这是一篇来自已证抗体库的有关人类 HNRNPU的综述,是根据39篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合HNRNPU 抗体。
HNRNPU 同义词: EIEE54; GRIP120; HNRNPU-AS1; HNRPU; SAF-A; SAFA; U21.1; hnRNP U; pp120

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR12279)
  • 免疫印迹; 人类; 图 s5a
艾博抗(上海)贸易有限公司 HNRNPU抗体(abcam, ab172608)被用于被用于免疫印迹在人类样本上 (图 s5a). Oncogenesis (2021) ncbi
小鼠 单克隆(3G6)
  • 免疫印迹; 人类; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 HNRNPU抗体(Abcam, ab10297)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Nucleic Acids Res (2019) ncbi
小鼠 单克隆(3G6)
  • 免疫印迹; 人类; 1:5000; 图 s1b
艾博抗(上海)贸易有限公司 HNRNPU抗体(Abcam, ab10297)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s1b). Cell (2017) ncbi
小鼠 单克隆(3G6)
  • 免疫组化; 小鼠; 图 s3b
艾博抗(上海)贸易有限公司 HNRNPU抗体(Abcam, ab10297)被用于被用于免疫组化在小鼠样本上 (图 s3b). Genes Dev (2017) ncbi
小鼠 单克隆(3G6)
  • 免疫印迹; 人类; 图 3b
艾博抗(上海)贸易有限公司 HNRNPU抗体(Abcam, ab10297)被用于被用于免疫印迹在人类样本上 (图 3b). Cell (2017) ncbi
小鼠 单克隆(3G6)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 2-s1
艾博抗(上海)贸易有限公司 HNRNPU抗体(Abcam, ab10297)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 2-s1). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司 HNRNPU抗体(Abcam, ab20666)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 核糖核酸免疫沉淀; 人类; 图 3
  • 免疫印迹; 人类; 图 s3
艾博抗(上海)贸易有限公司 HNRNPU抗体(Abcam, ab20666)被用于被用于核糖核酸免疫沉淀在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 s3). Genome Biol (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(3G6)
  • 核糖核酸免疫沉淀; 小鼠; 图 4b
圣克鲁斯生物技术 HNRNPU抗体(Santa Cruz, sc-32315)被用于被用于核糖核酸免疫沉淀在小鼠样本上 (图 4b). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(3G6)
  • 免疫印迹; 小鼠; 图 5c
圣克鲁斯生物技术 HNRNPU抗体(Santa Cruz Biotechnology, sc-32315)被用于被用于免疫印迹在小鼠样本上 (图 5c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(3G6)
  • 免疫印迹; 人类; 图 1b
圣克鲁斯生物技术 HNRNPU抗体(Santa cruz, sc-32315)被用于被用于免疫印迹在人类样本上 (图 1b). Nucleic Acids Res (2017) ncbi
小鼠 单克隆(3G6)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 HNRNPU抗体(Santa Cruz, sc-32315)被用于被用于免疫印迹在人类样本上 (图 6). Nat Commun (2016) ncbi
小鼠 单克隆(3G6)
  • 核糖核酸免疫沉淀; 人类
  • 免疫印迹; 人类; 0.5 ug/ml
圣克鲁斯生物技术 HNRNPU抗体(Santa Cruz, sc-32315)被用于被用于核糖核酸免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上浓度为0.5 ug/ml. Mol Cell (2016) ncbi
小鼠 单克隆(3G6)
  • 免疫沉淀; 人类; 图 1
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 HNRNPU抗体(Santa Cruz, sc-32315)被用于被用于免疫沉淀在人类样本上 (图 1), 被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(3G6)
  • 免疫组化; 人类; 图 s4
圣克鲁斯生物技术 HNRNPU抗体(Santa Cruz, sc-32315)被用于被用于免疫组化在人类样本上 (图 s4). PLoS Genet (2015) ncbi
小鼠 单克隆(3G6)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术 HNRNPU抗体(Santa Cruz, 3G6)被用于被用于免疫细胞化学在人类样本上. Histochem Cell Biol (2014) ncbi
碧迪BD
小鼠 单克隆(98/pp120)
  • 免疫印迹; 人类; 图 7a
碧迪BD HNRNPU抗体(BD, 610133)被用于被用于免疫印迹在人类样本上 (图 7a). Cells (2022) ncbi
小鼠 单克隆(98/pp120)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s8c
碧迪BD HNRNPU抗体(BD Transduction, 610134)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s8c). BMC Cancer (2022) ncbi
小鼠 单克隆(98/pp120)
  • 免疫细胞化学; 小鼠; 1:100; 图 4b
  • 免疫印迹; 小鼠; 1:1000; 图 5a
碧迪BD HNRNPU抗体(BD Biosciences, 610134)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 4b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Nat Commun (2021) ncbi
小鼠 单克隆(98/pp120)
  • 免疫组化; 大鼠; 1:250; 图 2d
碧迪BD HNRNPU抗体(BD Biosciences, 610134)被用于被用于免疫组化在大鼠样本上浓度为1:250 (图 2d). Int J Mol Sci (2021) ncbi
小鼠 单克隆(98/pp120)
  • 免疫组化; 人类; 1:100; 图 1b
碧迪BD HNRNPU抗体(BD Transduction Laboratories, 98)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1b). Mod Pathol (2020) ncbi
小鼠 单克隆(98/pp120)
  • 免疫沉淀; 犬; 1:2000; 图 1c
  • 免疫细胞化学; 犬; 1:2000; 图 2d
  • 免疫印迹; 犬; 1:2000; 图 1c
  • 免疫组化-冰冻切片; 人类; 1:2000; 图 6b
  • 免疫印迹; 人类; 1:2000; 图 6g
碧迪BD HNRNPU抗体(BD, 610134)被用于被用于免疫沉淀在犬样本上浓度为1:2000 (图 1c), 被用于免疫细胞化学在犬样本上浓度为1:2000 (图 2d), 被用于免疫印迹在犬样本上浓度为1:2000 (图 1c), 被用于免疫组化-冰冻切片在人类样本上浓度为1:2000 (图 6b) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 6g). Sci Adv (2020) ncbi
小鼠 单克隆(98/pp120)
  • 免疫细胞化学; 人类; 1:100; 图 s71e
  • 免疫印迹; 人类; 1:1000; 图 2g
碧迪BD HNRNPU抗体(BD, 610133)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s71e) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2g). elife (2019) ncbi
小鼠 单克隆(98/pp120)
  • 免疫细胞化学; 人类; 1:100; 图 5a
  • 免疫印迹; 人类; 1:1000; 图 5b
碧迪BD HNRNPU抗体(BD Biosciences, 610133)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Oncol Lett (2017) ncbi
小鼠 单克隆(98/pp120)
  • 免疫细胞化学; 犬; 1:200; 图 3a
碧迪BD HNRNPU抗体(BD Biosciences, 610133)被用于被用于免疫细胞化学在犬样本上浓度为1:200 (图 3a). Mol Biol Cell (2017) ncbi
小鼠 单克隆(98/pp120)
  • 免疫组化; 小鼠; 1:500; 图 1a
  • 免疫细胞化学; 人类; 1:500; 图 1d
碧迪BD HNRNPU抗体(BD Biosciences, 610134)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1a) 和 被用于免疫细胞化学在人类样本上浓度为1:500 (图 1d). Nat Commun (2016) ncbi
小鼠 单克隆(98/pp120)
  • 其他; 人类; 图 3
碧迪BD HNRNPU抗体(BD TransLab, 610134)被用于被用于其他在人类样本上 (图 3). Mol Biol Cell (2017) ncbi
小鼠 单克隆(98/pp120)
  • 免疫印迹; 人类; 图 5a
碧迪BD HNRNPU抗体(BD Biosciences, 610133)被用于被用于免疫印迹在人类样本上 (图 5a). Breast Cancer Res (2016) ncbi
小鼠 单克隆(98/pp120)
  • 免疫细胞化学; 人类; 1:100; 图 5
碧迪BD HNRNPU抗体(BD Biosciences, 610133)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(98/pp120)
  • 免疫细胞化学; 人类; 1:50; 图 2c
  • 免疫印迹; 人类; 1:1000; 图 2a
碧迪BD HNRNPU抗体(BD Transduction Laboratories, 610133)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Exp Cell Res (2015) ncbi
小鼠 单克隆(98/pp120)
  • 免疫印迹; 人类; 1:2000
碧迪BD HNRNPU抗体(BD Transduction Laboratories, 610133)被用于被用于免疫印迹在人类样本上浓度为1:2000. PLoS ONE (2015) ncbi
小鼠 单克隆(98/pp120)
  • 免疫组化-石蜡切片; 人类; 1:1000
碧迪BD HNRNPU抗体(BD Transduction Laboratories, 98/pp120)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Anticancer Res (2015) ncbi
小鼠 单克隆(98/pp120)
  • 免疫印迹; 人类
碧迪BD HNRNPU抗体(BD, 610133)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(98/pp120)
  • 免疫组化-石蜡切片; 人类
  • 免疫印迹; 人类; 1:4000
碧迪BD HNRNPU抗体(BD, 610133)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:4000. BMC Cancer (2015) ncbi
小鼠 单克隆(98/pp120)
  • 免疫组化; 人类; 图 3
碧迪BD HNRNPU抗体(BD, 610133)被用于被用于免疫组化在人类样本上 (图 3). Nat Cell Biol (2015) ncbi
小鼠 单克隆(98/pp120)
  • 免疫印迹; 人类; 1:2000
碧迪BD HNRNPU抗体(BD Transduction Laboratories, 610133)被用于被用于免疫印迹在人类样本上浓度为1:2000. PLoS ONE (2014) ncbi
小鼠 单克隆(98/pp120)
  • 免疫细胞化学; 人类; 1:250
  • 免疫印迹; 人类; 1:1000
碧迪BD HNRNPU抗体(BD, 610134)被用于被用于免疫细胞化学在人类样本上浓度为1:250 和 被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2014) ncbi
小鼠 单克隆(98/pp120)
  • 免疫印迹; 人类; 1:1000; 图 3
碧迪BD HNRNPU抗体(BD Transductions, 610134)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Cell Sci (2014) ncbi
小鼠 单克隆(98/pp120)
  • 免疫组化-冰冻切片; 小鼠; 1:100
碧迪BD HNRNPU抗体(BD Biosciences, 610134)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. J Comp Neurol (2006) ncbi
文章列表
  1. Naydenov N, Lechuga S, Zalavadia A, Mukherjee P, Gordon I, Skvasik D, et al. P-Cadherin Regulates Intestinal Epithelial Cell Migration and Mucosal Repair, but Is Dispensable for Colitis Associated Colon Cancer. Cells. 2022;11: pubmed 出版商
  2. Kleinberger I, Sanders E, Staes K, Van Troys M, Hirano S, Hochepied T, et al. Innovative mouse models for the tumor suppressor activity of Protocadherin-10 isoforms. BMC Cancer. 2022;22:451 pubmed 出版商
  3. Ashok C, Ahuja N, Natua S, Mishra J, Samaiya A, Shukla S. E2F1 and epigenetic modifiers orchestrate breast cancer progression by regulating oxygen-dependent ESRP1 expression. Oncogenesis. 2021;10:58 pubmed 出版商
  4. Beckmann D, Römer Hillmann A, Krause A, Hansen U, Wehmeyer C, Intemann J, et al. Lasp1 regulates adherens junction dynamics and fibroblast transformation in destructive arthritis. Nat Commun. 2021;12:3624 pubmed 出版商
  5. Boon N, Alves C, Mulder A, Andriessen C, Buck T, Quinn P, et al. Defining Phenotype, Tropism, and Retinal Gene Therapy Using Adeno-Associated Viral Vectors (AAVs) in New-Born Brown Norway Rats with a Spontaneous Mutation in Crb1. Int J Mol Sci. 2021;22: pubmed 出版商
  6. Christgen M, Bartels S, van Luttikhuizen J, Bublitz J, Rieger L, Christgen H, et al. E-cadherin to P-cadherin switching in lobular breast cancer with tubular elements. Mod Pathol. 2020;33:2483-2498 pubmed 出版商
  7. Wu Q, Li G, Wen C, Zeng T, Fan Y, Liu C, et al. Monoubiquitination of p120-catenin is essential for TGFβ-induced epithelial-mesenchymal transition and tumor metastasis. Sci Adv. 2020;6:eaay9819 pubmed 出版商
  8. Fearnley G, Young K, Edgar J, Antrobus R, Hay I, Liang W, et al. The homophilic receptor PTPRK selectively dephosphorylates multiple junctional regulators to promote cell-cell adhesion. elife. 2019;8: pubmed 出版商
  9. Alfano L, Caporaso A, Altieri A, Dell Aquila M, Landi C, Bini L, et al. Depletion of the RNA binding protein HNRNPD impairs homologous recombination by inhibiting DNA-end resection and inducing R-loop accumulation. Nucleic Acids Res. 2019;47:4068-4085 pubmed 出版商
  10. Sunwoo H, Colognori D, Froberg J, Jeon Y, Lee J. Repeat E anchors Xist RNA to the inactive X chromosomal compartment through CDKN1A-interacting protein (CIZ1). Proc Natl Acad Sci U S A. 2017;114:10654-10659 pubmed 出版商
  11. Li S, Mi L, Yu L, Yu Q, Liu T, Wang G, et al. Zbtb7b engages the long noncoding RNA Blnc1 to drive brown and beige fat development and thermogenesis. Proc Natl Acad Sci U S A. 2017;114:E7111-E7120 pubmed 出版商
  12. Nozawa R, Boteva L, Soares D, Naughton C, Dun A, Buckle A, et al. SAF-A Regulates Interphase Chromosome Structure through Oligomerization with Chromatin-Associated RNAs. Cell. 2017;169:1214-1227.e18 pubmed 出版商
  13. Ridings Figueroa R, Stewart E, Nesterova T, Coker H, Pintacuda G, Godwin J, et al. The nuclear matrix protein CIZ1 facilitates localization of Xist RNA to the inactive X-chromosome territory. Genes Dev. 2017;31:876-888 pubmed 出版商
  14. Xing Y, Yao R, Zhang Y, Guo C, Jiang S, Xu G, et al. SLERT Regulates DDX21 Rings Associated with Pol I Transcription. Cell. 2017;169:664-678.e16 pubmed 出版商
  15. Wu Y, Jhao Y, Cheng Y, Chen Y. 15-Deoxy-?12,14-prostaglandin J2 inhibits migration of human thyroid carcinoma cells by disrupting focal adhesion complex and adherens junction. Oncol Lett. 2017;13:2569-2576 pubmed 出版商
  16. Blank M, Chen S, Poetz F, Schnolzer M, Voit R, Grummt I. SIRT7-dependent deacetylation of CDK9 activates RNA polymerase II transcription. Nucleic Acids Res. 2017;45:2675-2686 pubmed 出版商
  17. Lapierre L, Manning E, Mitchell K, Caldwell C, Goldenring J. Interaction of phosphorylated Rab11-FIP2 with Eps15 regulates apical junction composition. Mol Biol Cell. 2017;28:1088-1100 pubmed 出版商
  18. Capitanio J, Montpetit B, Wozniak R. Human Nup98 regulates the localization and activity of DExH/D-box helicase DHX9. elife. 2017;6: pubmed 出版商
  19. van de Ven R, de Groot J, Park D, van Domselaar R, de Jong D, Szuhai K, et al. p120-catenin prevents multinucleation through control of MKLP1-dependent RhoA activity during cytokinesis. Nat Commun. 2016;7:13874 pubmed 出版商
  20. Su W, Kowalczyk A. The VE-cadherin cytoplasmic domain undergoes proteolytic processing during endocytosis. Mol Biol Cell. 2017;28:76-84 pubmed 出版商
  21. LAW M, Ferreira R, Davis B, Higgins P, Kim J, Castellano R, et al. CUB domain-containing protein 1 and the epidermal growth factor receptor cooperate to induce cell detachment. Breast Cancer Res. 2016;18:80 pubmed 出版商
  22. Dorland Y, Malinova T, van Stalborch A, Grieve A, van Geemen D, Jansen N, et al. The F-BAR protein pacsin2 inhibits asymmetric VE-cadherin internalization from tensile adherens junctions. Nat Commun. 2016;7:12210 pubmed 出版商
  23. Hacisuleyman E, Shukla C, Weiner C, Rinn J. Function and evolution of local repeats in the Firre locus. Nat Commun. 2016;7:11021 pubmed 出版商
  24. Sundararaman B, Zhan L, Blue S, Stanton R, Elkins K, Olson S, et al. Resources for the Comprehensive Discovery of Functional RNA Elements. Mol Cell. 2016;61:903-13 pubmed 出版商
  25. Zheng Q, Liu H, Ye J, Zhang H, Jia Z, Cao J. Nuclear distribution of eIF3g and its interacting nuclear proteins in breast cancer cells. Mol Med Rep. 2016;13:2973-80 pubmed 出版商
  26. G Hendrickson D, Kelley D, Tenen D, BERNSTEIN B, Rinn J. Widespread RNA binding by chromatin-associated proteins. Genome Biol. 2016;17:28 pubmed 出版商
  27. Chun Y, Kim R, Lee S. Centromere Protein (CENP)-W Interacts with Heterogeneous Nuclear Ribonucleoprotein (hnRNP) U and May Contribute to Kinetochore-Microtubule Attachment in Mitotic Cells. PLoS ONE. 2016;11:e0149127 pubmed 出版商
  28. Martínez Revollar G, Garay E, Martín Tapia D, Nava P, Huerta M, Lopez Bayghen E, et al. Heterogeneity between triple negative breast cancer cells due to differential activation of Wnt and PI3K/AKT pathways. Exp Cell Res. 2015;339:67-80 pubmed 出版商
  29. Yamada N, Hasegawa Y, Yue M, Hamada T, Nakagawa S, Ogawa Y. Xist Exon 7 Contributes to the Stable Localization of Xist RNA on the Inactive X-Chromosome. PLoS Genet. 2015;11:e1005430 pubmed 出版商
  30. Kourtidis A, Yanagisawa M, Huveldt D, Copland J, Anastasiadis P. Pro-Tumorigenic Phosphorylation of p120 Catenin in Renal and Breast Cancer. PLoS ONE. 2015;10:e0129964 pubmed 出版商
  31. Figueira A, Gomes C, Vilhena H, Miranda S, Carvalheira J, de Matos A, et al. Characterization of α-, β- and p120-Catenin Expression in Feline Mammary Tissues and their Relation with E- and P-Cadherin. Anticancer Res. 2015;35:3361-9 pubmed
  32. Duvall Noelle N, Karwandyar A, Richmond A, Raman D. LASP-1: a nuclear hub for the UHRF1-DNMT1-G9a-Snail1 complex. Oncogene. 2016;35:1122-33 pubmed 出版商
  33. Mortazavi F, Lu J, Phan R, Lewis M, Trinidad K, Aljilani A, et al. Significance of KRAS/PAK1/Crk pathway in non-small cell lung cancer oncogenesis. BMC Cancer. 2015;15:381 pubmed 出版商
  34. Bazellières E, Conte V, Elosegui Artola A, Serra Picamal X, Bintanel Morcillo M, Roca Cusachs P, et al. Control of cell-cell forces and collective cell dynamics by the intercellular adhesome. Nat Cell Biol. 2015;17:409-20 pubmed 出版商
  35. Olsen P, Solberg N, Lund K, Vehus T, Gelazauskaite M, Wilson S, et al. Implications of targeted genomic disruption of β-catenin in BxPC-3 pancreatic adenocarcinoma cells. PLoS ONE. 2014;9:e115496 pubmed 出版商
  36. Vitiello E, Ferreira J, Maiato H, Balda M, Matter K. The tumour suppressor DLC2 ensures mitotic fidelity by coordinating spindle positioning and cell-cell adhesion. Nat Commun. 2014;5:5826 pubmed 出版商
  37. Kalendová A, Kalasová I, Yamazaki S, Uličná L, Harata M, Hozak P. Nuclear actin filaments recruit cofilin and actin-related protein 3, and their formation is connected with a mitotic block. Histochem Cell Biol. 2014;142:139-52 pubmed 出版商
  38. Sehgal L, Mukhopadhyay A, Rajan A, Khapare N, Sawant M, Vishal S, et al. 14-3-3?-Mediated transport of plakoglobin to the cell border is required for the initiation of desmosome assembly in vitro and in vivo. J Cell Sci. 2014;127:2174-88 pubmed 出版商
  39. Akins M, Greer C. Axon behavior in the olfactory nerve reflects the involvement of catenin-cadherin mediated adhesion. J Comp Neurol. 2006;499:979-89 pubmed