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 4c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 小鼠; 图 5e, 4c
  • 免疫印迹; 小鼠; 图 6e
  • 免疫印迹; 人类; 图 5g
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 5e, 4c), 被用于免疫印迹在小鼠样本上 (图 6e) 和 被用于免疫印迹在人类样本上 (图 5g). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 4c
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab7766)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 4c). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3h
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab7766)被用于被用于免疫印迹在人类样本上 (图 3h). Science (2017) ncbi
兔 多克隆
  • ChIP-Seq; 小鼠; 图 5b
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于ChIP-Seq在小鼠样本上 (图 5b). elife (2017) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 s5a
  • 免疫印迹; 人类; 图 s5a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, AB47915)被用于被用于染色质免疫沉淀 在人类样本上 (图 s5a) 和 被用于免疫印迹在人类样本上 (图 s5a). elife (2017) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 人类; 图 2a
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, AB1220)被用于被用于染色质免疫沉淀 在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 1c). MBio (2017) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:500; 图 2a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于免疫组化在人类样本上浓度为1:500 (图 2a). Int J Mol Sci (2017) ncbi
兔 多克隆
  • ChIP-Seq; 人类; 图 1e
  • 免疫沉淀; 小鼠; 图 1a
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于ChIP-Seq在人类样本上 (图 1e), 被用于免疫沉淀在小鼠样本上 (图 1a), 被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上 (图 4). PLoS Genet (2017) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; fission yeast; 图 2c
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在fission yeast样本上 (图 2c). PLoS Genet (2017) ncbi
兔 多克隆
  • 免疫印迹; 秀丽隐杆线虫; 1:1000; 图 s5a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于免疫印迹在秀丽隐杆线虫样本上浓度为1:1000 (图 s5a). PLoS Genet (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4i
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于免疫印迹在小鼠样本上 (图 4i). J Exp Med (2017) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; fission yeast; 图 s4b
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在fission yeast样本上 (图 s4b). Nature (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 s6c
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, Ab7766)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s6c). Cell Rep (2017) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫印迹; 小鼠; 1:2000; 图 s6c
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s6c). Cell Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 s6c
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, Ab8580)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s6c). Cell Rep (2017) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 人类; 图 2a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在人类样本上 (图 2a). J Biol Chem (2017) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 4C
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 4C). Sci Rep (2017) ncbi
兔 多克隆
  • 其他; 人类; 1:500; 图 s9
艾博抗(上海)贸易有限公司 HIST1H3D抗体(AbCam, ab71956)被用于被用于其他在人类样本上浓度为1:500 (图 s9). Nat Chem Biol (2017) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 6b
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Millipore, ab9050)被用于被用于染色质免疫沉淀 在人类样本上 (图 6b). Mol Immunol (2017) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 6b
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Millipore, ab2621)被用于被用于染色质免疫沉淀 在人类样本上 (图 6b). Mol Immunol (2017) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 1g
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在人类样本上 (图 1g). Nucleic Acids Res (2017) ncbi
小鼠 单克隆(mAbcam12209)
  • 免疫组化; 小鼠; 1:200; 图 s6w
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab12209)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s6w). Cell (2017) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 小鼠; 图 s5i
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 s5i). Science (2017) ncbi
兔 多克隆
  • ChIP-Seq; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于ChIP-Seq在小鼠样本上 (图 5a). Biochim Biophys Acta Gene Regul Mech (2017) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 4d
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 4d). elife (2016) ncbi
小鼠 单克隆(mAbcam 1220)
  • ChIP-Seq; 拟南芥; 图 9s
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于ChIP-Seq在拟南芥样本上 (图 9s). Nucleic Acids Res (2017) ncbi
兔 多克隆
  • ChIP-Seq; 人类; 图 s4a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于ChIP-Seq在人类样本上 (图 s4a). Cell (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 1b
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab7766)被用于被用于染色质免疫沉淀 在人类样本上 (图 1b). Nucleic Acids Res (2017) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 1b
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在人类样本上 (图 1b). Nucleic Acids Res (2017) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 2h
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 2h). Sci Rep (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫印迹; 大鼠; 图 s4a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫印迹在大鼠样本上 (图 s4a). Proc Natl Acad Sci U S A (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, Ab8580)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 4a). PLoS ONE (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, Ab47915)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 4a). PLoS ONE (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, Ab9050)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 4a). PLoS ONE (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 s4a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在人类样本上 (图 s4a). PLoS Pathog (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 s4d
  • 免疫印迹; 人类; 图 2f
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1191)被用于被用于染色质免疫沉淀 在人类样本上 (图 s4d) 和 被用于免疫印迹在人类样本上 (图 2f). Nature (2016) ncbi
兔 多克隆
  • ChIP-Seq; 小鼠; 图 8
  • 免疫印迹; 小鼠; 图 s1
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab7766)被用于被用于ChIP-Seq在小鼠样本上 (图 8) 和 被用于免疫印迹在小鼠样本上 (图 s1). Epigenetics Chromatin (2016) ncbi
小鼠 单克隆(mAbcam 1220)
  • ChIP-Seq; 小鼠; 图 8
  • 免疫印迹; 小鼠; 图 s1
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于ChIP-Seq在小鼠样本上 (图 8) 和 被用于免疫印迹在小鼠样本上 (图 s1). Epigenetics Chromatin (2016) ncbi
兔 多克隆
  • ChIP-Seq; 小鼠; 图 8
  • 免疫印迹; 小鼠; 图 s1
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于ChIP-Seq在小鼠样本上 (图 8) 和 被用于免疫印迹在小鼠样本上 (图 s1). Epigenetics Chromatin (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 2f
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 2f). Int J Biochem Cell Biol (2016) ncbi
兔 多克隆
  • ChIP-Seq; 小鼠; 图 2
艾博抗(上海)贸易有限公司 HIST1H3D抗体(abcam, ab8580)被用于被用于ChIP-Seq在小鼠样本上 (图 2). Genome Biol (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 2c
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab130740)被用于被用于染色质免疫沉淀 在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上 (图 2c). Oncogene (2017) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 斑马鱼; 图 3
  • 免疫组化; 斑马鱼; 图 5
艾博抗(上海)贸易有限公司 HIST1H3D抗体(AbCam, ab1220)被用于被用于染色质免疫沉淀 在斑马鱼样本上 (图 3) 和 被用于免疫组化在斑马鱼样本上 (图 5). Stem Cell Reports (2016) ncbi
兔 多克隆
  • 免疫印迹; scFv; 1:1000; 图 7b
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, Ab8580)被用于被用于免疫印迹在scFv样本上浓度为1:1000 (图 7b). PLoS Genet (2016) ncbi
兔 多克隆
  • 免疫印迹; scFv; 1:1000; 图 7b
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, Ab9050)被用于被用于免疫印迹在scFv样本上浓度为1:1000 (图 7b). PLoS Genet (2016) ncbi
兔 多克隆
  • ChIP-Seq; 小鼠; 1:1000; 图 6c
  • 免疫印迹; 小鼠; 1:2000; 图 s4b
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于ChIP-Seq在小鼠样本上浓度为1:1000 (图 6c) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s4b). Sci Rep (2016) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫印迹; 小鼠; 1:2000; 图 s4b
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s4b). Sci Rep (2016) ncbi
兔 多克隆
  • ChIP-Seq; 小鼠; 1:1000; 图 6d
  • 免疫印迹; 小鼠; 1:2000; 图 s4b
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab7766)被用于被用于ChIP-Seq在小鼠样本上浓度为1:1000 (图 6d) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s4b). Sci Rep (2016) ncbi
兔 多克隆
  • ChIP-Seq; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于ChIP-Seq在小鼠样本上 (图 2a). Genome Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司 HIST1H3D抗体(abcam, ab8580)被用于被用于免疫印迹在人类样本上 (图 3). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 人类; 图 3f
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在人类样本上 (图 3f). Oncotarget (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 1
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于染色质免疫沉淀 在人类样本上 (图 1). Sci Rep (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 拟南芥; 图 6
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在拟南芥样本上 (图 6). PLoS Genet (2016) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 人类; 图 st1
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, 1220)被用于被用于染色质免疫沉淀 在人类样本上 (图 st1). Int J Dev Biol (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 5
艾博抗(上海)贸易有限公司 HIST1H3D抗体(abcam, ab8580)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 5). Mol Vis (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 6
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, AB8580)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 6). elife (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 5
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 5). PLoS Genet (2016) ncbi
小鼠 单克隆(mAbcam12209)
  • 染色质免疫沉淀 ; 人类; 图 3c
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab12209)被用于被用于染色质免疫沉淀 在人类样本上 (图 3c). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:30,000; 图 13
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于免疫印迹在小鼠样本上浓度为1:30,000 (图 13). Histochem Cell Biol (2016) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 人类; 图 st3
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在人类样本上 (图 st3). Oncotarget (2016) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 人类; 1:40; 图 3d
  • 免疫印迹; 人类; 1:2000; 图 3d
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:40 (图 3d) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 3d). Science (2016) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫组化-石蜡切片; 人类; 1:90; 图 6e
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, Ab1220)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:90 (图 6e). Brain Pathol (2017) ncbi
兔 多克隆
  • ChIP-Seq; 小鼠; 图 s6f
  • 免疫印迹; 小鼠; 图 s1a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于ChIP-Seq在小鼠样本上 (图 s6f) 和 被用于免疫印迹在小鼠样本上 (图 s1a). Nature (2016) ncbi
兔 多克隆
  • ChIP-Seq; 小鼠; 图 s6f
  • 免疫印迹; 小鼠; 图 s1a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于ChIP-Seq在小鼠样本上 (图 s6f) 和 被用于免疫印迹在小鼠样本上 (图 s1a). Nature (2016) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫细胞化学; 拟南芥; 图 3
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫细胞化学在拟南芥样本上 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫印迹; 人类; 图 7c
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫印迹在人类样本上 (图 7c). Oncotarget (2016) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫细胞化学; 人类; 1:500; 图 4i
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4i). Nature (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 1
  • 免疫印迹; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 大鼠; 图 2
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在大鼠样本上 (图 2). Biomed Res Int (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 大鼠; 图 3
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在大鼠样本上 (图 3). Biomed Res Int (2016) ncbi
兔 多克隆
  • ChIP-Seq; 鸡; 图 3
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于ChIP-Seq在鸡样本上 (图 3). EMBO J (2016) ncbi
兔 多克隆
  • ChIP-Seq; 人类; 图 1
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于ChIP-Seq在人类样本上 (图 1). Genes Dev (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, Ab-8580)被用于被用于染色质免疫沉淀 在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). Nat Commun (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 人类; 图 4
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在人类样本上 (图 4). Sci Rep (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 s3
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 s3). Biol Open (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 7e
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在人类样本上 (图 7e). J Biol Chem (2016) ncbi
兔 多克隆
  • ChIP-Seq; 人类; 图 2
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, AB8580)被用于被用于ChIP-Seq在人类样本上 (图 2). Biochem Biophys Res Commun (2016) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 人类; 图 4
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, 1220)被用于被用于染色质免疫沉淀 在人类样本上 (图 4). Cell Rep (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, 8580)被用于被用于染色质免疫沉淀 在人类样本上 (图 4). Cell Rep (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 6
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在人类样本上 (图 6). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 图 1
  • 免疫印迹; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1191)被用于被用于免疫组化在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Dis Model Mech (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 果蝇; 表 1
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于染色质免疫沉淀 在果蝇样本上 (表 1). Genom Data (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 表 1
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, Ab9050)被用于被用于免疫印迹在人类样本上 (表 1). elife (2016) ncbi
兔 多克隆
  • 免疫沉淀; 小鼠; 图 8
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, 8580)被用于被用于免疫沉淀在小鼠样本上 (图 8). Development (2016) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫印迹; 人类; 1:1000; 图 1a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Nat Commun (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 s8
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 s8). elife (2016) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 小鼠; 图 6
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 6). PLoS Genet (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 果蝇; 图 1e
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在果蝇样本上 (图 1e). PLoS Genet (2016) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 大鼠; 图 6
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在大鼠样本上 (图 6). J Neurosci (2016) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 小鼠; 图 5f
  • 免疫细胞化学; 小鼠; 1:200; 图 5e
  • 免疫印迹; 小鼠; 1:1000; 图 5d
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 5f), 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 5e) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). Stem Cells (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 面包酵母; 图 5
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于染色质免疫沉淀 在面包酵母样本上 (图 5). PLoS ONE (2016) ncbi
兔 多克隆
  • ChIP-Seq; 人类; 图 4
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于ChIP-Seq在人类样本上 (图 4). Genes Dev (2016) ncbi
兔 多克隆
  • ChIP-Seq; 人类; 图 2
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于ChIP-Seq在人类样本上 (图 2). Cell Rep (2016) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 小鼠; 图 4
  • 免疫细胞化学; 小鼠; 1:200; 图 4
  • 免疫印迹; 小鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 4), 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). elife (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; common platanna; 图 5
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于染色质免疫沉淀 在common platanna样本上 (图 5). Cell Biosci (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 6
  • 免疫印迹; 人类; 1:1000; 图 6
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s3s
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于免疫印迹在人类样本上 (图 s3s). Proc Natl Acad Sci U S A (2016) ncbi
兔 多克隆
  • ChIP-Seq; 人类; 图 s3
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于ChIP-Seq在人类样本上 (图 s3). Cell Res (2016) ncbi
兔 多克隆
  • ChIP-Seq; 小鼠; 图 2b
  • 免疫印迹; 小鼠; 图 1c
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, Ab9050)被用于被用于ChIP-Seq在小鼠样本上 (图 2b) 和 被用于免疫印迹在小鼠样本上 (图 1c). PLoS Genet (2016) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫组化; 小鼠; 1:250
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫组化在小鼠样本上浓度为1:250. Nature (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 s4
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在人类样本上 (图 s4). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, 9050)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Oncotarget (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 3
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, AB8580)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; fission yeast; 图 1
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, Ab1220)被用于被用于染色质免疫沉淀 在fission yeast样本上 (图 1). Proc Natl Acad Sci U S A (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 3
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 6
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 6). BMC Dev Biol (2015) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; fission yeast
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在fission yeast样本上. EMBO Rep (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 图 5a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于免疫组化在人类样本上 (图 5a). Epigenetics Chromatin (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 5f
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 5f). Genome Res (2016) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 小鼠; 图 5f
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 5f). Genome Res (2016) ncbi
小鼠 单克隆(mAbcam 1220)
  • ChIP-Seq; 小鼠; 图 3
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于ChIP-Seq在小鼠样本上 (图 3). elife (2015) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 大鼠; 图 3
  • 免疫印迹; 大鼠; 图 1
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在大鼠样本上 (图 3) 和 被用于免疫印迹在大鼠样本上 (图 1). Nat Neurosci (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 1c
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 1c). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫细胞化学; common tobacco; 1:200; 图 2
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, 1191)被用于被用于免疫细胞化学在common tobacco样本上浓度为1:200 (图 2). Front Plant Sci (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 图 s3
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, 9050)被用于被用于免疫组化在人类样本上 (图 s3). Mod Pathol (2016) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫印迹; 人类; 1:2000; 图 s3
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s3). Nature (2015) ncbi
兔 多克隆
  • ChIP-Seq; 人类; 图 1
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于ChIP-Seq在人类样本上 (图 1). Stem Cell Reports (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 s3
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于染色质免疫沉淀 在人类样本上 (图 s3). elife (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 s3
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab2621)被用于被用于染色质免疫沉淀 在人类样本上 (图 s3). elife (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 s3
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在人类样本上 (图 s3). elife (2015) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 小鼠; 图 6
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, 1220)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 6). Nat Commun (2015) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫细胞化学; 秀丽隐杆线虫
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫细胞化学在秀丽隐杆线虫样本上. Nucleic Acids Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab47915)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Am J Pathol (2015) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫细胞化学; 小鼠; 图 s5a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫细胞化学在小鼠样本上 (图 s5a). Development (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2D
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于免疫印迹在人类样本上 (图 2D). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s2
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab2621)被用于被用于免疫印迹在人类样本上 (图 s2). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s2
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab7766)被用于被用于免疫印迹在人类样本上 (图 s2). Oncotarget (2015) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫印迹; 人类; 图 s2
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫印迹在人类样本上 (图 s2). Oncotarget (2015) ncbi
兔 多克隆
  • ChIP-Seq; 人类; 图 1
艾博抗(上海)贸易有限公司 HIST1H3D抗体(abcam, ab8580)被用于被用于ChIP-Seq在人类样本上 (图 1). Nature (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6
  • 染色质免疫沉淀 ; 人类; 图 5
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6), 被用于染色质免疫沉淀 在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
  • 免疫印迹; 人类; 1:1000; 图 1b
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Nat Commun (2015) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 果蝇; 图 3
  • 免疫印迹; 果蝇; 图 6
艾博抗(上海)贸易有限公司 HIST1H3D抗体(abcam, ab1220)被用于被用于染色质免疫沉淀 在果蝇样本上 (图 3) 和 被用于免疫印迹在果蝇样本上 (图 6). PLoS Genet (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 6b
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 6b). PLoS ONE (2015) ncbi
兔 多克隆
  • ChIP-Seq; 小鼠; 图 s4
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, Ab7766)被用于被用于ChIP-Seq在小鼠样本上 (图 s4). Nat Commun (2015) ncbi
兔 多克隆
  • ChIP-Seq; 人类; 图 1
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于ChIP-Seq在人类样本上 (图 1). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3h
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于免疫印迹在人类样本上 (图 3h). Nature (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 3j
  • 免疫印迹; 人类; 图 3e
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在人类样本上 (图 3j) 和 被用于免疫印迹在人类样本上 (图 3e). Nature (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 5.f
  • 免疫印迹; 小鼠; 图 1b
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 5.f) 和 被用于免疫印迹在小鼠样本上 (图 1b). EMBO J (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 5g
  • 免疫印迹; 小鼠; 图 1b
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab2621)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 5g) 和 被用于免疫印迹在小鼠样本上 (图 1b). EMBO J (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于免疫印迹在小鼠样本上 (图 1a). EMBO J (2015) ncbi
小鼠 单克隆(mAbcam 1220)
  • ChIP-Seq; 人类; 图 5
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于ChIP-Seq在人类样本上 (图 5). Blood (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4
  • 免疫印迹; 人类; 1:800; 图 4
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab47915)被用于被用于染色质免疫沉淀 在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:800 (图 4). J Invest Dermatol (2015) ncbi
小鼠 单克隆(mAbcam12209)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab12209)被用于被用于免疫细胞化学在人类样本上. Hum Genet (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 s4
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在人类样本上 (图 s4). PLoS ONE (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 8
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在人类样本上 (图 8). Cancer Sci (2015) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫印迹; 人类; 表 3
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, Ab1220)被用于被用于免疫印迹在人类样本上 (表 3). elife (2015) ncbi
兔 多克隆
  • ChIP-Seq; 人类; 图 2
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于ChIP-Seq在人类样本上 (图 2). Genes Dev (2015) ncbi
兔 多克隆
  • 免疫印迹; goober
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab47915)被用于被用于免疫印迹在goober样本上. Front Plant Sci (2015) ncbi
小鼠 单克隆(mAbcam 1220)
  • ChIP-Seq; 小鼠; 图 1e
  • 免疫印迹; 小鼠; 图 1b
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于ChIP-Seq在小鼠样本上 (图 1e) 和 被用于免疫印迹在小鼠样本上 (图 1b). Nat Neurosci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab2621)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫印迹; 人类; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, 1220)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). J Biol Chem (2015) ncbi
小鼠 单克隆(mAbcam 1220)
  • ChIP-Seq; 小鼠; 图 3a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于ChIP-Seq在小鼠样本上 (图 3a). BMC Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Toxicol Appl Pharmacol (2015) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 小鼠; 图 8
  • 免疫印迹; 小鼠; 1:1000; 图 s7
艾博抗(上海)贸易有限公司 HIST1H3D抗体(abcam, ab1220)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 8) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7). Genes Dev (2015) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 人类; 图 5b
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab-1220)被用于被用于染色质免疫沉淀 在人类样本上 (图 5b). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(mAbcam 1220)
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于. Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Nat Commun (2015) ncbi
兔 多克隆
  • ChIP-Seq; 小鼠; 图 3
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于ChIP-Seq在小鼠样本上 (图 3). BMC Biol (2015) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 小鼠; 1:2000; 图 5
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, Ab1220)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为1:2000 (图 5). Nucleic Acids Res (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 7
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在人类样本上 (图 7). MBio (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 4a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于免疫印迹在大鼠样本上 (图 4a). Int J Neurosci (2016) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
  • 免疫印迹; 人类; 1:1000; 图 2c
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). PLoS ONE (2015) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在人类样本上. Blood (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于染色质免疫沉淀 在人类样本上. Blood (2015) ncbi
兔 多克隆
  • 免疫组化; 拟南芥; 图 3
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于免疫组化在拟南芥样本上 (图 3). Front Plant Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; fission yeast; 1:1000
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于免疫印迹在fission yeast样本上浓度为1:1000. Genetics (2015) ncbi
兔 多克隆
  • ChIP-Seq; 小鼠; 图 3
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, 8580)被用于被用于ChIP-Seq在小鼠样本上 (图 3). Nature (2015) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 大鼠
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在大鼠样本上. J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1191)被用于被用于免疫印迹在人类样本上 (图 3a). Sci Rep (2015) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫沉淀; 拟南芥
  • 免疫细胞化学; 拟南芥
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫沉淀在拟南芥样本上 和 被用于免疫细胞化学在拟南芥样本上. Plant Physiol (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 拟南芥
  • 免疫沉淀; 拟南芥
  • 免疫细胞化学; 拟南芥
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于染色质免疫沉淀 在拟南芥样本上, 被用于免疫沉淀在拟南芥样本上 和 被用于免疫细胞化学在拟南芥样本上. Plant Physiol (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; scFv; 图 2
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在scFv样本上 (图 2). Aging Cell (2015) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. J Cell Biochem (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 s6
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 s6). Nat Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(abcam, ab47915)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于染色质免疫沉淀 在人类样本上. Nucleic Acids Res (2015) ncbi
兔 多克隆
  • 其他; 小鼠; 图 2
  • ChIP-Seq; 小鼠; 图 1
  • 免疫印迹; 小鼠; 图 s1
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于其他在小鼠样本上 (图 2), 被用于ChIP-Seq在小鼠样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 s1). Proc Natl Acad Sci U S A (2015) ncbi
兔 多克隆
  • 其他; 小鼠; 图 2
  • ChIP-Seq; 小鼠; 图 1
  • 免疫印迹; 小鼠; 图 s1
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于其他在小鼠样本上 (图 2), 被用于ChIP-Seq在小鼠样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 s1). Proc Natl Acad Sci U S A (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 s2
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab7766)被用于被用于染色质免疫沉淀 在人类样本上 (图 s2). Nat Struct Mol Biol (2015) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 人类
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在人类样本上 和 被用于免疫细胞化学在人类样本上浓度为1:200. Cell Div (2014) ncbi
兔 多克隆
  • ChIP-Seq; 人类; 图 6
  • 免疫组化-石蜡切片; 人类; 图 s3
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于ChIP-Seq在人类样本上 (图 6), 被用于免疫组化-石蜡切片在人类样本上 (图 s3) 和 被用于免疫印迹在人类样本上 (图 4). Oncogene (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 7
  • 免疫印迹; 人类; 图 7
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于染色质免疫沉淀 在人类样本上 (图 7) 和 被用于免疫印迹在人类样本上 (图 7). Oncotarget (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 1
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 1). Methods Enzymol (2015) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 人类; 图 5a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在人类样本上 (图 5a). PLoS ONE (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 大鼠; 图 3
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于染色质免疫沉淀 在大鼠样本上 (图 3). Nat Neurosci (2015) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 大鼠; 图 3
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在大鼠样本上 (图 3). Nat Neurosci (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 2
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在人类样本上 (图 2). J Biol Chem (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 1, 2
  • 免疫印迹; 小鼠; 图 5
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 1, 2) 和 被用于免疫印迹在小鼠样本上 (图 5). Biochim Biophys Acta (2015) ncbi
兔 多克隆
  • ChIP-Seq; 人类; 图 s7
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于ChIP-Seq在人类样本上 (图 s7). Mol Cell (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 3
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 小鼠; 图 6
  • 免疫印迹; 小鼠; 1:200; 图 8
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 6) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 8). J Cell Biol (2015) ncbi
兔 多克隆
  • ChIP-Seq; 人类; 图 7
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab 7766)被用于被用于ChIP-Seq在人类样本上 (图 7). Nucleic Acids Res (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 s3
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 s3). Genes Dev (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4d
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, 8580)被用于被用于染色质免疫沉淀 在人类样本上 (图 4d). Oncogene (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 大鼠
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在大鼠样本上. Am J Physiol Regul Integr Comp Physiol (2015) ncbi
小鼠 单克隆(mAbcam 1220)
  • ChIP-Seq; fission yeast; 图 4d
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于ChIP-Seq在fission yeast样本上 (图 4d). elife (2014) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫印迹在小鼠样本上 (图 4). Epigenetics Chromatin (2014) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于染色质免疫沉淀 在人类样本上. Nucleic Acids Res (2015) ncbi
小鼠 单克隆(mAbcam12209)
  • 抑制或激活实验; 小鼠; 1:200
  • 免疫细胞化学; 小鼠
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab12209)被用于被用于抑制或激活实验在小鼠样本上浓度为1:200 和 被用于免疫细胞化学在小鼠样本上. Cell Death Dis (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1f
  • 免疫印迹; 鸡; 1:1000; 图 1f
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1f) 和 被用于免疫印迹在鸡样本上浓度为1:1000 (图 1f). J Proteomics (2015) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 拟南芥; 图 5
艾博抗(上海)贸易有限公司 HIST1H3D抗体(abcam, ab1220)被用于被用于染色质免疫沉淀 在拟南芥样本上 (图 5). Cell Res (2014) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在人类样本上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫细胞化学在人类样本上. J Biomol Screen (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 4
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 4). Infect Immun (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在人类样本上. Mucosal Immunol (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于染色质免疫沉淀 在人类样本上. Nucleic Acids Res (2014) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠
  • 免疫印迹; 小鼠; 图 5
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在小鼠样本上 和 被用于免疫印迹在小鼠样本上 (图 5). Nat Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 面包酵母; 图 6
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab7766)被用于被用于免疫印迹在面包酵母样本上 (图 6). J Biol Chem (2014) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在人类样本上. Gene (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Cancer Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab130740)被用于被用于免疫印迹在人类样本上浓度为1:1000. Neoplasia (2014) ncbi
兔 多克隆
  • 其他; 拟南芥; 图 1
  • 染色质免疫沉淀 ; 拟南芥; 图 4
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于其他在拟南芥样本上 (图 1) 和 被用于染色质免疫沉淀 在拟南芥样本上 (图 4). PLoS Genet (2014) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫印迹; 人类; 1:2000
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫印迹在人类样本上浓度为1:2000. Int J Mol Sci (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于免疫印迹在人类样本上浓度为1:500. Int J Mol Sci (2014) ncbi
兔 多克隆
  • 免疫组化; 拟南芥
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于免疫组化在拟南芥样本上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫组化; 拟南芥
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫组化在拟南芥样本上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; African green monkey; 图 6
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在African green monkey样本上 (图 6). J Neurol Sci (2014) ncbi
兔 多克隆
  • 免疫印迹; budding yeasts; 1:1,000
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab2621)被用于被用于免疫印迹在budding yeasts样本上浓度为1:1,000. Mol Cell Biol (2014) ncbi
兔 多克隆
  • 免疫印迹; budding yeasts; 1:1,000
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于免疫印迹在budding yeasts样本上浓度为1:1,000. Mol Cell Biol (2014) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 人类; 图 8a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在人类样本上 (图 8a). BMC Cancer (2014) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在小鼠样本上. PLoS Genet (2014) ncbi
兔 多克隆
  • ChIP-Seq; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于ChIP-Seq在人类样本上. Nucleic Acids Res (2014) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在人类样本上. PLoS Pathog (2014) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 3.5 ug
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1191)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为3.5 ug. EMBO J (2014) ncbi
兔 多克隆
  • 免疫印迹; 果蝇; 1:2000
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于免疫印迹在果蝇样本上浓度为1:2000. Mech Dev (2014) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫印迹; 果蝇; 1:2000
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫印迹在果蝇样本上浓度为1:2000. Mech Dev (2014) ncbi
兔 多克隆
  • 免疫印迹; 果蝇; 1:2000
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于免疫印迹在果蝇样本上浓度为1:2000. Mech Dev (2014) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫组化; 小鼠; 1:300
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫组化在小鼠样本上浓度为1:300. BMC Dev Biol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于免疫印迹在人类样本上浓度为1:2000. Oncol Rep (2014) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫印迹在人类样本上. Clin Cancer Res (2014) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; budding yeasts
  • 免疫印迹; budding yeasts; 1:10,000
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于染色质免疫沉淀 在budding yeasts样本上 和 被用于免疫印迹在budding yeasts样本上浓度为1:10,000. Nat Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; Trypanosoma brucei; 1:2500
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于免疫印迹在Trypanosoma brucei样本上浓度为1:2500. J Biol Chem (2014) ncbi
兔 多克隆
  • ChIP-Seq; 小鼠; 图 4c
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, AB9050)被用于被用于ChIP-Seq在小鼠样本上 (图 4c). Cell Rep (2014) ncbi
兔 多克隆
  • 免疫沉淀; 人类; 3 ug
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于免疫沉淀在人类样本上浓度为3 ug 和 被用于免疫印迹在人类样本上. elife (2014) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 小鼠
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在小鼠样本上 和 被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:1000
  • 免疫细胞化学; 果蝇; 1:1000
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab2621)被用于被用于免疫组化在大鼠样本上浓度为1:1000 和 被用于免疫细胞化学在果蝇样本上浓度为1:1000. Biol Open (2014) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 2 ug; 图 4
  • 免疫细胞化学; 人类; 图 2c
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 HIST1H3D抗体(abcam, ab8580)被用于被用于染色质免疫沉淀 在人类样本上浓度为2 ug (图 4), 被用于免疫细胞化学在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上 (图 2c). Nucleic Acids Res (2014) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 小鼠
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在小鼠样本上. PLoS ONE (2014) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在小鼠样本上. PLoS ONE (2014) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 2-5 ug/ChIP
艾博抗(上海)贸易有限公司 HIST1H3D抗体(abcam, ab9050)被用于被用于染色质免疫沉淀 在人类样本上浓度为2-5 ug/ChIP. Nature (2014) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 人类; 2-5 ug/ChIP
  • 流式细胞仪; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(abcam, ab1220)被用于被用于染色质免疫沉淀 在人类样本上浓度为2-5 ug/ChIP 和 被用于流式细胞仪在人类样本上. Nature (2014) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab7766)被用于被用于染色质免疫沉淀 在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; fission yeast
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在fission yeast样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫印迹在小鼠样本上 (图 1). Genes Dev (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 果蝇
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1191)被用于被用于免疫组化-石蜡切片在果蝇样本上. Genes Dev (2014) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 小鼠
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在小鼠样本上. Nucleic Acids Res (2014) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于染色质免疫沉淀 在人类样本上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(mAbcam12209)
  • 免疫组化; 小鼠; 图 8a
  • 免疫印迹; 小鼠; 图 7a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab12209)被用于被用于免疫组化在小鼠样本上 (图 8a) 和 被用于免疫印迹在小鼠样本上 (图 7a). Biochem J (2014) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于染色质免疫沉淀 在小鼠样本上 和 被用于染色质免疫沉淀 在人类样本上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s2, s4
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于免疫印迹在小鼠样本上 (图 s2, s4). Development (2014) ncbi
小鼠 单克隆(mAbcam12209)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 HIST1H3D抗体(abcam, ab12209)被用于被用于免疫印迹在人类样本上浓度为1:1000. Radiat Oncol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1191)被用于被用于免疫印迹在人类样本上浓度为1:2000. PLoS Pathog (2014) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫印迹; 人类; 1:500; 图 4a
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, 1220)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Oncogene (2015) ncbi
兔 多克隆
  • ChIP-Seq; common platanna
  • 染色质免疫沉淀 ; common platanna
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于ChIP-Seq在common platanna样本上 和 被用于染色质免疫沉淀 在common platanna样本上. Genome Res (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab7766)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2013) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在小鼠样本上. J Biol Chem (2013) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; fission yeast
  • 免疫印迹; fission yeast
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于染色质免疫沉淀 在fission yeast样本上 和 被用于免疫印迹在fission yeast样本上. Mol Cell Biol (2013) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; fission yeast
  • 免疫印迹; fission yeast
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在fission yeast样本上 和 被用于免疫印迹在fission yeast样本上. Mol Cell Biol (2013) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在人类样本上. PLoS ONE (2013) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在人类样本上. Nucleic Acids Res (2014) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于染色质免疫沉淀 在小鼠样本上 和 被用于免疫印迹在小鼠样本上. J Clin Invest (2013) ncbi
兔 多克隆
  • 免疫沉淀; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于免疫沉淀在人类样本上. J Biol Chem (2013) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在人类样本上. Nat Biotechnol (2013) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在人类样本上. PLoS Genet (2013) ncbi
兔 多克隆
  • 免疫沉淀; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab47915)被用于被用于免疫沉淀在人类样本上. J Biol Chem (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:5000
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于免疫细胞化学在人类样本上浓度为1:5000. J Mol Biol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab47915)被用于被用于免疫印迹在人类样本上浓度为1:500. BMC Cancer (2013) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在人类样本上. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫印迹; budding yeasts; 1:2000
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab2621)被用于被用于免疫印迹在budding yeasts样本上浓度为1:2000. Mol Cell Biol (2013) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫组化在小鼠样本上浓度为1:200. Mol Cell (2013) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫组化在小鼠样本上 和 被用于免疫印迹在小鼠样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(mAbcam12209)
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abacm, ab12209)被用于被用于染色质免疫沉淀 在人类样本上. J Biol Chem (2013) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, 8580)被用于被用于染色质免疫沉淀 在小鼠样本上. Stem Cells (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于免疫细胞化学在人类样本上浓度为1:100. PLoS ONE (2013) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫组化-自由浮动切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200. Neurobiol Dis (2013) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于染色质免疫沉淀 在人类样本上. Mol Cancer Res (2013) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在人类样本上. Mol Oncol (2013) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在小鼠样本上. Mol Endocrinol (2013) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 小鼠
  • 免疫印迹; 小鼠; 1:3000
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在小鼠样本上, 被用于免疫印迹在小鼠样本上浓度为1:3000 和 被用于染色质免疫沉淀 在人类样本上. Int J Neuropsychopharmacol (2013) ncbi
兔 多克隆
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, Ab7766)被用于被用于免疫组化在小鼠样本上. Dev Biol (2013) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, Ab1220)被用于被用于免疫印迹在小鼠样本上. Mol Cell (2012) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, AB8580)被用于被用于免疫印迹在小鼠样本上. Mol Cell (2012) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, Ab9050)被用于被用于免疫印迹在小鼠样本上. Mol Cell (2012) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, Ab8896)被用于被用于免疫印迹在小鼠样本上. Mol Cell (2012) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; African green monkey
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在African green monkey样本上. Epigenetics (2012) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 大鼠
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于染色质免疫沉淀 在大鼠样本上. Biol Psychiatry (2011) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2011) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于染色质免疫沉淀 在人类样本上 和 被用于免疫印迹在人类样本上. Mol Cell Biol (2011) ncbi
兔 多克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8896)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2011) ncbi
兔 多克隆
  • 免疫印迹; fission yeast; 1:500
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于免疫印迹在fission yeast样本上浓度为1:500. Mol Cell Biol (2011) ncbi
兔 多克隆
  • 免疫印迹; fission yeast; 1:1000
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab2621)被用于被用于免疫印迹在fission yeast样本上浓度为1:1000. Mol Cell Biol (2011) ncbi
兔 多克隆
  • 免疫印迹; fission yeast; 1:2500
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于免疫印迹在fission yeast样本上浓度为1:2500. Mol Cell Biol (2011) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 5 ug
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为5 ug. EMBO J (2011) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 15 ug
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8896)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为15 ug. EMBO J (2011) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; budding yeasts
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于染色质免疫沉淀 在budding yeasts样本上. Eukaryot Cell (2011) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在人类样本上. Biochem Pharmacol (2011) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab7766)被用于被用于染色质免疫沉淀 在人类样本上. Biochem Pharmacol (2011) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Comp Neurol (2011) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050-100)被用于被用于染色质免疫沉淀 在小鼠样本上 和 被用于免疫印迹在小鼠样本上. EMBO J (2011) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab7766)被用于被用于染色质免疫沉淀 在人类样本上. PLoS ONE (2011) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在人类样本上. PLoS ONE (2011) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在小鼠样本上. Biol Proced Online (2010) ncbi
兔 多克隆
  • 免疫印迹; 斑马鱼
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于免疫印迹在斑马鱼样本上. Genome Res (2011) ncbi
兔 多克隆
  • 免疫印迹; 斑马鱼
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于免疫印迹在斑马鱼样本上. Genome Res (2011) ncbi
兔 多克隆
  • 免疫印迹; 斑马鱼
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab7766)被用于被用于免疫印迹在斑马鱼样本上. Genome Res (2011) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
  • 免疫印迹; 人类; 0.5 ug/ml
  • 染色质免疫沉淀 ; 果蝇
  • 免疫印迹; 果蝇; 0.5 ug/ml in dot bl
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1191)被用于被用于染色质免疫沉淀 在人类样本上, 被用于免疫印迹在人类样本上浓度为0.5 ug/ml, 被用于染色质免疫沉淀 在果蝇样本上 和 被用于免疫印迹在果蝇样本上浓度为0.5 ug/ml in dot bl. Nat Struct Mol Biol (2011) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 秀丽隐杆线虫
  • 免疫印迹; 秀丽隐杆线虫; 1:2000 in dot blot
  • 染色质免疫沉淀 ; 果蝇
  • 免疫印迹; 果蝇; 1:2000 in dot blot
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab2621)被用于被用于染色质免疫沉淀 在秀丽隐杆线虫样本上, 被用于免疫印迹在秀丽隐杆线虫样本上浓度为1:2000 in dot blot, 被用于染色质免疫沉淀 在果蝇样本上 和 被用于免疫印迹在果蝇样本上浓度为1:2000 in dot blot. Nat Struct Mol Biol (2011) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 果蝇
  • 免疫印迹; 果蝇; 1:1000
  • 染色质免疫沉淀 ; 人类
  • 免疫印迹; 人类; 0.5 ug/ml
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在果蝇样本上, 被用于免疫印迹在果蝇样本上浓度为1:1000, 被用于染色质免疫沉淀 在人类样本上 和 被用于免疫印迹在人类样本上浓度为0.5 ug/ml. Nat Struct Mol Biol (2011) ncbi
小鼠 单克隆(mAbcam 1220)
  • 免疫印迹; 秀丽隐杆线虫; 5 ug/ml
  • 染色质免疫沉淀 ; 果蝇
  • 免疫印迹; 果蝇; 1:1000 for 320150, 2
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab1220)被用于被用于免疫印迹在秀丽隐杆线虫样本上浓度为5 ug/ml, 被用于染色质免疫沉淀 在果蝇样本上 和 被用于免疫印迹在果蝇样本上浓度为1:1000 for 320150, 2. Nat Struct Mol Biol (2011) ncbi
兔 多克隆
  • 免疫印迹; 秀丽隐杆线虫; 1:5000 in dot blot a
  • 免疫印迹; 果蝇; 1:40000
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab7766)被用于被用于免疫印迹在秀丽隐杆线虫样本上浓度为1:5000 in dot blot a 和 被用于免疫印迹在果蝇样本上浓度为1:40000. Nat Struct Mol Biol (2011) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于染色质免疫沉淀 在人类样本上. J Biol Chem (2011) ncbi
兔 多克隆
  • 免疫印迹; budding yeasts
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, Ab8580)被用于被用于免疫印迹在budding yeasts样本上. Genes Dev (2010) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 小鼠
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab-1220)被用于被用于染色质免疫沉淀 在小鼠样本上. J Immunol (2010) ncbi
小鼠 单克隆(mAbcam 1220)
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, AB1220)被用于被用于染色质免疫沉淀 在人类样本上. Int J Cancer (2011) ncbi
兔 多克隆
  • 抑制或激活实验; scFv; 1:5000
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab9050)被用于被用于抑制或激活实验在scFv样本上浓度为1:5000. J Biol Chem (2010) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 HIST1H3D抗体(Abcam, ab8580)被用于被用于染色质免疫沉淀 在人类样本上. Cancer Genomics Proteomics (2010) ncbi
赛默飞世尔
兔 多克隆
  • ChIP-Seq; 人类; 图 5b
赛默飞世尔 HIST1H3D抗体(Invitrogen, 491008)被用于被用于ChIP-Seq在人类样本上 (图 5b). Cancer Cell (2018) ncbi
小鼠 单克隆(865R2)
  • 免疫印迹; 人类; 1:500; 图 s8b
赛默飞世尔 HIST1H3D抗体(Thermo Fisher, 865R2)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s8b). Nat Commun (2018) ncbi
兔 多克隆
  • 免疫细胞化学; scFv; 1:100; 图 1a
赛默飞世尔 HIST1H3D抗体(Invitrogen, PA5-17869)被用于被用于免疫细胞化学在scFv样本上浓度为1:100 (图 1a). J Biol Chem (2018) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 6c
赛默飞世尔 HIST1H3D抗体(Invitrogen, 49-1005)被用于被用于染色质免疫沉淀 在人类样本上 (图 6c). Oncotarget (2017) ncbi
兔 多克隆
  • ChIP-Seq; 人类; 图 1
赛默飞世尔 HIST1H3D抗体(Invitrogen, 49-1005)被用于被用于ChIP-Seq在人类样本上 (图 1). Mol Biol Evol (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 3c
赛默飞世尔 HIST1H3D抗体(生活技术, 49-1005)被用于被用于染色质免疫沉淀 在人类样本上 (图 3c). Oncotarget (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 3a
赛默飞世尔 HIST1H3D抗体(Invitrogen, 49-1005)被用于被用于染色质免疫沉淀 在人类样本上 (图 3a). Exp Cell Res (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 3a
赛默飞世尔 HIST1H3D抗体(Invitrogen, 49-1008)被用于被用于染色质免疫沉淀 在人类样本上 (图 3a). Exp Cell Res (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 3a
赛默飞世尔 HIST1H3D抗体(Invitrogen, 49-1004)被用于被用于染色质免疫沉淀 在人类样本上 (图 3a). Exp Cell Res (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 3a
赛默飞世尔 HIST1H3D抗体(Invitrogen, 49-1003)被用于被用于染色质免疫沉淀 在人类样本上 (图 3a). Exp Cell Res (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛默飞世尔 HIST1H3D抗体(Thermo Fisher Scientific, PA5-17869)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2016) ncbi
兔 多克隆
  • 免疫印迹; 衣藻; 1:20,000; 图 s4
赛默飞世尔 HIST1H3D抗体(Thermo Fisher Scientific, PA5-16183)被用于被用于免疫印迹在衣藻样本上浓度为1:20,000 (图 s4). elife (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 5
赛默飞世尔 HIST1H3D抗体(Invitrogen, 49-1008)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). Gene (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 5
赛默飞世尔 HIST1H3D抗体(Invitrogen, 49-1005)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). Gene (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛默飞世尔 HIST1H3D抗体(Thermo Scientific, A15024)被用于被用于免疫印迹在人类样本上 (图 5). Tumour Biol (2016) ncbi
兔 单克隆(J.924.2)
  • 免疫细胞化学; common tobacco; 1:200; 图 2
赛默飞世尔 HIST1H3D抗体(Thermo Scientific, MA5-11195)被用于被用于免疫细胞化学在common tobacco样本上浓度为1:200 (图 2). Front Plant Sci (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:200
赛默飞世尔 HIST1H3D抗体(Invitrogen, P7N49-1008)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Nucleic Acids Res (2015) ncbi
兔 单克隆(E.960.2)
  • 免疫印迹; 人类; 图 6
赛默飞世尔 HIST1H3D抗体(Thermo Fisher Scientific, MA5-15150)被用于被用于免疫印迹在人类样本上 (图 6). Curr Mol Med (2015) ncbi
小鼠 单克隆(865R2)
  • 染色质免疫沉淀 ; red rice
赛默飞世尔 HIST1H3D抗体(Invitrogen, AHO1432)被用于被用于染色质免疫沉淀 在red rice样本上. Nat Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 HIST1H3D抗体(Invitrogen, 491008)被用于被用于免疫印迹在小鼠样本上 (图 2). J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠
赛默飞世尔 HIST1H3D抗体(Invitrogen, 49-1005)被用于被用于免疫细胞化学在小鼠样本上. Nature (2014) ncbi
兔 单克隆(G.532.8)
  • 染色质免疫沉淀 ; 人类
赛默飞世尔 HIST1H3D抗体(Thermo, MA511199)被用于被用于染色质免疫沉淀 在人类样本上. J Biol Chem (2014) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4
赛默飞世尔 HIST1H3D抗体(Invitrogen, 49-1005)被用于被用于染色质免疫沉淀 在人类样本上 (图 4). Oncotarget (2013) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4
赛默飞世尔 HIST1H3D抗体(Invitrogen, 49-1008)被用于被用于染色质免疫沉淀 在人类样本上 (图 4). Oncotarget (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛默飞世尔 HIST1H3D抗体(Invitrogen, 49-1008)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Mol Endocrinol (2013) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 3
赛默飞世尔 HIST1H3D抗体(Invitrogen, 491020)被用于被用于染色质免疫沉淀 在人类样本上 (图 3). J Biol Chem (2011) ncbi
圣克鲁斯生物技术
小鼠 单克隆(6H8)
  • 免疫印迹; 人类; 1:1000; 图 6
圣克鲁斯生物技术 HIST1H3D抗体(Santa Cruz, sc-134355)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Oncotarget (2015) ncbi
西格玛奥德里奇
小鼠 单克隆(H3-P)
  • 免疫组化; 小鼠; 1:300; 图 4b
西格玛奥德里奇 HIST1H3D抗体(Sigma, H6409)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 4b). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
西格玛奥德里奇 HIST1H3D抗体(sigma, H0134)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). J Mol Med (Berl) (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 3f
西格玛奥德里奇 HIST1H3D抗体(Sigma-Aldrich, D5567)被用于被用于染色质免疫沉淀 在人类样本上 (图 3f). Sci Rep (2016) ncbi
小鼠 单克隆(AH3-120)
  • 染色质免疫沉淀 ; 人类; 图 s6f
西格玛奥德里奇 HIST1H3D抗体(Sigma-Aldrich, H0913)被用于被用于染色质免疫沉淀 在人类样本上 (图 s6f). Sci Rep (2016) ncbi
小鼠 单克隆(APH3-64)
  • 其他; 人类; 图 st1
西格玛奥德里奇 HIST1H3D抗体(SIGMA, APH3-64)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 HIST1H3D抗体(Sigma, H0164)被用于被用于免疫印迹在人类样本上 (图 2). Oxid Med Cell Longev (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 2
西格玛奥德里奇 HIST1H3D抗体(Sigma, D5567)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(AH3-120)
  • 免疫印迹; 人类; 1:500
西格玛奥德里奇 HIST1H3D抗体(Sigma Aldrich, H0913)被用于被用于免疫印迹在人类样本上浓度为1:500. Biotechnol Bioeng (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 HIST1H3D抗体(Sigma Aldrich, H0164)被用于被用于免疫印迹在人类样本上浓度为1:5000. Biotechnol Bioeng (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3c
西格玛奥德里奇 HIST1H3D抗体(Sigma-Aldrich, H0164)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). J Neurochem (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 2
西格玛奥德里奇 HIST1H3D抗体(Sigma, H0164)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫组化; 斑马鱼; 1:200; 图 6
西格玛奥德里奇 HIST1H3D抗体(Sigma, H0164)被用于被用于免疫组化在斑马鱼样本上浓度为1:200 (图 6). Development (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 7a
西格玛奥德里奇 HIST1H3D抗体(Sigma-Aldrich, H0164)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 7a). Neurobiol Aging (2015) ncbi
兔 多克隆
  • 免疫组化; 果蝇; 1:2000
西格玛奥德里奇 HIST1H3D抗体(Sigma, H0164)被用于被用于免疫组化在果蝇样本上浓度为1:2000. Development (2015) ncbi
兔 多克隆
  • 免疫印迹; 家蚕
西格玛奥德里奇 HIST1H3D抗体(Sigma-Aldrich, H0164)被用于被用于免疫印迹在家蚕样本上. Insect Biochem Mol Biol (2014) ncbi
小鼠 单克隆(AH3-120)
  • 免疫细胞化学; 人类; 1:200
西格玛奥德里奇 HIST1H3D抗体(Sigma, H0913)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Cryobiology (2014) ncbi
小鼠 单克隆(AH3-120)
  • 免疫组化-石蜡切片; 人类; 图 2
  • 染色质免疫沉淀 ; 人类; 2-5 ug/ChIP; 图 2
西格玛奥德里奇 HIST1H3D抗体(Sigma, H0913)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2) 和 被用于染色质免疫沉淀 在人类样本上浓度为2-5 ug/ChIP (图 2). Nature (2014) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(6G3)
  • 免疫组化; 小鼠; 1:200; 图 2b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9706)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2b). elife (2019) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715)被用于被用于免疫印迹在小鼠样本上 (图 2b). Cell Rep (2019) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 122 ng/ml; 图 s13c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715)被用于被用于免疫印迹在小鼠样本上浓度为122 ng/ml (图 s13c). Science (2019) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7e
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signalling Technology, 9701)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7e). EMBO Mol Med (2019) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 3638)被用于被用于免疫印迹在小鼠样本上 (图 4b). Mol Cell (2019) ncbi
兔 单克隆(C36B11)
  • 免疫印迹; 小鼠; 1:5000; 图 4s3d
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, C36B11)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4s3d). elife (2019) ncbi
兔 单克隆(C36B11)
  • mass cytometry; 人类; 图 3a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technologies, 9733)被用于被用于mass cytometry在人类样本上 (图 3a). Cell (2019) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上 (图 6c). Life Sci Alliance (2019) ncbi
兔 单克隆(C36B11)
  • ChIP-Seq; 小鼠; 图 5a
  • 免疫印迹; 小鼠; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9733)被用于被用于ChIP-Seq在小鼠样本上 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Nat Commun (2019) ncbi
兔 单克隆(D5A7)
  • ChIP-Seq; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4909)被用于被用于ChIP-Seq在小鼠样本上 (图 5a). Nat Commun (2019) ncbi
兔 单克隆(D18C8)
  • ChIP-Seq; 小鼠; 图 5a
  • 免疫印迹; 小鼠; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9728)被用于被用于ChIP-Seq在小鼠样本上 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Nat Commun (2019) ncbi
兔 多克隆
  • 其他; 人类; 1:50; 图 6b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9727)被用于被用于其他在人类样本上浓度为1:50 (图 6b). elife (2019) ncbi
兔 单克隆(C36B11)
  • 免疫组化; 人类; 1:200; 图 2a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(CST, 9733)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2a). Nat Commun (2019) ncbi
兔 单克隆(C36B11)
  • 流式细胞仪; 小鼠; 1:50; 图 2c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technologies, 12158)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 2c). elife (2019) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 s16c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9727)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s16c). Science (2019) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:2000; 图 s16c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s16c). Science (2019) ncbi
兔 单克隆(C36B11)
  • 免疫印迹; 小鼠; 1:2000; 图 s4h
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9733)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s4h). Science (2019) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 3a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9701)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 3a). Cell Death Differ (2019) ncbi
兔 单克隆(C36B11)
  • 免疫细胞化学; 人类; 图 4b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(CST, 9733)被用于被用于免疫细胞化学在人类样本上 (图 4b). Life Sci Alliance (2019) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3a). Cancer Lett (2019) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上 (图 5b). Mol Cell (2019) ncbi
兔 单克隆(C36B11)
  • 免疫印迹; 小鼠; 1:500; 图 1a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, C36B11)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1a). Brain (2019) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:500; 图 1a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, CST4499s)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1a). Brain (2019) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:5000; 图 4i
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499S)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4i). elife (2019) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 s4
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s4). Front Immunol (2018) ncbi
兔 单克隆(C36B11)
  • 免疫细胞化学; 小鼠; 图 s6d
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9733S)被用于被用于免疫细胞化学在小鼠样本上 (图 s6d). Cell (2019) ncbi
兔 多克隆
  • 免疫印迹; common platanna; 图 1d
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715S)被用于被用于免疫印迹在common platanna样本上 (图 1d). Cell (2019) ncbi
兔 单克隆(D2C8)
  • 流式细胞仪; 人类; 1:50; 图 s1d
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, D2C8)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s1d). Nucleic Acids Res (2019) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 6e
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫组化在小鼠样本上 (图 6e). Oncogene (2019) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, D1H2)被用于被用于免疫印迹在人类样本上 (图 5c). Nat Commun (2018) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 图 2b
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 2b) 和 被用于免疫印迹在小鼠样本上 (图 1b). Science (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 8f
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715)被用于被用于免疫印迹在小鼠样本上 (图 8f). Cell Death Dis (2018) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 3638)被用于被用于免疫印迹在小鼠样本上 (图 5c). Blood (2018) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 小鼠; 1:2500; 图 s6g
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 3638)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 s6g). Nat Commun (2018) ncbi
兔 单克隆(C5B11)
  • 免疫印迹; 人类; 1:2000; 图 1f
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9649)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1f). Nat Chem Biol (2018) ncbi
兔 多克隆
  • 免疫印迹; common platanna; 1:2000; 图 1a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715)被用于被用于免疫印迹在common platanna样本上浓度为1:2000 (图 1a). Nature (2018) ncbi
兔 单克隆(C36B11)
  • 免疫组化-冰冻切片; 小鼠; 图 5b
  • 流式细胞仪; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, C36B11)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5b) 和 被用于流式细胞仪在小鼠样本上 (图 5a). J Cell Biol (2018) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 小鼠; 1:2000; 图 8g
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 3638)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 8g). Nat Commun (2018) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(CST, 4499)被用于被用于免疫印迹在小鼠样本上 (图 3d). Oncogene (2018) ncbi
兔 单克隆(C42D8)
  • 免疫组化-石蜡切片; 小鼠; 图 5e
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9751)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5e). Proc Natl Acad Sci U S A (2018) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). Science (2018) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 s2a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫组化在小鼠样本上 (图 s2a). PLoS Biol (2018) ncbi
兔 单克隆(D5E4)
  • 染色质免疫沉淀 ; 人类; 图 4h
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 8173)被用于被用于染色质免疫沉淀 在人类样本上 (图 4h). Oncogene (2018) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4h
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9727)被用于被用于染色质免疫沉淀 在人类样本上 (图 4h). Oncogene (2018) ncbi
兔 单克隆(C42D8)
  • ChIP-Seq; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9751)被用于被用于ChIP-Seq在小鼠样本上 (图 3e). Cancer Cell (2018) ncbi
兔 单克隆(D5E4)
  • ChIP-Seq; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 8173)被用于被用于ChIP-Seq在小鼠样本上 (图 4a). Cancer Cell (2018) ncbi
兔 单克隆(C36B11)
  • ChIP-Seq; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9733)被用于被用于ChIP-Seq在小鼠样本上 (图 3e). Cancer Cell (2018) ncbi
兔 单克隆(D1A9)
  • ChIP-Seq; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 5326)被用于被用于ChIP-Seq在小鼠样本上 (图 4a). Cancer Cell (2018) ncbi
兔 单克隆(C5B11)
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9649)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). Nat Neurosci (2018) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:500; 图 1a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1a). Nat Neurosci (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Sci Rep (2018) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2e
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2e). Genes Dev (2018) ncbi
兔 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Science (2018) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 图 7d
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 7d). J Biol Chem (2018) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 1:5000; 图 s11c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s11c). Nat Commun (2018) ncbi
兔 单克隆(D4B9)
  • 免疫印迹; 人类; 1:1000; 图 s11c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 7627)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s11c). Nat Commun (2018) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technologies, 3638)被用于被用于免疫印迹在人类样本上 (图 3b). J Cell Biol (2018) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 1:5000; 图 1e
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1e). Nat Commun (2017) ncbi
兔 单克隆(C36B11)
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9733)被用于被用于免疫印迹在人类样本上 (图 1e). Cancer Res (2018) ncbi
兔 单克隆(D2C8)
  • 免疫印迹; 小鼠; 图 s1h
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 3377)被用于被用于免疫印迹在小鼠样本上 (图 s1h). Nature (2018) ncbi
兔 多克隆
  • 流式细胞仪; 人类; 图 s1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于流式细胞仪在人类样本上 (图 s1). Sci Rep (2017) ncbi
兔 单克隆(C42D8)
  • 染色质免疫沉淀 ; 小鼠; 图 5f
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9751s)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 5f). J Mol Cell Biol (2017) ncbi
兔 单克隆(D5E4)
  • 染色质免疫沉淀 ; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 8173)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 8a). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s3a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s3a). PLoS Genet (2017) ncbi
兔 单克隆(D85B4)
  • 免疫印迹; 人类; 1:2000; 图 1a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4658)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1a). Nat Commun (2017) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 1a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1a). Nat Commun (2017) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 1:5000; 图 1b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1b). Stem Cells (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫印迹在人类样本上 (图 5c). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9714)被用于被用于免疫印迹在人类样本上 (图 5b). Proc Natl Acad Sci U S A (2017) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 5b). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9713)被用于被用于免疫印迹在人类样本上 (图 5b). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 图 8e
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(CST, 3638)被用于被用于免疫印迹在人类样本上 (图 8e). Biochim Biophys Acta Gene Regul Mech (2017) ncbi
兔 单克隆(D5E4)
  • 染色质免疫沉淀 ; 人类; 图 7b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 8173)被用于被用于染色质免疫沉淀 在人类样本上 (图 7b). Mol Cancer Res (2017) ncbi
兔 单克隆(D5A7)
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4909)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫印迹在人类样本上 (图 3c). Int J Cancer (2017) ncbi
兔 单克隆(D5E4)
  • 免疫沉淀; 人类; 图 3a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, D5E4)被用于被用于免疫沉淀在人类样本上 (图 3a). J Biol Chem (2017) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 3638)被用于被用于免疫印迹在人类样本上 (图 1c). Cancer Cell (2017) ncbi
兔 单克隆(C64G9)
  • 染色质免疫沉淀 ; 人类; 图 s5
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9725)被用于被用于染色质免疫沉淀 在人类样本上 (图 s5). Cancer Cell (2017) ncbi
兔 单克隆(D1A9)
  • 染色质免疫沉淀 ; 人类; 图 s5
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 5326)被用于被用于染色质免疫沉淀 在人类样本上 (图 s5). Cancer Cell (2017) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:1000; 图 3e
  • 免疫印迹; 大鼠; 1:1000; 图 2b, 3f
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b, 3f). Brain Res (2017) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 大鼠; 图 7c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9675)被用于被用于染色质免疫沉淀 在大鼠样本上 (图 7c). Biol Sex Differ (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 9715)被用于被用于免疫印迹在人类样本上 (图 7a). Oncotarget (2017) ncbi
兔 单克隆(C5B11)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 9649)被用于被用于免疫印迹在人类样本上 (图 7a). Oncotarget (2017) ncbi
兔 单克隆(D2C8)
  • 免疫组化-石蜡切片; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 3458S)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6b). J Biol Chem (2017) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上 (图 2e). Oncotarget (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(CST, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3d). Sci Rep (2017) ncbi
兔 单克隆(C36B11)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(CST, 9733)被用于被用于免疫印迹在人类样本上 (图 5b). Sci Rep (2017) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(cell signalling, 96C10)被用于被用于免疫印迹在小鼠样本上 (图 5). J Cell Sci (2017) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 5e
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上 (图 5e). Sci Rep (2017) ncbi
兔 单克隆(C5B11)
  • 染色质免疫沉淀 ; 人类; 图 9a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(cell signaling, 9649)被用于被用于染色质免疫沉淀 在人类样本上 (图 9a). J Clin Invest (2017) ncbi
兔 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 7h
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(cell signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 7h). J Clin Invest (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4a). Arterioscler Thromb Vasc Biol (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 1b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫细胞化学在人类样本上 (图 1b). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:300; 图 2k
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701 S)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 2k). Sci Rep (2017) ncbi
小鼠 单克隆(6G3)
  • 免疫印迹; 人类; 图 S1A
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 6G3)被用于被用于免疫印迹在人类样本上 (图 S1A). Mol Cell (2017) ncbi
兔 单克隆(C36B11)
  • 流式细胞仪; 人类; 1:750; 图 3b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 12158)被用于被用于流式细胞仪在人类样本上浓度为1:750 (图 3b). MBio (2017) ncbi
小鼠 单克隆(6F12)
  • 流式细胞仪; 人类; 1:400; 图 s6a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 5327)被用于被用于流式细胞仪在人类样本上浓度为1:400 (图 s6a). MBio (2017) ncbi
兔 单克隆(C36B11)
  • 免疫细胞化学; 小鼠; 图 6
  • 免疫组化; 小鼠; 图 3b
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(cell signalling, C36B11)被用于被用于免疫细胞化学在小鼠样本上 (图 6), 被用于免疫组化在小鼠样本上 (图 3b) 和 被用于免疫印迹在小鼠样本上 (图 3b). Biochim Biophys Acta Gene Regul Mech (2017) ncbi
兔 多克隆
  • 流式细胞仪; 人类; 1:50; 图 s1k
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s1k). Cell Stem Cell (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 3a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9753)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3a). Nucleic Acids Res (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 2a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9727)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2a). Nucleic Acids Res (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 2a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4260)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2a). Nucleic Acids Res (2017) ncbi
兔 单克隆(D2C8)
  • 免疫印迹; 小鼠; 1:1000; 图 5D
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, D2C8)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5D). Nucleic Acids Res (2017) ncbi
兔 单克隆(C36B11)
  • 免疫印迹; 小鼠; 1:2000; 图 s6c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, CST-9733s)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s6c). Cell Rep (2017) ncbi
兔 单克隆(D18C8)
  • 免疫印迹; 小鼠; 1:2000; 图 s6c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, CST-9728s)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s6c). Cell Rep (2017) ncbi
兔 单克隆(C42D8)
  • 免疫印迹; 人类; 图 s5a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9751S)被用于被用于免疫印迹在人类样本上 (图 s5a). Nature (2017) ncbi
兔 单克隆(D2C8)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(CST, 3377)被用于被用于免疫印迹在小鼠样本上 (图 1c). PLoS ONE (2017) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(CST, 4499)被用于被用于免疫印迹在小鼠样本上 (图 1c). PLoS ONE (2017) ncbi
兔 单克隆(C5B11)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(cell signalling, 9649P)被用于被用于免疫印迹在小鼠样本上 (图 4c). J Clin Invest (2017) ncbi
小鼠 单克隆(6G3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 9706)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2b). Stem Cell Reports (2017) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 人类; 图 1a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9706)被用于被用于免疫细胞化学在人类样本上 (图 1a). Sci Rep (2017) ncbi
兔 单克隆(C5B11)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9649)被用于被用于免疫印迹在人类样本上 (图 2b). Oncotarget (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上 (图 3a). Cell Rep (2017) ncbi
兔 单克隆(C36B11)
  • 其他; 人类; 1:2500; 图 3
  • 免疫印迹; 人类; 1:1000; 图 s10
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9733)被用于被用于其他在人类样本上浓度为1:2500 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s10). Nat Chem Biol (2017) ncbi
兔 单克隆(C64G9)
  • 其他; 人类; 1:2000; 图 3
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signal, 9725)被用于被用于其他在人类样本上浓度为1:2000 (图 3). Nat Chem Biol (2017) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 s10
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s10). Nat Chem Biol (2017) ncbi
兔 单克隆(D5E4)
  • 其他; 人类; 1:500; 图 s9
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signal, 8173)被用于被用于其他在人类样本上浓度为1:500 (图 s9). Nat Chem Biol (2017) ncbi
兔 单克隆(D18C8)
  • 其他; 人类; 1:900; 图 3
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signal, 9728)被用于被用于其他在人类样本上浓度为1:900 (图 3). Nat Chem Biol (2017) ncbi
兔 多克隆
  • 其他; 人类; 1:50; 图 3
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signal, 9723)被用于被用于其他在人类样本上浓度为1:50 (图 3). Nat Chem Biol (2017) ncbi
兔 多克隆
  • 其他; 人类; 1:500; 图 s9
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signal, 9675)被用于被用于其他在人类样本上浓度为1:500 (图 s9). Nat Chem Biol (2017) ncbi
兔 单克隆(C5B11)
  • 其他; 人类; 1:2500; 图 s9
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signal, 9649)被用于被用于其他在人类样本上浓度为1:2500 (图 s9). Nat Chem Biol (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 st4
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 st4). Nat Biotechnol (2017) ncbi
兔 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 33770)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:10,000; 图 1a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9715)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1a). PLoS ONE (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s6g
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s6g). J Clin Invest (2017) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499S)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2017) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:2000; 图 4e
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4e). Int J Mol Med (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2c). Mol Cell Biol (2017) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 9f
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technologies, 4499)被用于被用于免疫印迹在小鼠样本上 (图 9f). Mol Cell Biol (2017) ncbi
兔 单克隆(C75H12)
  • 免疫组化; 人类; 1:500; 图 3
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Tech, 2901)被用于被用于免疫组化在人类样本上浓度为1:500 (图 3) 和 被用于免疫印迹在人类样本上 (图 4a). Nat Genet (2017) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 1c). Mol Biol Cell (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701L)被用于被用于免疫细胞化学在人类样本上. Mol Cell Biol (2017) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 人类; 图 s1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9706)被用于被用于免疫细胞化学在人类样本上 (图 s1). Oncotarget (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6h
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9713)被用于被用于免疫印迹在小鼠样本上 (图 6h). Nat Commun (2016) ncbi
兔 单克隆(D1H2)
  • 免疫细胞化学; 人类; 图 5
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫细胞化学在人类样本上 (图 5). PLoS ONE (2016) ncbi
兔 单克隆(C36B11)
  • ChIP-Seq; 人类; 图 2f
  • 免疫印迹; 人类; 1:2000; 图 1e
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9733)被用于被用于ChIP-Seq在人类样本上 (图 2f) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 1e). Nat Med (2017) ncbi
兔 单克隆(C42D8)
  • ChIP-Seq; 人类; 图 s3b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9751)被用于被用于ChIP-Seq在人类样本上 (图 s3b). Nat Med (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s7b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701S)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s7b). PLoS Genet (2016) ncbi
兔 单克隆(D2B12)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4620S)被用于被用于免疫印迹在人类样本上 (图 1b). Front Immunol (2016) ncbi
兔 单克隆(C5B11)
  • 染色质免疫沉淀 ; 人类; 图 5b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 9649)被用于被用于染色质免疫沉淀 在人类样本上 (图 5b). Arterioscler Thromb Vasc Biol (2017) ncbi
兔 单克隆(D1H2)
  • 染色质免疫沉淀 ; 人类; 1:2000
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signalling, 4499)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:2000. Nat Commun (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 6b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 2650)被用于被用于染色质免疫沉淀 在人类样本上 (图 6b). Oncotarget (2017) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 4499)被用于被用于免疫印迹在小鼠样本上 (图 5b). JCI Insight (2016) ncbi
小鼠 单克隆(6G3)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 4a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9706S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 4a). Neural Dev (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 s6b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫组化在小鼠样本上 (图 s6b). J Clin Invest (2017) ncbi
兔 多克隆
  • 免疫组化; 果蝇; 图 8h
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫组化在果蝇样本上 (图 8h). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:150; 图 4g
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (图 4g). Nature (2016) ncbi
兔 单克隆(D1A9)
  • ChIP-Seq; 人类; 表 2
  • ChIP-Seq; 小鼠; 表 2
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 5326)被用于被用于ChIP-Seq在人类样本上 (表 2) 和 被用于ChIP-Seq在小鼠样本上 (表 2). Epigenetics Chromatin (2016) ncbi
兔 单克隆(C36B11)
  • ChIP-Seq; 小鼠; 表 2
  • ChIP-Seq; 人类; 表 2
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9733)被用于被用于ChIP-Seq在小鼠样本上 (表 2) 和 被用于ChIP-Seq在人类样本上 (表 2). Epigenetics Chromatin (2016) ncbi
兔 单克隆(D5E4)
  • ChIP-Seq; 小鼠; 表 2
  • ChIP-Seq; 人类; 表 2
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 8173)被用于被用于ChIP-Seq在小鼠样本上 (表 2) 和 被用于ChIP-Seq在人类样本上 (表 2). Epigenetics Chromatin (2016) ncbi
兔 单克隆(C42D8)
  • ChIP-Seq; 小鼠; 表 2
  • ChIP-Seq; 人类; 表 2
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9751)被用于被用于ChIP-Seq在小鼠样本上 (表 2) 和 被用于ChIP-Seq在人类样本上 (表 2). Epigenetics Chromatin (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2f
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). EMBO Mol Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1b
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715)被用于被用于免疫印迹在小鼠样本上 (图 1b) 和 被用于免疫印迹在人类样本上 (图 1a). Epigenetics Chromatin (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signalling, 9701)被用于被用于免疫组化在小鼠样本上 (图 4a). Neural Dev (2016) ncbi
兔 单克隆(D2C8)
  • 免疫组化; 果蝇; 1:200; 图 2fs1h
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 3642S)被用于被用于免疫组化在果蝇样本上浓度为1:200 (图 2fs1h). elife (2016) ncbi
兔 单克隆(C5B11)
  • 免疫印迹; 面包酵母; 图 s1a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9649)被用于被用于免疫印迹在面包酵母样本上 (图 s1a). Sci Rep (2016) ncbi
兔 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 s3c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3c). Nat Commun (2016) ncbi
兔 单克隆(D2C8)
  • 免疫印迹; 人类; 图 s1d
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 3377)被用于被用于免疫印迹在人类样本上 (图 s1d). PLoS Pathog (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s4
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s4). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 9715)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Nat Commun (2016) ncbi
小鼠 单克隆(6G3)
  • 流式细胞仪; 人类; 图 2a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9706)被用于被用于流式细胞仪在人类样本上 (图 2a). Oncotarget (2016) ncbi
兔 单克隆(C36B11)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, C36B11)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Nucleic Acids Res (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 2b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2b). Front Cell Neurosci (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9753)被用于被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 st1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 st1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st1). Nat Commun (2016) ncbi
兔 多克隆
  • 流式细胞仪; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9716)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Cell Cycle (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4e
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling technology, 97535)被用于被用于染色质免疫沉淀 在人类样本上 (图 4e). J Steroid Biochem Mol Biol (2017) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). J Biol Chem (2016) ncbi
兔 多克隆
  • 流式细胞仪; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9716)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS Genet (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS Genet (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(CST, 9715)被用于被用于免疫印迹在人类样本上 (图 2f). Nature (2016) ncbi
兔 单克隆(C75H12)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 2901)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
兔 单克隆(D85B4)
  • 免疫印迹; 人类; 1:1000; 表 s6
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4658)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 s6). PLoS Genet (2016) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 1:1000; 表 s6
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 3638)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 s6). PLoS Genet (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Tech, 9715)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4d). Mol Carcinog (2017) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 3638)被用于被用于免疫印迹在人类样本上 (图 1b). Proc Natl Acad Sci U S A (2016) ncbi
兔 单克隆(D18C8)
  • ChIP-Seq; 小鼠; 1:40; 图 2i
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9728)被用于被用于ChIP-Seq在小鼠样本上浓度为1:40 (图 2i). Proc Natl Acad Sci U S A (2016) ncbi
兔 单克隆(D1H2)
  • 流式细胞仪; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 5499)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Proc Natl Acad Sci U S A (2016) ncbi
兔 单克隆(C36B11)
  • ChIP-Seq; 小鼠; 1:40
  • 免疫细胞化学; 小鼠; 图 2f
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9733)被用于被用于ChIP-Seq在小鼠样本上浓度为1:40, 被用于免疫细胞化学在小鼠样本上 (图 2f) 和 被用于免疫印迹在人类样本上 (图 1b). Proc Natl Acad Sci U S A (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 图 10f
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, CST-9701)被用于被用于免疫组化在人类样本上 (图 10f). J Clin Invest (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 9701)被用于被用于免疫印迹在人类样本上 (图 s1). Nucleic Acids Res (2016) ncbi
兔 多克隆
  • 流式细胞仪; 小鼠; 1:100; 图 2b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 9708)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2b). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(CST, 9715)被用于被用于免疫印迹在小鼠样本上 (图 1b). Nat Commun (2016) ncbi
兔 单克隆(D2C8)
  • 免疫组化; 斑马鱼; 图 4
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 3377)被用于被用于免疫组化在斑马鱼样本上 (图 4). Stem Cell Reports (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上浓度为1:1000. Biomed Res Int (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701S)被用于被用于免疫细胞化学在人类样本上. Proc Natl Acad Sci U S A (2016) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, D1H2)被用于被用于免疫印迹在人类样本上 (图 8). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 9715)被用于被用于免疫印迹在人类样本上 (图 4a). BMC Cancer (2016) ncbi
兔 单克隆(C42D8)
  • ChIP-Seq; 人类; 图 1i
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9751)被用于被用于ChIP-Seq在人类样本上 (图 1i). EMBO Rep (2016) ncbi
兔 单克隆(C64G9)
  • 染色质免疫沉淀 ; 人类; 图 5a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9725)被用于被用于染色质免疫沉淀 在人类样本上 (图 5a). Nat Cell Biol (2016) ncbi
兔 单克隆(C42D8)
  • 染色质免疫沉淀 ; 人类; 图 5a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9751)被用于被用于染色质免疫沉淀 在人类样本上 (图 5a). Nat Cell Biol (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s2
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s2). Nat Commun (2016) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 s4c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4c). Nat Commun (2016) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 7). Cancer Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 9715)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2016) ncbi
兔 单克隆(C5B11)
  • 染色质免疫沉淀 ; 人类; 图 5b
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9649)被用于被用于染色质免疫沉淀 在人类样本上 (图 5b) 和 被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2016) ncbi
兔 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 5
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2016) ncbi
兔 多克隆
  • 免疫组化; 果蝇; 1:200; 图 8a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫组化在果蝇样本上浓度为1:200 (图 8a). Cell Discov (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上 (图 6). Biochim Biophys Acta (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 7b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715S)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7b). Oncotarget (2016) ncbi
兔 单克隆(D85B4)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(CST, 4658)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2016) ncbi
兔 单克隆(D1A9)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(CST, 5326)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2016) ncbi
兔 单克隆(C36B11)
  • 免疫印迹; 人类; 1:1000; 图 3d,4b,7b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(CST, 9733)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d,4b,7b). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715)被用于被用于免疫印迹在小鼠样本上 (图 3c). Proc Natl Acad Sci U S A (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:100; 图 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 2650)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Aging (Albany NY) (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:400; 图 3f
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 3f). PLoS Genet (2016) ncbi
兔 单克隆(D18C8)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(CST, 9728)被用于被用于免疫印迹在人类样本上 (图 s1). PLoS ONE (2016) ncbi
兔 单克隆(C36B11)
  • 酶联免疫吸附测定; 人类; 1:1000; 图 s3
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(CST, 9733)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:1000 (图 s3) 和 被用于免疫印迹在人类样本上 (图 s1). PLoS ONE (2016) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 1:3000; 图 5
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5f
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5f). Oncotarget (2016) ncbi
兔 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 5f
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5f). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(CST, 9715S)被用于被用于免疫印迹在人类样本上 (图 6a). Nat Commun (2016) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 图 4
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499P)被用于被用于免疫印迹在人类样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 6). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 5
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 5). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9701)被用于被用于免疫印迹在人类样本上 (图 1c). J Biol Chem (2016) ncbi
兔 单克隆(C5B11)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9649)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
兔 单克隆(D5E4)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 8173)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:300; 图 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 1). EMBO Mol Med (2016) ncbi
小鼠 单克隆(6G3)
  • 流式细胞仪; 大鼠; 图 s2
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9706)被用于被用于流式细胞仪在大鼠样本上 (图 s2). Sci Rep (2016) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 4499L)被用于被用于免疫印迹在小鼠样本上 (图 1). elife (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200; 图 2a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2a). Cell Rep (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 斑马鱼; 1:200; 图 s4
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫细胞化学在斑马鱼样本上浓度为1:200 (图 s4). Development (2016) ncbi
兔 多克隆
  • 免疫组化; 果蝇; 图 s1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Tech, 9701)被用于被用于免疫组化在果蝇样本上 (图 s1). Development (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715 s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). BMC Cancer (2016) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; 大鼠; 1:500; 图 4
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9706s)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 4). Sci Rep (2016) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 图 s1h
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 s1h). Nat Struct Mol Biol (2016) ncbi
小鼠 单克隆(6G3)
  • 流式细胞仪; 小鼠; 1:50; 图 3
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9706)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 3). Nat Commun (2016) ncbi
兔 单克隆(C75H12)
  • 染色质免疫沉淀 ; 人类; 图 2a
  • 免疫细胞化学; 人类; 1:2000; 图 s3c
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 2901)被用于被用于染色质免疫沉淀 在人类样本上 (图 2a), 被用于免疫细胞化学在人类样本上浓度为1:2000 (图 s3c) 和 被用于免疫印迹在人类样本上 (图 1a). Science (2016) ncbi
兔 单克隆(C36B11)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9733)被用于被用于免疫印迹在人类样本上 (图 1b). Science (2016) ncbi
兔 单克隆(D2C8)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 3377)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 4). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 3s1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 9701)被用于被用于免疫组化在小鼠样本上 (图 3s1). elife (2016) ncbi
兔 多克隆
  • ChIP-Seq; 鸡; 图 3
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9727)被用于被用于ChIP-Seq在鸡样本上 (图 3). EMBO J (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫印迹在小鼠样本上 (图 6c). Carcinogenesis (2016) ncbi
兔 单克隆(D2C8)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 3377S)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS Genet (2016) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 s4
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s4). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4243S)被用于被用于免疫印迹在人类样本上 (图 2a). PLoS ONE (2016) ncbi
兔 单克隆(C36B11)
  • 染色质免疫沉淀 ; 果蝇; 图 s11b
  • 免疫细胞化学; 小鼠; 图 s6c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在果蝇样本上 (图 s11b) 和 被用于免疫细胞化学在小鼠样本上 (图 s6c). Science (2016) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 大鼠; 图 10
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在大鼠样本上 (图 10) 和 被用于免疫印迹在小鼠样本上 (图 2). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4243)被用于被用于免疫印迹在小鼠样本上 (图 2a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
兔 单克隆(D2C8)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 3
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, CST3377)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 3). Mol Endocrinol (2016) ncbi
小鼠 单克隆(6G3)
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9706)被用于被用于免疫印迹在人类样本上 (图 3f). Oncotarget (2016) ncbi
兔 单克隆(C5B11)
  • 免疫印迹; 人类; 1:25,000; 图 1d
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4484)被用于被用于免疫印迹在人类样本上浓度为1:25,000 (图 1d). Science (2016) ncbi
兔 单克隆(C5B11)
  • 染色质免疫沉淀 ; 人类; 图 7
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 9649)被用于被用于染色质免疫沉淀 在人类样本上 (图 7) 和 被用于免疫印迹在人类样本上 (图 7). Oncogenesis (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 5
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 9701)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 5). Biochim Biophys Acta (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9701)被用于被用于免疫细胞化学在小鼠样本上 (图 5). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫组化在小鼠样本上 (图 2). Oncogene (2016) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:3000; 图 5
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 5). Front Cell Neurosci (2016) ncbi
兔 单克隆(D85B4)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4658)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Hum Mol Genet (2016) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 3e). J Mol Med (Berl) (2016) ncbi
兔 单克隆(C64G9)
  • 染色质免疫沉淀 ; 人类; 图 4
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9725)被用于被用于染色质免疫沉淀 在人类样本上 (图 4). Cell Rep (2016) ncbi
小鼠 单克隆(6G3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 9706)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4). Cerebellum (2017) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 3638)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
兔 单克隆(D2C8)
  • 免疫印迹; 人类; 1:2000; 图 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 3377)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1). Nat Commun (2016) ncbi
兔 单克隆(D85B4)
  • 免疫印迹; 人类; 1:1000; 图 12a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4658)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 12a). J Biol Chem (2016) ncbi
兔 单克隆(C5B11)
  • 免疫印迹; 人类; 1:1000; 图 11a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9649)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 11a). J Biol Chem (2016) ncbi
兔 单克隆(C36B11)
  • 免疫印迹; 人类; 1:1000; 图 12a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9733)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 12a). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫组化; 果蝇; 1:200; 图 s1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 97015)被用于被用于免疫组化在果蝇样本上浓度为1:200 (图 s1). PLoS Genet (2016) ncbi
兔 多克隆
  • 免疫组化; 果蝇; 1:200; 图 s1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 97015)被用于被用于免疫组化在果蝇样本上浓度为1:200 (图 s1). PLoS Genet (2016) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, D1H2)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
兔 单克隆(D2C8)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, D2C8)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 果蝇; 表 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 2650)被用于被用于染色质免疫沉淀 在果蝇样本上 (表 1). Genom Data (2016) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 表 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (表 1). elife (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 表 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9753)被用于被用于免疫印迹在人类样本上 (表 1). elife (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701L)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). J Biol Chem (2016) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). PLoS ONE (2016) ncbi
兔 单克隆(C42D8)
  • 染色质免疫沉淀 ; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9751S)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 s1). Diabetes (2016) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Mol Med Rep (2016) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 4
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715L)被用于被用于免疫印迹在小鼠样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). EMBO J (2016) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). J Neurosci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9715S)被用于被用于免疫印迹在人类样本上 (图 6d). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9714)被用于被用于免疫细胞化学在人类样本上 (图 4). elife (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9701)被用于被用于免疫细胞化学在小鼠样本上 (图 3). elife (2016) ncbi
兔 多克隆
  • 免疫印迹; common platanna; 图 4
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9715)被用于被用于免疫印迹在common platanna样本上 (图 4). J Cell Biol (2016) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). PLoS ONE (2016) ncbi
兔 单克隆(D2B12)
  • 免疫印迹; 小鼠; 1:2000; 图 5d
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4620)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5d). Stem Cells (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715S)被用于被用于染色质免疫沉淀 在小鼠样本上. J Neuroinflammation (2016) ncbi
兔 单克隆(D2C8)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 3642)被用于被用于免疫印迹在人类样本上 (图 5b). Biochem Pharmacol (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 s9c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9727)被用于被用于染色质免疫沉淀 在人类样本上 (图 s9c). Nat Commun (2016) ncbi
兔 单克隆(D5E4)
  • ChIP-Seq; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, D5E4)被用于被用于ChIP-Seq在小鼠样本上 (图 3). Nat Genet (2016) ncbi
兔 单克隆(D2C8)
  • 免疫沉淀; 人类; 1:5000; 图 3b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 3377)被用于被用于免疫沉淀在人类样本上浓度为1:5000 (图 3b). Nat Chem Biol (2016) ncbi
兔 单克隆(C36B11)
  • ChIP-Seq; 小鼠; 图 4
  • 免疫细胞化学; 小鼠; 1:200; 图 4
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, C36B11)被用于被用于ChIP-Seq在小鼠样本上 (图 4), 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). elife (2016) ncbi
兔 单克隆(C36B11)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, C36B11)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 7). Neoplasia (2016) ncbi
兔 单克隆(C5B11)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(CST, 9649)被用于被用于免疫印迹在人类样本上 (图 5c). Oncotarget (2016) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:2000; 图 1
  • 免疫印迹; 人类; 1:2000; 图 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫印迹在人类样本上 (图 4). Nat Commun (2016) ncbi
兔 单克隆(C36B11)
  • 染色质免疫沉淀 ; 小鼠; 图 7e
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 7e). Nat Immunol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s3t
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Merck Millipore, 9715)被用于被用于免疫印迹在人类样本上 (图 s3t). Proc Natl Acad Sci U S A (2016) ncbi
兔 单克隆(D2C8)
  • 流式细胞仪; 人类; 图 s1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 3377)被用于被用于流式细胞仪在人类样本上 (图 s1). Proc Natl Acad Sci U S A (2016) ncbi
兔 单克隆(C5B11)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9649)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
兔 多克隆
  • ChIP-Seq; 人类; 图 4
  • 免疫印迹; 人类; 图 4s1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9675)被用于被用于ChIP-Seq在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4s1). elife (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 2
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Oncotarget (2016) ncbi
兔 单克隆(C42D8)
  • 染色质免疫沉淀 ; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9751)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 3). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9675S)被用于被用于免疫印迹在人类样本上 (图 2a). Nucleic Acids Res (2016) ncbi
兔 单克隆(C36B11)
  • 免疫组化; 人类; 1:200; 图 s4
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, C36B11)被用于被用于免疫组化在人类样本上浓度为1:200 (图 s4). Clin Cancer Res (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signalling, 9727s)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 4c). Stem Cells Int (2016) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, D1H2)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:400; 图 2a
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9714S)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 2a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Biol Open (2015) ncbi
兔 单克隆(D2C8)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:400; 图 4
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 4). Development (2016) ncbi
兔 单克隆(D2C8)
  • 流式细胞仪; 人类; 图 s5
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, D2C8)被用于被用于流式细胞仪在人类样本上 (图 s5). Oncotarget (2016) ncbi
兔 多克隆
  • ChIP-Seq; 人类; 图 3C
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9763S)被用于被用于ChIP-Seq在人类样本上 (图 3C). Sci Rep (2015) ncbi
兔 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 3377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Cell Biol (2016) ncbi
兔 单克隆(C36B11)
  • 免疫组化; 人类; 图 2c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, C36B11)被用于被用于免疫组化在人类样本上 (图 2c). Genes Dev (2015) ncbi
兔 单克隆(C42D8)
  • 染色质免疫沉淀 ; 人类; 图 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9751)被用于被用于染色质免疫沉淀 在人类样本上 (图 1). Nat Commun (2015) ncbi
兔 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 3
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 3). Nat Commun (2015) ncbi
兔 单克隆(C36B11)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6c
  • 染色质免疫沉淀 ; 人类; 图 4a
  • 免疫印迹; 人类; 1:2000; 图 1c, 3a, 2c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9733)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6c), 被用于染色质免疫沉淀 在人类样本上 (图 4a) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 1c, 3a, 2c). Mol Cell Proteomics (2016) ncbi
兔 单克隆(C36B11)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s5
  • 染色质免疫沉淀 ; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9733)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s5) 和 被用于染色质免疫沉淀 在小鼠样本上 (图 3). BMC Biol (2015) ncbi
兔 单克隆(D2C8)
  • 流式细胞仪; 人类; 图 3
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Tech, cst-3377)被用于被用于流式细胞仪在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
兔 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 3
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 3), 被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 1). Mol Cancer Ther (2016) ncbi
兔 单克隆(C75H12)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 2901)被用于被用于免疫印迹在人类样本上 (图 1). Mol Cancer Ther (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫印迹在小鼠样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 6). Cancer Discov (2016) ncbi
兔 单克隆(C36B11)
  • 免疫印迹基因敲除验证; 人类; 图 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Tech, 9733)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 1). Biol Proced Online (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 9677s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Nat Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715)被用于被用于免疫印迹在大鼠样本上 (图 1). Nat Neurosci (2015) ncbi
兔 单克隆(C42D8)
  • 染色质免疫沉淀 ; 大鼠; 图 3
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9751s)被用于被用于染色质免疫沉淀 在大鼠样本上 (图 3). Nat Neurosci (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 大鼠; 图 3
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 2650s)被用于被用于染色质免疫沉淀 在大鼠样本上 (图 3). Nat Neurosci (2015) ncbi
兔 单克隆(C36B11)
  • 免疫印迹; 大鼠; 图 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9733)被用于被用于免疫印迹在大鼠样本上 (图 1). Nat Neurosci (2015) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 3638S)被用于被用于免疫印迹在小鼠样本上 (图 4). Front Oncol (2015) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 2
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2). Nat Immunol (2016) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 4499P)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 s6
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9715)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s6). Proc Natl Acad Sci U S A (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 s6
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 4353)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s6). Proc Natl Acad Sci U S A (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 4
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9715)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Nature (2015) ncbi
兔 单克隆(C42D8)
  • 免疫组化-石蜡切片; 果蝇; 1:200; 图 s1b
  • 免疫印迹; 果蝇; 1:1000; 图 s1a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9751S)被用于被用于免疫组化-石蜡切片在果蝇样本上浓度为1:200 (图 s1b) 和 被用于免疫印迹在果蝇样本上浓度为1:1000 (图 s1a). Biol Open (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Am J Pathol (2015) ncbi
兔 单克隆(D2B12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 4620)被用于被用于免疫印迹在小鼠样本上. Biochem J (2016) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:2000; 图 4
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4). PLoS ONE (2015) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499P)被用于被用于免疫印迹在人类样本上 (图 2g). Nat Chem Biol (2015) ncbi
兔 单克隆(D85B4)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4658P)被用于被用于免疫印迹在人类样本上 (图 2g). Nat Chem Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling., 9701S)被用于被用于免疫印迹在人类样本上 (图 6e). J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9715)被用于被用于免疫印迹在人类样本上 (图 6a). Nucleic Acids Res (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:500
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, #9701)被用于被用于免疫细胞化学在人类样本上浓度为1:500. PLoS ONE (2015) ncbi
兔 单克隆(D2B12)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4620)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Commun (2015) ncbi
兔 单克隆(D5E4)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 8173)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Commun (2015) ncbi
兔 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 6
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Tech, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(6G3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9706S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6). PLoS ONE (2015) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:2000; 图 2
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Nat Commun (2015) ncbi
兔 单克隆(C36B11)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, C36B11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Tumour Biol (2016) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signalling, 4499L)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(6G3)
  • 免疫印迹; 狗; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9706)被用于被用于免疫印迹在狗样本上浓度为1:1000 (图 3b). Nat Commun (2015) ncbi
小鼠 单克隆(6G3)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, cat# 9706S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. EMBO J (2015) ncbi
兔 多克隆
  • 其他; 小鼠; 1:500; 图 s1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9753)被用于被用于其他在小鼠样本上浓度为1:500 (图 s1). Front Microbiol (2015) ncbi
兔 单克隆(C42D8)
  • 免疫印迹; 人类; 图 6g
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9751)被用于被用于免疫印迹在人类样本上 (图 6g). Mol Cell Biol (2015) ncbi
兔 单克隆(C36B11)
  • 染色质免疫沉淀 ; 小鼠
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, C36B11)被用于被用于染色质免疫沉淀 在小鼠样本上. J Cell Sci (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9701s)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 3638)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Mol Cell Cardiol (2015) ncbi
兔 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 5
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9706)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9706S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 2). Mol Biol Cell (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9715)被用于被用于免疫印迹在小鼠样本上浓度为1:500. J Neurosci (2015) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(CST, D1H2)被用于被用于免疫印迹在人类样本上 (图 1). J Cell Biol (2015) ncbi
兔 单克隆(C36B11)
  • 免疫细胞化学; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9733)被用于被用于免疫细胞化学在小鼠样本上 (图 4). J Pathol (2015) ncbi
兔 单克隆(C5B11)
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9649)被用于被用于免疫印迹在大鼠样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 人类; 1:400; 图 2a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technologies, 9706)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 2a). PLoS ONE (2015) ncbi
兔 单克隆(D2C8)
  • 免疫细胞化学; 人类; 1:1600; 图 2a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technologies, 3377)被用于被用于免疫细胞化学在人类样本上浓度为1:1600 (图 2a). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9715)被用于被用于免疫印迹在小鼠样本上 (图 1b). Nat Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 9701S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3). Cell Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:3000; 图 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715S)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1). Nat Commun (2015) ncbi
兔 单克隆(C42D8)
  • ChIP-Seq; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9751S)被用于被用于ChIP-Seq在小鼠样本上 (图 3a). BMC Biol (2015) ncbi
兔 单克隆(C36B11)
  • 染色质免疫沉淀 ; 小鼠; 图 s8
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9733)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 s8). Nat Commun (2015) ncbi
兔 单克隆(C42D8)
  • 染色质免疫沉淀 ; 小鼠; 图 s8
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9751)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 s8). Nat Commun (2015) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 3638)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Toxicol Appl Pharmacol (2015) ncbi
兔 单克隆(D5E4)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technologies, 8173)被用于被用于免疫印迹在人类样本上 (图 5). Chem Biol (2015) ncbi
兔 单克隆(C5B11)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technologies, 9649P)被用于被用于免疫印迹在人类样本上 (图 5). Chem Biol (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫组化在小鼠样本上 (图 1c). Nat Genet (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s4g
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上 (图 s4g). Nat Genet (2015) ncbi
兔 单克隆(D18C8)
  • 免疫印迹; 小鼠; 1:1000; 图 s13
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9728)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s13). Genome Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s13
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s13). Genome Res (2015) ncbi
兔 单克隆(D2C8)
  • 流式细胞仪; 人类; 1:50; 图 s1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 3465)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s1). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2.a,b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2.a,b). Nat Neurosci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 9715)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Nat Commun (2015) ncbi
兔 单克隆(C5B11)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 9649P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Nat Commun (2015) ncbi
兔 单克隆(D85B4)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 4658P)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Stem Cells Int (2015) ncbi
兔 单克隆(3H1)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 3H1)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
兔 单克隆(D2B12)
  • 染色质免疫沉淀 ; 人类; 图 3
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4620)被用于被用于染色质免疫沉淀 在人类样本上 (图 3). EMBO Mol Med (2015) ncbi
兔 多克隆
  • 免疫沉淀; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715)被用于被用于免疫沉淀在人类样本上浓度为1:1000 (图 3). Sci Rep (2015) ncbi
兔 多克隆
  • 流式细胞仪; 人类; 1:100; 图 6
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 6). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1c, 1d
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signalling, 9701)被用于被用于免疫印迹在人类样本上 (图 1c, 1d). Mol Cell Proteomics (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2015) ncbi
兔 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 6a,6b,6c,7b
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 6a,6b,6c,7b) 和 被用于免疫印迹在人类样本上 (图 7a). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 图 7
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫组化在人类样本上 (图 7). BMC Med Genomics (2015) ncbi
兔 单克隆(D54)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 4473)被用于被用于免疫印迹在人类样本上 (图 1c). Cell Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 1b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signalling, 9727)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). Nat Commun (2015) ncbi
小鼠 单克隆(6F12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(cst, 5327)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(6G3)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9706)被用于被用于免疫印迹在人类样本上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
兔 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 3
  • 流式细胞仪; 人类; 图 s3
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 3) 和 被用于流式细胞仪在人类样本上 (图 s3). PLoS ONE (2015) ncbi
兔 单克隆(C42D8)
  • 染色质免疫沉淀 ; 大鼠
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9751s)被用于被用于染色质免疫沉淀 在大鼠样本上. J Biol Chem (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 大鼠
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 2650s)被用于被用于染色质免疫沉淀 在大鼠样本上. J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上 (图 1c). Epigenetics (2015) ncbi
兔 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 3377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). J Cell Biol (2015) ncbi
兔 单克隆(D2B12)
  • 染色质免疫沉淀 ; 人类; 图 4f
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, D2B12)被用于被用于染色质免疫沉淀 在人类样本上 (图 4f). Am J Pathol (2015) ncbi
兔 单克隆(D18C8)
  • 免疫细胞化学; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(CST, 9728S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Microsc Microanal (2015) ncbi
兔 单克隆(D85B4)
  • 免疫细胞化学; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(CST, 4658S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Microsc Microanal (2015) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, (D1H2)XP)被用于被用于免疫印迹在人类样本上 (图 7). Nucleic Acids Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9723 S)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
兔 单克隆(C64G9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9725 S)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9727 S)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715S)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2015) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫印迹在人类样本上浓度为1:5000. Toxicol Appl Pharmacol (2015) ncbi
兔 单克隆(D2C8)
  • reverse phase protein lysate microarray; 人类; 表 s2
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 3377S)被用于被用于reverse phase protein lysate microarray在人类样本上 (表 s2). Mol Syst Biol (2015) ncbi
兔 单克隆(D2B12)
  • 染色质免疫沉淀 ; 人类; 1:40; 图 8a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technologies, 4620)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:40 (图 8a). Nat Commun (2015) ncbi
兔 单克隆(C75H12)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 2901S)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(CST, 9715s)被用于被用于免疫印迹在人类样本上 (图 2). Cancer Res (2015) ncbi
兔 单克隆(C5B11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 1185)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2015) ncbi
兔 单克隆(C64G9)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, C64G9)被用于被用于免疫印迹在人类样本上 (图 6). Cell Rep (2015) ncbi
兔 单克隆(D85B4)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 4658P)被用于被用于免疫印迹在人类样本上 (图 6). Cell Rep (2015) ncbi
兔 单克隆(C42D8)
  • 免疫细胞化学; 人类; 图 7
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, C42D8)被用于被用于免疫细胞化学在人类样本上 (图 7) 和 被用于免疫印迹在人类样本上 (图 6). Cell Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 6
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9715)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 6). Nat Cell Biol (2015) ncbi
兔 单克隆(D18C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9728)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
兔 单克隆(C36B11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9733)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 6
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9763)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 6). Nat Commun (2015) ncbi
兔 单克隆(D2C8)
  • 免疫组化; newts; 1:200; 表 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 3377)被用于被用于免疫组化在newts样本上浓度为1:200 (表 1). Methods Mol Biol (2015) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 7). Cancer Immunol Res (2015) ncbi
兔 单克隆(C5B11)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9649)被用于被用于免疫印迹在人类样本上 (图 7). Cancer Immunol Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9675)被用于被用于免疫印迹在人类样本上 (图 7). Cancer Immunol Res (2015) ncbi
兔 单克隆(C42D8)
  • 染色质免疫沉淀 ; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9751)被用于被用于染色质免疫沉淀 在人类样本上. Prostate (2015) ncbi
兔 单克隆(D1A9)
  • 染色质免疫沉淀 ; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 5326)被用于被用于染色质免疫沉淀 在人类样本上. Prostate (2015) ncbi
兔 单克隆(D2C8)
  • 流式细胞仪; 人类; 1:50
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 5764)被用于被用于流式细胞仪在人类样本上浓度为1:50. Mutat Res Genet Toxicol Environ Mutagen (2015) ncbi
兔 单克隆(C36B11)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 6
  • 染色质免疫沉淀 ; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9733)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 6) 和 被用于染色质免疫沉淀 在人类样本上浓度为1:1000 (图 4). Nat Med (2015) ncbi
兔 单克隆(D2C8)
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上浓度为1:2000. Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:4000
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 2650)被用于被用于免疫印迹在人类样本上浓度为1:4000. J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 斑马鱼; 1:50
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:50. Mol Cancer (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Am J Physiol Cell Physiol (2015) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:2000; 图 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Rejuvenation Res (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9753)被用于被用于染色质免疫沉淀 在人类样本上. Am J Hum Genet (2015) ncbi
兔 单克隆(D2C8)
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 3377)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 9753)被用于被用于免疫印迹在人类样本上 (图 3). Ann Surg Oncol (2015) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 3). Ann Surg Oncol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9753)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:10,000; 图 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 9727)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1). Oncotarget (2015) ncbi
兔 单克隆(D2C8)
  • 免疫组化; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 3377)被用于被用于免疫组化在小鼠样本上浓度为1:100. Endocrinology (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, #9701L)被用于被用于免疫组化-石蜡切片在小鼠样本上. J Biol Chem (2015) ncbi
兔 单克隆(C42D8)
  • 染色质免疫沉淀 ; 人类; 图 3
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9751S)被用于被用于染色质免疫沉淀 在人类样本上 (图 3). Sci Rep (2015) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 大鼠; 1:25000
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在大鼠样本上浓度为1:25000. Exp Neurol (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715)被用于被用于免疫印迹在大鼠样本上. Mol Cell Biol (2015) ncbi
兔 单克隆(D15E8)
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 5427)被用于. Curr Protoc Cytom (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9711)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Antioxid Redox Signal (2015) ncbi
小鼠 单克隆(6G3)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9706S)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9706)被用于被用于免疫组化在小鼠样本上 (图 4). Cancer Cell (2015) ncbi
兔 单克隆(D2B12)
  • 染色质免疫沉淀 ; 人类; 2 ugs
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, #4620)被用于被用于染色质免疫沉淀 在人类样本上浓度为2 ugs. BMC Cancer (2014) ncbi
兔 单克隆(C42D8)
  • 染色质免疫沉淀 ; 人类; 2 ugs
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, #9751)被用于被用于染色质免疫沉淀 在人类样本上浓度为2 ugs. BMC Cancer (2014) ncbi
兔 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 2 ugs
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, #9733)被用于被用于染色质免疫沉淀 在人类样本上浓度为2 ugs. BMC Cancer (2014) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, #4499)被用于被用于免疫印迹在人类样本上浓度为1:1000. BMC Cancer (2014) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
兔 单克隆(D2C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 3377)被用于被用于免疫印迹在人类样本上. DNA Repair (Amst) (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9715)被用于被用于免疫印迹在人类样本上. DNA Repair (Amst) (2015) ncbi
兔 单克隆(C36B11)
  • 酶联免疫吸附测定; 人类; 1:1000
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(CST, 9733)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 1:20000
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(CST, 3638)被用于被用于免疫印迹在人类样本上浓度为1:20000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9677)被用于被用于免疫印迹在人类样本上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
兔 单克隆(D18C8)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9728)被用于被用于免疫细胞化学在人类样本上. J Biomol Screen (2015) ncbi
兔 单克隆(D1H2)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 4499)被用于被用于免疫细胞化学在人类样本上. J Biomol Screen (2015) ncbi
兔 单克隆(C36B11)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9733)被用于被用于免疫细胞化学在人类样本上. J Biomol Screen (2015) ncbi
兔 单克隆(D5E4)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 8173)被用于被用于免疫细胞化学在人类样本上. J Biomol Screen (2015) ncbi
兔 单克隆(D2C8)
  • 流式细胞仪; 人类; 图 5c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 3377P)被用于被用于流式细胞仪在人类样本上 (图 5c). Mol Pharm (2015) ncbi
兔 单克隆(D18C8)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, D18C8)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Med (2014) ncbi
兔 单克隆(C36B11)
  • ChIP-Seq; 人类; 1:50
  • 免疫组化-石蜡切片; 人类; 1:500
  • 免疫细胞化学; 人类; 1:800
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9733)被用于被用于ChIP-Seq在人类样本上浓度为1:50, 被用于免疫组化-石蜡切片在人类样本上浓度为1:500, 被用于免疫细胞化学在人类样本上浓度为1:800 和 被用于免疫印迹在人类样本上浓度为1:1000. Nat Med (2014) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 96C10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Med (2014) ncbi
小鼠 单克隆(6G3)
  • 免疫组化-冰冻切片; common platanna; 1:3000
  • 免疫印迹; 鸡
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 6G3)被用于被用于免疫组化-冰冻切片在common platanna样本上浓度为1:3000, 被用于免疫印迹在鸡样本上 和 被用于免疫印迹在人类样本上. PLoS Pathog (2014) ncbi
兔 多克隆
  • ChIP-Seq; 人类
  • 染色质免疫沉淀 ; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 4353)被用于被用于ChIP-Seq在人类样本上 和 被用于染色质免疫沉淀 在人类样本上. J Biol Chem (2015) ncbi
兔 单克隆(D5E4)
  • 染色质免疫沉淀 ; 人类; 图 5
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 8173)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). Mol Cancer Res (2015) ncbi
兔 单克隆(C42D8)
  • 免疫组化; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, C42D8)被用于被用于免疫组化在小鼠样本上 (图 5). Nat Commun (2014) ncbi
兔 单克隆(D2B12)
  • 免疫印迹; 人类; 1:4000
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signalling, 4620)被用于被用于免疫印迹在人类样本上浓度为1:4000. J Cell Biochem (2015) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(CST, 4499P)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, #9706)被用于被用于免疫细胞化学在人类样本上. Stem Cells (2015) ncbi
兔 单克隆(D2C8)
  • 流式细胞仪; 人类; 1:800
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 3377)被用于被用于流式细胞仪在人类样本上浓度为1:800. Cancer Res (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technologies, 9675)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Histochem Cell Biol (2015) ncbi
兔 单克隆(C36B11)
  • 免疫印迹; 人类; 图 5
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9733)被用于被用于免疫印迹在人类样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 3). Blood (2015) ncbi
兔 单克隆(D1H2)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(CST, 4499)被用于被用于免疫细胞化学在人类样本上. FEBS Lett (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9701)被用于被用于免疫印迹在小鼠样本上. Biochim Biophys Acta (2015) ncbi
兔 单克隆(C75H12)
  • 免疫组化-石蜡切片; 人类; 1:1000
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 2901)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Mol Cancer Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 5b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5b). J Cell Mol Med (2015) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 图 s5
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Tech., 4499)被用于被用于免疫印迹在人类样本上 (图 s5). PLoS ONE (2014) ncbi
兔 单克隆(D2C8)
  • 流式细胞仪; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, D2C8)被用于被用于流式细胞仪在人类样本上. Cancer Res (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9701)被用于被用于免疫组化在小鼠样本上 (图 3). Nat Med (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9716)被用于被用于免疫细胞化学在人类样本上. Cell Death Differ (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9701)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Nat Cell Biol (2014) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 1:5000; 图 s1
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s1). Int J Biochem Cell Biol (2014) ncbi
兔 单克隆(C64G9)
  • 免疫印迹; 果蝇; 1:2000
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling Technology, 9725)被用于被用于免疫印迹在果蝇样本上浓度为1:2000. Mech Dev (2014) ncbi
兔 单克隆(3H1)
  • 免疫印迹; 果蝇; 1:2000
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling Technology, 9717S)被用于被用于免疫印迹在果蝇样本上浓度为1:2000. Mech Dev (2014) ncbi
兔 多克隆
  • 免疫组化; common platanna; 1:100
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9701L)被用于被用于免疫组化在common platanna样本上浓度为1:100. Development (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signalling, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上. EMBO Mol Med (2014) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上 (图 4). Carcinogenesis (2014) ncbi
兔 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 3
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 3). elife (2014) ncbi
兔 单克隆(C5B11)
  • 染色质免疫沉淀 ; 人类; 图 5
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9649)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). elife (2014) ncbi
兔 单克隆(C42D8)
  • 染色质免疫沉淀 ; 人类; 图 3
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9751)被用于被用于染色质免疫沉淀 在人类样本上 (图 3). elife (2014) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, D1H2)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2014) ncbi
兔 单克隆(D2B12)
  • 染色质免疫沉淀 ; 小鼠
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4620S)被用于被用于染色质免疫沉淀 在小鼠样本上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化; 果蝇; 1:100
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signalling, 9701)被用于被用于免疫组化在果蝇样本上浓度为1:100. EMBO J (2014) ncbi
兔 多克隆
  • 免疫组化; 果蝇; 1:100
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signalling, 9713)被用于被用于免疫组化在果蝇样本上浓度为1:100. EMBO J (2014) ncbi
兔 单克隆(D2C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 3377)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
兔 单克隆(C42D8)
  • 染色质免疫沉淀 ; 小鼠
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9751S)被用于被用于染色质免疫沉淀 在小鼠样本上. J Immunol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 9715)被用于被用于免疫印迹在小鼠样本上. Biochim Biophys Acta (2014) ncbi
兔 单克隆(D85B4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4658p)被用于被用于免疫印迹在人类样本上. Cancer Discov (2014) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499p)被用于被用于免疫印迹在人类样本上. Cancer Discov (2014) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9753)被用于被用于染色质免疫沉淀 在人类样本上. Mol Cell Biol (2014) ncbi
兔 单克隆(C5B11)
  • 染色质免疫沉淀 ; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9649)被用于被用于染色质免疫沉淀 在人类样本上. Mol Cell Biol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9715)被用于被用于免疫印迹在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 3638)被用于被用于免疫印迹在人类样本上. Mol Cell Biochem (2014) ncbi
兔 单克隆(C5B11)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(CST, 9649)被用于被用于免疫印迹在大鼠样本上. FASEB J (2014) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上. Clin Sci (Lond) (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫印迹在人类样本上 (图 s2). J Cell Sci (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9701)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Tech, 9715)被用于被用于免疫印迹在人类样本上. PLoS Pathog (2014) ncbi
兔 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类
  • 免疫组化-石蜡切片; 大鼠; 0.07 ug/mL
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(CST, 9733)被用于被用于染色质免疫沉淀 在人类样本上 和 被用于免疫组化-石蜡切片在大鼠样本上浓度为0.07 ug/mL. Mol Cancer Ther (2014) ncbi
兔 单克隆(C42D8)
  • 染色质免疫沉淀 ; 人类; 图 st13
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 9751)被用于被用于染色质免疫沉淀 在人类样本上 (图 st13). Nat Cell Biol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 s3d
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(cell signaling, 9715)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s3d). Nat Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technologies, 9764)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(6G3)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9706S)被用于被用于免疫印迹在人类样本上浓度为1:1000. Toxicol Sci (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫印迹在人类样本上. Gastroenterology (2014) ncbi
兔 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2014) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类; 1:5000
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:5000. Nat Commun (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Dev Biol (2014) ncbi
兔 单克隆(D2C8)
  • 免疫细胞化学; 小鼠; 1:200; 图 4
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 3377)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4). FASEB J (2014) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 小鼠; 1:200; 图 4
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9706)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4). FASEB J (2014) ncbi
兔 单克隆(C5B11)
  • 染色质免疫沉淀 ; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9649)被用于被用于染色质免疫沉淀 在人类样本上. J Biol Chem (2014) ncbi
兔 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
兔 单克隆(D2C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
兔 单克隆(C42D8)
  • 免疫组化-石蜡切片; 人类; 1:100
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9751)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Cancer (2013) ncbi
兔 单克隆(D18C8)
  • 免疫组化-自由浮动切片; 小鼠; 1:200
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9728)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Neuroscience (2014) ncbi
兔 单克隆(D85B4)
  • 染色质免疫沉淀 ; 小鼠
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 4658)被用于被用于染色质免疫沉淀 在小鼠样本上 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Neuroscience (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9701)被用于被用于免疫印迹在人类样本上 (图 1c). Mol Biol Cell (2014) ncbi
兔 单克隆(C36B11)
  • 免疫细胞化学; 人类; 1:500
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, C36B11)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Mol Biosyst (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 2650S)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Dev Biol (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫组化在小鼠样本上 (图 2). BMC Biol (2013) ncbi
兔 单克隆(D2B12)
  • 染色质免疫沉淀 ; 小鼠
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4620)被用于被用于染色质免疫沉淀 在小鼠样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9706)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Nucleic Acids Res (2013) ncbi
兔 单克隆(C36B11)
  • 染色质免疫沉淀 ; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9733)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 3). PLoS Genet (2013) ncbi
兔 单克隆(C36B11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, C36B11)被用于被用于免疫印迹在小鼠样本上. Blood (2013) ncbi
兔 单克隆(D1H2)
  • 免疫细胞化学; 人类; 1:200
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, D1H2)被用于被用于免疫细胞化学在人类样本上浓度为1:200. J Virol (2013) ncbi
兔 单克隆(D2C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 人类; 1:500
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technologies, 9706)被用于被用于免疫细胞化学在人类样本上浓度为1:500 和 被用于免疫印迹在人类样本上浓度为1:1000. J Biol Chem (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9675)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4353)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
兔 单克隆(C5B11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9649)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
兔 单克隆(D85B4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4658)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9753)被用于被用于染色质免疫沉淀 在小鼠样本上. Mol Cell Biol (2013) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫组化在小鼠样本上浓度为1:100. Methods (2014) ncbi
兔 单克隆(D2C8)
  • 免疫细胞化学; 人类; 1:1000
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signalling, 3377s)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. PLoS ONE (2013) ncbi
兔 单克隆(C36B11)
  • 染色质免疫沉淀 ; 小鼠; 1:50
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为1:50. Cell Death Dis (2013) ncbi
兔 多克隆
  • 免疫印迹; 猪
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9727)被用于被用于免疫印迹在猪样本上. Physiol Genomics (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:100; 图 1h
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell signaling, 9716S)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 1h). J Tissue Eng Regen Med (2015) ncbi
小鼠 单克隆(6G3)
  • 免疫组化-自由浮动切片; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9706)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100. Mol Cell Biol (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. PLoS ONE (2013) ncbi
兔 单克隆(D18C8)
  • 免疫组化-自由浮动切片; 小鼠; 1:200
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9728)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Neurobiol Dis (2013) ncbi
兔 单克隆(D85B4)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 4658)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Neurobiol Dis (2013) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9706)被用于被用于免疫细胞化学在人类样本上. Mol Oncol (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signalling, 9715s)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
兔 多克隆
  • 流式细胞仪; 鸡
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9701)被用于被用于流式细胞仪在鸡样本上. Cell Cycle (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(细胞, 9701)被用于被用于免疫印迹在人类样本上浓度为1:500. Sci Rep (2012) ncbi
小鼠 单克隆(6G3)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 6G3)被用于被用于免疫印迹在小鼠样本上. Leuk Res (2013) ncbi
兔 单克隆(D2C8)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 3377)被用于被用于免疫细胞化学在人类样本上. Carcinogenesis (2013) ncbi
小鼠 单克隆(6G3)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9706)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上. Carcinogenesis (2013) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9706)被用于被用于免疫组化在小鼠样本上浓度为1:100. Front Neurosci (2012) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:250
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9727)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250. Proc Natl Acad Sci U S A (2012) ncbi
小鼠 单克隆(6G3)
  • 免疫组化-冰冻切片; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9706)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. J Comp Neurol (2012) ncbi
兔 单克隆(C5B11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9649)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2011) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 3638)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2011) ncbi
小鼠 单克隆(6G3)
  • 免疫组化-冰冻切片; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling Technology, 9706)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. J Comp Neurol (2011) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9706)被用于被用于免疫组化在小鼠样本上浓度为1:200. J Comp Neurol (2011) ncbi
兔 单克隆(C36B11)
  • 免疫印迹; 人类; 1:10000
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(CST, 9733)被用于被用于免疫印迹在人类样本上浓度为1:10000. Proc Natl Acad Sci U S A (2010) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 1:20000
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(CST, 3638)被用于被用于免疫印迹在人类样本上浓度为1:20000. Proc Natl Acad Sci U S A (2010) ncbi
小鼠 单克隆(6G3)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 3
赛信通(上海)生物试剂有限公司 HIST1H3D抗体(Cell Signaling, 9706)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 3). PLoS ONE (2009) ncbi
默克密理博中国
兔 多克隆
  • 免疫印迹; 面包酵母; 1:1000-1:2000; 图 s1e
默克密理博中国 HIST1H3D抗体(Millipore, 07-677-I)被用于被用于免疫印迹在面包酵母样本上浓度为1:1000-1:2000 (图 s1e). BMC Genomics (2017) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 2g
默克密理博中国 HIST1H3D抗体(Milipore, 17-10259)被用于被用于染色质免疫沉淀 在人类样本上 (图 2g). Nat Commun (2016) ncbi
兔 单克隆(JY325)
  • 免疫组化-石蜡切片; 果蝇; 1:200; 图 2a
默克密理博中国 HIST1H3D抗体(Millipore, 05-746R)被用于被用于免疫组化-石蜡切片在果蝇样本上浓度为1:200 (图 2a). Biol Open (2015) ncbi
兔 单克隆(JY325)
  • 免疫组化; Saccharum sp.; 1:100
默克密理博中国 HIST1H3D抗体(Millipore, 05-746R)被用于被用于免疫组化在Saccharum sp.样本上浓度为1:100. PLoS ONE (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠
默克密理博中国 HIST1H3D抗体(Millipore, ABE305)被用于被用于染色质免疫沉淀 在小鼠样本上. J Immunol (2015) ncbi
兔 多克隆
  • 免疫印迹; 面包酵母; 图 5
默克密理博中国 HIST1H3D抗体(Upstate, 07-677)被用于被用于免疫印迹在面包酵母样本上 (图 5). Nucleus (2014) ncbi
兔 多克隆
  • 免疫印迹; 面包酵母; 图 5
默克密理博中国 HIST1H3D抗体(Upstate, 07-677)被用于被用于免疫印迹在面包酵母样本上 (图 5). Nucleus (2014) ncbi
文章列表
  1. Lee J, Termglinchan V, Diecke S, Itzhaki I, Lam C, Garg P, et al. Activation of PDGF pathway links LMNA mutation to dilated cardiomyopathy. Nature. 2019;572:335-340 pubmed 出版商
  2. Rubio K, Singh I, Dobersch S, Sarvari P, Günther S, Cordero J, et al. Inactivation of nuclear histone deacetylases by EP300 disrupts the MiCEE complex in idiopathic pulmonary fibrosis. Nat Commun. 2019;10:2229 pubmed 出版商
  3. Roy A, Murphy R, Deng M, MacDonald J, Bammler T, Aldinger K, et al. PI3K-Yap activity drives cortical gyrification and hydrocephalus in mice. elife. 2019;8: pubmed 出版商
  4. Qiu J, Villa M, Sanin D, Buck M, O Sullivan D, Ching R, et al. Acetate Promotes T Cell Effector Function during Glucose Restriction. Cell Rep. 2019;27:2063-2074.e5 pubmed 出版商
  5. Choi J, Zhong X, McAlpine W, Liao T, Zhang D, Fang B, et al. LMBR1L regulates lymphopoiesis through Wnt/β-catenin signaling. Science. 2019;364: pubmed 出版商
  6. Singh R, Peng S, Viswanath P, Sambandam V, Shen L, Rao X, et al. Non-canonical cMet regulation by vimentin mediates Plk1 inhibitor-induced apoptosis. EMBO Mol Med. 2019;: pubmed 出版商
  7. Fursova N, Blackledge N, Nakayama M, Ito S, Koseki Y, Farcas A, et al. Synergy between Variant PRC1 Complexes Defines Polycomb-Mediated Gene Repression. Mol Cell. 2019;74:1020-1036.e8 pubmed 出版商
  8. Greenberg M, Teissandier A, Walter M, Noordermeer D, Bourc his D. Dynamic enhancer partitioning instructs activation of a growth-related gene during exit from naïve pluripotency. elife. 2019;8: pubmed 出版商
  9. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  10. Wang Y, Brady K, Caiello B, Ackerson S, Stewart J. Human CST suppresses origin licensing and promotes AND-1/Ctf4 chromatin association. Life Sci Alliance. 2019;2: pubmed 出版商
  11. Lavarone E, Barbieri C, Pasini D. Dissecting the role of H3K27 acetylation and methylation in PRC2 mediated control of cellular identity. Nat Commun. 2019;10:1679 pubmed 出版商
  12. Gonzalo Gil E, Rapuano P, Ikediobi U, Leibowitz R, Mehta S, Coskun A, et al. Transcriptional down-regulation of ccr5 in a subset of HIV+ controllers and their family members. elife. 2019;8: pubmed 出版商
  13. Lima Fernandes E, Murison A, da Silva Medina T, Wang Y, Ma A, Leung C, et al. Targeting bivalency de-represses Indian Hedgehog and inhibits self-renewal of colorectal cancer-initiating cells. Nat Commun. 2019;10:1436 pubmed 出版商
  14. Sinclair L, Howden A, Brenes A, Spinelli L, Hukelmann J, Macintyre A, et al. Antigen receptor control of methionine metabolism in T cells. elife. 2019;8: pubmed 出版商
  15. Kelly M, So J, Rogers A, Gregory G, Li J, Zethoven M, et al. Bcor loss perturbs myeloid differentiation and promotes leukaemogenesis. Nat Commun. 2019;10:1347 pubmed 出版商
  16. Chakraborty A, Laukka T, Myllykoski M, Ringel A, Booker M, Tolstorukov M, et al. Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate. Science. 2019;363:1217-1222 pubmed 出版商
  17. Liu J, Liu Y, Shao J, Li Y, Qin L, Shen H, et al. Zeb1 is important for proper cleavage plane orientation of dividing progenitors and neuronal migration in the mouse neocortex. Cell Death Differ. 2019;: pubmed 出版商
  18. Lee J, Dindorf J, Eberhardt M, Lai X, Ostalecki C, Koliha N, et al. Innate extracellular vesicles from melanoma patients suppress β-catenin in tumor cells by miRNA-34a. Life Sci Alliance. 2019;2: pubmed 出版商
  19. Zhang S, Deng T, Tang W, He B, Furusawa T, Ambs S, et al. Epigenetic regulation of REX1 expression and chromatin binding specificity by HMGNs. Nucleic Acids Res. 2019;47:4449-4461 pubmed 出版商
  20. Crippa S, Rossella V, Aprile A, Silvestri L, Rivis S, Scaramuzza S, et al. Bone marrow stromal cells from β-thalassemia patients have impaired hematopoietic supportive capacity. J Clin Invest. 2019;129:1566-1580 pubmed 出版商
  21. Nagaoka K, Bai X, Ogawa K, Dong X, Zhang S, Zhou Y, et al. Anti-tumor activity of antibody drug conjugate targeting aspartate-β-hydroxylase in pancreatic ductal adenocarcinoma. Cancer Lett. 2019;449:87-98 pubmed 出版商
  22. Wei J, Kishton R, Angel M, Conn C, Dalla Venezia N, Marcel V, et al. Ribosomal Proteins Regulate MHC Class I Peptide Generation for Immunosurveillance. Mol Cell. 2019;73:1162-1173.e5 pubmed 出版商
  23. Zheng Y, Liu A, Wang Z, Cao Q, Wang W, Lin L, et al. Inhibition of EHMT1/2 rescues synaptic and cognitive functions for Alzheimer's disease. Brain. 2019;142:787-807 pubmed 出版商
  24. Shen B, Vardy K, Hughes P, Tasdogan A, Zhao Z, Yue R, et al. Integrin alpha11 is an Osteolectin receptor and is required for the maintenance of adult skeletal bone mass. elife. 2019;8: pubmed 出版商
  25. Gómez Fernández P, Urtasun A, Paton A, Paton J, Borrego F, Dersh D, et al. Long Interleukin-22 Binding Protein Isoform-1 Is an Intracellular Activator of the Unfolded Protein Response. Front Immunol. 2018;9:2934 pubmed 出版商
  26. Nicetto D, Donahue G, Jain T, Peng T, Sidoli S, Sheng L, et al. H3K9me3-heterochromatin loss at protein-coding genes enables developmental lineage specification. Science. 2019;363:294-297 pubmed 出版商
  27. Żylicz J, Bousard A, Zumer K, Dossin F, Mohammad E, da Rocha S, et al. The Implication of Early Chromatin Changes in X Chromosome Inactivation. Cell. 2019;176:182-197.e23 pubmed 出版商
  28. Sparks J, Chistol G, Gao A, Raschle M, Larsen N, Mann M, et al. The CMG Helicase Bypasses DNA-Protein Cross-Links to Facilitate Their Repair. Cell. 2019;176:167-181.e21 pubmed 出版商
  29. Liddiard K, Ruis B, Kan Y, Cleal K, Ashelford K, Hendrickson E, et al. DNA Ligase 1 is an essential mediator of sister chromatid telomere fusions in G2 cell cycle phase. Nucleic Acids Res. 2019;47:2402-2424 pubmed 出版商
  30. Pan W, Moroishi T, Koo J, Guan K. Cell type-dependent function of LATS1/2 in cancer cell growth. Oncogene. 2019;38:2595-2610 pubmed 出版商
  31. Fiore A, Ugel S, De Sanctis F, Sandri S, Fracasso G, Trovato R, et al. Induction of immunosuppressive functions and NF-κB by FLIP in monocytes. Nat Commun. 2018;9:5193 pubmed 出版商
  32. Zhu Y, Wang G, Cingoz O, Goff S. NP220 mediates silencing of unintegrated retroviral DNA. Nature. 2018;564:278-282 pubmed 出版商
  33. Guo A, Wang Y, Chen B, Wang Y, Yuan J, Zhang L, et al. E-C coupling structural protein junctophilin-2 encodes a stress-adaptive transcription regulator. Science. 2018;362: pubmed 出版商
  34. Grigoryan A, Guidi N, Senger K, Liehr T, Soller K, Marka G, et al. LaminA/C regulates epigenetic and chromatin architecture changes upon aging of hematopoietic stem cells. Genome Biol. 2018;19:189 pubmed 出版商
  35. Yin J, Wang Y, Chang J, Li B, Zhang J, Liu Y, et al. Apelin inhibited epithelial-mesenchymal transition of podocytes in diabetic mice through downregulating immunoproteasome subunits β5i. Cell Death Dis. 2018;9:1031 pubmed 出版商
  36. Godfrey T, Wildman B, Beloti M, Kemper A, Ferraz E, Roy B, et al. The microRNA-23a cluster regulates the developmental HoxA cluster function during osteoblast differentiation. J Biol Chem. 2018;293:17646-17660 pubmed 出版商
  37. Chorzalska A, Morgan J, Ahsan N, Treaba D, Olszewski A, Petersen M, et al. Bone marrow-specific loss of ABI1 induces myeloproliferative neoplasm with features resembling human myelofibrosis. Blood. 2018;: pubmed 出版商
  38. Stewart E, McEvoy J, Wang H, Chen X, Honnell V, Ocarz M, et al. Identification of Therapeutic Targets in Rhabdomyosarcoma through Integrated Genomic, Epigenomic, and Proteomic Analyses. Cancer Cell. 2018;34:411-426.e19 pubmed 出版商
  39. Bartova E, Lochmanová G, Legartova S, Suchankova J, Fedr R, Krejci J, et al. Irradiation by γ-rays reduces the level of H3S10 phosphorylation and weakens the G2 phase-dependent interaction between H3S10 phosphorylation and γH2AX. Biochimie. 2018;154:86-98 pubmed 出版商
  40. Li C, Diao F, Qiu D, Jiang M, Li X, Han L, et al. Histone methyltransferase SETD2 is required for meiotic maturation in mouse oocyte. J Cell Physiol. 2018;234:661-668 pubmed 出版商
  41. Liu Z, Qin Q, Wu C, Li H, Shou J, Yang Y, et al. Downregulated NDR1 protein kinase inhibits innate immune response by initiating an miR146a-STAT1 feedback loop. Nat Commun. 2018;9:2789 pubmed 出版商
  42. Liszczak G, Diehl K, Dann G, Muir T. Acetylation blocks DNA damage-induced chromatin ADP-ribosylation. Nat Chem Biol. 2018;14:837-840 pubmed 出版商
  43. Hervás Corpión I, Guiretti D, Alcaraz Iborra M, Olivares R, Campos Caro A, Barco A, et al. Early alteration of epigenetic-related transcription in Huntington's disease mouse models. Sci Rep. 2018;8:9925 pubmed 出版商
  44. Yu R, Wang X, Moazed D. Epigenetic inheritance mediated by coupling of RNAi and histone H3K9 methylation. Nature. 2018;558:615-619 pubmed 出版商
  45. Schrank B, Aparicio T, Li Y, Chang W, Chait B, Gundersen G, et al. Nuclear ARP2/3 drives DNA break clustering for homology-directed repair. Nature. 2018;559:61-66 pubmed 出版商
  46. Casey A, Sinha A, Singhania R, Livingstone J, Waterhouse P, Tharmapalan P, et al. Mammary molecular portraits reveal lineage-specific features and progenitor cell vulnerabilities. J Cell Biol. 2018;217:2951-2974 pubmed 出版商
  47. Hsu J, Xia W, Hsu Y, Chan L, Yu W, Cha J, et al. STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion. Nat Commun. 2018;9:1908 pubmed 出版商
  48. Lu J, Liu L, Zheng M, Li X, Wu A, Wu Q, et al. MEKK2 and MEKK3 suppress Hedgehog pathway-dependent medulloblastoma by inhibiting GLI1 function. Oncogene. 2018;37:3864-3878 pubmed 出版商
  49. McBrayer S, Olenchock B, DiNatale G, Shi D, Khanal J, Jennings R, et al. Autochthonous tumors driven by Rb1 loss have an ongoing requirement for the RBP2 histone demethylase. Proc Natl Acad Sci U S A. 2018;115:E3741-E3748 pubmed 出版商
  50. Huang Y, Gu L, Li G. H3K36me3-mediated mismatch repair preferentially protects actively transcribed genes from mutation. J Biol Chem. 2018;293:7811-7823 pubmed 出版商
  51. Kornberg M, Bhargava P, Kim P, Putluri V, Snowman A, Putluri N, et al. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science. 2018;360:449-453 pubmed 出版商
  52. Lyons J, Ghazi P, Starchenko A, Tovaglieri A, Baldwin K, Poulin E, et al. The colonic epithelium plays an active role in promoting colitis by shaping the tissue cytokine profile. PLoS Biol. 2018;16:e2002417 pubmed 出版商
  53. Chen Z, Gao Y, Yao L, Liu Y, Huang L, Yan Z, et al. LncFZD6 initiates Wnt/β-catenin and liver TIC self-renewal through BRG1-mediated FZD6 transcriptional activation. Oncogene. 2018;37:3098-3112 pubmed 出版商
  54. Andricovich J, Perkail S, Kai Y, Casasanta N, Peng W, Tzatsos A. Loss of KDM6A Activates Super-Enhancers to Induce Gender-Specific Squamous-like Pancreatic Cancer and Confers Sensitivity to BET Inhibitors. Cancer Cell. 2018;33:512-526.e8 pubmed 出版商
  55. Qin L, Ma K, Wang Z, Hu Z, Matas E, Wei J, et al. Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nat Neurosci. 2018;21:564-575 pubmed 出版商
  56. Titone R, Zhu M, Robertson D. Insulin mediates de novo nuclear accumulation of the IGF-1/insulin Hybrid Receptor in corneal epithelial cells. Sci Rep. 2018;8:4378 pubmed 出版商
  57. Takai K, Drain A, Lawson D, Littlepage L, Karpuj M, Kessenbrock K, et al. Discoidin domain receptor 1 (DDR1) ablation promotes tissue fibrosis and hypoxia to induce aggressive basal-like breast cancers. Genes Dev. 2018;32:244-257 pubmed 出版商
  58. Hoshii T, Cifani P, Feng Z, Huang C, Koche R, Chen C, et al. A Non-catalytic Function of SETD1A Regulates Cyclin K and the DNA Damage Response. Cell. 2018;172:1007-1021.e17 pubmed 出版商
  59. Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández Mateos J, Khan K, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359:920-926 pubmed 出版商
  60. Bogdan D, Falcone J, Kanjiya M, Park S, Carbonetti G, Studholme K, et al. Fatty acid-binding protein 5 controls microsomal prostaglandin E synthase 1 (mPGES-1) induction during inflammation. J Biol Chem. 2018;293:5295-5306 pubmed 出版商
  61. Li F, Liu J, Bao R, Yan G, Feng X, Xu Y, et al. Acetylation accumulates PFKFB3 in cytoplasm to promote glycolysis and protects cells from cisplatin-induced apoptosis. Nat Commun. 2018;9:508 pubmed 出版商
  62. McClurg U, Nabbi A, Ricordel C, Korolchuk S, McCracken S, Heer R, et al. Human ex vivo prostate tissue model system identifies ING3 as an oncoprotein. Br J Cancer. 2018;118:713-726 pubmed 出版商
  63. Zhu B, Chen S, Wang H, Yin C, Han C, Peng C, et al. The protective role of DOT1L in UV-induced melanomagenesis. Nat Commun. 2018;9:259 pubmed 出版商
  64. Pleiner T, Bates M, Gorlich D. A toolbox of anti-mouse and anti-rabbit IgG secondary nanobodies. J Cell Biol. 2018;217:1143-1154 pubmed 出版商
  65. Su R, Dong L, Li C, Nachtergaele S, Wunderlich M, Qing Y, et al. R-2HG Exhibits Anti-tumor Activity by Targeting FTO/m6A/MYC/CEBPA Signaling. Cell. 2018;172:90-105.e23 pubmed 出版商
  66. Fang J, Coon B, Gillis N, Chen Z, Qiu J, Chittenden T, et al. Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification. Nat Commun. 2017;8:2149 pubmed 出版商
  67. Oldrini B, Hsieh W, Erdjument Bromage H, Codega P, Carro M, Curiel García A, et al. EGFR feedback-inhibition by Ran-binding protein 6 is disrupted in cancer. Nat Commun. 2017;8:2035 pubmed 出版商
  68. Welty S, Teng Y, Liang Z, Zhao W, Sanders L, Greenamyre J, et al. RAD52 is required for RNA-templated recombination repair in post-mitotic neurons. J Biol Chem. 2018;293:1353-1362 pubmed 出版商
  69. Wu Y, Zhang Z, Cenciarini M, Proietti C, Amasino M, Hong T, et al. Tamoxifen Resistance in Breast Cancer Is Regulated by the EZH2-ERα-GREB1 Transcriptional Axis. Cancer Res. 2018;78:671-684 pubmed 出版商
  70. Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira N, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2018;553:91-95 pubmed 出版商
  71. Sorokina I, Denisenko T, Imreh G, Tyurin Kuzmin P, Kaminskyy V, Gogvadze V, et al. Involvement of autophagy in the outcome of mitotic catastrophe. Sci Rep. 2017;7:14571 pubmed 出版商
  72. Xie X, Almuzzaini B, Drou N, Kremb S, Yousif A, Farrants A, et al. β-Actin-dependent global chromatin organization and gene expression programs control cellular identity. FASEB J. 2018;32:1296-1314 pubmed 出版商
  73. Meng Z, Tao W, Sun J, Wang Q, Mi L, Lin J. Uncoupling Exercise Bioenergetics From Systemic Metabolic Homeostasis by Conditional Inactivation of Baf60 in Skeletal Muscle. Diabetes. 2018;67:85-97 pubmed 出版商
  74. Wang B, Fu X, Zhu M, Du M. Retinoic acid inhibits white adipogenesis by disrupting GADD45A-mediated Zfp423 DNA demethylation. J Mol Cell Biol. 2017;9:338-349 pubmed 出版商
  75. Shen Y, Kapfhamer D, Minnella A, Kim J, Won S, Chen Y, et al. Bioenergetic state regulates innate inflammatory responses through the transcriptional co-repressor CtBP. Nat Commun. 2017;8:624 pubmed 出版商
  76. He H, Huang M, Sun S, Wu Y, Lin X. Epithelial heparan sulfate regulates Sonic Hedgehog signaling in lung development. PLoS Genet. 2017;13:e1006992 pubmed 出版商
  77. Ning B, Zhao W, Qian C, Liu P, Li Q, Li W, et al. USP26 functions as a negative regulator of cellular reprogramming by stabilising PRC1 complex components. Nat Commun. 2017;8:349 pubmed 出版商
  78. Wang Y, Zhang J, Su Y, Shen Y, Jiang D, Hou Y, et al. G9a regulates breast cancer growth by modulating iron homeostasis through the repression of ferroxidase hephaestin. Nat Commun. 2017;8:274 pubmed 出版商
  79. Jiang D, Berger F. DNA replication-coupled histone modification maintains Polycomb gene silencing in plants. Science. 2017;357:1146-1149 pubmed 出版商
  80. Meyer M, Benkusky N, Kaufmann M, Lee S, Onal M, Jones G, et al. A kidney-specific genetic control module in mice governs endocrine regulation of the cytochrome P450 gene Cyp27b1 essential for vitamin D3 activation. J Biol Chem. 2017;292:17541-17558 pubmed 出版商
  81. Wanet A, Caruso M, Domelevo Entfellner J, Najar M, Fattaccioli A, Demazy C, et al. The Transcription Factor 7-Like 2-Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1 Alpha Axis Connects Mitochondrial Biogenesis and Metabolic Shift with Stem Cell Commitment to Hepatic Differentiation. Stem Cells. 2017;35:2184-2197 pubmed 出版商
  82. Krapivinsky G, Krapivinsky L, Renthal N, Santa Cruz A, Manasian Y, Clapham D. Histone phosphorylation by TRPM6's cleaved kinase attenuates adjacent arginine methylation to regulate gene expression. Proc Natl Acad Sci U S A. 2017;114:E7092-E7100 pubmed 出版商
  83. Patne K, Rakesh R, Arya V, Chanana U, Sethy R, Swer P, et al. BRG1 and SMARCAL1 transcriptionally co-regulate DROSHA, DGCR8 and DICER in response to doxorubicin-induced DNA damage. Biochim Biophys Acta Gene Regul Mech. 2017;1860:936-951 pubmed 出版商
  84. Walter K, Goodman M, Singhal H, Hall J, Li T, Holloran S, et al. Interferon-Stimulated Genes Are Transcriptionally Repressed by PR in Breast Cancer. Mol Cancer Res. 2017;15:1331-1340 pubmed 出版商
  85. Bleuyard J, Fournier M, Nakato R, Couturier A, Katou Y, Ralf C, et al. MRG15-mediated tethering of PALB2 to unperturbed chromatin protects active genes from genotoxic stress. Proc Natl Acad Sci U S A. 2017;114:7671-7676 pubmed 出版商
  86. Schecher S, Walter B, Falkenstein M, Macher Goeppinger S, Stenzel P, Krümpelmann K, et al. Cyclin K dependent regulation of Aurora B affects apoptosis and proliferation by induction of mitotic catastrophe in prostate cancer. Int J Cancer. 2017;141:1643-1653 pubmed 出版商
  87. Tikhanovich I, Zhao J, Bridges B, Kumer S, Roberts B, Weinman S. Arginine methylation regulates c-Myc-dependent transcription by altering promoter recruitment of the acetyltransferase p300. J Biol Chem. 2017;292:13333-13344 pubmed 出版商
  88. Newkirk S, Lee S, Grandi F, Gaysinskaya V, Rosser J, Vanden Berg N, et al. Intact piRNA pathway prevents L1 mobilization in male meiosis. Proc Natl Acad Sci U S A. 2017;114:E5635-E5644 pubmed 出版商
  89. Monteagudo S, Cornelis F, Aznar López C, Yibmantasiri P, Guns L, Carmeliet P, et al. DOT1L safeguards cartilage homeostasis and protects against osteoarthritis. Nat Commun. 2017;8:15889 pubmed 出版商
  90. Mahajan K, Malla P, Lawrence H, Chen Z, Kumar Sinha C, Malik R, et al. ACK1/TNK2 Regulates Histone H4 Tyr88-phosphorylation and AR Gene Expression in Castration-Resistant Prostate Cancer. Cancer Cell. 2017;31:790-803.e8 pubmed 出版商
  91. Sodero A, Rodríguez Silva M, Salio C, Sassoè Pognetto M, Chambers J. Sab is differentially expressed in the brain and affects neuronal activity. Brain Res. 2017;1670:76-85 pubmed 出版商
  92. Bourgeois C, Satou R, Prieto M. HDAC9 is an epigenetic repressor of kidney angiotensinogen establishing a sex difference. Biol Sex Differ. 2017;8:18 pubmed 出版商
  93. Takahashi Y, Wu J, Suzuki K, Martínez Redondo P, Li M, Liao H, et al. Integration of CpG-free DNA induces de novo methylation of CpG islands in pluripotent stem cells. Science. 2017;356:503-508 pubmed 出版商
  94. Almeida L, Neto M, Sousa L, Tannous M, Curti C, Leopoldino A. SET oncoprotein accumulation regulates transcription through DNA demethylation and histone hypoacetylation. Oncotarget. 2017;8:26802-26818 pubmed 出版商
  95. Zhu X, Yuan X, Wang M, Fang Y, Liu Y, Zhang X, et al. A Wnt/Notch/Pax7 signaling network supports tissue integrity in tongue development. J Biol Chem. 2017;292:9409-9419 pubmed 出版商
  96. Ma S, Wan X, Deng Z, Shi L, Hao C, Zhou Z, et al. Epigenetic regulator CXXC5 recruits DNA demethylase Tet2 to regulate TLR7/9-elicited IFN response in pDCs. J Exp Med. 2017;214:1471-1491 pubmed 出版商
  97. Wang X, Wang R, Luo M, Li C, Wang H, Huan C, et al. (DEAD)-box RNA helicase 3 modulates NF-κB signal pathway by controlling the phosphorylation of PP2A-C subunit. Oncotarget. 2017;8:33197-33213 pubmed 出版商
  98. François C, Petit F, Giton F, Gougeon A, Ravel C, Magre S, et al. A novel action of follicle-stimulating hormone in the ovary promotes estradiol production without inducing excessive follicular growth before puberty. Sci Rep. 2017;7:46222 pubmed 出版商
  99. Yan Y, Zhao W, Huang Y, Tong H, Xia Y, Jiang Q, et al. Loss of Polycomb Group Protein Pcgf1 Severely Compromises Proper Differentiation of Embryonic Stem Cells. Sci Rep. 2017;7:46276 pubmed 出版商
  100. Jha K, Tripurani S, Johnson G. TSSK6 is required for γH2AX formation and the histone-to-protamine transition during spermiogenesis. J Cell Sci. 2017;130:1835-1844 pubmed 出版商
  101. Shin C, Ito Y, Ichikawa S, Tokunaga M, Sakata Sogawa K, Tanaka T. MKRN2 is a novel ubiquitin E3 ligase for the p65 subunit of NF-κB and negatively regulates inflammatory responses. Sci Rep. 2017;7:46097 pubmed 出版商
  102. Luo D, de Morrée A, Boutet S, Quach N, Natu V, Rustagi A, et al. Deltex2 represses MyoD expression and inhibits myogenic differentiation by acting as a negative regulator of Jmjd1c. Proc Natl Acad Sci U S A. 2017;114:E3071-E3080 pubmed 出版商
  103. Toska E, Osmanbeyoglu H, Castel P, Chan C, Hendrickson R, Elkabets M, et al. PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D. Science. 2017;355:1324-1330 pubmed 出版商
  104. Lin C, Yao E, Zhang K, Jiang X, Croll S, Thompson Peer K, et al. YAP is essential for mechanical force production and epithelial cell proliferation during lung branching morphogenesis. elife. 2017;6: pubmed 出版商
  105. Li N, Xue W, Yuan H, Dong B, Ding Y, Liu Y, et al. AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis. J Clin Invest. 2017;127:1284-1302 pubmed 出版商
  106. Liang Z, Brown K, Carroll T, Taylor B, Vidal I, Hendrich B, et al. A high-resolution map of transcriptional repression. elife. 2017;6: pubmed 出版商
  107. Riascos Bernal D, Chinnasamy P, Gross J, Almonte V, Egaña Gorroño L, Parikh D, et al. Inhibition of Smooth Muscle ?-Catenin Hinders Neointima Formation After Vascular Injury. Arterioscler Thromb Vasc Biol. 2017;37:879-888 pubmed 出版商
  108. Bohnacker T, Prota A, Beaufils F, Burke J, Melone A, Inglis A, et al. Deconvolution of Buparlisib's mechanism of action defines specific PI3K and tubulin inhibitors for therapeutic intervention. Nat Commun. 2017;8:14683 pubmed 出版商
  109. Sgourdou P, Mishra Gorur K, Saotome I, Henagariu O, Tuysuz B, Campos C, et al. Disruptions in asymmetric centrosome inheritance and WDR62-Aurora kinase B interactions in primary microcephaly. Sci Rep. 2017;7:43708 pubmed 出版商
  110. Wyatt H, Laister R, Martin S, Arrowsmith C, West S. The SMX DNA Repair Tri-nuclease. Mol Cell. 2017;65:848-860.e11 pubmed 出版商
  111. Nguyen K, Das B, Dobrowolski C, Karn J. Multiple Histone Lysine Methyltransferases Are Required for the Establishment and Maintenance of HIV-1 Latency. MBio. 2017;8: pubmed 出版商
  112. Beyer S, Zhu J, Mayr D, Kuhn C, Schulze S, Hofmann S, et al. Histone H3 Acetyl K9 and Histone H3 Tri Methyl K4 as Prognostic Markers for Patients with Cervical Cancer. Int J Mol Sci. 2017;18: pubmed 出版商
  113. Soboleva T, Parker B, Nekrasov M, Hart Smith G, Tay Y, Tng W, et al. A new link between transcriptional initiation and pre-mRNA splicing: The RNA binding histone variant H2A.B. PLoS Genet. 2017;13:e1006633 pubmed 出版商
  114. Mutazono M, Morita M, Tsukahara C, Chinen M, Nishioka S, Yumikake T, et al. The intron in centromeric noncoding RNA facilitates RNAi-mediated formation of heterochromatin. PLoS Genet. 2017;13:e1006606 pubmed 出版商
  115. Gherardi S, Ripoche D, Mikaelian I, Chanal M, Teinturier R, Goehrig D, et al. Menin regulates Inhbb expression through an Akt/Ezh2-mediated H3K27 histone modification. Biochim Biophys Acta Gene Regul Mech. 2017;1860:427-437 pubmed 出版商
  116. Amendola P, Zaghet N, Ramalho J, Vilstrup Johansen J, Boxem M, Salcini A. JMJD-5/KDM8 regulates H3K36me2 and is required for late steps of homologous recombination and genome integrity. PLoS Genet. 2017;13:e1006632 pubmed 出版商
  117. Guitart A, Panagopoulou T, Villacreces A, Vukovic M, Sepúlveda C, Allen L, et al. Fumarate hydratase is a critical metabolic regulator of hematopoietic stem cell functions. J Exp Med. 2017;214:719-735 pubmed 出版商
  118. Folco H, Chalamcharla V, Sugiyama T, Thillainadesan G, Zofall M, Balachandran V, et al. Untimely expression of gametogenic genes in vegetative cells causes uniparental disomy. Nature. 2017;543:126-130 pubmed 出版商
  119. Shi Z, Lee K, Yang D, Amin S, Verma N, Li Q, et al. Genome Editing in hPSCs Reveals GATA6 Haploinsufficiency and a Genetic Interaction with GATA4 in Human Pancreatic Development. Cell Stem Cell. 2017;20:675-688.e6 pubmed 出版商
  120. Chen S, Jing Y, Kang X, Yang L, Wang D, Zhang W, et al. Histone H2B monoubiquitination is a critical epigenetic switch for the regulation of autophagy. Nucleic Acids Res. 2017;45:1144-1158 pubmed 出版商
  121. Tu Y, Liu H, Zhu X, Shen H, Ma X, Wang F, et al. Ataxin-3 promotes genome integrity by stabilizing Chk1. Nucleic Acids Res. 2017;45:4532-4549 pubmed 出版商
  122. Li G, Ji T, Chen J, Fu Y, Hou L, Feng Y, et al. CRL4DCAF8 Ubiquitin Ligase Targets Histone H3K79 and Promotes H3K9 Methylation in the Liver. Cell Rep. 2017;18:1499-1511 pubmed 出版商
  123. Zhao D, Lu X, Wang G, Lan Z, Liao W, Li J, et al. Synthetic essentiality of chromatin remodelling factor CHD1 in PTEN-deficient cancer. Nature. 2017;542:484-488 pubmed 出版商
  124. Tormos A, Rius Pérez S, Jorques M, Rada P, Ramírez L, Valverde A, et al. p38α regulates actin cytoskeleton and cytokinesis in hepatocytes during development and aging. PLoS ONE. 2017;12:e0171738 pubmed 出版商
  125. Wu N, Jia D, Bates B, Basom R, Eberhart C, MacPherson D. A mouse model of MYCN-driven retinoblastoma reveals MYCN-independent tumor reemergence. J Clin Invest. 2017;127:888-898 pubmed 出版商
  126. Zaqout S, Bessa P, Kramer N, Stoltenburg Didinger G, Kaindl A. CDK5RAP2 Is Required to Maintain the Germ Cell Pool during Embryonic Development. Stem Cell Reports. 2017;8:198-204 pubmed 出版商
  127. Yamauchi M, Shibata A, Suzuki K, Suzuki M, Niimi A, Kondo H, et al. Regulation of pairing between broken DNA-containing chromatin regions by Ku80, DNA-PKcs, ATM, and 53BP1. Sci Rep. 2017;7:41812 pubmed 出版商
  128. Wang Y, Wang Y, Ma L, Nie M, Ju J, Liu M, et al. Heterochromatin Protein 1γ Is a Novel Epigenetic Repressor of Human Embryonic ϵ-Globin Gene Expression. J Biol Chem. 2017;292:4811-4817 pubmed 出版商
  129. Seo W, Muroi S, Akiyama K, Taniuchi I. Distinct requirement of Runx complexes for TCRβ enhancer activation at distinct developmental stages. Sci Rep. 2017;7:41351 pubmed 出版商
  130. Mondello P, Derenzini E, Asgari Z, Philip J, Brea E, SESHAN V, et al. Dual inhibition of histone deacetylases and phosphoinositide 3-kinase enhances therapeutic activity against B cell lymphoma. Oncotarget. 2017;8:14017-14028 pubmed 出版商
  131. Gonzalez M, Martin E, Anwar T, Arellano Garcia C, Medhora N, Lama A, et al. Mesenchymal Stem Cell-Induced DDR2 Mediates Stromal-Breast Cancer Interactions and Metastasis Growth. Cell Rep. 2017;18:1215-1228 pubmed 出版商
  132. He Y, Selvaraju S, Curtin M, Jakob C, Zhu H, Comess K, et al. The EED protein-protein interaction inhibitor A-395 inactivates the PRC2 complex. Nat Chem Biol. 2017;13:389-395 pubmed 出版商
  133. Young C, Hillyer C, Hokamp K, Fitzpatrick D, Konstantinov N, Welty J, et al. Distinct histone methylation and transcription profiles are established during the development of cellular quiescence in yeast. BMC Genomics. 2017;18:107 pubmed 出版商
  134. Lin Y, Lin Y, Huang M, Kuo P, Wu C, Lee M, et al. Tumor necrosis factor-alpha inhibitors suppress CCL2 chemokine in monocytes via epigenetic modification. Mol Immunol. 2017;83:82-91 pubmed 出版商
  135. Qi Y, Zhang X, Renier N, Wu Z, Atkin T, Sun Z, et al. Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat Biotechnol. 2017;35:154-163 pubmed 出版商
  136. Tagal V, Wei S, Zhang W, Brekken R, Posner B, Peyton M, et al. SMARCA4-inactivating mutations increase sensitivity to Aurora kinase A inhibitor VX-680 in non-small cell lung cancers. Nat Commun. 2017;8:14098 pubmed 出版商
  137. Asensio Juan E, Fueyo R, PAPPA S, Iacobucci S, Badosa C, Lois S, et al. The histone demethylase PHF8 is a molecular safeguard of the IFNγ response. Nucleic Acids Res. 2017;45:3800-3811 pubmed 出版商
  138. Nakazawa H, Chang K, Shinozaki S, Yasukawa T, Ishimaru K, Yasuhara S, et al. iNOS as a Driver of Inflammation and Apoptosis in Mouse Skeletal Muscle after Burn Injury: Possible Involvement of Sirt1 S-Nitrosylation-Mediated Acetylation of p65 NF-κB and p53. PLoS ONE. 2017;12:e0170391 pubmed 出版商
  139. Kechele D, Blue R, Zwarycz B, Espenschied S, Mah A, Siegel M, et al. Orphan Gpr182 suppresses ERK-mediated intestinal proliferation during regeneration and adenoma formation. J Clin Invest. 2017;127:593-607 pubmed 出版商
  140. Nagaraj R, Sharpley M, Chi F, Braas D, Zhou Y, Kim R, et al. Nuclear Localization of Mitochondrial TCA Cycle Enzymes as a Critical Step in Mammalian Zygotic Genome Activation. Cell. 2017;168:210-223.e11 pubmed 出版商
  141. Choi Y, Lin C, Risso D, Chen S, Kim T, Tan M, et al. Deficiency of microRNA miR-34a expands cell fate potential in pluripotent stem cells. Science. 2017;355: pubmed 出版商
  142. Safina A, Cheney P, Pal M, Brodsky L, Ivanov A, Kirsanov K, et al. FACT is a sensor of DNA torsional stress in eukaryotic cells. Nucleic Acids Res. 2017;45:1925-1945 pubmed 出版商
  143. Wu H, Gordon J, Whitfield T, Tai P, Van Wijnen A, Stein J, et al. Chromatin dynamics regulate mesenchymal stem cell lineage specification and differentiation to osteogenesis. Biochim Biophys Acta Gene Regul Mech. 2017;1860:438-449 pubmed 出版商
  144. Li C, Chang L, Chen Z, Liu Z, Wang Y, Ye Q. The role of lncRNA MALAT1 in the regulation of hepatocyte proliferation during liver regeneration. Int J Mol Med. 2017;39:347-356 pubmed 出版商
  145. Yamauchi T, Nishiyama M, Moroishi T, Kawamura A, Nakayama K. FBXL5 Inactivation in Mouse Brain Induces Aberrant Proliferation of Neural Stem Progenitor Cells. Mol Cell Biol. 2017;37: pubmed 出版商
  146. Fitter S, Matthews M, Martin S, Xie J, Ooi S, Walkley C, et al. mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation. Mol Cell Biol. 2017;37: pubmed 出版商
  147. Papillon Cavanagh S, Lu C, Gayden T, Mikael L, Bechet D, Karamboulas C, et al. Impaired H3K36 methylation defines a subset of head and neck squamous cell carcinomas. Nat Genet. 2017;49:180-185 pubmed 出版商
  148. Fantini D, Huang S, Asara J, Bagchi S, Raychaudhuri P. Chromatin association of XRCC5/6 in the absence of DNA damage depends on the XPE gene product DDB2. Mol Biol Cell. 2017;28:192-200 pubmed 出版商
  149. Sierra Potchanant E, Cerabona D, Sater Z, He Y, Sun Z, Gehlhausen J, et al. INPP5E Preserves Genomic Stability through Regulation of Mitosis. Mol Cell Biol. 2017;37: pubmed 出版商
  150. Mathew R, Tatarakis A, Rudenko A, Johnson Venkatesh E, Yang Y, Murphy E, et al. A microRNA negative feedback loop downregulates vesicle transport and inhibits fear memory. elife. 2016;5: pubmed 出版商
  151. Vakana E, Pratt S, Blosser W, Dowless M, Simpson N, Yuan X, et al. LY3009120, a panRAF inhibitor, has significant anti-tumor activity in BRAF and KRAS mutant preclinical models of colorectal cancer. Oncotarget. 2017;8:9251-9266 pubmed 出版商
  152. Archacki R, Yatusevich R, Buszewicz D, Krzyczmonik K, Patryn J, Iwanicka Nowicka R, et al. Arabidopsis SWI/SNF chromatin remodeling complex binds both promoters and terminators to regulate gene expression. Nucleic Acids Res. 2017;45:3116-3129 pubmed 出版商
  153. Jablonska B, Gierdalski M, Chew L, Hawley T, Catron M, Lichauco A, et al. Sirt1 regulates glial progenitor proliferation and regeneration in white matter after neonatal brain injury. Nat Commun. 2016;7:13866 pubmed 出版商
  154. Ang Y, Rivas R, Ribeiro A, Srivas R, Rivera J, Stone N, et al. Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis. Cell. 2016;167:1734-1749.e22 pubmed 出版商
  155. Assadi G, Vesterlund L, Bonfiglio F, Mazzurana L, Cordeddu L, Schepis D, et al. Functional Analyses of the Crohn's Disease Risk Gene LACC1. PLoS ONE. 2016;11:e0168276 pubmed 出版商
  156. Göllner S, Oellerich T, Agrawal Singh S, Schenk T, Klein H, Rohde C, et al. Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia. Nat Med. 2017;23:69-78 pubmed 出版商
  157. Keller M, Paul P, Rabaglia M, Stapleton D, Schueler K, Broman A, et al. The Transcription Factor Nfatc2 Regulates β-Cell Proliferation and Genes Associated with Type 2 Diabetes in Mouse and Human Islets. PLoS Genet. 2016;12:e1006466 pubmed 出版商
  158. Neeli I, Radic M. Current Challenges and Limitations in Antibody-Based Detection of Citrullinated Histones. Front Immunol. 2016;7:528 pubmed
  159. Pan G, Ameur A, Enroth S, Bysani M, Nord H, Cavalli M, et al. PATZ1 down-regulates FADS1 by binding to rs174557 and is opposed by SP1/SREBP1c. Nucleic Acids Res. 2017;45:2408-2422 pubmed 出版商
  160. Endorf E, Qing H, Aono J, Terami N, Doyon G, Hyzny E, et al. Telomerase Reverse Transcriptase Deficiency Prevents Neointima Formation Through Chromatin Silencing of E2F1 Target Genes. Arterioscler Thromb Vasc Biol. 2017;37:301-311 pubmed 出版商
  161. Zhu P, Wang Y, Wu J, Huang G, Liu B, Ye B, et al. LncBRM initiates YAP1 signalling activation to drive self-renewal of liver cancer stem cells. Nat Commun. 2016;7:13608 pubmed 出版商
  162. Svoboda L, Bailey N, Van Noord R, Krook M, Harris A, Cramer C, et al. Tumorigenicity of Ewing sarcoma is critically dependent on the trithorax proteins MLL1 and menin. Oncotarget. 2017;8:458-471 pubmed 出版商
  163. Su F, Myers V, Knezevic T, Wang J, Gao E, Madesh M, et al. Bcl-2-associated athanogene 3 protects the heart from ischemia/reperfusion injury. JCI Insight. 2016;1:e90931 pubmed 出版商
  164. Bosch P, Fuller L, Sleeth C, Weiner J. Akirin2 is essential for the formation of the cerebral cortex. Neural Dev. 2016;11:21 pubmed
  165. Kim W, Khan S, Gvozdenovic Jeremic J, Kim Y, Dahlman J, Kim H, et al. Hippo signaling interactions with Wnt/?-catenin and Notch signaling repress liver tumorigenesis. J Clin Invest. 2017;127:137-152 pubmed 出版商
  166. Sengupta S, Rath U, Yao C, Zavortink M, Wang C, Girton J, et al. Digitor/dASCIZ Has Multiple Roles in Drosophila Development. PLoS ONE. 2016;11:e0166829 pubmed 出版商
  167. Cao L, Riascos Bernal D, Chinnasamy P, Dunaway C, Hou R, Pujato M, et al. Control of mitochondrial function and cell growth by the atypical cadherin Fat1. Nature. 2016;539:575-578 pubmed 出版商
  168. Lepage D, Bélanger É, Jones C, Tremblay S, Allaire J, Bruneau J, et al. Gata4 is critical to maintain gut barrier function and mucosal integrity following epithelial injury. Sci Rep. 2016;6:36776 pubmed 出版商
  169. Busby M, Xue C, Li C, Farjoun Y, Gienger E, Yofe I, et al. Systematic comparison of monoclonal versus polyclonal antibodies for mapping histone modifications by ChIP-seq. Epigenetics Chromatin. 2016;9:49 pubmed
  170. Watanabe S, Ilieva H, Tamada H, Nomura H, Komine O, Endo F, et al. Mitochondria-associated membrane collapse is a common pathomechanism in SIGMAR1- and SOD1-linked ALS. EMBO Mol Med. 2016;8:1421-1437 pubmed 出版商
  171. Alfano L, Costa C, Caporaso A, Antonini D, Giordano A, Pentimalli F. HUR protects NONO from degradation by mir320, which is induced by p53 upon UV irradiation. Oncotarget. 2016;7:78127-78139 pubmed 出版商
  172. Chakraborty D, Cui W, Rosario G, Scott R, Dhakal P, Renaud S, et al. HIF-KDM3A-MMP12 regulatory circuit ensures trophoblast plasticity and placental adaptations to hypoxia. Proc Natl Acad Sci U S A. 2016;113:E7212-E7221 pubmed
  173. Natisvili T, Yandim C, Silva R, Emanuelli G, Krueger F, Nageshwaran S, et al. Transcriptional Activation of Pericentromeric Satellite Repeats and Disruption of Centromeric Clustering upon Proteasome Inhibition. PLoS ONE. 2016;11:e0165873 pubmed 出版商
  174. Pazienza V, Panebianco C, Rappa F, Memoli D, Borghesan M, Cannito S, et al. Histone macroH2A1.2 promotes metabolic health and leanness by inhibiting adipogenesis. Epigenetics Chromatin. 2016;9:45 pubmed
  175. Junge H, Yung A, Goodrich L, Chen Z. Netrin1/DCC signaling promotes neuronal migration in the dorsal spinal cord. Neural Dev. 2016;11:19 pubmed
  176. Dey N, Ramesh P, Chugh M, Mandal S, Mandal L. Dpp dependent Hematopoietic stem cells give rise to Hh dependent blood progenitors in larval lymph gland of Drosophila. elife. 2016;5: pubmed 出版商
  177. Desfossés Baron K, Hammond Martel I, Simoneau A, Sellam A, Roberts S, Wurtele H. Valproate inhibits MAP kinase signalling and cell cycle progression in S. cerevisiae. Sci Rep. 2016;6:36013 pubmed 出版商
  178. Schlierf A, Altmann E, Quancard J, Jefferson A, Assenberg R, Renatus M, et al. Targeted inhibition of the COP9 signalosome for treatment of cancer. Nat Commun. 2016;7:13166 pubmed 出版商
  179. Ren K, Zhang W, Chen X, Ma Y, Dai Y, Fan Y, et al. An Epigenetic Compound Library Screen Identifies BET Inhibitors That Promote HSV-1 and -2 Replication by Bridging P-TEFb to Viral Gene Promoters through BRD4. PLoS Pathog. 2016;12:e1005950 pubmed 出版商
  180. Li S, Hu H, He Z, Liang D, Sun R, Lan K. Fine-Tuning of the Kaposi's Sarcoma-Associated Herpesvirus Life Cycle in Neighboring Cells through the RTA-JAG1-Notch Pathway. PLoS Pathog. 2016;12:e1005900 pubmed 出版商
  181. Takai K, Le A, Weaver V, Werb Z. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget. 2016;7:82889-82901 pubmed 出版商
  182. Huang T, Alvarez A, Pangeni R, Horbinski C, Lu S, Kim S, et al. A regulatory circuit of miR-125b/miR-20b and Wnt signalling controls glioblastoma phenotypes through FZD6-modulated pathways. Nat Commun. 2016;7:12885 pubmed 出版商
  183. Bridges K, Chen X, Liu H, Rock C, Buchholz T, Shumway S, et al. MK-8776, a novel chk1 kinase inhibitor, radiosensitizes p53-defective human tumor cells. Oncotarget. 2016;7:71660-71672 pubmed 出版商
  184. Wu R, Wang Z, Zhang H, Gan H, Zhang Z. H3K9me3 demethylase Kdm4d facilitates the formation of pre-initiative complex and regulates DNA replication. Nucleic Acids Res. 2017;45:169-180 pubmed 出版商
  185. Cortes D, Robledo Arratia Y, Hernández Martinez R, Escobedo Ávila I, Bargas J, Velasco I. Transgenic GDNF Positively Influences Proliferation, Differentiation, Maturation and Survival of Motor Neurons Produced from Mouse Embryonic Stem Cells. Front Cell Neurosci. 2016;10:217 pubmed 出版商
  186. Ow J, Palanichamy Kala M, Rao V, Choi M, Bharathy N, Taneja R. G9a inhibits MEF2C activity to control sarcomere assembly. Sci Rep. 2016;6:34163 pubmed 出版商
  187. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  188. Jayapal S, Ang H, Wang C, Bisteau X, Caldez M, Xuan G, et al. Cyclin A2 regulates erythrocyte morphology and numbers. Cell Cycle. 2016;15:3070-3081 pubmed
  189. Patrick N, Griggs C, Icenogle A, Gilpatrick M, Kadiyala V, Jaime Frias R, et al. Class I lysine deacetylases promote glucocorticoid-induced transcriptional repression through functional interaction with LSD1. J Steroid Biochem Mol Biol. 2017;167:1-13 pubmed 出版商
  190. Park Y, Nnamani M, Maziarz J, Wagner G. Cis-Regulatory Evolution of Forkhead Box O1 (FOXO1), a Terminal Selector Gene for Decidual Stromal Cell Identity. Mol Biol Evol. 2016;33:3161-3169 pubmed
  191. Matsukawa K, Hashimoto T, Matsumoto T, Ihara R, Chihara T, Miura M, et al. Familial Amyotrophic Lateral Sclerosis-linked Mutations in Profilin 1 Exacerbate TDP-43-induced Degeneration in the Retina of Drosophila melanogaster through an Increase in the Cytoplasmic Localization of TDP-43. J Biol Chem. 2016;291:23464-23476 pubmed
  192. Diril M, Bisteau X, Kitagawa M, Caldez M, Wee S, Gunaratne J, et al. Loss of the Greatwall Kinase Weakens the Spindle Assembly Checkpoint. PLoS Genet. 2016;12:e1006310 pubmed 出版商
  193. Wang D, Kon N, Lasso G, Jiang L, Leng W, Zhu W, et al. Acetylation-regulated interaction between p53 and SET reveals a widespread regulatory mode. Nature. 2016;538:118-122 pubmed 出版商
  194. Sun J, Zhao Y, McGreal R, Cohen Tayar Y, Rockowitz S, Wilczek C, et al. Pax6 associates with H3K4-specific histone methyltransferases Mll1, Mll2, and Set1a and regulates H3K4 methylation at promoters and enhancers. Epigenetics Chromatin. 2016;9:37 pubmed 出版商
  195. García Carpizo V, Sarmentero J, Han B, Grana O, Ruiz Llorente S, Pisano D, et al. NSD2 contributes to oncogenic RAS-driven transcription in lung cancer cells through long-range epigenetic activation. Sci Rep. 2016;6:32952 pubmed 出版商
  196. Wu J, Hu G, Lu Y, Zheng J, Chen J, Wang X, et al. Palmitic acid aggravates inflammation of pancreatic acinar cells by enhancing unfolded protein response induced CCAAT-enhancer-binding protein ?-CCAAT-enhancer-binding protein ? activation. Int J Biochem Cell Biol. 2016;79:181-193 pubmed 出版商
  197. Mair B, Konopka T, Kerzendorfer C, Sleiman K, Salic S, Serra V, et al. Gain- and Loss-of-Function Mutations in the Breast Cancer Gene GATA3 Result in Differential Drug Sensitivity. PLoS Genet. 2016;12:e1006279 pubmed 出版商
  198. Duggan S, Behan F, Kirca M, Zaheer A, McGarrigle S, Reynolds J, et al. The characterization of an intestine-like genomic signature maintained during Barrett's-associated adenocarcinogenesis reveals an NR5A2-mediated promotion of cancer cell survival. Sci Rep. 2016;6:32638 pubmed 出版商
  199. Bassi D, Zhang J, Renner C, Klein Szanto A. Targeting proprotein convertases in furin-rich lung cancer cells results in decreased in vitro and in vivo growth. Mol Carcinog. 2017;56:1182-1188 pubmed 出版商
  200. Uusküla Reimand L, Hou H, Samavarchi Tehrani P, Rudan M, Liang M, Medina Rivera A, et al. Topoisomerase II beta interacts with cohesin and CTCF at topological domain borders. Genome Biol. 2016;17:182 pubmed 出版商
  201. Ueda T, Nakata Y, Nagamachi A, Yamasaki N, Kanai A, Sera Y, et al. Propagation of trimethylated H3K27 regulated by polycomb protein EED is required for embryogenesis, hematopoietic maintenance, and tumor suppression. Proc Natl Acad Sci U S A. 2016;113:10370-5 pubmed 出版商
  202. Jones R, Robinson T, Liu J, Shrestha M, Voisin V, Ju Y, et al. RB1 deficiency in triple-negative breast cancer induces mitochondrial protein translation. J Clin Invest. 2016;126:3739-3757 pubmed 出版商
  203. Hong X, Liu W, Song R, Shah J, Feng X, Tsang C, et al. SOX9 is targeted for proteasomal degradation by the E3 ligase FBW7 in response to DNA damage. Nucleic Acids Res. 2016;44:8855-8869 pubmed
  204. Guturi K, Bohgaki M, Bohgaki T, Srikumar T, Ng D, Kumareswaran R, et al. RNF168 and USP10 regulate topoisomerase IIα function via opposing effects on its ubiquitylation. Nat Commun. 2016;7:12638 pubmed 出版商
  205. Gallardo Montejano V, Saxena G, Kusminski C, Yang C, McAfee J, Hahner L, et al. Nuclear Perilipin 5 integrates lipid droplet lipolysis with PGC-1?/SIRT1-dependent transcriptional regulation of mitochondrial function. Nat Commun. 2016;7:12723 pubmed 出版商
  206. Deng X, Shao G, Zhang H, Li C, Zhang D, Cheng L, et al. Protein arginine methyltransferase 5 functions as an epigenetic activator of the androgen receptor to promote prostate cancer cell growth. Oncogene. 2017;36:1223-1231 pubmed 出版商
  207. Olsen J, Wong L, Deimling S, Miles A, Guo H, Li Y, et al. G9a and ZNF644 Physically Associate to Suppress Progenitor Gene Expression during Neurogenesis. Stem Cell Reports. 2016;7:454-470 pubmed 出版商
  208. Ahn J, Rechsteiner A, Strome S, Kelly W. A Conserved Nuclear Cyclophilin Is Required for Both RNA Polymerase II Elongation and Co-transcriptional Splicing in Caenorhabditis elegans. PLoS Genet. 2016;12:e1006227 pubmed 出版商
  209. Li L, Liu H, Wang C, Liu X, Hu F, Xie N, et al. Overexpression of ?-Catenin Induces Cisplatin Resistance in Oral Squamous Cell Carcinoma. Biomed Res Int. 2016;2016:5378567 pubmed 出版商
  210. Krook M, Hawkins A, Patel R, Lucas D, Van Noord R, Chugh R, et al. A bivalent promoter contributes to stress-induced plasticity of CXCR4 in Ewing sarcoma. Oncotarget. 2016;7:61775-61788 pubmed 出版商
  211. Moreno A, Carrington J, Albergante L, Al Mamun M, Haagensen E, Komseli E, et al. Unreplicated DNA remaining from unperturbed S phases passes through mitosis for resolution in daughter cells. Proc Natl Acad Sci U S A. 2016;113:E5757-64 pubmed 出版商
  212. Khanom R, Nguyen C, Kayamori K, Zhao X, Morita K, Miki Y, et al. Keratin 17 Is Induced in Oral Cancer and Facilitates Tumor Growth. PLoS ONE. 2016;11:e0161163 pubmed 出版商
  213. Ramakrishnan S, Ku S, Ciamporcero E, Miles K, Attwood K, Chintala S, et al. HDAC 1 and 6 modulate cell invasion and migration in clear cell renal cell carcinoma. BMC Cancer. 2016;16:617 pubmed 出版商
  214. Platt J, Salama R, Smythies J, Choudhry H, Davies J, Hughes J, et al. Capture-C reveals preformed chromatin interactions between HIF-binding sites and distant promoters. EMBO Rep. 2016;17:1410-1421 pubmed
  215. Zhou A, Lin K, Zhang S, Chen Y, Zhang N, Xue J, et al. Nuclear GSK3β promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitylation by USP22. Nat Cell Biol. 2016;18:954-966 pubmed 出版商
  216. Riascos Bernal D, Chinnasamy P, Cao L, Dunaway C, Valenta T, Basler K, et al. β-Catenin C-terminal signals suppress p53 and are essential for artery formation. Nat Commun. 2016;7:12389 pubmed 出版商
  217. Kaukonen R, Mai A, Georgiadou M, Saari M, De Franceschi N, Betz T, et al. Normal stroma suppresses cancer cell proliferation via mechanosensitive regulation of JMJD1a-mediated transcription. Nat Commun. 2016;7:12237 pubmed 出版商
  218. Tanaka G, Inoue K, Shimizu T, Akimoto K, Kubota K. Dual pharmacological inhibition of glutathione and thioredoxin systems synergizes to kill colorectal carcinoma stem cells. Cancer Med. 2016;5:2544-57 pubmed 出版商
  219. Dhamad A, Zhou Z, Zhou J, Du Y. Systematic Proteomic Identification of the Heat Shock Proteins (Hsp) that Interact with Estrogen Receptor Alpha (ER?) and Biochemical Characterization of the ER?-Hsp70 Interaction. PLoS ONE. 2016;11:e0160312 pubmed 出版商
  220. Sun H, Liang L, Li Y, Feng C, Li L, Zhang Y, et al. Lysine-specific histone demethylase 1 inhibition promotes reprogramming by facilitating the expression of exogenous transcriptional factors and metabolic switch. Sci Rep. 2016;6:30903 pubmed 出版商
  221. Sengupta D, Deb M, Rath S, Kar S, Parbin S, Pradhan N, et al. DNA methylation and not H3K4 trimethylation dictates the expression status of miR-152 gene which inhibits migration of breast cancer cells via DNMT1/CDH1 loop. Exp Cell Res. 2016;346:176-87 pubmed 出版商
  222. Liu H, Li W, Yu X, Gao F, Duan Z, Ma X, et al. EZH2-mediated Puma gene repression regulates non-small cell lung cancer cell proliferation and cisplatin-induced apoptosis. Oncotarget. 2016;7:56338-56354 pubmed 出版商
  223. Wang Y, Sun H, Wang J, Wang H, Meng L, Xu C, et al. DNA-PK-mediated phosphorylation of EZH2 regulates the DNA damage-induced apoptosis to maintain T-cell genomic integrity. Cell Death Dis. 2016;7:e2316 pubmed 出版商
  224. Zhang X, Wu J, Wang J, Shen T, Li H, Lu J, et al. Integrative epigenomic analysis reveals unique epigenetic signatures involved in unipotency of mouse female germline stem cells. Genome Biol. 2016;17:162 pubmed 出版商
  225. Wang C, Yin M, Wu W, Dong L, Wang S, Lu Y, et al. Taiman acts as a coactivator of Yorkie in the Hippo pathway to promote tissue growth and intestinal regeneration. Cell Discov. 2016;2:16006 pubmed 出版商
  226. Kamelgarn M, Chen J, Kuang L, Arenas A, Zhai J, Zhu H, et al. Proteomic analysis of FUS interacting proteins provides insights into FUS function and its role in ALS. Biochim Biophys Acta. 2016;1862:2004-14 pubmed 出版商
  227. Cao J, Wu L, Zhang S, Lu M, Cheung W, Cai W, et al. An easy and efficient inducible CRISPR/Cas9 platform with improved specificity for multiple gene targeting. Nucleic Acids Res. 2016;44:e149 pubmed
  228. Merry C, McMahon S, Forrest M, Bartels C, Saiakhova A, Bartel C, et al. Transcriptome-wide identification of mRNAs and lincRNAs associated with trastuzumab-resistance in HER2-positive breast cancer. Oncotarget. 2016;7:53230-53244 pubmed 出版商
  229. Liu Y, Wang S, Long Y, Chen S, Li Y, Zhang J. KRASG12 mutant induces the release of the WSTF/NRG3 complex, and contributes to an oncogenic paracrine signaling pathway. Oncotarget. 2016;7:53153-53164 pubmed 出版商
  230. Grinshtein N, Rioseco C, Marcellus R, UEHLING D, Aman A, Lun X, et al. Small molecule epigenetic screen identifies novel EZH2 and HDAC inhibitors that target glioblastoma brain tumor-initiating cells. Oncotarget. 2016;7:59360-59376 pubmed 出版商
  231. Kang J, Park S, Jeong S, Han M, Lee C, Lee K, et al. Epigenetic regulation of Kcna3-encoding Kv1.3 potassium channel by cereblon contributes to regulation of CD4+ T-cell activation. Proc Natl Acad Sci U S A. 2016;113:8771-6 pubmed 出版商
  232. Bieberstein N, Kozáková E, Huranová M, Thakur P, Krchňáková Z, Krausova M, et al. TALE-directed local modulation of H3K9 methylation shapes exon recognition. Sci Rep. 2016;6:29961 pubmed 出版商
  233. Gygli P, Chang J, Gokozan H, Catacutan F, Schmidt T, Kaya B, et al. Cyclin A2 promotes DNA repair in the brain during both development and aging. Aging (Albany NY). 2016;8:1540-70 pubmed 出版商
  234. Naito M, Mori M, Inagawa M, Miyata K, Hashimoto N, Tanaka S, et al. Dnmt3a Regulates Proliferation of Muscle Satellite Cells via p57Kip2. PLoS Genet. 2016;12:e1006167 pubmed 出版商
  235. Shi B, Zhang C, Tian C, Wang J, Wang Q, Xu T, et al. Two-Step Regulation of a Meristematic Cell Population Acting in Shoot Branching in Arabidopsis. PLoS Genet. 2016;12:e1006168 pubmed 出版商
  236. Kawano S, Grassian A, Tsuda M, Knutson S, Warholic N, Kuznetsov G, et al. Preclinical Evidence of Anti-Tumor Activity Induced by EZH2 Inhibition in Human Models of Synovial Sarcoma. PLoS ONE. 2016;11:e0158888 pubmed 出版商
  237. Alver T, Lavelle T, Longva A, Øy G, Hovig E, Bøe S. MITF depletion elevates expression levels of ERBB3 receptor and its cognate ligand NRG1-beta in melanoma. Oncotarget. 2016;7:55128-55140 pubmed 出版商
  238. Favaedi R, Shahhoseini M, Pakzad M, Mollamohammadi S, Baharvand H. Comparative epigenetic evaluation of human embryonic stem and induced pluripotent cells. Int J Dev Biol. 2016;60:103-10 pubmed 出版商
  239. Uribe M, Haro C, Ventero M, Campello L, Cruces J, Martín Nieto J. Expression pattern in retinal photoreceptors of POMGnT1, a protein involved in muscle-eye-brain disease. Mol Vis. 2016;22:658-73 pubmed
  240. Rando G, Tan C, Khaled N, Montagner A, Leuenberger N, Bertrand Michel J, et al. Glucocorticoid receptor-PPAR? axis in fetal mouse liver prepares neonates for milk lipid catabolism. elife. 2016;5: pubmed 出版商
  241. Heckler M, Zeleke T, Divekar S, Fernandez A, Tiek D, Woodrick J, et al. Antimitotic activity of DY131 and the estrogen-related receptor beta 2 (ERRβ2) splice variant in breast cancer. Oncotarget. 2016;7:47201-47220 pubmed 出版商
  242. Gao X, Lin S, Ren F, Li J, Chen J, Yao C, et al. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat Commun. 2016;7:11960 pubmed 出版商
  243. Dai L, Cui X, Zhang X, Cheng L, Liu Y, Yang Y, et al. SARI inhibits angiogenesis and tumour growth of human colon cancer through directly targeting ceruloplasmin. Nat Commun. 2016;7:11996 pubmed 出版商
  244. Li R, Dong Q, Yuan X, Zeng X, Gao Y, Chiao C, et al. Misregulation of Alternative Splicing in a Mouse Model of Rett Syndrome. PLoS Genet. 2016;12:e1006129 pubmed 出版商
  245. Badal S, Wang Y, Long J, Corcoran D, CHANG B, Truong L, et al. miR-93 regulates Msk2-mediated chromatin remodelling in diabetic nephropathy. Nat Commun. 2016;7:12076 pubmed 出版商
  246. Itahana Y, Zhang J, Göke J, Vardy L, Han R, Iwamoto K, et al. Histone modifications and p53 binding poise the p21 promoter for activation in human embryonic stem cells. Sci Rep. 2016;6:28112 pubmed 出版商
  247. Schmitt D, Funk N, Blum R, Asan E, Andersen L, Rülicke T, et al. Initial characterization of a Syap1 knock-out mouse and distribution of Syap1 in mouse brain and cultured motoneurons. Histochem Cell Biol. 2016;146:489-512 pubmed 出版商
  248. Gwak J, Shin J, Lee K, Hong S, Oh S, Goh S, et al. SFMBT2 (Scm-like with four mbt domains 2) negatively regulates cell migration and invasion in prostate cancer cells. Oncotarget. 2016;7:48250-48264 pubmed 出版商
  249. Dutta A, Le Magnen C, Mitrofanova A, Ouyang X, Califano A, Abate Shen C. Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation. Science. 2016;352:1576-80 pubmed 出版商
  250. Frau Méndez M, Fernández Vega I, Ansoleaga B, Blanco Tech R, Carmona Tech M, Antonio Del Río J, et al. Fatal familial insomnia: mitochondrial and protein synthesis machinery decline in the mediodorsal thalamus. Brain Pathol. 2017;27:95-106 pubmed 出版商
  251. Chung H, Park J, Lee N, Kim H, Jang C. Phosphorylation of Astrin Regulates Its Kinetochore Function. J Biol Chem. 2016;291:17579-92 pubmed 出版商
  252. Ono H, Basson M, Ito H. P300 inhibition enhances gemcitabine-induced apoptosis of pancreatic cancer. Oncotarget. 2016;7:51301-51310 pubmed 出版商
  253. Engel K, Rudelius M, Slawska J, Jacobs L, Ahangarian Abhari B, Altmann B, et al. USP9X stabilizes XIAP to regulate mitotic cell death and chemoresistance in aggressive B-cell lymphoma. EMBO Mol Med. 2016;8:851-62 pubmed 出版商
  254. Bott L, Salomons F, Maric D, Liu Y, Merry D, Fischbeck K, et al. The polyglutamine-expanded androgen receptor responsible for spinal and bulbar muscular atrophy inhibits the APC/C(Cdh1) ubiquitin ligase complex. Sci Rep. 2016;6:27703 pubmed 出版商
  255. Shin H, Kim H, Oh S, Lee J, Kee M, Ko H, et al. AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy. Nature. 2016;534:553-7 pubmed 出版商
  256. Deaton A, Gómez Rodríguez M, Mieczkowski J, Tolstorukov M, Kundu S, Sadreyev R, et al. Enhancer regions show high histone H3.3 turnover that changes during differentiation. elife. 2016;5: pubmed 出版商
  257. Rowald K, Mantovan M, Passos J, Buccitelli C, Mardin B, Korbel J, et al. Negative Selection and Chromosome Instability Induced by Mad2 Overexpression Delay Breast Cancer but Facilitate Oncogene-Independent Outgrowth. Cell Rep. 2016;15:2679-91 pubmed 出版商
  258. Groth M, Moissiard G, Wirtz M, Wang H, Garcia Salinas C, Ramos Parra P, et al. MTHFD1 controls DNA methylation in Arabidopsis. Nat Commun. 2016;7:11640 pubmed 出版商
  259. Zhang J, Jiang Z, Liu X, Meng A. Eph/ephrin signaling maintains the boundary of dorsal forerunner cell cluster during morphogenesis of the zebrafish embryonic left-right organizer. Development. 2016;143:2603-15 pubmed 出版商
  260. Bergstralh D, Lovegrove H, Kujawiak I, Dawney N, Zhu J, Cooper S, et al. Pins is not required for spindle orientation in the Drosophila wing disc. Development. 2016;143:2573-81 pubmed 出版商
  261. Hey F, Giblett S, Forrest S, Herbert C, Pritchard C. Phosphorylations of Serines 21/9 in Glycogen Synthase Kinase 3α/β Are Not Required for Cell Lineage Commitment or WNT Signaling in the Normal Mouse Intestine. PLoS ONE. 2016;11:e0156877 pubmed 出版商
  262. Park W, Kim H, Kang D, Ryu J, Choi K, Lee G, et al. Comparative expression patterns and diagnostic efficacies of SR splicing factors and HNRNPA1 in gastric and colorectal cancer. BMC Cancer. 2016;16:358 pubmed 出版商
  263. Lu Y, Liu Y, Liao S, Tu W, Shen Y, Yan Y, et al. Epigenetic modifications promote the expression of the orphan nuclear receptor NR0B1 in human lung adenocarcinoma cells. Oncotarget. 2016;7:43162-43176 pubmed 出版商
  264. Tu S, Narendra V, Yamaji M, Vidal S, Rojas L, Wang X, et al. Co-repressor CBFA2T2 regulates pluripotency and germline development. Nature. 2016;534:387-90 pubmed 出版商
  265. Penterling C, Drexler G, Böhland C, Stamp R, Wilke C, Braselmann H, et al. Depletion of Histone Demethylase Jarid1A Resulting in Histone Hyperacetylation and Radiation Sensitivity Does Not Affect DNA Double-Strand Break Repair. PLoS ONE. 2016;11:e0156599 pubmed 出版商
  266. Guo Q, Li X, Han H, Li C, Liu S, Gao W, et al. Histone Lysine Methylation in TGF-?1 Mediated p21 Gene Expression in Rat Mesangial Cells. Biomed Res Int. 2016;2016:6927234 pubmed 出版商
  267. Kirita Y, Kami D, Ishida R, Adachi T, Tamagaki K, Matoba S, et al. Preserved Nephrogenesis Following Partial Nephrectomy in Early Neonates. Sci Rep. 2016;6:26792 pubmed 出版商
  268. Zhu P, Wang Y, Huang G, Ye B, Liu B, Wu J, et al. lnc-?-Catm elicits EZH2-dependent ?-catenin stabilization and sustains liver CSC self-renewal. Nat Struct Mol Biol. 2016;23:631-9 pubmed 出版商
  269. Brosh R, Hrynyk I, Shen J, Waghray A, Zheng N, Lemischka I. A dual molecular analogue tuner for dissecting protein function in mammalian cells. Nat Commun. 2016;7:11742 pubmed 出版商
  270. Fang D, Gan H, Lee J, Han J, Wang Z, Riester S, et al. The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas. Science. 2016;352:1344-8 pubmed 出版商
  271. Chen X, Stauffer S, Chen Y, Dong J. Ajuba Phosphorylation by CDK1 Promotes Cell Proliferation and Tumorigenesis. J Biol Chem. 2016;291:14761-72 pubmed 出版商
  272. Leggere J, Saito Y, Darnell R, Tessier Lavigne M, Junge H, Chen Z. NOVA regulates Dcc alternative splicing during neuronal migration and axon guidance in the spinal cord. elife. 2016;5: pubmed 出版商
  273. Romanello M, Schiavone D, Frey A, Sale J. Histone H3.3 promotes IgV gene diversification by enhancing formation of AID-accessible single-stranded DNA. EMBO J. 2016;35:1452-64 pubmed 出版商
  274. Sun F, Zhang Z, Tan E, Lim Z, Li Y, Wang X, et al. Icaritin suppresses development of neuroendocrine differentiation of prostate cancer through inhibition of IL-6/STAT3 and Aurora kinase A pathways in TRAMP mice. Carcinogenesis. 2016;37:701-711 pubmed 出版商
  275. Zeng L, Cai C, Li S, Wang W, Li Y, Chen J, et al. Essential Roles of Cyclin Y-Like 1 and Cyclin Y in Dividing Wnt-Responsive Mammary Stem/Progenitor Cells. PLoS Genet. 2016;12:e1006055 pubmed 出版商
  276. Franks T, Benner C, Narvaiza I, Marchetto M, Young J, Malik H, et al. Evolution of a transcriptional regulator from a transmembrane nucleoporin. Genes Dev. 2016;30:1155-71 pubmed 出版商
  277. Wang J, Hu K, Guo J, Cheng F, Lv J, Jiang W, et al. Suppression of KRas-mutant cancer through the combined inhibition of KRAS with PLK1 and ROCK. Nat Commun. 2016;7:11363 pubmed 出版商
  278. Pal S, Graves H, Ohsawa R, Huang T, Wang P, Harmacek L, et al. The Commercial Antibodies Widely Used to Measure H3 K56 Acetylation Are Non-Specific in Human and Drosophila Cells. PLoS ONE. 2016;11:e0155409 pubmed 出版商
  279. Diamant G, Bahat A, Dikstein R. The elongation factor Spt5 facilitates transcription initiation for rapid induction of inflammatory-response genes. Nat Commun. 2016;7:11547 pubmed 出版商
  280. Lu C, Jain S, Hoelper D, Bechet D, Molden R, Ran L, et al. Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science. 2016;352:844-9 pubmed 出版商
  281. Alarcón V, Hernández S, Rubio L, Alvarez F, Flores Y, Varas Godoy M, et al. The enzymes LSD1 and Set1A cooperate with the viral protein HBx to establish an active hepatitis B viral chromatin state. Sci Rep. 2016;6:25901 pubmed 出版商
  282. Song J, Sun Y, Peluso I, Zeng Y, Yu X, Lu J, et al. A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition. Autophagy. 2016;12:1372-89 pubmed 出版商
  283. Ting W, Yang J, Kuo C, Xiao Z, Lu X, Yeh Y, et al. Environmental tobacco smoke increases autophagic effects but decreases longevity associated with Sirt-1 protein expression in young C57BL mice hearts. Oncotarget. 2016;7:39017-39025 pubmed 出版商
  284. Zhao J, Niu X, Li X, Edwards H, Wang G, Wang Y, et al. Inhibition of CHK1 enhances cell death induced by the Bcl-2-selective inhibitor ABT-199 in acute myeloid leukemia cells. Oncotarget. 2016;7:34785-99 pubmed 出版商
  285. Terakawa J, Rocchi A, Serna V, Bottinger E, Graff J, Kurita T. FGFR2IIIb-MAPK Activity Is Required for Epithelial Cell Fate Decision in the Lower Müllerian Duct. Mol Endocrinol. 2016;30:783-95 pubmed 出版商
  286. Matsushima H, Mori T, Ito F, Yamamoto T, Akiyama M, Kokabu T, et al. Anti-tumor effect of estrogen-related receptor alpha knockdown on uterine endometrial cancer. Oncotarget. 2016;7:34131-48 pubmed 出版商
  287. Shema E, Jones D, Shoresh N, Donohue L, Ram O, Bernstein B. Single-molecule decoding of combinatorially modified nucleosomes. Science. 2016;352:717-21 pubmed 出版商
  288. Carofino B, Ayanga B, Tracey L, Brooke Bisschop T, Justice M. PRDM14 promotes RAG-dependent Notch1 driver mutations in mouse T-ALL. Biol Open. 2016;5:645-53 pubmed 出版商
  289. Chaudhary S, Madhukrishna B, Adhya A, Keshari S, Mishra S. Overexpression of caspase 7 is ER? dependent to affect proliferation and cell growth in breast cancer cells by targeting p21(Cip). Oncogenesis. 2016;5:e219 pubmed 出版商
  290. Huang C, Lee C, Yang S, Chien C, Huang C, Yang R, et al. Upregulation of the growth arrest-specific-2 in recurrent colorectal cancers, and its susceptibility to chemotherapy in a model cell system. Biochim Biophys Acta. 2016;1862:1345-53 pubmed 出版商
  291. He D, Xiang J, Li B, Liu H. The dynamic behavior of Ect2 in response to DNA damage. Sci Rep. 2016;6:24504 pubmed 出版商
  292. Wang Q, Xue L, Zhang X, Bu S, Zhu X, Lai D. Autophagy protects ovarian cancer-associated fibroblasts against oxidative stress. Cell Cycle. 2016;15:1376-85 pubmed 出版商
  293. Yamashita D, Moriuchi T, Osumi T, Hirose F. Transcription Factor hDREF Is a Novel SUMO E3 Ligase of Mi2α. J Biol Chem. 2016;291:11619-34 pubmed 出版商
  294. Hobbs R, Batazzi A, Han M, Coulombe P. Loss of Keratin 17 induces tissue-specific cytokine polarization and cellular differentiation in HPV16-driven cervical tumorigenesis in vivo. Oncogene. 2016;35:5653-5662 pubmed 出版商
  295. Huang G, Yang X, Chen K, Xing J, Guo L, Zhu L, et al. Porf-2 Inhibits Neural Stem Cell Proliferation Through Wnt/?-Catenin Pathway by Its GAP Domain. Front Cell Neurosci. 2016;10:85 pubmed 出版商
  296. Hakim S, Dyson J, Feeney S, Davies E, Sriratana A, Koenig M, et al. Inpp5e suppresses polycystic kidney disease via inhibition of PI3K/Akt-dependent mTORC1 signaling. Hum Mol Genet. 2016;25:2295-2313 pubmed
  297. Zheng G, Li N, Jia X, Peng C, Luo L, Deng Y, et al. MYCN-mediated miR-21 overexpression enhances chemo-resistance via targeting CADM1 in tongue cancer. J Mol Med (Berl). 2016;94:1129-1141 pubmed
  298. Xiong W, Li J, Zhang E, Huang H. BMAL1 regulates transcription initiation and activates circadian clock gene expression in mammals. Biochem Biophys Res Commun. 2016;473:1019-1025 pubmed 出版商
  299. Huang C, Cheng J, Bawa Khalfe T, Yao X, Chin Y, Yeh E. SUMOylated ORC2 Recruits a Histone Demethylase to Regulate Centromeric Histone Modification and Genomic Stability. Cell Rep. 2016;15:147-157 pubmed 出版商
  300. Wang Z, Xie J, Yan M, Wang J, Wang X, Zhang J, et al. Downregulation of ATOH8 induced by EBV-encoded LMP1 contributes to the malignant phenotype of nasopharyngeal carcinoma. Oncotarget. 2016;7:26765-79 pubmed 出版商
  301. Wefers A, Lindner S, Schulte J, Schüller U. Overexpression of Lin28b in Neural Stem Cells is Insufficient for Brain Tumor Formation, but Induces Pathological Lobulation of the Developing Cerebellum. Cerebellum. 2017;16:122-131 pubmed 出版商
  302. Huang Y, Chen S, Liu R, Chen Y, Lin C, Huang C, et al. CLEC5A is critical for dengue virus-induced osteoclast activation and bone homeostasis. J Mol Med (Berl). 2016;94:1025-37 pubmed 出版商
  303. Iimori M, Watanabe S, Kiyonari S, Matsuoka K, Sakasai R, Saeki H, et al. Phosphorylation of EB2 by Aurora B and CDK1 ensures mitotic progression and genome stability. Nat Commun. 2016;7:11117 pubmed 出版商
  304. Perez R, Shen H, Duan L, Kim R, Kim T, Park N, et al. Modeling the Etiology of p53-mutated Cancer Cells. J Biol Chem. 2016;291:10131-47 pubmed 出版商
  305. Upadhyay M, Martino Cortez Y, Wong Deyrup S, Tavares L, Schowalter S, Flora P, et al. Transposon Dysregulation Modulates dWnt4 Signaling to Control Germline Stem Cell Differentiation in Drosophila. PLoS Genet. 2016;12:e1005918 pubmed 出版商
  306. Xiao J, Duan Q, Wang Z, Yan W, Sun H, Xue P, et al. Phosphorylation of TOPK at Y74, Y272 by Src increases the stability of TOPK and promotes tumorigenesis of colon. Oncotarget. 2016;7:24483-94 pubmed 出版商
  307. Li Y, Liu D, López Paz C, OLSON B, Umen J. A new class of cyclin dependent kinase in Chlamydomonas is required for coupling cell size to cell division. elife. 2016;5:e10767 pubmed 出版商
  308. Galán M, Varona S, Orriols M, Rodríguez J, Aguiló S, Dilmé J, et al. Induction of histone deacetylases (HDACs) in human abdominal aortic aneurysm: therapeutic potential of HDAC inhibitors. Dis Model Mech. 2016;9:541-52 pubmed 出版商
  309. Elnfati A, Iles D, Miller D. Nucleosomal chromatin in the mature sperm of Drosophila melanogaster. Genom Data. 2016;7:175-7 pubmed 出版商
  310. Richarson A, Scott D, Zagnitko O, Aza Blanc P, Chang C, Russler Germain D. Registered report: IDH mutation impairs histone demethylation and results in a block to cell differentiation. elife. 2016;5:e10860 pubmed 出版商
  311. Zhao H, Wang H, Bauzon F, Lu Z, Fu H, Cui J, et al. Deletions of Retinoblastoma 1 (Rb1) and Its Repressing Target S Phase Kinase-associated protein 2 (Skp2) Are Synthetic Lethal in Mouse Embryogenesis. J Biol Chem. 2016;291:10201-9 pubmed 出版商
  312. Lee B, Lee S, Agulnick A, Lee J, Lee S. Single-stranded DNA binding proteins are required for LIM complexes to induce transcriptionally active chromatin and specify spinal neuronal identities. Development. 2016;143:1721-31 pubmed 出版商
  313. Zhang X, Peng D, Xi Y, Yuan C, Sagum C, Klein B, et al. G9a-mediated methylation of ERα links the PHF20/MOF histone acetyltransferase complex to hormonal gene expression. Nat Commun. 2016;7:10810 pubmed 出版商
  314. Mo A, Luo C, Davis F, Mukamel E, Henry G, Nery J, et al. Epigenomic landscapes of retinal rods and cones. elife. 2016;5:e11613 pubmed 出版商
  315. Nagase M, Kurihara H, Aiba A, Young M, Sakai T. Deletion of Rac1GTPase in the Myeloid Lineage Protects against Inflammation-Mediated Kidney Injury in Mice. PLoS ONE. 2016;11:e0150886 pubmed 出版商
  316. Lakisic G, Lebreton A, Pourpre R, Wendling O, Libertini E, Radford E, et al. Role of the BAHD1 Chromatin-Repressive Complex in Placental Development and Regulation of Steroid Metabolism. PLoS Genet. 2016;12:e1005898 pubmed 出版商
  317. Dhawan S, Dirice E, Kulkarni R, Bhushan A. Inhibition of TGF-β Signaling Promotes Human Pancreatic β-Cell Replication. Diabetes. 2016;65:1208-18 pubmed 出版商
  318. Wu J, Chi L, Chen Z, Lu X, Xiao S, Zhang G, et al. Functional analysis of the TMPRSS2:ERG fusion gene in cisplatin‑induced cell death. Mol Med Rep. 2016;13:3173-80 pubmed 出版商
  319. Sadasivam D, Huang D. Maintenance of Tissue Pluripotency by Epigenetic Factors Acting at Multiple Levels. PLoS Genet. 2016;12:e1005897 pubmed 出版商
  320. Seip K, Fleten K, Barkovskaya A, Nygaard V, Haugen M, Engesæter B, et al. Fibroblast-induced switching to the mesenchymal-like phenotype and PI3K/mTOR signaling protects melanoma cells from BRAF inhibitors. Oncotarget. 2016;7:19997-20015 pubmed 出版商
  321. Ladurner R, Kreidl E, Ivanov M, Ekker H, Idarraga Amado M, Busslinger G, et al. Sororin actively maintains sister chromatid cohesion. EMBO J. 2016;35:635-53 pubmed 出版商
  322. Wei J, Xiong Z, Lee J, Cheng J, Duffney L, Matas E, et al. Histone Modification of Nedd4 Ubiquitin Ligase Controls the Loss of AMPA Receptors and Cognitive Impairment Induced by Repeated Stress. J Neurosci. 2016;36:2119-30 pubmed 出版商
  323. Chuang T, Lee K, Lou Y, Lu C, Tarn W. A Point Mutation in the Exon Junction Complex Factor Y14 Disrupts Its Function in mRNA Cap Binding and Translation Enhancement. J Biol Chem. 2016;291:8565-74 pubmed 出版商
  324. Baron A, von Schubert C, Cubizolles F, Siemeister G, Hitchcock M, Mengel A, et al. Probing the catalytic functions of Bub1 kinase using the small molecule inhibitors BAY-320 and BAY-524. elife. 2016;5: pubmed 出版商
  325. Zhang W, Kim P, Chen Z, Lokman H, Qiu L, Zhang K, et al. MiRNA-128 regulates the proliferation and neurogenesis of neural precursors by targeting PCM1 in the developing cortex. elife. 2016;5: pubmed 出版商
  326. Aparicio T, Baer R, Gottesman M, Gautier J. MRN, CtIP, and BRCA1 mediate repair of topoisomerase II-DNA adducts. J Cell Biol. 2016;212:399-408 pubmed 出版商
  327. Wu T, Li Y, Liu B, Zhang S, Wu L, Zhu X, et al. Expression of Ferritin Light Chain (FTL) Is Elevated in Glioblastoma, and FTL Silencing Inhibits Glioblastoma Cell Proliferation via the GADD45/JNK Pathway. PLoS ONE. 2016;11:e0149361 pubmed 出版商
  328. Tang Y, Hong Y, Bai H, Wu Q, Chen C, Lang J, et al. Plant Homeo Domain Finger Protein 8 Regulates Mesodermal and Cardiac Differentiation of Embryonic Stem Cells Through Mediating the Histone Demethylation of pmaip1. Stem Cells. 2016;34:1527-40 pubmed 出版商
  329. Liao K, Guo M, Niu F, Yang L, Callen S, Buch S. Cocaine-mediated induction of microglial activation involves the ER stress-TLR2 axis. J Neuroinflammation. 2016;13:33 pubmed 出版商
  330. Preet R, Siddharth S, Satapathy S, Das S, Nayak A, Das D, et al. Chk1 inhibitor synergizes quinacrine mediated apoptosis in breast cancer cells by compromising the base excision repair cascade. Biochem Pharmacol. 2016;105:23-33 pubmed 出版商
  331. Jones J, Singh P, Govind C. Recruitment of Saccharomyces cerevisiae Cmr1/Ydl156w to Coding Regions Promotes Transcription Genome Wide. PLoS ONE. 2016;11:e0148897 pubmed 出版商
  332. Haokip D, Goel I, Arya V, Sharma T, Kumari R, Priya R, et al. Transcriptional Regulation of Atp-Dependent Chromatin Remodeling Factors: Smarcal1 and Brg1 Mutually Co-Regulate Each Other. Sci Rep. 2016;6:20532 pubmed 出版商
  333. Cui Q, Yang S, Ye P, Tian E, Sun G, Zhou J, et al. Downregulation of TLX induces TET3 expression and inhibits glioblastoma stem cell self-renewal and tumorigenesis. Nat Commun. 2016;7:10637 pubmed 出版商
  334. Capell B, Drake A, Zhu J, Shah P, Dou Z, Dorsey J, et al. MLL1 is essential for the senescence-associated secretory phenotype. Genes Dev. 2016;30:321-36 pubmed 出版商
  335. Liu X, Li H, Rajurkar M, Li Q, Cotton J, Ou J, et al. Tead and AP1 Coordinate Transcription and Motility. Cell Rep. 2016;14:1169-1180 pubmed 出版商
  336. Bandopadhayay P, Ramkissoon L, Jain P, Bergthold G, Wala J, Zeid R, et al. MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism. Nat Genet. 2016;48:273-82 pubmed 出版商
  337. Mo F, Zhuang X, Liu X, Yao P, Qin B, Su Z, et al. Acetylation of Aurora B by TIP60 ensures accurate chromosomal segregation. Nat Chem Biol. 2016;12:226-32 pubmed 出版商
  338. Walter M, Teissandier A, Pérez Palacios R, Bourc his D. An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells. elife. 2016;5: pubmed 出版商
  339. Misuraca K, Hu G, Barton K, Chung A, Becher O. A Novel Mouse Model of Diffuse Intrinsic Pontine Glioma Initiated in Pax3-Expressing Cells. Neoplasia. 2016;18:60-70 pubmed 出版商
  340. Heo J, Kim W, Choi K, Bae S, Jeong J, Kim K. XIAP-associating factor 1, a transcriptional target of BRD7, contributes to endothelial cell senescence. Oncotarget. 2016;7:5118-30 pubmed 出版商
  341. Tamaoki K, Okada R, Ishihara A, Shiojiri N, Mochizuki K, Goda T, et al. Morphological, biochemical, transcriptional and epigenetic responses to fasting and refeeding in intestine of Xenopus laevis. Cell Biosci. 2016;6:2 pubmed 出版商
  342. Deb M, Sengupta D, Kar S, Rath S, Roy S, Das G, et al. Epigenetic drift towards histone modifications regulates CAV1 gene expression in colon cancer. Gene. 2016;581:75-84 pubmed 出版商
  343. Choi S, Chen Z, Tang L, Fang Y, Shin S, Panarelli N, et al. Bcl-xL promotes metastasis independent of its anti-apoptotic activity. Nat Commun. 2016;7:10384 pubmed 出版商
  344. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  345. Zheng F, Yue C, Li G, He B, Cheng W, Wang X, et al. Nuclear AURKA acquires kinase-independent transactivating function to enhance breast cancer stem cell phenotype. Nat Commun. 2016;7:10180 pubmed 出版商
  346. Soo Lee N, Jin Chung H, Kim H, Yun Lee S, Ji J, Seo Y, et al. TRAIP/RNF206 is required for recruitment of RAP80 to sites of DNA damage. Nat Commun. 2016;7:10463 pubmed 出版商
  347. Minnich M, Tagoh H, Bönelt P, Axelsson E, Fischer M, Cebolla B, et al. Multifunctional role of the transcription factor Blimp-1 in coordinating plasma cell differentiation. Nat Immunol. 2016;17:331-43 pubmed 出版商
  348. Taniue K, Kurimoto A, Sugimasa H, Nasu E, Takeda Y, Iwasaki K, et al. Long noncoding RNA UPAT promotes colon tumorigenesis by inhibiting degradation of UHRF1. Proc Natl Acad Sci U S A. 2016;113:1273-8 pubmed 出版商
  349. Pan H, Guan D, Liu X, Li J, Wang L, Wu J, et al. SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Res. 2016;26:190-205 pubmed 出版商
  350. Yang Y, Li W, Hoque M, Hou L, Shen S, Tian B, et al. PAF Complex Plays Novel Subunit-Specific Roles in Alternative Cleavage and Polyadenylation. PLoS Genet. 2016;12:e1005794 pubmed 出版商
  351. Murakami K, Günesdogan U, Zylicz J, Tang W, Sengupta R, Kobayashi T, et al. NANOG alone induces germ cells in primed epiblast in vitro by activation of enhancers. Nature. 2016;529:403-407 pubmed 出版商
  352. Chen N, Uddin B, Voit R, Schiebel E. Human phosphatase CDC14A is recruited to the cell leading edge to regulate cell migration and adhesion. Proc Natl Acad Sci U S A. 2016;113:990-5 pubmed 出版商
  353. Terranova Barberio M, Roca M, Zotti A, Leone A, Bruzzese F, Vitagliano C, et al. Valproic acid potentiates the anticancer activity of capecitabine in vitro and in vivo in breast cancer models via induction of thymidine phosphorylase expression. Oncotarget. 2016;7:7715-31 pubmed 出版商
  354. Conery A, Centore R, Neiss A, Keller P, Joshi S, Spillane K, et al. Bromodomain inhibition of the transcriptional coactivators CBP/EP300 as a therapeutic strategy to target the IRF4 network in multiple myeloma. elife. 2016;5: pubmed 出版商
  355. Benitz S, Regel I, Reinhard T, Popp A, Schäffer I, Raulefs S, et al. Polycomb repressor complex 1 promotes gene silencing through H2AK119 mono-ubiquitination in acinar-to-ductal metaplasia and pancreatic cancer cells. Oncotarget. 2016;7:11424-33 pubmed 出版商
  356. Zhang P, Li G, Deng Z, Liu L, Chen L, Tang J, et al. Dicer interacts with SIRT7 and regulates H3K18 deacetylation in response to DNA damaging agents. Nucleic Acids Res. 2016;44:3629-42 pubmed 出版商
  357. Toledo R, Qin Y, Cheng Z, Gao Q, Iwata S, Silva G, et al. Recurrent Mutations of Chromatin-Remodeling Genes and Kinase Receptors in Pheochromocytomas and Paragangliomas. Clin Cancer Res. 2016;22:2301-10 pubmed 出版商
  358. Hessmann E, Zhang J, Chen N, Hasselluhn M, Liou G, Storz P, et al. NFATc4 Regulates Sox9 Gene Expression in Acinar Cell Plasticity and Pancreatic Cancer Initiation. Stem Cells Int. 2016;2016:5272498 pubmed 出版商
  359. Paladino D, Yue P, Furuya H, Acoba J, Rosser C, Turkson J. A novel nuclear Src and p300 signaling axis controls migratory and invasive behavior in pancreatic cancer. Oncotarget. 2016;7:7253-67 pubmed 出版商
  360. O Connor A, Maffini S, Rainey M, Kaczmarczyk A, Gaboriau D, Musacchio A, et al. Requirement for PLK1 kinase activity in the maintenance of a robust spindle assembly checkpoint. Biol Open. 2015;5:11-9 pubmed 出版商
  361. García V, Lara Chica M, Cantarero I, Sterner O, Calzado M, Muñoz E. Galiellalactone induces cell cycle arrest and apoptosis through the ATM/ATR pathway in prostate cancer cells. Oncotarget. 2016;7:4490-506 pubmed 出版商
  362. Zhang Y, Fan J, Ho J, Hu T, Kneeland S, Fan X, et al. Crim1 regulates integrin signaling in murine lens development. Development. 2016;143:356-66 pubmed 出版商
  363. Abu Odeh M, Hereema N, Aqeilan R. WWOX modulates the ATR-mediated DNA damage checkpoint response. Oncotarget. 2016;7:4344-55 pubmed 出版商
  364. Yu F, Shen X, Fan L, Yu Z. Analysis of histone modifications at human ribosomal DNA in liver cancer cell. Sci Rep. 2015;5:18100 pubmed 出版商
  365. Guo X, Wang X, Wang Z, Banerjee S, Yang J, Huang L, et al. Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nat Cell Biol. 2016;18:202-12 pubmed 出版商
  366. Tiedemann R, Hlady R, Hanavan P, Lake D, Tibes R, Lee J, et al. Dynamic reprogramming of DNA methylation in SETD2-deregulated renal cell carcinoma. Oncotarget. 2016;7:1927-46 pubmed 出版商
  367. Tarangelo A, Lo N, Teng R, Kim E, Le L, Watson D, et al. Recruitment of Pontin/Reptin by E2f1 amplifies E2f transcriptional response during cancer progression. Nat Commun. 2015;6:10028 pubmed 出版商
  368. Wassef M, Rodilla V, Teissandier A, Zeitouni B, Gruel N, Sadacca B, et al. Impaired PRC2 activity promotes transcriptional instability and favors breast tumorigenesis. Genes Dev. 2015;29:2547-62 pubmed 出版商
  369. Duan S, Yuan G, Liu X, Ren R, Li J, Zhang W, et al. PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype. Nat Commun. 2015;6:10068 pubmed 出版商
  370. Chalamcharla V, Folco H, Dhakshnamoorthy J, Grewal S. Conserved factor Dhp1/Rat1/Xrn2 triggers premature transcription termination and nucleates heterochromatin to promote gene silencing. Proc Natl Acad Sci U S A. 2015;112:15548-55 pubmed 出版商
  371. Cai L, Wang Z, Liu D. Interference with endogenous EZH2 reverses the chemotherapy drug resistance in cervical cancer cells partly by up-regulating Dicer expression. Tumour Biol. 2016;37:6359-69 pubmed 出版商
  372. Wu S, Yang Z, Ye R, An D, Li C, Wang Y, et al. Novel variants in MLL confer to bladder cancer recurrence identified by whole-exome sequencing. Oncotarget. 2016;7:2629-45 pubmed 出版商
  373. Sengupta D, Byrum S, Avaritt N, Davis L, Shields B, Mahmoud F, et al. Quantitative Histone Mass Spectrometry Identifies Elevated Histone H3 Lysine 27 (Lys27) Trimethylation in Melanoma. Mol Cell Proteomics. 2016;15:765-75 pubmed 出版商
  374. Zemke M, Draganova K, Klug A, Schöler A, Zurkirchen L, Gay M, et al. Loss of Ezh2 promotes a midbrain-to-forebrain identity switch by direct gene derepression and Wnt-dependent regulation. BMC Biol. 2015;13:103 pubmed 出版商
  375. Popken J, Dahlhoff M, Guengoer T, Wolf E, Zakhartchenko V. 3D structured illumination microscopy of mammalian embryos and spermatozoa. BMC Dev Biol. 2015;15:46 pubmed 出版商
  376. Sakurikar N, Thompson R, Montano R, Eastman A. A subset of cancer cell lines is acutely sensitive to the Chk1 inhibitor MK-8776 as monotherapy due to CDK2 activation in S phase. Oncotarget. 2016;7:1380-94 pubmed 出版商
  377. Hernando H, Gelato K, Lesche R, Beckmann G, Koehr S, Otto S, et al. EZH2 Inhibition Blocks Multiple Myeloma Cell Growth through Upregulation of Epithelial Tumor Suppressor Genes. Mol Cancer Ther. 2016;15:287-98 pubmed 出版商
  378. Zhou R, Zhou X, Yin Z, Guo J, Hu T, Jiang S, et al. Tumor invasion and metastasis regulated by microRNA-184 and microRNA-574-5p in small-cell lung cancer. Oncotarget. 2015;6:44609-22 pubmed 出版商
  379. Dimitrova N, Gocheva V, Bhutkar A, Resnick R, Jong R, Miller K, et al. Stromal Expression of miR-143/145 Promotes Neoangiogenesis in Lung Cancer Development. Cancer Discov. 2016;6:188-201 pubmed 出版商
  380. dos Santos N, Matias A, Higa G, Kihara A, Cerchiaro G. Copper Uptake in Mammary Epithelial Cells Activates Cyclins and Triggers Antioxidant Response. Oxid Med Cell Longev. 2015;2015:162876 pubmed 出版商
  381. Gal C, Murton H, Subramanian L, Whale A, Moore K, Paszkiewicz K, et al. Abo1, a conserved bromodomain AAA-ATPase, maintains global nucleosome occupancy and organisation. EMBO Rep. 2016;17:79-93 pubmed 出版商
  382. Hübner B, Lomiento M, Mammoli F, Illner D, Markaki Y, Ferrari S, et al. Remodeling of nuclear landscapes during human myelopoietic cell differentiation maintains co-aligned active and inactive nuclear compartments. Epigenetics Chromatin. 2015;8:47 pubmed 出版商
  383. Grassian A, Scales T, Knutson S, Kuntz K, McCarthy N, Lowe C, et al. A Medium-Throughput Single Cell CRISPR-Cas9 Assay to Assess Gene Essentiality. Biol Proced Online. 2015;17:15 pubmed 出版商
  384. Auclair G, Borgel J, Sanz L, Vallet J, Guibert S, Dumas M, et al. EHMT2 directs DNA methylation for efficient gene silencing in mouse embryos. Genome Res. 2016;26:192-202 pubmed 出版商
  385. Sperber H, Mathieu J, Wang Y, Ferreccio A, Hesson J, Xu Z, et al. The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat Cell Biol. 2015;17:1523-35 pubmed 出版商
  386. Zylicz J, Dietmann S, Günesdogan U, Hackett J, Cougot D, Lee C, et al. Chromatin dynamics and the role of G9a in gene regulation and enhancer silencing during early mouse development. elife. 2015;4: pubmed 出版商
  387. Laumet G, Garriga J, Chen S, Zhang Y, Li D, Smith T, et al. G9a is essential for epigenetic silencing of K(+) channel genes in acute-to-chronic pain transition. Nat Neurosci. 2015;18:1746-55 pubmed 出版商
  388. Oravecz A, Apostolov A, Polak K, Jost B, Le Gras S, Chan S, et al. Ikaros mediates gene silencing in T cells through Polycomb repressive complex 2. Nat Commun. 2015;6:8823 pubmed 出版商
  389. Nikonova A, Deneka A, Eckman L, Kopp M, Hensley H, Egleston B, et al. Opposing Effects of Inhibitors of Aurora-A and EGFR in Autosomal-Dominant Polycystic Kidney Disease. Front Oncol. 2015;5:228 pubmed 出版商
  390. Mursalimov S, Permyakova N, Deineko E, Houben A, Demidov D. Cytomixis doesn't induce obvious changes in chromatin modifications and programmed cell death in tobacco male meiocytes. Front Plant Sci. 2015;6:846 pubmed 出版商
  391. Zhao E, Maj T, Kryczek I, Li W, Wu K, Zhao L, et al. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat Immunol. 2016;17:95-103 pubmed 出版商
  392. Ho T, Kapur P, Joseph R, Serie D, Eckel Passow J, Tong P, et al. Loss of histone H3 lysine 36 trimethylation is associated with an increased risk of renal cell carcinoma-specific death. Mod Pathol. 2016;29:34-42 pubmed 出版商
  393. Amlie Wolf A, Ryvkin P, Tong R, Dragomir I, Suh E, Xu Y, et al. Transcriptomic Changes Due to Cytoplasmic TDP-43 Expression Reveal Dysregulation of Histone Transcripts and Nuclear Chromatin. PLoS ONE. 2015;10:e0141836 pubmed 出版商
  394. Kyathanahalli C, Organ K, Moreci R, Anamthathmakula P, Hassan S, Caritis S, et al. Uterine endoplasmic reticulum stress-unfolded protein response regulation of gestational length is caspase-3 and -7-dependent. Proc Natl Acad Sci U S A. 2015;112:14090-5 pubmed 出版商
  395. Peng D, Kryczek I, Nagarsheth N, Zhao L, Wei S, Wang W, et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature. 2015;527:249-53 pubmed 出版商
  396. Tarayrah L, Li Y, Gan Q, Chen X. Epigenetic regulator Lid maintains germline stem cells through regulating JAK-STAT signaling pathway activity. Biol Open. 2015;4:1518-27 pubmed 出版商
  397. Xiao T, Liu L, Li H, Sun Y, Luo H, Li T, et al. Long Noncoding RNA ADINR Regulates Adipogenesis by Transcriptionally Activating C/EBPα. Stem Cell Reports. 2015;5:856-65 pubmed 出版商
  398. Reeder J, Kwak Y, McNamara R, Forst C, D Orso I. HIV Tat controls RNA Polymerase II and the epigenetic landscape to transcriptionally reprogram target immune cells. elife. 2015;4: pubmed 出版商
  399. Choukrallah M, Song S, Rolink A, Burger L, Matthias P. Enhancer repertoires are reshaped independently of early priming and heterochromatin dynamics during B cell differentiation. Nat Commun. 2015;6:8324 pubmed 出版商
  400. Vandamme J, Sidoli S, Mariani L, Friis C, Christensen J, Helin K, et al. H3K23me2 is a new heterochromatic mark in Caenorhabditis elegans. Nucleic Acids Res. 2015;43:9694-710 pubmed 出版商
  401. Eisses J, Criscimanna A, Dionise Z, Orabi A, Javed T, Sarwar S, et al. Valproic Acid Limits Pancreatic Recovery after Pancreatitis by Inhibiting Histone Deacetylases and Preventing Acinar Redifferentiation Programs. Am J Pathol. 2015;185:3304-15 pubmed 出版商
  402. Kizuka Y, Nakano M, Kitazume S, Saito T, Saido T, Taniguchi N. Bisecting GlcNAc modification stabilizes BACE1 protein under oxidative stress conditions. Biochem J. 2016;473:21-30 pubmed 出版商
  403. Fukuda A, Mitani A, Miyashita T, Umezawa A, Akutsu H. Chromatin condensation of Xist genomic loci during oogenesis in mice. Development. 2015;142:4049-55 pubmed 出版商
  404. Meyer S, Krebs S, Thirion C, Blum H, Krause S, Pfaffl M. Tumor Necrosis Factor Alpha and Insulin-Like Growth Factor 1 Induced Modifications of the Gene Expression Kinetics of Differentiating Skeletal Muscle Cells. PLoS ONE. 2015;10:e0139520 pubmed 出版商
  405. Okoye Okafor U, Bartholdy B, Cartier J, Gao E, Pietrak B, Rendina A, et al. New IDH1 mutant inhibitors for treatment of acute myeloid leukemia. Nat Chem Biol. 2015;11:878-86 pubmed 出版商
  406. Lu S, Yang Y, Du Y, Cao L, Li M, Shen C, et al. The transcription factor c-Fos coordinates with histone lysine-specific demethylase 2A to activate the expression of cyclooxygenase-2. Oncotarget. 2015;6:34704-17 pubmed 出版商
  407. Guo Y, Feng W, Sy S, Huen M. ATM-dependent Phosphorylation of the Fanconi Anemia Protein PALB2 Promotes the DNA Damage Response. J Biol Chem. 2015;290:27545-56 pubmed 出版商
  408. Pelish H, Liau B, Nitulescu I, Tangpeerachaikul A, Poss Z, Da Silva D, et al. Mediator kinase inhibition further activates super-enhancer-associated genes in AML. Nature. 2015;526:273-276 pubmed 出版商
  409. Matsuda S, Adachi J, Ihara M, Tanuma N, Shima H, Kakizuka A, et al. Nuclear pyruvate kinase M2 complex serves as a transcriptional coactivator of arylhydrocarbon receptor. Nucleic Acids Res. 2016;44:636-47 pubmed 出版商
  410. Martinez R, Blasina A, Hallin J, Hu W, Rymer I, Fan J, et al. Mitotic Checkpoint Kinase Mps1 Has a Role in Normal Physiology which Impacts Clinical Utility. PLoS ONE. 2015;10:e0138616 pubmed 出版商
  411. Qiu M, Fan Q, Zhu Z, Kwan S, Chen L, Chen J, et al. KDM4B and KDM4A promote endometrial cancer progression by regulating androgen receptor, c-myc, and p27kip1. Oncotarget. 2015;6:31702-20 pubmed 出版商
  412. Tajima K, Yae T, Javaid S, Tam O, Comaills V, Morris R, et al. SETD1A modulates cell cycle progression through a miRNA network that regulates p53 target genes. Nat Commun. 2015;6:8257 pubmed 出版商
  413. Eberle A, Jordán Pla A, Gañez Zapater A, Hessle V, Silberberg G, von Euler A, et al. An Interaction between RRP6 and SU(VAR)3-9 Targets RRP6 to Heterochromatin and Contributes to Heterochromatin Maintenance in Drosophila melanogaster. PLoS Genet. 2015;11:e1005523 pubmed 出版商
  414. Brina D, Miluzio A, Ricciardi S, Clarke K, Davidsen P, Viero G, et al. eIF6 coordinates insulin sensitivity and lipid metabolism by coupling translation to transcription. Nat Commun. 2015;6:8261 pubmed 出版商
  415. Hu P, Chu J, Wu Y, Sun L, Lv X, Zhu Y, et al. NBAT1 suppresses breast cancer metastasis by regulating DKK1 via PRC2. Oncotarget. 2015;6:32410-25 pubmed 出版商
  416. Jardé T, Kass L, Staples M, Lescesen H, Carne P, Oliva K, et al. ERBB3 Positively Correlates with Intestinal Stem Cell Markers but Marks a Distinct Non Proliferative Cell Population in Colorectal Cancer. PLoS ONE. 2015;10:e0138336 pubmed 出版商
  417. Xiao X, Shi X, Fan Y, Zhang X, Wu M, Lan P, et al. GITR subverts Foxp3(+) Tregs to boost Th9 immunity through regulation of histone acetylation. Nat Commun. 2015;6:8266 pubmed 出版商
  418. Yashiro T, Kubo M, Ogawa H, Okumura K, Nishiyama C. PU.1 Suppresses Th2 Cytokine Expression via Silencing of GATA3 Transcription in Dendritic Cells. PLoS ONE. 2015;10:e0137699 pubmed 出版商
  419. Zhao Y, Londono P, Cao Y, Sharpe E, Proenza C, O Rourke R, et al. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat Commun. 2015;6:8243 pubmed 出版商
  420. Kim S, Yang W, Min Y, Ko Y, Yoon S. The role of the polycomb repressive complex pathway in T and NK cell lymphoma: biological and prognostic implications. Tumour Biol. 2016;37:2037-47 pubmed 出版商
  421. Kennedy A, Vallurupalli M, Chen L, Crompton B, Cowley G, Vazquez F, et al. Functional, chemical genomic, and super-enhancer screening identify sensitivity to cyclin D1/CDK4 pathway inhibition in Ewing sarcoma. Oncotarget. 2015;6:30178-93 pubmed 出版商
  422. Zhu J, Sammons M, Donahue G, Dou Z, Vedadi M, Getlik M, et al. Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth. Nature. 2015;525:206-11 pubmed 出版商
  423. Yao X, Tang Z, Fu X, Yin J, Liang Y, Li C, et al. The Mediator subunit MED23 couples H2B mono-ubiquitination to transcriptional control and cell fate determination. EMBO J. 2015;34:2885-902 pubmed 出版商
  424. Paret C, Simon P, Vormbrock K, Bender C, Kölsch A, Breitkreuz A, et al. CXorf61 is a target for T cell based immunotherapy of triple-negative breast cancer. Oncotarget. 2015;6:25356-67 pubmed 出版商
  425. Renneville A, van Galen P, Canver M, McConkey M, Krill Burger J, Dorfman D, et al. EHMT1 and EHMT2 inhibition induces fetal hemoglobin expression. Blood. 2015;126:1930-9 pubmed 出版商
  426. Damiani E, Puebla Osorio N, Gorbea E, Ullrich S. Platelet-Activating Factor Induces Epigenetic Modifications in Human Mast Cells. J Invest Dermatol. 2015;135:3034-3040 pubmed 出版商
  427. Tuncay H, Brinkmann B, Steinbacher T, Schürmann A, Gerke V, Iden S, et al. JAM-A regulates cortical dynein localization through Cdc42 to control planar spindle orientation during mitosis. Nat Commun. 2015;6:8128 pubmed 出版商
  428. Shimada M, Dumitrache L, Russell H, McKinnon P. Polynucleotide kinase-phosphatase enables neurogenesis via multiple DNA repair pathways to maintain genome stability. EMBO J. 2015;34:2465-80 pubmed 出版商
  429. Chiang C, Uzoma I, Lane D, MemiÅ¡ević V, Alem F, Yao K, et al. A reverse-phase protein microarray-based screen identifies host signaling dynamics upon Burkholderia spp. infection. Front Microbiol. 2015;6:683 pubmed 出版商
  430. Torres M, Pandita R, Kulak O, Kumar R, Formstecher E, Horikoshi N, et al. Role of the Exocyst Complex Component Sec6/8 in Genomic Stability. Mol Cell Biol. 2015;35:3633-45 pubmed 出版商
  431. Carmona Mora P, Widagdo J, Tomasetig F, Canales C, Cha Y, Lee W, et al. The nuclear localization pattern and interaction partners of GTF2IRD1 demonstrate a role in chromatin regulation. Hum Genet. 2015;134:1099-115 pubmed 出版商
  432. Bravo M, Nicolini F, Starowicz K, Barroso S, Calés C, Aguilera A, et al. Polycomb RING1A- and RING1B-dependent histone H2A monoubiquitylation at pericentromeric regions promotes S-phase progression. J Cell Sci. 2015;128:3660-71 pubmed 出版商
  433. Hu X, Tang Z, Li Y, Liu W, Zhang S, Wang B, et al. Deletion of the tyrosine phosphatase Shp2 in Sertoli cells causes infertility in mice. Sci Rep. 2015;5:12982 pubmed 出版商
  434. Meraviglia V, Azzimato V, Colussi C, Florio M, Binda A, Panariti A, et al. Acetylation mediates Cx43 reduction caused by electrical stimulation. J Mol Cell Cardiol. 2015;87:54-64 pubmed 出版商
  435. Kang S, Kim S, Chai J, Kim S, Won K, Lee Y, et al. Transcriptomic Profiling and H3K27me3 Distribution Reveal Both Demethylase-Dependent and Independent Regulation of Developmental Gene Transcription in Cell Differentiation. PLoS ONE. 2015;10:e0135276 pubmed 出版商
  436. Kanfer G, Courtheoux T, Peterka M, Meier S, Soste M, Melnik A, et al. Mitotic redistribution of the mitochondrial network by Miro and Cenp-F. Nat Commun. 2015;6:8015 pubmed 出版商
  437. Chalertpet K, Pakdeechaidan W, Patel V, Mutirangura A, Yanatatsaneejit P. Human papillomavirus type 16 E7 oncoprotein mediates CCNA1 promoter methylation. Cancer Sci. 2015;106:1333-40 pubmed 出版商
  438. Guo Y, Zheng Y. Lamins position the nuclear pores and centrosomes by modulating dynein. Mol Biol Cell. 2015;26:3379-89 pubmed 出版商
  439. Kraushar M, Viljetić B, Wijeratne H, Thompson K, Jiao X, Pike J, et al. Thalamic WNT3 Secretion Spatiotemporally Regulates the Neocortical Ribosome Signature and mRNA Translation to Specify Neocortical Cell Subtypes. J Neurosci. 2015;35:10911-26 pubmed 出版商
  440. Nezich C, Wang C, Fogel A, Youle R. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J Cell Biol. 2015;210:435-50 pubmed 出版商
  441. McCleland M, Soukup T, Liu S, Esensten J, De Sousa E Melo F, Yaylaoglu M, et al. Cdk8 deletion in the Apc(Min) murine tumour model represses EZH2 activity and accelerates tumourigenesis. J Pathol. 2015;237:508-19 pubmed 出版商
  442. Evans B, Griner E. Registered report: Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. elife. 2015;4:e07420 pubmed 出版商
  443. Moraes I, Yuan Z, Liu S, Souza G, Garcia B, Casas Mollano J. Analysis of Histones H3 and H4 Reveals Novel and Conserved Post-Translational Modifications in Sugarcane. PLoS ONE. 2015;10:e0134586 pubmed 出版商
  444. Namachivayam K, Mohankumar K, Arbach D, Jagadeeswaran R, Jain S, Natarajan V, et al. All-Trans Retinoic Acid Induces TGF-β2 in Intestinal Epithelial Cells via RhoA- and p38α MAPK-Mediated Activation of the Transcription Factor ATF2. PLoS ONE. 2015;10:e0134003 pubmed 出版商
  445. Alekseyenko A, Walsh E, Wang X, Grayson A, Hsi P, Kharchenko P, et al. The oncogenic BRD4-NUT chromatin regulator drives aberrant transcription within large topological domains. Genes Dev. 2015;29:1507-23 pubmed 出版商
  446. Massey A. Multiparametric Cell Cycle Analysis Using the Operetta High-Content Imager and Harmony Software with PhenoLOGIC. PLoS ONE. 2015;10:e0134306 pubmed 出版商
  447. Su L, Deng B, Liu S, Li L, Hu B, Zhong Y, et al. Isolation and characterization of an osmotic stress and ABA induced histone deacetylase in Arachis hygogaea. Front Plant Sci. 2015;6:512 pubmed 出版商
  448. Wang J, Telese F, Tan Y, Li W, Jin C, He X, et al. LSD1n is an H4K20 demethylase regulating memory formation via transcriptional elongation control. Nat Neurosci. 2015;18:1256-64 pubmed 出版商
  449. Parchem R, Moore N, Fish J, Parchem J, Braga T, Shenoy A, et al. miR-302 Is Required for Timing of Neural Differentiation, Neural Tube Closure, and Embryonic Viability. Cell Rep. 2015;12:760-73 pubmed 出版商
  450. Woo Park J, Kim K, Kim J, Chae Y, Jeong O, Seo S. RE-IIBP Methylates H3K79 and Induces MEIS1-mediated Apoptosis via H2BK120 Ubiquitination by RNF20. Sci Rep. 2015;5:12485 pubmed 出版商
  451. Badal S, Her Y, Maher L. Nonantibiotic Effects of Fluoroquinolones in Mammalian Cells. J Biol Chem. 2015;290:22287-97 pubmed 出版商
  452. Cho M, Park J, Choi H, Park M, Won H, Park Y, et al. DOT1L cooperates with the c-Myc-p300 complex to epigenetically derepress CDH1 transcription factors in breast cancer progression. Nat Commun. 2015;6:7821 pubmed 出版商
  453. Sin H, Kartashov A, Hasegawa K, Barski A, Namekawa S. Poised chromatin and bivalent domains facilitate the mitosis-to-meiosis transition in the male germline. BMC Biol. 2015;13:53 pubmed 出版商
  454. Yoon J, Sudo K, Kuroda M, Kato M, Lee I, Han J, et al. Phosphorylation status determines the opposing functions of Smad2/Smad3 as STAT3 cofactors in TH17 differentiation. Nat Commun. 2015;6:7600 pubmed 出版商
  455. Tyler C, Hafez A, Solomon E, Allan A. Developmental exposure to 50 parts-per-billion arsenic influences histone modifications and associated epigenetic machinery in a region- and sex-specific manner in the adult mouse brain. Toxicol Appl Pharmacol. 2015;288:40-51 pubmed 出版商
  456. Montgomery D, Sorum A, Guasch L, Nicklaus M, Meier J. Metabolic Regulation of Histone Acetyltransferases by Endogenous Acyl-CoA Cofactors. Chem Biol. 2015;22:1030-1039 pubmed 出版商
  457. Hobbs R, DePianto D, Jacob J, Han M, Chung B, Batazzi A, et al. Keratin-dependent regulation of Aire and gene expression in skin tumor keratinocytes. Nat Genet. 2015;47:933-8 pubmed 出版商
  458. Fei Q, Yang X, Jiang H, Wang Q, Yu Y, Yu Y, et al. SETDB1 modulates PRC2 activity at developmental genes independently of H3K9 trimethylation in mouse ES cells. Genome Res. 2015;25:1325-35 pubmed 出版商
  459. Jang C, Shibata Y, Starmer J, Yee D, Magnuson T. Histone H3.3 maintains genome integrity during mammalian development. Genes Dev. 2015;29:1377-92 pubmed 出版商
  460. Fimiani C, Goina E, Mallamaci A. Upregulating endogenous genes by an RNA-programmable artificial transactivator. Nucleic Acids Res. 2015;43:7850-64 pubmed 出版商
  461. Wang Y, Zhong H, Xie X, Chen C, Huang D, Shen L, et al. Long noncoding RNA derived from CD244 signaling epigenetically controls CD8+ T-cell immune responses in tuberculosis infection. Proc Natl Acad Sci U S A. 2015;112:E3883-92 pubmed 出版商
  462. Ohashi A, Ohori M, Iwai K, Nakayama Y, Nambu T, Morishita D, et al. Aneuploidy generates proteotoxic stress and DNA damage concurrently with p53-mediated post-mitotic apoptosis in SAC-impaired cells. Nat Commun. 2015;6:7668 pubmed 出版商
  463. Cho H, Kang J, Lee J, Lee J, Jeon S, Ko J, et al. Direct regulation of E-cadherin by targeted histone methylation of TALE-SET fusion protein in cancer cells. Oncotarget. 2015;6:23837-44 pubmed
  464. Schachtrup C, Ryu J, Mammadzada K, Khan A, Carlton P, Perez A, et al. Nuclear pore complex remodeling by p75(NTR) cleavage controls TGF-β signaling and astrocyte functions. Nat Neurosci. 2015;18:1077-80 pubmed 出版商
  465. Sedic M, Skibinski A, Brown N, Gallardo M, Mulligan P, Martinez P, et al. Haploinsufficiency for BRCA1 leads to cell-type-specific genomic instability and premature senescence. Nat Commun. 2015;6:7505 pubmed 出版商
  466. Masuda Y, Takahashi H, Sato S, Tomomori Sato C, Saraf A, Washburn M, et al. TRIM29 regulates the assembly of DNA repair proteins into damaged chromatin. Nat Commun. 2015;6:7299 pubmed 出版商
  467. Yang J, Kaur K, Ong L, Eisenberg C, Eisenberg L. Inhibition of G9a Histone Methyltransferase Converts Bone Marrow Mesenchymal Stem Cells to Cardiac Competent Progenitors. Stem Cells Int. 2015;2015:270428 pubmed 出版商
  468. Kawamura N, Nimura K, Nagano H, Yamaguchi S, Nonomura N, Kaneda Y. CRISPR/Cas9-mediated gene knockout of NANOG and NANOGP8 decreases the malignant potential of prostate cancer cells. Oncotarget. 2015;6:22361-74 pubmed
  469. Stoy C, Sundaram A, Rios Garcia M, Wang X, Seibert O, Zota A, et al. Transcriptional co-factor Transducin beta-like (TBL) 1 acts as a checkpoint in pancreatic cancer malignancy. EMBO Mol Med. 2015;7:1048-62 pubmed 出版商
  470. Cantarero L, Sanz García M, Vinograd Byk H, Renbaum P, Levy Lahad E, Lazo P. VRK1 regulates Cajal body dynamics and protects coilin from proteasomal degradation in cell cycle. Sci Rep. 2015;5:10543 pubmed 出版商
  471. Bock F, Tanzer M, Haschka M, Krumschnabel G, Sohm B, Goetsch K, et al. The p53 binding protein PDCD5 is not rate-limiting in DNA damage induced cell death. Sci Rep. 2015;5:11268 pubmed 出版商
  472. McCloy R, Parker B, Rogers S, Chaudhuri R, Gayevskiy V, Hoffman N, et al. Global Phosphoproteomic Mapping of Early Mitotic Exit in Human Cells Identifies Novel Substrate Dephosphorylation Motifs. Mol Cell Proteomics. 2015;14:2194-212 pubmed 出版商
  473. Neo S, Itahana Y, Alagu J, Kitagawa M, Guo A, Lee S, et al. TRIM28 Is an E3 Ligase for ARF-Mediated NPM1/B23 SUMOylation That Represses Centrosome Amplification. Mol Cell Biol. 2015;35:2851-63 pubmed 出版商
  474. Almuzzaini B, Sarshad A, Farrants A, Percipalle P. Nuclear myosin 1 contributes to a chromatin landscape compatible with RNA polymerase II transcription activation. BMC Biol. 2015;13:35 pubmed 出版商
  475. Krokowski D, Jobava R, Guan B, Farabaugh K, Wu J, Majumder M, et al. Coordinated Regulation of the Neutral Amino Acid Transporter SNAT2 and the Protein Phosphatase Subunit GADD34 Promotes Adaptation to Increased Extracellular Osmolarity. J Biol Chem. 2015;290:17822-37 pubmed 出版商
  476. Cheedipudi S, Puri D, Saleh A, Gala H, Rumman M, Pillai M, et al. A fine balance: epigenetic control of cellular quiescence by the tumor suppressor PRDM2/RIZ at a bivalent domain in the cyclin a gene. Nucleic Acids Res. 2015;43:6236-56 pubmed 出版商
  477. Kotomura N, Harada N, Ishihara S. The Proportion of Chromatin Graded between Closed and Open States Determines the Level of Transcripts Derived from Distinct Promoters in the CYP19 Gene. PLoS ONE. 2015;10:e0128282 pubmed 出版商
  478. Oh H, Traktman P, Knipe D. Barrier-to-Autointegration Factor 1 (BAF/BANF1) Promotes Association of the SETD1A Histone Methyltransferase with Herpes Simplex Virus Immediate-Early Gene Promoters. MBio. 2015;6:e00345-15 pubmed 出版商
  479. Eriksson P, Aine M, Veerla S, Liedberg F, Sjödahl G, Höglund M. Molecular subtypes of urothelial carcinoma are defined by specific gene regulatory systems. BMC Med Genomics. 2015;8:25 pubmed 出版商
  480. Sujobert P, Poulain L, Paubelle E, Zylbersztejn F, Grenier A, Lambert M, et al. Co-activation of AMPK and mTORC1 Induces Cytotoxicity in Acute Myeloid Leukemia. Cell Rep. 2015;11:1446-57 pubmed 出版商
  481. Heng D, Wang Z, Fan Y, Li L, Fang J, Han S, et al. Long-term metabolic alterations in a febrile seizure model. Int J Neurosci. 2016;126:374-80 pubmed 出版商
  482. Yu J, Ramasamy T, Murphy N, Holt M, Czapiewski R, Wei S, et al. PI3K/mTORC2 regulates TGF-β/Activin signalling by modulating Smad2/3 activity via linker phosphorylation. Nat Commun. 2015;6:7212 pubmed 出版商
  483. Fischer S, Paul A, Wagner A, Mathias S, Geiss M, Schandock F, et al. miR-2861 as novel HDAC5 inhibitor in CHO cells enhances productivity while maintaining product quality. Biotechnol Bioeng. 2015;112:2142-53 pubmed 出版商
  484. Her Y, Nelson Holte M, MAHER L. Oxygen concentration controls epigenetic effects in models of familial paraganglioma. PLoS ONE. 2015;10:e0127471 pubmed 出版商
  485. Singh P, Konar A, Kumar A, Srivas S, Thakur M. Hippocampal chromatin-modifying enzymes are pivotal for scopolamine-induced synaptic plasticity gene expression changes and memory impairment. J Neurochem. 2015;134:642-51 pubmed 出版商
  486. Duvall Noelle N, Karwandyar A, Richmond A, Raman D. LASP-1: a nuclear hub for the UHRF1-DNMT1-G9a-Snail1 complex. Oncogene. 2016;35:1122-33 pubmed 出版商
  487. Krivega I, Byrnes C, de Vasconcellos J, Lee Y, Kaushal M, Dean A, et al. Inhibition of G9a methyltransferase stimulates fetal hemoglobin production by facilitating LCR/γ-globin looping. Blood. 2015;126:665-72 pubmed 出版商
  488. She W, Baroux C. Chromatin dynamics in pollen mother cells underpin a common scenario at the somatic-to-reproductive fate transition of both the male and female lineages in Arabidopsis. Front Plant Sci. 2015;6:294 pubmed 出版商
  489. Hodges A, Gallegos I, Laughery M, Meas R, Tran L, Wyrick J. Histone Sprocket Arginine Residues Are Important for Gene Expression, DNA Repair, and Cell Viability in Saccharomyces cerevisiae. Genetics. 2015;200:795-806 pubmed 出版商
  490. Ohira M, Iwasaki Y, Tanaka C, Kuroki M, Matsuo N, Kitamura T, et al. A novel anti-microtubule agent with carbazole and benzohydrazide structures suppresses tumor cell growth in vivo. Biochim Biophys Acta. 2015;1850:1676-84 pubmed 出版商
  491. Nishioka C, Ikezoe T, Yang J, Yokoyama A. Tetraspanin Family Member, CD82, Regulates Expression of EZH2 via Inactivation of p38 MAPK Signaling in Leukemia Cells. PLoS ONE. 2015;10:e0125017 pubmed 出版商
  492. Wu J, Okamura D, Li M, Suzuki K, Luo C, Ma L, et al. An alternative pluripotent state confers interspecies chimaeric competency. Nature. 2015;521:316-21 pubmed 出版商
  493. Yu Y, Koehn C, Yue Y, Li S, Thiele G, Hearth Holmes M, et al. Celastrol inhibits inflammatory stimuli-induced neutrophil extracellular trap formation. Curr Mol Med. 2015;15:401-10 pubmed
  494. Zhang Y, Laumet G, Chen S, Hittelman W, Pan H. Pannexin-1 Up-regulation in the Dorsal Root Ganglion Contributes to Neuropathic Pain Development. J Biol Chem. 2015;290:14647-55 pubmed 出版商
  495. Salzano M, Sanz García M, Monsalve D, Moura D, Lazo P. VRK1 chromatin kinase phosphorylates H2AX and is required for foci formation induced by DNA damage. Epigenetics. 2015;10:373-83 pubmed 出版商
  496. Malik S, Villanova L, Tanaka S, Aonuma M, Roy N, Berber E, et al. SIRT7 inactivation reverses metastatic phenotypes in epithelial and mesenchymal tumors. Sci Rep. 2015;5:9841 pubmed 出版商
  497. Milev M, Hasaj B, Saint Dic D, Snounou S, Zhao Q, Sacher M. TRAMM/TrappC12 plays a role in chromosome congression, kinetochore stability, and CENP-E recruitment. J Cell Biol. 2015;209:221-34 pubmed 出版商
  498. Chen H, Huang W, Yang L, Lin C. The PTEN-AKT-mTOR/RICTOR Pathway in Nasal Natural Killer Cell Lymphoma Is Activated by miR-494-3p via PTEN But Inhibited by miR-142-3p via RICTOR. Am J Pathol. 2015;185:1487-99 pubmed 出版商
  499. Huang X, Shen M, Wang L, Yu F, Wu W, Liu H. Effects of tributyltin chloride on developing mouse oocytes and preimplantation embryos. Microsc Microanal. 2015;21:358-67 pubmed 出版商
  500. Liu X, Chen Z, Xu C, Leng X, Cao H, Ouyang G, et al. Repression of hypoxia-inducible factor α signaling by Set7-mediated methylation. Nucleic Acids Res. 2015;43:5081-98 pubmed 出版商
  501. Fan H, Zhang H, Pascuzzi P, Andrisani O. Hepatitis B virus X protein induces EpCAM expression via active DNA demethylation directed by RelA in complex with EZH2 and TET2. Oncogene. 2016;35:715-26 pubmed 出版商
  502. Jin J, Shi J, Liu B, Liu Y, Huang Y, Yu Y, et al. MORF-RELATED GENE702, a Reader Protein of Trimethylated Histone H3 Lysine 4 and Histone H3 Lysine 36, Is Involved in Brassinosteroid-Regulated Growth and Flowering Time Control in Rice. Plant Physiol. 2015;168:1275-85 pubmed 出版商
  503. Majumder A, Syed K, Joseph S, Scambler P, Dutta D. Histone Chaperone HIRA in Regulation of Transcription Factor RUNX1. J Biol Chem. 2015;290:13053-63 pubmed 出版商
  504. Yamakoshi K, Katano S, Iida M, Kimura H, Okuma A, Ikemoto Uezumi M, et al. Dysregulation of the Bmi-1/p16(Ink⁴a) pathway provokes an aging-associated decline of submandibular gland function. Aging Cell. 2015;14:616-24 pubmed 出版商
  505. Ma S, Jiang B, Deng W, Gu Z, Wu F, Li T, et al. D-2-hydroxyglutarate is essential for maintaining oncogenic property of mutant IDH-containing cancer cells but dispensable for cell growth. Oncotarget. 2015;6:8606-20 pubmed
  506. Ortega Atienza S, Green S, Zhitkovich A. Proteasome activity is important for replication recovery, CHK1 phosphorylation and prevention of G2 arrest after low-dose formaldehyde. Toxicol Appl Pharmacol. 2015;286:135-41 pubmed 出版商
  507. Fallahi Sichani M, Moerke N, Niepel M, Zhang T, Gray N, Sorger P. Systematic analysis of BRAF(V600E) melanomas reveals a role for JNK/c-Jun pathway in adaptive resistance to drug-induced apoptosis. Mol Syst Biol. 2015;11:797 pubmed 出版商
  508. Krejčí J, Stixová L, Pagáčová E, Legartová S, Kozubek S, Lochmanová G, et al. Post-Translational Modifications of Histones in Human Sperm. J Cell Biochem. 2015;116:2195-209 pubmed 出版商
  509. Salvucci O, Ohnuki H, Maric D, Hou X, Li X, Yoon S, et al. EphrinB2 controls vessel pruning through STAT1-JNK3 signalling. Nat Commun. 2015;6:6576 pubmed 出版商
  510. Carlson S, Moore K, Sankaran S, Reynoird N, Elias J, Gozani O. A Proteomic Strategy Identifies Lysine Methylation of Splicing Factor snRNP70 by the SETMAR Enzyme. J Biol Chem. 2015;290:12040-7 pubmed 出版商
  511. Zhou Q, Derti A, Ruddy D, Rakiec D, Kao I, Lira M, et al. A chemical genetics approach for the functional assessment of novel cancer genes. Cancer Res. 2015;75:1949-58 pubmed 出版商
  512. Xie W, Pariollaud M, Wixted W, Chitnis N, Fornwald J, Truong M, et al. Identification and characterization of PERK activators by phenotypic screening and their effects on NRF2 activation. PLoS ONE. 2015;10:e0119738 pubmed 出版商
  513. Feng J, Shao N, Szulwach K, Vialou V, Huynh J, Zhong C, et al. Role of Tet1 and 5-hydroxymethylcytosine in cocaine action. Nat Neurosci. 2015;18:536-44 pubmed 出版商
  514. Hendriks I, Treffers L, Verlaan de Vries M, Olsen J, Vertegaal A. SUMO-2 Orchestrates Chromatin Modifiers in Response to DNA Damage. Cell Rep. 2015;10:1778-1791 pubmed 出版商
  515. Kim K, Son H, Choi S, Hahm J, Jung H, Baek H, et al. H3K9 methyltransferase G9a negatively regulates UHRF1 transcription during leukemia cell differentiation. Nucleic Acids Res. 2015;43:3509-23 pubmed 出版商
  516. Ji X, Dadon D, Abraham B, Lee T, Jaenisch R, Bradner J, et al. Chromatin proteomic profiling reveals novel proteins associated with histone-marked genomic regions. Proc Natl Acad Sci U S A. 2015;112:3841-6 pubmed 出版商
  517. Aguilar Arnal L, Katada S, Orozco Solis R, Sassone Corsi P. NAD(+)-SIRT1 control of H3K4 trimethylation through circadian deacetylation of MLL1. Nat Struct Mol Biol. 2015;22:312-8 pubmed 出版商
  518. Chen W, Wu J, Li L, Zhang Z, Ren J, Liang Y, et al. Ppm1b negatively regulates necroptosis through dephosphorylating Rip3. Nat Cell Biol. 2015;17:434-44 pubmed 出版商
  519. Poirier J, Gardner E, Connis N, Moreira A, de Stanchina E, Hann C, et al. DNA methylation in small cell lung cancer defines distinct disease subtypes and correlates with high expression of EZH2. Oncogene. 2015;34:5869-78 pubmed 出版商
  520. Lelek M, Casartelli N, Pellin D, Rizzi E, Souque P, Severgnini M, et al. Chromatin organization at the nuclear pore favours HIV replication. Nat Commun. 2015;6:6483 pubmed 出版商
  521. Simon H, ODELBERG S. Assessing cardiomyocyte proliferative capacity in the newt heart and primary culture. Methods Mol Biol. 2015;1290:227-40 pubmed 出版商
  522. Bardhan K, Paschall A, Yang D, Chen M, Simon P, Bhutia Y, et al. IFNγ Induces DNA Methylation-Silenced GPR109A Expression via pSTAT1/p300 and H3K18 Acetylation in Colon Cancer. Cancer Immunol Res. 2015;3:795-805 pubmed 出版商
  523. González Barrios R, Soto Reyes E, Quiroz Baez R, Fabián Morales E, Díaz Chávez J, Del Castillo V, et al. Differential distribution of HP1 proteins after trichostatin a treatment influences chromosomal stability in HCT116 and WI-38 cells. Cell Div. 2014;9:6 pubmed 出版商
  524. Yang S, Zhang J, Zhang Y, Wan X, Zhang C, Huang X, et al. KDM1A triggers androgen-induced miRNA transcription via H3K4me2 demethylation and DNA oxidation. Prostate. 2015;75:936-46 pubmed 出版商
  525. Kanu N, Grönroos E, Martinez P, Burrell R, Yi Goh X, Bartkova J, et al. SETD2 loss-of-function promotes renal cancer branched evolution through replication stress and impaired DNA repair. Oncogene. 2015;34:5699-708 pubmed 出版商
  526. Cheung J, Dickinson D, Moss J, Schuler M, Spellman R, Heard P. Histone markers identify the mode of action for compounds positive in the TK6 micronucleus assay. Mutat Res Genet Toxicol Environ Mutagen. 2015;777:7-16 pubmed 出版商
  527. Xiang W, He J, Huang C, Chen L, Tao D, Wu X, et al. miR-106b-5p targets tumor suppressor gene SETD2 to inactive its function in clear cell renal cell carcinoma. Oncotarget. 2015;6:4066-79 pubmed
  528. Krishnamoorthy V, Carr T, de Pooter R, Emanuelle A, Akinola E, Gounari F, et al. Repression of Ccr9 transcription in mouse T lymphocyte progenitors by the Notch signaling pathway. J Immunol. 2015;194:3191-200 pubmed 出版商
  529. Bitler B, Aird K, Garipov A, Li H, Amatangelo M, Kossenkov A, et al. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat Med. 2015;21:231-8 pubmed 出版商
  530. Ishihara S, Yasuda M, Ishizu A, Ishikawa M, Shirato H, Haga H. Activating transcription factor 5 enhances radioresistance and malignancy in cancer cells. Oncotarget. 2015;6:4602-14 pubmed
  531. Bailey J, Fields A, Cheng K, Lee A, Wagenaar E, Lagrois R, et al. WD repeat-containing protein 5 (WDR5) localizes to the midbody and regulates abscission. J Biol Chem. 2015;290:8987-9001 pubmed 出版商
  532. Takahashi J, Kumar V, Nakashe P, Koike N, Huang H, Green C, et al. ChIP-seq and RNA-seq methods to study circadian control of transcription in mammals. Methods Enzymol. 2015;551:285-321 pubmed 出版商
  533. Zheng X, Gao Y, Zhang Q, Liu Y, Peng Y, Fu M, et al. Identification of transcription factor AML-1 binding site upstream of human cytomegalovirus UL111A gene. PLoS ONE. 2015;10:e0117773 pubmed 出版商
  534. Ju B, Chen W, Orr B, Spitsbergen J, Jia S, Eden C, et al. Oncogenic KRAS promotes malignant brain tumors in zebrafish. Mol Cancer. 2015;14:18 pubmed 出版商
  535. Koo J, Mazei Robison M, LaPlant Q, Egervári G, Braunscheidel K, Adank D, et al. Epigenetic basis of opiate suppression of Bdnf gene expression in the ventral tegmental area. Nat Neurosci. 2015;18:415-22 pubmed 出版商
  536. Hotchkiss A, Feridooni T, Baguma Nibasheka M, McNeil K, Chinni S, Pasumarthi K. Atrial natriuretic peptide inhibits cell cycle activity of embryonic cardiac progenitor cells via its NPRA receptor signaling axis. Am J Physiol Cell Physiol. 2015;308:C557-69 pubmed 出版商
  537. Abraham S, Paknikar R, Bhumbra S, Luan D, Garg R, Dressler G, et al. The Groucho-associated phosphatase PPM1B displaces Pax transactivation domain interacting protein (PTIP) to switch the transcription factor Pax2 from a transcriptional activator to a repressor. J Biol Chem. 2015;290:7185-94 pubmed 出版商
  538. Lee E, Kim S, Cho K. Reconstituted High-Density Lipoprotein Containing Human Growth Hormone-1 Shows Potent Tissue Regeneration Activity with Enhancement of Anti-Oxidant and Anti-Atherosclerotic Activities. Rejuvenation Res. 2015;18:245-56 pubmed 出版商
  539. Sun S, Ling S, Qiu J, Albuquerque C, Zhou Y, Tokunaga S, et al. ALS-causative mutations in FUS/TLS confer gain and loss of function by altered association with SMN and U1-snRNP. Nat Commun. 2015;6:6171 pubmed 出版商
  540. Singh A, Compe E, Le May N, Egly J. TFIIH subunit alterations causing xeroderma pigmentosum and trichothiodystrophy specifically disturb several steps during transcription. Am J Hum Genet. 2015;96:194-207 pubmed 出版商
  541. Tian E, Stevens S, Guan Y, Springer D, Anderson S, Starost M, et al. Galnt1 is required for normal heart valve development and cardiac function. PLoS ONE. 2015;10:e0115861 pubmed 出版商
  542. Hsiao S, Chen M, Chen C, Chien M, Hua K, Hsiao M, et al. The H3K9 Methyltransferase G9a Represses E-cadherin and is Associated with Myometrial Invasion in Endometrial Cancer. Ann Surg Oncol. 2015;22 Suppl 3:S1556-65 pubmed 出版商
  543. Furusawa T, Rochman M, Taher L, Dimitriadis E, Nagashima K, Anderson S, et al. Chromatin decompaction by the nucleosomal binding protein HMGN5 impairs nuclear sturdiness. Nat Commun. 2015;6:6138 pubmed 出版商
  544. Chow H, Dong B, Duron S, Campbell D, Ong C, Hoeflich K, et al. Group I Paks as therapeutic targets in NF2-deficient meningioma. Oncotarget. 2015;6:1981-94 pubmed
  545. Lu W, Liu S, Li B, Xie Y, Adhiambo C, Yang Q, et al. SKP2 inactivation suppresses prostate tumorigenesis by mediating JARID1B ubiquitination. Oncotarget. 2015;6:771-88 pubmed
  546. Kim S, Ebbert K, Cordeiro M, Romero M, Zhu J, Serna V, et al. Cell autonomous phosphoinositide 3-kinase activation in oocytes disrupts normal ovarian function through promoting survival and overgrowth of ovarian follicles. Endocrinology. 2015;156:1464-76 pubmed 出版商
  547. Wijeweera A, Haj M, Feldman A, Pnueli L, Luo Z, Melamed P. Gonadotropin gene transcription is activated by menin-mediated effects on the chromatin. Biochim Biophys Acta. 2015;1849:328-41 pubmed 出版商
  548. Zhao H, Bauzon F, Bi E, Yu J, Fu H, Lu Z, et al. Substituting threonine 187 with alanine in p27Kip1 prevents pituitary tumorigenesis by two-hit loss of Rb1 and enhances humoral immunity in old age. J Biol Chem. 2015;290:5797-809 pubmed 出版商
  549. Xu J, Shao Z, Li D, Xie H, Kim W, Huang J, et al. Developmental control of polycomb subunit composition by GATA factors mediates a switch to non-canonical functions. Mol Cell. 2015;57:304-316 pubmed 出版商
  550. Matsuda Y, Kobayashi Ishihara M, Fujikawa D, Ishida T, Watanabe T, Yamagishi M. Epigenetic heterogeneity in HIV-1 latency establishment. Sci Rep. 2015;5:7701 pubmed 出版商
  551. Jacob V, Chernyavskaya Y, Chen X, Tan P, Kent B, Hoshida Y, et al. DNA hypomethylation induces a DNA replication-associated cell cycle arrest to block hepatic outgrowth in uhrf1 mutant zebrafish embryos. Development. 2015;142:510-21 pubmed 出版商
  552. Wang W, Visavadiya N, Pandya J, Nelson P, Sullivan P, Springer J. Mitochondria-associated microRNAs in rat hippocampus following traumatic brain injury. Exp Neurol. 2015;265:84-93 pubmed 出版商
  553. Ma X, Liu H, Murphy J, Foyil S, Godar R, Abuirqeba H, et al. Regulation of the transcription factor EB-PGC1α axis by beclin-1 controls mitochondrial quality and cardiomyocyte death under stress. Mol Cell Biol. 2015;35:956-76 pubmed 出版商
  554. Vettermann C, Timblin G, Lim V, Lai E, Schlissel M. The proximal J kappa germline-transcript promoter facilitates receptor editing through control of ordered recombination. PLoS ONE. 2015;10:e0113824 pubmed 出版商
  555. Watson M, Hedley D. Whole blood measurement of histone modifications linked to the epigenetic regulation of gene expression. Curr Protoc Cytom. 2015;71:6.36.1-9 pubmed 出版商
  556. Harr J, Luperchio T, Wong X, Cohen E, Wheelan S, Reddy K. Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins. J Cell Biol. 2015;208:33-52 pubmed 出版商
  557. Zheng H, Fu J, Xue P, Zhao R, Dong J, Liu D, et al. CNC-bZIP protein Nrf1-dependent regulation of glucose-stimulated insulin secretion. Antioxid Redox Signal. 2015;22:819-31 pubmed 出版商
  558. Toropainen S, Malinen M, Kaikkonen S, Rytinki M, Jääskeläinen T, Sahu B, et al. SUMO ligase PIAS1 functions as a target gene selective androgen receptor coregulator on prostate cancer cell chromatin. Nucleic Acids Res. 2015;43:848-61 pubmed 出版商
  559. Wurm S, Zhang J, Guinea Viniegra J, García F, Muñoz J, Bakiri L, et al. Terminal epidermal differentiation is regulated by the interaction of Fra-2/AP-1 with Ezh2 and ERK1/2. Genes Dev. 2015;29:144-56 pubmed 出版商
  560. Hasegawa H, Ishibashi K, Kubota S, Yamaguchi C, Yuki R, Nakajo H, et al. Cdk1-mediated phosphorylation of human ATF7 at Thr-51 and Thr-53 promotes cell-cycle progression into M phase. PLoS ONE. 2014;9:e116048 pubmed 出版商
  561. Hill R, Kuijper S, Lindsey J, Petrie K, Schwalbe E, Barker K, et al. Combined MYC and P53 defects emerge at medulloblastoma relapse and define rapidly progressive, therapeutically targetable disease. Cancer Cell. 2015;27:72-84 pubmed 出版商
  562. Kumar S, Das S, Rachagani S, Kaur S, Joshi S, Johansson S, et al. NCOA3-mediated upregulation of mucin expression via transcriptional and post-translational changes during the development of pancreatic cancer. Oncogene. 2015;34:4879-89 pubmed 出版商
  563. Naganuma K, Hatta M, Ikebe T, Yamazaki J. Epigenetic alterations of the keratin 13 gene in oral squamous cell carcinoma. BMC Cancer. 2014;14:988 pubmed 出版商
  564. Tran P, Kennedy B, Lien Y, Simmons R, Georgieff M. Fetal iron deficiency induces chromatin remodeling at the Bdnf locus in adult rat hippocampus. Am J Physiol Regul Integr Comp Physiol. 2015;308:R276-82 pubmed 出版商
  565. Ulanet D, Couto K, Jha A, Choe S, Wang A, Woo H, et al. Mesenchymal phenotype predisposes lung cancer cells to impaired proliferation and redox stress in response to glutaminase inhibition. PLoS ONE. 2014;9:e115144 pubmed 出版商
  566. Smith B, Vance C, Scotter E, Troakes C, Wong C, Topp S, et al. Novel mutations support a role for Profilin 1 in the pathogenesis of ALS. Neurobiol Aging. 2015;36:1602.e17-27 pubmed 出版商
  567. Lorenz D, Meyer L, Grady P, Meyer M, Cam H. Heterochromatin assembly and transcriptome repression by Set1 in coordination with a class II histone deacetylase. elife. 2014;3:e04506 pubmed 出版商
  568. Xue L, Furusawa Y, Okayasu R, Miura M, Cui X, Liu C, et al. The complexity of DNA double strand break is a crucial factor for activating ATR signaling pathway for G2/M checkpoint regulation regardless of ATM function. DNA Repair (Amst). 2015;25:72-83 pubmed 出版商
  569. Knutson S, Warholic N, Johnston L, Klaus C, Wigle T, Iwanowicz D, et al. Synergistic Anti-Tumor Activity of EZH2 Inhibitors and Glucocorticoid Receptor Agonists in Models of Germinal Center Non-Hodgkin Lymphomas. PLoS ONE. 2014;9:e111840 pubmed 出版商
  570. Lee J, Peng Y, Lin W, Parrish J. Coordinate control of terminal dendrite patterning and dynamics by the membrane protein Raw. Development. 2015;142:162-73 pubmed 出版商
  571. Bittencourt D, Lee B, Gao L, Gerke D, Stallcup M. Role of distinct surfaces of the G9a ankyrin repeat domain in histone and DNA methylation during embryonic stem cell self-renewal and differentiation. Epigenetics Chromatin. 2014;7:27 pubmed 出版商
  572. Stubbs S, Conrad N. Depletion of REF/Aly alters gene expression and reduces RNA polymerase II occupancy. Nucleic Acids Res. 2015;43:504-19 pubmed 出版商
  573. Huh Y, Sherley J. Decreased H3K27 and H3K4 trimethylation on mortal chromosomes in distributed stem cells. Cell Death Dis. 2014;5:e1554 pubmed 出版商
  574. Sarg B, López R, Lindner H, Ponte I, Suau P, Roque A. Identification of novel post-translational modifications in linker histones from chicken erythrocytes. J Proteomics. 2015;113:162-77 pubmed 出版商
  575. Kim T, Kim H, Kang Y, Yoon S, Lee J, Choi W, et al. Psammaplin A induces Sirtuin 1-dependent autophagic cell death in doxorubicin-resistant MCF-7/adr human breast cancer cells and xenografts. Biochim Biophys Acta. 2015;1850:401-10 pubmed 出版商
  576. Han Y, Dou K, Ma Z, Zhang S, Huang H, Li L, et al. SUVR2 is involved in transcriptional gene silencing by associating with SNF2-related chromatin-remodeling proteins in Arabidopsis. Cell Res. 2014;24:1445-65 pubmed 出版商
  577. Salton M, Voss T, Misteli T. Identification by high-throughput imaging of the histone methyltransferase EHMT2 as an epigenetic regulator of VEGFA alternative splicing. Nucleic Acids Res. 2014;42:13662-73 pubmed 出版商
  578. Luense S, Denner P, Fernández Montalván A, Hartung I, Husemann M, Stresemann C, et al. Quantification of histone H3 Lys27 trimethylation (H3K27me3) by high-throughput microscopy enables cellular large-scale screening for small-molecule EZH2 inhibitors. J Biomol Screen. 2015;20:190-201 pubmed 出版商
  579. Peterson E, Menon V, Gatti L, Kipping R, Dewasinghe D, Perego P, et al. Nucleolar targeting by platinum: p53-independent apoptosis follows rRNA inhibition, cell-cycle arrest, and DNA compaction. Mol Pharm. 2015;12:287-97 pubmed 出版商
  580. Lei G, Zhang C, Lee C. Myeloid-derived suppressor cells impair alveolar macrophages through PD-1 receptor ligation during Pneumocystis pneumonia. Infect Immun. 2015;83:572-82 pubmed 出版商
  581. Hashizume R, Andor N, Ihara Y, Lerner R, Gan H, Chen X, et al. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat Med. 2014;20:1394-6 pubmed 出版商
  582. Eifler M, Uecker R, Weisbach H, Bogdanow B, Richter E, König L, et al. PUL21a-Cyclin A2 interaction is required to protect human cytomegalovirus-infected cells from the deleterious consequences of mitotic entry. PLoS Pathog. 2014;10:e1004514 pubmed 出版商
  583. Englert N, Luo G, Goldstein J, Surapureddi S. Epigenetic modification of histone 3 lysine 27: mediator subunit MED25 is required for the dissociation of polycomb repressive complex 2 from the promoter of cytochrome P450 2C9. J Biol Chem. 2015;290:2264-78 pubmed 出版商
  584. Rochman M, Kartashov A, Caldwell J, Collins M, Stucke E, Kc K, et al. Neurotrophic tyrosine kinase receptor 1 is a direct transcriptional and epigenetic target of IL-13 involved in allergic inflammation. Mucosal Immunol. 2015;8:785-98 pubmed 出版商
  585. Suzuki A, Makinoshima H, Wakaguri H, Esumi H, Sugano S, Kohno T, et al. Aberrant transcriptional regulations in cancers: genome, transcriptome and epigenome analysis of lung adenocarcinoma cell lines. Nucleic Acids Res. 2014;42:13557-72 pubmed 出版商
  586. Salz T, Deng C, Pampo C, Siemann D, Qiu Y, Brown K, et al. Histone Methyltransferase hSETD1A Is a Novel Regulator of Metastasis in Breast Cancer. Mol Cancer Res. 2015;13:461-9 pubmed 出版商
  587. Shi X, Zhang Z, Zhan X, Cao M, Satoh T, Akira S, et al. An epigenetic switch induced by Shh signalling regulates gene activation during development and medulloblastoma growth. Nat Commun. 2014;5:5425 pubmed 出版商
  588. Ambavaram M, Basu S, Krishnan A, Ramegowda V, Batlang U, Rahman L, et al. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. Nat Commun. 2014;5:5302 pubmed 出版商
  589. Santos G, da Silva A, Feldman L, Ventura G, Vassetzky Y, de Moura Gallo C. Epigenetic modifications, chromatin distribution and TP53 transcription in a model of breast cancer progression. J Cell Biochem. 2015;116:533-41 pubmed 出版商
  590. Zhuang C, Sheng C, Shin W, Wu Y, Li J, Yao J, et al. A novel drug discovery strategy: mechanistic investigation of an enantiomeric antitumor agent targeting dual p53 and NF-κB pathways. Oncotarget. 2014;5:10830-9 pubmed
  591. Kim K, Ossipova O, Sokol S. Neural crest specification by inhibition of the ROCK/Myosin II pathway. Stem Cells. 2015;33:674-85 pubmed 出版商
  592. Dikopoltsev E, Foltyn V, Zehl M, Jensen O, Mori H, Radzishevsky I, et al. FBXO22 protein is required for optimal synthesis of the N-methyl-D-aspartate (NMDA) receptor coagonist D-serine. J Biol Chem. 2014;289:33904-15 pubmed 出版商
  593. Kawasumi M, Bradner J, Tolliday N, Thibodeau R, Sloan H, Brummond K, et al. Identification of ATR-Chk1 pathway inhibitors that selectively target p53-deficient cells without directly suppressing ATR catalytic activity. Cancer Res. 2014;74:7534-45 pubmed 出版商
  594. Dai L, Endo D, Akiyama N, Yamamoto Fukuda T, Koji T. Aberrant levels of histone H3 acetylation induce spermatid anomaly in mouse testis. Histochem Cell Biol. 2015;143:209-24 pubmed 出版商
  595. Van der Meulen J, Sanghvi V, Mavrakis K, Durinck K, Fang F, Matthijssens F, et al. The H3K27me3 demethylase UTX is a gender-specific tumor suppressor in T-cell acute lymphoblastic leukemia. Blood. 2015;125:13-21 pubmed 出版商
  596. Xu S, Tong M, Huang J, Zhang Y, Qiao Y, Weng W, et al. TRIB2 inhibits Wnt/β-Catenin/TCF4 signaling through its associated ubiquitin E3 ligases, β-TrCP, COP1 and Smurf1, in liver cancer cells. FEBS Lett. 2014;588:4334-41 pubmed 出版商
  597. Li Z, Mon H, Mitsunobu H, Zhu L, Xu J, Lee J, et al. Dynamics of polycomb proteins-mediated histone modifications during UV irradiation-induced DNA damage. Insect Biochem Mol Biol. 2014;55:9-18 pubmed 出版商
  598. Xu H, Zhou Y, Coughlan K, Ding Y, Wang S, Wu Y, et al. AMPKα1 deficiency promotes cellular proliferation and DNA damage via p21 reduction in mouse embryonic fibroblasts. Biochim Biophys Acta. 2015;1853:65-73 pubmed 出版商
  599. Bakhtari A, Rahmani H, Bonakdar E, Jafarpour F, Asgari V, Hosseini S, et al. The interfering effects of superovulation and vitrification upon some important epigenetic biomarkers in mouse blastocyst. Cryobiology. 2014;69:419-27 pubmed 出版商
  600. Ginsburg D, Anlembom T, Wang J, Patel S, Li B, Hinnebusch A. NuA4 links methylation of histone H3 lysines 4 and 36 to acetylation of histones H4 and H3. J Biol Chem. 2014;289:32656-70 pubmed 出版商
  601. He H, Liu X, Wang D, Wang Y, Liu L, Zhou H, et al. SAHA inhibits the transcription initiation of HPV18 E6/E7 genes in HeLa cervical cancer cells. Gene. 2014;553:98-104 pubmed 出版商
  602. Saloura V, Cho H, Kiyotani K, Alachkar H, Zuo Z, Nakakido M, et al. WHSC1 promotes oncogenesis through regulation of NIMA-related kinase-7 in squamous cell carcinoma of the head and neck. Mol Cancer Res. 2015;13:293-304 pubmed 出版商
  603. Jansen S, Holman R, Hedemann I, Frankes E, Elzinga C, Timens W, et al. Prostaglandin E2 promotes MYCN non-amplified neuroblastoma cell survival via β-catenin stabilization. J Cell Mol Med. 2015;19:210-26 pubmed 出版商
  604. Quan J, Adelmant G, Marto J, Look A, Yusufzai T. The chromatin remodeling factor CHD5 is a transcriptional repressor of WEE1. PLoS ONE. 2014;9:e108066 pubmed 出版商
  605. Deng Z, Matsuda K, Tanikawa C, Lin J, Furukawa Y, Hamamoto R, et al. Late Cornified Envelope Group I, a novel target of p53, regulates PRMT5 activity. Neoplasia. 2014;16:656-64 pubmed 出版商
  606. Bu Z, Yu Y, Li Z, Liu Y, Jiang W, Huang Y, et al. Regulation of arabidopsis flowering by the histone mark readers MRG1/2 via interaction with CONSTANS to modulate FT expression. PLoS Genet. 2014;10:e1004617 pubmed 出版商
  607. Ribeiro Varandas E, Pereira H, Monteiro S, Neves E, Brito L, Ferreira R, et al. Bisphenol A disrupts transcription and decreases viability in aging vascular endothelial cells. Int J Mol Sci. 2014;15:15791-805 pubmed 出版商
  608. Yanagi T, Krajewska M, Matsuzawa S, Reed J. PCTAIRE1 phosphorylates p27 and regulates mitosis in cancer cells. Cancer Res. 2014;74:5795-807 pubmed 出版商
  609. Herranz D, Ambesi Impiombato A, Palomero T, Schnell S, Belver L, Wendorff A, et al. A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia. Nat Med. 2014;20:1130-7 pubmed 出版商
  610. Xu Y, Gan E, Zhou J, Wee W, Zhang X, Ito T. Arabidopsis MRG domain proteins bridge two histone modifications to elevate expression of flowering genes. Nucleic Acids Res. 2014;42:10960-74 pubmed 出版商
  611. Figliozzi R, Chen F, Balish M, Ajavon A, Hsia S. Thyroid hormone-dependent epigenetic suppression of herpes simplex virus-1 gene expression and viral replication in differentiated neuroendocrine cells. J Neurol Sci. 2014;346:164-73 pubmed 出版商
  612. Mews P, Zee B, Liu S, Donahue G, Garcia B, Berger S. Histone methylation has dynamics distinct from those of histone acetylation in cell cycle reentry from quiescence. Mol Cell Biol. 2014;34:3968-80 pubmed 出版商
  613. Lezina L, Aksenova V, Ivanova T, Purmessur N, Antonov A, Tentler D, et al. KMTase Set7/9 is a critical regulator of E2F1 activity upon genotoxic stress. Cell Death Differ. 2014;21:1889-99 pubmed 出版商
  614. Zakaria M, Khan I, Mani P, Chattopadhyay P, Sarkar D, Sinha S. Combination of hepatocyte specific delivery and transformation dependent expression of shRNA inducing transcriptional gene silencing of c-Myc promoter in hepatocellular carcinoma cells. BMC Cancer. 2014;14:582 pubmed 出版商
  615. Shpargel K, Starmer J, Yee D, Pohlers M, Magnuson T. KDM6 demethylase independent loss of histone H3 lysine 27 trimethylation during early embryonic development. PLoS Genet. 2014;10:e1004507 pubmed 出版商
  616. Zhang P, Wei Y, Wang L, Debeb B, Yuan Y, Zhang J, et al. ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat Cell Biol. 2014;16:864-75 pubmed 出版商
  617. Wanet A, Remacle N, Najar M, Sokal E, Arnould T, Najimi M, et al. Mitochondrial remodeling in hepatic differentiation and dedifferentiation. Int J Biochem Cell Biol. 2014;54:174-85 pubmed 出版商
  618. Flach J, Bakker S, Mohrin M, Conroy P, Pietras E, Reynaud D, et al. Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature. 2014;512:198-202 pubmed 出版商
  619. Matsumoto K, Suzuki A, Wakaguri H, Sugano S, Suzuki Y. Construction of mate pair full-length cDNAs libraries and characterization of transcriptional start sites and termination sites. Nucleic Acids Res. 2014;42:e125 pubmed 出版商
  620. Hu J, Yang Y, Turner P, Jain V, McIntyre L, Renne R. LANA binds to multiple active viral and cellular promoters and associates with the H3K4methyltransferase hSET1 complex. PLoS Pathog. 2014;10:e1004240 pubmed 出版商
  621. Stilling R, Rönicke R, Benito E, Urbanke H, Capece V, Burkhardt S, et al. K-Lysine acetyltransferase 2a regulates a hippocampal gene expression network linked to memory formation. EMBO J. 2014;33:1912-27 pubmed 出版商
  622. Zheng Y, Hsu F, Xu W, Xie X, Ren X, Gao X, et al. A developmental genetic analysis of the lysine demethylase KDM2 mutations in Drosophila melanogaster. Mech Dev. 2014;133:36-53 pubmed 出版商
  623. Tiwari S, Dharmarajan S, Shivanna M, Otteson D, Belecky Adams T. Histone deacetylase expression patterns in developing murine optic nerve. BMC Dev Biol. 2014;14:30 pubmed 出版商
  624. Butts T, Hanzel M, Wingate R. Transit amplification in the amniote cerebellum evolved via a heterochronic shift in NeuroD1 expression. Development. 2014;141:2791-5 pubmed 出版商
  625. Wang X, Gong Y, Jin B, Wu C, Yang J, Wang L, et al. Long non-coding RNA urothelial carcinoma associated 1 induces cell replication by inhibiting BRG1 in 5637 cells. Oncol Rep. 2014;32:1281-90 pubmed 出版商
  626. Sankar S, Theisen E, Bearss J, Mulvihill T, Hoffman L, Sorna V, et al. Reversible LSD1 inhibition interferes with global EWS/ETS transcriptional activity and impedes Ewing sarcoma tumor growth. Clin Cancer Res. 2014;20:4584-97 pubmed 出版商
  627. Kim C, Pasparakis M. Epidermal p65/NF-?B signalling is essential for skin carcinogenesis. EMBO Mol Med. 2014;6:970-83 pubmed 出版商
  628. Jha D, Strahl B. An RNA polymerase II-coupled function for histone H3K36 methylation in checkpoint activation and DSB repair. Nat Commun. 2014;5:3965 pubmed 出版商
  629. Bullard W, LOPES DA ROSA SPIEGLER J, Liu S, Wang Y, Sabatini R. Identification of the glucosyltransferase that converts hydroxymethyluracil to base J in the trypanosomatid genome. J Biol Chem. 2014;289:20273-82 pubmed 出版商
  630. Zhu Z, Liu Y, Li K, Liu J, Wang H, Sun B, et al. Protein tyrosine phosphatase receptor U (PTPRU) is required for glioma growth and motility. Carcinogenesis. 2014;35:1901-10 pubmed 出版商
  631. Kumar P P, Emechebe U, Smith R, Franklin S, Moore B, Yandell M, et al. Coordinated control of senescence by lncRNA and a novel T-box3 co-repressor complex. elife. 2014;3: pubmed 出版商
  632. Cooper S, Dienstbier M, Hassan R, Schermelleh L, Sharif J, Blackledge N, et al. Targeting polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment. Cell Rep. 2014;7:1456-1470 pubmed 出版商
  633. Carvalho S, Vítor A, Sridhara S, Martins F, Raposo A, Desterro J, et al. SETD2 is required for DNA double-strand break repair and activation of the p53-mediated checkpoint. elife. 2014;3:e02482 pubmed 出版商
  634. Raimondi L, Amodio N, Di Martino M, Altomare E, Leotta M, Caracciolo D, et al. Targeting of multiple myeloma-related angiogenesis by miR-199a-5p mimics: in vitro and in vivo anti-tumor activity. Oncotarget. 2014;5:3039-54 pubmed
  635. Chen Y, Chen J, Yu J, Yang G, Temple E, Harbinski F, et al. Identification of mixed lineage leukemia 1(MLL1) protein as a coactivator of heat shock factor 1(HSF1) protein in response to heat shock protein 90 (HSP90) inhibition. J Biol Chem. 2014;289:18914-27 pubmed 出版商
  636. Yokoyama A, Igarashi K, Sato T, Takagi K, Otsuka I M, Shishido Y, et al. Identification of myelin transcription factor 1 (MyT1) as a subunit of the neural cell type-specific lysine-specific demethylase 1 (LSD1) complex. J Biol Chem. 2014;289:18152-62 pubmed 出版商
  637. Pamblanco M, Oliete Calvo P, García Oliver E, Luz Valero M, Sánchez Del Pino M, Rodriguez Navarro S. Unveiling novel interactions of histone chaperone Asf1 linked to TREX-2 factors Sus1 and Thp1. Nucleus. 2014;5:247-59 pubmed 出版商
  638. Brown D, LASSEGUE B, Lee M, Zafari R, Long J, Saavedra H, et al. Poldip2 knockout results in perinatal lethality, reduced cellular growth and increased autophagy of mouse embryonic fibroblasts. PLoS ONE. 2014;9:e96657 pubmed 出版商
  639. Dottermusch Heidel C, Gärtner S, Tegeder I, Rathke C, Barckmann B, Bartkuhn M, et al. H3K79 methylation: a new conserved mark that accompanies H4 hyperacetylation prior to histone-to-protamine transition in Drosophila and rat. Biol Open. 2014;3:444-52 pubmed 出版商
  640. Cordero J, Ridgway R, Valeri N, Nixon C, Frame M, Muller W, et al. c-Src drives intestinal regeneration and transformation. EMBO J. 2014;33:1474-91 pubmed 出版商
  641. Ullius A, Lüscher Firzlaff J, Costa I, Walsemann G, Forst A, Gusmao E, et al. The interaction of MYC with the trithorax protein ASH2L promotes gene transcription by regulating H3K27 modification. Nucleic Acids Res. 2014;42:6901-20 pubmed 出版商
  642. Cen B, Xiong Y, Song J, Mahajan S, DuPont R, McEachern K, et al. The Pim-1 protein kinase is an important regulator of MET receptor tyrosine kinase levels and signaling. Mol Cell Biol. 2014;34:2517-32 pubmed 出版商
  643. Tong Q, He S, Xie F, Mochizuki K, Liu Y, Mochizuki I, et al. Ezh2 regulates transcriptional and posttranslational expression of T-bet and promotes Th1 cell responses mediating aplastic anemia in mice. J Immunol. 2014;192:5012-22 pubmed 出版商
  644. Seki M, Masaki H, Arauchi T, Nakauchi H, Sugano S, Suzuki Y. A comparison of the rest complex binding patterns in embryonic stem cells and epiblast stem cells. PLoS ONE. 2014;9:e95374 pubmed 出版商
  645. Sun Y, Chung H, Woo A, Lin V. Protein arginine methyltransferase 6 enhances ligand-dependent and -independent activity of estrogen receptor ? via distinct mechanisms. Biochim Biophys Acta. 2014;1843:2067-78 pubmed 出版商
  646. Elhammali A, Ippolito J, Collins L, Crowley J, Marasa J, Piwnica Worms D. A high-throughput fluorimetric assay for 2-hydroxyglutarate identifies Zaprinast as a glutaminase inhibitor. Cancer Discov. 2014;4:828-39 pubmed 出版商
  647. Ray S, Li H, Metzger E, Schüle R, Leiter A. CtBP and associated LSD1 are required for transcriptional activation by NeuroD1 in gastrointestinal endocrine cells. Mol Cell Biol. 2014;34:2308-17 pubmed 出版商
  648. Sharifi H, Furuya A, Jellinger R, Nekorchuk M, de Noronha C. Cullin4A and cullin4B are interchangeable for HIV Vpr and Vpx action through the CRL4 ubiquitin ligase complex. J Virol. 2014;88:6944-58 pubmed 出版商
  649. Gjidoda A, Tagore M, McAndrew M, Woods A, Floer M. Nucleosomes are stably evicted from enhancers but not promoters upon induction of certain pro-inflammatory genes in mouse macrophages. PLoS ONE. 2014;9:e93971 pubmed 出版商
  650. Tafrova J, Tafrov S. Human histone acetyltransferase 1 (Hat1) acetylates lysine 5 of histone H2A in vivo. Mol Cell Biochem. 2014;392:259-72 pubmed 出版商
  651. Smith I, Godinez G, Singh B, McCaughey K, Alcantara R, Gururaja T, et al. Inhibition of Janus kinase signaling during controlled mechanical ventilation prevents ventilation-induced diaphragm dysfunction. FASEB J. 2014;28:2790-803 pubmed 出版商
  652. Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, et al. REST and stress resistance in ageing and Alzheimer's disease. Nature. 2014;507:448-54 pubmed 出版商
  653. Stimpson K, Sullivan L, Kuo M, Sullivan B. Nucleolar organization, ribosomal DNA array stability, and acrocentric chromosome integrity are linked to telomere function. PLoS ONE. 2014;9:e92432 pubmed 出版商
  654. Creamer K, Job G, Shanker S, Neale G, Lin Y, Bartholomew B, et al. The Mi-2 homolog Mit1 actively positions nucleosomes within heterochromatin to suppress transcription. Mol Cell Biol. 2014;34:2046-61 pubmed 出版商
  655. Zeng Z, Shen L, Li X, Luo T, Wei X, Zhang J, et al. Disruption of histamine H2 receptor slows heart failure progression through reducing myocardial apoptosis and fibrosis. Clin Sci (Lond). 2014;127:435-48 pubmed 出版商
  656. Loukil A, Zonca M, Rebouissou C, Baldin V, Coux O, Biard Piechaczyk M, et al. High-resolution live-cell imaging reveals novel cyclin A2 degradation foci involving autophagy. J Cell Sci. 2014;127:2145-50 pubmed 出版商
  657. Mäkelä J, Toppari J, Rivero Muller A, Ventelä S. Reconstruction of mouse testicular cellular microenvironments in long-term seminiferous tubule culture. PLoS ONE. 2014;9:e90088 pubmed 出版商
  658. van Gent M, Braem S, de Jong A, Delagic N, Peeters J, Boer I, et al. Epstein-Barr virus large tegument protein BPLF1 contributes to innate immune evasion through interference with toll-like receptor signaling. PLoS Pathog. 2014;10:e1003960 pubmed 出版商
  659. Knutson S, Kawano S, Minoshima Y, Warholic N, Huang K, Xiao Y, et al. Selective inhibition of EZH2 by EPZ-6438 leads to potent antitumor activity in EZH2-mutant non-Hodgkin lymphoma. Mol Cancer Ther. 2014;13:842-54 pubmed 出版商
  660. Hwang W, Jiang J, Yang S, Huang T, Lan H, Teng H, et al. MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat Cell Biol. 2014;16:268-80 pubmed 出版商
  661. Lehnertz B, Pabst C, Su L, Miller M, Liu F, Yi L, et al. The methyltransferase G9a regulates HoxA9-dependent transcription in AML. Genes Dev. 2014;28:317-27 pubmed 出版商
  662. Shao D, Zhai P, Del Re D, Sciarretta S, Yabuta N, Nojima H, et al. A functional interaction between Hippo-YAP signalling and FoxO1 mediates the oxidative stress response. Nat Commun. 2014;5:3315 pubmed 出版商
  663. Yoon H, Choi Y, Song J, Do I, Kang S, Ko Y, et al. Targeted inhibition of FAK, PYK2 and BCL-XL synergistically enhances apoptosis in ovarian clear cell carcinoma cell lines. PLoS ONE. 2014;9:e88587 pubmed 出版商
  664. Muenyi C, Trivedi A, Helm C, States J. Cisplatin plus sodium arsenite and hyperthermia induces pseudo-G1 associated apoptotic cell death in ovarian cancer cells. Toxicol Sci. 2014;139:74-82 pubmed 出版商
  665. Mohan R, Dialynas G, Weake V, Liu J, Martin Brown S, Florens L, et al. Loss of Drosophila Ataxin-7, a SAGA subunit, reduces H2B ubiquitination and leads to neural and retinal degeneration. Genes Dev. 2014;28:259-72 pubmed 出版商
  666. Wu C, Feng X, Wei L. Coordinated repressive chromatin-remodeling of Oct4 and Nanog genes in RA-induced differentiation of embryonic stem cells involves RIP140. Nucleic Acids Res. 2014;42:4306-17 pubmed 出版商
  667. Yun W, Kim Y, Kang Y, Lee J, Dean A, Kim A. The hematopoietic regulator TAL1 is required for chromatin looping between the ?-globin LCR and human ?-globin genes to activate transcription. Nucleic Acids Res. 2014;42:4283-93 pubmed 出版商
  668. Arnandis T, Ferrer Vicens I, Torres L, García C, García Trevijano E, Zaragoza R, et al. Differential functions of calpain 1 during epithelial cell death and adipocyte differentiation in mammary gland involution. Biochem J. 2014;459:355-68 pubmed 出版商
  669. Fowler T, Ghatak P, Price D, Conaway R, Conaway J, Chiang C, et al. Regulation of MYC expression and differential JQ1 sensitivity in cancer cells. PLoS ONE. 2014;9:e87003 pubmed 出版商
  670. Li A, Morton J, Ma Y, Karim S, Zhou Y, Faller W, et al. Fascin is regulated by slug, promotes progression of pancreatic cancer in mice, and is associated with patient outcomes. Gastroenterology. 2014;146:1386-96.e1-17 pubmed 出版商
  671. Cao Q, Wang X, Zhao M, Yang R, Malik R, Qiao Y, et al. The central role of EED in the orchestration of polycomb group complexes. Nat Commun. 2014;5:3127 pubmed 出版商
  672. Hilliard S, Yao X, El Dahr S. Mdm2 is required for maintenance of the nephrogenic niche. Dev Biol. 2014;387:1-14 pubmed 出版商
  673. Denissov S, Hofemeister H, Marks H, Kranz A, Ciotta G, Singh S, et al. Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant. Development. 2014;141:526-37 pubmed 出版商
  674. Maroschik B, Gürtler A, Kramer A, Rößler U, Gomolka M, Hornhardt S, et al. Radiation-induced alterations of histone post-translational modification levels in lymphoblastoid cell lines. Radiat Oncol. 2014;9:15 pubmed 出版商
  675. Wang J, Dixon S, Ting L, Liu T, Jeffers V, Croken M, et al. Lysine acetyltransferase GCN5b interacts with AP2 factors and is required for Toxoplasma gondii proliferation. PLoS Pathog. 2014;10:e1003830 pubmed 出版商
  676. Parrish J, Sechler M, Winn R, Jedlicka P. The histone demethylase KDM3A is a microRNA-22-regulated tumor promoter in Ewing Sarcoma. Oncogene. 2015;34:257-62 pubmed 出版商
  677. Schröder Heurich B, Wieland B, Lavin M, Schindler D, Dork T. Protective role of RAD50 on chromatin bridges during abnormal cytokinesis. FASEB J. 2014;28:1331-41 pubmed 出版商
  678. van Heeringen S, Akkers R, van Kruijsbergen I, Arif M, Hanssen L, Sharifi N, et al. Principles of nucleation of H3K27 methylation during embryonic development. Genome Res. 2014;24:401-10 pubmed 出版商
  679. Feng Y, Wu H, Xu Y, Zhang Z, Liu T, Lin X, et al. Zinc finger protein 451 is a novel Smad corepressor in transforming growth factor-? signaling. J Biol Chem. 2014;289:2072-83 pubmed 出版商
  680. Hast B, Cloer E, Goldfarb D, Li H, Siesser P, Yan F, et al. Cancer-derived mutations in KEAP1 impair NRF2 degradation but not ubiquitination. Cancer Res. 2014;74:808-17 pubmed 出版商
  681. Sulahian R, Casey F, Shen J, Qian Z, Shin H, Ogino S, et al. An integrative analysis reveals functional targets of GATA6 transcriptional regulation in gastric cancer. Oncogene. 2014;33:5637-48 pubmed 出版商
  682. Chen Y, Kao S, Wang H, Yang M. Histone modification patterns correlate with patient outcome in oral squamous cell carcinoma. Cancer. 2013;119:4259-67 pubmed 出版商
  683. Subbanna S, Nagre N, Shivakumar M, Umapathy N, Psychoyos D, Basavarajappa B. Ethanol induced acetylation of histone at G9a exon1 and G9a-mediated histone H3 dimethylation leads to neurodegeneration in neonatal mice. Neuroscience. 2014;258:422-32 pubmed 出版商
  684. Gallego Paez L, Tanaka H, Bando M, Takahashi M, Nozaki N, Nakato R, et al. Smc5/6-mediated regulation of replication progression contributes to chromosome assembly during mitosis in human cells. Mol Biol Cell. 2014;25:302-17 pubmed 出版商
  685. Liu Y, Platchek M, Kement B, Bee W, Truong M, Zeng X, et al. A novel approach applying a chemical biology strategy in phenotypic screening reveals pathway-selective regulators of histone 3 K27 tri-methylation. Mol Biosyst. 2014;10:251-7 pubmed 出版商
  686. Guo C, Chen L, Huang Y, Chang C, Wang P, Pirozzi C, et al. KMT2D maintains neoplastic cell proliferation and global histone H3 lysine 4 monomethylation. Oncotarget. 2013;4:2144-53 pubmed
  687. Otero J, Kalaszczynska I, Michowski W, Wong M, Gygli P, Gokozan H, et al. Cerebellar cortical lamination and foliation require cyclin A2. Dev Biol. 2014;385:328-39 pubmed 出版商
  688. Dai X, Jiang W, Zhang Q, Xu L, Geng P, Zhuang S, et al. Requirement for integrin-linked kinase in neural crest migration and differentiation and outflow tract morphogenesis. BMC Biol. 2013;11:107 pubmed 出版商
  689. Tümer E, Bröer A, Balkrishna S, Jülich T, Broer S. Enterocyte-specific regulation of the apical nutrient transporter SLC6A19 (B(0)AT1) by transcriptional and epigenetic networks. J Biol Chem. 2013;288:33813-23 pubmed 出版商
  690. DeGennaro C, Alver B, Marguerat S, Stepanova E, Davis C, Bähler J, et al. Spt6 regulates intragenic and antisense transcription, nucleosome positioning, and histone modifications genome-wide in fission yeast. Mol Cell Biol. 2013;33:4779-92 pubmed 出版商
  691. Attema J, Bert A, Lim Y, Kolesnikoff N, Lawrence D, Pillman K, et al. Identification of an enhancer that increases miR-200b~200a~429 gene expression in breast cancer cells. PLoS ONE. 2013;8:e75517 pubmed 出版商
  692. Majocchi S, Aritonovska E, Mermod N. Epigenetic regulatory elements associate with specific histone modifications to prevent silencing of telomeric genes. Nucleic Acids Res. 2014;42:193-204 pubmed 出版商
  693. Ravnskjaer K, Hogan M, Lackey D, Tora L, Dent S, Olefsky J, et al. Glucagon regulates gluconeogenesis through KAT2B- and WDR5-mediated epigenetic effects. J Clin Invest. 2013;123:4318-28 pubmed 出版商
  694. Yuan G, Ma B, Yuan W, Zhang Z, Chen P, Ding X, et al. Histone H2A ubiquitination inhibits the enzymatic activity of H3 lysine 36 methyltransferases. J Biol Chem. 2013;288:30832-42 pubmed 出版商
  695. Mendenhall E, Williamson K, Reyon D, Zou J, Ram O, Joung J, et al. Locus-specific editing of histone modifications at endogenous enhancers. Nat Biotechnol. 2013;31:1133-6 pubmed 出版商
  696. Hosogane M, Funayama R, Nishida Y, Nagashima T, Nakayama K. Ras-induced changes in H3K27me3 occur after those in transcriptional activity. PLoS Genet. 2013;9:e1003698 pubmed 出版商
  697. Luebben S, Kawabata T, Akre M, Lee W, Johnson C, O Sullivan M, et al. Helq acts in parallel to Fancc to suppress replication-associated genome instability. Nucleic Acids Res. 2013;41:10283-97 pubmed 出版商
  698. Singh B, Sinha R, Zhou J, Xie S, You S, Gauthier K, et al. FoxO1 deacetylation regulates thyroid hormone-induced transcription of key hepatic gluconeogenic genes. J Biol Chem. 2013;288:30365-72 pubmed 出版商
  699. Subramanian V, Mazumder A, Surface L, Butty V, Fields P, Alwan A, et al. H2A.Z acidic patch couples chromatin dynamics to regulation of gene expression programs during ESC differentiation. PLoS Genet. 2013;9:e1003725 pubmed 出版商
  700. Lee S, Phipson B, Hyland C, Leong H, Allan R, Lun A, et al. Polycomb repressive complex 2 (PRC2) suppresses E?-myc lymphoma. Blood. 2013;122:2654-63 pubmed 出版商
  701. Copeland A, Altamura L, Van Deusen N, Schmaljohn C. Nuclear relocalization of polyadenylate binding protein during rift valley fever virus infection involves expression of the NSs gene. J Virol. 2013;87:11659-69 pubmed 出版商
  702. Voss M, Campbell K, Saranzewa N, Campbell D, Hastie C, Peggie M, et al. Protein phosphatase 4 is phosphorylated and inactivated by Cdk in response to spindle toxins and interacts with ?-tubulin. Cell Cycle. 2013;12:2876-87 pubmed 出版商
  703. Kycia I, Kudithipudi S, Tamas R, Kungulovski G, Dhayalan A, Jeltsch A. The Tudor domain of the PHD finger protein 1 is a dual reader of lysine trimethylation at lysine 36 of histone H3 and lysine 27 of histone variant H3t. J Mol Biol. 2014;426:1651-60 pubmed 出版商
  704. Tan E, Caro S, Potnis A, Lanza C, Slawson C. O-linked N-acetylglucosamine cycling regulates mitotic spindle organization. J Biol Chem. 2013;288:27085-99 pubmed 出版商
  705. Yang L, Han Y, Li G, Xu H, Jiang G, Miao Y, et al. Axin gene methylation status correlates with radiosensitivity of lung cancer cells. BMC Cancer. 2013;13:368 pubmed 出版商
  706. Lauffer B, Mintzer R, Fong R, Mukund S, Tam C, Zilberleyb I, et al. Histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability. J Biol Chem. 2013;288:26926-43 pubmed 出版商
  707. Londoño Gentile T, Lu C, Lodato P, Tse S, Olejniczak S, Witze E, et al. DNMT1 is regulated by ATP-citrate lyase and maintains methylation patterns during adipocyte differentiation. Mol Cell Biol. 2013;33:3864-78 pubmed 出版商
  708. Garriock R, Mikawa T, Yamaguchi T. Isolation and culture of mouse proepicardium using serum-free conditions. Methods. 2014;66:365-9 pubmed 出版商
  709. Bengani H, Mendiratta S, Maini J, Vasanthi D, Sultana H, Ghasemi M, et al. Identification and Validation of a Putative Polycomb Responsive Element in the Human Genome. PLoS ONE. 2013;8:e67217 pubmed 出版商
  710. Mayekar M, Gardner R, Arndt K. The recruitment of the Saccharomyces cerevisiae Paf1 complex to active genes requires a domain of Rtf1 that directly interacts with the Spt4-Spt5 complex. Mol Cell Biol. 2013;33:3259-73 pubmed 出版商
  711. Benavente C, McEvoy J, Finkelstein D, Wei L, Kang G, Wang Y, et al. Cross-species genomic and epigenomic landscape of retinoblastoma. Oncotarget. 2013;4:844-59 pubmed
  712. Di Giacomo M, Comazzetto S, Saini H, De Fazio S, Carrieri C, Morgan M, et al. Multiple epigenetic mechanisms and the piRNA pathway enforce LINE1 silencing during adult spermatogenesis. Mol Cell. 2013;50:601-8 pubmed 出版商
  713. Dai C, Sun F, Zhu C, Hu X. Tumor environmental factors glucose deprivation and lactic acidosis induce mitotic chromosomal instability--an implication in aneuploid human tumors. PLoS ONE. 2013;8:e63054 pubmed 出版商
  714. Olsen J, Oyan A, Rostad K, Hellem M, Liu J, Li L, et al. p63 attenuates epithelial to mesenchymal potential in an experimental prostate cell model. PLoS ONE. 2013;8:e62547 pubmed 出版商
  715. Popova E, Grigoryev S, Fan Y, Skoultchi A, Zhang S, Barnstable C. Developmentally regulated linker histone H1c promotes heterochromatin condensation and mediates structural integrity of rod photoreceptors in mouse retina. J Biol Chem. 2013;288:17895-907 pubmed 出版商
  716. Huang S, Scruggs A, Donaghy J, Horowitz J, Zaslona Z, Przybranowski S, et al. Histone modifications are responsible for decreased Fas expression and apoptosis resistance in fibrotic lung fibroblasts. Cell Death Dis. 2013;4:e621 pubmed 出版商
  717. Zhou P, Wang Z, Yuan X, Zhou C, Liu L, Wan X, et al. Mixed lineage leukemia 5 (MLL5) protein regulates cell cycle progression and E2F1-responsive gene expression via association with host cell factor-1 (HCF-1). J Biol Chem. 2013;288:17532-43 pubmed 出版商
  718. Banduseela V, Chen Y, Kultima H, Norman H, Aare S, Radell P, et al. Impaired autophagy, chaperone expression, and protein synthesis in response to critical illness interventions in porcine skeletal muscle. Physiol Genomics. 2013;45:477-86 pubmed 出版商
  719. Luo M, Ling T, Xie W, Sun H, Zhou Y, Zhu Q, et al. NuRD blocks reprogramming of mouse somatic cells into pluripotent stem cells. Stem Cells. 2013;31:1278-86 pubmed 出版商
  720. Valdés Sánchez T, Rodríguez Jiménez F, García Cruz D, Escobar Ivirico J, Alastrue Agudo A, Erceg S, et al. Methacrylate-endcapped caprolactone and FM19G11 provide a proper niche for spinal cord-derived neural cells. J Tissue Eng Regen Med. 2015;9:734-9 pubmed 出版商
  721. Tong K, Kwan K. Common partner Smad-independent canonical bone morphogenetic protein signaling in the specification process of the anterior rhombic lip during cerebellum development. Mol Cell Biol. 2013;33:1925-37 pubmed 出版商
  722. Kim B, Zaveri H, Shchelochkov O, Yu Z, Hernandez Garcia A, Seymour M, et al. An allelic series of mice reveals a role for RERE in the development of multiple organs affected in chromosome 1p36 deletions. PLoS ONE. 2013;8:e57460 pubmed 出版商
  723. Imbalzano K, Cohet N, Wu Q, Underwood J, Imbalzano A, Nickerson J. Nuclear shape changes are induced by knockdown of the SWI/SNF ATPase BRG1 and are independent of cytoskeletal connections. PLoS ONE. 2013;8:e55628 pubmed 出版商
  724. Subbanna S, Shivakumar M, Umapathy N, Saito M, Mohan P, Kumar A, et al. G9a-mediated histone methylation regulates ethanol-induced neurodegeneration in the neonatal mouse brain. Neurobiol Dis. 2013;54:475-85 pubmed 出版商
  725. Kuwahara Y, Wei D, Durand J, Weissman B. SNF5 reexpression in malignant rhabdoid tumors regulates transcription of target genes by recruitment of SWI/SNF complexes and RNAPII to the transcription start site of their promoters. Mol Cancer Res. 2013;11:251-60 pubmed 出版商
  726. Li L, Yang G, Ren C, Tanimoto R, Hirayama T, Wang J, et al. Glioma pathogenesis-related protein 1 induces prostate cancer cell death through Hsc70-mediated suppression of AURKA and TPX2. Mol Oncol. 2013;7:484-96 pubmed 出版商
  727. Ford C, Jary E, Ma S, Nixdorf S, Heinzelmann Schwarz V, Ward R. The Wnt gatekeeper SFRP4 modulates EMT, cell migration and downstream Wnt signalling in serous ovarian cancer cells. PLoS ONE. 2013;8:e54362 pubmed 出版商
  728. Wang Y, Dantas T, Lalor P, Dockery P, Morrison C. Promoter hijack reveals pericentrin functions in mitosis and the DNA damage response. Cell Cycle. 2013;12:635-46 pubmed 出版商
  729. Kuroda K, Venkatakrishnan R, Salker M, Lucas E, Shaheen F, Kuroda M, et al. Induction of 11?-HSD 1 and activation of distinct mineralocorticoid receptor- and glucocorticoid receptor-dependent gene networks in decidualizing human endometrial stromal cells. Mol Endocrinol. 2013;27:192-202 pubmed 出版商
  730. Boshnjaku V, Shim K, Tsurubuchi T, Ichi S, Szany E, Xi G, et al. Nuclear localization of folate receptor alpha: a new role as a transcription factor. Sci Rep. 2012;2:980 pubmed 出版商
  731. Schang A, Granger A, Querat B, Bleux C, Cohen Tannoudji J, Laverrière J. GATA2-induced silencing and LIM-homeodomain protein-induced activation are mediated by a bi-functional response element in the rat GnRH receptor gene. Mol Endocrinol. 2013;27:74-91 pubmed 出版商
  732. Qi W, Spier C, Liu X, Agarwal A, Cooke L, Persky D, et al. Alisertib (MLN8237) an investigational agent suppresses Aurora A and B activity, inhibits proliferation, promotes endo-reduplication and induces apoptosis in T-NHL cell lines supporting its importance in PTCL treatment. Leuk Res. 2013;37:434-9 pubmed 出版商
  733. Blakemore L, Boes C, Cordell R, Manson M. Curcumin-induced mitotic arrest is characterized by spindle abnormalities, defects in chromosomal congression and DNA damage. Carcinogenesis. 2013;34:351-60 pubmed 出版商
  734. Chase K, Sharma R. Nicotine induces chromatin remodelling through decreases in the methyltransferases GLP, G9a, Setdb1 and levels of H3K9me2. Int J Neuropsychopharmacol. 2013;16:1129-38 pubmed 出版商
  735. Schwab K, Smith G, Dressler G. Arrested spermatogenesis and evidence for DNA damage in PTIP mutant testes. Dev Biol. 2013;373:64-71 pubmed 出版商
  736. Farioli Vecchioli S, Micheli L, Saraulli D, Ceccarelli M, Cannas S, Scardigli R, et al. Btg1 is Required to Maintain the Pool of Stem and Progenitor Cells of the Dentate Gyrus and Subventricular Zone. Front Neurosci. 2012;6:124 pubmed 出版商
  737. Stender J, Pascual G, Liu W, Kaikkonen M, Do K, Spann N, et al. Control of proinflammatory gene programs by regulated trimethylation and demethylation of histone H4K20. Mol Cell. 2012;48:28-38 pubmed 出版商
  738. Milavetz B, Kallestad L, Gefroh A, Adams N, Woods E, Balakrishnan L. Virion-mediated transfer of SV40 epigenetic information. Epigenetics. 2012;7:528-34 pubmed 出版商
  739. Ma P, Pan H, Montgomery R, Olson E, Schultz R. Compensatory functions of histone deacetylase 1 (HDAC1) and HDAC2 regulate transcription and apoptosis during mouse oocyte development. Proc Natl Acad Sci U S A. 2012;109:E481-9 pubmed 出版商
  740. Shah S, Henriksen M. A novel disrupter of telomere silencing 1-like (DOT1L) interaction is required for signal transducer and activator of transcription 1 (STAT1)-activated gene expression. J Biol Chem. 2011;286:41195-204 pubmed 出版商
  741. Wu F, Sapkota D, Li R, Mu X. Onecut 1 and Onecut 2 are potential regulators of mouse retinal development. J Comp Neurol. 2012;520:952-69 pubmed 出版商
  742. DiNieri J, Wang X, Szutorisz H, Spano S, Kaur J, CASACCIA P, et al. Maternal cannabis use alters ventral striatal dopamine D2 gene regulation in the offspring. Biol Psychiatry. 2011;70:763-9 pubmed 出版商
  743. Tan M, Lim H, Harper J. SCF(FBXO22) regulates histone H3 lysine 9 and 36 methylation levels by targeting histone demethylase KDM4A for ubiquitin-mediated proteasomal degradation. Mol Cell Biol. 2011;31:3687-99 pubmed 出版商
  744. Hainer S, Martens J. Identification of histone mutants that are defective for transcription-coupled nucleosome occupancy. Mol Cell Biol. 2011;31:3557-68 pubmed 出版商
  745. Wiench M, John S, Baek S, Johnson T, Sung M, Escobar T, et al. DNA methylation status predicts cell type-specific enhancer activity. EMBO J. 2011;30:3028-39 pubmed 出版商
  746. Crisucci E, Arndt K. The Paf1 complex represses ARG1 transcription in Saccharomyces cerevisiae by promoting histone modifications. Eukaryot Cell. 2011;10:712-23 pubmed 出版商
  747. Zhao J, Yue W, Zhu M, Du M. AMP-activated protein kinase regulates beta-catenin transcription via histone deacetylase 5. J Biol Chem. 2011;286:16426-34 pubmed 出版商
  748. Karius T, Schnekenburger M, Ghelfi J, Walter J, Dicato M, Diederich M. Reversible epigenetic fingerprint-mediated glutathione-S-transferase P1 gene silencing in human leukemia cell lines. Biochem Pharmacol. 2011;81:1329-42 pubmed 出版商
  749. Eckler M, McKenna W, Taghvaei S, McConnell S, Chen B. Fezf1 and Fezf2 are required for olfactory development and sensory neuron identity. J Comp Neurol. 2011;519:1829-46 pubmed 出版商
  750. Wang B, Lufkin T, Rubenstein J. Dlx6 regulates molecular properties of the striatum and central nucleus of the amygdala. J Comp Neurol. 2011;519:2320-34 pubmed 出版商
  751. Nasonkin I, Lazo K, Hambright D, Brooks M, Fariss R, Swaroop A. Distinct nuclear localization patterns of DNA methyltransferases in developing and mature mammalian retina. J Comp Neurol. 2011;519:1914-30 pubmed 出版商
  752. Xie L, Pelz C, Wang W, Bashar A, Varlamova O, Shadle S, et al. KDM5B regulates embryonic stem cell self-renewal and represses cryptic intragenic transcription. EMBO J. 2011;30:1473-84 pubmed 出版商
  753. Fossati A, Dolfini D, Donati G, Mantovani R. NF-Y recruits Ash2L to impart H3K4 trimethylation on CCAAT promoters. PLoS ONE. 2011;6:e17220 pubmed 出版商
  754. Weishaupt H, Attema J. A Method to Study the Epigenetic Chromatin States of Rare Hematopoietic Stem and Progenitor Cells; MiniChIP-Chip. Biol Proced Online. 2010;12:1-17 pubmed 出版商
  755. Wu S, Zhang H, Cairns B. Genes for embryo development are packaged in blocks of multivalent chromatin in zebrafish sperm. Genome Res. 2011;21:578-89 pubmed 出版商
  756. Egelhofer T, Minoda A, Klugman S, Lee K, Kolasinska Zwierz P, Alekseyenko A, et al. An assessment of histone-modification antibody quality. Nat Struct Mol Biol. 2011;18:91-3 pubmed 出版商
  757. Kumari D, Biacsi R, Usdin K. Repeat expansion affects both transcription initiation and elongation in friedreich ataxia cells. J Biol Chem. 2011;286:4209-15 pubmed 出版商
  758. Sneeringer C, Scott M, Kuntz K, Knutson S, Pollock R, Richon V, et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci U S A. 2010;107:20980-5 pubmed 出版商
  759. Govin J, Dorsey J, Gaucher J, Rousseaux S, Khochbin S, Berger S. Systematic screen reveals new functional dynamics of histones H3 and H4 during gametogenesis. Genes Dev. 2010;24:1772-86 pubmed 出版商
  760. Collins P, Chang S, Henderson M, Soutto M, Davis G, McLoed A, et al. Distal regions of the human IFNG locus direct cell type-specific expression. J Immunol. 2010;185:1492-501 pubmed 出版商
  761. Hirata H, Hinoda Y, Nakajima K, Kawamoto K, Kikuno N, Ueno K, et al. Wnt antagonist DKK1 acts as a tumor suppressor gene that induces apoptosis and inhibits proliferation in human renal cell carcinoma. Int J Cancer. 2011;128:1793-803 pubmed 出版商
  762. Dhayalan A, Rajavelu A, Rathert P, Tamas R, Jurkowska R, Ragozin S, et al. The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation. J Biol Chem. 2010;285:26114-20 pubmed 出版商
  763. Ribarska T, Ingenwerth M, Goering W, Engers R, Schulz W. Epigenetic inactivation of the placentally imprinted tumor suppressor gene TFPI2 in prostate carcinoma. Cancer Genomics Proteomics. 2010;7:51-60 pubmed
  764. Farioli Vecchioli S, Saraulli D, Costanzi M, Leonardi L, Cinà I, Micheli L, et al. Impaired terminal differentiation of hippocampal granule neurons and defective contextual memory in PC3/Tis21 knockout mice. PLoS ONE. 2009;4:e8339 pubmed 出版商