这是一篇来自已证抗体库的有关人类 人类白细胞抗原b (HLA B) 的综述,是根据38篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合人类白细胞抗原b 抗体。
人类白细胞抗原b 同义词: AS; B-4901; HLAB

赛默飞世尔
小鼠 单克隆(W6/32)
  • 流式细胞仪; 小鼠
  • 免疫细胞化学; 人类; 图 s2d
赛默飞世尔人类白细胞抗原b抗体(Thermo-Fisher, MA5-11723)被用于被用于流式细胞仪在小鼠样本上 和 被用于免疫细胞化学在人类样本上 (图 s2d). J Exp Clin Cancer Res (2021) ncbi
小鼠 单克隆(B1.23.2)
  • 流式细胞仪; 人类
赛默飞世尔人类白细胞抗原b抗体(Thermo Fisher Scientific, B1.23.2)被用于被用于流式细胞仪在人类样本上. Immunity (2021) ncbi
小鼠 单克隆(W6/32)
  • 流式细胞仪; 人类
赛默飞世尔人类白细胞抗原b抗体(eBioscienc, 12-9983-42)被用于被用于流式细胞仪在人类样本上. Nat Commun (2020) ncbi
大鼠 单克隆(YTH862.2)
  • 流式细胞仪; 人类; 图 3e
赛默飞世尔人类白细胞抗原b抗体(Invitrogen, MA1-80014)被用于被用于流式细胞仪在人类样本上 (图 3e). Breast Cancer Res (2019) ncbi
小鼠 单克隆(W6/32)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔人类白细胞抗原b抗体(eBioscience, W6/32)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2018) ncbi
小鼠 单克隆(W6/32)
  • 抑制或激活实验; 人类; 图 s2b
赛默飞世尔人类白细胞抗原b抗体(eBiosciences, w6/32)被用于被用于抑制或激活实验在人类样本上 (图 s2b). Nat Med (2018) ncbi
小鼠 单克隆(BB7.1)
  • 流式细胞仪; 人类; 图 3c
赛默飞世尔人类白细胞抗原b抗体(Thermo Scientific, MA1-82180)被用于被用于流式细胞仪在人类样本上 (图 3c). J Virol (2018) ncbi
小鼠 单克隆(W6/32)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔人类白细胞抗原b抗体(eBiosciences, W6/32)被用于被用于流式细胞仪在人类样本上 (图 1a). Oncoimmunology (2017) ncbi
小鼠 单克隆(W6/32)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔人类白细胞抗原b抗体(eBioscience, W6/32)被用于被用于流式细胞仪在人类样本上 (图 1a). Eur J Pharm Biopharm (2017) ncbi
小鼠 单克隆(W6/32)
  • 免疫组化; 人类; 1:5000
赛默飞世尔人类白细胞抗原b抗体(Thermo Fisher, W6/32)被用于被用于免疫组化在人类样本上浓度为1:5000. Neurology (2017) ncbi
小鼠 单克隆(W6/32)
  • 流式细胞仪; 人类; 图 s9a
赛默飞世尔人类白细胞抗原b抗体(eBiosciences, W6/32)被用于被用于流式细胞仪在人类样本上 (图 s9a). PLoS Pathog (2016) ncbi
小鼠 单克隆(W6/32)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔人类白细胞抗原b抗体(eBioscience, W6/32)被用于被用于流式细胞仪在人类样本上 (图 1). Inflammation (2016) ncbi
小鼠 单克隆(W6/32)
  • 流式细胞仪; 人类; 图 s9a
赛默飞世尔人类白细胞抗原b抗体(eBiosciences, W6/32)被用于被用于流式细胞仪在人类样本上 (图 s9a). Nature (2016) ncbi
小鼠 单克隆(W6/32)
  • 流式细胞仪; 人类; 1:50; 图 s2j
赛默飞世尔人类白细胞抗原b抗体(ebioscience, W6/32)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s2j). Nat Med (2016) ncbi
小鼠 单克隆(W6/32)
  • 免疫组化-石蜡切片; 人类; 1:5000; 图 4
赛默飞世尔人类白细胞抗原b抗体(Thermo Fisher Scientific, W6/32)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:5000 (图 4). Neurology (2016) ncbi
小鼠 单克隆(W6/32)
  • 流式细胞仪; 人类; 图 6
赛默飞世尔人类白细胞抗原b抗体(eBioscience, clone W6/32)被用于被用于流式细胞仪在人类样本上 (图 6). Leuk Res (2014) ncbi
小鼠 单克隆(W6/32)
  • 流式细胞仪; 人类
赛默飞世尔人类白细胞抗原b抗体(eBioscience, W6/32)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(W6/32)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
赛默飞世尔人类白细胞抗原b抗体(Thermo Fisher, MA1-19027)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(W6/32)
  • 免疫细胞化学; 人类
赛默飞世尔人类白细胞抗原b抗体(eBiosciences, 14-9983-82)被用于被用于免疫细胞化学在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(W6/32)
  • 免疫印迹; 人类
赛默飞世尔人类白细胞抗原b抗体(Zymed Laboratories, W6/32)被用于被用于免疫印迹在人类样本上. PLoS Pathog (2011) ncbi
小鼠 单克隆(W6/32)
  • 流式细胞仪; 人类
赛默飞世尔人类白细胞抗原b抗体(eBioscience, w6/32)被用于被用于流式细胞仪在人类样本上. Nat Immunol (2008) ncbi
圣克鲁斯生物技术
小鼠 单克隆(W6/32)
  • 免疫组化; 人类; 1:200; 图 1a
  • 免疫印迹; 人类; 1:200; 图 s4a
圣克鲁斯生物技术人类白细胞抗原b抗体(Santa Cruz, sc-32235)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1a) 和 被用于免疫印迹在人类样本上浓度为1:200 (图 s4a). Nat Commun (2022) ncbi
小鼠 单克隆(F-3)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术人类白细胞抗原b抗体(Santa Cruz, sc-55582)被用于被用于免疫印迹在人类样本上 (图 3b). Front Immunol (2021) ncbi
小鼠 单克隆(LY5.1)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术人类白细胞抗原b抗体(Santa Cruz Biotechnology, sc-52810)被用于被用于免疫印迹在人类样本上 (图 3a). Oncoimmunology (2018) ncbi
小鼠 单克隆(BB7.1)
  • 流式细胞仪; 人类
圣克鲁斯生物技术人类白细胞抗原b抗体(Santa Cruz Biotechnology, sc-53304)被用于被用于流式细胞仪在人类样本上. F1000Res (2016) ncbi
小鼠 单克隆(LY5.1)
  • 免疫印迹; 人类; 1:500; 图 2
圣克鲁斯生物技术人类白细胞抗原b抗体(Santa Cruz Technologies, SC-52810)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). Cancer Res (2015) ncbi
小鼠 单克隆(W6/32)
  • 免疫印迹; 人类
圣克鲁斯生物技术人类白细胞抗原b抗体(Santa Cruz, sc-32235)被用于被用于免疫印迹在人类样本上. J Virol (2015) ncbi
小鼠 单克隆(F-3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
  • 免疫印迹; 人类; 图 s4
圣克鲁斯生物技术人类白细胞抗原b抗体(Santa Cruz, sc-55582)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1) 和 被用于免疫印迹在人类样本上 (图 s4). Nat Commun (2014) ncbi
美天旎
人类 单克隆(REA274)
  • 流式细胞仪; 人类; 图 3a
美天旎人类白细胞抗原b抗体(Miltenyi Biotec, Bw4)被用于被用于流式细胞仪在人类样本上 (图 3a). J Virol (2018) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(BB7.1)
  • 流式细胞仪; 人类; 图 1
伯乐(Bio-Rad)公司人类白细胞抗原b抗体(AbD Serotec/Bio-Rad, MCA986)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2016) ncbi
BioLegend
小鼠 单克隆(BB7.1)
  • 流式细胞仪; 人类; 图 5b
BioLegend人类白细胞抗原b抗体(Biolegend, BB7.1)被用于被用于流式细胞仪在人类样本上 (图 5b). J Immunol (2016) ncbi
贝克曼库尔特实验系统(苏州)有限公司
小鼠 单克隆(B9.12.1)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司人类白细胞抗原b抗体(Immunotech, B9.12.1)被用于被用于流式细胞仪在人类样本上. Front Immunol (2019) ncbi
小鼠 单克隆(B9.12.1)
  • 流式细胞仪; 人类; 表 3
贝克曼库尔特实验系统(苏州)有限公司人类白细胞抗原b抗体(Beckman Coulter (Immunotech), B9.12.1)被用于被用于流式细胞仪在人类样本上 (表 3). Am J Pathol (2017) ncbi
小鼠 单克隆(B9.12.1)
  • 流式细胞仪; 人类; 图 2
贝克曼库尔特实验系统(苏州)有限公司人类白细胞抗原b抗体(Beckman, B9.12.1)被用于被用于流式细胞仪在人类样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(B9.12.1)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司人类白细胞抗原b抗体(Beckman Coulter, B9.12.1)被用于被用于流式细胞仪在人类样本上. Transpl Immunol (2015) ncbi
西格玛奥德里奇
小鼠 单克隆(W6/32)
  • 流式细胞仪; 人类; 图 1a
西格玛奥德里奇人类白细胞抗原b抗体(Sigma-Aldrich, W6/32)被用于被用于流式细胞仪在人类样本上 (图 1a). Eur J Immunol (2017) ncbi
小鼠 单克隆(W6/32)
  • 流式细胞仪; 人类
  • 免疫沉淀; 人类
西格玛奥德里奇人类白细胞抗原b抗体(Sigma-Aldrich, w6/32)被用于被用于流式细胞仪在人类样本上 和 被用于免疫沉淀在人类样本上. Biochem J (2015) ncbi
小鼠 单克隆(W6/32)
  • 流式细胞仪; 人类; 图 5
西格玛奥德里奇人类白细胞抗原b抗体(Sigma, H1650)被用于被用于流式细胞仪在人类样本上 (图 5). J Virol (2014) ncbi
文章列表
  1. Lei X, Lin H, Wang J, Ou Z, Ruan Y, Sadagopan A, et al. Mitochondrial fission induces immunoescape in solid tumors through decreasing MHC-I surface expression. Nat Commun. 2022;13:3882 pubmed 出版商
  2. Lassiter R, Merchen T, Fang X, Wang Y. Protective Role of Kynurenine 3-Monooxygenase in Allograft Rejection and Tubular Injury in Kidney Transplantation. Front Immunol. 2021;12:671025 pubmed 出版商
  3. Sánchez del Campo L, Martí Díaz R, Montenegro M, González Guerrero R, Hernández Caselles T, Martínez Barba E, et al. MITF induces escape from innate immunity in melanoma. J Exp Clin Cancer Res. 2021;40:117 pubmed 出版商
  4. Chiou S, Tseng D, Reuben A, Mallajosyula V, Molina I, Conley S, et al. Global analysis of shared T cell specificities in human non-small cell lung cancer enables HLA inference and antigen discovery. Immunity. 2021;54:586-602.e8 pubmed 出版商
  5. Li Z, Zhang H, Huang Y, Huang J, Sun P, Zhou N, et al. Autophagy deficiency promotes triple-negative breast cancer resistance to T cell-mediated cytotoxicity by blocking tenascin-C degradation. Nat Commun. 2020;11:3806 pubmed 出版商
  6. Sanz Ortega L, Rojas J, Portilla Y, Pérez Yagüe S, Barber D. Magnetic Nanoparticles Attached to the NK Cell Surface for Tumor Targeting in Adoptive Transfer Therapies Does Not Affect Cellular Effector Functions. Front Immunol. 2019;10:2073 pubmed 出版商
  7. Sabol R, Bowles A, Côté A, Wise R, O Donnell B, Matossian M, et al. Leptin produced by obesity-altered adipose stem cells promotes metastasis but not tumorigenesis of triple-negative breast cancer in orthotopic xenograft and patient-derived xenograft models. Breast Cancer Res. 2019;21:67 pubmed 出版商
  8. Walwyn Brown K, Guldevall K, Saeed M, Pende D, Önfelt B, MacDonald A, et al. Human NK Cells Lyse Th2-Polarizing Dendritic Cells via NKp30 and DNAM-1. J Immunol. 2018;201:2028-2041 pubmed 出版商
  9. Luo N, Formisano L, Gonzalez Ericsson P, Sanchez V, Dean P, Opalenik S, et al. Melanoma response to anti-PD-L1 immunotherapy requires JAK1 signaling, but not JAK2. Oncoimmunology. 2018;7:e1438106 pubmed 出版商
  10. Zacharakis N, Chinnasamy H, Black M, Xu H, Lu Y, Zheng Z, et al. Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat Med. 2018;24:724-730 pubmed 出版商
  11. Ende Z, Deymier M, Claiborne D, Prince J, Mónaco D, Kilembe W, et al. HLA Class I Downregulation by HIV-1 Variants from Subtype C Transmission Pairs. J Virol. 2018;92: pubmed 出版商
  12. Zaikos T, Painter M, Sebastian Kettinger N, Terry V, Collins K. Class 1-Selective Histone Deacetylase (HDAC) Inhibitors Enhance HIV Latency Reversal while Preserving the Activity of HDAC Isoforms Necessary for Maximal HIV Gene Expression. J Virol. 2018;92: pubmed 出版商
  13. Tong A, Hashem H, Eid S, Allen F, Kingsley D, Huang A. Adoptive natural killer cell therapy is effective in reducing pulmonary metastasis of Ewing sarcoma. Oncoimmunology. 2017;6:e1303586 pubmed 出版商
  14. Seif M, Hoppstädter J, Breinig F, Kiemer A. Yeast-mediated mRNA delivery polarizes immuno-suppressive macrophages towards an immuno-stimulatory phenotype. Eur J Pharm Biopharm. 2017;117:1-13 pubmed 出版商
  15. Cardinaud S, Urrutia A, Rouers A, Coulon P, Kervevan J, Richetta C, et al. Triggering of TLR-3, -4, NOD2, and DC-SIGN reduces viral replication and increases T-cell activation capacity of HIV-infected human dendritic cells. Eur J Immunol. 2017;47:818-829 pubmed 出版商
  16. Kwon Y, Stanciu C, Philpott M, Ehrhardt C. Flow cytometry dataset for cells collected from touched surfaces. F1000Res. 2016;5:390 pubmed 出版商
  17. Uruha A, Nishikawa A, Tsuburaya R, Hamanaka K, Kuwana M, Watanabe Y, et al. Sarcoplasmic MxA expression: A valuable marker of dermatomyositis. Neurology. 2017;88:493-500 pubmed 出版商
  18. Fromm J, Thomas A, Wood B. Characterization and Purification of Neoplastic Cells of Nodular Lymphocyte Predominant Hodgkin Lymphoma from Lymph Nodes by Flow Cytometry and Flow Cytometric Cell Sorting. Am J Pathol. 2017;187:304-317 pubmed 出版商
  19. Tomic A, Varanasi P, Golemac M, Malic S, Riese P, Borst E, et al. Activation of Innate and Adaptive Immunity by a Recombinant Human Cytomegalovirus Strain Expressing an NKG2D Ligand. PLoS Pathog. 2016;12:e1006015 pubmed 出版商
  20. Dellgren C, Ekwelum V, Ormhøj M, Pallesen N, Knudsen J, Nehlin J, et al. Low Constitutive Cell Surface Expression of HLA-B Is Caused by a Posttranslational Mechanism Involving Glu180 and Arg239. J Immunol. 2016;197:4807-4816 pubmed
  21. Huang M, Zhang W, Guo J, Wei X, Phiwpan K, Zhang J, et al. Improved Transgenic Mouse Model for Studying HLA Class I Antigen Presentation. Sci Rep. 2016;6:33612 pubmed 出版商
  22. Seif M, Philippi A, Breinig F, Kiemer A, Hoppstädter J. Yeast (Saccharomyces cerevisiae) Polarizes Both M-CSF- and GM-CSF-Differentiated Macrophages Toward an M1-Like Phenotype. Inflammation. 2016;39:1690-703 pubmed 出版商
  23. Zhang R, Miner J, Gorman M, Rausch K, Ramage H, White J, et al. A CRISPR screen defines a signal peptide processing pathway required by flaviviruses. Nature. 2016;535:164-8 pubmed
  24. Reinisch A, Thomas D, Corces M, Zhang X, Gratzinger D, Hong W, et al. A humanized bone marrow ossicle xenotransplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. Nat Med. 2016;22:812-21 pubmed 出版商
  25. Reches A, Nachmani D, Berhani O, Duev Cohen A, Shreibman D, Ophir Y, et al. HNRNPR Regulates the Expression of Classical and Nonclassical MHC Class I Proteins. J Immunol. 2016;196:4967-76 pubmed 出版商
  26. Uruha A, Noguchi S, Hayashi Y, Tsuburaya R, Yonekawa T, Nonaka I, et al. Hepatitis C virus infection in inclusion body myositis: A case-control study. Neurology. 2016;86:211-7 pubmed 出版商
  27. Parkinson M, Piper S, Bright N, Evans J, Boname J, Bowers K, et al. A non-canonical ESCRT pathway, including histidine domain phosphotyrosine phosphatase (HD-PTP), is used for down-regulation of virally ubiquitinated MHC class I. Biochem J. 2015;471:79-88 pubmed 出版商
  28. Miranda A, Funes J, Sánchez N, Limia C, Mesa M, Quezada S, et al. Oncogenic Transformation Can Orchestrate Immune Evasion and Inflammation in Human Mesenchymal Stem Cells Independently of Extrinsic Immune-Selective Pressure. Cancer Res. 2015;75:3032-42 pubmed 出版商
  29. Guo X, Liu T, Shi H, Wang J, Ji P, Wang H, et al. Respiratory Syncytial Virus Infection Upregulates NLRC5 and Major Histocompatibility Complex Class I Expression through RIG-I Induction in Airway Epithelial Cells. J Virol. 2015;89:7636-45 pubmed 出版商
  30. Esquivel E, Maeda A, Eguchi H, Asada M, Sugiyama M, Manabe C, et al. Suppression of human macrophage-mediated cytotoxicity by transgenic swine endothelial cell expression of HLA-G. Transpl Immunol. 2015;32:109-15 pubmed 出版商
  31. Gabaev I, Elbasani E, Ameres S, Steinbrück L, Stanton R, Döring M, et al. Expression of the human cytomegalovirus UL11 glycoprotein in viral infection and evaluation of its effect on virus-specific CD8 T cells. J Virol. 2014;88:14326-39 pubmed 出版商
  32. Srivastava P, Paluch B, Matsuzaki J, James S, Collamat Lai G, Karbach J, et al. Immunomodulatory action of SGI-110, a hypomethylating agent, in acute myeloid leukemia cells and xenografts. Leuk Res. 2014;38:1332-41 pubmed 出版商
  33. Abramowski P, Ogrodowczyk C, Martin R, Pongs O. A truncation variant of the cation channel P2RX5 is upregulated during T cell activation. PLoS ONE. 2014;9:e104692 pubmed 出版商
  34. Arellano Garcia M, Misuno K, Tran S, Hu S. Interferon-? induces immunoproteasomes and the presentation of MHC I-associated peptides on human salivary gland cells. PLoS ONE. 2014;9:e102878 pubmed 出版商
  35. Cebrián C, Zucca F, Mauri P, Steinbeck J, Studer L, Scherzer C, et al. MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration. Nat Commun. 2014;5:3633 pubmed 出版商
  36. Stahlschmidt W, Robertson M, Robinson P, McCluskey A, Haucke V. Clathrin terminal domain-ligand interactions regulate sorting of mannose 6-phosphate receptors mediated by AP-1 and GGA adaptors. J Biol Chem. 2014;289:4906-18 pubmed 出版商
  37. Schneider C, Hudson A. The human herpesvirus-7 (HHV-7) U21 immunoevasin subverts NK-mediated cytoxicity through modulation of MICA and MICB. PLoS Pathog. 2011;7:e1002362 pubmed 出版商
  38. Di Pucchio T, Chatterjee B, Smed Sorensen A, Clayton S, Palazzo A, Montes M, et al. Direct proteasome-independent cross-presentation of viral antigen by plasmacytoid dendritic cells on major histocompatibility complex class I. Nat Immunol. 2008;9:551-7 pubmed 出版商