这是一篇来自已证抗体库的有关人类 HOMER1的综述,是根据42篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合HOMER1 抗体。
HOMER1 同义词: HOMER; HOMER1A; HOMER1B; HOMER1C; SYN47; Ves-1

Synaptic Systems
鸡 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1c
Synaptic Systems HOMER1抗体(Synaptic Systems, 160006)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1c). Front Immunol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 4??s2b, c
Synaptic Systems HOMER1抗体(Synaptic Systems, 160002)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4??s2b, c). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:2000; 图 1s1b
Synaptic Systems HOMER1抗体(SySy, 160003)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1s1b). elife (2021) ncbi
小鼠 单克隆(2G8)
  • 免疫组化-冰冻切片; 小鼠; 图 3g
Synaptic Systems HOMER1抗体(Synaptic Systems, 160011)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3g). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2s1
Synaptic Systems HOMER1抗体(Synaptic Systems, 160 003)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2s1). elife (2020) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 s7a
Synaptic Systems HOMER1抗体(Synaptic Systems, 160-004)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s7a). Science (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 2c
Synaptic Systems HOMER1抗体(SYSY, 160023)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 2c). J Exp Med (2020) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 s2c
Synaptic Systems HOMER1抗体(NeuroMab, 160004)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s2c). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2a
Synaptic Systems HOMER1抗体(Synaptic System, 160103)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2a). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 6a
Synaptic Systems HOMER1抗体(SYSY, 160 003)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 6a). Acta Neuropathol (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:2000; 图 s6a
Synaptic Systems HOMER1抗体(Synaptic Systems, 160002)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 s6a). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3a
  • 免疫组化; fruit fly ; 图 2i
Synaptic Systems HOMER1抗体(Synaptic Systems, 160 003)被用于被用于免疫组化在小鼠样本上 (图 3a) 和 被用于免疫组化在fruit fly 样本上 (图 2i). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3e
Synaptic Systems HOMER1抗体(Synaptic System, 160003)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). Nucleic Acids Res (2019) ncbi
豚鼠 多克隆
  • 免疫印迹; 小鼠; 图 1f
Synaptic Systems HOMER1抗体(Synaptic Systems, 160004)被用于被用于免疫印迹在小鼠样本上 (图 1f). Science (2019) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5a
Synaptic Systems HOMER1抗体(Synaptic Systems, 160006)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5a). J Exp Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:800; 图 1b
Synaptic Systems HOMER1抗体(Synaptic Systems, 160003)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 1b). elife (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:1000; 图 3h
Synaptic Systems HOMER1抗体(Synaptic Systems, 160-002)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 3h). J Cell Biol (2018) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 7a
Synaptic Systems HOMER1抗体(Synaptic systems, 160 004)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 7a). Sci Rep (2017) ncbi
小鼠 单克隆(2G8)
  • 免疫细胞化学; 人类; 1:1000; 图 4j
Synaptic Systems HOMER1抗体(Synaptic Systems, 160 011)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4j). Neuron (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:700; 图 st1
Synaptic Systems HOMER1抗体(SYSY, 160003)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:700 (图 st1). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s6h
  • 免疫印迹; 大鼠; 图 2d
Synaptic Systems HOMER1抗体(Synaptic Systems, 160023)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s6h) 和 被用于免疫印迹在大鼠样本上 (图 2d). Cell (2016) ncbi
小鼠 单克隆(2G8)
  • 免疫细胞化学; 小鼠; 图 4
  • 免疫印迹; 小鼠; 图 2
Synaptic Systems HOMER1抗体(Synaptic Systems, 160021)被用于被用于免疫细胞化学在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s4c
Synaptic Systems HOMER1抗体(Synaptic Systems, 160 003)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4c). Nat Biotechnol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s3
Synaptic Systems HOMER1抗体(Synaptic Systems, 160003)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s3). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2b
Synaptic Systems HOMER1抗体(Synaptic Systems, 160003)被用于被用于免疫印迹在小鼠样本上 (图 2b). EBioMedicine (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s3
Synaptic Systems HOMER1抗体(Synaptic Systems, 160 003)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s3). Front Cell Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s5
Synaptic Systems HOMER1抗体(Synaptic Systems, 160 023)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s5). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(2G8)
  • 免疫印迹; 小鼠; 图 7
Synaptic Systems HOMER1抗体(Synaptic Systems, 160 011)被用于被用于免疫印迹在小鼠样本上 (图 7). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 3
Synaptic Systems HOMER1抗体(Synaptic Systems, 160003)被用于被用于免疫细胞化学在小鼠样本上 (图 3). Nat Methods (2016) ncbi
小鼠 单克隆(2G8)
  • 免疫组化; 小鼠; 图 4a
Synaptic Systems HOMER1抗体(Synaptic Systems, 160-011)被用于被用于免疫组化在小鼠样本上 (图 4a). Science (2016) ncbi
小鼠 单克隆(2G8)
  • 免疫组化; 小鼠; 图 1
Synaptic Systems HOMER1抗体(Synaptic Systems, 160 011)被用于被用于免疫组化在小鼠样本上 (图 1). Neuron (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(D-3)
  • 免疫印迹; 小鼠; 图 1b
圣克鲁斯生物技术 HOMER1抗体(Santa Cruz Biotechnology Inc, SC-17842)被用于被用于免疫印迹在小鼠样本上 (图 1b). Mol Autism (2018) ncbi
小鼠 单克隆(B-5)
  • 免疫印迹; 大鼠; 1:100; 图 s1c
圣克鲁斯生物技术 HOMER1抗体(Santa Cruz, sc-25271)被用于被用于免疫印迹在大鼠样本上浓度为1:100 (图 s1c). elife (2017) ncbi
小鼠 单克隆(B-5)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2a
  • 免疫印迹; 小鼠; 1:1000; 图 2c
圣克鲁斯生物技术 HOMER1抗体(Santa Cruz, sc-25271)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). Int J Mol Sci (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 小鼠; 1:1000; 图 3
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术 HOMER1抗体(Santa Cruz, sc-55463)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Brain (2016) ncbi
小鼠 单克隆(D-3)
  • 免疫印迹; 大鼠; 1:50
圣克鲁斯生物技术 HOMER1抗体(Santa Cruz Biotechnology, sc-17842)被用于被用于免疫印迹在大鼠样本上浓度为1:50. Neuroscience (2015) ncbi
小鼠 单克隆(B-5)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 HOMER1抗体(Santa Cruz Biotechnology, sc-25271)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(26)
  • 免疫印迹; 小鼠; 1:500
圣克鲁斯生物技术 HOMER1抗体(Santa Cruz Biotechnology, sc-136358)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Mol Cell Biol (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2d
艾博抗(上海)贸易有限公司 HOMER1抗体(Abcam, ab211415)被用于被用于免疫印迹在小鼠样本上 (图 2d). JCI Insight (2021) ncbi
domestic rabbit 单克隆(EPR15309)
艾博抗(上海)贸易有限公司 HOMER1抗体(Abcam, ab184955)被用于. J Virol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:7500; 图 4a, 4b
艾博抗(上海)贸易有限公司 HOMER1抗体(Abcam, ab211415)被用于被用于免疫印迹在大鼠样本上浓度为1:7500 (图 4a, 4b). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR15309)
  • 免疫组化-石蜡切片; 小鼠; 图 s1c
艾博抗(上海)贸易有限公司 HOMER1抗体(Abcam, ab184955)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1c). Nat Biotechnol (2016) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 4a
赛默飞世尔 HOMER1抗体(Pierce, PA5-21487)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4a). Neurology (2016) ncbi
亚诺法生技股份有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3b
亚诺法生技股份有限公司 HOMER1抗体(Novus, H00009456- D01P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Mol Psychiatry (2016) ncbi
文章列表
  1. Chen H, Zhang Brotzge X, Morozov Y, Li Y, Wang S, Zhang H, et al. Creatine transporter deficiency impairs stress adaptation and brain energetics homeostasis. JCI Insight. 2021;6: pubmed 出版商
  2. Qiu W, Luo S, Ma S, Saminathan P, Li H, Gunnersen J, et al. The Sez6 Family Inhibits Complement by Facilitating Factor I Cleavage of C3b and Accelerating the Decay of C3 Convertases. Front Immunol. 2021;12:607641 pubmed 出版商
  3. Courtland J, Bradshaw T, Waitt G, Soderblom E, Ho T, Rajab A, et al. Genetic disruption of WASHC4 drives endo-lysosomal dysfunction and cognitive-movement impairments in mice and humans. elife. 2021;10: pubmed 出版商
  4. Sando R, Sudhof T. Latrophilin GPCR signaling mediates synapse formation. elife. 2021;10: pubmed 出版商
  5. Fukata Y, Chen X, Chiken S, Hirano Y, Yamagata A, Inahashi H, et al. LGI1-ADAM22-MAGUK configures transsynaptic nanoalignment for synaptic transmission and epilepsy prevention. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  6. Griffin P, Sheehan P, Dimitry J, Guo C, Kanan M, Lee J, et al. REV-ERBα mediates complement expression and diurnal regulation of microglial synaptic phagocytosis. elife. 2020;9: pubmed 出版商
  7. Suzuki K, Elegheert J, Song I, Sasakura H, Senkov O, Matsuda K, et al. A synthetic synaptic organizer protein restores glutamatergic neuronal circuits. Science. 2020;369: pubmed 出版商
  8. Garcia Mesa Y, Garza R, Diaz Ortiz M, Gruenewald A, Bastien B, Lobrovich R, et al. Regional Brain Recovery from Acute Synaptic Injury in Simian Immunodeficiency Virus-Infected Rhesus Macaques Associates with Heme Oxygenase Isoform Expression. J Virol. 2020;94: pubmed 出版商
  9. Bączyk M, Alami N, Delestrée N, Martinot C, Tang L, Commisso B, et al. Synaptic restoration by cAMP/PKA drives activity-dependent neuroprotection to motoneurons in ALS. J Exp Med. 2020;217: pubmed 出版商
  10. Han W, Li J, Pelkey K, Pandey S, Chen X, Wang Y, et al. Shisa7 is a GABAA receptor auxiliary subunit controlling benzodiazepine actions. Science. 2019;366:246-250 pubmed 出版商
  11. Venkataramani V, Tanev D, Strahle C, Studier Fischer A, Fankhauser L, Kessler T, et al. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature. 2019;573:532-538 pubmed 出版商
  12. Bieri G, Brahic M, Bousset L, Couthouis J, Kramer N, Ma R, et al. LRRK2 modifies α-syn pathology and spread in mouse models and human neurons. Acta Neuropathol. 2019;137:961-980 pubmed 出版商
  13. Spence E, Dube S, Uezu A, Locke M, Soderblom E, Soderling S. In vivo proximity proteomics of nascent synapses reveals a novel regulator of cytoskeleton-mediated synaptic maturation. Nat Commun. 2019;10:386 pubmed 出版商
  14. Gao R, Asano S, Upadhyayula S, Pisarev I, Milkie D, Liu T, et al. Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science. 2019;363: pubmed 出版商
  15. Ciolli Mattioli C, Rom A, Franke V, Imami K, Arrey G, Terne M, et al. Alternative 3' UTRs direct localization of functionally diverse protein isoforms in neuronal compartments. Nucleic Acids Res. 2019;47:2560-2573 pubmed 出版商
  16. Awasthi A, Ramachandran B, Ahmed S, Benito E, Shinoda Y, Nitzan N, et al. Synaptotagmin-3 drives AMPA receptor endocytosis, depression of synapse strength, and forgetting. Science. 2019;363: pubmed 出版商
  17. Brown E, Lautz J, Davis T, Gniffke E, VanSchoiack A, Neier S, et al. Clustering the autisms using glutamate synapse protein interaction networks from cortical and hippocampal tissue of seven mouse models. Mol Autism. 2018;9:48 pubmed 出版商
  18. Reichenbach N, Delekate A, Breithausen B, Keppler K, Poll S, Schulte T, et al. P2Y1 receptor blockade normalizes network dysfunction and cognition in an Alzheimer's disease model. J Exp Med. 2018;215:1649-1663 pubmed 出版商
  19. Becker L, Schnee M, Niwa M, Sun W, Maxeiner S, Talaei S, et al. The presynaptic ribbon maintains vesicle populations at the hair cell afferent fiber synapse. elife. 2018;7: pubmed 出版商
  20. Wigerius M, Quinn D, Diab A, Clattenburg L, Kolar A, Qi J, et al. The polarity protein Angiomotin p130 controls dendritic spine maturation. J Cell Biol. 2018;217:715-730 pubmed 出版商
  21. Pandya N, Koopmans F, Slotman J, Paliukhovich I, Houtsmuller A, Smit A, et al. Correlation profiling of brain sub-cellular proteomes reveals co-assembly of synaptic proteins and subcellular distribution. Sci Rep. 2017;7:12107 pubmed 出版商
  22. Sloan S, Darmanis S, Huber N, Khan T, Birey F, Caneda C, et al. Human Astrocyte Maturation Captured in 3D Cerebral Cortical Spheroids Derived from Pluripotent Stem Cells. Neuron. 2017;95:779-790.e6 pubmed 出版商
  23. Quadrato G, Nguyen T, Macosko E, Sherwood J, Min Yang S, Berger D, et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 2017;545:48-53 pubmed 出版商
  24. Harony Nicolas H, Kay M, du Hoffmann J, Klein M, Bozdagi Gunal O, Riad M, et al. Oxytocin improves behavioral and electrophysiological deficits in a novel Shank3-deficient rat. elife. 2017;6: pubmed 出版商
  25. Jiang H, Wang S, Yin X, Jiang H, Wang X, Wang J, et al. Downregulation of Homer1b/c in SOD1 G93A Models of ALS: A Novel Mechanism of Neuroprotective Effect of Lithium and Valproic Acid. Int J Mol Sci. 2016;17: pubmed 出版商
  26. Lum J, Fernandez F, Matosin N, Andrews J, Huang X, Ooi L, et al. Neurodevelopmental Expression Profile of Dimeric and Monomeric Group 1 mGluRs: Relevance to Schizophrenia Pathogenesis and Treatment. Sci Rep. 2016;6:34391 pubmed 出版商
  27. Loh K, Stawski P, Draycott A, Udeshi N, Lehrman E, Wilton D, et al. Proteomic Analysis of Unbounded Cellular Compartments: Synaptic Clefts. Cell. 2016;166:1295-1307.e21 pubmed 出版商
  28. Bodaleo F, Montenegro Venegas C, Henríquez D, Court F, Gonzalez Billault C. Microtubule-associated protein 1B (MAP1B)-deficient neurons show structural presynaptic deficiencies in vitro and altered presynaptic physiology. Sci Rep. 2016;6:30069 pubmed 出版商
  29. Tillberg P, Chen F, Piatkevich K, Zhao Y, Yu C, English B, et al. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat Biotechnol. 2016;34:987-92 pubmed 出版商
  30. Vasek M, Garber C, Dorsey D, Durrant D, Bollman B, Soung A, et al. A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature. 2016;534:538-43 pubmed 出版商
  31. Emanuele M, Esposito A, Camerini S, Antonucci F, Ferrara S, Seghezza S, et al. Exogenous Alpha-Synuclein Alters Pre- and Post-Synaptic Activity by Fragmenting Lipid Rafts. EBioMedicine. 2016;7:191-204 pubmed 出版商
  32. Heise C, Schroeder J, Schoen M, Halbedl S, Reim D, Woelfle S, et al. Selective Localization of Shanks to VGLUT1-Positive Excitatory Synapses in the Mouse Hippocampus. Front Cell Neurosci. 2016;10:106 pubmed 出版商
  33. Gresa Arribas N, Planaguma J, Petit Pedrol M, Kawachi I, Katada S, Glaser C, et al. Human neurexin-3α antibodies associate with encephalitis and alter synapse development. Neurology. 2016;86:2235-42 pubmed 出版商
  34. Frank R, Komiyama N, Ryan T, Zhu F, O Dell T, Grant S. NMDA receptors are selectively partitioned into complexes and supercomplexes during synapse maturation. Nat Commun. 2016;7:11264 pubmed 出版商
  35. Chozinski T, Halpern A, Okawa H, Kim H, Tremel G, Wong R, et al. Expansion microscopy with conventional antibodies and fluorescent proteins. Nat Methods. 2016;13:485-8 pubmed 出版商
  36. Hong S, Beja Glasser V, Nfonoyim B, Frouin A, Li S, Ramakrishnan S, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;352:712-716 pubmed 出版商
  37. Gazit N, Vertkin I, Shapira I, Helm M, Slomowitz E, Sheiba M, et al. IGF-1 Receptor Differentially Regulates Spontaneous and Evoked Transmission via Mitochondria at Hippocampal Synapses. Neuron. 2016;89:583-97 pubmed 出版商
  38. Haas L, Salazar S, Kostylev M, Um J, Kaufman A, Strittmatter S. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer's disease. Brain. 2016;139:526-46 pubmed 出版商
  39. Farley M, Swulius M, Waxham M. Electron tomographic structure and protein composition of isolated rat cerebellar, hippocampal and cortical postsynaptic densities. Neuroscience. 2015;304:286-301 pubmed 出版商
  40. Currais A, Farrokhi C, Dargusch R, Goujon Svrzic M, Maher P. Dietary glycemic index modulates the behavioral and biochemical abnormalities associated with autism spectrum disorder. Mol Psychiatry. 2016;21:426-36 pubmed 出版商
  41. Kalinowska M, Castillo C, Francesconi A. Quantitative profiling of brain lipid raft proteome in a mouse model of fragile X syndrome. PLoS ONE. 2015;10:e0121464 pubmed 出版商
  42. Wang Q, Chikina M, Pincas H, Sealfon S. Homer1 alternative splicing is regulated by gonadotropin-releasing hormone and modulates gonadotropin gene expression. Mol Cell Biol. 2014;34:1747-56 pubmed 出版商