这是一篇来自已证抗体库的有关人类 Hsc70的综述,是根据134篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Hsc70 抗体。
Hsc70 同义词: HEL-33; HEL-S-72p; HSC54; HSC70; HSC71; HSP71; HSP73; HSPA10; LAP-1; LAP1; NIP71

圣克鲁斯生物技术
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 1:5000; 图 4c
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-7298)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4c). Development (2022) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 1:500; 图 2h
圣克鲁斯生物技术 Hsc70抗体(Santa, sc-24)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2h). Cell Rep (2021) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 小鼠; 1:1000; 图 3d
  • 免疫印迹; 人类; 1:1000; 图 3d, 3e
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, W27)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3d, 3e). J Biomed Sci (2021) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 图 6d
  • 免疫印迹; 人类; 图 1c, 2c, 5c
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-7298)被用于被用于免疫印迹在小鼠样本上 (图 6d) 和 被用于免疫印迹在人类样本上 (图 1c, 2c, 5c). Protein Cell (2021) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 图 2c
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, Sc-7298)被用于被用于免疫印迹在人类样本上 (图 2c). J Exp Clin Cancer Res (2021) ncbi
小鼠 单克隆(2A4)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5a
圣克鲁斯生物技术 Hsc70抗体(Santa, Sc-59570)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5a). Mol Neurodegener (2021) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 1:1000; 图 6i
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-7298)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6i). Nucleic Acids Res (2021) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 图 2f
圣克鲁斯生物技术 Hsc70抗体(SCB, Sc-7298)被用于被用于免疫印迹在人类样本上 (图 2f). Antioxidants (Basel) (2021) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 小鼠; 图 2a
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, W27)被用于被用于免疫印迹在小鼠样本上 (图 2a). Sci Rep (2021) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 1:100; 图 4f
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-7298)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 4f). Cell Death Dis (2021) ncbi
小鼠 单克隆(W27)
  • 免疫组化; 人类; 1:200; 图 4
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-24)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4). Acta Neuropathol (2021) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 1:1000; 图 s4a
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz Biotechnology, sc-7298)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4a). Life Sci Alliance (2020) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 1:5000; 图 6a
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz Biotechnology, sc-24)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6a). elife (2020) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 小鼠; 图 3c
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz Biotechnology, SC24)被用于被用于免疫印迹在小鼠样本上 (图 3c). BMC Cancer (2020) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 图 4b
圣克鲁斯生物技术 Hsc70抗体(Santa, sc-7298)被用于被用于免疫印迹在小鼠样本上 (图 4b). Nat Commun (2020) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 1:5000; 图 4s1a
圣克鲁斯生物技术 Hsc70抗体(Santa, sc-7298)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4s1a). elife (2020) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 1:1000; 图 1s2a
圣克鲁斯生物技术 Hsc70抗体(Santa, sc-7298)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1s2a). elife (2020) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 1:10,000; 图 1i
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, SC-7298)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1i). Nat Commun (2019) ncbi
小鼠 单克隆(B-6)
  • 免疫细胞化学; 人类; 图 4a
圣克鲁斯生物技术 Hsc70抗体(SantaCruz Biotech, sc-7298)被用于被用于免疫细胞化学在人类样本上 (图 4a). Cell Rep (2019) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz Biotechnology, sc-7298)被用于被用于免疫印迹在人类样本上 (图 2a). J Biol Chem (2019) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 小鼠; 图 1b
圣克鲁斯生物技术 Hsc70抗体(santa cruz, W27)被用于被用于免疫印迹在小鼠样本上 (图 1b). Biochem Biophys Res Commun (2018) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 4h
  • 免疫印迹; 小鼠; 图 4i
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在人类样本上 (图 4h) 和 被用于免疫印迹在小鼠样本上 (图 4i). Science (2018) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, 3A3)被用于被用于免疫印迹在人类样本上 (图 5b). Virology (2018) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-7298)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2018) ncbi
小鼠 单克隆(B-6)
  • 免疫沉淀; 人类; 图 6b
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz Biotechnology, sc-7298)被用于被用于免疫沉淀在人类样本上 (图 6b). Front Mol Neurosci (2018) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 1:1000; 图 7i
圣克鲁斯生物技术 Hsc70抗体(Santa, W27)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7i). Mol Cell Biol (2018) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 s4g
圣克鲁斯生物技术 Hsc70抗体(SantaCruz, sc-24)被用于被用于免疫印迹在人类样本上 (图 s4g). Cell (2018) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 1:1000; 图 1a
圣克鲁斯生物技术 Hsc70抗体(SantaCruz, sc7298)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Cell Death Dis (2018) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 图 2i
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz Biotechnology Inc, sc-7298)被用于被用于免疫印迹在小鼠样本上 (图 2i). Cancer Res (2018) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 大鼠; ; 图 4a
圣克鲁斯生物技术 Hsc70抗体(SantaCruz, 7298)被用于被用于免疫印迹在大鼠样本上浓度为 (图 4a). J Cachexia Sarcopenia Muscle (2018) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 图 3d
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-7298)被用于被用于免疫印迹在小鼠样本上 (图 3d). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 s2b
  • 免疫组化; 小鼠; 图 s3c
  • 免疫印迹; 小鼠; 图 s3a
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在人类样本上 (图 s2b), 被用于免疫组化在小鼠样本上 (图 s3c) 和 被用于免疫印迹在小鼠样本上 (图 s3a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 图 1b
  • 免疫印迹; 人类; 图 1b
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz Biotechnology, sc-7298)被用于被用于免疫印迹在小鼠样本上 (图 1b) 和 被用于免疫印迹在人类样本上 (图 1b). Glycobiology (2017) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-7298)被用于被用于免疫印迹在人类样本上 (图 1c). Breast Cancer Res (2017) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 大鼠; 图 2a
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-7298)被用于被用于免疫印迹在大鼠样本上 (图 2a). Sci Rep (2017) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 1:5000; 图 5d
圣克鲁斯生物技术 Hsc70抗体(SantaCruz, sc-7298)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5d). J Cell Sci (2017) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 1:500; 图 1
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, SC24)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). Sci Rep (2017) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 1:2000; 图 s7a
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz Biotechnology, sc-7298)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s7a). Am J Hum Genet (2017) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 s3a
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在人类样本上 (图 s3a). Oncoimmunology (2016) ncbi
小鼠 单克隆(W27)
  • 免疫组化; 小鼠; 1:50; 图 s6g
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc24)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 s6g). Cell (2017) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 图 1b
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-7298)被用于被用于免疫印迹在小鼠样本上 (图 1b). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 6d
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在人类样本上 (图 6d). Antioxid Redox Signal (2017) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 图 s2
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-7298)被用于被用于免疫印迹在人类样本上 (图 s2). Oncotarget (2016) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 图 7b
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, B-6)被用于被用于免疫印迹在小鼠样本上 (图 7b). Mol Cell Biol (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 7b
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, B-6)被用于被用于免疫印迹在小鼠样本上 (图 7b). Mol Cell Biol (2017) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 1:5000; 图 6a
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-7298)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6a). Nat Cell Biol (2016) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 1:20,000; 图 6c
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz Biotechnology, sc-7298)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 6c). Nat Med (2016) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 Hsc70抗体(santa Cruz, SC-7298)被用于被用于免疫印迹在小鼠样本上 (图 3). Blood Cancer J (2016) ncbi
小鼠 单克隆(W27)
  • 免疫组化; 小鼠; 图 s3
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, W27)被用于被用于免疫组化在小鼠样本上 (图 s3). Sci Rep (2016) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 1:1000; 图 2d
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-7298)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Int J Oncol (2016) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, W27)被用于被用于免疫印迹在人类样本上 (图 5a). J Cell Mol Med (2016) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 图 7a
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, B-6)被用于被用于免疫印迹在人类样本上 (图 7a). Toxicology (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 7a
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, B-6)被用于被用于免疫印迹在人类样本上 (图 7a). Toxicology (2016) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 图 4B
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-7298)被用于被用于免疫印迹在人类样本上 (图 4B). PLoS Genet (2016) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-7298)被用于被用于免疫印迹在小鼠样本上 (图 1). Hepatology (2016) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 大鼠; 图 5e
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在大鼠样本上 (图 5e). Cell Signal (2016) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 1:6000; 图 2C
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-7298)被用于被用于免疫印迹在小鼠样本上浓度为1:6000 (图 2C). PLoS ONE (2016) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 1:2000; 图 3
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-7298)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3). EMBO Rep (2016) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, SC-7298)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 小鼠; 1:1000; 图 8
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). Oncotarget (2016) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc7298)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2016) ncbi
小鼠 单克隆(W27)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2
圣克鲁斯生物技术 Hsc70抗体(santa Cruz, SC-24)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2). Cancer Sci (2016) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz Biotechnologies, sc-7298)被用于被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, B6)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 1:500; 图 2
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz Biotechnology, sc-7298)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2). Autophagy (2016) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, SC7298)被用于被用于免疫印迹在小鼠样本上 (图 1). Nat Med (2015) ncbi
小鼠 单克隆(W27)
  • 免疫组化-石蜡切片; 人类; 图 4
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz Biotechnology, sc-24)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4). Nat Immunol (2015) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc7298)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 1:30,000; 图 2
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz Biotechnology, sc-7298)被用于被用于免疫印迹在人类样本上浓度为1:30,000 (图 2). PLoS Med (2015) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; pigs ; 图 2
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-7298)被用于被用于免疫印迹在pigs 样本上 (图 2). J Immunol (2015) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-7298)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在人类样本上 (图 2). Int J Mol Sci (2015) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-7298)被用于被用于免疫印迹在人类样本上 (图 1). Mol Cancer (2015) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 4,5,6
圣克鲁斯生物技术 Hsc70抗体(Santa cruz, sc-24)被用于被用于免疫印迹在人类样本上 (图 4,5,6). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). J Extracell Vesicles (2015) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-7298)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Cancer (2015) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-7298)被用于被用于免疫印迹在小鼠样本上 (图 3). Nature (2015) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 1:2000; 图 5b
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz Biotechnology, sc-24)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5b). Nat Commun (2015) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-7298)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-7298)被用于被用于免疫印迹在小鼠样本上 (图 5). Breast Cancer Res (2015) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在人类样本上. J Extracell Vesicles (2015) ncbi
小鼠 单克隆(W27)
  • 流式细胞仪; 人类
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz Biotechnology, SC-24)被用于被用于流式细胞仪在人类样本上. Cancer Res (2015) ncbi
小鼠 单克隆(2A4)
  • 免疫印迹; 小鼠; 图 s3
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-59570)被用于被用于免疫印迹在小鼠样本上 (图 s3). PLoS ONE (2015) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 图 s4h
  • 免疫印迹; 人类; 图 s2a
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, 7298)被用于被用于免疫印迹在小鼠样本上 (图 s4h) 和 被用于免疫印迹在人类样本上 (图 s2a). Nat Commun (2015) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Hsc70抗体(santa Cruz, B-6)被用于被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2015) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, B-6)被用于被用于免疫印迹在人类样本上 (图 3). Cell Death Dis (2015) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz Biotechnology, sc-7298)被用于被用于免疫印迹在人类样本上 (图 3). Cell Cycle (2015) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-7298)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Death Dis (2015) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-7298)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(B-12)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz Biotechnology, sc-137239)被用于被用于免疫印迹在人类样本上 (图 2). Mol Cancer Ther (2015) ncbi
小鼠 单克隆(BRM-22)
  • 免疫沉淀; fruit fly ; 图 5
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, BRM-22)被用于被用于免疫沉淀在fruit fly 样本上 (图 5). Nat Commun (2014) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz Biotechnology, sc-24)被用于被用于免疫印迹在人类样本上. FEBS Lett (2014) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 1:20,000; 图 6
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz Biotechnologies, sc-7298)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000 (图 6). J Leukoc Biol (2015) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz Biotechnology, sc32239)被用于被用于免疫印迹在小鼠样本上. Growth Factors (2015) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; redtail notho; 1:1000
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, SC-24)被用于被用于免疫印迹在redtail notho样本上浓度为1:1000. Rejuvenation Res (2014) ncbi
小鼠 单克隆(BRM-22)
  • 免疫印迹; 牛; 1:250
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, SC-59572)被用于被用于免疫印迹在牛样本上浓度为1:250. J Agric Food Chem (2014) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz Biotechnology, 32239)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2014) ncbi
小鼠 单克隆(B-6)
  • 染色质免疫沉淀 ; 人类; 1:25,000; 图 s1
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-7298)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:25,000 (图 s1). Cell Rep (2014) ncbi
小鼠 单克隆(SPM254)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-65521)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 图 1g
圣克鲁斯生物技术 Hsc70抗体(Santa, sc-7298)被用于被用于免疫印迹在人类样本上 (图 1g). J Biol Chem (2014) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 大鼠; 1:500
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz Biotechnology, sc-24)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Exp Neurol (2014) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz Biotechnology, sc-7298)被用于被用于免疫印迹在人类样本上. J Cell Physiol (2014) ncbi
小鼠 单克隆(B-12)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz Biotechnology, B12)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2014) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 图 s1
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-7298)被用于被用于免疫印迹在人类样本上 (图 s1). Oncogene (2015) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz Biotechnology, SC-7298)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在人类样本上 (图 2b). Int J Oncol (2014) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; bee ; 1:1000
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz Biotechnology, sc-24)被用于被用于免疫印迹在bee 样本上浓度为1:1000. Exp Gerontol (2014) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz Biotechnology, sc-24)被用于被用于免疫印迹在人类样本上浓度为1:1000. Neuromolecular Med (2014) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz Biotechnology, sc-7298)被用于被用于免疫印迹在人类样本上. Cell Signal (2014) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 8b
圣克鲁斯生物技术 Hsc70抗体(Santa cruz, sc-24)被用于被用于免疫印迹在人类样本上 (图 8b). Oncogene (2014) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 1:10,000
  • 免疫印迹; 小鼠; 1:10,000
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz Biotechnology, sc-7298)被用于被用于免疫印迹在人类样本上浓度为1:10,000 和 被用于免疫印迹在小鼠样本上浓度为1:10,000. PLoS ONE (2012) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz, sc-32239)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Pharmacol (2013) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 Hsc70抗体(Santa Cruz Biotechnology, sc-7298)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS ONE (2012) ncbi
赛默飞世尔
小鼠 单克隆(13D3)
  • 免疫印迹; 大鼠; 1:5000; 图 2b
赛默飞世尔 Hsc70抗体(Thermo Scientific, 13D3)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 2b). Front Mol Neurosci (2020) ncbi
小鼠 单克隆(13D3)
  • 免疫印迹; 小鼠; 表 1
赛默飞世尔 Hsc70抗体(Thermo, MA3-014)被用于被用于免疫印迹在小鼠样本上 (表 1). Neuron (2017) ncbi
小鼠 单克隆(13D3)
  • 免疫印迹; 人类; 1:1000; 图 6
赛默飞世尔 Hsc70抗体(Thermo Scientific, 13D3)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Biol Chem (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Hsc70抗体(pierce, PA5-27337)被用于. PLoS Pathog (2015) ncbi
小鼠 单克隆(13D3)
  • 免疫印迹; 人类; 1:1000; 图 5
赛默飞世尔 Hsc70抗体(Thermo, 13D3)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Eur J Med Res (2015) ncbi
小鼠 单克隆(13D3)
  • 免疫印迹; 大鼠; 1:500
赛默飞世尔 Hsc70抗体(Thermo Scientific-Pierce, MA3-014)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Arch Biochem Biophys (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EP1531Y)
  • 免疫沉淀; 人类; 1:1000; 图 s6
艾博抗(上海)贸易有限公司 Hsc70抗体(Abcam, ab51052)被用于被用于免疫沉淀在人类样本上浓度为1:1000 (图 s6). Science (2019) ncbi
domestic rabbit 单克隆(EP1531Y)
  • 免疫印迹; 人类; 图 3e
艾博抗(上海)贸易有限公司 Hsc70抗体(Abcam, ab51052)被用于被用于免疫印迹在人类样本上 (图 3e). Cell (2019) ncbi
domestic rabbit 单克隆(EP1531Y)
  • 免疫沉淀; 人类; 图 2
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司 Hsc70抗体(Abcam, 51052)被用于被用于免疫沉淀在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
domestic rabbit 单克隆(EP1531Y)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Hsc70抗体(Abcam, ab51052)被用于被用于免疫印迹在人类样本上. Mol Oncol (2013) ncbi
domestic rabbit 单克隆(EP1531Y)
  • 免疫沉淀; 人类
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 图 s3.d
艾博抗(上海)贸易有限公司 Hsc70抗体(Abcam, ab51052)被用于被用于免疫沉淀在人类样本上, 被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上 (图 s3.d). PLoS ONE (2012) ncbi
Novus Biologicals
小鼠 单克隆(13D3)
  • 免疫印迹; 人类; 1:1000; 图 5a
Novus Biologicals Hsc70抗体(Novus, NB120-2788)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Nat Commun (2021) ncbi
小鼠 单克隆(13D3)
  • 免疫印迹; 小鼠; 1:5000; 图 6b
Novus Biologicals Hsc70抗体(Novus Biologicals, NB1202788)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 6b). Autophagy (2018) ncbi
小鼠 单克隆(13D3)
  • 免疫印迹; 小鼠; 1:5000; 图 2
Novus Biologicals Hsc70抗体(Novus Biologicals, 13D3)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2). Nat Cell Biol (2015) ncbi
Agrisera
domestic rabbit 多克隆
Agrisera Hsc70抗体(Agrisera, AS05 083A)被用于. J Exp Biol (2016) ncbi
StressMarq Biosciences
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 3c
StressMarq Biosciences Hsc70抗体(StressMarq, SPC-102)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3c). Oncogene (2020) ncbi
BioLegend
小鼠 单克隆(9/2)
  • 流式细胞仪; 小鼠; 1:200; 图 s2a
BioLegend Hsc70抗体(Biolegend, 92)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s2a). Nat Commun (2018) ncbi
Rockland Immunochemicals
小鼠 单克隆(N27F3-4)
  • 免疫印迹; African green monkey; 图 5
Rockland Immunochemicals Hsc70抗体(Rockland, 200-301-A28)被用于被用于免疫印迹在African green monkey样本上 (图 5). Sci Rep (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D12F2)
  • 免疫印迹; 小鼠; 图 s3b
赛信通(上海)生物试剂有限公司 Hsc70抗体(Cell Signaling, 8444)被用于被用于免疫印迹在小鼠样本上 (图 s3b). Cell Death Differ (2016) ncbi
domestic rabbit 单克隆(D12F2)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Hsc70抗体(Cell Signaling, 8444)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Nat Cell Biol (2015) ncbi
碧迪BD
小鼠 单克隆(W27)
  • 免疫印迹; 人类
碧迪BD Hsc70抗体(BD Biosciences, W27)被用于被用于免疫印迹在人类样本上. Int Immunopharmacol (2014) ncbi
文章列表
  1. D Amico G, Fernandez I, Gómez Escudero J, Kim H, Maniati E, Azman M, et al. ERG activity is regulated by endothelial FAK coupling with TRIM25/USP9x in vascular patterning. Development. 2022;149: pubmed 出版商
  2. Ma S, Mangala L, Hu W, Bayaktar E, Yokoi A, Hu W, et al. CD63-mediated cloaking of VEGF in small extracellular vesicles contributes to anti-VEGF therapy resistance. Cell Rep. 2021;36:109549 pubmed 出版商
  3. Shen C, Hsieh C, Jiang K, Lin C, Chiang N, Li T, et al. AUY922 induces retinal toxicity through attenuating TRPM1. J Biomed Sci. 2021;28:55 pubmed 出版商
  4. Xu X, Sun Y, Cen X, Shan B, Zhao Q, Xie T, et al. Metformin activates chaperone-mediated autophagy and improves disease pathologies in an Alzheimer disease mouse model. Protein Cell. 2021;: pubmed 出版商
  5. Kemper M, Schiecke A, Maar H, Nikulin S, Poloznikov A, Galatenko V, et al. Integrin alpha-V is an important driver in pancreatic adenocarcinoma progression. J Exp Clin Cancer Res. 2021;40:214 pubmed 出版商
  6. Gialluisi A, Reccia M, Modugno N, Nutile T, Lombardi A, Di Giovannantonio L, et al. Identification of sixteen novel candidate genes for late onset Parkinson's disease. Mol Neurodegener. 2021;16:35 pubmed 出版商
  7. Silva Pinheiro P, Pardo Hernández C, Reyes A, Tilokani L, Mishra A, Cerutti R, et al. DNA polymerase gamma mutations that impair holoenzyme stability cause catalytic subunit depletion. Nucleic Acids Res. 2021;49:5230-5248 pubmed 出版商
  8. Dahou H, Minati M, Jacquemin P, Assi M. Genetic Inactivation of Peroxiredoxin-I Impairs the Growth of Human Pancreatic Cancer Cells. Antioxidants (Basel). 2021;10: pubmed 出版商
  9. Caballero B, Bourdenx M, Luengo E, Díaz A, Sohn P, Chen X, et al. Acetylated tau inhibits chaperone-mediated autophagy and promotes tau pathology propagation in mice. Nat Commun. 2021;12:2238 pubmed 出版商
  10. Kashyap R, Balzano M, Lechat B, Lambaerts K, Egea Jimenez A, Lembo F, et al. Syntenin-knock out reduces exosome turnover and viral transduction. Sci Rep. 2021;11:4083 pubmed 出版商
  11. Klemke L, De Oliveira T, Witt D, Winkler N, Bohnenberger H, Bucala R, et al. Hsp90-stabilized MIF supports tumor progression via macrophage recruitment and angiogenesis in colorectal cancer. Cell Death Dis. 2021;12:155 pubmed 出版商
  12. Hondius D, Koopmans F, Leistner C, Pita Illobre D, Peferoen Baert R, Marbus F, et al. The proteome of granulovacuolar degeneration and neurofibrillary tangles in Alzheimer's disease. Acta Neuropathol. 2021;141:341-358 pubmed 出版商
  13. Rushworth L, Harle V, Repiščák P, Clark W, Shaw R, Hall H, et al. In vivo CRISPR/Cas9 knockout screen: TCEAL1 silencing enhances docetaxel efficacy in prostate cancer. Life Sci Alliance. 2020;3: pubmed 出版商
  14. Pathak T, Gueguinou M, Walter V, Delierneux C, Johnson M, Zhang X, et al. Dichotomous role of the human mitochondrial Na+/Ca2+/Li+ exchanger NCLX in colorectal cancer growth and metastasis. elife. 2020;9: pubmed 出版商
  15. Kuo I, Lee J, Wang Y, Chiang H, Huang C, Hsieh P, et al. Potential enhancement of host immunity and anti-tumor efficacy of nanoscale curcumin and resveratrol in colorectal cancers by modulated electro- hyperthermia. BMC Cancer. 2020;20:603 pubmed 出版商
  16. Lechertier T, Reynolds L, Kim H, Pedrosa A, Gómez Escudero J, Muñoz Félix J, et al. Pericyte FAK negatively regulates Gas6/Axl signalling to suppress tumour angiogenesis and tumour growth. Nat Commun. 2020;11:2810 pubmed 出版商
  17. Somerville T, Biffi G, Da ler Plenker J, Hur S, He X, Vance K, et al. Squamous trans-differentiation of pancreatic cancer cells promotes stromal inflammation. elife. 2020;9: pubmed 出版商
  18. Wu P, Hong S, Starenki D, Oshima K, Shao H, Gestwicki J, et al. Mortalin/HSPA9 targeting selectively induces KRAS tumor cell death by perturbing mitochondrial membrane permeability. Oncogene. 2020;39:4257-4270 pubmed 出版商
  19. Ormeño F, Hormazabal J, Moreno J, Riquelme F, Rios J, Criollo A, et al. Chaperone Mediated Autophagy Degrades TDP-43 Protein and Is Affected by TDP-43 Aggregation. Front Mol Neurosci. 2020;13:19 pubmed 出版商
  20. Onn L, Portillo M, Ilic S, Cleitman G, Stein D, Kaluski S, et al. SIRT6 is a DNA double-strand break sensor. elife. 2020;9: pubmed 出版商
  21. Nowialis P, Lopušná K, Opavska J, Haney S, Abraham A, Sheng P, et al. Catalytically inactive Dnmt3b rescues mouse embryonic development by accessory and repressive functions. Nat Commun. 2019;10:4374 pubmed 出版商
  22. Abdel Nour M, Carneiro L, Downey J, Tsalikis J, Outlioua A, Prescott D, et al. The heme-regulated inhibitor is a cytosolic sensor of protein misfolding that controls innate immune signaling. Science. 2019;365: pubmed 出版商
  23. Rhee H, Shaib A, Rehbach K, Lee C, Seif P, Thomas C, et al. An Autaptic Culture System for Standardized Analyses of iPSC-Derived Human Neurons. Cell Rep. 2019;27:2212-2228.e7 pubmed 出版商
  24. Kim J, He X, Liu J, Duan Z, Kim T, Gerard J, et al. Systematic proteomics of endogenous human cohesin reveals an interaction with diverse splicing factors and RNA-binding proteins required for mitotic progression. J Biol Chem. 2019;294:8760-8772 pubmed 出版商
  25. Jeppesen D, Fenix A, Franklin J, Higginbotham J, Zhang Q, Zimmerman L, et al. Reassessment of Exosome Composition. Cell. 2019;177:428-445.e18 pubmed 出版商
  26. Inouye S, Hatori Y, Kubo T, Saito S, Kitamura H, Akagi R. NRF2 and HSF1 coordinately regulate heme oxygenase-1 expression. Biochem Biophys Res Commun. 2018;506:7-11 pubmed 出版商
  27. Gerber T, Murawala P, Knapp D, Masselink W, Schuez M, Hermann S, et al. Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science. 2018;362: pubmed 出版商
  28. Cui L, Mahesutihan M, Zheng W, Meng L, Fan W, Li J, et al. CDC25B promotes influenza A virus replication by regulating the phosphorylation of nucleoprotein. Virology. 2018;525:40-47 pubmed 出版商
  29. Pajares M, Rojo A, Arias E, Díaz Carretero A, Cuervo A, Cuadrado A. Transcription factor NFE2L2/NRF2 modulates chaperone-mediated autophagy through the regulation of LAMP2A. Autophagy. 2018;14:1310-1322 pubmed 出版商
  30. Rademaker G, Hennequière V, Brohée L, Nokin M, Lovinfosse P, Durieux F, et al. Myoferlin controls mitochondrial structure and activity in pancreatic ductal adenocarcinoma, and affects tumor aggressiveness. Oncogene. 2018;37:4398-4412 pubmed 出版商
  31. Hyrenius Wittsten A, Pilheden M, Sturesson H, Hansson J, Walsh M, Song G, et al. De novo activating mutations drive clonal evolution and enhance clonal fitness in KMT2A-rearranged leukemia. Nat Commun. 2018;9:1770 pubmed 出版商
  32. Liu L, An D, Xu J, Shao B, Li X, Shi J. Ac2-26 Induces IKKβ Degradation Through Chaperone-Mediated Autophagy Via HSPB1 in NCM-Treated Microglia. Front Mol Neurosci. 2018;11:76 pubmed 出版商
  33. Fujimoto M, Takii R, Katiyar A, Srivastava P, Nakai A. Poly(ADP-Ribose) Polymerase 1 Promotes the Human Heat Shock Response by Facilitating Heat Shock Transcription Factor 1 Binding to DNA. Mol Cell Biol. 2018;38: pubmed 出版商
  34. Aneichyk T, Hendriks W, Yadav R, Shin D, Gao D, Vaine C, et al. Dissecting the Causal Mechanism of X-Linked Dystonia-Parkinsonism by Integrating Genome and Transcriptome Assembly. Cell. 2018;172:897-909.e21 pubmed 出版商
  35. Le Duff M, Gouju J, Jonchère B, Guillon J, Toutain B, Boissard A, et al. Regulation of senescence escape by the cdk4-EZH2-AP2M1 pathway in response to chemotherapy. Cell Death Dis. 2018;9:199 pubmed 出版商
  36. Wan Y, Wang L, Zhu C, Zheng Q, Wang G, Tong J, et al. Aptamer-Conjugated Extracellular Nanovesicles for Targeted Drug Delivery. Cancer Res. 2018;78:798-808 pubmed 出版商
  37. Pannérec A, Migliavacca E, de Castro A, Michaud J, Karaz S, Goulet L, et al. Vitamin B12 deficiency and impaired expression of amnionless during aging. J Cachexia Sarcopenia Muscle. 2018;9:41-52 pubmed 出版商
  38. Zhao T, Hong Y, Yin P, Li S, Li X. Differential HspBP1 expression accounts for the greater vulnerability of neurons than astrocytes to misfolded proteins. Proc Natl Acad Sci U S A. 2017;114:E7803-E7811 pubmed 出版商
  39. Groves J, Zachara N. Characterization of tools to detect and enrich human and mouse O-GlcNAcase. Glycobiology. 2017;: pubmed 出版商
  40. Sarper M, Allen M, Gomm J, Haywood L, Decock J, Thirkettle S, et al. Loss of MMP-8 in ductal carcinoma in situ (DCIS)-associated myoepithelial cells contributes to tumour promotion through altered adhesive and proteolytic function. Breast Cancer Res. 2017;19:33 pubmed 出版商
  41. Hardonnière K, Fernier M, Gallais I, Mograbi B, Podechard N, Le Ferrec E, et al. Role for the ATPase inhibitory factor 1 in the environmental carcinogen-induced Warburg phenotype. Sci Rep. 2017;7:195 pubmed 出版商
  42. Reynolds L, D Amico G, Lechertier T, Papachristodoulou A, Muñoz Félix J, De Arcangelis A, et al. Dual role of pericyte ?6?1-integrin in tumour blood vessels. J Cell Sci. 2017;130:1583-1595 pubmed 出版商
  43. Cao M, Wu Y, Ashrafi G, McCartney A, Wheeler H, Bushong E, et al. Parkinson Sac Domain Mutation in Synaptojanin 1 Impairs Clathrin Uncoating at Synapses and Triggers Dystrophic Changes in Dopaminergic Axons. Neuron. 2017;93:882-896.e5 pubmed 出版商
  44. Zhang Q, Ma C, Oberli A, Zinz A, Engels S, Przyborski J. Proteomic analysis of exported chaperone/co-chaperone complexes of P. falciparum reveals an array of complex protein-protein interactions. Sci Rep. 2017;7:42188 pubmed 出版商
  45. Lee J, Hsu C, Michael M, Nanda A, Liu L, McMillan J, et al. Large Intragenic Deletion in DSTYK Underlies Autosomal-Recessive Complicated Spastic Paraparesis, SPG23. Am J Hum Genet. 2017;100:364-370 pubmed 出版商
  46. Melchionna R, Iapicca P, Di Modugno F, Trono P, Sperduti I, Fassan M, et al. The pattern of hMENA isoforms is regulated by TGF-?1 in pancreatic cancer and may predict patient outcome. Oncoimmunology. 2016;5:e1221556 pubmed 出版商
  47. Nagaraj R, Sharpley M, Chi F, Braas D, Zhou Y, Kim R, et al. Nuclear Localization of Mitochondrial TCA Cycle Enzymes as a Critical Step in Mammalian Zygotic Genome Activation. Cell. 2017;168:210-223.e11 pubmed 出版商
  48. Mukhopadhyay C, Triplett A, Bargar T, HECKMAN C, Wagner K, Naramura M. Casitas B-cell lymphoma (Cbl) proteins protect mammary epithelial cells from proteotoxicity of active c-Src accumulation. Proc Natl Acad Sci U S A. 2016;113:E8228-E8237 pubmed 出版商
  49. Seo B, Min K, Woo S, Choe M, Choi K, Lee Y, et al. Inhibition of Cathepsin S Induces Mitochondrial ROS That Sensitizes TRAIL-Mediated Apoptosis Through p53-Mediated Downregulation of Bcl-2 and c-FLIP. Antioxid Redox Signal. 2017;27:215-233 pubmed 出版商
  50. Blomme A, Fahmy K, Peulen O, Costanza B, Fontaine M, Struman I, et al. Myoferlin is a novel exosomal protein and functional regulator of cancer-derived exosomes. Oncotarget. 2016;7:83669-83683 pubmed 出版商
  51. Swartz K, Wood S, Murthy T, Ramirez O, Qin G, Pillai M, et al. E2F-2 Promotes Nuclear Condensation and Enucleation of Terminally Differentiated Erythroblasts. Mol Cell Biol. 2017;37: pubmed 出版商
  52. Parrales A, Ranjan A, Iyer S, Padhye S, Weir S, Roy A, et al. DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway. Nat Cell Biol. 2016;18:1233-1243 pubmed 出版商
  53. Frentzas S, Simoneau E, Bridgeman V, Vermeulen P, Foo S, Kostaras E, et al. Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases. Nat Med. 2016;22:1294-1302 pubmed 出版商
  54. Fritsch J, Fickers R, Klawitter J, Särchen V, Zingler P, Adam D, et al. TNF induced cleavage of HSP90 by cathepsin D potentiates apoptotic cell death. Oncotarget. 2016;7:75774-75789 pubmed 出版商
  55. Jin Q, Ren Y, Wang M, Suraneni P, Li D, Crispino J, et al. Novel function of FAXDC2 in megakaryopoiesis. Blood Cancer J. 2016;6:e478 pubmed 出版商
  56. Yamanaka T, Tosaki A, Miyazaki H, Kurosawa M, Koike M, Uchiyama Y, et al. Differential roles of NF-Y transcription factor in ER chaperone expression and neuronal maintenance in the CNS. Sci Rep. 2016;6:34575 pubmed 出版商
  57. Schiera G, Di Liegro C, Puleo V, Colletta O, Fricano A, Cancemi P, et al. Extracellular vesicles shed by melanoma cells contain a modified form of H1.0 linker histone and H1.0 mRNA-binding proteins. Int J Oncol. 2016;49:1807-1814 pubmed 出版商
  58. Szymanska M, Fosdahl A, Nikolaysen F, Pedersen M, Grandal M, Stang E, et al. A combination of two antibodies recognizing non-overlapping epitopes of HER2 induces kinase activity-dependent internalization of HER2. J Cell Mol Med. 2016;20:1999-2011 pubmed 出版商
  59. Sayyed K, Vee M, Abdel Razzak Z, Jouan E, Stieger B, Denizot C, et al. Alteration of human hepatic drug transporter activity and expression by cigarette smoke condensate. Toxicology. 2016;363-364:58-71 pubmed 出版商
  60. Yang W, Ng F, Chan K, Pu X, Poston R, Ren M, et al. Coronary-Heart-Disease-Associated Genetic Variant at the COL4A1/COL4A2 Locus Affects COL4A1/COL4A2 Expression, Vascular Cell Survival, Atherosclerotic Plaque Stability and Risk of Myocardial Infarction. PLoS Genet. 2016;12:e1006127 pubmed 出版商
  61. Roychowdhury S, McCullough R, Sanz Garcia C, Saikia P, Alkhouri N, Matloob A, et al. Receptor interacting protein 3 protects mice from high-fat diet-induced liver injury. Hepatology. 2016;64:1518-1533 pubmed 出版商
  62. Ansari M, Haqqi T. Interleukin-1β induced Stress Granules Sequester COX-2 mRNA and Regulates its Stability and Translation in Human OA Chondrocytes. Sci Rep. 2016;6:27611 pubmed 出版商
  63. Tunnah L, MacKellar S, Barnett D, MacCormack T, Stehfest K, Morash A, et al. Physiological responses to hypersalinity correspond to nursery ground usage in two inshore shark species (Mustelus antarcticus and Galeorhinus galeus). J Exp Biol. 2016;219:2028-38 pubmed 出版商
  64. Lin Y, Warren C, Li J, McKinsey T, Russell B. Myofibril growth during cardiac hypertrophy is regulated through dual phosphorylation and acetylation of the actin capping protein CapZ. Cell Signal. 2016;28:1015-24 pubmed 出版商
  65. Chen L, DeWispelaere A, Dastvan F, Osborne W, Blechner C, Windhorst S, et al. Smooth Muscle-Alpha Actin Inhibits Vascular Smooth Muscle Cell Proliferation and Migration by Inhibiting Rac1 Activity. PLoS ONE. 2016;11:e0155726 pubmed 出版商
  66. Seiferling D, Szczepanowska K, Becker C, Senft K, Hermans S, Maiti P, et al. Loss of CLPP alleviates mitochondrial cardiomyopathy without affecting the mammalian UPRmt. EMBO Rep. 2016;17:953-64 pubmed 出版商
  67. Lee H, Sanada S, An S, Ye B, Lee J, Seo Y, et al. LPS-induced NF?B enhanceosome requires TonEBP/NFAT5 without DNA binding. Sci Rep. 2016;6:24921 pubmed 出版商
  68. Rider M, Hurwitz S, Meckes D. ExtraPEG: A Polyethylene Glycol-Based Method for Enrichment of Extracellular Vesicles. Sci Rep. 2016;6:23978 pubmed 出版商
  69. Dhar S, Kumar A, Zhang L, Rimando A, Lage J, Lewin J, et al. Dietary pterostilbene is a novel MTA1-targeted chemopreventive and therapeutic agent in prostate cancer. Oncotarget. 2016;7:18469-84 pubmed 出版商
  70. Nüße J, Mirastschijski U, Waespy M, Oetjen J, Brandes N, Rebello O, et al. Two new isoforms of the human hepatoma-derived growth factor interact with components of the cytoskeleton. Biol Chem. 2016;397:417-36 pubmed 出版商
  71. Derangère V, Fumet J, Boidot R, Bengrine L, Limagne E, Chevriaux A, et al. Does bevacizumab impact anti-EGFR therapy efficacy in metastatic colorectal cancer?. Oncotarget. 2016;7:9309-21 pubmed 出版商
  72. Ojima H, Masugi Y, Tsujikawa H, Emoto K, Fujii Nishimura Y, Hatano M, et al. Early hepatocellular carcinoma with high-grade atypia in small vaguely nodular lesions. Cancer Sci. 2016;107:543-50 pubmed 出版商
  73. Zhao B, Tan T, Mei Y, Yang J, Yu Y, Verma A, et al. H2AX deficiency is associated with erythroid dysplasia and compromised haematopoietic stem cell function. Sci Rep. 2016;6:19589 pubmed 出版商
  74. Cousin F, Jouan Lanhouet S, Théret N, Brenner C, Jouan E, Le Moigne Muller G, et al. The probiotic Propionibacterium freudenreichii as a new adjuvant for TRAIL-based therapy in colorectal cancer. Oncotarget. 2016;7:7161-78 pubmed 出版商
  75. Xie C, Ginet V, Sun Y, Koike M, Zhou K, Li T, et al. Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury. Autophagy. 2016;12:410-23 pubmed 出版商
  76. Altuntas S, Rossin F, Marsella C, D Eletto M, Diaz Hidalgo L, Farrace M, et al. The transglutaminase type 2 and pyruvate kinase isoenzyme M2 interplay in autophagy regulation. Oncotarget. 2015;6:44941-54 pubmed 出版商
  77. Wen Q, Yang Q, Goldenson B, Malinge S, Lasho T, Schneider R, et al. Targeting megakaryocytic-induced fibrosis in myeloproliferative neoplasms by AURKA inhibition. Nat Med. 2015;21:1473-80 pubmed 出版商
  78. Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol. 2015;16:1235-44 pubmed 出版商
  79. Vétillard A, Jonchère B, Moreau M, Toutain B, Henry C, Fontanel S, et al. Akt inhibition improves irinotecan treatment and prevents cell emergence by switching the senescence response to apoptosis. Oncotarget. 2015;6:43342-62 pubmed 出版商
  80. Lisak D, Schacht T, Gawlitza A, Albrecht P, Aktas O, Koop B, et al. BAX inhibitor-1 is a Ca(2+) channel critically important for immune cell function and survival. Cell Death Differ. 2016;23:358-68 pubmed 出版商
  81. Shi C, Huang X, Zhang B, Zhu D, Luo H, Lu Q, et al. The Inhibition of Heat Shock Protein 90 Facilitates the Degradation of Poly-Alanine Expanded Poly (A) Binding Protein Nuclear 1 via the Carboxyl Terminus of Heat Shock Protein 70-Interacting Protein. PLoS ONE. 2015;10:e0138936 pubmed 出版商
  82. Maris P, Blomme A, Palacios A, Costanza B, Bellahcène A, Bianchi E, et al. Asporin Is a Fibroblast-Derived TGF-β1 Inhibitor and a Tumor Suppressor Associated with Good Prognosis in Breast Cancer. PLoS Med. 2015;12:e1001871 pubmed 出版商
  83. Georgiannakis A, Burgoyne T, Lueck K, Futter C, Greenwood J, Moss S. Retinal Pigment Epithelial Cells Mitigate the Effects of Complement Attack by Endocytosis of C5b-9. J Immunol. 2015;195:3382-9 pubmed 出版商
  84. Noritake K, Aki T, Funakoshi T, Unuma K, Uemura K. Direct Exposure to Ethanol Disrupts Junctional Cell-Cell Contact and Hippo-YAP Signaling in HL-1 Murine Atrial Cardiomyocytes. PLoS ONE. 2015;10:e0136952 pubmed 出版商
  85. Serban A, Stanca L, Geicu O, Dinischiotu A. AGEs-Induced IL-6 Synthesis Precedes RAGE Up-Regulation in HEK 293 Cells: An Alternative Inflammatory Mechanism?. Int J Mol Sci. 2015;16:20100-17 pubmed 出版商
  86. Conigliaro A, Costa V, Lo Dico A, Saieva L, Buccheri S, Dieli F, et al. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol Cancer. 2015;14:155 pubmed 出版商
  87. Ravindran M, Bagchi P, Inoue T, Tsai B. A Non-enveloped Virus Hijacks Host Disaggregation Machinery to Translocate across the Endoplasmic Reticulum Membrane. PLoS Pathog. 2015;11:e1005086 pubmed 出版商
  88. Wu Y, Chen H, Lu J, Zhang M, Zhang R, Duan T, et al. Acetylation-dependent function of human single-stranded DNA binding protein 1. Nucleic Acids Res. 2015;43:7878-87 pubmed 出版商
  89. Frühbeis C, Helmig S, Tug S, Simon P, Krämer Albers E. Physical exercise induces rapid release of small extracellular vesicles into the circulation. J Extracell Vesicles. 2015;4:28239 pubmed 出版商
  90. Hofmann B, Schlüter L, Lange P, Mercanoglu B, Ewald F, Fölster A, et al. COSMC knockdown mediated aberrant O-glycosylation promotes oncogenic properties in pancreatic cancer. Mol Cancer. 2015;14:109 pubmed 出版商
  91. Alexandrova E, Yallowitz A, Li D, Xu S, Schulz R, Proia D, et al. Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment. Nature. 2015;523:352-6 pubmed 出版商
  92. Sung B, Ketova T, Hoshino D, Zijlstra A, Weaver A. Directional cell movement through tissues is controlled by exosome secretion. Nat Commun. 2015;6:7164 pubmed 出版商
  93. Saini P, Li Y, Dobbelstein M. Wee1 is required to sustain ATR/Chk1 signaling upon replicative stress. Oncotarget. 2015;6:13072-87 pubmed
  94. Kaushik S, Cuervo A. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat Cell Biol. 2015;17:759-70 pubmed 出版商
  95. Decock J, Hendrickx W, Thirkettle S, Gutiérrez Fernández A, Robinson S, Edwards D. Pleiotropic functions of the tumor- and metastasis-suppressing matrix metalloproteinase-8 in mammary cancer in MMTV-PyMT transgenic mice. Breast Cancer Res. 2015;17:38 pubmed 出版商
  96. Pospichalova V, Svoboda J, Dave Z, Kotrbova A, Kaiser K, Klemová D, et al. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. J Extracell Vesicles. 2015;4:25530 pubmed 出版商
  97. Dudek Perić A, Ferreira G, Muchowicz A, Wouters J, Prada N, Martin S, et al. Antitumor immunity triggered by melphalan is potentiated by melanoma cell surface-associated calreticulin. Cancer Res. 2015;75:1603-14 pubmed 出版商
  98. Ellis J, Bowman C, Wolfgang M. Metabolic and tissue-specific regulation of acyl-CoA metabolism. PLoS ONE. 2015;10:e0116587 pubmed 出版商
  99. Grabner B, Schramek D, Mueller K, Moll H, Svinka J, Hoffmann T, et al. Disruption of STAT3 signalling promotes KRAS-induced lung tumorigenesis. Nat Commun. 2015;6:6285 pubmed 出版商
  100. Murrow L, Malhotra R, Debnath J. ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat Cell Biol. 2015;17:300-10 pubmed 出版商
  101. Kramer D, Schön M, Bayerlová M, Bleckmann A, Schön M, Zörnig M, et al. A pro-apoptotic function of iASPP by stabilizing p300 and CBP through inhibition of BRMS1 E3 ubiquitin ligase activity. Cell Death Dis. 2015;6:e1634 pubmed 出版商
  102. Morlé A, Garrido C, Micheau O. Hyperthermia restores apoptosis induced by death receptors through aggregation-induced c-FLIP cytosolic depletion. Cell Death Dis. 2015;6:e1633 pubmed 出版商
  103. Yao Y, Wei W, Sun J, Chen L, Deng X, Ma L, et al. Proteomic analysis of exosomes derived from human lymphoma cells. Eur J Med Res. 2015;20:8 pubmed 出版商
  104. Bele A, Mirza S, Zhang Y, Ahmad Mir R, Lin S, Kim J, et al. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells. Cell Cycle. 2015;14:990-1000 pubmed 出版商
  105. Pajaud J, Ribault C, Ben Mosbah I, Rauch C, Henderson C, Bellaud P, et al. Glutathione transferases P1/P2 regulate the timing of signaling pathway activations and cell cycle progression during mouse liver regeneration. Cell Death Dis. 2015;6:e1598 pubmed 出版商
  106. Jonchère B, Vétillard A, Toutain B, Lam D, Bernard A, Henry C, et al. Irinotecan treatment and senescence failure promote the emergence of more transformed and invasive cells that depend on anti-apoptotic Mcl-1. Oncotarget. 2015;6:409-26 pubmed
  107. Li X, Colvin T, Rauch J, Acosta Alvear D, Kampmann M, Dunyak B, et al. Validation of the Hsp70-Bag3 protein-protein interaction as a potential therapeutic target in cancer. Mol Cancer Ther. 2015;14:642-8 pubmed 出版商
  108. Gradilla A, Gonzalez E, Seijo I, Andres G, Bischoff M, González Méndez L, et al. Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion. Nat Commun. 2014;5:5649 pubmed 出版商
  109. Kim H, Jung G. Reactive oxygen species increase HEPN1 expression via activation of the XBP1 transcription factor. FEBS Lett. 2014;588:4413-21 pubmed 出版商
  110. Barnes M, McMullen M, Roychowdhury S, Madhun N, Niese K, Olman M, et al. Macrophage migration inhibitory factor is required for recruitment of scar-associated macrophages during liver fibrosis. J Leukoc Biol. 2015;97:161-9 pubmed 出版商
  111. Liu L, Chowdhury S, Uppal S, Fang X, Liu J, Srikant C. mReg2 inhibits nuclear entry of apoptosis-inducing factor in mouse insulinoma cells. Growth Factors. 2015;33:1-7 pubmed 出版商
  112. Wang X, Chang Q, Wang Y, Su F, Zhang S. Late-onset temperature reduction can retard the aging process in aged fish via a combined action of an anti-oxidant system and the insulin/insulin-like growth factor 1 signaling pathway. Rejuvenation Res. 2014;17:507-17 pubmed 出版商
  113. Picard B, Gagaoua M, Micol D, Cassar Malek I, Hocquette J, Terlouw C. Inverse relationships between biomarkers and beef tenderness according to contractile and metabolic properties of the muscle. J Agric Food Chem. 2014;62:9808-18 pubmed 出版商
  114. Tsai Y, Lai C, Lai C, Chang K, Wu K, Tseng S, et al. The role of homeostatic regulation between tumor suppressor DAB2IP and oncogenic Skp2 in prostate cancer growth. Oncotarget. 2014;5:6425-36 pubmed
  115. Nagarajan S, Hossan T, Alawi M, Najafova Z, Indenbirken D, Bedi U, et al. Bromodomain protein BRD4 is required for estrogen receptor-dependent enhancer activation and gene transcription. Cell Rep. 2014;8:460-9 pubmed 出版商
  116. Reddy V, Kumar C, Raghu G, Reddy G. Expression and induction of small heat shock proteins in rat heart under chronic hyperglycemic conditions. Arch Biochem Biophys. 2014;558:1-9 pubmed 出版商
  117. Wong P, Yeoh C, Ahmad A, Chelala C, Gillett C, Speirs V, et al. Identification of MAGEA antigens as causal players in the development of tamoxifen-resistant breast cancer. Oncogene. 2014;33:4579-88 pubmed 出版商
  118. Fukumoto Y, Morii M, Miura T, Kubota S, Ishibashi K, Honda T, et al. Src family kinases promote silencing of ATR-Chk1 signaling in termination of DNA damage checkpoint. J Biol Chem. 2014;289:12313-29 pubmed 出版商
  119. Carloni S, Albertini M, Galluzzi L, Buonocore G, Proietti F, Balduini W. Increased autophagy reduces endoplasmic reticulum stress after neonatal hypoxia-ischemia: role of protein synthesis and autophagic pathways. Exp Neurol. 2014;255:103-12 pubmed 出版商
  120. Guegan J, Ezan F, Gailhouste L, Langouet S, Baffet G. MEK1/2 overactivation can promote growth arrest by mediating ERK1/2-dependent phosphorylation of p70S6K. J Cell Physiol. 2014;229:903-15 pubmed 出版商
  121. Nakamura T, Okada T, Endo M, Kadomatsu T, Taniwaki T, Sei A, et al. Angiopoietin-like protein 2 induced by mechanical stress accelerates degeneration and hypertrophy of the ligamentum flavum in lumbar spinal canal stenosis. PLoS ONE. 2014;9:e85542 pubmed 出版商
  122. Bedi U, Scheel A, Hennion M, Begus Nahrmann Y, Ruschoff J, Johnsen S. SUPT6H controls estrogen receptor activity and cellular differentiation by multiple epigenomic mechanisms. Oncogene. 2015;34:465-73 pubmed 出版商
  123. Liu L, Wen Q, Gong R, Gilles L, Stankiewicz M, Guo M, et al. PSTPIP2 dysregulation contributes to aberrant terminal differentiation in GATA-1-deficient megakaryocytes by activating LYN. Cell Death Dis. 2014;5:e988 pubmed 出版商
  124. Pei Q, Pan J, Zhu H, Ding X, Liu W, Lv Y, et al. Gemcitabine-treated pancreatic cancer cell medium induces the specific CTL antitumor activity by stimulating the maturation of dendritic cells. Int Immunopharmacol. 2014;19:10-6 pubmed 出版商
  125. Xia Q, Cai Y, Peng R, Wu G, Shi Y, Jiang W. The CDK1 inhibitor RO3306 improves the response of BRCA-pro?cient breast cancer cells to PARP inhibition. Int J Oncol. 2014;44:735-44 pubmed 出版商
  126. Hsu C, Chuang Y, Chan Y. Changes in cellular degradation activity in young and old worker honeybees (Apis mellifera). Exp Gerontol. 2014;50:128-36 pubmed 出版商
  127. Armstrong A, Mattsson N, Appelqvist H, Janefjord C, Sandin L, Agholme L, et al. Lysosomal network proteins as potential novel CSF biomarkers for Alzheimer's disease. Neuromolecular Med. 2014;16:150-60 pubmed 出版商
  128. Xavier C, Melikova M, Chuman Y, Uren A, Baljinnyam B, Rubin J. Secreted Frizzled-related protein potentiation versus inhibition of Wnt3a/?-catenin signaling. Cell Signal. 2014;26:94-101 pubmed 出版商
  129. Alfonso Pérez T, Domínguez Sánchez M, Garcia Dominguez M, Reyes J. Cytoplasmic interaction of the tumour suppressor protein hSNF5 with dynamin-2 controls endocytosis. Oncogene. 2014;33:3064-74 pubmed 出版商
  130. Li L, Yang G, Ren C, Tanimoto R, Hirayama T, Wang J, et al. Glioma pathogenesis-related protein 1 induces prostate cancer cell death through Hsc70-mediated suppression of AURKA and TPX2. Mol Oncol. 2013;7:484-96 pubmed 出版商
  131. Batsukh T, Schulz Y, Wolf S, Rabe T, Oellerich T, Urlaub H, et al. Identification and characterization of FAM124B as a novel component of a CHD7 and CHD8 containing complex. PLoS ONE. 2012;7:e52640 pubmed 出版商
  132. Qi L, Zhang X, Wu J, Lin F, Wang J, DiFiglia M, et al. The role of chaperone-mediated autophagy in huntingtin degradation. PLoS ONE. 2012;7:e46834 pubmed 出版商
  133. Krzysik Walker S, González Mariscal I, Scheibye Knudsen M, Indig F, Bernier M. The biarylpyrazole compound AM251 alters mitochondrial physiology via proteolytic degradation of ERR?. Mol Pharmacol. 2013;83:157-66 pubmed 出版商
  134. Baljinnyam B, Klauzinska M, Saffo S, Callahan R, Rubin J. Recombinant R-spondin2 and Wnt3a up- and down-regulate novel target genes in C57MG mouse mammary epithelial cells. PLoS ONE. 2012;7:e29455 pubmed 出版商