这是一篇来自已证抗体库的有关人类 HSP90的综述,是根据275篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合HSP90 抗体。
HSP90 同义词: EL52; HEL-S-65p; HSP86; HSP89A; HSP90A; HSP90N; HSPC1; HSPCA; HSPCAL1; HSPCAL4; HSPN; Hsp103; Hsp89; Hsp90; LAP-2; LAP2

Enzo Life Sciences
小鼠 单克隆(AC88)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
Enzo Life Sciences HSP90抗体(Enzo, ADI-SPA-830)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1s1a
Enzo Life Sciences HSP90抗体(Enzo Life Sciences, ADI-SPA-846-D)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1s1a). elife (2019) ncbi
小鼠 单克隆(H90-10)
  • 免疫印迹; 人类; 图 1f
Enzo Life Sciences HSP90抗体(Enzo, ALX-804-808)被用于被用于免疫印迹在人类样本上 (图 1f). MBio (2018) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 小鼠; 1:1000; 图 s6a
Enzo Life Sciences HSP90抗体(Enzo Life Sciences, SPA-830)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6a). Nat Commun (2018) ncbi
单克隆
  • 免疫印迹; 人类; 图 3b
Enzo Life Sciences HSP90抗体(Stressgen, SPA-835)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2017) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 小鼠; 1:4000; 图 9a
Enzo Life Sciences HSP90抗体(Enzo, AC88)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 9a). Nat Commun (2017) ncbi
大鼠 单克隆(9D2)
  • 免疫印迹; 人类; 图 4f
Enzo Life Sciences HSP90抗体(Enzo Life Sciences, ADI-SPA-840-F)被用于被用于免疫印迹在人类样本上 (图 4f). Oncogene (2017) ncbi
小鼠 单克隆(K3701)
  • 流式细胞仪; 人类; 图 2
Enzo Life Sciences HSP90抗体(Enzo life sciences, K3701)被用于被用于流式细胞仪在人类样本上 (图 2). J Leukoc Biol (2017) ncbi
小鼠 单克隆(AC88)
  • 流式细胞仪; 人类; 图 2
Enzo Life Sciences HSP90抗体(Enzo life sciences, AC88)被用于被用于流式细胞仪在人类样本上 (图 2). J Leukoc Biol (2017) ncbi
小鼠 单克隆(K3705)
  • 流式细胞仪; 人类; 图 2
Enzo Life Sciences HSP90抗体(Enzo life sciences, K3705)被用于被用于流式细胞仪在人类样本上 (图 2). J Leukoc Biol (2017) ncbi
大鼠 单克隆(9D2)
  • 流式细胞仪; 人类; 图 2
Enzo Life Sciences HSP90抗体(Enzo life sciences, 9D2)被用于被用于流式细胞仪在人类样本上 (图 2). J Leukoc Biol (2017) ncbi
大鼠 单克隆(16F1)
  • 流式细胞仪; 人类; 图 2
Enzo Life Sciences HSP90抗体(Enzo life sciences, I6F1)被用于被用于流式细胞仪在人类样本上 (图 2). J Leukoc Biol (2017) ncbi
大鼠 单克隆(2D12)
  • 流式细胞仪; 人类; 图 2
Enzo Life Sciences HSP90抗体(Enzo life sciences, 2D12)被用于被用于流式细胞仪在人类样本上 (图 2). J Leukoc Biol (2017) ncbi
大鼠 单克隆(9D2)
  • 免疫印迹; 人类; 图 1f
Enzo Life Sciences HSP90抗体(Enzo Life Sciences, ADI-SPA-840-F)被用于被用于免疫印迹在人类样本上 (图 1f). BMC Cancer (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1a
Enzo Life Sciences HSP90抗体(Enzo, ADI-SPA-846F)被用于被用于免疫印迹在人类样本上 (图 s1a). Nat Commun (2017) ncbi
大鼠 单克隆(2D12)
  • 免疫沉淀; 人类; 图 2c
  • 免疫印迹; 人类; 图 2a
Enzo Life Sciences HSP90抗体(Stressgen, ADI-SPA-845-D)被用于被用于免疫沉淀在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2017) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 人类; 1:2000; 图 sf10a
Enzo Life Sciences HSP90抗体(Stratagene, ADI-SPA-830D)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 sf10a). Nat Commun (2016) ncbi
大鼠 单克隆(9D2)
  • 免疫沉淀; 人类; 图 6b
Enzo Life Sciences HSP90抗体(Assay Designs, ADI-SPA-840)被用于被用于免疫沉淀在人类样本上 (图 6b). Sci Rep (2016) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 小鼠; 1:1000; 图 4d
Enzo Life Sciences HSP90抗体(Enzo Life Sciences, ADI-SPA-830)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). Oncotarget (2016) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 大鼠; 图 6d
Enzo Life Sciences HSP90抗体(Enzo, ADI-SPA-830-D)被用于被用于免疫印迹在大鼠样本上 (图 6d). Biochem J (2016) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 小鼠; 图 5
Enzo Life Sciences HSP90抗体(Enzo, AC88)被用于被用于免疫印迹在小鼠样本上 (图 5). Mol Cancer Ther (2016) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 小鼠; 1:1000; 图 3
Enzo Life Sciences HSP90抗体(Enzo Life Sciences, AC88)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). J Neurosci (2016) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 人类; 图 1
Enzo Life Sciences HSP90抗体(Enzo, ADI-SPA-830)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
大鼠 单克隆(2D12)
  • 免疫沉淀; 人类; 图 3
Enzo Life Sciences HSP90抗体(Enzo, 2D12)被用于被用于免疫沉淀在人类样本上 (图 3). Mol Cancer Ther (2016) ncbi
小鼠 单克隆(AC88)
  • 免疫沉淀; 人类; 图 3
Enzo Life Sciences HSP90抗体(Enzo, AC88)被用于被用于免疫沉淀在人类样本上 (图 3). Mol Cancer Ther (2016) ncbi
大鼠 单克隆(9D2)
  • 免疫细胞化学; 鸡; 1:100; 图 3
Enzo Life Sciences HSP90抗体(Enzo, ADI-SPA-840)被用于被用于免疫细胞化学在鸡样本上浓度为1:100 (图 3). Br Poult Sci (2016) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 人类; 图 5
Enzo Life Sciences HSP90抗体(Enzo, SPA-830)被用于被用于免疫印迹在人类样本上 (图 5). Front Pharmacol (2016) ncbi
大鼠 单克隆(9D2)
  • 免疫组化-石蜡切片; 鸡; 1:50; 图 3
Enzo Life Sciences HSP90抗体(Enzo, ADI-SPA-840)被用于被用于免疫组化-石蜡切片在鸡样本上浓度为1:50 (图 3). J Vet Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
  • 免疫印迹; 小鼠; 图 6a
Enzo Life Sciences HSP90抗体(Enzo, ADI-SPS-771)被用于被用于免疫印迹在人类样本上 (图 5a) 和 被用于免疫印迹在小鼠样本上 (图 6a). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:10,000; 图 1
Enzo Life Sciences HSP90抗体(Stressgen, SPA-846)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1). J Neurosci Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:10,000; 图 1
Enzo Life Sciences HSP90抗体(Stressgen, SPA-846)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1). J Neurosci Res (2016) ncbi
单克隆
  • 免疫印迹; 人类; 图 3
Enzo Life Sciences HSP90抗体(Enzo, ADI-SPA-835)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 人类; 1:500; 表 1
  • 免疫印迹; 小鼠; 1:500; 表 1
Enzo Life Sciences HSP90抗体(Assay Designs, AC88)被用于被用于免疫印迹在人类样本上浓度为1:500 (表 1) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (表 1). Front Cell Neurosci (2015) ncbi
单克隆
  • 免疫印迹; 小鼠; 图 3
Enzo Life Sciences HSP90抗体(Enzo, ADI-SPA-835)被用于被用于免疫印迹在小鼠样本上 (图 3). Cell Death Dis (2016) ncbi
大鼠 单克隆(16F1)
  • 免疫印迹; 拟南芥; 1:2000; 图 5
Enzo Life Sciences HSP90抗体(Enzo Life Sciences, AD1-SPA-835-F)被用于被用于免疫印迹在拟南芥样本上浓度为1:2000 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(AC88)
  • 流式细胞仪; 小鼠; 图 1
Enzo Life Sciences HSP90抗体(Enzo, AC88)被用于被用于流式细胞仪在小鼠样本上 (图 1). Int J Oncol (2016) ncbi
小鼠 单克隆(2D11B9)
  • 其他; 人类
Enzo Life Sciences HSP90抗体(Enzo Life Sciences, adi-spa-831-200)被用于被用于其他在人类样本上. Anal Bioanal Chem (2016) ncbi
单克隆
  • 免疫印迹; 犬; 1:600; 图 5
Enzo Life Sciences HSP90抗体(Enzo, ADI-SPA-835)被用于被用于免疫印迹在犬样本上浓度为1:600 (图 5). PLoS ONE (2015) ncbi
大鼠 单克隆(9D2)
  • 免疫沉淀; 人类; 图 8
  • 免疫印迹; 人类; 图 7
Enzo Life Sciences HSP90抗体(Stressgen, SPA-840)被用于被用于免疫沉淀在人类样本上 (图 8) 和 被用于免疫印迹在人类样本上 (图 7). Biochem Pharmacol (2016) ncbi
大鼠 单克隆(16F1)
  • 免疫印迹; 小鼠; 图 2
Enzo Life Sciences HSP90抗体(Enzo Life Sciences, 16F1)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(9D2)
  • 免疫印迹; 人类; 图 2
Enzo Life Sciences HSP90抗体(Enzo, ADISPA-840)被用于被用于免疫印迹在人类样本上 (图 2). Am J Physiol Lung Cell Mol Physiol (2015) ncbi
单克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5
Enzo Life Sciences HSP90抗体(Enzo Life Sciences, ADI-SPA-835)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Mol Med Rep (2015) ncbi
小鼠 单克隆(K3705)
  • 免疫印迹; 大鼠
Enzo Life Sciences HSP90抗体(Enzo Life Sciences, K3705)被用于被用于免疫印迹在大鼠样本上. Front Pharmacol (2015) ncbi
大鼠 单克隆(9D2)
  • 免疫印迹; 小鼠; 1:1000; 图 5
Enzo Life Sciences HSP90抗体(Enzo Life Sciences, ADI-SPA-840HRP)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Br J Pharmacol (2015) ncbi
小鼠 单克隆(K3705)
  • 免疫印迹; 小鼠
Enzo Life Sciences HSP90抗体(Enzo Life Sciences, SPA-842)被用于被用于免疫印迹在小鼠样本上. Eur J Immunol (2015) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 小鼠; 图 5
  • 免疫沉淀; 人类; 图 2
  • 免疫印迹; 人类; 图 10
Enzo Life Sciences HSP90抗体(Enzo Life Sciences, SPA-830)被用于被用于免疫印迹在小鼠样本上 (图 5), 被用于免疫沉淀在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 10). Eur J Immunol (2015) ncbi
大鼠 单克隆(2D12)
  • 免疫沉淀; 小鼠; 图 7
  • 免疫印迹; 小鼠; 图 5
  • 免疫沉淀; 人类; 图 2
  • 免疫印迹; 人类; 图 10
Enzo Life Sciences HSP90抗体(Enzo Life Sciences, SPA-845)被用于被用于免疫沉淀在小鼠样本上 (图 7), 被用于免疫印迹在小鼠样本上 (图 5), 被用于免疫沉淀在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 10). Eur J Immunol (2015) ncbi
大鼠 单克隆(16F1)
  • 免疫组化-自由浮动切片; 黑腹果蝇; 1:100; 图 3
Enzo Life Sciences HSP90抗体(Enzo Life Sciences, ADI-SPA-835)被用于被用于免疫组化-自由浮动切片在黑腹果蝇样本上浓度为1:100 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 人类; 1:1000; 图 5
Enzo Life Sciences HSP90抗体(Enzo Life Sciences, API-SPA-830)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(AC88)
  • 流式细胞仪; 人类
Enzo Life Sciences HSP90抗体(Stressgen, ADI-SPA-830)被用于被用于流式细胞仪在人类样本上. Cancer Res (2015) ncbi
小鼠 单克隆(K3705)
  • 免疫印迹; 人类; 图 s3
Enzo Life Sciences HSP90抗体(Enzo, K3705)被用于被用于免疫印迹在人类样本上 (图 s3). Cell Death Dis (2015) ncbi
大鼠 单克隆(9D2)
  • 免疫印迹; 人类; 1:2000
Enzo Life Sciences HSP90抗体(Enzo, ADI-SPA-840)被用于被用于免疫印迹在人类样本上浓度为1:2000. Nat Med (2015) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 小鼠
Enzo Life Sciences HSP90抗体(Stressgen, SPA-830)被用于被用于免疫印迹在小鼠样本上. Oncogene (2015) ncbi
大鼠 单克隆(9D2)
  • 免疫印迹; 大肠杆菌; 图 2
Enzo Life Sciences HSP90抗体(Stressgen, SPA-840)被用于被用于免疫印迹在大肠杆菌样本上 (图 2). Biochemistry (2015) ncbi
小鼠 单克隆(AC88)
  • 流式细胞仪; 人类; 1:100
Enzo Life Sciences HSP90抗体(Enzo Life Sciences, ADI-SPA-830)被用于被用于流式细胞仪在人类样本上浓度为1:100. Biochem Pharmacol (2015) ncbi
大鼠 单克隆(16F1)
  • 免疫印迹; Garra rufa
Enzo Life Sciences HSP90抗体(StressGen, SPA-835)被用于被用于免疫印迹在Garra rufa样本上. Redox Biol (2014) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 小鼠
Enzo Life Sciences HSP90抗体(Stressgen, SPA-830)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 鸡
Enzo Life Sciences HSP90抗体(Enzo Life Sciences, AC88)被用于被用于免疫印迹在鸡样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(16F1)
  • 免疫印迹; 小鼠
Enzo Life Sciences HSP90抗体(Stressgen, SPA835)被用于被用于免疫印迹在小鼠样本上. J Neuroinflammation (2014) ncbi
小鼠 单克隆(2D11B9)
  • 免疫印迹; 大鼠; 1:3000
Enzo Life Sciences HSP90抗体(Stressgen, ADI-SPA 831)被用于被用于免疫印迹在大鼠样本上浓度为1:3000. PLoS ONE (2014) ncbi
小鼠 单克隆(AC88)
  • 免疫沉淀; 人类; 图 6
  • 免疫印迹; 人类; 图 6
Enzo Life Sciences HSP90抗体(Stressgen, SPA830)被用于被用于免疫沉淀在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 6). Blood (2014) ncbi
小鼠 单克隆(K3701)
  • 免疫印迹; 人类; 图 5e
Enzo Life Sciences HSP90抗体(Enzo Life Sciences , K3701)被用于被用于免疫印迹在人类样本上 (图 5e). Cell Death Differ (2014) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 人类
Enzo Life Sciences HSP90抗体(Enzo Life Sciences, ADI-SPA-830)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2013) ncbi
大鼠 单克隆(2D12)
  • 免疫印迹; 人类
Enzo Life Sciences HSP90抗体(Enzolifesciences, ADI-SPA-845)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
大鼠 单克隆(16F1)
  • 免疫印迹; 人类
Enzo Life Sciences HSP90抗体(Enzo Life Sciences, 16F1)被用于被用于免疫印迹在人类样本上. J Card Fail (2012) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 人类; 1:1000
Enzo Life Sciences HSP90抗体(Enzo Life Sciences, AC88)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cell Stress Chaperones (2012) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 大鼠
Enzo Life Sciences HSP90抗体(Enzo Life Sciences, AC88)被用于被用于免疫印迹在大鼠样本上. J Biol Chem (2012) ncbi
小鼠 单克隆(3B6)
  • 免疫印迹; 人类
Enzo Life Sciences HSP90抗体(Alexis, ALX-804-078-R100)被用于被用于免疫印迹在人类样本上. Nat Immunol (2007) ncbi
圣克鲁斯生物技术
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 图 6c
圣克鲁斯生物技术 HSP90抗体(Santa, sc-13119)被用于被用于免疫印迹在人类样本上 (图 6c). Cell (2019) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 1:1000; 图 1b
圣克鲁斯生物技术 HSP90抗体(Santa, sc-13119)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). elife (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术 HSP90抗体(Santa, Sc-515081)被用于被用于免疫印迹在人类样本上 (图 2b). DNA Repair (Amst) (2019) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
圣克鲁斯生物技术 HSP90抗体(Santa Cruz Biotechnology, sc-13119)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Nucleic Acids Res (2018) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 1c
  • 核糖核酸免疫沉淀; 人类; 图 s9d
圣克鲁斯生物技术 HSP90抗体(SantaCruz, F-8)被用于被用于免疫印迹在小鼠样本上 (图 1c) 和 被用于核糖核酸免疫沉淀在人类样本上 (图 s9d). Nature (2017) ncbi
小鼠 单克隆(F-8)
  • 核糖核酸免疫沉淀; 人类; 图 s9d
  • 免疫印迹; 小鼠; 图 1c
圣克鲁斯生物技术 HSP90抗体(SantaCruz, F-8)被用于被用于核糖核酸免疫沉淀在人类样本上 (图 s9d) 和 被用于免疫印迹在小鼠样本上 (图 1c). Nature (2017) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 图 1f
圣克鲁斯生物技术 HSP90抗体(Santa Cruz, sc-13119)被用于被用于免疫印迹在人类样本上 (图 1f). BMC Cancer (2017) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 图 4d
圣克鲁斯生物技术 HSP90抗体(Santa Cruz, sc-13119)被用于被用于免疫印迹在人类样本上 (图 4d). PLoS ONE (2017) ncbi
小鼠 单克隆(4F10)
  • 免疫印迹; 人类; 1:1000; 图 s3i
圣克鲁斯生物技术 HSP90抗体(Santa Cruz, sc-69703)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3i). Nat Commun (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术 HSP90抗体(Santa Cruz, F-8)被用于被用于免疫印迹在人类样本上 (图 3b). Leuk Res (2017) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术 HSP90抗体(Santa Cruz, F-8)被用于被用于免疫印迹在人类样本上 (图 3b). Leuk Res (2017) ncbi
小鼠 单克隆(4F10)
  • 免疫印迹; 人类; 图 3e
圣克鲁斯生物技术 HSP90抗体(SantaCruz, sc-69703)被用于被用于免疫印迹在人类样本上 (图 3e). Nucleic Acids Res (2017) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 图 1h
圣克鲁斯生物技术 HSP90抗体(Santa Cruz, sc-13119)被用于被用于免疫印迹在人类样本上 (图 1h). elife (2016) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 HSP90抗体(Santa Cruz Biotechnology, sc-13119)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Biol Open (2017) ncbi
小鼠 单克隆(4F10)
  • 免疫印迹; 人类; 1:1000; 图 s6a
圣克鲁斯生物技术 HSP90抗体(Santa Cruz, sc-69703)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s6a). Nat Cell Biol (2016) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术 HSP90抗体(Santa Cruz, 13119)被用于被用于免疫印迹在小鼠样本上 (图 2). J Biol Chem (2016) ncbi
小鼠 单克隆(4F10)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 HSP90抗体(Santa Cruz, sc-69703)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(F-8)
  • 免疫沉淀; 小鼠; 图 2c
  • 免疫组化; 小鼠; 1:50; 图 3
  • 免疫印迹; 小鼠; 1:1000; 图 2c
圣克鲁斯生物技术 HSP90抗体(Santa Cruz, sc-13119)被用于被用于免疫沉淀在小鼠样本上 (图 2c), 被用于免疫组化在小鼠样本上浓度为1:50 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). J Cell Sci (2016) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 小鼠; 图 3d
圣克鲁斯生物技术 HSP90抗体(Santa Cruz, sc-13119)被用于被用于免疫印迹在小鼠样本上 (图 3d). Nat Commun (2016) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 HSP90抗体(Santa Cruz, sc-13119)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术 HSP90抗体(Santa Cruz, SC-13119)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 1:2000; 图 s1c
圣克鲁斯生物技术 HSP90抗体(SantaCruz, sc-13119)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s1c). Nat Cell Biol (2016) ncbi
小鼠 单克隆(4F10)
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术 HSP90抗体(Santa Cruz Biotechnology, sc-69703)被用于被用于免疫印迹在人类样本上 (图 3c). Oncotarget (2016) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 HSP90抗体(santa Cruz, sc-59577)被用于被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(4F10)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术 HSP90抗体(Santa Cruz Biotechnology, 4F10)被用于被用于免疫印迹在人类样本上 (图 1a). Leukemia (2016) ncbi
小鼠 单克隆(4F10)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 HSP90抗体(Santa Cruz, sc-69703)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 小鼠; 1:1000; 图 6
圣克鲁斯生物技术 HSP90抗体(Santa Cruz Biotechnology, sc-13119)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Commun (2016) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术 HSP90抗体(Santa Cruz Biotechnology, sc-59577)被用于被用于免疫印迹在人类样本上 (图 7). Oncogene (2016) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 HSP90抗体(Santa Cruz Biotechnologies, 13119)被用于被用于免疫印迹在人类样本上浓度为1:1000. Oncoscience (2015) ncbi
小鼠 单克隆(4F10)
  • 免疫印迹; 人类; 1:2000; 图 1
圣克鲁斯生物技术 HSP90抗体(Santa Cruz, sc-69703)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1). J Virol (2016) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 HSP90抗体(Santa Cruz Biotechnology, sc-13119)被用于被用于免疫印迹在人类样本上 (图 3). Cell Death Dis (2015) ncbi
小鼠 单克隆(AC88)
  • 流式细胞仪; 人类; 图 1e
圣克鲁斯生物技术 HSP90抗体(Santa Cruz Biotechnology, sc-59577)被用于被用于流式细胞仪在人类样本上 (图 1e). Oncotarget (2015) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 HSP90抗体(santa Cruz, sc-13119)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类
圣克鲁斯生物技术 HSP90抗体(Santa Cruz, sc-13119)被用于被用于免疫印迹在人类样本上. Genes Cancer (2015) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 小鼠; 1:1000; 图 5
圣克鲁斯生物技术 HSP90抗体(santa Cruz, sc-13119)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术 HSP90抗体(Santa Cruz Biotechnology, sc-13119)被用于被用于免疫印迹在人类样本上 (图 4a). Target Oncol (2015) ncbi
小鼠 单克隆(S88)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 HSP90抗体(Santa Cruz, sc-59578)被用于被用于免疫印迹在小鼠样本上 (图 1). J Virol (2015) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 小鼠; 1:2000
圣克鲁斯生物技术 HSP90抗体(Santa Cruz Biotechnology, sc-13119)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Free Radic Biol Med (2015) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 HSP90抗体(Santa Cruz, sc-13119)被用于被用于免疫印迹在人类样本上 (图 5). Int J Biol Sci (2015) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类
圣克鲁斯生物技术 HSP90抗体(Santa Cruz Biotechnology, sc-13119)被用于被用于免疫印迹在人类样本上. Transl Res (2015) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类
圣克鲁斯生物技术 HSP90抗体(Santa Cruz, sc-13119)被用于被用于免疫印迹在人类样本上. Cell Signal (2015) ncbi
小鼠 单克隆(F-8)
  • 免疫沉淀; 人类; 图 4
圣克鲁斯生物技术 HSP90抗体(Santa Cruz, sc-13119)被用于被用于免疫沉淀在人类样本上 (图 4). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(4F10)
  • 免疫印迹; 人类
圣克鲁斯生物技术 HSP90抗体(Santa Cruz, sc-69703)被用于被用于免疫印迹在人类样本上. Br J Cancer (2015) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 HSP90抗体(Santa Cruz Biotechnology, sc-59577)被用于被用于免疫印迹在人类样本上 (图 3). Nucleic Acids Res (2014) ncbi
小鼠 单克隆(4F10)
  • 免疫细胞化学; 人类; 1:50
  • 免疫印迹; 人类
圣克鲁斯生物技术 HSP90抗体(Santa Cruz Biotechnology, sc-69703)被用于被用于免疫细胞化学在人类样本上浓度为1:50 和 被用于免疫印迹在人类样本上. J Virol (2015) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类
圣克鲁斯生物技术 HSP90抗体(Santa Cruz Biotechnology, sc-13119)被用于被用于免疫印迹在人类样本上. Cell Stress Chaperones (2015) ncbi
小鼠 单克隆(S88)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 HSP90抗体(Santa Cruz Biotechnology, sc-59578)被用于被用于免疫印迹在大鼠样本上. J Neurosci (2014) ncbi
小鼠 单克隆(F-8)
  • 免疫组化-石蜡切片; 人类; 1:200
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 HSP90抗体(Santa Cruz Biotechnology, sc-13119)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 和 被用于免疫印迹在人类样本上浓度为1:1000. Anticancer Res (2014) ncbi
小鼠 单克隆(4F10)
  • 免疫印迹; 人类; 图 s3d
圣克鲁斯生物技术 HSP90抗体(Santa, Sc-69703)被用于被用于免疫印迹在人类样本上 (图 s3d). Oncotarget (2014) ncbi
小鼠 单克隆(4F10)
  • 免疫印迹; 人类
圣克鲁斯生物技术 HSP90抗体(Santa Cruz Biotechnology, sc-69703)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(4F10)
  • 免疫细胞化学; 人类; 1:200
圣克鲁斯生物技术 HSP90抗体(Santa Cruz Biotechnology, sc-69703)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Cancer Cytopathol (2014) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 HSP90抗体(Santa, sc-13119)被用于被用于免疫印迹在小鼠样本上 (图 5). Mol Biol Cell (2014) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术 HSP90抗体(Santa Cruz, sc-13119)被用于被用于免疫印迹在人类样本上 (图 1c). Nature (2014) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 HSP90抗体(Santa Cruz Biotechnology, sc-13119)被用于被用于免疫印迹在小鼠样本上. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类
圣克鲁斯生物技术 HSP90抗体(Santa Cruz Biotechnology, sc-13119)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术 HSP90抗体(Santa Cruz Biotechnology, sc-13119)被用于被用于免疫印迹在人类样本上 (图 5c). Oncogene (2015) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 HSP90抗体(Santa Cruz Biotechnology, sc-13119)被用于被用于免疫印迹在人类样本上 (图 3). Mol Cancer Ther (2014) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 HSP90抗体(Santa Cruz, sc-13119)被用于被用于免疫印迹在大鼠样本上. Am J Physiol Cell Physiol (2014) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类
圣克鲁斯生物技术 HSP90抗体(Santa Cruz Biotechnology, F-8)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(4F10)
  • 免疫印迹; 人类
圣克鲁斯生物技术 HSP90抗体(Santa Cruz Biotechnology, 4F10)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 HSP90抗体(Santa Cruz, sc-13119)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Biol Chem (2013) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
艾博抗(上海)贸易有限公司 HSP90抗体(Abacm, ab2928)被用于被用于免疫印迹在人类样本上 (图 2b). Cancer Sci (2018) ncbi
小鼠 单克隆(AC88)
  • 免疫组化; 小鼠; 1:100; 图 s6h
艾博抗(上海)贸易有限公司 HSP90抗体(Abcam, ab13492)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s6h). Cell (2017) ncbi
domestic rabbit 单克隆(EPR3953)
  • 免疫印迹; 小鼠; 1:2000; 图 2a
艾博抗(上海)贸易有限公司 HSP90抗体(Abcam, ab109248)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2a). J Exp Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 7b
艾博抗(上海)贸易有限公司 HSP90抗体(Abcam, 13495)被用于被用于免疫细胞化学在人类样本上 (图 7b). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500; 图 3b
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 HSP90抗体(Abcam, Ab 2928)被用于被用于免疫组化在人类样本上浓度为1:500 (图 3b) 和 被用于免疫印迹在人类样本上. Nature (2016) ncbi
小鼠 单克隆(AC88)
  • 流式细胞仪; 人类; 1:50; 图 3
艾博抗(上海)贸易有限公司 HSP90抗体(ABCAM, ab13492)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 3). Methods Mol Biol (2016) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 人类; 1:1000; 图 3c
艾博抗(上海)贸易有限公司 HSP90抗体(Abcam, ab13492)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 6
艾博抗(上海)贸易有限公司 HSP90抗体(Abcam, 13495)被用于被用于免疫细胞化学在人类样本上 (图 6). Front Oncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2b
艾博抗(上海)贸易有限公司 HSP90抗体(Abcam, ab2928)被用于被用于免疫细胞化学在人类样本上 (图 2b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2b
艾博抗(上海)贸易有限公司 HSP90抗体(Abcam, ab13495)被用于被用于免疫细胞化学在人类样本上 (图 2b). Oncotarget (2016) ncbi
小鼠 单克隆(AC88)
  • 免疫沉淀; 人类; 图 2a
艾博抗(上海)贸易有限公司 HSP90抗体(Abcam, ab13492)被用于被用于免疫沉淀在人类样本上 (图 2a). FASEB J (2016) ncbi
小鼠 单克隆(D7A)
  • 免疫细胞化学; 人类; 图 5c
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司 HSP90抗体(Abcam, ab59459)被用于被用于免疫细胞化学在人类样本上 (图 5c) 和 被用于免疫印迹在人类样本上 (图 5a). FASEB J (2016) ncbi
小鼠 单克隆(2G5.G3)
  • 免疫印迹; 大鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司 HSP90抗体(Abcam, ab79849)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100
艾博抗(上海)贸易有限公司 HSP90抗体(Abcam, ab13495)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Cell Mol Immunol (2017) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 人类; 1:100; 图 3b
艾博抗(上海)贸易有限公司 HSP90抗体(Abcam, ab13492)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 3b). Mol Med Rep (2015) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 HSP90抗体(Abcam, ab13492)被用于被用于免疫印迹在小鼠样本上. Proteomics (2014) ncbi
安迪生物R&D
小鼠 单克隆(341320)
  • 免疫印迹; 人类; 图 7b
安迪生物R&D HSP90抗体(R&D Systems, MAB3286)被用于被用于免疫印迹在人类样本上 (图 7b). Nat Immunol (2018) ncbi
小鼠 单克隆(341320)
  • 免疫印迹; 小鼠; 图 4b
安迪生物R&D HSP90抗体(R&D Systems, MAB3286)被用于被用于免疫印迹在小鼠样本上 (图 4b). Dev Cell (2017) ncbi
domestic goat 多克隆
  • 免疫印迹; 人类; 0.5 ug/ml; 图 2b
安迪生物R&D HSP90抗体(R&D Systems, AF3775)被用于被用于免疫印迹在人类样本上浓度为0.5 ug/ml (图 2b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
安迪生物R&D HSP90抗体(R&D Systems, AF7247)被用于被用于免疫印迹在人类样本上 (图 2). Mucosal Immunol (2016) ncbi
小鼠 单克隆(341320)
  • 免疫印迹; 小鼠; 1:500; 表 3
安迪生物R&D HSP90抗体(R&D Systems, 341320)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (表 3). Comput Struct Biotechnol J (2013) ncbi
小鼠 单克隆(341320)
  • 免疫印迹; 人类; 1:2000
安迪生物R&D HSP90抗体(R&D, MAB3286)被用于被用于免疫印迹在人类样本上浓度为1:2000. Endocrinology (2013) ncbi
武汉三鹰
小鼠 单克隆(3F11C1)
  • 免疫印迹; 人类; 图 2b
武汉三鹰 HSP90抗体(Proteintech, 60318-1-Ig)被用于被用于免疫印迹在人类样本上 (图 2b). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4b
武汉三鹰 HSP90抗体(Proteintech, 13171-1-AP)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Reprod Domest Anim (2016) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; African green monkey; 图 4c
赛默飞世尔 HSP90抗体(Thermo Pierce, PA3-013)被用于被用于免疫印迹在African green monkey样本上 (图 4c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3
赛默飞世尔 HSP90抗体(Thermo Scientific, PA3-013)被用于被用于免疫印迹在人类样本上 (图 s3). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7
赛默飞世尔 HSP90抗体(Thermo Scientific, PA3-013)被用于被用于免疫印迹在人类样本上 (图 7). J Med Chem (2016) ncbi
小鼠 单克隆(H90-10)
  • 免疫印迹; 小鼠; 100 ng/ml
赛默飞世尔 HSP90抗体(Thermo, H90-10)被用于被用于免疫印迹在小鼠样本上浓度为100 ng/ml. Nat Med (2015) ncbi
StressMarq Biosciences
小鼠 单克隆(4F3.E8)
  • 免疫印迹; 人类; 1:1000; 图 8c
StressMarq Biosciences HSP90抗体(StressMarq Biosciences, SMC-149)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8c). Eneuro (2019) ncbi
Rockland Immunochemicals
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 2a
Rockland Immunochemicals HSP90抗体(Rockland immunochemical, 600-401-981)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2a). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 图 6
  • 免疫印迹; 人类; 1:1000; 图 6
Rockland Immunochemicals HSP90抗体(Rockland Antibodies, 600-401-981)被用于被用于免疫沉淀在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
GeneTex
domestic rabbit 多克隆
  • 免疫细胞化学; African green monkey; 图 2
GeneTex HSP90抗体(Genetex, GTX109753)被用于被用于免疫细胞化学在African green monkey样本上 (图 2). PLoS ONE (2016) ncbi
西格玛奥德里奇
小鼠 单克隆(AC-16)
  • 免疫印迹; 大鼠; 1:1000; 图 8
西格玛奥德里奇 HSP90抗体(Sigma, H1775)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-16)
  • 免疫印迹; 大鼠; 图 6
西格玛奥德里奇 HSP90抗体(Sigma-Aldrich, H1775)被用于被用于免疫印迹在大鼠样本上 (图 6). J Biophotonics (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(C45G5)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1f
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling Technology, 70657S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1f). Nat Cell Biol (2020) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 79641S)被用于被用于免疫印迹在人类样本上 (图 2e). Cell (2019) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 小鼠; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 4877)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1f
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling Technology, 4874)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1f). elife (2019) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s16b
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 4877)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s16b). Science (2019) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 4877S)被用于被用于免疫印迹在人类样本上 (图 3e). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1 ug/ml; 图 s9a
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling Technology, 4874)被用于被用于免疫印迹在小鼠样本上浓度为1 ug/ml (图 s9a). Science (2019) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 小鼠; 1:5000; 图 s8e
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signalling, 4877)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s8e). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 4875)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). J Exp Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s6d, s5b
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 4874S)被用于被用于免疫印迹在小鼠样本上 (图 s6d, s5b). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 6a
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 4874S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6a). PLoS ONE (2019) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 人类; 1:1000; 图 s4h
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 4877)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4h). Immunity (2018) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 4877S)被用于被用于免疫印迹在小鼠样本上 (图 5b). Science (2018) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 人类; 1:1000; 图 s1d
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 4877)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1d). Nat Commun (2018) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 小鼠; 1:1000; 图 s1d
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 4877)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1d). J Neuroinflammation (2018) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell signaling, 4877)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). Nat Med (2018) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 4877)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Nat Commun (2018) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 人类; 图 8d
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, C45G5)被用于被用于免疫印迹在人类样本上 (图 8d). J Leukoc Biol (2018) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 4877)被用于被用于免疫印迹在人类样本上 (图 5f). Cell (2018) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 4877)被用于被用于免疫印迹在小鼠样本上 (图 1b). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 4874S)被用于被用于免疫印迹在小鼠样本上 (图 3a). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 4875)被用于被用于免疫印迹在人类样本上 (图 2a). Int J Radiat Biol (2017) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 人类; 1:1000; 图 s7a
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell signaling, 4877)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s7a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 4877)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Cell (2017) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 人类; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 4877)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). J Cell Biol (2017) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 小鼠; 图 s2f
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell signaling, 4877)被用于被用于免疫印迹在小鼠样本上 (图 s2f). Nature (2017) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling Technology, 4877)被用于被用于免疫印迹在人类样本上 (图 2c). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, E289)被用于被用于免疫印迹在人类样本上 (图 6d). Oncotarget (2017) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 小鼠; 1:500; 图 3-s1d
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 4877S)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3-s1d). elife (2017) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, C45G5)被用于被用于免疫印迹在小鼠样本上 (图 1c). elife (2017) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 4877)被用于被用于免疫印迹在人类样本上 (图 6a). Cell (2016) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 4877)被用于被用于免疫印迹在小鼠样本上 (图 1b). Genes Dev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 3488)被用于被用于免疫印迹在人类样本上 (图 4c). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D1A7)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 8165)被用于被用于免疫印迹在人类样本上 (图 1b). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 4877)被用于被用于免疫印迹在人类样本上 (图 s2). Neuroendocrinology (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 4874)被用于被用于免疫印迹在人类样本上 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 HSP90抗体(Signaling Technology, 4874)被用于被用于免疫印迹在人类样本上 (图 4). J Cell Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 黑腹果蝇; 1:1000
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 4874)被用于被用于免疫印迹在黑腹果蝇样本上浓度为1:1000. PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 4877S)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 4877)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signalling, 4874)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 1:25; 图 1b
  • 免疫组化; 人类; 图 1a
  • 免疫印迹; 人类; 1:500; 图 1d
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell signaling, 4874)被用于被用于流式细胞仪在人类样本上浓度为1:25 (图 1b), 被用于免疫组化在人类样本上 (图 1a) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1d). Chem Biol Interact (2016) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫组化-石蜡切片; 人类; 1:4000; 图 st1
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell signaling, 4877S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:4000 (图 st1) 和 被用于免疫印迹在人类样本上 (图 4). Nature (2016) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 猪; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling Technology, 4877)被用于被用于免疫印迹在猪样本上浓度为1:1000 (图 1). Am J Physiol Regul Integr Comp Physiol (2016) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 4877S)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 4877S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2b
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, E289)被用于被用于免疫细胞化学在人类样本上 (图 2b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 HSP90抗体(CST, 3488)被用于被用于免疫印迹在人类样本上 (图 7b). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 4874S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D1A7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling Technology, 8165)被用于被用于免疫印迹在人类样本上. Am J Clin Nutr (2015) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 人类; 图 s1b
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 4877)被用于被用于免疫印迹在人类样本上 (图 s1b). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 人类; 图 s4
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, 4877)被用于被用于免疫印迹在人类样本上 (图 s4). Oncogene (2016) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell signaling, C45G5)被用于被用于免疫印迹在人类样本上 (图 5). Cancer Med (2015) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling Technologies, 4877)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C45G5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 HSP90抗体(Cell Signaling, C45G5)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
碧迪BD
小鼠 单克隆(27/LAP2)
  • 免疫组化-冰冻切片; 人类; 图 1e
碧迪BD HSP90抗体(BD Biosciences, 611000)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1e). Science (2020) ncbi
小鼠 单克隆(27/LAP2)
  • 免疫细胞化学; 人类; 1:100; 图 5a
碧迪BD HSP90抗体(BD Transduction Laboratories, 611000)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5a). elife (2019) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 1d
碧迪BD HSP90抗体(BD Biosciences, 610418)被用于被用于免疫印迹在人类样本上 (图 1d). Cell (2019) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 1f
碧迪BD HSP90抗体(BD Biosciences, 610418)被用于被用于免疫印迹在人类样本上 (图 1f). Curr Biol (2019) ncbi
小鼠 单克隆(27/LAP2)
  • 免疫印迹; 人类; 图 3b
碧迪BD HSP90抗体(BD Biosciences, 611000)被用于被用于免疫印迹在人类样本上 (图 3b). Cell (2019) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 s11c
碧迪BD HSP90抗体(BD Biosciences, 610418)被用于被用于免疫印迹在人类样本上 (图 s11c). Science (2018) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:2500; 图 2j
碧迪BD HSP90抗体(BD Biosciences, 610419)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 2j). Nat Commun (2018) ncbi
小鼠 单克隆(27/LAP2)
  • 免疫细胞化学; 人类; 1:500; 图 1c
碧迪BD HSP90抗体(BD, 611000)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1c). J Cell Sci (2018) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:4000; 图 3b
碧迪BD HSP90抗体(BD Biosciences, 610419)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 3b). Nat Commun (2018) ncbi
小鼠 单克隆(27/LAP2)
  • 免疫细胞化学; 人类; 1:1000; 图 s3a
碧迪BD HSP90抗体(BD Biosciences, 611000)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s3a). Nat Commun (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 s5h
碧迪BD HSP90抗体(BD Transduction Laboratories, 610419)被用于被用于免疫印迹在小鼠样本上 (图 s5h). Nat Methods (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 大鼠; 图 1d
碧迪BD HSP90抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在大鼠样本上 (图 1d). Sci Rep (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 1:5000; 图 1b
碧迪BD HSP90抗体(BD Biosciences, 610418)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1b). Biochemistry (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类
碧迪BD HSP90抗体(BD Biosciences, 610419)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2017) ncbi
小鼠 单克隆(27/LAP2)
  • 免疫细胞化学; 小鼠; 1:500; 图 5h
  • 免疫印迹; 小鼠; 1:1000; 图 5g
碧迪BD HSP90抗体(BD, 611000)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 5h) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5g). J Clin Invest (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:1000; 图 6b
碧迪BD HSP90抗体(BD Biosciences, 610418)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). BMC Pulm Med (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 1c
碧迪BD HSP90抗体(BD Biosciences, 610418)被用于被用于免疫印迹在小鼠样本上 (图 1c). J Clin Invest (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 6b
碧迪BD HSP90抗体(BD, 610419)被用于被用于免疫印迹在小鼠样本上 (图 6b). Mol Cell Biol (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 1b
碧迪BD HSP90抗体(BD Bioscience, 610418)被用于被用于免疫印迹在人类样本上 (图 1b). Oncogene (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 s6c
碧迪BD HSP90抗体(BD Transduction Lab, 610419)被用于被用于免疫印迹在人类样本上 (图 s6c). Nature (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 大鼠; 1:2000; 图 7c
碧迪BD HSP90抗体(BD Transduction, 610418)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 7c). J Cell Physiol (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:5000; 图 s2a
碧迪BD HSP90抗体(BD Biosciences, 610419)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s2a). Nat Commun (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 犬; 1:500; 图 3
碧迪BD HSP90抗体(BD Biosciences, 610419)被用于被用于免疫印迹在犬样本上浓度为1:500 (图 3). Int J Hyperthermia (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 2k
碧迪BD HSP90抗体(BD Transduction, 610419)被用于被用于免疫印迹在小鼠样本上 (图 2k). Cell Cycle (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 3
碧迪BD HSP90抗体(BD Transduction Labs, 610419)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS Genet (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 9h
  • 免疫印迹; 大鼠; 图 3a
碧迪BD HSP90抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在小鼠样本上 (图 9h) 和 被用于免疫印迹在大鼠样本上 (图 3a). Sci Rep (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 1:1000; 图 7f
碧迪BD HSP90抗体(BD Biosciences, 610419)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7f). Nat Commun (2016) ncbi
小鼠 单克隆(27/LAP2)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 3
碧迪BD HSP90抗体(BD Bioscience, 611000)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). Protein Cell (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 4h
碧迪BD HSP90抗体(BD, 68/Hsp90)被用于被用于免疫印迹在人类样本上 (图 4h). Science (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 2
碧迪BD HSP90抗体(BD Transduction Laboratories, 610419)被用于被用于免疫印迹在人类样本上 (图 2). Mol Cell Biol (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 5e
碧迪BD HSP90抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在人类样本上 (图 5e). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 3
碧迪BD HSP90抗体(BD Transduction Laboratories, 610419)被用于被用于免疫印迹在人类样本上 (图 3). IUBMB Life (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 其他; 人类; 图 st1
碧迪BD HSP90抗体(BD, 68)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 4
碧迪BD HSP90抗体(BD Biosciences, 610418)被用于被用于免疫印迹在小鼠样本上 (图 4). Cancer Discov (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 1
碧迪BD HSP90抗体(BD Biosciences, 68/Hsp90)被用于被用于免疫印迹在小鼠样本上 (图 1). J Immunol (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 1:1000; 图 3
碧迪BD HSP90抗体(BD Transduction Labs, 68)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 2
碧迪BD HSP90抗体(BD Biosciences, 610418)被用于被用于免疫印迹在人类样本上 (图 2). Am J Physiol Lung Cell Mol Physiol (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:5000; 图 3a
碧迪BD HSP90抗体(BD, 610418)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3a). Mol Brain (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 2
碧迪BD HSP90抗体(BD Biosciences, 610418)被用于被用于免疫印迹在人类样本上 (图 2). Cell Mol Life Sci (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 1:500; 图 4f
碧迪BD HSP90抗体(BD, 610419)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4f). PLoS ONE (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 1
碧迪BD HSP90抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 2
碧迪BD HSP90抗体(BD Transduction laboratories, 610419)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 5
碧迪BD HSP90抗体(BD Transduction Laboratorie, 610419)被用于被用于免疫印迹在小鼠样本上 (图 5). Genes Dev (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 鸡; 1:1000
碧迪BD HSP90抗体(BD Bioscience, 610418)被用于被用于免疫印迹在鸡样本上浓度为1:1000. Biosci Biotechnol Biochem (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 s6
碧迪BD HSP90抗体(BD, 610418)被用于被用于免疫印迹在人类样本上 (图 s6). Nature (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类
碧迪BD HSP90抗体(BD Transduction Labs, 610418)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 4
碧迪BD HSP90抗体(BD Biosciences, 610418)被用于被用于免疫印迹在小鼠样本上 (图 4). PLoS Pathog (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 1:1000; 图 7
碧迪BD HSP90抗体(BD Transduction laboratories, 610418)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Eur J Pharmacol (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 1:1000
碧迪BD HSP90抗体(BD Transduction Laboratories, 610419)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类
碧迪BD HSP90抗体(BD Transduction, 610419)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类
碧迪BD HSP90抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在人类样本上. Proteomics (2015) ncbi
小鼠 单克隆(27/LAP2)
  • 免疫组化; 小鼠; 1:400
碧迪BD HSP90抗体(BD Biosciences, 611000)被用于被用于免疫组化在小鼠样本上浓度为1:400. Mol Cell Biol (2014) ncbi
小鼠 单克隆(27/LAP2)
  • 免疫细胞化学; 小鼠
碧迪BD HSP90抗体(BD Transduction lab, 611000)被用于被用于免疫细胞化学在小鼠样本上. PLoS Genet (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:3000; 图 2
碧迪BD HSP90抗体(BD, 610419)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 2). Nat Cell Biol (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠
碧迪BD HSP90抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类
碧迪BD HSP90抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类
碧迪BD HSP90抗体(BD Biosciences, 610419)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 7f
碧迪BD HSP90抗体(BD Biosciences, 610418)被用于被用于免疫印迹在人类样本上 (图 7f). PLoS ONE (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类
碧迪BD HSP90抗体(BD Biosciences, 610418)被用于被用于免疫印迹在人类样本上. Antimicrob Agents Chemother (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类
碧迪BD HSP90抗体(BD, 610419)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类
碧迪BD HSP90抗体(BD Biosciences, 610419)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 1:1000
碧迪BD HSP90抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 大鼠; 1:1000
碧迪BD HSP90抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Lab Invest (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:3000
碧迪BD HSP90抗体(BD Transduction Laboratories, 610419)被用于被用于免疫印迹在人类样本上浓度为1:3000. PLoS Genet (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:2000; 图 1a
碧迪BD HSP90抗体(BD Transduction lab, 610419)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1a). Nat Cell Biol (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 大鼠; 图 s3
碧迪BD HSP90抗体(BD Transduction, 610418)被用于被用于免疫印迹在大鼠样本上 (图 s3). Nat Neurosci (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠
碧迪BD HSP90抗体(BD Transduction laboratories, 610418)被用于被用于免疫印迹在小鼠样本上. Physiol Rep (2013) ncbi
小鼠 单克隆(27/LAP2)
  • 免疫组化-石蜡切片; 小鼠; 1:400
碧迪BD HSP90抗体(BD, 611000)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400. Proc Natl Acad Sci U S A (2013) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 1:3000
碧迪BD HSP90抗体(BD Biosciences, 610419)被用于被用于免疫印迹在小鼠样本上浓度为1:3000. FASEB J (2013) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:1000; 图 7
碧迪BD HSP90抗体(BD Transduction Laboratories, 610419)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Mol Pharmacol (2013) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 4
碧迪BD HSP90抗体(BD Transduction, 610419)被用于被用于免疫印迹在小鼠样本上 (图 4). Proc Natl Acad Sci U S A (2012) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 5
碧迪BD HSP90抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在人类样本上 (图 5). Nat Immunol (2011) ncbi
默克密理博中国
小鼠 单克隆
  • 免疫印迹基因敲除验证; 人类; 图 6a
  • 免疫印迹; 人类; 图 1a
默克密理博中国 HSP90抗体(Calbiochem, CA1023)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 6a) 和 被用于免疫印迹在人类样本上 (图 1a). Mol Cell Biol (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 3a
默克密理博中国 HSP90抗体(Calbiochem, 386040)被用于被用于免疫印迹在人类样本上 (图 3a). Translation (Austin) (2016) ncbi
小鼠 单克隆
  • 免疫印迹基因敲除验证; 人类; 图 2
默克密理博中国 HSP90抗体(Calbiochem, CA1023)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
默克密理博中国 HSP90抗体(Calbiochem, CA1016)被用于被用于免疫印迹在小鼠样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
默克密理博中国 HSP90抗体(Millipore, CA1023-50UG)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
徕卡显微系统(上海)贸易有限公司
单克隆
  • 免疫组化-石蜡切片; 人类; 1:200
徕卡显微系统(上海)贸易有限公司 HSP90抗体(Leica Microsystems, NCL-HSP90)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Int J Surg Pathol (2014) ncbi
文章列表
  1. Gaglia G, Rashid R, Yapp C, Joshi G, Li C, Lindquist S, et al. HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat Cell Biol. 2020;22:151-158 pubmed 出版商
  2. Topalian S, Taube J, Pardoll D. Neoadjuvant checkpoint blockade for cancer immunotherapy. Science. 2020;367: pubmed 出版商
  3. Nakamura Y, Dryanovski D, Kimura Y, Jackson S, Woods A, Yasui Y, et al. Cocaine-induced endocannabinoid signaling mediated by sigma-1 receptors and extracellular vesicle secretion. elife. 2019;8: pubmed 出版商
  4. Lopez V, Park B, Nowak D, Sreelatha A, Zembek P, Fernandez J, et al. A Bacterial Effector Mimics a Host HSP90 Client to Undermine Immunity. Cell. 2019;179:205-218.e21 pubmed 出版商
  5. Greenberg R, Long H, Swigut T, Wysocka J. Single Amino Acid Change Underlies Distinct Roles of H2A.Z Subtypes in Human Syndrome. Cell. 2019;178:1421-1436.e24 pubmed 出版商
  6. Stavoe A, Gopal P, Gubas A, Tooze S, Holzbaur E. Expression of WIPI2B counteracts age-related decline in autophagosome biogenesis in neurons. elife. 2019;8: pubmed 出版商
  7. Sharma A, Oonthonpan L, Sheldon R, Rauckhorst A, Zhu Z, Tompkins S, et al. Impaired skeletal muscle mitochondrial pyruvate uptake rewires glucose metabolism to drive whole-body leanness. elife. 2019;8: pubmed 出版商
  8. Chaves Pérez A, Yilmaz M, Perna C, de la Rosa S, Djouder N. URI is required to maintain intestinal architecture during ionizing radiation. Science. 2019;364: pubmed 出版商
  9. Stefanius K, Servage K, de Souza Santos M, Gray H, Toombs J, Chimalapati S, et al. Human pancreatic cancer cell exosomes, but not human normal cell exosomes, act as an initiator in cell transformation. elife. 2019;8: pubmed 出版商
  10. Cheng L, Yuan B, Ying S, Niu C, Mai H, Guan X, et al. PES1 is a critical component of telomerase assembly and regulates cellular senescence. Sci Adv. 2019;5:eaav1090 pubmed 出版商
  11. Blair L, Criado Marrero M, Zheng D, Wang X, Kamath S, Nordhues B, et al. The Disease-Associated Chaperone FKBP51 Impairs Cognitive Function by Accelerating AMPA Receptor Recycling. Eneuro. 2019;6: pubmed 出版商
  12. Jeppesen D, Fenix A, Franklin J, Higginbotham J, Zhang Q, Zimmerman L, et al. Reassessment of Exosome Composition. Cell. 2019;177:428-445.e18 pubmed 出版商
  13. Sweere J, Van Belleghem J, Ishak H, Bach M, Popescu M, Sunkari V, et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science. 2019;363: pubmed 出版商
  14. Lieb S, Blaha Ostermann S, Kamper E, Rippka J, Schwarz C, Ehrenhöfer Wölfer K, et al. Werner syndrome helicase is a selective vulnerability of microsatellite instability-high tumor cells. elife. 2019;8: pubmed 出版商
  15. Castel P, Cheng A, Cuevas Navarro A, Everman D, Papageorge A, Simanshu D, et al. RIT1 oncoproteins escape LZTR1-mediated proteolysis. Science. 2019;363:1226-1230 pubmed 出版商
  16. Gong B, Kiyotani K, Sakata S, Nagano S, Kumehara S, Baba S, et al. Secreted PD-L1 variants mediate resistance to PD-L1 blockade therapy in non-small cell lung cancer. J Exp Med. 2019;: pubmed 出版商
  17. Ganeshan K, Nikkanen J, Man K, Leong Y, Sogawa Y, Maschek J, et al. Energetic Trade-Offs and Hypometabolic States Promote Disease Tolerance. Cell. 2019;: pubmed 出版商
  18. Liu W, Wang G, Palovcak A, Li Y, Hao S, Liu Z, et al. Impeding the single-strand annealing pathway of DNA double-strand break repair by withaferin A-mediated FANCA degradation. DNA Repair (Amst). 2019;77:10-17 pubmed 出版商
  19. Liu R, Jagannathan R, Li F, Lee J, Balasubramanyam N, Kim B, et al. Tead1 is required for perinatal cardiomyocyte proliferation. PLoS ONE. 2019;14:e0212017 pubmed 出版商
  20. Ling S, Dastidar S, Tokunaga S, Ho W, Lim K, Ilieva H, et al. Overriding FUS autoregulation in mice triggers gain-of-toxic dysfunctions in RNA metabolism and autophagy-lysosome axis. elife. 2019;8: pubmed 出版商
  21. Jachimowicz R, Beleggia F, Isensee J, Velpula B, Goergens J, Bustos M, et al. UBQLN4 Represses Homologous Recombination and Is Overexpressed in Aggressive Tumors. Cell. 2019;176:505-519.e22 pubmed 出版商
  22. Rausch V, Bostrom J, Park J, Bravo I, Feng Y, Hay D, et al. The Hippo Pathway Regulates Caveolae Expression and Mediates Flow Response via Caveolae. Curr Biol. 2019;29:242-255.e6 pubmed 出版商
  23. Mirza A, McKellar S, Urman N, Brown A, Hollmig T, Aasi S, et al. LAP2 Proteins Chaperone GLI1 Movement between the Lamina and Chromatin to Regulate Transcription. Cell. 2019;176:198-212.e15 pubmed 出版商
  24. Bigenzahn J, Collu G, Kartnig F, Pieraks M, Vladimer G, Heinz L, et al. LZTR1 is a regulator of RAS ubiquitination and signaling. Science. 2018;362:1171-1177 pubmed 出版商
  25. Sarracino A, Gharu L, Kula A, Pasternak A, Avettand Fenoel V, Rouzioux C, et al. Posttranscriptional Regulation of HIV-1 Gene Expression during Replication and Reactivation from Latency by Nuclear Matrix Protein MATR3. MBio. 2018;9: pubmed 出版商
  26. Mollaoglu G, Jones A, Wait S, Mukhopadhyay A, Jeong S, Arya R, et al. The Lineage-Defining Transcription Factors SOX2 and NKX2-1 Determine Lung Cancer Cell Fate and Shape the Tumor Immune Microenvironment. Immunity. 2018;49:764-779.e9 pubmed 出版商
  27. Albrengues J, Shields M, Ng D, Park C, Ambrico A, Poindexter M, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018;361: pubmed 出版商
  28. Kim H, Mun Y, Lee K, Park Y, Park J, Park J, et al. T cell microvilli constitute immunological synaptosomes that carry messages to antigen-presenting cells. Nat Commun. 2018;9:3630 pubmed 出版商
  29. Morris K, Corbett A. The polyadenosine RNA-binding protein ZC3H14 interacts with the THO complex and coordinately regulates the processing of neuronal transcripts. Nucleic Acids Res. 2018;46:6561-6575 pubmed 出版商
  30. Yao F, Zhou Z, Kim J, Hang Q, Xiao Z, Ton B, et al. SKP2- and OTUD1-regulated non-proteolytic ubiquitination of YAP promotes YAP nuclear localization and activity. Nat Commun. 2018;9:2269 pubmed 出版商
  31. Huang W, Lin S, Chen H, Chen Y, Chen T, Hsu K, et al. NADPH oxidases as potential pharmacological targets against increased seizure susceptibility after systemic inflammation. J Neuroinflammation. 2018;15:140 pubmed 出版商
  32. Borlido J, Sakuma S, Raices M, Carrette F, Tinoco R, Bradley L, et al. Nuclear pore complex-mediated modulation of TCR signaling is required for naïve CD4+ T cell homeostasis. Nat Immunol. 2018;19:594-605 pubmed 出版商
  33. Zhang Z, Zi Z, Lee E, Zhao J, Contreras D, South A, et al. Differential glucose requirement in skin homeostasis and injury identifies a therapeutic target for psoriasis. Nat Med. 2018;24:617-627 pubmed 出版商
  34. Sevin M, Kubovcakova L, Pernet N, Causse S, Vitte F, Villeval J, et al. HSP27 is a partner of JAK2-STAT5 and a potential therapeutic target in myelofibrosis. Nat Commun. 2018;9:1431 pubmed 出版商
  35. Platani M, Samejima I, Samejima K, Kanemaki M, Earnshaw W. Seh1 targets GATOR2 and Nup153 to mitotic chromosomes. J Cell Sci. 2018;131: pubmed 出版商
  36. Mo Z, Zhao X, Liu H, Hu Q, Chen X, Pham J, et al. Aberrant GlyRS-HDAC6 interaction linked to axonal transport deficits in Charcot-Marie-Tooth neuropathy. Nat Commun. 2018;9:1007 pubmed 出版商
  37. Taylor J, Cash M, Santostefano K, Nakanishi M, Terada N, Wallet M. CRISPR/Cas9 knockout of USP18 enhances type I IFN responsiveness and restricts HIV-1 infection in macrophages. J Leukoc Biol. 2018;: pubmed 出版商
  38. Hsieh W, Hsu T, Chang Y, Lai M. IL-6 receptor blockade corrects defects of XIAP-deficient regulatory T cells. Nat Commun. 2018;9:463 pubmed 出版商
  39. Janes M, Zhang J, Li L, Hansen R, Peters U, Guo X, et al. Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor. Cell. 2018;172:578-589.e17 pubmed 出版商
  40. Moriya C, Taniguchi H, Nagatoishi S, Igarashi H, Tsumoto K, Imai K. PRDM14 directly interacts with heat shock proteins HSP90α and glucose-regulated protein 78. Cancer Sci. 2018;109:373-383 pubmed 出版商
  41. Tracz Gaszewska Z, Klimczak M, Biecek P, Herok M, Kosiński M, Olszewski M, et al. Molecular chaperones in the acquisition of cancer cell chemoresistance with mutated TP53 and MDM2 up-regulation. Oncotarget. 2017;8:82123-82143 pubmed 出版商
  42. Lüningschrör P, Binotti B, Dombert B, Heimann P, Pérez Lara A, Slotta C, et al. Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease. Nat Commun. 2017;8:678 pubmed 出版商
  43. Jiang Y, Lin X, Tang Z, Lee C, Tian G, Du Y, et al. Critical role of caveolin-1 in ocular neovascularization and multitargeted antiangiogenic effects of cavtratin via JNK. Proc Natl Acad Sci U S A. 2017;114:10737-10742 pubmed 出版商
  44. Zhao T, Hong Y, Yin P, Li S, Li X. Differential HspBP1 expression accounts for the greater vulnerability of neurons than astrocytes to misfolded proteins. Proc Natl Acad Sci U S A. 2017;114:E7803-E7811 pubmed 出版商
  45. Jiang X, Bao Y, Liu H, Kou X, Zhang Z, Sun F, et al. VPS34 stimulation of p62 phosphorylation for cancer progression. Oncogene. 2017;36:6850-6862 pubmed 出版商
  46. Takaki T, Montagner M, Serres M, Le Berre M, Russell M, Collinson L, et al. Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability. Nat Commun. 2017;8:16013 pubmed 出版商
  47. Azimzadeh O, Subramanian V, Ständer S, Merl Pham J, Lowe D, Barjaktarovic Z, et al. Proteome analysis of irradiated endothelial cells reveals persistent alteration in protein degradation and the RhoGDI and NO signalling pathways. Int J Radiat Biol. 2017;93:920-928 pubmed 出版商
  48. Olivares O, Mayers J, Gouirand V, Torrence M, Gicquel T, Borge L, et al. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat Commun. 2017;8:16031 pubmed 出版商
  49. Guo J, Jayaprakash P, Dan J, Wise P, Jang G, Liang C, et al. PRAS40 Connects Microenvironmental Stress Signaling to Exosome-Mediated Secretion. Mol Cell Biol. 2017;37: pubmed 出版商
  50. Raices M, Bukata L, Sakuma S, Borlido J, Hernandez L, Hart D, et al. Nuclear Pores Regulate Muscle Development and Maintenance by Assembling a Localized Mef2C Complex. Dev Cell. 2017;41:540-554.e7 pubmed 出版商
  51. Tan S, Chadha S, Liu Y, Gabasova E, Perera D, Ahmed K, et al. A Class of Environmental and Endogenous Toxins Induces BRCA2 Haploinsufficiency and Genome Instability. Cell. 2017;169:1105-1118.e15 pubmed 出版商
  52. Ganguly A, Han X, Das U, Wang L, Loi J, Sun J, et al. Hsc70 chaperone activity is required for the cytosolic slow axonal transport of synapsin. J Cell Biol. 2017;216:2059-2074 pubmed 出版商
  53. Bzowska M, Nogieć A, Bania K, Zygmunt M, Zarebski M, Dobrucki J, et al. Involvement of cell surface 90 kDa heat shock protein (HSP90) in pattern recognition by human monocyte-derived macrophages. J Leukoc Biol. 2017;102:763-774 pubmed 出版商
  54. Rogers Z, McFarland C, Winters I, Naranjo S, Chuang C, Petrov D, et al. A quantitative and multiplexed approach to uncover the fitness landscape of tumor suppression in vivo. Nat Methods. 2017;14:737-742 pubmed 出版商
  55. Hattori A, Tsunoda M, Konuma T, Kobayashi M, Nagy T, Glushka J, et al. Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia. Nature. 2017;545:500-504 pubmed 出版商
  56. Lim J, Ibaseta A, Fischer M, Cancilla B, O Young G, Cristea S, et al. Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer. Nature. 2017;545:360-364 pubmed 出版商
  57. Rippe C, Zhu B, Krawczyk K, Bavel E, Albinsson S, Sjölund J, et al. Hypertension reduces soluble guanylyl cyclase expression in the mouse aorta via the Notch signaling pathway. Sci Rep. 2017;7:1334 pubmed 出版商
  58. Melville Z, Hernández Ochoa E, Pratt S, Liu Y, Pierce A, Wilder P, et al. The Activation of Protein Kinase A by the Calcium-Binding Protein S100A1 Is Independent of Cyclic AMP. Biochemistry. 2017;56:2328-2337 pubmed 出版商
  59. Zhang X, Spiegelman N, Nelson O, Jing H, Lin H. SIRT6 regulates Ras-related protein R-Ras2 by lysine defatty-acylation. elife. 2017;6: pubmed 出版商
  60. de la Mare J, Jurgens T, Edkins A. Extracellular Hsp90 and TGFβ regulate adhesion, migration and anchorage independent growth in a paired colon cancer cell line model. BMC Cancer. 2017;17:202 pubmed 出版商
  61. Shizu R, Osabe M, Perera L, Moore R, Sueyoshi T, Negishi M. Phosphorylated Nuclear Receptor CAR Forms a Homodimer To Repress Its Constitutive Activity for Ligand Activation. Mol Cell Biol. 2017;37: pubmed 出版商
  62. Voráčová K, Hajek J, Mares J, Urajová P, Kuzma M, Cheel J, et al. The cyanobacterial metabolite nocuolin a is a natural oxadiazine that triggers apoptosis in human cancer cells. PLoS ONE. 2017;12:e0172850 pubmed 出版商
  63. Li H, Liu P, Xu S, Li Y, Dekker J, Li B, et al. FOXP1 controls mesenchymal stem cell commitment and senescence during skeletal aging. J Clin Invest. 2017;127:1241-1253 pubmed 出版商
  64. Gómez Pastor R, Burchfiel E, Neef D, Jaeger A, Cabiscol E, McKinstry S, et al. Abnormal degradation of the neuronal stress-protective transcription factor HSF1 in Huntington's disease. Nat Commun. 2017;8:14405 pubmed 出版商
  65. Booth L, Roberts J, Sander C, Lee J, Kirkwood J, Poklepovic A, et al. The HDAC inhibitor AR42 interacts with pazopanib to kill trametinib/dabrafenib-resistant melanoma cells in vitro and in vivo. Oncotarget. 2017;8:16367-16386 pubmed 出版商
  66. Stefanowicz D, Ullah J, Lee K, Shaheen F, Olumese E, Fishbane N, et al. Epigenetic modifying enzyme expression in asthmatic airway epithelial cells and fibroblasts. BMC Pulm Med. 2017;17:24 pubmed 出版商
  67. Villar V, Nguyen T, Delcroix V, Terés S, Bouchecareilh M, Salin B, et al. mTORC1 inhibition in cancer cells protects from glutaminolysis-mediated apoptosis during nutrient limitation. Nat Commun. 2017;8:14124 pubmed 出版商
  68. Hattori A, McSkimming D, Kannan N, Ito T. RNA binding protein MSI2 positively regulates FLT3 expression in myeloid leukemia. Leuk Res. 2017;54:47-54 pubmed 出版商
  69. Walker L, Summers D, Sasaki Y, Brace E, Milbrandt J, DiAntonio A. MAPK signaling promotes axonal degeneration by speeding the turnover of the axonal maintenance factor NMNAT2. elife. 2017;6: pubmed 出版商
  70. Stein S, Lemos V, Xu P, Demagny H, Wang X, Ryu D, et al. Impaired SUMOylation of nuclear receptor LRH-1 promotes nonalcoholic fatty liver disease. J Clin Invest. 2017;127:583-592 pubmed 出版商
  71. Shaikho S, Dobson C, Naing T, Samanfar B, Moteshareie H, Hajikarimloo M, et al. Elevated levels of ribosomal proteins eL36 and eL42 control expression of Hsp90 in rhabdomyosarcoma. Translation (Austin). 2016;4:e1244395 pubmed 出版商
  72. Nagaraj R, Sharpley M, Chi F, Braas D, Zhou Y, Kim R, et al. Nuclear Localization of Mitochondrial TCA Cycle Enzymes as a Critical Step in Mammalian Zygotic Genome Activation. Cell. 2017;168:210-223.e11 pubmed 出版商
  73. Yamauchi T, Nishiyama M, Moroishi T, Kawamura A, Nakayama K. FBXL5 Inactivation in Mouse Brain Induces Aberrant Proliferation of Neural Stem Progenitor Cells. Mol Cell Biol. 2017;37: pubmed 出版商
  74. Zhao B, Hu W, Kumar S, Gonyo P, Rana U, Liu Z, et al. The Nogo-B receptor promotes Ras plasma membrane localization and activation. Oncogene. 2017;36:3406-3416 pubmed 出版商
  75. Liu X, Gao Y, Ye H, Gerrin S, Ma F, Wu Y, et al. Positive feedback loop mediated by protein phosphatase 1α mobilization of P-TEFb and basal CDK1 drives androgen receptor in prostate cancer. Nucleic Acids Res. 2017;45:3738-3751 pubmed 出版商
  76. Araujo L, Khim P, Mkhikian H, Mortales C, Demetriou M. Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-glycosylation. elife. 2017;6: pubmed 出版商
  77. Chen C, Zhuang Y, Chen X, Chen X, Li D, Fan Y, et al. Hsp90 N- and C-terminal double inhibition synergistically suppresses Bcr-Abl-positive human leukemia cells. Oncotarget. 2017;8:10025-10036 pubmed 出版商
  78. Sha L, Wang X, Li J, Shi X, Wu L, Shen Y, et al. Pharmacologic inhibition of Hsp90 to prevent GLT-1 degradation as an effective therapy for epilepsy. J Exp Med. 2017;214:547-563 pubmed 出版商
  79. Matsumoto A, Pasut A, Matsumoto M, Yamashita R, Fung J, Monteleone E, et al. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature. 2017;541:228-232 pubmed 出版商
  80. Grossi M, Bhattachariya A, Nordström I, Turczynska K, Svensson D, Albinsson S, et al. Pyk2 inhibition promotes contractile differentiation in arterial smooth muscle. J Cell Physiol. 2017;232:3088-3102 pubmed 出版商
  81. Wu L, Zhou B, Oshiro Rapley N, Li M, Paulo J, Webster C, et al. An Ancient, Unified Mechanism for Metformin Growth Inhibition in C. elegans and Cancer. Cell. 2016;167:1705-1718.e13 pubmed 出版商
  82. Oh E, Kim J, Kim J, Kim S, Lee J, Hong S, et al. NQO1 inhibits proteasome-mediated degradation of HIF-1α. Nat Commun. 2016;7:13593 pubmed 出版商
  83. Wada S, Neinast M, Jang C, Ibrahim Y, Lee G, Babu A, et al. The tumor suppressor FLCN mediates an alternate mTOR pathway to regulate browning of adipose tissue. Genes Dev. 2016;30:2551-2564 pubmed
  84. Huang Z, Zhou X, He Y, Ke X, Wen Y, Zou F, et al. Hyperthermia enhances 17-DMAG efficacy in hepatocellular carcinoma cells with aggravated DNA damage and impaired G2/M transition. Sci Rep. 2016;6:38072 pubmed 出版商
  85. Shibata E, Kiran M, Shibata Y, Singh S, Kiran S, Dutta A. Two subunits of human ORC are dispensable for DNA replication and proliferation. elife. 2016;5: pubmed 出版商
  86. Booth L, Roberts J, Poklepovic A, Gordon S, Dent P. PDE5 inhibitors enhance the lethality of pemetrexed through inhibition of multiple chaperone proteins and via the actions of cyclic GMP and nitric oxide. Oncotarget. 2017;8:1449-1468 pubmed 出版商
  87. Chavan R, Preitner N, Okabe T, Strittmatter L, Xu C, Ripperger J, et al. REV-ERB? regulates Fgf21 expression in the liver via hepatic nuclear factor 6. Biol Open. 2017;6:1-7 pubmed 出版商
  88. Reuther C, Heinzle V, Nölting S, Herterich S, Hahner S, Halilovic E, et al. The HDM2 (MDM2) Inhibitor NVP-CGM097 Inhibits Tumor Cell Proliferation and Shows Additive Effects with 5-Fluorouracil on the p53-p21-Rb-E2F1 Cascade in the p53wild type Neuroendocrine Tumor Cell Line GOT1. Neuroendocrinology. 2018;106:1-19 pubmed 出版商
  89. Chaudhury A, Cheema S, Fachini J, Kongchan N, Lu G, Simon L, et al. CELF1 is a central node in post-transcriptional regulatory programmes underlying EMT. Nat Commun. 2016;7:13362 pubmed 出版商
  90. Keshri G, Gupta A, Yadav A, Sharma S, Singh S. Photobiomodulation with Pulsed and Continuous Wave Near-Infrared Laser (810 nm, Al-Ga-As) Augments Dermal Wound Healing in Immunosuppressed Rats. PLoS ONE. 2016;11:e0166705 pubmed 出版商
  91. Graner A, Hellwinkel J, Lencioni A, Madsen H, Harland T, Marchando P, et al. HSP90 inhibitors in the context of heat shock and the unfolded protein response: effects on a primary canine pulmonary adenocarcinoma cell line. Int J Hyperthermia. 2017;33:303-317 pubmed 出版商
  92. Lang J, Young R, Ashraf H, Canty J. Inhibiting Extracellular Vesicle Release from Human Cardiosphere Derived Cells with Lentiviral Knockdown of nSMase2 Differentially Effects Proliferation and Apoptosis in Cardiomyocytes, Fibroblasts and Endothelial Cells In Vitro. PLoS ONE. 2016;11:e0165926 pubmed 出版商
  93. Parrales A, Ranjan A, Iyer S, Padhye S, Weir S, Roy A, et al. DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway. Nat Cell Biol. 2016;18:1233-1243 pubmed 出版商
  94. Hinds T, Burns K, Hosick P, McBeth L, Nestor Kalinoski A, Drummond H, et al. Biliverdin Reductase A Attenuates Hepatic Steatosis by Inhibition of Glycogen Synthase Kinase (GSK) 3? Phosphorylation of Serine 73 of Peroxisome Proliferator-activated Receptor (PPAR) ?. J Biol Chem. 2016;291:25179-25191 pubmed
  95. Fritsch J, Fickers R, Klawitter J, Särchen V, Zingler P, Adam D, et al. TNF induced cleavage of HSP90 by cathepsin D potentiates apoptotic cell death. Oncotarget. 2016;7:75774-75789 pubmed 出版商
  96. Rodina A, Wang T, Yan P, Gomes E, Dunphy M, Pillarsetty N, et al. The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature. 2016;538:397-401 pubmed 出版商
  97. Okabe T, Chavan R, Fonseca Costa S, Brenna A, Ripperger J, Albrecht U. REV-ERB? influences the stability and nuclear localization of the glucocorticoid receptor. J Cell Sci. 2016;129:4143-4154 pubmed
  98. Adachi E, Sakai K, Nishiuchi T, Imamura R, Sato H, Matsumoto K. Different growth and metastatic phenotypes associated with a cell-intrinsic change of Met in metastatic melanoma. Oncotarget. 2016;7:70779-70793 pubmed 出版商
  99. Myasnikov A, Kundhavai Natchiar S, Nebout M, Hazemann I, Imbert V, Khatter H, et al. Structure-function insights reveal the human ribosome as a cancer target for antibiotics. Nat Commun. 2016;7:12856 pubmed 出版商
  100. Dias M, Martins V, Hajj G. Stress-Inducible Protein 1 (STI1): Extracellular Vesicle Analysis and Quantification. Methods Mol Biol. 2016;1459:161-74 pubmed 出版商
  101. Depaolo J, Wang Z, Guo J, Zhang G, Qian C, Zhang H, et al. Acetylation of androgen receptor by ARD1 promotes dissociation from HSP90 complex and prostate tumorigenesis. Oncotarget. 2016;7:71417-71428 pubmed 出版商
  102. Jayapal S, Ang H, Wang C, Bisteau X, Caldez M, Xuan G, et al. Cyclin A2 regulates erythrocyte morphology and numbers. Cell Cycle. 2016;15:3070-3081 pubmed
  103. Diril M, Bisteau X, Kitagawa M, Caldez M, Wee S, Gunaratne J, et al. Loss of the Greatwall Kinase Weakens the Spindle Assembly Checkpoint. PLoS Genet. 2016;12:e1006310 pubmed 出版商
  104. Krawczyk K, Ekman M, Rippe C, Grossi M, Nilsson B, Albinsson S, et al. Assessing the contribution of thrombospondin-4 induction and ATF6? activation to endoplasmic reticulum expansion and phenotypic modulation in bladder outlet obstruction. Sci Rep. 2016;6:32449 pubmed 出版商
  105. Zhou Q, Yu X, Demirkaya E, Deuitch N, Stone D, Tsai W, et al. Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. Proc Natl Acad Sci U S A. 2016;113:10127-32 pubmed 出版商
  106. Deskin B, Lasky J, Zhuang Y, Shan B. Requirement of HDAC6 for activation of Notch1 by TGF-?1. Sci Rep. 2016;6:31086 pubmed 出版商
  107. Bartlett J, Trivedi P, Yeung P, Kienesberger P, Pulinilkunnil T. Doxorubicin impairs cardiomyocyte viability by suppressing transcription factor EB expression and disrupting autophagy. Biochem J. 2016;473:3769-3789 pubmed
  108. Ah Koon L, Lesage D, Lemadre E, Souissi I, Fagard R, Varin Blank N, et al. Cellular response to alkylating agent MNNG is impaired in STAT1-deficients cells. J Cell Mol Med. 2016;20:1956-65 pubmed 出版商
  109. Aryal B, Rotllan N, Araldi E, Ramírez C, He S, Chousterman B, et al. ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression. Nat Commun. 2016;7:12313 pubmed 出版商
  110. Williams A, Mehler V, Mueller C, Vonhoff F, White R, Duch C. Apoptotic Activity of MeCP2 Is Enhanced by C-Terminal Truncating Mutations. PLoS ONE. 2016;11:e0159632 pubmed 出版商
  111. Hogg S, Newbold A, Vervoort S, Cluse L, Martin B, Gregory G, et al. BET Inhibition Induces Apoptosis in Aggressive B-Cell Lymphoma via Epigenetic Regulation of BCL-2 Family Members. Mol Cancer Ther. 2016;15:2030-41 pubmed 出版商
  112. Pinet S, Bessette B, Vedrenne N, Lacroix A, Richard L, Jauberteau M, et al. TrkB-containing exosomes promote the transfer of glioblastoma aggressiveness to YKL-40-inactivated glioblastoma cells. Oncotarget. 2016;7:50349-50364 pubmed 出版商
  113. Tavallai M, Booth L, Roberts J, Poklepovic A, Dent P. Rationally Repurposing Ruxolitinib (Jakafi (®)) as a Solid Tumor Therapeutic. Front Oncol. 2016;6:142 pubmed 出版商
  114. Kim H, Choi M, Inn K, Kim B. Inhibition of HIV-1 reactivation by a telomerase-derived peptide in a HSP90-dependent manner. Sci Rep. 2016;6:28896 pubmed 出版商
  115. Sasai K, Katayama H, Hawke D, Sen S. Aurora-C Interactions with Survivin and INCENP Reveal Shared and Distinct Features Compared with Aurora-B Chromosome Passenger Protein Complex. PLoS ONE. 2016;11:e0157305 pubmed 出版商
  116. Bennesch M, Segala G, Wider D, Picard D. LSD1 engages a corepressor complex for the activation of the estrogen receptor ? by estrogen and cAMP. Nucleic Acids Res. 2016;44:8655-8670 pubmed
  117. Shriver M, Marimuthu S, Paul C, Geist J, Seale T, Konstantopoulos K, et al. Giant obscurins regulate the PI3K cascade in breast epithelial cells via direct binding to the PI3K/p85 regulatory subunit. Oncotarget. 2016;7:45414-45428 pubmed 出版商
  118. Ahmad F, Chung Y, Tang Y, Hockman S, Liu S, Khan Y, et al. Phosphodiesterase 3B (PDE3B) regulates NLRP3 inflammasome in adipose tissue. Sci Rep. 2016;6:28056 pubmed 出版商
  119. Lee J, Takahama S, Zhang G, Tomarev S, Ye Y. Unconventional secretion of misfolded proteins promotes adaptation to proteasome dysfunction in mammalian cells. Nat Cell Biol. 2016;18:765-76 pubmed 出版商
  120. Kruger L, O Malley H, Hull J, Kleeman A, Patino G, Isom L. ?1-C121W Is Down But Not Out: Epilepsy-Associated Scn1b-C121W Results in a Deleterious Gain-of-Function. J Neurosci. 2016;36:6213-24 pubmed 出版商
  121. Li Y, Zhang W, Chang L, Han Y, Sun L, Gong X, et al. Vitamin C alleviates aging defects in a stem cell model for Werner syndrome. Protein Cell. 2016;7:478-88 pubmed 出版商
  122. Tribollet V, Barenton B, Kroiss A, Vincent S, Zhang L, Forcet C, et al. miR-135a Inhibits the Invasion of Cancer Cells via Suppression of ERR?. PLoS ONE. 2016;11:e0156445 pubmed 出版商
  123. Torrano V, Valcarcel Jimenez L, Cortazar A, Liu X, Urosevic J, Castillo Martin M, et al. The metabolic co-regulator PGC1α suppresses prostate cancer metastasis. Nat Cell Biol. 2016;18:645-656 pubmed 出版商
  124. Trousil S, Kaliszczak M, Schug Z, Nguyen Q, Tomasi G, Favicchio R, et al. The novel choline kinase inhibitor ICL-CCIC-0019 reprograms cellular metabolism and inhibits cancer cell growth. Oncotarget. 2016;7:37103-37120 pubmed 出版商
  125. Huang K, Chen Z, Jiang Y, Akare S, Kolber Simonds D, Condon K, et al. Apratoxin A Shows Novel Pancreas-Targeting Activity through the Binding of Sec 61. Mol Cancer Ther. 2016;15:1208-16 pubmed 出版商
  126. Pourcet B, Gage M, León T, Waddington K, Pello O, Steffensen K, et al. The nuclear receptor LXR modulates interleukin-18 levels in macrophages through multiple mechanisms. Sci Rep. 2016;6:25481 pubmed 出版商
  127. Mariani S, Minieri V, De Dominici M, Iacobucci I, Peterson L, Calabretta B. CDKN2A-independent role of BMI1 in promoting growth and survival of Ph+ acute lymphoblastic leukemia. Leukemia. 2016;30:1682-90 pubmed 出版商
  128. Galloway A, Saveliev A, Łukasiak S, Hodson D, Bolland D, Balmanno K, et al. RNA-binding proteins ZFP36L1 and ZFP36L2 promote cell quiescence. Science. 2016;352:453-9 pubmed 出版商
  129. Okumura F, Uematsu K, Byrne S, Hirano M, Joo Okumura A, Nishikimi A, et al. Parallel Regulation of von Hippel-Lindau Disease by pVHL-Mediated Degradation of B-Myb and Hypoxia-Inducible Factor ?. Mol Cell Biol. 2016;36:1803-17 pubmed 出版商
  130. Zhang X, Qian Z, Zhu H, Tang S, Wu D, Zhang M, et al. HSP90 gene expression induced by aspirin is associated with damage remission in a chicken myocardial cell culture exposed to heat stress. Br Poult Sci. 2016;57:462-73 pubmed 出版商
  131. Lee J, Kuo C, Tsai S, Cheng S, Chen S, Chan H, et al. Inhibition of HDAC3- and HDAC6-Promoted Survivin Expression Plays an Important Role in SAHA-Induced Autophagy and Viability Reduction in Breast Cancer Cells. Front Pharmacol. 2016;7:81 pubmed 出版商
  132. Venkatesan N, Kanwar J, Deepa P, Navaneethakrishnan S, Joseph C, Krishnakumar S. Targeting HSP90/Survivin using a cell permeable structure based peptido-mimetic shepherdin in retinoblastoma. Chem Biol Interact. 2016;252:141-9 pubmed 出版商
  133. Zhang X, Zhu H, Qian Z, Tang S, Wu D, Kemper N, et al. The association of Hsp90 expression induced by aspirin with anti-stress damage in chicken myocardial cells. J Vet Sci. 2016;17:35-44 pubmed 出版商
  134. Su K, Cao J, Tang Z, Dai S, He Y, Sampson S, et al. HSF1 critically attunes proteotoxic stress sensing by mTORC1 to combat stress and promote growth. Nat Cell Biol. 2016;18:527-39 pubmed 出版商
  135. Kaur A, Webster M, Marchbank K, Behera R, Ndoye A, Kugel C, et al. sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature. 2016;532:250-4 pubmed 出版商
  136. Ganesan S, Reynolds C, Hollinger K, Pearce S, Gabler N, Baumgard L, et al. Twelve hours of heat stress induces inflammatory signaling in porcine skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2016;310:R1288-96 pubmed 出版商
  137. Liu X, Xiao Z, Han L, Zhang J, Lee S, Wang W, et al. LncRNA NBR2 engages a metabolic checkpoint by regulating AMPK under energy stress. Nat Cell Biol. 2016;18:431-42 pubmed 出版商
  138. Lin P, Folorunso O, Taglialatela G, Pierce A. Overexpression of heat shock factor 1 maintains TAR DNA binding protein 43 solubility via induction of inducible heat shock protein 70 in cultured cells. J Neurosci Res. 2016;94:671-82 pubmed 出版商
  139. Beaumatin F, El Dhaybi M, Lasserre J, Salin B, Moyer M, Verdier M, et al. N52 monodeamidated Bcl‑xL shows impaired oncogenic properties in vivo and in vitro. Oncotarget. 2016;7:17129-43 pubmed 出版商
  140. Bigenzahn J, Fauster A, Rebsamen M, Kandasamy R, Scorzoni S, Vladimer G, et al. An Inducible Retroviral Expression System for Tandem Affinity Purification Mass-Spectrometry-Based Proteomics Identifies Mixed Lineage Kinase Domain-like Protein (MLKL) as an Heat Shock Protein 90 (HSP90) Client. Mol Cell Proteomics. 2016;15:1139-50 pubmed
  141. Cannavo A, Liccardo D, Eguchi A, Elliott K, Traynham C, Ibetti J, et al. Myocardial pathology induced by aldosterone is dependent on non-canonical activities of G protein-coupled receptor kinases. Nat Commun. 2016;7:10877 pubmed 出版商
  142. Scheckel C, Drapeau E, Frias M, Park C, Fak J, Zucker Scharff I, et al. Regulatory consequences of neuronal ELAV-like protein binding to coding and non-coding RNAs in human brain. elife. 2016;5: pubmed 出版商
  143. Booth L, Shuch B, Albers T, Roberts J, Tavallai M, Proniuk S, et al. Multi-kinase inhibitors can associate with heat shock proteins through their NH2-termini by which they suppress chaperone function. Oncotarget. 2016;7:12975-96 pubmed 出版商
  144. Ghosh S, Shinogle H, Galeva N, Dobrowsky R, Blagg B. Endoplasmic Reticulum-resident Heat Shock Protein 90 (HSP90) Isoform Glucose-regulated Protein 94 (GRP94) Regulates Cell Polarity and Cancer Cell Migration by Affecting Intracellular Transport. J Biol Chem. 2016;291:8309-23 pubmed 出版商
  145. Tung H, Wei S, Lo H, Chao Y. Baculovirus IE2 Stimulates the Expression of Heat Shock Proteins in Insect and Mammalian Cells to Facilitate Its Proper Functioning. PLoS ONE. 2016;11:e0148578 pubmed 出版商
  146. Kavlashvili T, Jia Y, Dai D, Meng X, Thiel K, Leslie K, et al. Inverse Relationship between Progesterone Receptor and Myc in Endometrial Cancer. PLoS ONE. 2016;11:e0148912 pubmed 出版商
  147. Dong H, Zou M, Bhatia A, Jayaprakash P, Hofman F, YING Q, et al. Breast Cancer MDA-MB-231 Cells Use Secreted Heat Shock Protein-90alpha (Hsp90α) to Survive a Hostile Hypoxic Environment. Sci Rep. 2016;6:20605 pubmed 出版商
  148. Bober J, Olsnes S, Kostas M, Bogacz M, Zakrzewska M, Otlewski J. Identification of new FGF1 binding partners-Implications for its intracellular function. IUBMB Life. 2016;68:242-51 pubmed 出版商
  149. Gray L, Rauckhorst A, Taylor E. A Method for Multiplexed Measurement of Mitochondrial Pyruvate Carrier Activity. J Biol Chem. 2016;291:7409-17 pubmed 出版商
  150. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  151. Piedrahita D, Castro Álvarez J, Boudreau R, Villegas Lanau A, Kosik K, Gallego Gómez J, et al. β-Secretase 1's Targeting Reduces Hyperphosphorilated Tau, Implying Autophagy Actors in 3xTg-AD Mice. Front Cell Neurosci. 2015;9:498 pubmed 出版商
  152. Jacobsen A, Lowes K, Tanzer M, Lucet I, Hildebrand J, Petrie E, et al. HSP90 activity is required for MLKL oligomerisation and membrane translocation and the induction of necroptotic cell death. Cell Death Dis. 2016;7:e2051 pubmed 出版商
  153. Hall J, Seedarala S, Zhao H, Garg G, Ghosh S, Blagg B. Novobiocin Analogues That Inhibit the MAPK Pathway. J Med Chem. 2016;59:925-33 pubmed 出版商
  154. Wang R, Zhang Y, Kieffer M, Yu H, Kepinski S, Estelle M. HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. Nat Commun. 2016;7:10269 pubmed 出版商
  155. Roundhill E, Turnbull D, Burchill S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β. FASEB J. 2016;30:1712-23 pubmed 出版商
  156. Tang S, Chen H, Cheng Y, Nasir M, Kemper N, Bao E. The interactive association between heat shock factor 1 and heat shock proteins in primary myocardial cells subjected to heat stress. Int J Mol Med. 2016;37:56-62 pubmed 出版商
  157. MikyÅ¡ková R, Å tÄ›pánek I, Indrová M, Bieblová J, Šímová J, Truxová I, et al. Dendritic cells pulsed with tumor cells killed by high hydrostatic pressure induce strong immune responses and display therapeutic effects both in murine TC-1 and TRAMP-C2 tumors when combined with docetaxel chemotherapy. Int J Oncol. 2016;48:953-64 pubmed 出版商
  158. Shi L, Gehin T, Chevolot Y, Souteyrand E, Mangé A, Solassol J, et al. Anti-heat shock protein autoantibody profiling in breast cancer using customized protein microarray. Anal Bioanal Chem. 2016;408:1497-506 pubmed 出版商
  159. Lei X, Cui K, Liu Q, Zhang H, Li Z, Huang B, et al. Exogenous Estradiol Benzoate Induces Spermatogenesis Disorder through Influencing Apoptosis and Oestrogen Receptor Signalling Pathway. Reprod Domest Anim. 2016;51:75-84 pubmed 出版商
  160. Abu Odeh M, Hereema N, Aqeilan R. WWOX modulates the ATR-mediated DNA damage checkpoint response. Oncotarget. 2016;7:4344-55 pubmed 出版商
  161. Debruyne D, Bhatnagar N, Sharma B, Luther W, Moore N, Cheung N, et al. ALK inhibitor resistance in ALK(F1174L)-driven neuroblastoma is associated with AXL activation and induction of EMT. Oncogene. 2016;35:3681-91 pubmed 出版商
  162. Dimitrova N, Gocheva V, Bhutkar A, Resnick R, Jong R, Miller K, et al. Stromal Expression of miR-143/145 Promotes Neoangiogenesis in Lung Cancer Development. Cancer Discov. 2016;6:188-201 pubmed 出版商
  163. Moriwaki K, Farias Luz N, Balaji S, De Rosa M, O Donnell C, Gough P, et al. The Mitochondrial Phosphatase PGAM5 Is Dispensable for Necroptosis but Promotes Inflammasome Activation in Macrophages. J Immunol. 2016;196:407-15 pubmed 出版商
  164. Clemente Vicario F, Alvarez C, ROWELL J, Roy S, London C, Kisseberth W, et al. Human Genetic Relevance and Potent Antitumor Activity of Heat Shock Protein 90 Inhibition in Canine Lung Adenocarcinoma Cell Lines. PLoS ONE. 2015;10:e0142007 pubmed 出版商
  165. Seidel C, Schnekenburger M, Mazumder A, Teiten M, Kirsch G, Dicato M, et al. 4-Hydroxybenzoic acid derivatives as HDAC6-specific inhibitors modulating microtubular structure and HSP90α chaperone activity against prostate cancer. Biochem Pharmacol. 2016;99:31-52 pubmed 出版商
  166. Robles Oteiza C, Taylor S, Yates T, Cicchini M, Lauderback B, Cashman C, et al. Recombinase-based conditional and reversible gene regulation via XTR alleles. Nat Commun. 2015;6:8783 pubmed 出版商
  167. Amlie Wolf A, Ryvkin P, Tong R, Dragomir I, Suh E, Xu Y, et al. Transcriptomic Changes Due to Cytoplasmic TDP-43 Expression Reveal Dysregulation of Histone Transcripts and Nuclear Chromatin. PLoS ONE. 2015;10:e0141836 pubmed 出版商
  168. Webber P, Park C, Qui M, Ramalingam S, Khuri F, Fu H, et al. Combination of heat shock protein 90 and focal adhesion kinase inhibitors synergistically inhibits the growth of non-small cell lung cancer cells. Oncoscience. 2015;2:765-776 pubmed
  169. Joshi A, Barabutis N, Birmpas C, Dimitropoulou C, Thangjam G, Cherian Shaw M, et al. Histone deacetylase inhibitors prevent pulmonary endothelial hyperpermeability and acute lung injury by regulating heat shock protein 90 function. Am J Physiol Lung Cell Mol Physiol. 2015;309:L1410-9 pubmed 出版商
  170. Habiger C, Jäger G, Walter M, Iftner T, Stubenrauch F. Interferon Kappa Inhibits Human Papillomavirus 31 Transcription by Inducing Sp100 Proteins. J Virol. 2016;90:694-704 pubmed 出版商
  171. D Mello R, Caldwell J, Azouz N, Wen T, Sherrill J, Hogan S, et al. LRRC31 is induced by IL-13 and regulates kallikrein expression and barrier function in the esophageal epithelium. Mucosal Immunol. 2016;9:744-56 pubmed 出版商
  172. Hedstrom E, Pederiva C, Farnebo J, Nodin B, Jirstrom K, Brennan D, et al. Downregulation of the cancer susceptibility protein WRAP53β in epithelial ovarian cancer leads to defective DNA repair and poor clinical outcome. Cell Death Dis. 2015;6:e1892 pubmed 出版商
  173. Yeung H, Lo P, Ng D, Fong W. Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model. Cell Mol Immunol. 2017;14:223-234 pubmed 出版商
  174. Ho D, Kim H, Kim J, Sim H, Ahn H, Kim J, et al. Leucine-Rich Repeat Kinase 2 (LRRK2) phosphorylates p53 and induces p21(WAF1/CIP1) expression. Mol Brain. 2015;8:54 pubmed 出版商
  175. Jiang Q, Zhang Z, Li S, Wang Z, Ma Y, Hu Y. Defective heat shock factor 1 inhibits the growth of fibrosarcoma derived from simian virus 40/T antigen‑transformed MEF cells. Mol Med Rep. 2015;12:6517-26 pubmed 出版商
  176. Ashford A, Dunkley T, Cockerill M, Rowlinson R, Baak L, Gallo R, et al. Identification of DYRK1B as a substrate of ERK1/2 and characterisation of the kinase activity of DYRK1B mutants from cancer and metabolic syndrome. Cell Mol Life Sci. 2016;73:883-900 pubmed 出版商
  177. Granato M, Gilardini Montani M, Filardi M, Faggioni A, Cirone M. Capsaicin triggers immunogenic PEL cell death, stimulates DCs and reverts PEL-induced immune suppression. Oncotarget. 2015;6:29543-54 pubmed 出版商
  178. Hussein M, Shrestha E, Ouimet M, Barrett T, Leone S, Moore K, et al. LXR-Mediated ABCA1 Expression and Function Are Modulated by High Glucose and PRMT2. PLoS ONE. 2015;10:e0135218 pubmed 出版商
  179. Krawczyk K, Yao Mattisson I, Ekman M, Oskolkov N, Grantinge R, Kotowska D, et al. Myocardin Family Members Drive Formation of Caveolae. PLoS ONE. 2015;10:e0133931 pubmed 出版商
  180. Gurt I, Artsi H, Cohen Kfir E, Hamdani G, Ben Shalom G, Feinstein B, et al. The Sirt1 Activators SRT2183 and SRT3025 Inhibit RANKL-Induced Osteoclastogenesis in Bone Marrow-Derived Macrophages and Down-Regulate Sirt3 in Sirt1 Null Cells. PLoS ONE. 2015;10:e0134391 pubmed 出版商
  181. Winsauer P, Filipeanu C, Weed P, Sutton J. Hormonal status and age differentially affect tolerance to the disruptive effects of delta-9-tetrahydrocannabinol (Δ(9)-THC) on learning in female rats. Front Pharmacol. 2015;6:133 pubmed 出版商
  182. Chiou S, Winters I, Wang J, Naranjo S, Dudgeon C, Tamburini F, et al. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes Dev. 2015;29:1576-85 pubmed 出版商
  183. Ueda S, Kokaji Y, Simizu S, Honda K, Yoshino K, Kamisoyama H, et al. Chicken heat shock protein HSPB1 increases and interacts with αB-crystallin in aged skeletal muscle. Biosci Biotechnol Biochem. 2015;79:1867-75 pubmed 出版商
  184. Goichon A, Bertrand J, Chan P, Lecleire S, Coquard A, Cailleux A, et al. Enteral delivery of proteins enhances the expression of proteins involved in the cytoskeleton and protein biosynthesis in human duodenal mucosa. Am J Clin Nutr. 2015;102:359-67 pubmed 出版商
  185. Belian E, Noseda M, Abreu Paiva M, Leja T, Sampson R, Schneider M. Forward Programming of Cardiac Stem Cells by Homogeneous Transduction with MYOCD plus TBX5. PLoS ONE. 2015;10:e0125384 pubmed 出版商
  186. Zeng X, Wang H, Bai F, Zhou X, Li S, Ren L, et al. Identification of matrine as a promising novel drug for hepatic steatosis and glucose intolerance with HSP72 as an upstream target. Br J Pharmacol. 2015;172:4303-18 pubmed 出版商
  187. Brito H, Martins A, Lavrado J, Mendes E, Francisco A, Santos S, et al. Targeting KRAS Oncogene in Colon Cancer Cells with 7-Carboxylate Indolo[3,2-b]quinoline Tri-Alkylamine Derivatives. PLoS ONE. 2015;10:e0126891 pubmed 出版商
  188. Yeh J, Kreimer S, Walker S, Emori M, Krystal H, Richardson A, et al. Granulin, a novel STAT3-interacting protein, enhances STAT3 transcriptional function and correlates with poorer prognosis in breast cancer. Genes Cancer. 2015;6:153-68 pubmed
  189. Sato M, Matsubara T, Adachi J, Hashimoto Y, Fukamizu K, Kishida M, et al. Differential Proteome Analysis Identifies TGF-β-Related Pro-Metastatic Proteins in a 4T1 Murine Breast Cancer Model. PLoS ONE. 2015;10:e0126483 pubmed 出版商
  190. Cheng W, Ainiwaer A, Xiao L, Cao Q, Wu G, Yang Y, et al. Role of the novel HSP90 inhibitor AUY922 in hepatocellular carcinoma: Potential for therapy. Mol Med Rep. 2015;12:2451-6 pubmed 出版商
  191. Wang Y, Kuramitsu Y, Kitagawa T, Tokuda K, Baron B, Akada J, et al. The Histone Deacetylase Inhibitor Valproic Acid Sensitizes Gemcitabine-Induced Cytotoxicity in Gemcitabine-Resistant Pancreatic Cancer Cells Possibly Through Inhibition of the DNA Repair Protein Gamma-H2AX. Target Oncol. 2015;10:575-81 pubmed 出版商
  192. Min K, Liggett J, Silva G, Wu W, Wang R, Shen R, et al. NAG-1/GDF15 accumulates in the nucleus and modulates transcriptional regulation of the Smad pathway. Oncogene. 2016;35:377-88 pubmed 出版商
  193. Saito K, Kukita K, Kutomi G, Okuya K, Asanuma H, Tabeya T, et al. Heat shock protein 90 associates with Toll-like receptors 7/9 and mediates self-nucleic acid recognition in SLE. Eur J Immunol. 2015;45:2028-41 pubmed 出版商
  194. Pearce M, Spartz E, Hong W, Luo L, Kopito R. Prion-like transmission of neuronal huntingtin aggregates to phagocytic glia in the Drosophila brain. Nat Commun. 2015;6:6768 pubmed 出版商
  195. Vashist S, Ureña L, Gonzalez Hernandez M, Choi J, de Rougemont A, Rocha Pereira J, et al. Molecular chaperone Hsp90 is a therapeutic target for noroviruses. J Virol. 2015;89:6352-63 pubmed 出版商
  196. Lee A, Kranzusch P, Cate J. eIF3 targets cell-proliferation messenger RNAs for translational activation or repression. Nature. 2015;522:111-4 pubmed 出版商
  197. López Bernardo E, Anedda A, Sánchez Pérez P, Acosta Iborra B, Cadenas S. 4-Hydroxynonenal induces Nrf2-mediated UCP3 upregulation in mouse cardiomyocytes. Free Radic Biol Med. 2015;88:427-438 pubmed 出版商
  198. Clark P, Kim R, Pober J, Kluger M. Tumor necrosis factor disrupts claudin-5 endothelial tight junction barriers in two distinct NF-κB-dependent phases. PLoS ONE. 2015;10:e0120075 pubmed 出版商
  199. Shrestha S, Sun Y, Lufkin T, Kraus P, Or Y, Garcia Y, et al. Tetratricopeptide repeat domain 9A negatively regulates estrogen receptor alpha activity. Int J Biol Sci. 2015;11:434-47 pubmed 出版商
  200. Tristante E, Martínez C, Jiménez S, Mora L, Carballo F, Martínez Lacaci I, et al. Association of a characteristic membrane pattern of annexin A2 with high invasiveness and nodal status in colon adenocarcinoma. Transl Res. 2015;166:196-206 pubmed 出版商
  201. Carnesecchi J, Malbouyres M, de Mets R, Balland M, Beauchef G, Vié K, et al. Estrogens induce rapid cytoskeleton re-organization in human dermal fibroblasts via the non-classical receptor GPR30. PLoS ONE. 2015;10:e0120672 pubmed 出版商
  202. Dudek Perić A, Ferreira G, Muchowicz A, Wouters J, Prada N, Martin S, et al. Antitumor immunity triggered by melphalan is potentiated by melanoma cell surface-associated calreticulin. Cancer Res. 2015;75:1603-14 pubmed 出版商
  203. Hodgson A, Wier E, Fu K, Sun X, Yu H, Zheng W, et al. Metalloprotease NleC suppresses host NF-κB/inflammatory responses by cleaving p65 and interfering with the p65/RPS3 interaction. PLoS Pathog. 2015;11:e1004705 pubmed 出版商
  204. Wnorowski A, Sadowska M, Paul R, Singh N, Boguszewska Czubara A, Jimenez L, et al. Activation of β2-adrenergic receptor by (R,R')-4'-methoxy-1-naphthylfenoterol inhibits proliferation and motility of melanoma cells. Cell Signal. 2015;27:997-1007 pubmed 出版商
  205. Robertson J, Jacquemet G, Byron A, Jones M, Warwood S, Selley J, et al. Defining the phospho-adhesome through the phosphoproteomic analysis of integrin signalling. Nat Commun. 2015;6:6265 pubmed 出版商
  206. Morlé A, Garrido C, Micheau O. Hyperthermia restores apoptosis induced by death receptors through aggregation-induced c-FLIP cytosolic depletion. Cell Death Dis. 2015;6:e1633 pubmed 出版商
  207. Riebold M, Kozany C, Freiburger L, Sattler M, Buchfelder M, Hausch F, et al. A C-terminal HSP90 inhibitor restores glucocorticoid sensitivity and relieves a mouse allograft model of Cushing disease. Nat Med. 2015;21:276-80 pubmed 出版商
  208. Gong J, Weng D, Eguchi T, Murshid A, Sherman M, Song B, et al. Targeting the hsp70 gene delays mammary tumor initiation and inhibits tumor cell metastasis. Oncogene. 2015;34:5460-71 pubmed 出版商
  209. Guo Y, Liu J, Elfenbein S, Ma Y, Zhong M, Qiu C, et al. Characterization of the mammalian miRNA turnover landscape. Nucleic Acids Res. 2015;43:2326-41 pubmed 出版商
  210. Zeng J, Ekman M, Grossi M, Svensson D, Nilsson B, Jiang C, et al. Vasopressin-induced mouse urethral contraction is modulated by caveolin-1. Eur J Pharmacol. 2015;750:59-65 pubmed 出版商
  211. Liu W, Landgraf R. Phosphorylated and unphosphorylated serine 13 of CDC37 stabilize distinct interactions between its client and HSP90 binding domains. Biochemistry. 2015;54:1493-504 pubmed 出版商
  212. Hirakawa H, Fujisawa H, Masaoka A, Noguchi M, Hirayama R, Takahashi M, et al. The combination of Hsp90 inhibitor 17AAG and heavy-ion irradiation provides effective tumor control in human lung cancer cells. Cancer Med. 2015;4:426-36 pubmed 出版商
  213. Ohno M, Kanayama T, Moore R, Ray M, Negishi M. The roles of co-chaperone CCRP/DNAJC7 in Cyp2b10 gene activation and steatosis development in mouse livers. PLoS ONE. 2014;9:e115663 pubmed 出版商
  214. Martin S, Dudek Perić A, Maes H, Garg A, Gabrysiak M, Demirsoy S, et al. Concurrent MEK and autophagy inhibition is required to restore cell death associated danger-signalling in Vemurafenib-resistant melanoma cells. Biochem Pharmacol. 2015;93:290-304 pubmed 出版商
  215. Oksala N, Ekmekçi F, Ozsoy E, Kirankaya S, Kokkola T, Emecen G, et al. Natural thermal adaptation increases heat shock protein levels and decreases oxidative stress. Redox Biol. 2014;3:25-8 pubmed 出版商
  216. Kuo P, Huang C, Lee C, Chang H, Hsieh S, Chung Y, et al. BCAS2 promotes prostate cancer cells proliferation by enhancing AR mRNA transcription and protein stability. Br J Cancer. 2015;112:391-402 pubmed 出版商
  217. Moutaoufik M, El Fatimy R, Nassour H, Gareau C, Lang J, Tanguay R, et al. UVC-induced stress granules in mammalian cells. PLoS ONE. 2014;9:e112742 pubmed 出版商
  218. Maruyama A, Mimura J, Itoh K. Non-coding RNA derived from the region adjacent to the human HO-1 E2 enhancer selectively regulates HO-1 gene induction by modulating Pol II binding. Nucleic Acids Res. 2014;42:13599-614 pubmed 出版商
  219. Ohoka N, Nagai K, Hattori T, Okuhira K, Shibata N, Cho N, et al. Cancer cell death induced by novel small molecules degrading the TACC3 protein via the ubiquitin-proteasome pathway. Cell Death Dis. 2014;5:e1513 pubmed 出版商
  220. Cubeñas Potts C, Srikumar T, Lee C, Osula O, Subramonian D, Zhang X, et al. Identification of SUMO-2/3-modified proteins associated with mitotic chromosomes. Proteomics. 2015;15:763-72 pubmed 出版商
  221. Munday D, Wu W, Smith N, Fix J, Noton S, Galloux M, et al. Interactome analysis of the human respiratory syncytial virus RNA polymerase complex identifies protein chaperones as important cofactors that promote L-protein stability and RNA synthesis. J Virol. 2015;89:917-30 pubmed 出版商
  222. Jung H, Tatar A, Tu Y, Nobumori C, Yang S, Goulbourne C, et al. An absence of nuclear lamins in keratinocytes leads to ichthyosis, defective epidermal barrier function, and intrusion of nuclear membranes and endoplasmic reticulum into the nuclear chromatin. Mol Cell Biol. 2014;34:4534-44 pubmed 出版商
  223. Gupta A, Keshri G, Yadav A, Gola S, Chauhan S, Salhan A, et al. Superpulsed (Ga-As, 904 nm) low-level laser therapy (LLLT) attenuates inflammatory response and enhances healing of burn wounds. J Biophotonics. 2015;8:489-501 pubmed 出版商
  224. Menon M, Sawada A, Chaturvedi A, Mishra P, Schuster Gossler K, Galla M, et al. Genetic deletion of SEPT7 reveals a cell type-specific role of septins in microtubule destabilization for the completion of cytokinesis. PLoS Genet. 2014;10:e1004558 pubmed 出版商
  225. Park S, Park J, Kim Y, Song S, Kwon H, Lee Y. Suberoylanilide hydroxamic acid induces ROS-mediated cleavage of HSP90 in leukemia cells. Cell Stress Chaperones. 2015;20:149-57 pubmed 出版商
  226. Ronzitti G, Bucci G, Emanuele M, Leo D, Sotnikova T, Mus L, et al. Exogenous ?-synuclein decreases raft partitioning of Cav2.2 channels inducing dopamine release. J Neurosci. 2014;34:10603-15 pubmed 出版商
  227. Zhang P, Wei Y, Wang L, Debeb B, Yuan Y, Zhang J, et al. ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat Cell Biol. 2014;16:864-75 pubmed 出版商
  228. Rappa F, Sciume C, Lo Bello M, Bavisotto C, Marino Gammazza A, Barone R, et al. Comparative analysis of Hsp10 and Hsp90 expression in healthy mucosa and adenocarcinoma of the large bowel. Anticancer Res. 2014;34:4153-9 pubmed
  229. Lo Sasso G, Menzies K, Mottis A, Piersigilli A, Perino A, Yamamoto H, et al. SIRT2 deficiency modulates macrophage polarization and susceptibility to experimental colitis. PLoS ONE. 2014;9:e103573 pubmed 出版商
  230. Hamilton G, Abraham A, Morton J, Sampson O, Pefani D, Khoronenkova S, et al. AKT regulates NPM dependent ARF localization and p53mut stability in tumors. Oncotarget. 2014;5:6142-67 pubmed
  231. Hamouda M, Belhacene N, Puissant A, Colosetti P, Robert G, Jacquel A, et al. The small heat shock protein B8 (HSPB8) confers resistance to bortezomib by promoting autophagic removal of misfolded proteins in multiple myeloma cells. Oncotarget. 2014;5:6252-66 pubmed
  232. Liu Y, Jiang Y, Wang B, Hao J, Shang L, Zhang T, et al. A panel of protein markers for the early detection of lung cancer with bronchial brushing specimens. Cancer Cytopathol. 2014;122:833-41 pubmed 出版商
  233. Baraz R, Cisterne A, Saunders P, Hewson J, Thien M, Weiss J, et al. mTOR inhibition by everolimus in childhood acute lymphoblastic leukemia induces caspase-independent cell death. PLoS ONE. 2014;9:e102494 pubmed 出版商
  234. Lo Sasso G, Ryu D, Mouchiroud L, Fernando S, Anderson C, Katsyuba E, et al. Loss of Sirt1 function improves intestinal anti-bacterial defense and protects from colitis-induced colorectal cancer. PLoS ONE. 2014;9:e102495 pubmed 出版商
  235. Yamauchi T, Nishiyama M, Moroishi T, Yumimoto K, Nakayama K. MDM2 mediates nonproteolytic polyubiquitylation of the DEAD-Box RNA helicase DDX24. Mol Cell Biol. 2014;34:3321-40 pubmed 出版商
  236. Tam A, Wadsworth S, Dorscheid D, Man S, Sin D. Estradiol increases mucus synthesis in bronchial epithelial cells. PLoS ONE. 2014;9:e100633 pubmed 出版商
  237. Ballana E, Badia R, Terradas G, Torres Torronteras J, Ruiz A, Pauls E, et al. SAMHD1 specifically affects the antiviral potency of thymidine analog HIV reverse transcriptase inhibitors. Antimicrob Agents Chemother. 2014;58:4804-13 pubmed 出版商
  238. Rogon C, Ulbricht A, Hesse M, Alberti S, Vijayaraj P, Best D, et al. HSP70-binding protein HSPBP1 regulates chaperone expression at a posttranslational level and is essential for spermatogenesis. Mol Biol Cell. 2014;25:2260-71 pubmed 出版商
  239. Zahreddine H, Culjkovic Kraljacic B, Assouline S, Gendron P, Romeo A, Morris S, et al. The sonic hedgehog factor GLI1 imparts drug resistance through inducible glucuronidation. Nature. 2014;511:90-3 pubmed 出版商
  240. Kitagawa K, Shibata K, Matsumoto A, Matsumoto M, Ohhata T, Nakayama K, et al. Fbw7 targets GATA3 through cyclin-dependent kinase 2-dependent proteolysis and contributes to regulation of T-cell development. Mol Cell Biol. 2014;34:2732-44 pubmed
  241. Wang T, Goodman M, McGough R, Weiss K, Rao U. Immunohistochemical analysis of expressions of RB1, CDK4, HSP90, cPLA2G4A, and CHMP2B is helpful in distinction between myxofibrosarcoma and myxoid liposarcoma. Int J Surg Pathol. 2014;22:589-99 pubmed 出版商
  242. Moroishi T, Yamauchi T, Nishiyama M, Nakayama K. HERC2 targets the iron regulator FBXL5 for degradation and modulates iron metabolism. J Biol Chem. 2014;289:16430-41 pubmed 出版商
  243. Sun Y, Chung H, Woo A, Lin V. Protein arginine methyltransferase 6 enhances ligand-dependent and -independent activity of estrogen receptor ? via distinct mechanisms. Biochim Biophys Acta. 2014;1843:2067-78 pubmed 出版商
  244. Havel J, Li Z, Cheng D, Peng J, Fu H. Nuclear PRAS40 couples the Akt/mTORC1 signaling axis to the RPL11-HDM2-p53 nucleolar stress response pathway. Oncogene. 2015;34:1487-98 pubmed 出版商
  245. Kammoun M, Picard B, Henry Berger J, Cassar Malek I. A network-based approach for predicting Hsp27 knock-out targets in mouse skeletal muscles. Comput Struct Biotechnol J. 2013;6:e201303008 pubmed 出版商
  246. Walker S, Liu S, Xiang M, Nicolais M, Hatzi K, Giannopoulou E, et al. The transcriptional modulator BCL6 as a molecular target for breast cancer therapy. Oncogene. 2015;34:1073-82 pubmed 出版商
  247. Swärd K, Albinsson S, Rippe C. Arterial dysfunction but maintained systemic blood pressure in cavin-1-deficient mice. PLoS ONE. 2014;9:e92428 pubmed 出版商
  248. Blanc S, Ruggiero F, Birot A, Acloque H, Decimo D, Lerat E, et al. Subcellular localization of ENS-1/ERNI in chick embryonic stem cells. PLoS ONE. 2014;9:e92039 pubmed 出版商
  249. Niesman I, Schilling J, Shapiro L, Kellerhals S, Bonds J, Kleschevnikov A, et al. Traumatic brain injury enhances neuroinflammation and lesion volume in caveolin deficient mice. J Neuroinflammation. 2014;11:39 pubmed 出版商
  250. Ekman M, Uvelius B, Albinsson S, Swärd K. HIF-mediated metabolic switching in bladder outlet obstruction mitigates the relaxing effect of mitochondrial inhibition. Lab Invest. 2014;94:557-68 pubmed 出版商
  251. Chen D, Sun Y, Yuan Y, Han Z, Zhang P, Zhang J, et al. miR-100 induces epithelial-mesenchymal transition but suppresses tumorigenesis, migration and invasion. PLoS Genet. 2014;10:e1004177 pubmed 出版商
  252. Piao H, Yuan Y, Wang M, Sun Y, Liang H, Ma L. ?-catenin acts as a tumour suppressor in E-cadherin-negative basal-like breast cancer by inhibiting NF-?B signalling. Nat Cell Biol. 2014;16:245-54 pubmed 出版商
  253. Moura C, Lollo P, Morato P, Nisishima L, Carneiro E, Amaya Farfan J. Whey protein hydrolysate enhances HSP90 but does not alter HSP60 and HSP25 in skeletal muscle of rats. PLoS ONE. 2014;9:e83437 pubmed 出版商
  254. Fan X, Jin W, Lu J, Wang J, Wang Y. Rapid and reversible knockdown of endogenous proteins by peptide-directed lysosomal degradation. Nat Neurosci. 2014;17:471-80 pubmed 出版商
  255. Liu S, Walker S, Nelson E, Cerulli R, Xiang M, Toniolo P, et al. Targeting STAT5 in hematologic malignancies through inhibition of the bromodomain and extra-terminal (BET) bromodomain protein BRD2. Mol Cancer Ther. 2014;13:1194-205 pubmed 出版商
  256. Bots M, Verbrugge I, Martin B, Salmon J, Ghisi M, Baker A, et al. Differentiation therapy for the treatment of t(8;21) acute myeloid leukemia using histone deacetylase inhibitors. Blood. 2014;123:1341-52 pubmed 出版商
  257. Marshall K, Edwards M, Krenz M, Davis J, Baines C. Proteomic mapping of proteins released during necrosis and apoptosis from cultured neonatal cardiac myocytes. Am J Physiol Cell Physiol. 2014;306:C639-47 pubmed 出版商
  258. Lee J, Kim W, Gygi S, Ye Y. Characterization of the deubiquitinating activity of USP19 and its role in endoplasmic reticulum-associated degradation. J Biol Chem. 2014;289:3510-7 pubmed 出版商
  259. Swärd K, Sadegh M, Mori M, Erjefalt J, Rippe C. Elevated pulmonary arterial pressure and altered expression of Ddah1 and Arg1 in mice lacking cavin-1/PTRF. Physiol Rep. 2013;1:e00008 pubmed 出版商
  260. de Poot S, Lai K, van der Wal L, Plasman K, Van Damme P, Porter A, et al. Granzyme M targets topoisomerase II alpha to trigger cell cycle arrest and caspase-dependent apoptosis. Cell Death Differ. 2014;21:416-26 pubmed 出版商
  261. Jockusch H, Holland A, Staunton L, Schmitt John T, Heimann P, Dowling P, et al. Pathoproteomics of testicular tissue deficient in the GARP component VPS54: the wobbler mouse model of globozoospermia. Proteomics. 2014;14:839-52 pubmed 出版商
  262. Trinh A, Kim S, Chang H, Mastrocola A, Tibbetts R. Cyclin-dependent kinase 1-dependent phosphorylation of cAMP response element-binding protein decreases chromatin occupancy. J Biol Chem. 2013;288:23765-75 pubmed 出版商
  263. Jung H, Nobumori C, Goulbourne C, Tu Y, Lee J, Tatar A, et al. Farnesylation of lamin B1 is important for retention of nuclear chromatin during neuronal migration. Proc Natl Acad Sci U S A. 2013;110:E1923-32 pubmed 出版商
  264. Ipenberg I, Guttmann Raviv N, Khoury H, Kupershmit I, Ayoub N. Heat shock protein 90 (Hsp90) selectively regulates the stability of KDM4B/JMJD2B histone demethylase. J Biol Chem. 2013;288:14681-7 pubmed 出版商
  265. Mao R, Rubio V, Chen H, Bai L, Mansour O, Shi Z. OLA1 protects cells in heat shock by stabilizing HSP70. Cell Death Dis. 2013;4:e491 pubmed 出版商
  266. Danielson L, Park D, Rotllan N, Chamorro Jorganes A, Guijarro M, Fernandez Hernando C, et al. Cardiovascular dysregulation of miR-17-92 causes a lethal hypertrophic cardiomyopathy and arrhythmogenesis. FASEB J. 2013;27:1460-7 pubmed 出版商
  267. Sarkar S, Brautigan D, Parsons S, Larner J. Androgen receptor degradation by the E3 ligase CHIP modulates mitotic arrest in prostate cancer cells. Oncogene. 2014;33:26-33 pubmed 出版商
  268. Tang Z, Niven Fairchild T, Tadesse S, Norwitz E, Buhimschi C, Buhimschi I, et al. Glucocorticoids enhance CD163 expression in placental Hofbauer cells. Endocrinology. 2013;154:471-82 pubmed 出版商
  269. Krzysik Walker S, González Mariscal I, Scheibye Knudsen M, Indig F, Bernier M. The biarylpyrazole compound AM251 alters mitochondrial physiology via proteolytic degradation of ERR?. Mol Pharmacol. 2013;83:157-66 pubmed 出版商
  270. Middlekauff H, Vigna C, Verity M, Fonarow G, Horwich T, Hamilton M, et al. Abnormalities of calcium handling proteins in skeletal muscle mirror those of the heart in humans with heart failure: a shared mechanism?. J Card Fail. 2012;18:724-33 pubmed 出版商
  271. Takahashi A, Torigoe T, Tamura Y, Kanaseki T, Tsukahara T, Sasaki Y, et al. Heat shock enhances the expression of cytotoxic granule proteins and augments the activities of tumor-associated antigen-specific cytotoxic T lymphocytes. Cell Stress Chaperones. 2012;17:757-63 pubmed 出版商
  272. Diril M, Ratnacaram C, Padmakumar V, Du T, Wasser M, Coppola V, et al. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proc Natl Acad Sci U S A. 2012;109:3826-31 pubmed 出版商
  273. Peng H, Morishima Y, Pratt W, Osawa Y. Modulation of heme/substrate binding cleft of neuronal nitric-oxide synthase (nNOS) regulates binding of Hsp90 and Hsp70 proteins and nNOS ubiquitination. J Biol Chem. 2012;287:1556-65 pubmed 出版商
  274. Wan F, Weaver A, Gao X, Bern M, Hardwidge P, Lenardo M. IKK? phosphorylation regulates RPS3 nuclear translocation and NF-?B function during infection with Escherichia coli strain O157:H7. Nat Immunol. 2011;12:335-43 pubmed 出版商
  275. Mayor A, Martinon F, De Smedt T, Petrilli V, Tschopp J. A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat Immunol. 2007;8:497-503 pubmed