这是一篇来自已证抗体库的有关人类 HK2的综述,是根据60篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合HK2 抗体。
HK2 同义词: HKII; HXK2

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR20839)
  • 免疫印迹; 人类; 图 s4b, s4c
艾博抗(上海)贸易有限公司 HK2抗体(Abcam, ab209847)被用于被用于免疫印迹在人类样本上 (图 s4b, s4c). J Exp Clin Cancer Res (2022) ncbi
domestic rabbit 单克隆(EPR20839)
  • 免疫印迹; 人类; 1:1000; 图 3k
艾博抗(上海)贸易有限公司 HK2抗体(Abcam, ab209847)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3k). J Cancer (2021) ncbi
domestic rabbit 单克隆(EPR20839)
  • 免疫印迹; 大鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司 HK2抗体(abcam, ab209847)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 5a). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(EPR20839)
  • 免疫印迹; 人类; 1:1000; 图 4c
艾博抗(上海)贸易有限公司 HK2抗体(Abcam, ab209847)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Aging (Albany NY) (2021) ncbi
小鼠 单克隆(3D3)
  • 免疫印迹基因敲除验证; 人类; 1:500; 图 2e
  • 免疫印迹; 人类; 1:500; 图 2c
艾博抗(上海)贸易有限公司 HK2抗体(Abcam, ab104836)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:500 (图 2e) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 2c). Nat Commun (2021) ncbi
小鼠 单克隆(3D3)
  • 免疫印迹; 人类; 1:1000; 图 2d
艾博抗(上海)贸易有限公司 HK2抗体(Abcam, ab104836)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Oncotarget (2017) ncbi
小鼠 单克隆(3D3)
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司 HK2抗体(Abcam, ab104836)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2016) ncbi
小鼠 单克隆(3D3)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 HK2抗体(abcam, 104856)被用于被用于免疫印迹在人类样本上 (图 1). J Extracell Vesicles (2016) ncbi
小鼠 单克隆(3D3)
  • 免疫组化-石蜡切片; 人类; 1:150; 表 2
艾博抗(上海)贸易有限公司 HK2抗体(Abcam, 3D3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (表 2). J Pediatr Hematol Oncol (2016) ncbi
小鼠 单克隆(3D3)
  • 免疫组化; 人类; 1:750; 图 1
艾博抗(上海)贸易有限公司 HK2抗体(Abcam, ab104836)被用于被用于免疫组化在人类样本上浓度为1:750 (图 1). J Pathol (2015) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 9b
赛默飞世尔 HK2抗体(Thermo Fisher Scientific, PA5-83,021)被用于被用于免疫组化在人类样本上 (图 9b). Cancer Cell Int (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 4d
赛默飞世尔 HK2抗体(生活技术, PA5-29326)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4d). Cell (2019) ncbi
domestic rabbit 单克隆(H.738.7)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 HK2抗体(Thermo Fisher, MA5-14849)被用于被用于免疫印迹在人类样本上 (图 1). BMC Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; Russian wild horse; 图 2
赛默飞世尔 HK2抗体(Thermo Fisher Scientific, PA5-29326)被用于被用于免疫组化-石蜡切片在Russian wild horse样本上 (图 2). Reprod Biol Endocrinol (2017) ncbi
圣克鲁斯生物技术
小鼠 单克隆(B-8)
  • 免疫印迹; 人类; 图 2c
圣克鲁斯生物技术 HK2抗体(Santa, sc-374091)被用于被用于免疫印迹在人类样本上 (图 2c). Cell (2019) ncbi
小鼠 单克隆(B-8)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 HK2抗体(Santa Cruz, sc- 374091)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Biochem Biophys (2016) ncbi
小鼠 单克隆(1A7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 HK2抗体(Santa Cruz, sc-130358)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(4H1)
  • 免疫印迹; 人类; 图 3
亚诺法生技股份有限公司 HK2抗体(Abnova, H00003099-M01)被用于被用于免疫印迹在人类样本上 (图 3). Autophagy (2014) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 小鼠; 图 6n
赛信通(上海)生物试剂有限公司 HK2抗体(CST, 2867)被用于被用于免疫印迹在小鼠样本上 (图 6n). Mol Metab (2021) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 人类; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling Technology, 2867)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). J Gene Med (2021) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling, 2867)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Commun Biol (2021) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫组化; 小鼠; 1:400; 图 7c
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling Technology, 2867)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 7c) 和 被用于免疫印迹在小鼠样本上 (图 7a). Exp Eye Res (2021) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling, 2867)被用于被用于免疫印迹在小鼠样本上 (图 6b). EMBO J (2021) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 HK2抗体(CST, C64G5)被用于被用于免疫印迹在小鼠样本上 (图 4d). Antioxidants (Basel) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 HK2抗体(CST, 2106)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 7b). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 小鼠; 1:2000; 图 s4g
赛信通(上海)生物试剂有限公司 HK2抗体(CST, 2867)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s4g). Nat Commun (2020) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 人类; 图 4j
赛信通(上海)生物试剂有限公司 HK2抗体(CST, 2867)被用于被用于免疫印迹在人类样本上 (图 4j). Sci Adv (2020) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 HK2抗体(CST, C64G5)被用于被用于免疫印迹在人类样本上 (图 1d). Nature (2020) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹基因敲除验证; 人类; 1:2000; 图 4d
  • 免疫印迹; 人类; 1:2000; 图 e1
赛信通(上海)生物试剂有限公司 HK2抗体(CST, 2867)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:2000 (图 4d) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 e1). Nature (2019) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 人类; 1:1000; 图 4b, s6, s18b
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling, C64G5)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b, s6, s18b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 人类; 图 2h
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling, 2867)被用于被用于免疫印迹在人类样本上 (图 2h). J Appl Physiol (1985) (2019) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling, 2106)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling, 2867)被用于被用于免疫印迹在人类样本上 (图 2g). Nature (2017) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling, 2867)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). J Clin Endocrinol Metab (2017) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 人类; 图 5h
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling, 2867)被用于被用于免疫印迹在人类样本上 (图 5h). Sci Rep (2017) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 小鼠; 图 af6e
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling, 2867)被用于被用于免疫印迹在小鼠样本上 (图 af6e). Mol Syst Biol (2017) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling, C64G5)被用于被用于免疫印迹在人类样本上 (图 3b). Obes Res Clin Pract (2017) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling, 2867)被用于被用于免疫印迹在小鼠样本上 (图 2b). Nat Immunol (2016) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 HK2抗体(Cell signaling, 2867)被用于被用于免疫印迹在小鼠样本上 (图 4a). Oncogene (2017) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 人类; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling, 2867)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1). Int J Biochem Cell Biol (2016) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 人类; 图 s9d
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling, 2867S)被用于被用于免疫印迹在人类样本上 (图 s9d). Nature (2016) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 小鼠; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling, cs-2867)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5e). EMBO Mol Med (2016) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 人类; 1:5000; 图 5a
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling, 2867)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5a). Biosci Rep (2016) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫组化; 小鼠; 图 st1
  • 免疫印迹; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling, 2867)被用于被用于免疫组化在小鼠样本上 (图 st1) 和 被用于免疫印迹在小鼠样本上 (图 st1). Liver Int (2016) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling, 2867)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). J Cell Sci (2016) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫组化; 小鼠; 1:800; 图 6a
赛信通(上海)生物试剂有限公司 HK2抗体(Cell signaling, 2867)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 6a). Cancer Res (2015) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling, 2867)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling, 2867)被用于被用于免疫印迹在人类样本上 (图 3c). Physiol Res (2016) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 小鼠; 1:1000; 图 s9
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling, 2867)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s9). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling Technology, 2867S)被用于被用于免疫印迹在人类样本上. J Physiol (2016) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 小鼠; 1:1000; 图 6l
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling Technology, 2867)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6l). FASEB J (2016) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 HK2抗体(Cell signaling, 2867)被用于被用于免疫印迹在人类样本上 (图 5). J Cell Biol (2015) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling Technology, 2867)被用于被用于免疫印迹在人类样本上 (图 5a). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling Technology, 2867)被用于被用于免疫印迹在人类样本上 (图 6). Am J Physiol Regul Integr Comp Physiol (2015) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling, 2867)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Oncotarget (2015) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫组化; 小鼠; 1:300; 图 8
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling, 2867)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 8). J Clin Invest (2015) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling Technology, C64G5)被用于被用于免疫印迹在人类样本上. FASEB J (2015) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling, 2867)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫印迹; 牛; 图 1d
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling, C64G5)被用于被用于免疫印迹在牛样本上 (图 1d). Oncogene (2014) ncbi
domestic rabbit 单克隆(C64G5)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 HK2抗体(Cell Signaling, 2867)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Exp Cell Res (2013) ncbi
文章列表
  1. Ma L, Xue X, Zhang X, Yu K, Xu X, Tian X, et al. The essential roles of m6A RNA modification to stimulate ENO1-dependent glycolysis and tumorigenesis in lung adenocarcinoma. J Exp Clin Cancer Res. 2022;41:36 pubmed 出版商
  2. Li H, Shen H, Xie P, Zhang Z, Wang L, Yang Y, et al. Role of long intergenic non-protein coding RNA 00152 in pancreatic cancer glycolysis via the manipulation of the microRNA-185-5p/Krüppel-like factor 7 axis. J Cancer. 2021;12:6330-6343 pubmed 出版商
  3. Yang Y, Li Y, Qi R, Zhang L. Constructe a novel 5 hypoxia genes signature for cervical cancer. Cancer Cell Int. 2021;21:345 pubmed 出版商
  4. Basse A, Agerholm M, Farup J, Dalbram E, Nielsen J, Ørtenblad N, et al. Nampt controls skeletal muscle development by maintaining Ca2+ homeostasis and mitochondrial integrity. Mol Metab. 2021;53:101271 pubmed 出版商
  5. Chen W, Huang F, Huang J, Li Y, Peng J, Zhuang Y, et al. SLC45A4 promotes glycolysis and prevents AMPK/ULK1-induced autophagy in TP53 mutant pancreatic ductal adenocarcinoma. J Gene Med. 2021;23:e3364 pubmed 出版商
  6. Luo L, Wu J, Lin T, Lian G, Wang H, Gao G, et al. Influence of atorvastatin on metabolic pattern of rats with pulmonary hypertension. Aging (Albany NY). 2021;13:11954-11968 pubmed 出版商
  7. Zhang M, Ceyhan Y, Kaftanovskaya E, Vasquez J, Vacher J, Knop F, et al. INPP4B protects from metabolic syndrome and associated disorders. Commun Biol. 2021;4:416 pubmed 出版商
  8. Zhang Q, Wu J, Zhang X, Cao L, Wu Y, Miao X. Transcription factor ELK1 accelerates aerobic glycolysis to enhance osteosarcoma chemoresistance through miR-134/PTBP1 signaling cascade. Aging (Albany NY). 2021;13:6804-6819 pubmed 出版商
  9. Xiao J, Yao J, Jia L, Ferguson T, Weber S, Sundstrom J, et al. Autophagy activation and photoreceptor survival in retinal detachment. Exp Eye Res. 2021;205:108492 pubmed 出版商
  10. Yagi M, Toshima T, Amamoto R, Do Y, Hirai H, Setoyama D, et al. Mitochondrial translation deficiency impairs NAD+ -mediated lysosomal acidification. EMBO J. 2021;40:e105268 pubmed 出版商
  11. Zhou L, He R, Fang P, Li M, Yu H, Wang Q, et al. Hepatitis B virus rigs the cellular metabolome to avoid innate immune recognition. Nat Commun. 2021;12:98 pubmed 出版商
  12. Stucki D, Steinhausen J, Westhoff P, Krahl H, Brilhaus D, Massenberg A, et al. Endogenous Carbon Monoxide Signaling Modulates Mitochondrial Function and Intracellular Glucose Utilization: Impact of the Heme Oxygenase Substrate Hemin. Antioxidants (Basel). 2020;9: pubmed 出版商
  13. Luo L, Xiao L, Lian G, Wang H, Xie L. miR-125a-5p inhibits glycolysis by targeting hexokinase-II to improve pulmonary arterial hypertension. Aging (Albany NY). 2020;12:9014-9030 pubmed 出版商
  14. Zhang S, Kim B, Zhu X, Gui X, Wang Y, Lan Z, et al. Glial type specific regulation of CNS angiogenesis by HIFα-activated different signaling pathways. Nat Commun. 2020;11:2027 pubmed 出版商
  15. Aldonza M, Ku J, Hong J, Kim D, Yu S, Lee M, et al. Prior acquired resistance to paclitaxel relays diverse EGFR-targeted therapy persistence mechanisms. Sci Adv. 2020;6:eaav7416 pubmed 出版商
  16. Park J, Burckhardt C, Lazcano R, Solis L, Isogai T, Li L, et al. Mechanical regulation of glycolysis via cytoskeleton architecture. Nature. 2020;578:621-626 pubmed 出版商
  17. Amendola C, Mahaffey J, Parker S, Ahearn I, Chen W, Zhou M, et al. KRAS4A directly regulates hexokinase 1. Nature. 2019;576:482-486 pubmed 出版商
  18. Ghezzi C, Wong A, Chen B, Ribalet B, Damoiseaux R, Clark P. A high-throughput screen identifies that CDK7 activates glucose consumption in lung cancer cells. Nat Commun. 2019;10:5444 pubmed 出版商
  19. Wiel C, Le Gal K, Ibrahim M, Jahangir C, Kashif M, Yao H, et al. BACH1 Stabilization by Antioxidants Stimulates Lung Cancer Metastasis. Cell. 2019;: pubmed 出版商
  20. Zhang W, Wang G, Xu Z, Tu H, Hu F, Dai J, et al. Lactate Is a Natural Suppressor of RLR Signaling by Targeting MAVS. Cell. 2019;: pubmed 出版商
  21. Riis S, Christensen B, Nellemann B, Møller A, Husted A, Pedersen S, et al. Molecular adaptations in human subcutaneous adipose tissue after ten weeks of endurance exercise training in healthy males. J Appl Physiol (1985). 2019;126:569-577 pubmed 出版商
  22. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  23. Yu P, Wilhelm K, Dubrac A, Tung J, Alves T, Fang J, et al. FGF-dependent metabolic control of vascular development. Nature. 2017;545:224-228 pubmed 出版商
  24. Krag T, Ruiz Ruiz C, Vissing J. Glycogen Synthesis in Glycogenin 1-Deficient Patients: A Role for Glycogenin 2 in Muscle. J Clin Endocrinol Metab. 2017;102:2690-2700 pubmed 出版商
  25. Zhao X, Sun K, Lan Z, Song W, Cheng L, Chi W, et al. Tenofovir and adefovir down-regulate mitochondrial chaperone TRAP1 and succinate dehydrogenase subunit B to metabolically reprogram glucose metabolism and induce nephrotoxicity. Sci Rep. 2017;7:46344 pubmed 出版商
  26. Graham N, Minasyan A, Lomova A, Cass A, Balanis N, Friedman M, et al. Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures. Mol Syst Biol. 2017;13:914 pubmed 出版商
  27. Kudryavtseva A, Fedorova M, Zhavoronkov A, Moskalev A, Zasedatelev A, Dmitriev A, et al. Effect of lentivirus-mediated shRNA inactivation of HK1, HK2, and HK3 genes in colorectal cancer and melanoma cells. BMC Genet. 2016;17:156 pubmed 出版商
  28. Bramer S, Macedo A, Klein C. Hexokinase 2 drives glycogen accumulation in equine endometrium at day 12 of diestrus and pregnancy. Reprod Biol Endocrinol. 2017;15:4 pubmed 出版商
  29. Li Y, Li X, Kan Q, Zhang M, Li X, Xu R, et al. Mitochondrial pyruvate carrier function is negatively linked to Warburg phenotype in vitro and malignant features in esophageal squamous cell carcinomas. Oncotarget. 2017;8:1058-1073 pubmed 出版商
  30. Dandanell S, Skovborg C, Præst C, Kristensen K, Nielsen M, Lionett S, et al. Maintaining a clinical weight loss after intensive lifestyle intervention is the key to cardiometabolic health. Obes Res Clin Pract. 2017;11:489-498 pubmed 出版商
  31. Gerriets V, Kishton R, Johnson M, Cohen S, Siska P, Nichols A, et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat Immunol. 2016;17:1459-1466 pubmed 出版商
  32. Zeng Q, Chen J, Li Y, Werle K, Zhao R, Quan C, et al. LKB1 inhibits HPV-associated cancer progression by targeting cellular metabolism. Oncogene. 2017;36:1245-1255 pubmed 出版商
  33. Meneses M, Bernardino R, Sa R, Silva J, Barros A, Sousa M, et al. Pioglitazone increases the glycolytic efficiency of human Sertoli cells with possible implications for spermatogenesis. Int J Biochem Cell Biol. 2016;79:52-60 pubmed 出版商
  34. Li Y, Li X, Li X, Zhong Y, Ji Y, Yu D, et al. PDHA1 gene knockout in prostate cancer cells results in metabolic reprogramming towards greater glutamine dependence. Oncotarget. 2016;7:53837-53852 pubmed 出版商
  35. Powers J, Tsanov K, Pearson D, Roels F, Spina C, EBRIGHT R, et al. Multiple mechanisms disrupt the let-7 microRNA family in neuroblastoma. Nature. 2016;535:246-51 pubmed 出版商
  36. Amara S, Zheng M, Tiriveedhi V. Oleanolic Acid Inhibits High Salt-Induced Exaggeration of Warburg-like Metabolism in Breast Cancer Cells. Cell Biochem Biophys. 2016;74:427-34 pubmed 出版商
  37. Ronquist K, Sanchez C, Dubois L, Chioureas D, Fonseca P, Larsson A, et al. Energy-requiring uptake of prostasomes and PC3 cell-derived exosomes into non-malignant and malignant cells. J Extracell Vesicles. 2016;5:29877 pubmed 出版商
  38. Albert V, Svensson K, Shimobayashi M, Colombi M, Munoz S, Jimenez V, et al. mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue. EMBO Mol Med. 2016;8:232-46 pubmed 出版商
  39. Ho N, Morrison J, Silva A, Coomber B. The effect of 3-bromopyruvate on human colorectal cancer cells is dependent on glucose concentration but not hexokinase II expression. Biosci Rep. 2016;36:e00299 pubmed 出版商
  40. Wang C, Che L, Hu J, Zhang S, Jiang L, Latte G, et al. Activated mutant forms of PIK3CA cooperate with RasV12 or c-Met to induce liver tumour formation in mice via AKT2/mTORC1 cascade. Liver Int. 2016;36:1176-86 pubmed 出版商
  41. Ortmann B, Bensaddek D, Carvalhal S, Moser S, Mudie S, Griffis E, et al. CDK-dependent phosphorylation of PHD1 on serine 130 alters its substrate preference in cells. J Cell Sci. 2016;129:191-205 pubmed 出版商
  42. Momcilovic M, McMickle R, Abt E, Seki A, Simko S, Magyar C, et al. Heightening Energetic Stress Selectively Targets LKB1-Deficient Non-Small Cell Lung Cancers. Cancer Res. 2015;75:4910-22 pubmed 出版商
  43. Carpentieri A, Cozzoli E, Scimeca M, Bonanno E, Sardanelli A, Gambacurta A. Differentiation of human neuroblastoma cells toward the osteogenic lineage by mTOR inhibitor. Cell Death Dis. 2015;6:e1974 pubmed 出版商
  44. Vigelso A, Prats C, Ploug T, Dela F, Helge J. Higher muscle content of perilipin 5 and endothelial lipase protein in trained than untrained middle-aged men. Physiol Res. 2016;65:293-302 pubmed
  45. Nemazanyy I, Montagnac G, Russell R, Morzyglod L, Burnol A, Guan K, et al. Class III PI3K regulates organismal glucose homeostasis by providing negative feedback on hepatic insulin signalling. Nat Commun. 2015;6:8283 pubmed 出版商
  46. Jacobs R, Lundby A, Fenk S, Gehrig S, Siebenmann C, Flück D, et al. Twenty-eight days of exposure to 3454 m increases mitochondrial volume density in human skeletal muscle. J Physiol. 2016;594:1151-66 pubmed 出版商
  47. Sharma B, Kolhe R, Black S, Keller J, Mivechi N, Satyanarayana A. Inhibitor of differentiation 1 transcription factor promotes metabolic reprogramming in hepatocellular carcinoma cells. FASEB J. 2016;30:262-75 pubmed 出版商
  48. Xia H, Najafov A, Geng J, Galan Acosta L, Han X, Guo Y, et al. Degradation of HK2 by chaperone-mediated autophagy promotes metabolic catastrophe and cell death. J Cell Biol. 2015;210:705-16 pubmed 出版商
  49. Kong G, Hofman M, Murray W, Wilson S, Wood P, Downie P, et al. Initial Experience With Gallium-68 DOTA-Octreotate PET/CT and Peptide Receptor Radionuclide Therapy for Pediatric Patients With Refractory Metastatic Neuroblastoma. J Pediatr Hematol Oncol. 2016;38:87-96 pubmed 出版商
  50. Phan L, Chou P, Velazquez Torres G, Samudio I, Parreno K, Huang Y, et al. The cell cycle regulator 14-3-3σ opposes and reverses cancer metabolic reprogramming. Nat Commun. 2015;6:7530 pubmed 出版商
  51. Albers P, Bojsen Møller K, Dirksen C, Serup A, Kristensen D, Frystyk J, et al. Enhanced insulin signaling in human skeletal muscle and adipose tissue following gastric bypass surgery. Am J Physiol Regul Integr Comp Physiol. 2015;309:R510-24 pubmed 出版商
  52. Dai W, Wang F, Lu J, Xia Y, He L, Chen K, et al. By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice. Oncotarget. 2015;6:13703-17 pubmed
  53. Pértega Gomes N, Felisbino S, Massie C, Vizcaíno J, Coelho R, Sandi C, et al. A glycolytic phenotype is associated with prostate cancer progression and aggressiveness: a role for monocarboxylate transporters as metabolic targets for therapy. J Pathol. 2015;236:517-30 pubmed 出版商
  54. Venkatesh A, Ma S, Le Y, Hall M, Rüegg M, Punzo C. Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice. J Clin Invest. 2015;125:1446-58 pubmed 出版商
  55. Bogaerts E, Heindryckx F, Devisscher L, Paridaens A, Vandewynckel Y, Van den Bussche A, et al. Time-dependent effect of hypoxia on tumor progression and liver progenitor cell markers in primary liver tumors. PLoS ONE. 2015;10:e0119555 pubmed 出版商
  56. Fentz J, Kjøbsted R, Birk J, Jordy A, Jeppesen J, Thorsen K, et al. AMPKα is critical for enhancing skeletal muscle fatty acid utilization during in vivo exercise in mice. FASEB J. 2015;29:1725-38 pubmed 出版商
  57. Desideri E, Vegliante R, Cardaci S, Nepravishta R, Paci M, Ciriolo M. MAPK14/p38?-dependent modulation of glucose metabolism affects ROS levels and autophagy during starvation. Autophagy. 2014;10:1652-65 pubmed 出版商
  58. Sharma N, Sequea D, Castorena C, Arias E, Qi N, Cartee G. Heterogeneous effects of calorie restriction on in vivo glucose uptake and insulin signaling of individual rat skeletal muscles. PLoS ONE. 2014;8:e65118 pubmed 出版商
  59. Medjkane S, Perichon M, Marsolier J, Dairou J, Weitzman J. Theileria induces oxidative stress and HIF1? activation that are essential for host leukocyte transformation. Oncogene. 2014;33:1809-17 pubmed 出版商
  60. Mathew J, Loranger A, Gilbert S, Faure R, Marceau N. Keratin 8/18 regulation of glucose metabolism in normal versus cancerous hepatic cells through differential modulation of hexokinase status and insulin signaling. Exp Cell Res. 2013;319:474-86 pubmed 出版商