这是一篇来自已证抗体库的有关人类 HNRNPA1的综述,是根据31篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合HNRNPA1 抗体。
HNRNPA1 同义词: ALS19; ALS20; HNRPA1; HNRPA1L3; IBMPFD3; UP 1; hnRNP A1; hnRNP-A1

圣克鲁斯生物技术
小鼠 单克隆(4B10)
  • 免疫组化; 小鼠; 图 s8c
圣克鲁斯生物技术 HNRNPA1抗体(Santa Cruz, sc-32301)被用于被用于免疫组化在小鼠样本上 (图 s8c). Nat Neurosci (2021) ncbi
小鼠 单克隆(4B10)
  • 免疫印迹; 人类; 1:200; 图 4s2a
圣克鲁斯生物技术 HNRNPA1抗体(Santa Cruz, sc-32301)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4s2a). elife (2020) ncbi
小鼠 单克隆(D-4)
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术 HNRNPA1抗体(SCBT, sc-374526)被用于被用于免疫印迹在人类样本上 (图 5b). Mol Cell (2019) ncbi
小鼠 单克隆(4B10)
  • 免疫印迹; 人类; 图 s4c
圣克鲁斯生物技术 HNRNPA1抗体(Santa Cruz, sc-32301)被用于被用于免疫印迹在人类样本上 (图 s4c). Nucleic Acids Res (2018) ncbi
小鼠 单克隆(4B10)
  • 免疫印迹; 人类; 图 s5a
圣克鲁斯生物技术 HNRNPA1抗体(Santa Cruz, sc-32301)被用于被用于免疫印迹在人类样本上 (图 s5a). Cancer Cell (2017) ncbi
小鼠 单克隆(4B10)
  • 免疫印迹; 人类; 1:1000; 图 5
圣克鲁斯生物技术 HNRNPA1抗体(Santa cruz, 4B10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). J Mol Biol (2017) ncbi
小鼠 单克隆(4B10)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术 HNRNPA1抗体(Santa Cruz Biotechnology, sc-32301)被用于被用于免疫印迹在人类样本上 (图 3a). Genes Dev (2017) ncbi
小鼠 单克隆(9H10)
  • 免疫印迹; 人类; 1:2000; 图 6
圣克鲁斯生物技术 HNRNPA1抗体(Santa Cruz, 56700)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6). J Virol (2016) ncbi
小鼠 单克隆(4B10)
  • 免疫印迹; 人类; 图 9h
圣克鲁斯生物技术 HNRNPA1抗体(Santa Cruz, 4B10)被用于被用于免疫印迹在人类样本上 (图 9h). J Virol (2016) ncbi
小鼠 单克隆(4B10)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 1
  • 免疫印迹; 人类; 1:2000; 图 1
圣克鲁斯生物技术 HNRNPA1抗体(Santa Cruz Biotechnology, sc-32301)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 1). BMC Cancer (2016) ncbi
小鼠 单克隆(4B10)
  • 免疫印迹; 人类; 图 3e
圣克鲁斯生物技术 HNRNPA1抗体(Santa Cruz, sc-32301)被用于被用于免疫印迹在人类样本上 (图 3e). J Biol Chem (2016) ncbi
小鼠 单克隆(4B10)
  • cross-linking immunoprecipitation; 人类; 图 6
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 HNRNPA1抗体(Santa Cruz, sc-32301)被用于被用于cross-linking immunoprecipitation在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 6). Genes Dev (2016) ncbi
小鼠 单克隆(4B10)
  • 免疫印迹; 人类; 1:2000; 图 5
圣克鲁斯生物技术 HNRNPA1抗体(santa Cruz, sc-32301)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(4B10)
  • 核糖核酸免疫沉淀; 人类
圣克鲁斯生物技术 HNRNPA1抗体(Santa Cruz, sc-32301)被用于被用于核糖核酸免疫沉淀在人类样本上. Mol Cell (2016) ncbi
小鼠 单克隆(4B10)
圣克鲁斯生物技术 HNRNPA1抗体(Santa Cruz Biotechnology, 4B10)被用于. Nucleic Acids Res (2016) ncbi
小鼠 单克隆(4B10)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 HNRNPA1抗体(Santa Cruz Biotechnology, sc-32301)被用于被用于免疫印迹在人类样本上浓度为1:1000. Arch Biochem Biophys (2015) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类
圣克鲁斯生物技术 HNRNPA1抗体(Santa Cruz, sc-365486)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2015) ncbi
小鼠 单克隆(4B10)
  • 核糖核酸免疫沉淀; 人类; 图 6a
圣克鲁斯生物技术 HNRNPA1抗体(Santa Cruz, sc-32301)被用于被用于核糖核酸免疫沉淀在人类样本上 (图 6a). Mol Cancer (2014) ncbi
小鼠 单克隆(4B10)
  • 免疫沉淀; 人类; 图 4
圣克鲁斯生物技术 HNRNPA1抗体(Santa Cruz, sc-32301)被用于被用于免疫沉淀在人类样本上 (图 4). ACS Chem Biol (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR12768)
  • 免疫细胞化学; 人类; 图 5a
艾博抗(上海)贸易有限公司 HNRNPA1抗体(Abcam, ab198535)被用于被用于免疫细胞化学在人类样本上 (图 5a). Molecules (2021) ncbi
domestic rabbit 单克隆(EPR12768)
  • 免疫印迹; 人类; 图 5b
艾博抗(上海)贸易有限公司 HNRNPA1抗体(Abcam, ab177152)被用于被用于免疫印迹在人类样本上 (图 5b). Aging (Albany NY) (2019) ncbi
Novus Biologicals
小鼠 单克隆(4B10)
  • 免疫印迹; 人类; 1:2000; 图 s3b
Novus Biologicals HNRNPA1抗体(Novus Biologicals, NB100-672)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s3b). Nat Commun (2016) ncbi
小鼠 单克隆(4B10)
  • 免疫印迹; 人类; 图 2
Novus Biologicals HNRNPA1抗体(Novus, NB100-672)被用于被用于免疫印迹在人类样本上 (图 2). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(4B10)
  • 免疫细胞化学; 人类; 图 7c
  • 免疫印迹; 人类; 图 5b
Novus Biologicals HNRNPA1抗体(Novus Biologicals, NB100-672)被用于被用于免疫细胞化学在人类样本上 (图 7c) 和 被用于免疫印迹在人类样本上 (图 5b). Biochim Biophys Acta (2016) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 s1e
赛默飞世尔 HNRNPA1抗体(Invitrogen, PA5-19431)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 s1e). Cell (2017) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D21H11)
  • 免疫印迹; 人类; 1:2000; 图 2c
赛信通(上海)生物试剂有限公司 HNRNPA1抗体(Cell Signalling, D21H11)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2c). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D21H11)
  • 流式细胞仪; 人类; 1:30
赛信通(上海)生物试剂有限公司 HNRNPA1抗体(Cell Signalling, D21H11)被用于被用于流式细胞仪在人类样本上浓度为1:30. Nat Commun (2016) ncbi
domestic rabbit 单克隆(D21H11)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 HNRNPA1抗体(Cell Signaling, 8443)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D21H11)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 HNRNPA1抗体(Cell Signaling, 8443)被用于被用于免疫印迹在人类样本上 (图 4). J Proteome Res (2015) ncbi
domestic rabbit 单克隆(D21H11)
  • 免疫细胞化学; 仓鼠
赛信通(上海)生物试剂有限公司 HNRNPA1抗体(Cell Signaling, 8443)被用于被用于免疫细胞化学在仓鼠样本上. J Virol (2012) ncbi
西格玛奥德里奇
小鼠 单克隆(4B10)
  • 免疫印迹; 人类; 1:8000; 图 2a
西格玛奥德里奇 HNRNPA1抗体(Sigma-Aldrich, 4B10)被用于被用于免疫印迹在人类样本上浓度为1:8000 (图 2a). Acta Neuropathol (2020) ncbi
文章列表
  1. Pham T, Liao R, Labaer J, Guo J. Multiplexed In Situ Protein Profiling with High-Performance Cleavable Fluorescent Tyramide. Molecules. 2021;26: pubmed 出版商
  2. Van Alstyne M, Tattoli I, Delestrée N, Recinos Y, Workman E, Shihabuddin L, et al. Gain of toxic function by long-term AAV9-mediated SMN overexpression in the sensorimotor circuit. Nat Neurosci. 2021;24:930-940 pubmed 出版商
  3. Hayes L, Duan L, Bowen K, Kalab P, Rothstein J. C9orf72 arginine-rich dipeptide repeat proteins disrupt karyopherin-mediated nuclear import. elife. 2020;9: pubmed 出版商
  4. Nihei Y, Mori K, Werner G, Arzberger T, Zhou Q, Khosravi B, et al. Poly-glycine-alanine exacerbates C9orf72 repeat expansion-mediated DNA damage via sequestration of phosphorylated ATM and loss of nuclear hnRNPA3. Acta Neuropathol. 2020;139:99-118 pubmed 出版商
  5. Jia Q, Nie H, Yu P, Xie B, Wang C, Yang F, et al. HNRNPA1-mediated 3' UTR length changes of HN1 contributes to cancer- and senescence-associated phenotypes. Aging (Albany NY). 2019;11:4407-4437 pubmed 出版商
  6. Sajini A, Choudhury N, Wagner R, Bornelöv S, Selmi T, Spanos C, et al. Loss of 5-methylcytosine alters the biogenesis of vault-derived small RNAs to coordinate epidermal differentiation. Nat Commun. 2019;10:2550 pubmed 出版商
  7. Lee S, Mayr C. Gain of Additional BIRC3 Protein Functions through 3'-UTR-Mediated Protein Complex Formation. Mol Cell. 2019;: pubmed 出版商
  8. Liu H, Lorenzini P, Zhang F, Xu S, Wong M, Zheng J, et al. Alternative splicing analysis in human monocytes and macrophages reveals MBNL1 as major regulator. Nucleic Acids Res. 2018;46:6069-6086 pubmed 出版商
  9. Marchesini M, Ogoti Y, Fiorini E, Aktaş Samur A, Nezi L, D Anca M, et al. ILF2 Is a Regulator of RNA Splicing and DNA Damage Response in 1q21-Amplified Multiple Myeloma. Cancer Cell. 2017;32:88-100.e6 pubmed 出版商
  10. Nozawa R, Boteva L, Soares D, Naughton C, Dun A, Buckle A, et al. SAF-A Regulates Interphase Chromosome Structure through Oligomerization with Chromatin-Associated RNAs. Cell. 2017;169:1214-1227.e18 pubmed 出版商
  11. Kumar S, Downie Ruiz Velasco A, Michlewski G. Oleic Acid Induces MiR-7 Processing through Remodeling of Pri-MiR-7/Protein Complex. J Mol Biol. 2017;429:1638-1649 pubmed 出版商
  12. Vancevska A, Douglass K, Pfeiffer V, Manley S, Lingner J. The telomeric DNA damage response occurs in the absence of chromatin decompaction. Genes Dev. 2017;31:567-577 pubmed 出版商
  13. Hu J, Khodadadi Jamayran A, Mao M, Shah K, Yang Z, Nasim M, et al. AKAP95 regulates splicing through scaffolding RNAs and RNA processing factors. Nat Commun. 2016;7:13347 pubmed 出版商
  14. Walker E, Jensen L, Croft S, Wei K, Fulcher A, Jans D, et al. Rhinovirus 16 2A Protease Affects Nuclear Localization of 3CD during Infection. J Virol. 2016;90:11032-11042 pubmed
  15. Ajiro M, Tang S, Doorbar J, Zheng Z. Serine/Arginine-Rich Splicing Factor 3 and Heterogeneous Nuclear Ribonucleoprotein A1 Regulate Alternative RNA Splicing and Gene Expression of Human Papillomavirus 18 through Two Functionally Distinguishable cis Elements. J Virol. 2016;90:9138-52 pubmed 出版商
  16. Kamelgarn M, Chen J, Kuang L, Arenas A, Zhai J, Zhu H, et al. Proteomic analysis of FUS interacting proteins provides insights into FUS function and its role in ALS. Biochim Biophys Acta. 2016;1862:2004-14 pubmed 出版商
  17. Park W, Kim H, Kang D, Ryu J, Choi K, Lee G, et al. Comparative expression patterns and diagnostic efficacies of SR splicing factors and HNRNPA1 in gastric and colorectal cancer. BMC Cancer. 2016;16:358 pubmed 出版商
  18. Tang S, Luo S, Ho J, Ly P, Goh E, Roca X. Characterization of the Regulation of CD46 RNA Alternative Splicing. J Biol Chem. 2016;291:14311-23 pubmed 出版商
  19. Kunze M, Benz F, Brauß T, Lampe S, Weigand J, Braun J, et al. sST2 translation is regulated by FGF2 via an hnRNP A1-mediated IRES-dependent mechanism. Biochim Biophys Acta. 2016;1859:848-59 pubmed 出版商
  20. Geissler R, Simkin A, Floss D, Patel R, Fogarty E, Scheller J, et al. A widespread sequence-specific mRNA decay pathway mediated by hnRNPs A1 and A2/B1. Genes Dev. 2016;30:1070-85 pubmed 出版商
  21. Nguyen A, Yoshida M, Goodarzi H, Tavazoie S. Highly variable cancer subpopulations that exhibit enhanced transcriptome variability and metastatic fitness. Nat Commun. 2016;7:11246 pubmed 出版商
  22. Parameswaran R, Ramakrishnan P, Moreton S, Xia Z, Hou Y, Lee D, et al. Repression of GSK3 restores NK cell cytotoxicity in AML patients. Nat Commun. 2016;7:11154 pubmed 出版商
  23. Sundararaman B, Zhan L, Blue S, Stanton R, Elkins K, Olson S, et al. Resources for the Comprehensive Discovery of Functional RNA Elements. Mol Cell. 2016;61:903-13 pubmed 出版商
  24. Mori F, Ferraiuolo M, Santoro R, Sacconi A, Goeman F, Pallocca M, et al. Multitargeting activity of miR-24 inhibits long-term melatonin anticancer effects. Oncotarget. 2016;7:20532-48 pubmed 出版商
  25. Ajiro M, Jia R, Yang Y, Zhu J, Zheng Z. A genome landscape of SRSF3-regulated splicing events and gene expression in human osteosarcoma U2OS cells. Nucleic Acids Res. 2016;44:1854-70 pubmed 出版商
  26. Berard A, Coombs K, Severini A. Quantification of the host response proteome after herpes simplex virus type 1 infection. J Proteome Res. 2015;14:2121-42 pubmed 出版商
  27. Contreras T, Ricciardi E, Cremonini E, Oteiza P. (-)-Epicatechin in the prevention of tumor necrosis alpha-induced loss of Caco-2 cell barrier integrity. Arch Biochem Biophys. 2015;573:84-91 pubmed 出版商
  28. Fujiwara Y, Hase K, Wada K, Kabuta T. An RNautophagy/DNautophagy receptor, LAMP2C, possesses an arginine-rich motif that mediates RNA/DNA-binding. Biochem Biophys Res Commun. 2015;460:281-6 pubmed 出版商
  29. DERY K, Kujawski M, Grunert D, Wu X, Ngyuen T, Cheung C, et al. IRF-1 regulates alternative mRNA splicing of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in breast epithelial cells generating an immunoreceptor tyrosine-based inhibition motif (ITIM) containing isoform. Mol Cancer. 2014;13:64 pubmed 出版商
  30. Rust H, Subramanian V, West G, Young D, Schultz P, Thompson P. Using unnatural amino acid mutagenesis to probe the regulation of PRMT1. ACS Chem Biol. 2014;9:649-55 pubmed 出版商
  31. Akhrymuk I, Kulemzin S, Frolova E. Evasion of the innate immune response: the Old World alphavirus nsP2 protein induces rapid degradation of Rpb1, a catalytic subunit of RNA polymerase II. J Virol. 2012;86:7180-91 pubmed 出版商