这是一篇来自已证抗体库的有关人类 HIST2H3D的综述,是根据26篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合HIST2H3D 抗体。
HIST2H3D 同义词: histone H3.2; histone 2, H3d; histone cluster 2, H3d

西格玛奥德里奇
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
西格玛奥德里奇 HIST2H3D抗体(sigma, H0134)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3b). J Mol Med (Berl) (2016) ncbi
小鼠 单克隆(AH3-120)
  • 染色质免疫沉淀 ; 人类; 图 s6f
西格玛奥德里奇 HIST2H3D抗体(Sigma-Aldrich, H0913)被用于被用于染色质免疫沉淀 在人类样品上 (图 s6f). Sci Rep (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 3f
西格玛奥德里奇 HIST2H3D抗体(Sigma-Aldrich, D5567)被用于被用于染色质免疫沉淀 在人类样品上 (图 3f). Sci Rep (2016) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-石蜡切片; 小鼠; 1:1500; 图 1
西格玛奥德里奇 HIST2H3D抗体(Sigma, H9908)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1500 (图 1). Breast Cancer Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7
西格玛奥德里奇 HIST2H3D抗体(Sigma, H0412)被用于被用于免疫印迹在人类样品上 (图 7). Neoplasia (2016) ncbi
小鼠 单克隆(APH3-64)
  • 其他; 人类; 图 st1
西格玛奥德里奇 HIST2H3D抗体(SIGMA, APH3-64)被用于被用于其他在人类样品上 (图 st1). Mol Cell Proteomics (2016) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-石蜡切片; 小鼠; 图 7
西格玛奥德里奇 HIST2H3D抗体(Sigma-Alrich, H9908)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 7). Lab Invest (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 HIST2H3D抗体(Sigma, H0164)被用于被用于免疫印迹在人类样品上 (图 2). Oxid Med Cell Longev (2015) ncbi
大鼠 单克隆(HTA28)
  • 免疫细胞化学; common tobacco; 1:200; 图 5
西格玛奥德里奇 HIST2H3D抗体(Sigma, H9908)被用于被用于免疫细胞化学在common tobacco样品上浓度为1:200 (图 5). Front Plant Sci (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 2
西格玛奥德里奇 HIST2H3D抗体(Sigma, D5567)被用于被用于染色质免疫沉淀 在小鼠样品上 (图 2). Nat Commun (2015) ncbi
大鼠 单克隆(HTA28)
  • 免疫细胞化学; 小鼠; 1:100; 图 2
西格玛奥德里奇 HIST2H3D抗体(Sigma-Aldrich, H9908)被用于被用于免疫细胞化学在小鼠样品上浓度为1:100 (图 2). Development (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 HIST2H3D抗体(Sigma Aldrich, H0164)被用于被用于免疫印迹在人类样品上浓度为1:5000. Biotechnol Bioeng (2015) ncbi
小鼠 单克隆(AH3-120)
  • 免疫印迹; 人类; 1:500
西格玛奥德里奇 HIST2H3D抗体(Sigma Aldrich, H0913)被用于被用于免疫印迹在人类样品上浓度为1:500. Biotechnol Bioeng (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3c
西格玛奥德里奇 HIST2H3D抗体(Sigma-Aldrich, H0164)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 3c). J Neurochem (2015) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1
西格玛奥德里奇 HIST2H3D抗体(Sigma, H9908)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 1). PLoS Genet (2015) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠; 1:50; 图 5
西格玛奥德里奇 HIST2H3D抗体(Sigma, HTA28)被用于被用于免疫组化在小鼠样品上浓度为1:50 (图 5). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 2
西格玛奥德里奇 HIST2H3D抗体(Sigma, H0164)被用于被用于免疫印迹在小鼠样品上浓度为1:5000 (图 2). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫组化; 斑马鱼; 1:200; 图 6
西格玛奥德里奇 HIST2H3D抗体(Sigma, H0164)被用于被用于免疫组化在斑马鱼样品上浓度为1:200 (图 6). Development (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 7a
西格玛奥德里奇 HIST2H3D抗体(Sigma-Aldrich, H0164)被用于被用于免疫印迹在人类样品上浓度为1:10,000 (图 7a). Neurobiol Aging (2015) ncbi
兔 多克隆
  • 免疫组化; 果蝇; 1:2000
西格玛奥德里奇 HIST2H3D抗体(Sigma, H0164)被用于被用于免疫组化在果蝇样品上浓度为1:2000. Development (2015) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠
西格玛奥德里奇 HIST2H3D抗体(Sigma-Aldrich, H9908)被用于被用于免疫组化在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 家蚕
西格玛奥德里奇 HIST2H3D抗体(Sigma-Aldrich, H0164)被用于被用于免疫印迹在家蚕样品上. Insect Biochem Mol Biol (2014) ncbi
小鼠 单克隆(AH3-120)
  • 免疫细胞化学; 人类; 1:200
西格玛奥德里奇 HIST2H3D抗体(Sigma, H0913)被用于被用于免疫细胞化学在人类样品上浓度为1:200. Cryobiology (2014) ncbi
小鼠 单克隆(AH3-120)
  • 免疫组化-石蜡切片; 人类; 图 2
  • 染色质免疫沉淀 ; 人类; 2-5 ug/ChIP; 图 2
西格玛奥德里奇 HIST2H3D抗体(Sigma, H0913)被用于被用于免疫组化-石蜡切片在人类样品上 (图 2) 和 被用于染色质免疫沉淀 在人类样品上浓度为2-5 ug/ChIP (图 2). Nature (2014) ncbi
大鼠 单克隆(HTA28)
  • 免疫细胞化学; 人类
西格玛奥德里奇 HIST2H3D抗体(Sigma-Aldrich, H9908)被用于被用于免疫细胞化学在人类样品上. Am J Hum Genet (2014) ncbi
大鼠 单克隆(HTA28)
  • 免疫细胞化学; Planorbella trivolvis; 1:1000
西格玛奥德里奇 HIST2H3D抗体(Sigma-Aldrich, H9908)被用于被用于免疫细胞化学在Planorbella trivolvis样品上浓度为1:1000. BMC Dev Biol (2014) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-冰冻切片; 小鼠; 1:100
西格玛奥德里奇 HIST2H3D抗体(Sigma-Aldrich, H9908)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100. Biol Reprod (2013) ncbi
大鼠 单克隆(HTA28)
  • 免疫印迹; 人类
西格玛奥德里奇 HIST2H3D抗体(Sigma-Aldrich, H9908)被用于被用于免疫印迹在人类样品上. Nucleic Acids Res (2013) ncbi
文章列表
  1. Huang Y, Chen S, Liu R, Chen Y, Lin C, Huang C, et al. CLEC5A is critical for dengue virus-induced osteoclast activation and bone homeostasis. J Mol Med (Berl). 2016;94:1025-37 pubmed 出版商
  2. Haokip D, Goel I, Arya V, Sharma T, Kumari R, Priya R, et al. Transcriptional Regulation of Atp-Dependent Chromatin Remodeling Factors: Smarcal1 and Brg1 Mutually Co-Regulate Each Other. Sci Rep. 2016;6:20532 pubmed 出版商
  3. Powell E, Shao J, Yuan Y, Chen H, Cai S, Echeverria G, et al. p53 deficiency linked to B cell translocation gene 2 (BTG2) loss enhances metastatic potential by promoting tumor growth in primary and metastatic sites in patient-derived xenograft (PDX) models of triple-negative breast cancer. Breast Cancer Res. 2016;18:13 pubmed 出版商
  4. Couderc C, Boin A, Fuhrmann L, Vincent Salomon A, Mandati V, Kieffer Y, et al. AMOTL1 Promotes Breast Cancer Progression and Is Antagonized by Merlin. Neoplasia. 2016;18:10-24 pubmed 出版商
  5. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  6. Connor A, Kelley P, Tempero R. Lymphatic endothelial lineage assemblage during corneal lymphangiogenesis. Lab Invest. 2016;96:270-82 pubmed 出版商
  7. dos Santos N, Matias A, Higa G, Kihara A, Cerchiaro G. Copper Uptake in Mammary Epithelial Cells Activates Cyclins and Triggers Antioxidant Response. Oxid Med Cell Longev. 2015;2015:162876 pubmed 出版商
  8. Mursalimov S, Permyakova N, Deineko E, Houben A, Demidov D. Cytomixis doesn't induce obvious changes in chromatin modifications and programmed cell death in tobacco male meiocytes. Front Plant Sci. 2015;6:846 pubmed 出版商
  9. Xiao X, Shi X, Fan Y, Zhang X, Wu M, Lan P, et al. GITR subverts Foxp3(+) Tregs to boost Th9 immunity through regulation of histone acetylation. Nat Commun. 2015;6:8266 pubmed 出版商
  10. O Shaughnessy Kirwan A, Signolet J, Costello I, Gharbi S, Hendrich B. Constraint of gene expression by the chromatin remodelling protein CHD4 facilitates lineage specification. Development. 2015;142:2586-97 pubmed 出版商
  11. Fischer S, Paul A, Wagner A, Mathias S, Geiss M, Schandock F, et al. miR-2861 as novel HDAC5 inhibitor in CHO cells enhances productivity while maintaining product quality. Biotechnol Bioeng. 2015;112:2142-53 pubmed 出版商
  12. Singh P, Konar A, Kumar A, Srivas S, Thakur M. Hippocampal chromatin-modifying enzymes are pivotal for scopolamine-induced synaptic plasticity gene expression changes and memory impairment. J Neurochem. 2015;134:642-51 pubmed 出版商
  13. Yin Y, Castro A, Hoekstra M, Yan T, Kanakamedala A, Dehner L, et al. Fibroblast Growth Factor 9 Regulation by MicroRNAs Controls Lung Development and Links DICER1 Loss to the Pathogenesis of Pleuropulmonary Blastoma. PLoS Genet. 2015;11:e1005242 pubmed 出版商
  14. Arbeille E, Reynaud F, Sanyas I, Bozon M, Kindbeiter K, Causeret F, et al. Cerebrospinal fluid-derived Semaphorin3B orients neuroepithelial cell divisions in the apicobasal axis. Nat Commun. 2015;6:6366 pubmed 出版商
  15. Sun S, Ling S, Qiu J, Albuquerque C, Zhou Y, Tokunaga S, et al. ALS-causative mutations in FUS/TLS confer gain and loss of function by altered association with SMN and U1-snRNP. Nat Commun. 2015;6:6171 pubmed 出版商
  16. Jacob V, Chernyavskaya Y, Chen X, Tan P, Kent B, Hoshida Y, et al. DNA hypomethylation induces a DNA replication-associated cell cycle arrest to block hepatic outgrowth in uhrf1 mutant zebrafish embryos. Development. 2015;142:510-21 pubmed 出版商
  17. Smith B, Vance C, Scotter E, Troakes C, Wong C, Topp S, et al. Novel mutations support a role for Profilin 1 in the pathogenesis of ALS. Neurobiol Aging. 2015;36:1602.e17-27 pubmed 出版商
  18. Lee J, Peng Y, Lin W, Parrish J. Coordinate control of terminal dendrite patterning and dynamics by the membrane protein Raw. Development. 2015;142:162-73 pubmed 出版商
  19. Fink D, Connor A, Kelley P, Steele M, Hollingsworth M, Tempero R. Nerve growth factor regulates neurolymphatic remodeling during corneal inflammation and resolution. PLoS ONE. 2014;9:e112737 pubmed 出版商
  20. Li Z, Mon H, Mitsunobu H, Zhu L, Xu J, Lee J, et al. Dynamics of polycomb proteins-mediated histone modifications during UV irradiation-induced DNA damage. Insect Biochem Mol Biol. 2014;55:9-18 pubmed 出版商
  21. Bakhtari A, Rahmani H, Bonakdar E, Jafarpour F, Asgari V, Hosseini S, et al. The interfering effects of superovulation and vitrification upon some important epigenetic biomarkers in mouse blastocyst. Cryobiology. 2014;69:419-27 pubmed 出版商
  22. Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, et al. REST and stress resistance in ageing and Alzheimer's disease. Nature. 2014;507:448-54 pubmed 出版商
  23. Zhang X, Ling J, Barcia G, Jing L, Wu J, Barry B, et al. Mutations in QARS, encoding glutaminyl-tRNA synthetase, cause progressive microcephaly, cerebral-cerebellar atrophy, and intractable seizures. Am J Hum Genet. 2014;94:547-58 pubmed 出版商
  24. Glebov K, Voronezhskaya E, Khabarova M, Ivashkin E, Nezlin L, Ponimaskin E. Mechanisms underlying dual effects of serotonin during development of Helisoma trivolvis (Mollusca). BMC Dev Biol. 2014;14:14 pubmed 出版商
  25. Douglas N, Arora R, Chen C, Sauer M, Papaioannou V. Investigating the role of tbx4 in the female germline in mice. Biol Reprod. 2013;89:148 pubmed 出版商
  26. Lau P, Cheung P. Elucidating combinatorial histone modifications and crosstalks by coupling histone-modifying enzyme with biotin ligase activity. Nucleic Acids Res. 2013;41:e49 pubmed 出版商