这是一篇来自已证抗体库的有关人类 Hsp70的综述,是根据267篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Hsp70 抗体。
Hsp70 同义词: HEL-S-103; HSP70-1; HSP70-1A; HSP70-2; HSP70.1; HSP70.2; HSP70I; HSP72; HSPA1

Enzo Life Sciences
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类; 1:5000; 图 2a
Enzo Life Sciences Hsp70抗体(Enzo, Life Sciences, C92F3A-5)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2a). Cancers (Basel) (2020) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫组化; 小鼠; 1:400; 图 3d
Enzo Life Sciences Hsp70抗体(Enzo, SPA-810PED)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 3d). elife (2020) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫组化-石蜡切片; 犬; 1:100; 图 3
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, Lörrach, Germany, C92F3A-5)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:100 (图 3). BMC Vet Res (2020) ncbi
单克隆
  • 免疫印迹; 人类; 图 6
Enzo Life Sciences Hsp70抗体(Enzo, SPA-810)被用于被用于免疫印迹在人类样本上 (图 6). Nat Commun (2020) ncbi
  • 免疫印迹; 大鼠; 图 5c
Enzo Life Sciences Hsp70抗体(Enzo Life, ADI-SPA-812)被用于被用于免疫印迹在大鼠样本上 (图 5c). Nat Commun (2019) ncbi
单克隆
  • proximity ligation assay; 人类; 1:100; 图 3a
Enzo Life Sciences Hsp70抗体(Enzo Life, ADI-SPA-810)被用于被用于proximity ligation assay在人类样本上浓度为1:100 (图 3a). Nat Commun (2019) ncbi
单克隆
  • 免疫印迹; 人类; 图 2b
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, ADI-SPA-810)被用于被用于免疫印迹在人类样本上 (图 2b). Cells (2019) ncbi
单克隆
  • 免疫细胞化学; 人类; 1:100; 图 6s1b
  • 免疫印迹; 人类; 1:5000; 图 2g, 6h, 6s1e
Enzo Life Sciences Hsp70抗体(Enzo, ADI-SPA-810)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6s1b) 和 被用于免疫印迹在人类样本上浓度为1:5000 (图 2g, 6h, 6s1e). elife (2019) ncbi
小鼠 单克隆(BB70)
  • 免疫印迹; 人类; 图 1a
Enzo Life Sciences Hsp70抗体(Enzo Life Science, clone BB70)被用于被用于免疫印迹在人类样本上 (图 1a). Nanomedicine (2019) ncbi
单克隆
  • 免疫印迹; 人类; 图 3g
Enzo Life Sciences Hsp70抗体(Enzo, ADI-SPA-810)被用于被用于免疫印迹在人类样本上 (图 3g). Oncogene (2019) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类; 图 2c
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, ADI-SPA-810-D)被用于被用于免疫印迹在人类样本上 (图 2c). Cell Death Dis (2018) ncbi
单克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, SPA-810)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Nat Commun (2018) ncbi
  • 免疫印迹; 人类; 图 3b
Enzo Life Sciences Hsp70抗体(Stressgen, SPA-812)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2017) ncbi
单克隆
  • 免疫细胞化学; 人类; 图 4a
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, ADI-SPA-810)被用于被用于免疫细胞化学在人类样本上 (图 4a). EMBO J (2017) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类; 1:1000; 图 2b
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, C92F3A-5)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Sci Rep (2017) ncbi
单克隆
  • 免疫印迹; 人类; 图 4d
Enzo Life Sciences Hsp70抗体(Stressgen, SPA-810)被用于被用于免疫印迹在人类样本上 (图 4d). Int J Radiat Biol (2017) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类; 图 1b
Enzo Life Sciences Hsp70抗体(Enzo, C92F3A-5)被用于被用于免疫印迹在人类样本上 (图 1b). Nat Commun (2017) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类; 1:1000; 图 2a
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, C92F3A-5)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
单克隆
  • 免疫印迹; 鸡; 图 4
Enzo Life Sciences Hsp70抗体(Stressgen, SPA-810)被用于被用于免疫印迹在鸡样本上 (图 4). Sci Rep (2017) ncbi
单克隆
  • 免疫印迹; 犬; 1:1000; 图 3
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, ADI-SPA-810)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 3). Int J Hyperthermia (2017) ncbi
  • 免疫印迹; 小鼠; 图 2b
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, ADISPA-812)被用于被用于免疫印迹在小鼠样本上 (图 2b). Am J Pathol (2016) ncbi
单克隆
  • 免疫印迹; 人类; 图 2e
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, SPA-810)被用于被用于免疫印迹在人类样本上 (图 2e). Scand J Med Sci Sports (2017) ncbi
单克隆
  • 免疫印迹; 人类; 图 4b
Enzo Life Sciences Hsp70抗体(Enzo, SPA-810)被用于被用于免疫印迹在人类样本上 (图 4b). Nature (2016) ncbi
  • 免疫印迹; 人类; 1:4000; 图 8
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, ADI-SPA-812)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 8). J Physiol (2017) ncbi
单克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2
Enzo Life Sciences Hsp70抗体(Enzo Lifesciences, ADI-SPA-810)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Cell Cycle (2016) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 小鼠; 1:1000; 图 4d
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, SPA-810-D)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). Oncotarget (2016) ncbi
小鼠 单克隆(C92F3A-5)
  • 流式细胞仪; 小鼠; 图 2
  • 流式细胞仪; 人类; 图 2
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, ADI-SPA-810-D)被用于被用于流式细胞仪在小鼠样本上 (图 2) 和 被用于流式细胞仪在人类样本上 (图 2). Oncoimmunology (2016) ncbi
单克隆
  • 免疫沉淀; 小鼠; 图 6a
Enzo Life Sciences Hsp70抗体(Enzo, ADI-SPA-810)被用于被用于免疫沉淀在小鼠样本上 (图 6a). Free Radic Biol Med (2016) ncbi
单克隆
  • 免疫印迹; 人类; 图 1
Enzo Life Sciences Hsp70抗体(Enzo life science, ADI-SPA-810)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 小鼠; 1:1000; 图 3c
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, ADI-SPA-810-D)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). PLoS ONE (2016) ncbi
单克隆
  • 免疫印迹; African green monkey; 1:1000; 图 7b
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, SPA-810)被用于被用于免疫印迹在African green monkey样本上浓度为1:1000 (图 7b). Nat Cell Biol (2016) ncbi
小鼠 单克隆(BB70)
  • 免疫沉淀; 人类; 图 3
Enzo Life Sciences Hsp70抗体(Enzo, BB70)被用于被用于免疫沉淀在人类样本上 (图 3). Mol Cancer Ther (2016) ncbi
单克隆
  • 免疫印迹; 人类; 1:4000; 图 1
Enzo Life Sciences Hsp70抗体(Enzo Life, ADI-SPA-810)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 1). Endocr Connect (2016) ncbi
  • 免疫印迹; 小鼠; 图 2b
Enzo Life Sciences Hsp70抗体(Enzo, SPA-812)被用于被用于免疫印迹在小鼠样本上 (图 2b). Neuroscience (2016) ncbi
  • 免疫印迹; 小鼠; 图 6a
Enzo Life Sciences Hsp70抗体(Enzo, ADI-SPA-812)被用于被用于免疫印迹在小鼠样本上 (图 6a). Nat Cell Biol (2016) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫组化-冰冻切片; 人类; 1:50; 图 7
  • 免疫印迹; 人类; 1:10,000; 图 3
  • 免疫印迹; 小鼠; 1:10,000; 图 1
Enzo Life Sciences Hsp70抗体(Stressgen, SPA-810)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (图 7), 被用于免疫印迹在人类样本上浓度为1:10,000 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1). J Neurosci Res (2016) ncbi
单克隆
  • 免疫组化-冰冻切片; 人类; 1:50; 图 7
  • 免疫印迹; 人类; 1:10,000; 图 3
  • 免疫印迹; 小鼠; 1:10,000; 图 1
Enzo Life Sciences Hsp70抗体(Stressgen, SPA-810)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (图 7), 被用于免疫印迹在人类样本上浓度为1:10,000 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1). J Neurosci Res (2016) ncbi
单克隆
  • 免疫组化-石蜡切片; 人类; 1:250; 图 2
Enzo Life Sciences Hsp70抗体(Stressgene, SPA817)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 2). Oncol Lett (2016) ncbi
单克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
Enzo Life Sciences Hsp70抗体(Stressgene, SPA810)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(5B7)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 2
Enzo Life Sciences Hsp70抗体(Stressgene, SPA817)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 2). Oncol Lett (2016) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类; 图 s3
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, C92F3A-5)被用于被用于免疫印迹在人类样本上 (图 s3). Proc Natl Acad Sci U S A (2016) ncbi
单克隆
  • 免疫印迹; 拟南芥; 1:50,000; 图 2
Enzo Life Sciences Hsp70抗体(StressGen Bioreagents, SPA-817)被用于被用于免疫印迹在拟南芥样本上浓度为1:50,000 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(BB70)
  • 其他; 人类; 图 st1
Enzo Life Sciences Hsp70抗体(ENZO, BB70)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
单克隆
  • 免疫印迹; 人类; 图 3
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, ADI-SPA-810)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(C92F3A-5)
  • 其他; 人类
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, adi-spa-810B-F)被用于被用于其他在人类样本上. Anal Bioanal Chem (2016) ncbi
单克隆
  • 免疫印迹; 人类; 图 2
Enzo Life Sciences Hsp70抗体(Stressgen, SPA-810)被用于被用于免疫印迹在人类样本上 (图 2). Free Radic Biol Med (2016) ncbi
单克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5
Enzo Life Sciences Hsp70抗体(Enzo, DI-SPA-810)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). BMC Neurosci (2015) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 小鼠; 1:1000; 图 5
Enzo Life Sciences Hsp70抗体(Enzo, DI-SPA-810)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). BMC Neurosci (2015) ncbi
单克隆
  • 免疫印迹; 犬; 1:2000; 图 5
Enzo Life Sciences Hsp70抗体(Enzo, ADI-SPA-810)被用于被用于免疫印迹在犬样本上浓度为1:2000 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类; 图 6
Enzo Life Sciences Hsp70抗体(StressGene, SPA810)被用于被用于免疫印迹在人类样本上 (图 6). PLoS Genet (2015) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 小鼠; 1:1000; 图 1
Enzo Life Sciences Hsp70抗体(Stressgen, SPA-810)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nature (2015) ncbi
单克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
Enzo Life Sciences Hsp70抗体(Stressgen, SPA-810)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nature (2015) ncbi
单克隆
  • 免疫印迹; 拟南芥
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, ADI-SPA-817)被用于被用于免疫印迹在拟南芥样本上. Plant Physiol (2015) ncbi
单克隆
  • 免疫印迹; 人类; 图 3
Enzo Life Sciences Hsp70抗体(Novus, ADI-SPA-810)被用于被用于免疫印迹在人类样本上 (图 3). Mol Pharmacol (2015) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 6
  • 免疫印迹; 大鼠; 图 7
Enzo Life Sciences Hsp70抗体(Stress Gen, C92F3A-5)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 6) 和 被用于免疫印迹在大鼠样本上 (图 7). Int Braz J Urol (2015) ncbi
  • 免疫印迹; 小鼠; 图 3d
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, ADI-SPA-812)被用于被用于免疫印迹在小鼠样本上 (图 3d). Oncogene (2016) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 小鼠; 1:1000; 图 5
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, ADI-SPA-810)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Mol Med Rep (2015) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
Enzo Life Sciences Hsp70抗体(Stressgen, SPA-810)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. Mol Biol Cell (2015) ncbi
  • 免疫细胞化学; 人类; 图 s4b
Enzo Life Sciences Hsp70抗体(StressGen, ADI-SPA-812)被用于被用于免疫细胞化学在人类样本上 (图 s4b). Nat Genet (2015) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 小鼠; 1:1000; 图 5
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, C92F3A-5)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Br J Pharmacol (2015) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类; 1:1000; 图 5
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, C92F3A-5)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类; 图 e4
  • 免疫印迹; 小鼠; 图 3
Enzo Life Sciences Hsp70抗体(Enzo, C92F3A-5)被用于被用于免疫印迹在人类样本上 (图 e4) 和 被用于免疫印迹在小鼠样本上 (图 3). Nature (2015) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 大鼠
Enzo Life Sciences Hsp70抗体(StressGen, SPA-810)被用于被用于免疫印迹在大鼠样本上. Muscle Nerve (2015) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, C92F3A-5)被用于被用于免疫印迹在人类样本上. Eur J Immunol (2015) ncbi
单克隆
  • 免疫印迹; 人类; 图 2
Enzo Life Sciences Hsp70抗体(Enzo, ADI-SPA-810)被用于被用于免疫印迹在人类样本上 (图 2). Cancer Immunol Immunother (2015) ncbi
  • 免疫细胞化学; 小鼠; 1:1000; 图 6
Enzo Life Sciences Hsp70抗体(Stressgen, SPA-812)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 6). ASN Neuro (2015) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 大鼠; 1:1000
Enzo Life Sciences Hsp70抗体(StressGen, SPA-810)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Int J Hyperthermia (2015) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类; 图 s3
Enzo Life Sciences Hsp70抗体(Enzo, C92F3A-5)被用于被用于免疫印迹在人类样本上 (图 s3). Cell Death Dis (2015) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫组化-自由浮动切片; 小鼠; 1:50
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, C92F3A-5)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:50. Neurosci Lett (2015) ncbi
单克隆
  • 免疫印迹; 大鼠; 图 1A
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, SPA-810)被用于被用于免疫印迹在大鼠样本上 (图 1A). J Appl Physiol (1985) (2015) ncbi
  • 免疫印迹; 人类; 图 7
Enzo Life Sciences Hsp70抗体(Assay Designs, SPA-812)被用于被用于免疫印迹在人类样本上 (图 7). Nature (2015) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, C92F3A-5)被用于被用于免疫印迹在人类样本上. Bioorg Med Chem (2015) ncbi
单克隆
  • 免疫印迹; 人类; 图 4
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, SPA-810)被用于被用于免疫印迹在人类样本上 (图 4). J Biol Chem (2015) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; Garra rufa
Enzo Life Sciences Hsp70抗体(StressGen, SPA-810)被用于被用于免疫印迹在Garra rufa样本上. Redox Biol (2014) ncbi
单克隆
  • 免疫印迹; 人类; 1:1000; 图 3
Enzo Life Sciences Hsp70抗体(Enzo, ADI-SPA-810)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Gene (2015) ncbi
单克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6
Enzo Life Sciences Hsp70抗体(Enzo, ADI-SPA-810)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). J Mol Neurosci (2015) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类; 图 2a
Enzo Life Sciences Hsp70抗体(Enzo, C92F3A-5)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Death Dis (2014) ncbi
单克隆
  • 免疫印迹; 人类
Enzo Life Sciences Hsp70抗体(Stressgen, SPA-817)被用于被用于免疫印迹在人类样本上. Mol Plant Microbe Interact (2015) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, ADI-SPA-810)被用于被用于免疫印迹在人类样本上. Physiol Rep (2014) ncbi
单克隆
  • 免疫印迹; 人类; 1:1000; 图 1f
Enzo Life Sciences Hsp70抗体(Enzo, ADI-SPA-810)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1f). Cell Stress Chaperones (2015) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 大鼠; 1:1000
Enzo Life Sciences Hsp70抗体(Stressgen, C92F3A-5)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Exp Eye Res (2014) ncbi
  • 免疫细胞化学; 人类; 1:200
Enzo Life Sciences Hsp70抗体(Enzo, SPA812)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Mol Biol Cell (2014) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫组化-石蜡切片; 人类; 1:100
Enzo Life Sciences Hsp70抗体(Stressgen BIOTECHNOLOGIES, C92F3A-5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Neuropathology (2014) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 小鼠
Enzo Life Sciences Hsp70抗体(Stressgen, SPA 810)被用于被用于免疫印迹在小鼠样本上. Kidney Int (2014) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 小鼠
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, ADI-SPA-810)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 小鼠; 1:1000; 图 8
Enzo Life Sciences Hsp70抗体(Stressgen, SPA810)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). Nat Commun (2014) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫组化; 大鼠; 1:1000
Enzo Life Sciences Hsp70抗体(Stressgen, C92F3A-5)被用于被用于免疫组化在大鼠样本上浓度为1:1000. Biometals (2014) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫细胞化学; 人类
Enzo Life Sciences Hsp70抗体(Stressgen, SPA810)被用于被用于免疫细胞化学在人类样本上. Genes Cells (2014) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫组化-冰冻切片; 大鼠; 1:50
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, C92F3A-5)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:50. Theranostics (2013) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫组化; 小鼠; 1:200
Enzo Life Sciences Hsp70抗体(Assay Designs, SPA-810)被用于被用于免疫组化在小鼠样本上浓度为1:200. J Clin Invest (2013) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, SPA-810)被用于被用于免疫印迹在人类样本上. Mol Biol Cell (2013) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫沉淀; 人类
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, ADI-SPA-810)被用于被用于免疫沉淀在人类样本上. Cell Death Dis (2013) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类; 1:1,000
Enzo Life Sciences Hsp70抗体(ENZO生活科学, ADI-SPA-810)被用于被用于免疫印迹在人类样本上浓度为1:1,000. Exp Diabetes Res (2012) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, C92F3A-5)被用于被用于免疫印迹在人类样本上. J Card Fail (2012) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 小鼠; 1:2000; 图 4
Enzo Life Sciences Hsp70抗体(Enzo, SPA-810)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4). Cell Stress Chaperones (2012) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫组化; 小鼠; 0.2 ug/ul
Enzo Life Sciences Hsp70抗体(Enzo Life Sciences, C92F3A-5)被用于被用于免疫组化在小鼠样本上浓度为0.2 ug/ul. Lasers Surg Med (2011) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 犬
Enzo Life Sciences Hsp70抗体(Stressgen / Enzo Life Sciences, C92F3A-5)被用于被用于免疫印迹在犬样本上. J Biol Chem (2011) ncbi
单克隆
  • 免疫印迹; beetles ; 表 5
Enzo Life Sciences Hsp70抗体(StressGen Biotechnologies, SPA-810)被用于被用于免疫印迹在beetles 样本上 (表 5). Proc Natl Acad Sci U S A (2000) ncbi
圣克鲁斯生物技术
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类; 图 2d, 4e
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, sc-66048)被用于被用于免疫印迹在人类样本上 (图 2d, 4e). iScience (2021) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 1:5000; 图 6a
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz Biotechnology, sc-24)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6a). elife (2020) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 小鼠; 图 3c
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz Biotechnology, SC24)被用于被用于免疫印迹在小鼠样本上 (图 3c). BMC Cancer (2020) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类; 图 7a
  • 免疫印迹; 小鼠; 图 4d
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, sc-66048)被用于被用于免疫印迹在人类样本上 (图 7a) 和 被用于免疫印迹在小鼠样本上 (图 4d). J Clin Invest (2020) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 小鼠; 图 1b
圣克鲁斯生物技术 Hsp70抗体(santa cruz, W27)被用于被用于免疫印迹在小鼠样本上 (图 1b). Biochem Biophys Res Commun (2018) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 小鼠; 图 4i
  • 免疫印迹; 人类; 图 4h
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在小鼠样本上 (图 4i) 和 被用于免疫印迹在人类样本上 (图 4h). Science (2018) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, 3A3)被用于被用于免疫印迹在人类样本上 (图 5b). Virology (2018) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类; 1:1000; 图 ex1m
圣克鲁斯生物技术 Hsp70抗体(Santa, sc-66048)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 ex1m). Nature (2018) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 1:1000; 图 7i
圣克鲁斯生物技术 Hsp70抗体(Santa, W27)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7i). Mol Cell Biol (2018) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 s4g
圣克鲁斯生物技术 Hsp70抗体(SantaCruz, sc-24)被用于被用于免疫印迹在人类样本上 (图 s4g). Cell (2018) ncbi
小鼠 单克隆(W27)
  • 免疫组化; 小鼠; 图 s3c
  • 免疫印迹; 小鼠; 图 s3a
  • 免疫印迹; 人类; 图 s2b
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, sc-24)被用于被用于免疫组化在小鼠样本上 (图 s3c), 被用于免疫印迹在小鼠样本上 (图 s3a) 和 被用于免疫印迹在人类样本上 (图 s2b). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 1:500; 图 1
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, SC24)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). Sci Rep (2017) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 s3a
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在人类样本上 (图 s3a). Oncoimmunology (2016) ncbi
小鼠 单克隆(W27)
  • 免疫组化; 小鼠; 1:50; 图 s6g
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, sc24)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 s6g). Cell (2017) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 6d
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在人类样本上 (图 6d). Antioxid Redox Signal (2017) ncbi
小鼠 单克隆(4E7)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, sc-69705)被用于被用于免疫印迹在人类样本上 (图 5a). Sci Rep (2016) ncbi
小鼠 单克隆(F-3)
  • 免疫细胞化学; 小鼠; 图 4h
圣克鲁斯生物技术 Hsp70抗体(SantaCruz, sc-373867)被用于被用于免疫细胞化学在小鼠样本上 (图 4h). EBioMedicine (2016) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(W27)
  • 免疫组化; 小鼠; 图 s3
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, W27)被用于被用于免疫组化在小鼠样本上 (图 s3). Sci Rep (2016) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, W27)被用于被用于免疫印迹在人类样本上 (图 5a). J Cell Mol Med (2016) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 小鼠; 1:200; 图 3
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, SC-66048)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3). Front Microbiol (2016) ncbi
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, sc33575)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(4G4)
  • 免疫沉淀; 人类; 图 3
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, 4G4)被用于被用于免疫沉淀在人类样本上 (图 3). Mol Cancer Ther (2016) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 大鼠; 图 5e
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在大鼠样本上 (图 5e). Cell Signal (2016) ncbi
小鼠 单克隆(4G4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, sc-59569)被用于被用于免疫印迹在人类样本上. J Mol Med (Berl) (2016) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 小鼠; 1:1000; 图 8
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). Oncotarget (2016) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 小鼠; 1:1000; 图 8
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz Biotechnologies, C92F3A-5)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). Sci Rep (2016) ncbi
小鼠 单克隆(W27)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2
圣克鲁斯生物技术 Hsp70抗体(santa Cruz, SC-24)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2). Cancer Sci (2016) ncbi
小鼠 单克隆(W27)
  • 免疫组化-石蜡切片; 人类; 图 4
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz Biotechnology, sc-24)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4). Nat Immunol (2015) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在人类样本上 (图 2). Int J Mol Sci (2015) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 4,5,6
圣克鲁斯生物技术 Hsp70抗体(Santa cruz, sc-24)被用于被用于免疫印迹在人类样本上 (图 4,5,6). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). J Extracell Vesicles (2015) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 1:2000; 图 5b
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz Biotechnology, sc-24)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5b). Nat Commun (2015) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在人类样本上. J Extracell Vesicles (2015) ncbi
小鼠 单克隆(W27)
  • 流式细胞仪; 人类
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz Biotechnology, SC-24)被用于被用于流式细胞仪在人类样本上. Cancer Res (2015) ncbi
小鼠 单克隆(2A4)
  • 免疫印迹; 小鼠; 图 s3
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, sc-59570)被用于被用于免疫印迹在小鼠样本上 (图 s3). PLoS ONE (2015) ncbi
小鼠 单克隆(B-12)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz Biotechnology, sc-137239)被用于被用于免疫印迹在人类样本上 (图 2). Mol Cancer Ther (2015) ncbi
小鼠 单克隆(BRM-22)
  • 免疫沉淀; fruit fly ; 图 5
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, BRM-22)被用于被用于免疫沉淀在fruit fly 样本上 (图 5). Nat Commun (2014) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz Biotechnology, sc-24)被用于被用于免疫印迹在人类样本上. FEBS Lett (2014) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz Biotechnology, sc32239)被用于被用于免疫印迹在小鼠样本上. Growth Factors (2015) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; redtail notho; 1:1000
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, SC-24)被用于被用于免疫印迹在redtail notho样本上浓度为1:1000. Rejuvenation Res (2014) ncbi
小鼠 单克隆(BRM-22)
  • 免疫印迹; 牛; 1:250
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, SC-59572)被用于被用于免疫印迹在牛样本上浓度为1:250. J Agric Food Chem (2014) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz Biotechnology, 32239)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2014) ncbi
小鼠 单克隆(SPM254)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, sc-65521)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 大鼠; 1:500
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz Biotechnology, sc-24)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Exp Neurol (2014) ncbi
小鼠 单克隆(B-12)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz Biotechnology, B12)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2014) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 小鼠; 图 1, 2
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz Biotechnology, sc-66048)被用于被用于免疫印迹在小鼠样本上 (图 1, 2). Cell Commun Signal (2014) ncbi
  • 免疫印迹; 人类; 图 4c
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, H-300)被用于被用于免疫印迹在人类样本上 (图 4c). J Biol Chem (2014) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在人类样本上 (图 2b). Int J Oncol (2014) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; bee ; 1:1000
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz Biotechnology, sc-24)被用于被用于免疫印迹在bee 样本上浓度为1:1000. Exp Gerontol (2014) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz Biotechnology, sc-24)被用于被用于免疫印迹在人类样本上浓度为1:1000. Neuromolecular Med (2014) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 8b
圣克鲁斯生物技术 Hsp70抗体(Santa cruz, sc-24)被用于被用于免疫印迹在人类样本上 (图 8b). Oncogene (2014) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Hsp70抗体(Santa Cruz, sc-32239)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Pharmacol (2013) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(5A5)
  • 免疫印迹; 小鼠; 1:1000; 图 2c
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab2787)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). Acta Neuropathol Commun (2020) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹基因敲除验证; 人类; 1:5000; 图 1b
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab47454)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:5000 (图 1b). elife (2020) ncbi
小鼠 单克隆(5A5)
  • 免疫印迹; 大鼠; 1:800; 图 4a
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab2787)被用于被用于免疫印迹在大鼠样本上浓度为1:800 (图 4a). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1f
  • 免疫细胞化学; 人类; 1:100; 图 2i
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab47455)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1f) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 2i). Nat Cell Biol (2020) ncbi
domestic rabbit 单克隆(EPR16892)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1f
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab204690)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1f). Nat Cell Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1i
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab31010)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1i). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s6c
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab79852)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6c). Sci Adv (2019) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; 人类; 图 s2j
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab5439)被用于被用于免疫印迹在人类样本上 (图 s2j). Cell (2019) ncbi
小鼠 单克隆(5A5)
  • 免疫印迹; 人类; 图 s2
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab2787)被用于被用于免疫印迹在人类样本上 (图 s2). BMC Cancer (2019) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab45133)被用于被用于免疫印迹在人类样本上 (图 1). Emerg Microbes Infect (2019) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; brewer's yeast; 1:1000; 图 4c
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab5439)被用于被用于免疫印迹在brewer's yeast样本上浓度为1:1000 (图 4c). elife (2019) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab47455)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Stress (2019) ncbi
小鼠 单克隆(5A5)
  • 免疫印迹; 人类; 1:1000; 图 6d
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab2787)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). EMBO Mol Med (2019) ncbi
小鼠 单克隆(3A3)
  • 免疫细胞化学; 人类; 图 6b
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab5439)被用于被用于免疫细胞化学在人类样本上 (图 6b). EMBO J (2018) ncbi
小鼠 单克隆(5A5)
  • 免疫印迹; 小鼠; 图 5e
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab2787)被用于被用于免疫印迹在小鼠样本上 (图 5e). J Lipid Res (2017) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类; 图 s3b
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab47455)被用于被用于免疫印迹在人类样本上 (图 s3b). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab79852)被用于被用于免疫印迹在人类样本上 (图 4b). Mol Syst Biol (2017) ncbi
小鼠 单克隆(2A4)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 1c
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab5442)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 1c). Ultrastruct Pathol (2017) ncbi
domestic rabbit 单克隆(EPR16892)
  • 免疫细胞化学; 人类; 图 s3
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 2
艾博抗(上海)贸易有限公司 Hsp70抗体(abcam, ab181606)被用于被用于免疫细胞化学在人类样本上 (图 s3), 被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 2). Cell (2016) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab47455)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR16892)
  • 免疫细胞化学; 小鼠; 1:500; 图 2a
  • 免疫组化; 小鼠; 1:200; 图 4b
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab181606)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2a) 和 被用于免疫组化在小鼠样本上浓度为1:200 (图 4b). Oncol Lett (2016) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 大鼠; 1:1000; 图 3b
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab47455)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3b). In Vitro Cell Dev Biol Anim (2016) ncbi
小鼠 单克隆(3A3)
  • 免疫组化-冰冻切片; 人类; 图 5
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, 3A3)被用于被用于免疫组化-冰冻切片在人类样本上 (图 5). Am J Pathol (2016) ncbi
小鼠 单克隆(3A3)
  • 免疫组化; 豚鼠; 图 2
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab5439)被用于被用于免疫组化在豚鼠样本上 (图 2). Cell Death Dis (2016) ncbi
小鼠 单克隆(2A4)
  • 免疫组化-石蜡切片; 人类; 表 2
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, 2A4)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2). J Transl Med (2016) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab5439)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫沉淀; 人类; 图 2a
  • 免疫细胞化学; 人类; 图 3d
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab47455)被用于被用于免疫沉淀在人类样本上 (图 2a), 被用于免疫细胞化学在人类样本上 (图 3d) 和 被用于免疫印迹在人类样本上 (图 3c). FASEB J (2016) ncbi
小鼠 单克隆(2A4)
  • 免疫印迹; 大鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab5442)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). Int J Mol Med (2016) ncbi
小鼠 单克隆(2A4)
  • 酶联免疫吸附测定; Austrofundulus limnaeus; 1:1000; 图 6a
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab5442)被用于被用于酶联免疫吸附测定在Austrofundulus limnaeus样本上浓度为1:1000 (图 6a). J Exp Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab31010)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Cell Mol Immunol (2017) ncbi
小鼠 单克隆(5A5)
  • 免疫印迹; pigs ; 图 6c
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab2787)被用于被用于免疫印迹在pigs 样本上 (图 6c). PLoS ONE (2015) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; African green monkey
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab47455)被用于被用于免疫印迹在African green monkey样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(3A3)
  • 免疫组化-冰冻切片; 大鼠; 1:50
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab5439)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:50 和 被用于免疫印迹在大鼠样本上浓度为1:1000. Theranostics (2013) ncbi
小鼠 单克隆(5A5)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab2787)被用于被用于免疫印迹在小鼠样本上. Proteomics (2014) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类; 图 s3b
艾博抗(上海)贸易有限公司 Hsp70抗体(Abcam, ab47455)被用于被用于免疫印迹在人类样本上 (图 s3b). PLoS ONE (2012) ncbi
赛默飞世尔
小鼠 单克隆(JG1)
  • 免疫印迹; 小鼠; 图 1e
赛默飞世尔 Hsp70抗体(Thermo Fisher Scientific, MA3-028)被用于被用于免疫印迹在小鼠样本上 (图 1e). Cell Res (2020) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 小鼠; 图 7a
赛默飞世尔 Hsp70抗体(Thermo Fisher Scientific, MA3-028)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Biol Chem (2018) ncbi
小鼠 单克隆(JG1)
  • 免疫细胞化学; 人类; 图 2c
赛默飞世尔 Hsp70抗体(Thermo Fisher Scientific, MA3-028)被用于被用于免疫细胞化学在人类样本上 (图 2c). Biochem Biophys Res Commun (2017) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 人类; 图 1a
赛默飞世尔 Hsp70抗体(Affinity BioReagents, MA3-028)被用于被用于免疫印迹在人类样本上 (图 1a). PLoS ONE (2017) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 人类; 图 3c
赛默飞世尔 Hsp70抗体(Thermo Fisher Scientific, MA3-028)被用于被用于免疫印迹在人类样本上 (图 3c). J Biol Chem (2017) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; 人类; 1:200; 图 5
赛默飞世尔 Hsp70抗体(Affinity BioReagents, MA3-006)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5). Biomed Pharmacother (2017) ncbi
小鼠 单克隆(3A3)
赛默飞世尔 Hsp70抗体(Thermo Scientific, MA3-006)被用于. Comp Biochem Physiol A Mol Integr Physiol (2017) ncbi
小鼠 单克隆(2A4)
  • 免疫印迹; 人类; 1:5000; 图 1a
赛默飞世尔 Hsp70抗体(Thermo Pierce, MA3-008)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1a). J Biol Chem (2016) ncbi
小鼠 单克隆(JG1)
  • 免疫组化; 大鼠; 1:50
  • 免疫印迹; 大鼠; 1:500; 图 8b
赛默飞世尔 Hsp70抗体(Thermo Scientific, MA3-028)被用于被用于免疫组化在大鼠样本上浓度为1:50 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 8b). J Biol Chem (2016) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 小鼠; 图 4h
赛默飞世尔 Hsp70抗体(Thermo Fisher, MA3- 028)被用于被用于免疫印迹在小鼠样本上 (图 4h). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; 人类; 1:5000
  • 免疫印迹; Artemia franciscana; 1:5000; 图 2a
赛默飞世尔 Hsp70抗体(Affinity BioReagents, 3A3)被用于被用于免疫印迹在人类样本上浓度为1:5000 和 被用于免疫印迹在Artemia franciscana样本上浓度为1:5000 (图 2a). Environ Res (2016) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 人类; 图 1c
赛默飞世尔 Hsp70抗体(Thermo Pierce, MA3-028)被用于被用于免疫印迹在人类样本上 (图 1c). Biochem J (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6a
赛默飞世尔 Hsp70抗体(Thermo Fisher Scientific, PA5-28003)被用于被用于免疫印迹在小鼠样本上 (图 6a). Free Radic Biol Med (2016) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛默飞世尔 Hsp70抗体(Thermo Scientific, MA3-0066)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). PLoS ONE (2016) ncbi
小鼠 单克隆(MB-H1)
  • 免疫组化-石蜡切片; 人类; 1:40; 表 3
赛默飞世尔 Hsp70抗体(Invitrogen, 33-3800)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40 (表 3). Oncol Lett (2016) ncbi
小鼠 单克隆(3A3)
赛默飞世尔 Hsp70抗体(ThermoScientific, 3A3)被用于. Fish Shellfish Immunol (2016) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; Pacific oyster; 1:2500; 图 1
赛默飞世尔 Hsp70抗体(Affinity BioReagents, MA3-006)被用于被用于免疫印迹在Pacific oyster样本上浓度为1:2500 (图 1). Comp Biochem Physiol A Mol Integr Physiol (2016) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 Hsp70抗体(Thermo Scientific, MA3-028)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (2016) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 人类; 图 2f
赛默飞世尔 Hsp70抗体(Thermo Scientific, JG1)被用于被用于免疫印迹在人类样本上 (图 2f). J Biol Chem (2016) ncbi
小鼠 单克隆(5A5)
  • 免疫印迹; scallops; 图 7
赛默飞世尔 Hsp70抗体(Affinity Bioreagents, MA3-007)被用于被用于免疫印迹在scallops样本上 (图 7). J Exp Biol (2016) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 Hsp70抗体(Thermo Fisher Scientific, MA3-028)被用于被用于免疫印迹在人类样本上 (图 5). Cancer Res (2016) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔 Hsp70抗体(Pierce Antibodies, MA3-028)被用于被用于免疫印迹在小鼠样本上 (图 6). J Neurochem (2016) ncbi
小鼠 单克隆(5A5)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 Hsp70抗体(Affinity Bioreagents, MA3-007)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 人类; 1:1000; 图 4
赛默飞世尔 Hsp70抗体(Thermo Scientific, MA3-028)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncol Lett (2016) ncbi
小鼠 单克隆(JG1)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔 Hsp70抗体(ThermoFisher, MA3-028)被用于被用于免疫细胞化学在人类样本上 (图 2). Nat Med (2016) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛默飞世尔 Hsp70抗体(ABR, MA3-028)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(JG1)
  • 免疫细胞化学; 人类; 1:500; 图 s1
  • 免疫印迹; 人类; 1:500; 图 1
赛默飞世尔 Hsp70抗体(ThermoScientific, MA3-028)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s1) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1). Mol Biol Cell (2016) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 Hsp70抗体(Scoresby VIC, MA3-028)被用于被用于免疫印迹在小鼠样本上 (图 4). PLoS Genet (2015) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; 小鼠; 1:5000; 图 1
赛默飞世尔 Hsp70抗体(Affinity Bioreagents, MA3006)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 大鼠
赛默飞世尔 Hsp70抗体(Thermo Fisher Scientific, MA3-028)被用于被用于免疫印迹在大鼠样本上. Neuroscience (2015) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; common limpet; 1:1000
赛默飞世尔 Hsp70抗体(Thermo Scientific, MA3-006)被用于被用于免疫印迹在common limpet样本上浓度为1:1000. Glob Chang Biol (2016) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 小鼠; 图 1d
赛默飞世尔 Hsp70抗体(Thermo Scientific, MA3-028)被用于被用于免疫印迹在小鼠样本上 (图 1d). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(JG1)
  • 免疫细胞化学; 人类; 1:100; 图 7
赛默飞世尔 Hsp70抗体(ThermoFischer Scientific, MA3-028)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 人类; 图 2a
赛默飞世尔 Hsp70抗体(Thermo Scientific., MA3-028)被用于被用于免疫印迹在人类样本上 (图 2a). Mol Cell (2015) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; Asian green mussel; 1:5000; 图 2
赛默飞世尔 Hsp70抗体(Thermo Scientific, MA3-006)被用于被用于免疫印迹在Asian green mussel样本上浓度为1:5000 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(JG1)
  • 免疫细胞化学; 人类
赛默飞世尔 Hsp70抗体(Affinity Bioreagents, MA3-028)被用于被用于免疫细胞化学在人类样本上. Mol Biol Cell (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Hsp70抗体(Thermo Fisher, PA5-28003)被用于. Cell Physiol Biochem (2015) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 Hsp70抗体(Thermo Scientific, MA1-90504)被用于被用于免疫印迹在人类样本上 (图 2). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 人类; 1:300
赛默飞世尔 Hsp70抗体(Affinity Bioreagents, MA3-028)被用于被用于免疫印迹在人类样本上浓度为1:300. Cell Signal (2015) ncbi
小鼠 单克隆(3A3)
  • 免疫组化; holothurians; 1:200
  • 免疫印迹; holothurians; 1:1000
赛默飞世尔 Hsp70抗体(Thermo, MA3-006)被用于被用于免疫组化在holothurians样本上浓度为1:200 和 被用于免疫印迹在holothurians样本上浓度为1:1000. Fish Shellfish Immunol (2015) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 Hsp70抗体(Thermo Fisher Scientific, MA3-028)被用于被用于免疫印迹在小鼠样本上 (图 1). J Am Soc Nephrol (2015) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 人类
赛默飞世尔 Hsp70抗体(Thermo, MA3-028)被用于被用于免疫印迹在人类样本上. Pharmacol Rep (2015) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛默飞世尔 Hsp70抗体(Thermo Fisher Scientific, MA3028)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 Hsp70抗体(Neomarkers, MS-482-PO)被用于被用于免疫印迹在人类样本上 (图 3). Int J Oncol (2015) ncbi
小鼠 单克隆(5A5)
  • 免疫印迹; 小鼠
赛默飞世尔 Hsp70抗体(scbt, MA3-007)被用于被用于免疫印迹在小鼠样本上. J Proteome Res (2015) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 小鼠; 图 1d
赛默飞世尔 Hsp70抗体(Pierce, MA3-028)被用于被用于免疫印迹在小鼠样本上 (图 1d). Exp Hematol (2015) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 Hsp70抗体(ABR Affinity Bio Reagents, MA3-006)被用于被用于免疫印迹在小鼠样本上 (图 2). Dev Dyn (2015) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 人类
赛默飞世尔 Hsp70抗体(Thermo Scientific, MA3-028)被用于被用于免疫印迹在人类样本上. Biochimie (2014) ncbi
小鼠 单克隆(JG1)
  • 免疫细胞化学; 人类; 图 5
赛默飞世尔 Hsp70抗体(Thermo, MA3-028)被用于被用于免疫细胞化学在人类样本上 (图 5). Nat Immunol (2014) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 Hsp70抗体(Thermo Scientific, MA3-028)被用于被用于免疫印迹在人类样本上 (图 2). Nat Commun (2012) ncbi
小鼠 单克隆(5A5)
  • 酶联免疫吸附测定; fruit fly ; 1:1000; 图 3
赛默飞世尔 Hsp70抗体(Thermo Scientific, 5A5)被用于被用于酶联免疫吸附测定在fruit fly 样本上浓度为1:1000 (图 3). J Evol Biol (2012) ncbi
小鼠 单克隆(5A5)
  • 酶联免疫吸附测定; Lycaena tityrus; 1:700; 图 2c
赛默飞世尔 Hsp70抗体(Affinity BioReagents, 5A5)被用于被用于酶联免疫吸附测定在Lycaena tityrus样本上浓度为1:700 (图 2c). Oecologia (2011) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 人类; 图 1c
赛默飞世尔 Hsp70抗体(Affinity Bioreagents, JG1)被用于被用于免疫印迹在人类样本上 (图 1c). Cell Cycle (2010) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 人类
赛默飞世尔 Hsp70抗体(Affinity BioReagents, JG1)被用于被用于免疫印迹在人类样本上. Sci Signal (2009) ncbi
小鼠 单克隆(JG1)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠; 图 2d
赛默飞世尔 Hsp70抗体(Affinity Bioreagents, MA3-028)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上 (图 2d). Cell Death Differ (2009) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; Marenzelleria viridis; 1:3000; 图 7a
  • 免疫印迹; 人类; 1:3000
赛默飞世尔 Hsp70抗体(Affinity BioReagents, MA3-006)被用于被用于免疫印迹在Marenzelleria viridis样本上浓度为1:3000 (图 7a) 和 被用于免疫印迹在人类样本上浓度为1:3000. Comp Biochem Physiol B Biochem Mol Biol (2006) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; 大鼠; 图 2a
赛默飞世尔 Hsp70抗体(Affinity Bioreagents, 3A3)被用于被用于免疫印迹在大鼠样本上 (图 2a). Methods Enzymol (2005) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 Hsp70抗体(Affinity Bioreagents, MA3-028)被用于被用于免疫印迹在人类样本上 (图 4). J Cell Biol (1999) ncbi
StressMarq Biosciences
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类; 1:1000; 图 6h, 2g, 6s1e
StressMarq Biosciences Hsp70抗体(StressMarq, C92F3A-5)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6h, 2g, 6s1e). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
StressMarq Biosciences Hsp70抗体(StressMarq Biosciences, SPC-103D)被用于被用于免疫印迹在人类样本上 (图 6a). Autophagy (2017) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹基因敲除验证; 小鼠; 1:3000; 图 2
  • 免疫印迹; 人类; 1:3000; 图 1
StressMarq Biosciences Hsp70抗体(StressMarq, SMC-100B)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:3000 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:3000 (图 1). ASN Neuro (2015) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 大鼠
StressMarq Biosciences Hsp70抗体(StressMarq Biosciences Inc, SMC-100B)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类; 1:1000; 图 6
StressMarq Biosciences Hsp70抗体(StressMarq, SMC-100)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Cell Death Dis (2013) ncbi
安迪生物R&D
小鼠 单克隆(242707)
  • 免疫印迹; 小鼠; 1:3500; 图 s3d
安迪生物R&D Hsp70抗体(R&D, MAB1663)被用于被用于免疫印迹在小鼠样本上浓度为1:3500 (图 s3d). Nat Commun (2020) ncbi
GeneTex
小鼠 单克隆(W27)
  • 免疫细胞化学; 人类
GeneTex Hsp70抗体(GeneTex, GTX23148)被用于被用于免疫细胞化学在人类样本上. Blood Cancer J (2011) ncbi
小鼠 单克隆(W27)
  • 流式细胞仪; 人类; 图 3
GeneTex Hsp70抗体(GeneTex, GTX23148)被用于被用于流式细胞仪在人类样本上 (图 3). Eur J Haematol (2012) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(3B7)
  • 免疫印迹; 牛; 1:3000; 表 1
亚诺法生技股份有限公司 Hsp70抗体(Abnova, 3B7)被用于被用于免疫印迹在牛样本上浓度为1:3000 (表 1). J Agric Food Chem (2017) ncbi
大鼠 单克隆(1B5)
  • 免疫印迹; pigs ; 图 1d
亚诺法生技股份有限公司 Hsp70抗体(Abnova, MAB2191)被用于被用于免疫印迹在pigs 样本上 (图 1d). J Reprod Dev (2017) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 4
Novus Biologicals Hsp70抗体(Novus Biologicals, NBP1-77455)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4). J Immunol (2016) ncbi
Rockland Immunochemicals
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类; 图 4
Rockland Immunochemicals Hsp70抗体(Rockland, 200-301-A27)被用于被用于免疫印迹在人类样本上 (图 4). ASN Neuro (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 s3b
赛信通(上海)生物试剂有限公司 Hsp70抗体(CST, 4872)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s3b). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1c
赛信通(上海)生物试剂有限公司 Hsp70抗体(Cell Signaling, 4872)被用于被用于免疫印迹在小鼠样本上 (图 s1c). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6g
赛信通(上海)生物试剂有限公司 Hsp70抗体(Cell Signaling, 4872)被用于被用于免疫印迹在人类样本上 (图 6g). Cancer Cell (2018) ncbi
大鼠 单克隆(6B3)
  • 免疫细胞化学; 人类; 1:50; 图 6e
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Hsp70抗体(Cell Signaling, 6B3)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 6e) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Sci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 Hsp70抗体(Cell Signaling, 4876)被用于被用于免疫印迹在小鼠样本上 (图 3b). Life Sci (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s5e
赛信通(上海)生物试剂有限公司 Hsp70抗体(Cell Signaling, 4872)被用于被用于免疫印迹在人类样本上 (图 s5e). Cell (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Hsp70抗体(Cell Signaling, 4872)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4b
赛信通(上海)生物试剂有限公司 Hsp70抗体(Cell Signaling, 4872)被用于被用于免疫印迹在大鼠样本上 (图 4b). J Biol Chem (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2b
  • 免疫组化; 小鼠; 图 s3c
  • 免疫印迹; 小鼠; 图 s3a
赛信通(上海)生物试剂有限公司 Hsp70抗体(Cell Signaling, 4872S)被用于被用于免疫印迹在人类样本上 (图 s2b), 被用于免疫组化在小鼠样本上 (图 s3c) 和 被用于免疫印迹在小鼠样本上 (图 s3a). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Hsp70抗体(cell signalling, 4876)被用于被用于免疫印迹在人类样本上 (图 2a). Oxid Med Cell Longev (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b, 3c
赛信通(上海)生物试剂有限公司 Hsp70抗体(Cell Signaling, 4872)被用于被用于免疫印迹在人类样本上 (图 3b, 3c). Mol Cell (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 Hsp70抗体(CST, 4872)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
大鼠 单克隆(6B3)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Hsp70抗体(Cell Signaling, 4873)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2017) ncbi
大鼠 单克隆(6B3)
  • 免疫印迹; 小鼠; 图 s2b
赛信通(上海)生物试剂有限公司 Hsp70抗体(Cell Signaling, 4873)被用于被用于免疫印迹在小鼠样本上 (图 s2b). J Exp Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Hsp70抗体(Cell Signalling, 4872)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 图 4a
  • 免疫印迹; 大鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 Hsp70抗体(Cell Signaling, 4872S)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 4a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1a). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Hsp70抗体(Cell Signaling, 4876)被用于被用于免疫印迹在人类样本上 (图 3c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 1:25; 图 1b
  • 免疫组化; 人类; 图 1a
  • 免疫印迹; 人类; 1:500; 图 1d
赛信通(上海)生物试剂有限公司 Hsp70抗体(Cell signaling, 4872)被用于被用于流式细胞仪在人类样本上浓度为1:25 (图 1b), 被用于免疫组化在人类样本上 (图 1a) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1d). Chem Biol Interact (2016) ncbi
大鼠 单克隆(6B3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Hsp70抗体(Cell signaling, 4873S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6) 和 被用于免疫印迹在人类样本上 (图 2). Cancer Res (2016) ncbi
大鼠 单克隆(6B3)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Hsp70抗体(Cell signaling, 4873)被用于被用于免疫印迹在人类样本上 (图 3). Cancer Biol Ther (2015) ncbi
大鼠 单克隆(6B3)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Hsp70抗体(Cell Signaling, 4873)被用于被用于免疫印迹在人类样本上 (图 7). Autophagy (2015) ncbi
大鼠 单克隆(6B3)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Hsp70抗体(cst, 4873s)被用于被用于免疫印迹在大鼠样本上. Biochim Biophys Acta (2015) ncbi
大鼠 单克隆(6B3)
赛信通(上海)生物试剂有限公司 Hsp70抗体(Cell Signaling, 4873)被用于. Growth Factors (2014) ncbi
大鼠 单克隆(6B3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Hsp70抗体(Cell Signaling, 4873S)被用于被用于免疫印迹在人类样本上. Mol Cancer Res (2013) ncbi
文章列表
  1. Singh S, Abu Zaid A, Lin W, Low J, Abdolvahabi A, Jin H, et al. 17-DMAG dually inhibits Hsp90 and histone lysine demethylases in alveolar rhabdomyosarcoma. iScience. 2021;24:101996 pubmed 出版商
  2. Chen B, Chang Y, Lin S, Yang W. Hsc70/Stub1 promotes the removal of individual oxidatively stressed peroxisomes. Nat Commun. 2020;11:5267 pubmed 出版商
  3. Sojka D, Gogler Pigłowska A, Klarzyńska K, Klimczak M, Zylicz A, Głowala Kosińska M, et al. HSPA2 Chaperone Contributes to the Maintenance of Epithelial Phenotype of Human Bronchial Epithelial Cells but Has Non-Essential Role in Supporting Malignant Features of Non-Small Cell Lung Carcinoma, MCF7, and HeLa Cancer Cells. Cancers (Basel). 2020;12: pubmed 出版商
  4. Pathak T, Gueguinou M, Walter V, Delierneux C, Johnson M, Zhang X, et al. Dichotomous role of the human mitochondrial Na+/Ca2+/Li+ exchanger NCLX in colorectal cancer growth and metastasis. elife. 2020;9: pubmed 出版商
  5. Zhou S, Zhang W, Cai G, Ding Y, Wei C, Li S, et al. Myofiber necroptosis promotes muscle stem cell proliferation via releasing Tenascin-C during regeneration. Cell Res. 2020;30:1063-1077 pubmed 出版商
  6. Lackie R, Marques Lopes J, Ostapchenko V, Good S, Choy W, van Oosten Hawle P, et al. Increased levels of Stress-inducible phosphoprotein-1 accelerates amyloid-β deposition in a mouse model of Alzheimer's disease. Acta Neuropathol Commun. 2020;8:143 pubmed 出版商
  7. Kuo I, Lee J, Wang Y, Chiang H, Huang C, Hsieh P, et al. Potential enhancement of host immunity and anti-tumor efficacy of nanoscale curcumin and resveratrol in colorectal cancers by modulated electro- hyperthermia. BMC Cancer. 2020;20:603 pubmed 出版商
  8. Kuncha S, Venkadasamy V, Amudhan G, Dahate P, Kola S, Pottabathini S, et al. Genomic innovation of ATD alleviates mistranslation associated with multicellularity in Animalia. elife. 2020;9: pubmed 出版商
  9. Mahameed M, Boukeileh S, Obiedat A, Darawshi O, Dipta P, Rimon A, et al. Pharmacological induction of selective endoplasmic reticulum retention as a strategy for cancer therapy. Nat Commun. 2020;11:1304 pubmed 出版商
  10. Chen Q, Huang M, Wu J, Jiang Q, Zheng X. Exosomes isolated from the plasma of remote ischemic conditioning rats improved cardiac function and angiogenesis after myocardial infarction through targeting Hsp70. Aging (Albany NY). 2020;12:3682-3693 pubmed 出版商
  11. Theivanthiran B, Evans K, Devito N, Plebanek M, Sturdivant M, Wachsmuth L, et al. A tumor-intrinsic PD-L1/NLRP3 inflammasome signaling pathway drives resistance to anti-PD-1 immunotherapy. J Clin Invest. 2020;130:2570-2586 pubmed 出版商
  12. Gaglia G, Rashid R, Yapp C, Joshi G, Li C, Lindquist S, et al. HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat Cell Biol. 2020;22:151-158 pubmed 出版商
  13. Wang T, Wu C, Ouzounov D, Gu W, Xia F, Kim M, et al. Quantitative analysis of 1300-nm three-photon calcium imaging in the mouse brain. elife. 2020;9: pubmed 出版商
  14. von Rüden E, Gualtieri F, Schönhoff K, Reiber M, Wolf F, Baumgartner W, et al. Molecular alterations of the TLR4-signaling cascade in canine epilepsy. BMC Vet Res. 2020;16:18 pubmed 出版商
  15. Inda M, Joshi S, Wang T, Bolaender A, Gandu S, Koren Iii J, et al. The epichaperome is a mediator of toxic hippocampal stress and leads to protein connectivity-based dysfunction. Nat Commun. 2020;11:319 pubmed 出版商
  16. Yang X, Yang J, Lei P, Wen T. LncRNA MALAT1 shuttled by bone marrow-derived mesenchymal stem cells-secreted exosomes alleviates osteoporosis through mediating microRNA-34c/SATB2 axis. Aging (Albany NY). 2019;11:8777-8791 pubmed 出版商
  17. Eftekharzadeh B, Banduseela V, Chiesa G, Martínez Cristóbal P, Rauch J, Nath S, et al. Hsp70 and Hsp40 inhibit an inter-domain interaction necessary for transcriptional activity in the androgen receptor. Nat Commun. 2019;10:3562 pubmed 出版商
  18. Zhang Y, Jin X, Liang J, Guo Y, Sun G, Zeng X, et al. Extracellular vesicles derived from ODN-stimulated macrophages transfer and activate Cdc42 in recipient cells and thereby increase cellular permissiveness to EV uptake. Sci Adv. 2019;5:eaav1564 pubmed 出版商
  19. Dorsch L, Schuldt M, dos Remedios C, Schinkel A, de Jong P, Michels M, et al. Protein Quality Control Activation and Microtubule Remodeling in Hypertrophic Cardiomyopathy. Cells. 2019;8: pubmed 出版商
  20. Wegmann S, Bennett R, Delorme L, Robbins A, Hu M, McKenzie D, et al. Experimental evidence for the age dependence of tau protein spread in the brain. Sci Adv. 2019;5:eaaw6404 pubmed 出版商
  21. Azkanaz M, Rodríguez López A, de Boer B, Huiting W, Angrand P, Vellenga E, et al. Protein quality control in the nucleolus safeguards recovery of epigenetic regulators after heat shock. elife. 2019;8: pubmed 出版商
  22. Ortega F, Roefs M, De Miguel Pérez D, Kooijmans S, de Jong O, Sluijter J, et al. Interfering with endolysosomal trafficking enhances release of bioactive exosomes. Nanomedicine. 2019;:102014 pubmed 出版商
  23. Hancock M, Meyer R, Mistry M, Khetani R, Wagschal A, Shin T, et al. Insulin Receptor Associates with Promoters Genome-wide and Regulates Gene Expression. Cell. 2019;177:722-736.e22 pubmed 出版商
  24. Gennaro V, Wedegaertner H, McMahon S. Interaction between the BAG1S isoform and HSP70 mediates the stability of anti-apoptotic proteins and the survival of osteosarcoma cells expressing oncogenic MYC. BMC Cancer. 2019;19:258 pubmed 出版商
  25. Pujhari S, Brustolin M, Macias V, Nissly R, Nomura M, Kuchipudi S, et al. Heat shock protein 70 (Hsp70) mediates Zika virus entry, replication, and egress from host cells. Emerg Microbes Infect. 2019;8:8-16 pubmed 出版商
  26. Tye B, Commins N, Ryazanova L, Wühr M, Springer M, Pincus D, et al. Proteotoxicity from aberrant ribosome biogenesis compromises cell fitness. elife. 2019;8: pubmed 出版商
  27. Shi H, Yao R, Lian S, Liu P, Liu Y, Yang Y, et al. Regulating glycolysis, the TLR4 signal pathway and expression of RBM3 in mouse liver in response to acute cold exposure. Stress. 2019;22:366-376 pubmed 出版商
  28. Signes A, Cerutti R, Dickson A, Benincá C, Hinchy E, Ghezzi D, et al. APOPT1/COA8 assists COX assembly and is oppositely regulated by UPS and ROS. EMBO Mol Med. 2019;11: pubmed 出版商
  29. Inouye S, Hatori Y, Kubo T, Saito S, Kitamura H, Akagi R. NRF2 and HSF1 coordinately regulate heme oxygenase-1 expression. Biochem Biophys Res Commun. 2018;506:7-11 pubmed 出版商
  30. Gerber T, Murawala P, Knapp D, Masselink W, Schuez M, Hermann S, et al. Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science. 2018;362: pubmed 出版商
  31. Cui L, Mahesutihan M, Zheng W, Meng L, Fan W, Li J, et al. CDC25B promotes influenza A virus replication by regulating the phosphorylation of nucleoprotein. Virology. 2018;525:40-47 pubmed 出版商
  32. Lee E, Ouzounova M, Piranlioglu R, Ma M, Guzel M, Marasco D, et al. The pleiotropic effects of TNFα in breast cancer subtypes is regulated by TNFAIP3/A20. Oncogene. 2019;38:469-482 pubmed 出版商
  33. Stewart E, McEvoy J, Wang H, Chen X, Honnell V, Ocarz M, et al. Identification of Therapeutic Targets in Rhabdomyosarcoma through Integrated Genomic, Epigenomic, and Proteomic Analyses. Cancer Cell. 2018;34:411-426.e19 pubmed 出版商
  34. Tuorto F, Legrand C, Cirzi C, Federico G, Liebers R, Muller M, et al. Queuosine-modified tRNAs confer nutritional control of protein translation. EMBO J. 2018;37: pubmed 出版商
  35. Wang H, Bu L, Wang C, Zhang Y, Zhou H, Zhang X, et al. The Hsp70 inhibitor 2-phenylethynesulfonamide inhibits replication and carcinogenicity of Epstein-Barr virus by inhibiting the molecular chaperone function of Hsp70. Cell Death Dis. 2018;9:734 pubmed 出版商
  36. Rapino F, Delaunay S, Rambow F, Zhou Z, Tharun L, de Tullio P, et al. Codon-specific translation reprogramming promotes resistance to targeted therapy. Nature. 2018;558:605-609 pubmed 出版商
  37. Tamaki Y, Shodai A, Morimura T, Hikiami R, Minamiyama S, Ayaki T, et al. Elimination of TDP-43 inclusions linked to amyotrophic lateral sclerosis by a misfolding-specific intrabody with dual proteolytic signals. Sci Rep. 2018;8:6030 pubmed 出版商
  38. Fujimoto M, Takii R, Katiyar A, Srivastava P, Nakai A. Poly(ADP-Ribose) Polymerase 1 Promotes the Human Heat Shock Response by Facilitating Heat Shock Transcription Factor 1 Binding to DNA. Mol Cell Biol. 2018;38: pubmed 出版商
  39. Sevin M, Kubovcakova L, Pernet N, Causse S, Vitte F, Villeval J, et al. HSP27 is a partner of JAK2-STAT5 and a potential therapeutic target in myelofibrosis. Nat Commun. 2018;9:1431 pubmed 出版商
  40. Zhang X, Zhuang R, Wu H, Chen J, Wang F, Li G, et al. A novel role of endocan in alleviating LPS-induced acute lung injury. Life Sci. 2018;202:89-97 pubmed 出版商
  41. Lim J, Lim J, Kim G, Levine R. Myristoylated methionine sulfoxide reductase A is a late endosomal protein. J Biol Chem. 2018;293:7355-7366 pubmed 出版商
  42. Savitski M, Zinn N, Faelth Savitski M, Poeckel D, Gade S, Becher I, et al. Multiplexed Proteome Dynamics Profiling Reveals Mechanisms Controlling Protein Homeostasis. Cell. 2018;173:260-274.e25 pubmed 出版商
  43. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  44. Aneichyk T, Hendriks W, Yadav R, Shin D, Gao D, Vaine C, et al. Dissecting the Causal Mechanism of X-Linked Dystonia-Parkinsonism by Integrating Genome and Transcriptome Assembly. Cell. 2018;172:897-909.e21 pubmed 出版商
  45. Tracz Gaszewska Z, Klimczak M, Biecek P, Herok M, Kosiński M, Olszewski M, et al. Molecular chaperones in the acquisition of cancer cell chemoresistance with mutated TP53 and MDM2 up-regulation. Oncotarget. 2017;8:82123-82143 pubmed 出版商
  46. Gasparotto J, Girardi C, Somensi N, Ribeiro C, Moreira J, Michels M, et al. Receptor for advanced glycation end products mediates sepsis-triggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment. J Biol Chem. 2018;293:226-244 pubmed 出版商
  47. Martin G, Landrock D, Chung S, Dangott L, McIntosh A, Mackie J, et al. Loss of fatty acid binding protein-1 alters the hepatic endocannabinoid system response to a high-fat diet. J Lipid Res. 2017;58:2114-2126 pubmed 出版商
  48. Zhao T, Hong Y, Yin P, Li S, Li X. Differential HspBP1 expression accounts for the greater vulnerability of neurons than astrocytes to misfolded proteins. Proc Natl Acad Sci U S A. 2017;114:E7803-E7811 pubmed 出版商
  49. Aprile F, Källstig E, Limorenko G, Vendruscolo M, Ron D, Hansen C. The molecular chaperones DNAJB6 and Hsp70 cooperate to suppress α-synuclein aggregation. Sci Rep. 2017;7:9039 pubmed 出版商
  50. Matějů D, Franzmann T, Patel A, Kopach A, Boczek E, Maharana S, et al. An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function. EMBO J. 2017;36:1669-1687 pubmed 出版商
  51. Terao Y, Fujita H, Horibe S, Sato J, Minami S, Kobayashi M, et al. Interaction of FAM5C with UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1): Implication of N-glycosylation in FAM5C secretion. Biochem Biophys Res Commun. 2017;486:811-816 pubmed 出版商
  52. Qin L, Tan J, Zhang H, Rizwana K, Lu J, Tang J, et al. BAG5 Interacts with DJ-1 and Inhibits the Neuroprotective Effects of DJ-1 to Combat Mitochondrial Oxidative Damage. Oxid Med Cell Longev. 2017;2017:5094934 pubmed 出版商
  53. Gagaoua M, Couvreur S, Le Bec G, Aminot G, Picard B. Associations among Protein Biomarkers and pH and Color Traits in Longissimus thoracis and Rectus abdominis Muscles in Protected Designation of Origin Maine-Anjou Cull Cows. J Agric Food Chem. 2017;65:3569-3580 pubmed 出版商
  54. Gupta A, Anjomani Virmouni S, Koundouros N, Dimitriadi M, Choo Wing R, Valle A, et al. PARK2 Depletion Connects Energy and Oxidative Stress to PI3K/Akt Activation via PTEN S-Nitrosylation. Mol Cell. 2017;65:999-1013.e7 pubmed 出版商
  55. Sokolina K, Kittanakom S, Snider J, Kotlyar M, Maurice P, Gandia J, et al. Systematic protein-protein interaction mapping for clinically relevant human GPCRs. Mol Syst Biol. 2017;13:918 pubmed 出版商
  56. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  57. Dimasi P, Quintiero A, Shelkovnikova T, Buchman V. Modulation of p-eIF2α cellular levels and stress granule assembly/disassembly by trehalose. Sci Rep. 2017;7:44088 pubmed 出版商
  58. Yentrapalli R, Merl Pham J, Azimzadeh O, Mutschelknaus L, Peters C, Hauck S, et al. Quantitative changes in the protein and miRNA cargo of plasma exosome-like vesicles after exposure to ionizing radiation. Int J Radiat Biol. 2017;93:569-580 pubmed 出版商
  59. Zhang Q, Ma C, Oberli A, Zinz A, Engels S, Przyborski J. Proteomic analysis of exported chaperone/co-chaperone complexes of P. falciparum reveals an array of complex protein-protein interactions. Sci Rep. 2017;7:42188 pubmed 出版商
  60. Gómez Pastor R, Burchfiel E, Neef D, Jaeger A, Cabiscol E, McKinstry S, et al. Abnormal degradation of the neuronal stress-protective transcription factor HSF1 in Huntington's disease. Nat Commun. 2017;8:14405 pubmed 出版商
  61. Liu T, Krysiak K, Shirai C, Kim S, Shao J, Ndonwi M, et al. Knockdown of HSPA9 induces TP53-dependent apoptosis in human hematopoietic progenitor cells. PLoS ONE. 2017;12:e0170470 pubmed 出版商
  62. Matsuno Y, Onuma A, Fujioka Y, Yasuhara K, Fujii W, Naito K, et al. Effects of exosome-like vesicles on cumulus expansion in pigs in vitro. J Reprod Dev. 2017;63:51-58 pubmed 出版商
  63. Melchionna R, Iapicca P, Di Modugno F, Trono P, Sperduti I, Fassan M, et al. The pattern of hMENA isoforms is regulated by TGF-?1 in pancreatic cancer and may predict patient outcome. Oncoimmunology. 2016;5:e1221556 pubmed 出版商
  64. Coccia M, Rossi A, Riccio A, Trotta E, Santoro M. Human NF-κB repressing factor acts as a stress-regulated switch for ribosomal RNA processing and nucleolar homeostasis surveillance. Proc Natl Acad Sci U S A. 2017;114:1045-1050 pubmed 出版商
  65. Nagaraj R, Sharpley M, Chi F, Braas D, Zhou Y, Kim R, et al. Nuclear Localization of Mitochondrial TCA Cycle Enzymes as a Critical Step in Mammalian Zygotic Genome Activation. Cell. 2017;168:210-223.e11 pubmed 出版商
  66. Zaganelli S, Rebelo Guiomar P, Maundrell K, Rozanska A, Pierredon S, Powell C, et al. The Pseudouridine Synthase RPUSD4 Is an Essential Component of Mitochondrial RNA Granules. J Biol Chem. 2017;292:4519-4532 pubmed 出版商
  67. Li Y, Ming F, Huang H, Guo K, Chen H, Jin M, et al. Proteome Response of Chicken Embryo Fibroblast Cells to Recombinant H5N1 Avian Influenza Viruses with Different Neuraminidase Stalk Lengths. Sci Rep. 2017;7:40698 pubmed 出版商
  68. Chen C, Zhuang Y, Chen X, Chen X, Li D, Fan Y, et al. Hsp90 N- and C-terminal double inhibition synergistically suppresses Bcr-Abl-positive human leukemia cells. Oncotarget. 2017;8:10025-10036 pubmed 出版商
  69. Sha L, Wang X, Li J, Shi X, Wu L, Shen Y, et al. Pharmacologic inhibition of Hsp90 to prevent GLT-1 degradation as an effective therapy for epilepsy. J Exp Med. 2017;214:547-563 pubmed 出版商
  70. Kattaia A, Abd El Baset S, Mohamed E, Abdul Maksou R, Elfakharany Y. Molecular mechanisms underlying histological and biochemical changes induced by nitrate in rat liver and the efficacy of S-Allylcysteine. Ultrastruct Pathol. 2017;41:10-22 pubmed 出版商
  71. Seo B, Min K, Woo S, Choe M, Choi K, Lee Y, et al. Inhibition of Cathepsin S Induces Mitochondrial ROS That Sensitizes TRAIL-Mediated Apoptosis Through p53-Mediated Downregulation of Bcl-2 and c-FLIP. Antioxid Redox Signal. 2017;27:215-233 pubmed 出版商
  72. Huang Z, Zhou X, He Y, Ke X, Wen Y, Zou F, et al. Hyperthermia enhances 17-DMAG efficacy in hepatocellular carcinoma cells with aggravated DNA damage and impaired G2/M transition. Sci Rep. 2016;6:38072 pubmed 出版商
  73. Solárová Z, Kello M, Varinska L, Budovská M, Solar P. Inhibition of heat shock protein (Hsp) 90 potentiates the antiproliferative and pro-apoptotic effects of 2-(4'fluoro-phenylamino)-4H-1,3-thiazine[6,5-b]indole in A2780cis cells. Biomed Pharmacother. 2017;85:463-471 pubmed 出版商
  74. Watanabe Y, Tsujimura A, Taguchi K, Tanaka M. HSF1 stress response pathway regulates autophagy receptor SQSTM1/p62-associated proteostasis. Autophagy. 2017;13:133-148 pubmed 出版商
  75. Graner A, Hellwinkel J, Lencioni A, Madsen H, Harland T, Marchando P, et al. HSP90 inhibitors in the context of heat shock and the unfolded protein response: effects on a primary canine pulmonary adenocarcinoma cell line. Int J Hyperthermia. 2017;33:303-317 pubmed 出版商
  76. Rahlff J, Peters J, Moyano M, Pless O, Claussen C, Peck M. Short-term molecular and physiological responses to heat stress in neritic copepods Acartia tonsa and Eurytemora affinis. Comp Biochem Physiol A Mol Integr Physiol. 2017;203:348-358 pubmed 出版商
  77. Jian J, Tian Q, Hettinghouse A, Zhao S, Liu H, Wei J, et al. Progranulin Recruits HSP70 to β-Glucocerebrosidase and Is Therapeutic Against Gaucher Disease. EBioMedicine. 2016;13:212-224 pubmed 出版商
  78. Kennedy T, Swiderski K, Murphy K, Gehrig S, Curl C, Chandramouli C, et al. BGP-15 Improves Aspects of the Dystrophic Pathology in mdx and dko Mice with Differing Efficacies in Heart and Skeletal Muscle. Am J Pathol. 2016;186:3246-3260 pubmed 出版商
  79. Cumming K, Ellefsen S, Rønnestad B, Ugelstad I, Raastad T. Acute and long-term effects of blood flow restricted training on heat shock proteins and endogenous antioxidant systems. Scand J Med Sci Sports. 2017;27:1190-1201 pubmed 出版商
  80. Fritsch J, Fickers R, Klawitter J, Särchen V, Zingler P, Adam D, et al. TNF induced cleavage of HSP90 by cathepsin D potentiates apoptotic cell death. Oncotarget. 2016;7:75774-75789 pubmed 出版商
  81. Rodina A, Wang T, Yan P, Gomes E, Dunphy M, Pillarsetty N, et al. The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature. 2016;538:397-401 pubmed 出版商
  82. Peake J, Roberts L, Figueiredo V, Egner I, Krog S, Aas S, et al. The effects of cold water immersion and active recovery on inflammation and cell stress responses in human skeletal muscle after resistance exercise. J Physiol. 2017;595:695-711 pubmed 出版商
  83. Mitra S, Ghosh B, Gayen N, Roy J, Mandal A. Bipartite Role of Heat Shock Protein 90 (Hsp90) Keeps CRAF Kinase Poised for Activation. J Biol Chem. 2016;291:24579-24593 pubmed
  84. Yamanaka T, Tosaki A, Miyazaki H, Kurosawa M, Koike M, Uchiyama Y, et al. Differential roles of NF-Y transcription factor in ER chaperone expression and neuronal maintenance in the CNS. Sci Rep. 2016;6:34575 pubmed 出版商
  85. Golovko A, Kojukhov A, Guan B, Morpurgo B, Merrick W, Mazumder B, et al. The eIF2A knockout mouse. Cell Cycle. 2016;15:3115-3120 pubmed
  86. Adachi E, Sakai K, Nishiuchi T, Imamura R, Sato H, Matsumoto K. Different growth and metastatic phenotypes associated with a cell-intrinsic change of Met in metastatic melanoma. Oncotarget. 2016;7:70779-70793 pubmed 出版商
  87. de la Fuente S, Fernandez Sanz C, Vail C, Agra E, Holmström K, Sun J, et al. Strategic Positioning and Biased Activity of the Mitochondrial Calcium Uniporter in Cardiac Muscle. J Biol Chem. 2016;291:23343-23362 pubmed
  88. Di Blasio S, Wortel I, van Bladel D, de Vries L, Duiveman de Boer T, Worah K, et al. Human CD1c(+) DCs are critical cellular mediators of immune responses induced by immunogenic cell death. Oncoimmunology. 2016;5:e1192739 pubmed 出版商
  89. Lacroix M, Rodier G, Kirsh O, Houles T, Delpech H, Seyran B, et al. E4F1 controls a transcriptional program essential for pyruvate dehydrogenase activity. Proc Natl Acad Sci U S A. 2016;113:10998-1003 pubmed 出版商
  90. Pestana J, Novais S, Norouzitallab P, Vandegehuchte M, Bossier P, De Schamphelaere K. Non-lethal heat shock increases tolerance to metal exposure in brine shrimp. Environ Res. 2016;151:663-670 pubmed 出版商
  91. BRANDT C, McFie P, Stone S. Diacylglycerol acyltransferase-2 and monoacylglycerol acyltransferase-2 are ubiquitinated proteins that are degraded by the 26S proteasome. Biochem J. 2016;473:3621-3637 pubmed
  92. Reeg S, Jung T, Castro J, Davies K, Henze A, Grune T. The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome. Free Radic Biol Med. 2016;99:153-166 pubmed 出版商
  93. Dhamad A, Zhou Z, Zhou J, Du Y. Systematic Proteomic Identification of the Heat Shock Proteins (Hsp) that Interact with Estrogen Receptor Alpha (ER?) and Biochemical Characterization of the ER?-Hsp70 Interaction. PLoS ONE. 2016;11:e0160312 pubmed 出版商
  94. Hjerpe R, Bett J, Keuss M, Solovyova A, McWilliams T, Johnson C, et al. UBQLN2 Mediates Autophagy-Independent Protein Aggregate Clearance by the Proteasome. Cell. 2016;166:935-949 pubmed 出版商
  95. Szymanska M, Fosdahl A, Nikolaysen F, Pedersen M, Grandal M, Stang E, et al. A combination of two antibodies recognizing non-overlapping epitopes of HER2 induces kinase activity-dependent internalization of HER2. J Cell Mol Med. 2016;20:1999-2011 pubmed 出版商
  96. Cheng Y, Huang C, Lee Y, Tien L, Ku W, Chien R, et al. Knocking down of heat-shock protein 27 directs differentiation of functional glutamatergic neurons from placenta-derived multipotent cells. Sci Rep. 2016;6:30314 pubmed 出版商
  97. Wang C, Guo S, Wang J, Yan X, Farrelly M, Zhang Y, et al. Reactivation of ERK and Akt confers resistance of mutant BRAF colon cancer cells to the HSP90 inhibitor AUY922. Oncotarget. 2016;7:49597-49610 pubmed 出版商
  98. Xue J, Fan X, Yu J, Zhang S, Xiao J, Hu Y, et al. Short-Term Heat Shock Affects Host-Virus Interaction in Mice Infected with Highly Pathogenic Avian Influenza Virus H5N1. Front Microbiol. 2016;7:924 pubmed 出版商
  99. Guo Y, Cui L, Jiang S, Wang D, Jiang S, Xie C, et al. S100A1 transgenic treatment of acute heart failure causes proteomic changes in rats. Mol Med Rep. 2016;14:1538-52 pubmed 出版商
  100. Sclip A, Bacaj T, Giam L, Sudhof T. Extended Synaptotagmin (ESyt) Triple Knock-Out Mice Are Viable and Fertile without Obvious Endoplasmic Reticulum Dysfunction. PLoS ONE. 2016;11:e0158295 pubmed 出版商
  101. Frohwitter G, Buerger H, van Diest P, Korsching E, Kleinheinz J, Fillies T. Cytokeratin and protein expression patterns in squamous cell carcinoma of the oral cavity provide evidence for two distinct pathogenetic pathways. Oncol Lett. 2016;12:107-113 pubmed
  102. Schmitz M, Douxfils J, Mandiki S, Morana C, Baekelandt S, Kestemont P. Chronic hyperosmotic stress interferes with immune homeostasis in striped catfish (Pangasianodon hypophthalmus, S.) and leads to excessive inflammatory response during bacterial infection. Fish Shellfish Immunol. 2016;55:550-8 pubmed 出版商
  103. Yang C, Sierp M, Abbott C, Li Y, Qin J. Responses to thermal and salinity stress in wild and farmed Pacific oysters Crassostrea gigas. Comp Biochem Physiol A Mol Integr Physiol. 2016;201:22-29 pubmed 出版商
  104. Vanderperre B, Cermakova K, Escoffier J, Kaba M, Bender T, Nef S, et al. MPC1-like Is a Placental Mammal-specific Mitochondrial Pyruvate Carrier Subunit Expressed in Postmeiotic Male Germ Cells. J Biol Chem. 2016;291:16448-61 pubmed 出版商
  105. Sun Y, Zheng W, Guo Z, Ju Q, Zhu L, Gao J, et al. A novel TP53 pathway influences the HGS-mediated exosome formation in colorectal cancer. Sci Rep. 2016;6:28083 pubmed 出版商
  106. Akabane S, Matsuzaki K, Yamashita S, Arai K, Okatsu K, Kanki T, et al. Constitutive Activation of PINK1 Protein Leads to Proteasome-mediated and Non-apoptotic Cell Death Independently of Mitochondrial Autophagy. J Biol Chem. 2016;291:16162-74 pubmed 出版商
  107. Lee J, Takahama S, Zhang G, Tomarev S, Ye Y. Unconventional secretion of misfolded proteins promotes adaptation to proteasome dysfunction in mammalian cells. Nat Cell Biol. 2016;18:765-76 pubmed 出版商
  108. Ansari M, Haqqi T. Interleukin-1β induced Stress Granules Sequester COX-2 mRNA and Regulates its Stability and Translation in Human OA Chondrocytes. Sci Rep. 2016;6:27611 pubmed 出版商
  109. Ivanina A, Nesmelova I, Leamy L, Sokolov E, Sokolova I. Intermittent hypoxia leads to functional reorganization of mitochondria and affects cellular bioenergetics in marine molluscs. J Exp Biol. 2016;219:1659-74 pubmed 出版商
  110. Trousil S, Kaliszczak M, Schug Z, Nguyen Q, Tomasi G, Favicchio R, et al. The novel choline kinase inhibitor ICL-CCIC-0019 reprograms cellular metabolism and inhibits cancer cell growth. Oncotarget. 2016;7:37103-37120 pubmed 出版商
  111. Lim S, Liu H, Madeira da Silva L, Arora R, Liu Z, Phillips J, et al. Immunoregulatory Protein B7-H3 Reprograms Glucose Metabolism in Cancer Cells by ROS-Mediated Stabilization of HIF1?. Cancer Res. 2016;76:2231-42 pubmed 出版商
  112. Huang K, Chen Z, Jiang Y, Akare S, Kolber Simonds D, Condon K, et al. Apratoxin A Shows Novel Pancreas-Targeting Activity through the Binding of Sec 61. Mol Cancer Ther. 2016;15:1208-16 pubmed 出版商
  113. Lin Y, Warren C, Li J, McKinsey T, Russell B. Myofibril growth during cardiac hypertrophy is regulated through dual phosphorylation and acetylation of the actin capping protein CapZ. Cell Signal. 2016;28:1015-24 pubmed 出版商
  114. Nilsen T, Thorsen L, Kirkegaard C, Ugelstad I, Fossa S, Raastad T. The effect of strength training on muscle cellular stress in prostate cancer patients on ADT. Endocr Connect. 2016;5:74-82 pubmed 出版商
  115. Martin G, Chung S, Landrock D, Landrock K, Huang H, Dangott L, et al. FABP-1 gene ablation impacts brain endocannabinoid system in male mice. J Neurochem. 2016;138:407-22 pubmed 出版商
  116. Venkatesan N, Kanwar J, Deepa P, Navaneethakrishnan S, Joseph C, Krishnakumar S. Targeting HSP90/Survivin using a cell permeable structure based peptido-mimetic shepherdin in retinoblastoma. Chem Biol Interact. 2016;252:141-9 pubmed 出版商
  117. Ding Y, Adachi H, Katsuno M, Sahashi K, Kondo N, Iida M, et al. BIIB021, a synthetic Hsp90 inhibitor, induces mutant ataxin-1 degradation through the activation of heat shock factor 1. Neuroscience. 2016;327:20-31 pubmed 出版商
  118. Zheng G, Li N, Jia X, Peng C, Luo L, Deng Y, et al. MYCN-mediated miR-21 overexpression enhances chemo-resistance via targeting CADM1 in tongue cancer. J Mol Med (Berl). 2016;94:1129-1141 pubmed
  119. Su K, Cao J, Tang Z, Dai S, He Y, Sampson S, et al. HSF1 critically attunes proteotoxic stress sensing by mTORC1 to combat stress and promote growth. Nat Cell Biol. 2016;18:527-39 pubmed 出版商
  120. Mutschelknaus L, Peters C, Winkler K, Yentrapalli R, Heider T, Atkinson M, et al. Exosomes Derived from Squamous Head and Neck Cancer Promote Cell Survival after Ionizing Radiation. PLoS ONE. 2016;11:e0152213 pubmed 出版商
  121. Kawano M, Tanaka K, Itonaga I, Iwasaki T, Miyazaki M, Ikeda S, et al. Dendritic cells combined with doxorubicin induces immunogenic cell death and exhibits antitumor effects for osteosarcoma. Oncol Lett. 2016;11:2169-2175 pubmed
  122. Lin P, Folorunso O, Taglialatela G, Pierce A. Overexpression of heat shock factor 1 maintains TAR DNA binding protein 43 solubility via induction of inducible heat shock protein 70 in cultured cells. J Neurosci Res. 2016;94:671-82 pubmed 出版商
  123. Budina Kolomets A, Webster M, Leu J, Jennis M, Krepler C, Guerrini A, et al. HSP70 Inhibition Limits FAK-Dependent Invasion and Enhances the Response to Melanoma Treatment with BRAF Inhibitors. Cancer Res. 2016;76:2720-30 pubmed 出版商
  124. Kong F, Wang H, Guo J, Peng M, Ji H, Yang H, et al. Hsp70 suppresses apoptosis of BRL cells by regulating the expression of Bcl-2, cytochrome C, and caspase 8/3. In Vitro Cell Dev Biol Anim. 2016;52:568-75 pubmed 出版商
  125. Dhar S, Kumar A, Zhang L, Rimando A, Lage J, Lewin J, et al. Dietary pterostilbene is a novel MTA1-targeted chemopreventive and therapeutic agent in prostate cancer. Oncotarget. 2016;7:18469-84 pubmed 出版商
  126. Gao S, Chen X, Jin H, Ren S, Liu Z, Fang X, et al. Overexpression of ErbB2 renders breast cancer cells susceptible to 3-BrPA through the increased dissociation of hexokinase II from mitochondrial outer membrane. Oncol Lett. 2016;11:1567-1573 pubmed
  127. Trieb K, Sulzbacher I, Kubista B. Recurrence rate and progression of chondrosarcoma is correlated with heat shock protein expression. Oncol Lett. 2016;11:521-524 pubmed
  128. Kowal J, Arras G, Colombo M, Jouve M, Morath J, Primdal Bengtson B, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A. 2016;113:E968-77 pubmed 出版商
  129. McDonnell M, Burkhart S, Stoddard J, Wright Z, Strader L, Bartel B. The Early-Acting Peroxin PEX19 Is Redundantly Encoded, Farnesylated, and Essential for Viability in Arabidopsis thaliana. PLoS ONE. 2016;11:e0148335 pubmed 出版商
  130. Barone R, Macaluso F, Sangiorgi C, Campanella C, Marino Gammazza A, Moresi V, et al. Skeletal muscle Heat shock protein 60 increases after endurance training and induces peroxisome proliferator-activated receptor gamma coactivator 1 α1 expression. Sci Rep. 2016;6:19781 pubmed 出版商
  131. Min S, Kady J, Nam M, Rojas Rodriguez R, Berkenwald A, Kim J, et al. Human 'brite/beige' adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice. Nat Med. 2016;22:312-8 pubmed 出版商
  132. Torres G, Morales P, García Miguel M, Norambuena Soto I, Cartes Saavedra B, Vidal Peña G, et al. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation. Biochem Pharmacol. 2016;104:52-61 pubmed 出版商
  133. Allenbach Y, Leroux G, Suárez Calvet X, Preusse C, Gallardo E, Hervier B, et al. Dermatomyositis With or Without Anti-Melanoma Differentiation-Associated Gene 5 Antibodies: Common Interferon Signature but Distinct NOS2 Expression. Am J Pathol. 2016;186:691-700 pubmed 出版商
  134. Ojima H, Masugi Y, Tsujikawa H, Emoto K, Fujii Nishimura Y, Hatano M, et al. Early hepatocellular carcinoma with high-grade atypia in small vaguely nodular lesions. Cancer Sci. 2016;107:543-50 pubmed 出版商
  135. Deuel J, Schaer C, Boretti F, Opitz L, Garcia Rubio I, Baek J, et al. Hemoglobinuria-related acute kidney injury is driven by intrarenal oxidative reactions triggering a heme toxicity response. Cell Death Dis. 2016;7:e2064 pubmed 出版商
  136. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  137. Bandyopadhyay S, Quinn T, Scandiuzzi L, Basu I, Partanen A, Tomé W, et al. Low-Intensity Focused Ultrasound Induces Reversal of Tumor-Induced T Cell Tolerance and Prevents Immune Escape. J Immunol. 2016;196:1964-76 pubmed 出版商
  138. Asano Y, Kawase T, Okabe A, Tsutsumi S, Ichikawa H, Tatebe S, et al. IER5 generates a novel hypo-phosphorylated active form of HSF1 and contributes to tumorigenesis. Sci Rep. 2016;6:19174 pubmed 出版商
  139. Peng C, Kaščáková S, Chiappini F, Olaya N, Sandt C, Yousef I, et al. Discrimination of cirrhotic nodules, dysplastic lesions and hepatocellular carcinoma by their vibrational signature. J Transl Med. 2016;14:9 pubmed 出版商
  140. Shimoda A, Ueda K, Nishiumi S, Murata Kamiya N, Mukai S, Sawada S, et al. Exosomes as nanocarriers for systemic delivery of the Helicobacter pylori virulence factor CagA. Sci Rep. 2016;6:18346 pubmed 出版商
  141. Roundhill E, Turnbull D, Burchill S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β. FASEB J. 2016;30:1712-23 pubmed 出版商
  142. Tang S, Chen H, Cheng Y, Nasir M, Kemper N, Bao E. The interactive association between heat shock factor 1 and heat shock proteins in primary myocardial cells subjected to heat stress. Int J Mol Med. 2016;37:56-62 pubmed 出版商
  143. Shi L, Gehin T, Chevolot Y, Souteyrand E, Mangé A, Solassol J, et al. Anti-heat shock protein autoantibody profiling in breast cancer using customized protein microarray. Anal Bioanal Chem. 2016;408:1497-506 pubmed 出版商
  144. Toni L, Padilla P. Developmentally arrested Austrofundulus limnaeus embryos have changes in post-translational modifications of histone H3. J Exp Biol. 2016;219:544-52 pubmed 出版商
  145. Mills K, Brocardo M, Henderson B. APC binds the Miro/Milton motor complex to stimulate transport of mitochondria to the plasma membrane. Mol Biol Cell. 2016;27:466-82 pubmed 出版商
  146. Isbel L, Srivastava R, Oey H, Spurling A, Daxinger L, Puthalakath H, et al. Trim33 Binds and Silences a Class of Young Endogenous Retroviruses in the Mouse Testis; a Novel Component of the Arms Race between Retrotransposons and the Host Genome. PLoS Genet. 2015;11:e1005693 pubmed 出版商
  147. Schachtner H, Weimershaus M, Stache V, Plewa N, Legler D, Höpken U, et al. Loss of Gadkin Affects Dendritic Cell Migration In Vitro. PLoS ONE. 2015;10:e0143883 pubmed 出版商
  148. Pettersen K, Monsen V, HakvÃ¥g Pettersen C, Overland H, Pettersen G, Samdal H, et al. DHA-induced stress response in human colon cancer cells - Focus on oxidative stress and autophagy. Free Radic Biol Med. 2016;90:158-72 pubmed 出版商
  149. Larabee C, Georgescu C, Wren J, Plafker S. Expression profiling of the ubiquitin conjugating enzyme UbcM2 in murine brain reveals modest age-dependent decreases in specific neurons. BMC Neurosci. 2015;16:76 pubmed 出版商
  150. Clemente Vicario F, Alvarez C, ROWELL J, Roy S, London C, Kisseberth W, et al. Human Genetic Relevance and Potent Antitumor Activity of Heat Shock Protein 90 Inhibition in Canine Lung Adenocarcinoma Cell Lines. PLoS ONE. 2015;10:e0142007 pubmed 出版商
  151. Stanojlović M, GuÅ¡evac I, Grković I, Zlatković J, Mitrović N, Zarić M, et al. Effects of chronic cerebral hypoperfusion and low-dose progesterone treatment on apoptotic processes, expression and subcellular localization of key elements within Akt and Erk signaling pathways in rat hippocampus. Neuroscience. 2015;311:308-21 pubmed 出版商
  152. Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol. 2015;16:1235-44 pubmed 出版商
  153. Fuchs M, Luthold C, Guilbert S, Varlet A, Lambert H, Jetté A, et al. A Role for the Chaperone Complex BAG3-HSPB8 in Actin Dynamics, Spindle Orientation and Proper Chromosome Segregation during Mitosis. PLoS Genet. 2015;11:e1005582 pubmed 出版商
  154. Zhou J, Wan J, Gao X, Zhang X, Jaffrey S, Qian S. Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature. 2015;526:591-4 pubmed 出版商
  155. Lima F, Gomes F, Seabra R, Wethey D, Seabra M, Cruz T, et al. Loss of thermal refugia near equatorial range limits. Glob Chang Biol. 2016;22:254-63 pubmed 出版商
  156. Naghdi S, Várnai P, Hajnóczky G. Motifs of VDAC2 required for mitochondrial Bak import and tBid-induced apoptosis. Proc Natl Acad Sci U S A. 2015;112:E5590-9 pubmed 出版商
  157. Shi C, Huang X, Zhang B, Zhu D, Luo H, Lu Q, et al. The Inhibition of Heat Shock Protein 90 Facilitates the Degradation of Poly-Alanine Expanded Poly (A) Binding Protein Nuclear 1 via the Carboxyl Terminus of Heat Shock Protein 70-Interacting Protein. PLoS ONE. 2015;10:e0138936 pubmed 出版商
  158. Gou M, Zhang Z, Zhang N, Huang Q, Monaghan J, Yang H, et al. Opposing Effects on Two Phases of Defense Responses from Concerted Actions of HEAT SHOCK COGNATE70 and BONZAI1 in Arabidopsis. Plant Physiol. 2015;169:2304-23 pubmed 出版商
  159. Nehra S, Bhardwaj V, Ganju L, Saraswat D. Nanocurcumin Prevents Hypoxia Induced Stress in Primary Human Ventricular Cardiomyocytes by Maintaining Mitochondrial Homeostasis. PLoS ONE. 2015;10:e0139121 pubmed 出版商
  160. Xiong R, Zhou W, Siegel D, Kitson R, Freed C, Moody C, et al. A Novel Hsp90 Inhibitor Activates Compensatory Heat Shock Protein Responses and Autophagy and Alleviates Mutant A53T α-Synuclein Toxicity. Mol Pharmacol. 2015;88:1045-54 pubmed 出版商
  161. Khosravanian H, Razi M, Farokhi F, Khosravanian N. Simultaneous Administration of Dexamethasone and Vitamin E Reversed Experimental Varicocele-induced Impact in testicular tissue in Rats; Correlation with Hsp70-2 Chaperone Expression. Int Braz J Urol. 2015;41:773-90 pubmed 出版商
  162. Yeung H, Lo P, Ng D, Fong W. Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model. Cell Mol Immunol. 2017;14:223-234 pubmed 出版商
  163. Hilton B, Li Z, Musich P, Wang H, Cartwright B, SERRANO M, et al. ATR Plays a Direct Antiapoptotic Role at Mitochondria, which Is Regulated by Prolyl Isomerase Pin1. Mol Cell. 2015;60:35-46 pubmed 出版商
  164. Joly A, Deepti A, Seignez A, Goloudina A, Hebrard S, Schmitt E, et al. The HSP90 inhibitor, 17AAG, protects the intestinal stem cell niche and inhibits graft versus host disease development. Oncogene. 2016;35:2842-51 pubmed 出版商
  165. Jiang Q, Zhang Z, Li S, Wang Z, Ma Y, Hu Y. Defective heat shock factor 1 inhibits the growth of fibrosarcoma derived from simian virus 40/T antigen‑transformed MEF cells. Mol Med Rep. 2015;12:6517-26 pubmed 出版商
  166. Serban A, Stanca L, Geicu O, Dinischiotu A. AGEs-Induced IL-6 Synthesis Precedes RAGE Up-Regulation in HEK 293 Cells: An Alternative Inflammatory Mechanism?. Int J Mol Sci. 2015;16:20100-17 pubmed 出版商
  167. Aleng N, Sung Y, MacRae T, Abd Wahid M. Non-Lethal Heat Shock of the Asian Green Mussel, Perna viridis, Promotes Hsp70 Synthesis, Induces Thermotolerance and Protects Against Vibrio Infection. PLoS ONE. 2015;10:e0135603 pubmed 出版商
  168. Vertii A, Zimmerman W, Ivshina M, Doxsey S. Centrosome-intrinsic mechanisms modulate centrosome integrity during fever. Mol Biol Cell. 2015;26:3451-63 pubmed 出版商
  169. Satoh T, Stalder R, McKercher S, Williamson R, Roth G, Lipton S. Nrf2 and HSF-1 Pathway Activation via Hydroquinone-Based Proelectrophilic Small Molecules is Regulated by Electrochemical Oxidation Potential. ASN Neuro. 2015;7: pubmed 出版商
  170. Bailey C, Budina Kolomets A, Murphy M, Nefedova Y. Efficacy of the HSP70 inhibitor PET-16 in multiple myeloma. Cancer Biol Ther. 2015;16:1422-6 pubmed 出版商
  171. Artero Castro A, Perez Alea M, Feliciano A, Leal J, Genestar M, Castellvi J, et al. Disruption of the ribosomal P complex leads to stress-induced autophagy. Autophagy. 2015;11:1499-519 pubmed 出版商
  172. Wu Y, Chen H, Lu J, Zhang M, Zhang R, Duan T, et al. Acetylation-dependent function of human single-stranded DNA binding protein 1. Nucleic Acids Res. 2015;43:7878-87 pubmed 出版商
  173. Hobbs R, DePianto D, Jacob J, Han M, Chung B, Batazzi A, et al. Keratin-dependent regulation of Aire and gene expression in skin tumor keratinocytes. Nat Genet. 2015;47:933-8 pubmed 出版商
  174. Frühbeis C, Helmig S, Tug S, Simon P, Krämer Albers E. Physical exercise induces rapid release of small extracellular vesicles into the circulation. J Extracell Vesicles. 2015;4:28239 pubmed 出版商
  175. Li H, Han L, Yang Z, Huang W, Zhang X, Gu Y, et al. Differential Proteomic Analysis of Syncytiotrophoblast Extracellular Vesicles from Early-Onset Severe Preeclampsia, using 8-Plex iTRAQ Labeling Coupled with 2D Nano LC-MS/MS. Cell Physiol Biochem. 2015;36:1116-30 pubmed 出版商
  176. Yuzefovych Y, Blasczyk R, Huyton T. Oncogenic acidic nuclear phosphoproteins ANP32C/D are novel clients of heat shock protein 90. Biochim Biophys Acta. 2015;1853:2338-48 pubmed 出版商
  177. Zeng X, Wang H, Bai F, Zhou X, Li S, Ren L, et al. Identification of matrine as a promising novel drug for hepatic steatosis and glucose intolerance with HSP72 as an upstream target. Br J Pharmacol. 2015;172:4303-18 pubmed 出版商
  178. Jeong Y, Jung M, Son Y, Jang J, Lee Y, Kim S, et al. Coniferyl aldehyde attenuates radiation enteropathy by inhibiting cell death and promoting endothelial cell function. PLoS ONE. 2015;10:e0128552 pubmed 出版商
  179. Tembe V, Martino Echarri E, Marzec K, Mok M, Brodie K, Mills K, et al. The BARD1 BRCT domain contributes to p53 binding, cytoplasmic and mitochondrial localization, and apoptotic function. Cell Signal. 2015;27:1763-71 pubmed 出版商
  180. Alexandrova E, Yallowitz A, Li D, Xu S, Schulz R, Proia D, et al. Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment. Nature. 2015;523:352-6 pubmed 出版商
  181. Sung B, Ketova T, Hoshino D, Zijlstra A, Weaver A. Directional cell movement through tissues is controlled by exosome secretion. Nat Commun. 2015;6:7164 pubmed 出版商
  182. Xu D, Sun L, Liu S, Zhang L, Yang H. Histological, ultrastructural and heat shock protein 70 (HSP70) responses to heat stress in the sea cucumber Apostichopus japonicus. Fish Shellfish Immunol. 2015;45:321-6 pubmed 出版商
  183. Zhang W, Zhu Y, Yang J, Yang G, Zhou D, Wang J. A Selected Lactobacillus rhamnosus Strain Promotes EGFR-Independent Akt Activation in an Enterotoxigenic Escherichia coli K88-Infected IPEC-J2 Cell Model. PLoS ONE. 2015;10:e0125717 pubmed 出版商
  184. Oishi Y, Roy R, Ogata T, Ohira Y. Heat-Stress effects on the myosin heavy chain phenotype of rat soleus fibers during the early stages of regeneration. Muscle Nerve. 2015;52:1047-56 pubmed 出版商
  185. Randles M, Woolf A, Huang J, Byron A, Humphries J, Price K, et al. Genetic Background is a Key Determinant of Glomerular Extracellular Matrix Composition and Organization. J Am Soc Nephrol. 2015;26:3021-34 pubmed 出版商
  186. Saito K, Kukita K, Kutomi G, Okuya K, Asanuma H, Tabeya T, et al. Heat shock protein 90 associates with Toll-like receptors 7/9 and mediates self-nucleic acid recognition in SLE. Eur J Immunol. 2015;45:2028-41 pubmed 出版商
  187. Schilling D, Kühnel A, Tetzlaff F, Konrad S, Multhoff G. NZ28-induced inhibition of HSF1, SP1 and NF-κB triggers the loss of the natural killer cell-activating ligands MICA/B on human tumor cells. Cancer Immunol Immunother. 2015;64:599-608 pubmed 出版商
  188. Pospichalova V, Svoboda J, Dave Z, Kotrbova A, Kaiser K, Klemová D, et al. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. J Extracell Vesicles. 2015;4:25530 pubmed 出版商
  189. Dudek Perić A, Ferreira G, Muchowicz A, Wouters J, Prada N, Martin S, et al. Antitumor immunity triggered by melphalan is potentiated by melanoma cell surface-associated calreticulin. Cancer Res. 2015;75:1603-14 pubmed 出版商
  190. Ellis J, Bowman C, Wolfgang M. Metabolic and tissue-specific regulation of acyl-CoA metabolism. PLoS ONE. 2015;10:e0116587 pubmed 出版商
  191. Romero J, Hanschmann E, Gellert M, Eitner S, Holubiec M, Blanco Calvo E, et al. Thioredoxin 1 and glutaredoxin 2 contribute to maintain the phenotype and integrity of neurons following perinatal asphyxia. Biochim Biophys Acta. 2015;1850:1274-85 pubmed 出版商
  192. Yang N, Han F, Cui H, Huang J, Wang T, Zhou Y, et al. Matrine suppresses proliferation and induces apoptosis in human cholangiocarcinoma cells through suppression of JAK2/STAT3 signaling. Pharmacol Rep. 2015;67:388-93 pubmed 出版商
  193. Chittoor Vinod V, Lee S, Judge S, Notterpek L. Inducible HSP70 is critical in preventing the aggregation and enhancing the processing of PMP22. ASN Neuro. 2015;7: pubmed 出版商
  194. Hirunsai M, Srikuea R, Yimlamai T. Heat stress promotes extracellular matrix remodelling via TGF-β1 and MMP-2/TIMP-2 modulation in tenotomised soleus and plantaris muscles. Int J Hyperthermia. 2015;31:336-48 pubmed 出版商
  195. Robertson J, Jacquemet G, Byron A, Jones M, Warwood S, Selley J, et al. Defining the phospho-adhesome through the phosphoproteomic analysis of integrin signalling. Nat Commun. 2015;6:6265 pubmed 出版商
  196. Morlé A, Garrido C, Micheau O. Hyperthermia restores apoptosis induced by death receptors through aggregation-induced c-FLIP cytosolic depletion. Cell Death Dis. 2015;6:e1633 pubmed 出版商
  197. Hole S, Pedersen A, Hansen S, Lundqvist J, Yde C, Lykkesfeldt A. New cell culture model for aromatase inhibitor-resistant breast cancer shows sensitivity to fulvestrant treatment and cross-resistance between letrozole and exemestane. Int J Oncol. 2015;46:1481-90 pubmed 出版商
  198. Azimzadeh O, Sievert W, Sarioglu H, Merl Pham J, Yentrapalli R, Bakshi M, et al. Integrative proteomics and targeted transcriptomics analyses in cardiac endothelial cells unravel mechanisms of long-term radiation-induced vascular dysfunction. J Proteome Res. 2015;14:1203-19 pubmed 出版商
  199. Li X, Colvin T, Rauch J, Acosta Alvear D, Kampmann M, Dunyak B, et al. Validation of the Hsp70-Bag3 protein-protein interaction as a potential therapeutic target in cancer. Mol Cancer Ther. 2015;14:642-8 pubmed 出版商
  200. Liu Y, Yu Y, Chu H, Bing D, Wang S, Zhou L, et al. 17-DMAG induces Hsp70 and protects the auditory hair cells from kanamycin ototoxicity in vitro. Neurosci Lett. 2015;588:72-7 pubmed 出版商
  201. Rogers R, Beaudoin M, Wheatley J, Wright D, Geiger P. Heat shock proteins: in vivo heat treatments reveal adipose tissue depot-specific effects. J Appl Physiol (1985). 2015;118:98-106 pubmed 出版商
  202. Krysiak K, Tibbitts J, Shao J, Liu T, Ndonwi M, Walter M. Reduced levels of Hspa9 attenuate Stat5 activation in mouse B cells. Exp Hematol. 2015;43:319-30.e10 pubmed 出版商
  203. Sajish M, Schimmel P. A human tRNA synthetase is a potent PARP1-activating effector target for resveratrol. Nature. 2015;519:370-3 pubmed 出版商
  204. Kabbaj F, Lu S, Faouzi M, Meddah B, Proksch P, Cherrah Y, et al. Bioactive metabolites from Chaetomium aureum: structure elucidation and inhibition of the Hsp90 machine chaperoning activity. Bioorg Med Chem. 2015;23:126-31 pubmed 出版商
  205. Davis A, Qiao S, Lesson J, Rojo de la Vega M, Park S, Seanez C, et al. The quinone methide aurin is a heat shock response inducer that causes proteotoxic stress and Noxa-dependent apoptosis in malignant melanoma cells. J Biol Chem. 2015;290:1623-38 pubmed 出版商
  206. Gradilla A, Gonzalez E, Seijo I, Andres G, Bischoff M, González Méndez L, et al. Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion. Nat Commun. 2014;5:5649 pubmed 出版商
  207. Oksala N, Ekmekçi F, Ozsoy E, Kirankaya S, Kokkola T, Emecen G, et al. Natural thermal adaptation increases heat shock protein levels and decreases oxidative stress. Redox Biol. 2014;3:25-8 pubmed 出版商
  208. Kim H, Jung G. Reactive oxygen species increase HEPN1 expression via activation of the XBP1 transcription factor. FEBS Lett. 2014;588:4413-21 pubmed 出版商
  209. Ramirez V, Krueger W, Aneskievich B. TNIP1 reduction of HSPA6 gene expression occurs in promoter regions lacking binding sites for known TNIP1-repressed transcription factors. Gene. 2015;555:430-7 pubmed 出版商
  210. Leyk J, Goldbaum O, Noack M, Richter Landsberg C. Inhibition of HDAC6 modifies tau inclusion body formation and impairs autophagic clearance. J Mol Neurosci. 2015;55:1031-46 pubmed 出版商
  211. Roufayel R, Johnston D, Mosser D. The elimination of miR-23a in heat-stressed cells promotes NOXA-induced cell death and is prevented by HSP70. Cell Death Dis. 2014;5:e1546 pubmed 出版商
  212. Cecchini N, Jung H, Engle N, Tschaplinski T, Greenberg J. ALD1 Regulates Basal Immune Components and Early Inducible Defense Responses in Arabidopsis. Mol Plant Microbe Interact. 2015;28:455-66 pubmed 出版商
  213. Liu L, Chowdhury S, Uppal S, Fang X, Liu J, Srikant C. mReg2 inhibits nuclear entry of apoptosis-inducing factor in mouse insulinoma cells. Growth Factors. 2015;33:1-7 pubmed 出版商
  214. Cho O, Mallappa C, Hernández Hernández J, Rivera Pérez J, Imbalzano A. Contrasting roles for MyoD in organizing myogenic promoter structures during embryonic skeletal muscle development. Dev Dyn. 2015;244:43-55 pubmed 出版商
  215. Wang X, Chang Q, Wang Y, Su F, Zhang S. Late-onset temperature reduction can retard the aging process in aged fish via a combined action of an anti-oxidant system and the insulin/insulin-like growth factor 1 signaling pathway. Rejuvenation Res. 2014;17:507-17 pubmed 出版商
  216. Cumming K, Raastad T, Holden G, Bastani N, Schneeberger D, Paronetto M, et al. Effects of vitamin C and E supplementation on endogenous antioxidant systems and heat shock proteins in response to endurance training. Physiol Rep. 2014;2: pubmed 出版商
  217. Knudsen S, Mac A, Henriksen L, van Deurs B, Grøvdal L. EGFR signaling patterns are regulated by its different ligands. Growth Factors. 2014;32:155-63 pubmed 出版商
  218. Hu Z, Zeng Q, Zhang B, Liu H, Wang W. Promotion of p53 expression and reactive oxidative stress production is involved in zerumbone-induced cisplatin sensitization of non-small cell lung cancer cells. Biochimie. 2014;107 Pt B:257-62 pubmed 出版商
  219. Picard B, Gagaoua M, Micol D, Cassar Malek I, Hocquette J, Terlouw C. Inverse relationships between biomarkers and beef tenderness according to contractile and metabolic properties of the muscle. J Agric Food Chem. 2014;62:9808-18 pubmed 出版商
  220. Tsai Y, Lai C, Lai C, Chang K, Wu K, Tseng S, et al. The role of homeostatic regulation between tumor suppressor DAB2IP and oncogenic Skp2 in prostate cancer growth. Oncotarget. 2014;5:6425-36 pubmed
  221. Ramirez V, Stamatis M, Shmukler A, Aneskievich B. Basal and stress-inducible expression of HSPA6 in human keratinocytes is regulated by negative and positive promoter regions. Cell Stress Chaperones. 2015;20:95-107 pubmed 出版商
  222. Shibeeb O, Wood J, Casson R, Chidlow G. Effects of a conventional photocoagulator and a 3-ns pulse laser on preconditioning responses and retinal ganglion cell survival after optic nerve crush. Exp Eye Res. 2014;127:77-90 pubmed 出版商
  223. Odendall C, Dixit E, Stavru F, Bierne H, Franz K, Durbin A, et al. Diverse intracellular pathogens activate type III interferon expression from peroxisomes. Nat Immunol. 2014;15:717-26 pubmed 出版商
  224. Rogon C, Ulbricht A, Hesse M, Alberti S, Vijayaraj P, Best D, et al. HSP70-binding protein HSPBP1 regulates chaperone expression at a posttranslational level and is essential for spermatogenesis. Mol Biol Cell. 2014;25:2260-71 pubmed 出版商
  225. Mori F, Watanabe Y, Miki Y, Tanji K, Odagiri S, Eto K, et al. Ubiquitin-negative, eosinophilic neuronal cytoplasmic inclusions associated with stress granules and autophagy: an immunohistochemical investigation of two cases. Neuropathology. 2014;34:140-7 pubmed
  226. Nuss J, Kehn Hall K, Benedict A, Costantino J, Ward M, Peyser B, et al. Multi-faceted proteomic characterization of host protein complement of Rift Valley fever virus virions and identification of specific heat shock proteins, including HSP90, as important viral host factors. PLoS ONE. 2014;9:e93483 pubmed 出版商
  227. Sreedharan R, Chen S, Miller M, Haribhai D, Williams C, Van Why S. Mice with an absent stress response are protected against ischemic renal injury. Kidney Int. 2014;86:515-24 pubmed 出版商
  228. Ost M, Werner F, Dokas J, Klaus S, Voigt A. Activation of AMPK?2 is not crucial for mitochondrial uncoupling-induced metabolic effects but required to maintain skeletal muscle integrity. PLoS ONE. 2014;9:e94689 pubmed 出版商
  229. Akkad H, Corpeno R, Larsson L. Masseter muscle myofibrillar protein synthesis and degradation in an experimental critical illness myopathy model. PLoS ONE. 2014;9:e92622 pubmed 出版商
  230. Wong P, Yeoh C, Ahmad A, Chelala C, Gillett C, Speirs V, et al. Identification of MAGEA antigens as causal players in the development of tamoxifen-resistant breast cancer. Oncogene. 2014;33:4579-88 pubmed 出版商
  231. Carloni S, Albertini M, Galluzzi L, Buonocore G, Proietti F, Balduini W. Increased autophagy reduces endoplasmic reticulum stress after neonatal hypoxia-ischemia: role of protein synthesis and autophagic pathways. Exp Neurol. 2014;255:103-12 pubmed 出版商
  232. Zhang L, Chen X, Sharma P, Moon M, Sheftel A, Dawood F, et al. HACE1-dependent protein degradation provides cardiac protection in response to haemodynamic stress. Nat Commun. 2014;5:3430 pubmed 出版商
  233. Biaggio V, Alvarez Olmedo D, Pérez Chaca M, Salvetti N, Valdez S, Fanelli M, et al. Cytoprotective mechanisms in rats lung parenchyma with zinc deprivation. Biometals. 2014;27:305-15 pubmed 出版商
  234. Nakamura T, Okada T, Endo M, Kadomatsu T, Taniwaki T, Sei A, et al. Angiopoietin-like protein 2 induced by mechanical stress accelerates degeneration and hypertrophy of the ligamentum flavum in lumbar spinal canal stenosis. PLoS ONE. 2014;9:e85542 pubmed 出版商
  235. Kitamura A, Inada N, Kubota H, Matsumoto G, Kinjo M, Morimoto R, et al. Dysregulation of the proteasome increases the toxicity of ALS-linked mutant SOD1. Genes Cells. 2014;19:209-24 pubmed 出版商
  236. Ashraf M, Ebner M, Wallner C, Haller M, Khalid S, Schwelberger H, et al. A p38MAPK/MK2 signaling pathway leading to redox stress, cell death and ischemia/reperfusion injury. Cell Commun Signal. 2014;12:6 pubmed 出版商
  237. Agulla J, Brea D, Campos F, Sobrino T, Argibay B, Al Soufi W, et al. In vivo theranostics at the peri-infarct region in cerebral ischemia. Theranostics. 2013;4:90-105 pubmed 出版商
  238. Wang Y, Xu W, Zhou D, Neckers L, Chen S. Coordinated regulation of serum- and glucocorticoid-inducible kinase 3 by a C-terminal hydrophobic motif and Hsp90-Cdc37 chaperone complex. J Biol Chem. 2014;289:4815-26 pubmed 出版商
  239. Xia Q, Cai Y, Peng R, Wu G, Shi Y, Jiang W. The CDK1 inhibitor RO3306 improves the response of BRCA-pro?cient breast cancer cells to PARP inhibition. Int J Oncol. 2014;44:735-44 pubmed 出版商
  240. Hsu C, Chuang Y, Chan Y. Changes in cellular degradation activity in young and old worker honeybees (Apis mellifera). Exp Gerontol. 2014;50:128-36 pubmed 出版商
  241. Jockusch H, Holland A, Staunton L, Schmitt John T, Heimann P, Dowling P, et al. Pathoproteomics of testicular tissue deficient in the GARP component VPS54: the wobbler mouse model of globozoospermia. Proteomics. 2014;14:839-52 pubmed 出版商
  242. Armstrong A, Mattsson N, Appelqvist H, Janefjord C, Sandin L, Agholme L, et al. Lysosomal network proteins as potential novel CSF biomarkers for Alzheimer's disease. Neuromolecular Med. 2014;16:150-60 pubmed 出版商
  243. May L, Kramarenko I, Brandon C, Voelkel Johnson C, Roy S, Truong K, et al. Inner ear supporting cells protect hair cells by secreting HSP70. J Clin Invest. 2013;123:3577-87 pubmed 出版商
  244. Alfonso Pérez T, Domínguez Sánchez M, Garcia Dominguez M, Reyes J. Cytoplasmic interaction of the tumour suppressor protein hSNF5 with dynamin-2 controls endocytosis. Oncogene. 2014;33:3064-74 pubmed 出版商
  245. Pare J, LaPointe P, Hobman T. Hsp90 cochaperones p23 and FKBP4 physically interact with hAgo2 and activate RNA interference-mediated silencing in mammalian cells. Mol Biol Cell. 2013;24:2303-10 pubmed 出版商
  246. Bauckman K, Haller E, Flores I, Nanjundan M. Iron modulates cell survival in a Ras- and MAPK-dependent manner in ovarian cells. Cell Death Dis. 2013;4:e592 pubmed 出版商
  247. Mao R, Rubio V, Chen H, Bai L, Mansour O, Shi Z. OLA1 protects cells in heat shock by stabilizing HSP70. Cell Death Dis. 2013;4:e491 pubmed 出版商
  248. Balaburski G, Leu J, Beeharry N, Hayik S, Andrake M, Zhang G, et al. A modified HSP70 inhibitor shows broad activity as an anticancer agent. Mol Cancer Res. 2013;11:219-29 pubmed 出版商
  249. Ding Y, Liu Z, Desai S, Zhao Y, Liu H, Pannell L, et al. Receptor tyrosine kinase ErbB2 translocates into mitochondria and regulates cellular metabolism. Nat Commun. 2012;3:1271 pubmed 出版商
  250. Farmer K, Williams S, Novikova L, Ramachandran K, Rawal S, Blagg B, et al. KU-32, a novel drug for diabetic neuropathy, is safe for human islets and improves in vitro insulin secretion and viability. Exp Diabetes Res. 2012;2012:671673 pubmed 出版商
  251. Qi L, Zhang X, Wu J, Lin F, Wang J, DiFiglia M, et al. The role of chaperone-mediated autophagy in huntingtin degradation. PLoS ONE. 2012;7:e46834 pubmed 出版商
  252. Krzysik Walker S, González Mariscal I, Scheibye Knudsen M, Indig F, Bernier M. The biarylpyrazole compound AM251 alters mitochondrial physiology via proteolytic degradation of ERR?. Mol Pharmacol. 2013;83:157-66 pubmed 出版商
  253. Middlekauff H, Vigna C, Verity M, Fonarow G, Horwich T, Hamilton M, et al. Abnormalities of calcium handling proteins in skeletal muscle mirror those of the heart in humans with heart failure: a shared mechanism?. J Card Fail. 2012;18:724-33 pubmed 出版商
  254. Kaiser M, Kühnl A, Reins J, Fischer S, Ortiz Tánchez J, Schlee C, et al. Antileukemic activity of the HSP70 inhibitor pifithrin-? in acute leukemia. Blood Cancer J. 2011;1:e28 pubmed 出版商
  255. Reina C, Nabet B, Young P, Pittman R. Basal and stress-induced Hsp70 are modulated by ataxin-3. Cell Stress Chaperones. 2012;17:729-42 pubmed 出版商
  256. Lamottke B, Kaiser M, Mieth M, Heider U, Gao Z, Nikolova Z, et al. The novel, orally bioavailable HSP90 inhibitor NVP-HSP990 induces cell cycle arrest and apoptosis in multiple myeloma cells and acts synergistically with melphalan by increased cleavage of caspases. Eur J Haematol. 2012;88:406-15 pubmed 出版商
  257. Calabria G, Dolgova O, Rego C, Castañeda L, Rezende E, Balanya J, et al. Hsp70 protein levels and thermotolerance in Drosophila subobscura: a reassessment of the thermal co-adaptation hypothesis. J Evol Biol. 2012;25:691-700 pubmed 出版商
  258. Mitra S, Giesselman B, De Jesús Andino F, Foster T. Tumor response to mTHPC-mediated photodynamic therapy exhibits strong correlation with extracellular release of HSP70. Lasers Surg Med. 2011;43:632-43 pubmed 出版商
  259. Needham P, Mikoluk K, Dhakarwal P, Khadem S, Snyder A, Subramanya A, et al. The thiazide-sensitive NaCl cotransporter is targeted for chaperone-dependent endoplasmic reticulum-associated degradation. J Biol Chem. 2011;286:43611-21 pubmed 出版商
  260. Fischer K, Kölzow N, Höltje H, Karl I. Assay conditions in laboratory experiments: is the use of constant rather than fluctuating temperatures justified when investigating temperature-induced plasticity?. Oecologia. 2011;166:23-33 pubmed 出版商
  261. Irvine M, Philipsz S, Frausto M, Mijatov B, Gallagher S, Fung C, et al. Amino terminal hydrophobic import signals target the p14(ARF) tumor suppressor to the mitochondria. Cell Cycle. 2010;9:829-39 pubmed
  262. Humphries J, Byron A, Bass M, Craig S, Pinney J, Knight D, et al. Proteomic analysis of integrin-associated complexes identifies RCC2 as a dual regulator of Rac1 and Arf6. Sci Signal. 2009;2:ra51 pubmed 出版商
  263. Owens T, Valentijn A, Upton J, Keeble J, Zhang L, Lindsay J, et al. Apoptosis commitment and activation of mitochondrial Bax during anoikis is regulated by p38MAPK. Cell Death Differ. 2009;16:1551-62 pubmed 出版商
  264. Blank M, Bastrop R, Jürss K. Stress protein response in two sibling species of Marenzelleria (Polychaeta: Spionidae): is there an influence of acclimation salinity?. Comp Biochem Physiol B Biochem Mol Biol. 2006;144:451-62 pubmed
  265. Krauss M, Haucke V. Functional assay of effectors of ADP ribosylation factor 6 during clathrin/AP-2 coat recruitment to membranes. Methods Enzymol. 2005;404:388-98 pubmed
  266. Dahlhoff E, Rank N. Functional and physiological consequences of genetic variation at phosphoglucose isomerase: heat shock protein expression is related to enzyme genotype in a montane beetle. Proc Natl Acad Sci U S A. 2000;97:10056-61 pubmed
  267. Desagher S, Osen Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, et al. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol. 1999;144:891-901 pubmed