这是一篇来自已证抗体库的有关人类 IFN丙 (IFN-gamma) 的综述,是根据354篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合IFN丙 抗体。
IFN丙 同义词: IFG; IFI

赛默飞世尔
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 s3a
赛默飞世尔IFN丙抗体(Thermo Fisher, 48-7319-42)被用于被用于流式细胞仪在人类样本上 (图 s3a). Cell (2020) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 s4a
赛默飞世尔IFN丙抗体(eBioscience, 48-7319-41)被用于被用于流式细胞仪在人类样本上 (图 s4a). Cell (2019) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 3a
赛默飞世尔IFN丙抗体(eBioscience, 17-7319-82)被用于被用于流式细胞仪在人类样本上 (图 3a). Cell (2019) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 5f
赛默飞世尔IFN丙抗体(Thermo Fisher, 45-7319-42)被用于被用于流式细胞仪在人类样本上 (图 5f). Cell (2018) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 s4b
赛默飞世尔IFN丙抗体(eBioscience, B27)被用于被用于流式细胞仪在人类样本上 (图 s4b). J Clin Invest (2018) ncbi
小鼠 单克隆(B133.5)
  • 酶联免疫吸附测定; 人类; 图 s3c
赛默飞世尔IFN丙抗体(Thermo Fisher Scientific, B133.5)被用于被用于酶联免疫吸附测定在人类样本上 (图 s3c). Nat Med (2018) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 2e
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 2e). J Exp Med (2018) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 1:100; 图 5a
赛默飞世尔IFN丙抗体(eBioscience, 17-7319-41)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 5a). Nat Commun (2018) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 2g
赛默飞世尔IFN丙抗体(eBiosciences, 17-7319-82)被用于被用于流式细胞仪在人类样本上 (图 2g). Cell (2018) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 6a
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 6a). PLoS ONE (2017) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 s1g
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 s1g). J Immunol (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 酶联免疫吸附测定; 小鼠; 图 3a
赛默飞世尔IFN丙抗体(Pierce-Thermo Fisher, XMG1.2)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 3a). Infect Immun (2018) ncbi
小鼠 单克隆(4S.B3)
  • mass cytometry; 人类; 图 s3a
赛默飞世尔IFN丙抗体(eBioscience, 4S.B4)被用于被用于mass cytometry在人类样本上 (图 s3a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 s5a
赛默飞世尔IFN丙抗体(eBiosciences, 12-7319-42)被用于被用于流式细胞仪在人类样本上 (图 s5a). PLoS Pathog (2017) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 4a
赛默飞世尔IFN丙抗体(eBiosciences, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 4a). J Immunol (2017) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 s2a
赛默飞世尔IFN丙抗体(eBiosciences, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 s2a). J Allergy Clin Immunol (2018) ncbi
小鼠 单克隆(2G1)
  • 酶联免疫吸附测定; 人类; 1.5 ug/ml; 图 6a
赛默飞世尔IFN丙抗体(Thermo Scientific, 2G1)被用于被用于酶联免疫吸附测定在人类样本上浓度为1.5 ug/ml (图 6a). Clin Immunol (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 酶联免疫吸附测定; 小鼠; 图 s7a
赛默飞世尔IFN丙抗体(eBiosciences, XMG1.2)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 s7a). Nat Commun (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 5a
赛默飞世尔IFN丙抗体(Ebiosciences, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 5a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 s3a
赛默飞世尔IFN丙抗体(ebioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 s3a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 3b
赛默飞世尔IFN丙抗体(eBiosciences, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 3b). PLoS Pathog (2016) ncbi
小鼠 单克隆(2G1)
  • 酶联免疫吸附测定; 人类; 4 ug/ml; 图 1
赛默飞世尔IFN丙抗体(Thermo Scientific, M700A)被用于被用于酶联免疫吸附测定在人类样本上浓度为4 ug/ml (图 1). Transplant Direct (2016) ncbi
小鼠 单克隆(B133.5)
  • 酶联免疫吸附测定; 人类; 1 ug/ml; 图 1
赛默飞世尔IFN丙抗体(Thermo Scientific, M701B)被用于被用于酶联免疫吸附测定在人类样本上浓度为1 ug/ml (图 1). Transplant Direct (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 s1c
赛默飞世尔IFN丙抗体(eBiosciences, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 s1c). J Immunol (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 3b
赛默飞世尔IFN丙抗体(eBioscience, 45B3)被用于被用于流式细胞仪在人类样本上 (图 3b). PLoS ONE (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔IFN丙抗体(Invitrogen, MHCIFG05)被用于被用于流式细胞仪在人类样本上 (图 1a). Cell Death Dis (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 4d
赛默飞世尔IFN丙抗体(Invitrogen, B27)被用于被用于流式细胞仪在人类样本上 (图 4d). PLoS Pathog (2016) ncbi
小鼠 单克隆(MD-1)
  • 抑制或激活实验; 人类; 5 ug/ml; 图 7
赛默飞世尔IFN丙抗体(eBioscience, 14-7317-85)被用于被用于抑制或激活实验在人类样本上浓度为5 ug/ml (图 7). Nat Commun (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 4). J Immunol Res (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 2e
赛默飞世尔IFN丙抗体(eBiosciences, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 2e). JCI Insight (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(4S.B3)
  • mass cytometry; 人类; 表 1, 3
赛默飞世尔IFN丙抗体(eBioscience, 4S.B4)被用于被用于mass cytometry在人类样本上 (表 1, 3). Methods Mol Biol (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 9a
赛默飞世尔IFN丙抗体(Invitrogen, B27)被用于被用于流式细胞仪在人类样本上 (图 9a). PLoS ONE (2016) ncbi
小鼠 单克隆(B133.5)
  • 酶联免疫吸附测定; 人类; 图 6b
赛默飞世尔IFN丙抗体(Thermo Scientific, M701B)被用于被用于酶联免疫吸附测定在人类样本上 (图 6b). Neuro Oncol (2016) ncbi
小鼠 单克隆(2G1)
  • 酶联免疫吸附测定; 人类; 图 6b
赛默飞世尔IFN丙抗体(Thermo Scientific, M700A)被用于被用于酶联免疫吸附测定在人类样本上 (图 6b). Neuro Oncol (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔IFN丙抗体(e-Bioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 1a). J Crohns Colitis (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 7
赛默飞世尔IFN丙抗体(e-Bioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 7). J Crohns Colitis (2016) ncbi
小鼠 单克隆(2G1)
  • 酶联免疫吸附测定; 人类; 图 4a
赛默飞世尔IFN丙抗体(Thermo Scientific, 2G1)被用于被用于酶联免疫吸附测定在人类样本上 (图 4a). J Immunol (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔IFN丙抗体(eBioscience, 12-7319)被用于被用于流式细胞仪在人类样本上 (图 3). Mediators Inflamm (2015) ncbi
小鼠 单克隆(350B 10G6 R3)
  • 其他; 人类; 表 1
赛默飞世尔IFN丙抗体(Invitrogen, AHC4432)被用于被用于其他在人类样本上 (表 1). J Microbiol Biotechnol (2016) ncbi
小鼠 单克隆(67F 12A8 L1)
  • 其他; 人类; 表 1
赛默飞世尔IFN丙抗体(Invitrogen, AHC4539)被用于被用于其他在人类样本上 (表 1). J Microbiol Biotechnol (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 7
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 7). Haematologica (2016) ncbi
小鼠 单克隆(2G1)
  • 酶联免疫吸附测定; 人类; 图 1
赛默飞世尔IFN丙抗体(Thermo Scientific, M700A)被用于被用于酶联免疫吸附测定在人类样本上 (图 1). Oncoimmunology (2015) ncbi
小鼠 单克隆(B133.5)
  • 酶联免疫吸附测定; 人类; 图 1
赛默飞世尔IFN丙抗体(Thermo Scientific, M701B)被用于被用于酶联免疫吸附测定在人类样本上 (图 1). Oncoimmunology (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 2b
赛默飞世尔IFN丙抗体(eBioscience, 4S:P3)被用于被用于流式细胞仪在人类样本上 (图 2b). Kidney Int (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 s2a
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 s2a). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类
赛默飞世尔IFN丙抗体(Ebioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上. Clin Immunol (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 s4
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 s4). Infect Immun (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 2). J Immunol (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 2). Cancer Immunol Res (2015) ncbi
小鼠 单克隆(4S.B3)
  • dot blot; 人类; 表 s1
赛默飞世尔IFN丙抗体(ebioscience, 13- 7319-85)被用于被用于dot blot在人类样本上 (表 s1). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 2). J Autoimmun (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 小鼠
赛默飞世尔IFN丙抗体(ebioscience, 4S.B3)被用于被用于流式细胞仪在小鼠样本上. Cancer Immunol Res (2015) ncbi
小鼠 单克隆(B133.5)
  • 酶联免疫吸附测定; 人类; 图 2
赛默飞世尔IFN丙抗体(Thermo Fisher Scientific, B133.5)被用于被用于酶联免疫吸附测定在人类样本上 (图 2). J Exp Med (2015) ncbi
小鼠 单克隆(2G1)
  • 酶联免疫吸附测定; 人类; 图 2
赛默飞世尔IFN丙抗体(Thermo Fisher Scientific, 2G1)被用于被用于酶联免疫吸附测定在人类样本上 (图 2). J Exp Med (2015) ncbi
小鼠 单克隆(4S.B3)
  • 免疫细胞化学; 人类
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于免疫细胞化学在人类样本上. Autoimmun Rev (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 s2
赛默飞世尔IFN丙抗体(eBioscience, 45B3)被用于被用于流式细胞仪在人类样本上 (图 s2). J Immunol (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上. J Allergy Clin Immunol (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上. Chest (2015) ncbi
小鼠 单克隆(NIB42)
  • 抑制或激活实验; 人类; 10 ug/ml; 图 1
赛默飞世尔IFN丙抗体(eBioscience, 16-7318)被用于被用于抑制或激活实验在人类样本上浓度为10 ug/ml (图 1). Autophagy (2014) ncbi
小鼠 单克隆(2G1)
  • 酶联免疫吸附测定; 人类
赛默飞世尔IFN丙抗体(Thermo, 2G1)被用于被用于酶联免疫吸附测定在人类样本上. Nat Immunol (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上. J Virol (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2014) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上. FASEB J (2014) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上. Blood (2014) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上. Leukemia (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 3a
赛默飞世尔IFN丙抗体(eBioscience, 17-7319-82)被用于被用于流式细胞仪在人类样本上 (图 3a). Oncotarget (2014) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 1). Immunology (2015) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 猕猴; 图 4
赛默飞世尔IFN丙抗体(Invitrogen, noca)被用于被用于流式细胞仪在猕猴样本上 (图 4). J Virol (2014) ncbi
小鼠 单克隆(NIB42)
  • 抑制或激活实验; 人类; 10 ug/ml
赛默飞世尔IFN丙抗体(eBioscience, NIB42)被用于被用于抑制或激活实验在人类样本上浓度为10 ug/ml. PLoS ONE (2014) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类
赛默飞世尔IFN丙抗体(Invitrogen, MHCIFG05)被用于被用于流式细胞仪在人类样本上. J Transl Med (2014) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(2G1)
  • 酶联免疫吸附测定; 人类
赛默飞世尔IFN丙抗体(Thermo scientific, M-700A)被用于被用于酶联免疫吸附测定在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(B133.5)
  • 酶联免疫吸附测定; 人类
赛默飞世尔IFN丙抗体(Thermo scientific, M-701B)被用于被用于酶联免疫吸附测定在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 1:100
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上浓度为1:100. PLoS ONE (2012) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔IFN丙抗体(Invitrogen, clone B27)被用于被用于流式细胞仪在人类样本上 (图 3). PLoS ONE (2012) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 s1
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 s1). PLoS Pathog (2011) ncbi
小鼠 单克隆(B-B1)
  • 流式细胞仪; 人类; 10 ug/ml; 图 2
赛默飞世尔IFN丙抗体(Invitrogen, clone AHC4032)被用于被用于流式细胞仪在人类样本上浓度为10 ug/ml (图 2). J Immunol (2011) ncbi
小鼠 单克隆(350B 10G6 R3)
  • 抑制或激活实验; 人类; 5 ug/ml
赛默飞世尔IFN丙抗体(Invitrogen, 350B 10G6)被用于被用于抑制或激活实验在人类样本上浓度为5 ug/ml. Immunol Lett (2011) ncbi
小鼠 单克隆(NIB42)
  • 抑制或激活实验; 人类
赛默飞世尔IFN丙抗体(eBioscience, NIB42)被用于被用于抑制或激活实验在人类样本上. Cell Transplant (2011) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 猕猴; 图 6
赛默飞世尔IFN丙抗体(Invitrogen, B27)被用于被用于流式细胞仪在猕猴样本上 (图 6). Blood (2010) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔IFN丙抗体(Caltag, MHCIFG05)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2010) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 4). J Immunol (2009) ncbi
小鼠 单克隆(GZ-4)
  • 流式细胞仪; 人类; 表 4
赛默飞世尔IFN丙抗体(Caltag, GZ4)被用于被用于流式细胞仪在人类样本上 (表 4). J Immunol (2009) ncbi
小鼠 单克隆(350B 10G6 R3)
  • 酶联免疫吸附测定; 黑猩猩; 图 3
赛默飞世尔IFN丙抗体(Biosource International, 350B10G6)被用于被用于酶联免疫吸附测定在黑猩猩样本上 (图 3). PLoS ONE (2008) ncbi
小鼠 单克隆(67F 12A8 L1)
  • 酶联免疫吸附测定; 黑猩猩; 图 3
赛默飞世尔IFN丙抗体(Biosource International, 67F12A8)被用于被用于酶联免疫吸附测定在黑猩猩样本上 (图 3). PLoS ONE (2008) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类
赛默飞世尔IFN丙抗体(eBioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上. Blood (2008) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 3A
赛默飞世尔IFN丙抗体(e-Bioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 3A). Ann Rheum Dis (2008) ncbi
小鼠 单克隆(NIB42)
  • 抑制或激活实验; 人类; 10 ug/ml
赛默飞世尔IFN丙抗体(eBioscience, NIB42)被用于被用于抑制或激活实验在人类样本上浓度为10 ug/ml. Blood (2007) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类
赛默飞世尔IFN丙抗体(Caltag, B27)被用于被用于流式细胞仪在人类样本上. Blood (2007) ncbi
小鼠 单克隆(350B 10G6 R3)
  • 酶联免疫吸附测定; 人类; 图 3
赛默飞世尔IFN丙抗体(Biosource, 350B10G6)被用于被用于酶联免疫吸附测定在人类样本上 (图 3). Clin Exp Immunol (2006) ncbi
小鼠 单克隆(67F 12A8 L1)
  • 酶联免疫吸附测定; 人类; 图 3
赛默飞世尔IFN丙抗体(Biosource, 67F12A8)被用于被用于酶联免疫吸附测定在人类样本上 (图 3). Clin Exp Immunol (2006) ncbi
小鼠 单克隆(67F 12A8 L1)
  • 酶联免疫吸附测定; 人类
赛默飞世尔IFN丙抗体(BioSource, 67F12A8)被用于被用于酶联免疫吸附测定在人类样本上. Int Immunol (2006) ncbi
小鼠 单克隆(350B 10G6 R3)
  • 酶联免疫吸附测定; 人类; 1.6 ug/ml
赛默飞世尔IFN丙抗体(Biosource, 350B 10G6)被用于被用于酶联免疫吸附测定在人类样本上浓度为1.6 ug/ml. Exp Gerontol (2006) ncbi
小鼠 单克隆(67F 12A8 L1)
  • 酶联免疫吸附测定; 人类; 1:1000
赛默飞世尔IFN丙抗体(Biosource, 67F 12A8)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:1000. Exp Gerontol (2006) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 表 2
赛默飞世尔IFN丙抗体(Caltag, B27)被用于被用于流式细胞仪在人类样本上 (表 2). Eur J Immunol (2005) ncbi
小鼠 单克隆(67F 12A8 L1)
  • 酶联免疫吸附测定; 人类
赛默飞世尔IFN丙抗体(BioSource, 67F12A8)被用于被用于酶联免疫吸附测定在人类样本上. Clin Exp Immunol (2005) ncbi
小鼠 单克隆(350B 10G6 R3)
  • 酶联免疫吸附测定; 人类
赛默飞世尔IFN丙抗体(BioSource, 350B10G6)被用于被用于酶联免疫吸附测定在人类样本上. Clin Exp Immunol (2005) ncbi
小鼠 单克隆(350B 10G6 R3)
  • 酶联免疫吸附测定; 人类
赛默飞世尔IFN丙抗体(BioSource, 350B 10G6)被用于被用于酶联免疫吸附测定在人类样本上. Nat Med (2004) ncbi
小鼠 单克隆(67F 12A8 L1)
  • 酶联免疫吸附测定; 人类
赛默飞世尔IFN丙抗体(BioSource, 67F 12A8)被用于被用于酶联免疫吸附测定在人类样本上. Nat Med (2004) ncbi
小鼠 单克隆(67F 12A8 L1)
  • 酶联免疫吸附测定; 人类
赛默飞世尔IFN丙抗体(Biosource, 67F12A8)被用于被用于酶联免疫吸附测定在人类样本上. J Infect Dis (2004) ncbi
小鼠 单克隆(350B 10G6 R3)
  • 酶联免疫吸附测定; 人类
赛默飞世尔IFN丙抗体(Biosource, 350B10G6)被用于被用于酶联免疫吸附测定在人类样本上. J Infect Dis (2004) ncbi
小鼠 单克隆(67F 12A8 L1)
  • 酶联免疫吸附测定; 人类; 0.2 ug/ml; 表 1
赛默飞世尔IFN丙抗体(Biosource, 67F12A8)被用于被用于酶联免疫吸附测定在人类样本上浓度为0.2 ug/ml (表 1). J Leukoc Biol (2004) ncbi
小鼠 单克隆(350B 10G6 R3)
  • 酶联免疫吸附测定; 人类; 1 ug/ml; 表 1
赛默飞世尔IFN丙抗体(Biosource, 350B1066)被用于被用于酶联免疫吸附测定在人类样本上浓度为1 ug/ml (表 1). J Leukoc Biol (2004) ncbi
小鼠 单克隆(350B 10G6 R3)
  • 酶联免疫吸附测定; 人类; 2.5 ug/ml; 图 1
赛默飞世尔IFN丙抗体(Biosource, 350B10G6)被用于被用于酶联免疫吸附测定在人类样本上浓度为2.5 ug/ml (图 1). Hepatology (2004) ncbi
小鼠 单克隆(67F 12A8 L1)
  • 酶联免疫吸附测定; 人类; 0.5 ug/ml; 图 1
赛默飞世尔IFN丙抗体(Biosource, 67F12A8)被用于被用于酶联免疫吸附测定在人类样本上浓度为0.5 ug/ml (图 1). Hepatology (2004) ncbi
小鼠 单克隆(350B 10G6 R3)
  • 酶联免疫吸附测定; 人类; 图 1
赛默飞世尔IFN丙抗体(Biosource, clone 350B 10G6)被用于被用于酶联免疫吸附测定在人类样本上 (图 1). J Immunol Methods (2003) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔IFN丙抗体(Caltag, B27)被用于被用于流式细胞仪在人类样本上 (图 5). Arch Virol (2003) ncbi
小鼠 单克隆(B133.5)
  • 酶联免疫吸附测定; 人类; 表 1
赛默飞世尔IFN丙抗体(Endogen, B133.5)被用于被用于酶联免疫吸附测定在人类样本上 (表 1). Transplant Proc (2003) ncbi
小鼠 单克隆(2G1)
  • 酶联免疫吸附测定; 人类; 表 1
赛默飞世尔IFN丙抗体(Endogen, 2G1)被用于被用于酶联免疫吸附测定在人类样本上 (表 1). Transplant Proc (2003) ncbi
小鼠 单克隆(350B 10G6 R3)
  • 酶联免疫吸附测定; 人类; 图 4
赛默飞世尔IFN丙抗体(BioSource, 350B 10G6)被用于被用于酶联免疫吸附测定在人类样本上 (图 4). J Immunol (2003) ncbi
小鼠 单克隆(67F 12A8 L1)
  • 酶联免疫吸附测定; 人类; 图 4
赛默飞世尔IFN丙抗体(BioSource, 67F 12A8)被用于被用于酶联免疫吸附测定在人类样本上 (图 4). J Immunol (2003) ncbi
小鼠 单克隆(B-B1)
  • 流式细胞仪; 人类; 5 ug/ml; 图 1
赛默飞世尔IFN丙抗体(BioSource, B-B1)被用于被用于流式细胞仪在人类样本上浓度为5 ug/ml (图 1). J Immunol (2002) ncbi
大鼠 单克隆(XMG1.2)
  • 酶联免疫吸附测定; 小鼠; 图 7
赛默飞世尔IFN丙抗体(Endogen, XMG1.2)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 7). J Immunol (2002) ncbi
小鼠 单克隆(67F 12A8 L1)
  • 酶联免疫吸附测定; 人类; 图 2, 3
赛默飞世尔IFN丙抗体(Biosource, 67F12A8)被用于被用于酶联免疫吸附测定在人类样本上 (图 2, 3). Int Immunol (2001) ncbi
小鼠 单克隆(350B 10G6 R3)
  • 酶联免疫吸附测定; 人类; 图 2, 3
赛默飞世尔IFN丙抗体(Biosource, 350B10G6)被用于被用于酶联免疫吸附测定在人类样本上 (图 2, 3). Int Immunol (2001) ncbi
小鼠 单克隆(B-B1)
  • 酶联免疫吸附测定; 人类
赛默飞世尔IFN丙抗体(Biosource, B-B1)被用于被用于酶联免疫吸附测定在人类样本上. Am J Pathol (2000) ncbi
小鼠 单克隆(350B 10G6 R3)
  • 免疫组化-冰冻切片; 人类; 表 3
赛默飞世尔IFN丙抗体(Biosource, noca)被用于被用于免疫组化-冰冻切片在人类样本上 (表 3). J Surg Res (1999) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类
赛默飞世尔IFN丙抗体(Caltag, B27)被用于被用于流式细胞仪在人类样本上. Mol Pharmacol (1999) ncbi
小鼠 单克隆(350B 10G6 R3)
  • 酶联免疫吸附测定; 人类
赛默飞世尔IFN丙抗体(Biosource, AHC4432)被用于被用于酶联免疫吸附测定在人类样本上. J Exp Med (1999) ncbi
小鼠 单克隆(67F 12A8 L1)
  • 酶联免疫吸附测定; 人类
赛默飞世尔IFN丙抗体(Biosource, AHC4539)被用于被用于酶联免疫吸附测定在人类样本上. J Exp Med (1999) ncbi
BioLegend
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 1b
BioLegendIFN丙抗体(BioLegend, 4SB3)被用于被用于流式细胞仪在人类样本上 (图 1b). J Immunol (2019) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 6b
BioLegendIFN丙抗体(BioLegend, 502536)被用于被用于流式细胞仪在人类样本上 (图 6b). Cell (2019) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 3b
BioLegendIFN丙抗体(Biolegend, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 3b). Front Immunol (2019) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 3b
BioLegendIFN丙抗体(BioLegend, B27)被用于被用于流式细胞仪在人类样本上 (图 3b). Infect Immun (2019) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 1e
BioLegendIFN丙抗体(BioLegend, 502542)被用于被用于流式细胞仪在人类样本上 (图 1e). Cell (2019) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 1:50; 图 s10c
BioLegendIFN丙抗体(Biolegend, B27)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s10c). Nature (2019) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 8d
BioLegendIFN丙抗体(Biolegend, 4 S.B3)被用于被用于流式细胞仪在人类样本上 (图 8d). Nat Commun (2018) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 s3a
BioLegendIFN丙抗体(Biolegend, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 s3a). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 1:20; 图 1a
BioLegendIFN丙抗体(Biolegend, 502536)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 1a). Nat Med (2019) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 1j
BioLegendIFN丙抗体(BioLegend, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 1j). PLoS Pathog (2018) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 4a
BioLegendIFN丙抗体(Biolegend, 502516)被用于被用于流式细胞仪在人类样本上 (图 4a). Cell (2018) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 s3a
BioLegendIFN丙抗体(BD Bioscience, 502531)被用于被用于流式细胞仪在人类样本上 (图 s3a). J Clin Invest (2018) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 5d
BioLegendIFN丙抗体(BioLegend, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 5d). Nat Immunol (2018) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 6a
BioLegendIFN丙抗体(BioLegend, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 6a). Int J Infect Dis (2018) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 3f
BioLegendIFN丙抗体(Biolegend, B27)被用于被用于流式细胞仪在人类样本上 (图 3f). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 3b
BioLegendIFN丙抗体(BioLegend, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 3b). J Exp Med (2018) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 2a
BioLegendIFN丙抗体(BioLegend, B27)被用于被用于流式细胞仪在人类样本上 (图 2a). Cancer Immunol Res (2018) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 2i
BioLegendIFN丙抗体(BioLegend, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 2i). J Clin Invest (2018) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 2c
BioLegendIFN丙抗体(BioLegend, 45.B3)被用于被用于流式细胞仪在人类样本上 (图 2c). J Immunol (2018) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 2b
BioLegendIFN丙抗体(Biolegend, 502511)被用于被用于流式细胞仪在人类样本上 (图 2b). Cell Death Dis (2017) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 1f
BioLegendIFN丙抗体(BioLegend, B27)被用于被用于流式细胞仪在人类样本上 (图 1f). Immun Inflamm Dis (2018) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 3d
BioLegendIFN丙抗体(Biolegend, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 3d). Ann Rheum Dis (2018) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 5
BioLegendIFN丙抗体(BioLegend, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 5). J Immunol (2017) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 s2a
BioLegendIFN丙抗体(Biolegend, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 s2a). Nature (2017) ncbi
小鼠 单克隆(B27)
  • mass cytometry; 人类; 图 2a
BioLegendIFN丙抗体(BioLegend, B27)被用于被用于mass cytometry在人类样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 1a
BioLegendIFN丙抗体(BioLegend, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 1a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 4a
BioLegendIFN丙抗体(BioLegend, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 4a). PLoS ONE (2017) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 1a
BioLegendIFN丙抗体(BioLegend, 4S. B3)被用于被用于流式细胞仪在人类样本上 (图 1a). Oncotarget (2017) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 3d
BioLegendIFN丙抗体(BioLegend, B27)被用于被用于流式细胞仪在人类样本上 (图 3d). Oncoimmunology (2017) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 6b
BioLegendIFN丙抗体(BioLegend, B27)被用于被用于流式细胞仪在人类样本上 (图 6b). J Exp Med (2017) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 4b
BioLegendIFN丙抗体(BioLegend, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 4b). J Immunol (2017) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 2a
BioLegendIFN丙抗体(BioLegend, 506518)被用于被用于流式细胞仪在人类样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 表 s9
BioLegendIFN丙抗体(BioLegend, 502512)被用于被用于流式细胞仪在人类样本上 (表 s9). Nature (2017) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类
BioLegendIFN丙抗体(Biolegend, 4S.B3)被用于被用于流式细胞仪在人类样本上. Sci Rep (2017) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 猕猴
BioLegendIFN丙抗体(Biolegend, 4S.B3)被用于被用于流式细胞仪在猕猴样本上. PLoS Pathog (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 表 1
BioLegendIFN丙抗体(BioLegend, 4S.B3)被用于被用于流式细胞仪在人类样本上 (表 1). J Exp Med (2017) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 小鼠; 图 3d
BioLegendIFN丙抗体(BioLegend, 4S.B3)被用于被用于流式细胞仪在小鼠样本上 (图 3d). J Clin Invest (2017) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 4a
BioLegendIFN丙抗体(Biolegend, 502506)被用于被用于流式细胞仪在人类样本上 (图 4a). Front Immunol (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 3d
BioLegendIFN丙抗体(Biolegend, 502511)被用于被用于流式细胞仪在人类样本上 (图 3d). Cell (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 3d
BioLegendIFN丙抗体(BioLegend, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 3d). J Exp Med (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 2
BioLegendIFN丙抗体(Biolegend, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 2). PLoS Pathog (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 2e
BioLegendIFN丙抗体(BioLegend, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 2e). J Clin Invest (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 s9d
BioLegendIFN丙抗体(Biolegend, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 s9d). Nature (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 7
BioLegendIFN丙抗体(Biolegend, 502520)被用于被用于流式细胞仪在人类样本上 (图 7). Sci Rep (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 2a
BioLegendIFN丙抗体(BioLegend, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 2a). Eur J Immunol (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 s1d
BioLegendIFN丙抗体(Biolegend, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 s1d). Eur J Immunol (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 小鼠; 图 6g
BioLegendIFN丙抗体(BioLegend, B27)被用于被用于流式细胞仪在小鼠样本上 (图 6g). Science (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 6c
BioLegendIFN丙抗体(Biolegend, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 6c). J Biol Chem (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 小鼠; 图 3
BioLegendIFN丙抗体(Biolegend, 502530)被用于被用于流式细胞仪在小鼠样本上 (图 3). Oncoimmunology (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 4b
BioLegendIFN丙抗体(BioLegend, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 4b). Clin Cancer Res (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 3a
BioLegendIFN丙抗体(biolegend, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 3a). J Immunol (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 2a
BioLegendIFN丙抗体(Biolegend, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 2a). PLoS Pathog (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 4c
BioLegendIFN丙抗体(Biolegend, B27)被用于被用于流式细胞仪在人类样本上 (图 4c). Arthritis Res Ther (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 s2a
BioLegendIFN丙抗体(Biolegend, B27)被用于被用于流式细胞仪在人类样本上 (图 s2a). J Immunol (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 4e
BioLegendIFN丙抗体(Biolegend, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 4e). J Immunol (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 1
BioLegendIFN丙抗体(Biolegend, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS Pathog (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类
BioLegendIFN丙抗体(BioLegend, 4S . B3)被用于被用于流式细胞仪在人类样本上. Thromb Res (2015) ncbi
小鼠 单克隆(B27)
  • 免疫细胞化学; 人类; 图 6
BioLegendIFN丙抗体(BioLegend, B27)被用于被用于免疫细胞化学在人类样本上 (图 6). J Hematol Oncol (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 1:200; 图 6
BioLegendIFN丙抗体(Biolegend, 4S.B3)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 6). Nat Commun (2015) ncbi
小鼠 单克隆(MD-1)
  • 免疫组化-石蜡切片; 人类; 图 s4
BioLegendIFN丙抗体(BioLegend, MD-1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s4). Mol Cancer (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 3
BioLegendIFN丙抗体(Biolegend, 502535)被用于被用于流式细胞仪在人类样本上 (图 3). Scand J Immunol (2015) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 4c
BioLegendIFN丙抗体(Biolegend, B27)被用于被用于流式细胞仪在人类样本上 (图 4c). J Immunol Res (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类
BioLegendIFN丙抗体(Biolegend, 502533)被用于被用于流式细胞仪在人类样本上. Hum Immunol (2015) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 2
BioLegendIFN丙抗体(Biolegend, B27)被用于被用于流式细胞仪在人类样本上 (图 2). Cancer Immunol Res (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 2 ul/test
BioLegendIFN丙抗体(Biolegend, 4S.B3)被用于被用于流式细胞仪在人类样本上浓度为2 ul/test. J Immunol Methods (2015) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 3
BioLegendIFN丙抗体(BioLegend, B27)被用于被用于流式细胞仪在人类样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(MD-1)
  • dot blot; 人类; 表 s1
BioLegendIFN丙抗体(Biolegend, 507502)被用于被用于dot blot在人类样本上 (表 s1). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 4
BioLegendIFN丙抗体(Biolegend, B27)被用于被用于流式细胞仪在人类样本上 (图 4). Nat Immunol (2015) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类
BioLegendIFN丙抗体(Biolegend, B27)被用于被用于流式细胞仪在人类样本上. Eur J Immunol (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 10 mg/ml; 图 3
BioLegendIFN丙抗体(BioLegend, 4S.B3)被用于被用于流式细胞仪在人类样本上浓度为10 mg/ml (图 3). J Surg Res (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类
BioLegendIFN丙抗体(Biolegend, 4S.B3)被用于被用于流式细胞仪在人类样本上. Nat Immunol (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类
BioLegendIFN丙抗体(BioLegend, 4S.B3)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 1:40
BioLegendIFN丙抗体(BioLegend, B27)被用于被用于流式细胞仪在人类样本上浓度为1:40. Nat Med (2014) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 1:40
BioLegendIFN丙抗体(BioLegend, 4S.B3)被用于被用于流式细胞仪在人类样本上浓度为1:40. Nat Med (2014) ncbi
小鼠 单克隆(4S.B3)
BioLegendIFN丙抗体(BioLegend, 4S.B3)被用于. J Immunol (2014) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 2
BioLegendIFN丙抗体(Biolegend, B27)被用于被用于流式细胞仪在人类样本上 (图 2). J Infect Dis (2015) ncbi
小鼠 单克隆(4S.B3)
BioLegendIFN丙抗体(Biolegend, 4S.B3)被用于. PLoS ONE (2014) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 2
BioLegendIFN丙抗体(Biolegend, B27)被用于被用于流式细胞仪在人类样本上 (图 2). J Infect Dis (2015) ncbi
小鼠 单克隆(4S.B3)
BioLegendIFN丙抗体(BioLegend, 4S.B3)被用于. J Leukoc Biol (2014) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 5a
BioLegendIFN丙抗体(Biolegend, B27)被用于被用于流式细胞仪在人类样本上 (图 5a). J Invest Dermatol (2015) ncbi
小鼠 单克隆(NIB42)
  • 抑制或激活实验; 人类; 10 ug/ml
BioLegendIFN丙抗体(Biolegend, NIB42)被用于被用于抑制或激活实验在人类样本上浓度为10 ug/ml. AIDS (2014) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类
BioLegendIFN丙抗体(Biolegend, 4S.B3)被用于被用于流式细胞仪在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(4S.B3)
BioLegendIFN丙抗体(BioLegend, 4S.B3)被用于. Cell Immunol (2014) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类
BioLegendIFN丙抗体(BioLegend, B27)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 1
BioLegendIFN丙抗体(Biolegend, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 1). Cancer Immunol Immunother (2014) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类
BioLegendIFN丙抗体(BioLegend, 4S.B3)被用于被用于流式细胞仪在人类样本上. J Cell Physiol (2014) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类
BioLegendIFN丙抗体(BioLegend, 4S.B3)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2013) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类
BioLegendIFN丙抗体(Biolegend, B27)被用于被用于流式细胞仪在人类样本上. Tuberculosis (Edinb) (2013) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(CC302)
  • 流式细胞仪; 犬; 图 5a
伯乐(Bio-Rad)公司IFN丙抗体(AbD Serotec, CC302)被用于被用于流式细胞仪在犬样本上 (图 5a). Front Immunol (2018) ncbi
小鼠 单克隆(CC302)
  • 流式细胞仪; 牛; 1:200; 图 5d
伯乐(Bio-Rad)公司IFN丙抗体(Bio-Rad, MCA1783A647)被用于被用于流式细胞仪在牛样本上浓度为1:200 (图 5d). Vet Res (2017) ncbi
小鼠 单克隆(CC302)
  • 流式细胞仪; 马; 图 3b
伯乐(Bio-Rad)公司IFN丙抗体(Bio-Rad, CC302)被用于被用于流式细胞仪在马样本上 (图 3b). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(CC302)
  • 酶联免疫吸附测定; 牛; 图 3
伯乐(Bio-Rad)公司IFN丙抗体(Serotec, CC302b)被用于被用于酶联免疫吸附测定在牛样本上 (图 3). Infect Immun (2017) ncbi
小鼠 单克隆(CC302)
  • 流式细胞仪; 牛; 1:10; 表 2
伯乐(Bio-Rad)公司IFN丙抗体(AbD Serotec, MCA1783PE)被用于被用于流式细胞仪在牛样本上浓度为1:10 (表 2). Vet Parasitol (2016) ncbi
小鼠 单克隆(CC302)
  • 流式细胞仪; 犬; 图 3
伯乐(Bio-Rad)公司IFN丙抗体(Serotec, mca1783pe)被用于被用于流式细胞仪在犬样本上 (图 3). Acta Vet Scand (2015) ncbi
小鼠 单克隆(CC302)
  • 流式细胞仪; 国内马; 图 4a
伯乐(Bio-Rad)公司IFN丙抗体(AbD Serotec, MCA1783F)被用于被用于流式细胞仪在国内马样本上 (图 4a). PLoS ONE (2015) ncbi
小鼠 单克隆(CC302)
  • 流式细胞仪; 猪
伯乐(Bio-Rad)公司IFN丙抗体(AbD Serotec, CC302)被用于被用于流式细胞仪在猪样本上. Mol Immunol (2015) ncbi
小鼠 单克隆(CC302)
  • 流式细胞仪; 牛
伯乐(Bio-Rad)公司IFN丙抗体(Serotec, MCA1783PE)被用于被用于流式细胞仪在牛样本上. PLoS ONE (2014) ncbi
安迪生物R&D
domestic goat 多克隆
  • 抑制或激活实验; 人类; 10 ug/ml; 图 2s1d
安迪生物R&DIFN丙抗体(R&D, AB-285-NA)被用于被用于抑制或激活实验在人类样本上浓度为10 ug/ml (图 2s1d). elife (2019) ncbi
小鼠 单克隆(25723)
  • 流式细胞仪; 人类; 图 3e
安迪生物R&DIFN丙抗体(R&D Systems, 25723)被用于被用于流式细胞仪在人类样本上 (图 3e). J Clin Invest (2018) ncbi
小鼠 单克隆(25723)
  • 流式细胞仪; 人类; 图 9b
安迪生物R&DIFN丙抗体(R&D, 25723)被用于被用于流式细胞仪在人类样本上 (图 9b). J Virol (2018) ncbi
小鼠 单克隆(25723)
  • 流式细胞仪; 人类; 图 4b
安迪生物R&DIFN丙抗体(R&D Systems, 25723)被用于被用于流式细胞仪在人类样本上 (图 4b). Sci Rep (2016) ncbi
小鼠 单克隆(25718)
  • 抑制或激活实验; 人类; 图 3
安迪生物R&DIFN丙抗体(R&D System, 25718)被用于被用于抑制或激活实验在人类样本上 (图 3). J Immunol Res (2016) ncbi
小鼠 单克隆(25723)
  • 流式细胞仪; 人类; 图 2e
安迪生物R&DIFN丙抗体(R&D Systems, 25723)被用于被用于流式细胞仪在人类样本上 (图 2e). Sci Rep (2016) ncbi
MABTECH
小鼠 单克隆(7-B6-1)
  • 酶联免疫吸附测定; 人类; 1 ug/ml; 图 4c
MABTECHIFN丙抗体(Mabtech, 7-B6-1)被用于被用于酶联免疫吸附测定在人类样本上浓度为1 ug/ml (图 4c). Nature (2017) ncbi
小鼠 单克隆(1-D1K)
  • 酶联免疫吸附测定; 人类; 2 ug/ml; 图 4c
MABTECHIFN丙抗体(Mabtech, 1-D1K)被用于被用于酶联免疫吸附测定在人类样本上浓度为2 ug/ml (图 4c). Nature (2017) ncbi
小鼠 单克隆(1-D1K)
  • 酶联免疫吸附测定; 人类; 图 1a
MABTECHIFN丙抗体(Mabtech, 1D1K)被用于被用于酶联免疫吸附测定在人类样本上 (图 1a). Science (2017) ncbi
小鼠 单克隆(1-D1K)
  • 酶联免疫吸附测定; 人类; 2 ug/ml; 图 6a
MABTECHIFN丙抗体(Mabtech, 3420-2H)被用于被用于酶联免疫吸附测定在人类样本上浓度为2 ug/ml (图 6a). Oncoimmunology (2016) ncbi
小鼠 单克隆(1-D1K)
  • 酶联免疫吸附测定; 人类; 1 ug/ml; 图 4b
MABTECHIFN丙抗体(Mabtech, 1-D1K)被用于被用于酶联免疫吸附测定在人类样本上浓度为1 ug/ml (图 4b). Nature (2016) ncbi
小鼠 单克隆(7-B6-1)
  • 酶联免疫吸附测定; 人类; 图 4b
MABTECHIFN丙抗体(Mabtech, 7-B6-1)被用于被用于酶联免疫吸附测定在人类样本上 (图 4b). Nature (2016) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 2h
艾博抗(上海)贸易有限公司IFN丙抗体(Abcam, ab9657)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2h). Nat Commun (2018) ncbi
domestic rabbit 单克隆(EPR1108)
  • 免疫细胞化学; 小鼠; 1:200; 图 3e
艾博抗(上海)贸易有限公司IFN丙抗体(Abcam, ab133566)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3e). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:300; 图 3
艾博抗(上海)贸易有限公司IFN丙抗体(Abcam, Ab9657)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 3). Reprod Biol (2016) ncbi
domestic rabbit 多克隆
  • 抑制或激活实验; 人类; 图 s7
艾博抗(上海)贸易有限公司IFN丙抗体(Abcam, ab9657)被用于被用于抑制或激活实验在人类样本上 (图 s7). Nat Med (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(3F1E3)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术IFN丙抗体(Santa Cruz, Sc32813)被用于被用于免疫印迹在人类样本上 (图 1). J Matern Fetal Neonatal Med (2016) ncbi
小鼠 单克隆(G-23)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术IFN丙抗体(Santa Cruz, sc-8423)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2015) ncbi
贝克曼库尔特实验系统(苏州)有限公司
小鼠 单克隆(45.15)
  • 流式细胞仪; 人类; 图 1
贝克曼库尔特实验系统(苏州)有限公司IFN丙抗体(Beckman Coulter, IM2716U)被用于被用于流式细胞仪在人类样本上 (图 1). Exp Ther Med (2017) ncbi
小鼠 单克隆(45.15)
  • 流式细胞仪; 人类; 图 3b
贝克曼库尔特实验系统(苏州)有限公司IFN丙抗体(Beckman Coulter, 45.15)被用于被用于流式细胞仪在人类样本上 (图 3b). PLoS ONE (2016) ncbi
小鼠 单克隆(45.15)
  • 流式细胞仪; 人类; 图 2B
贝克曼库尔特实验系统(苏州)有限公司IFN丙抗体(Beckman Coulter, 45.15)被用于被用于流式细胞仪在人类样本上 (图 2B). J Immunol (2014) ncbi
碧迪BD
小鼠 单克隆(B27)
  • 抑制或激活实验; 人类; 10 ng/ml; 图 7a
碧迪BDIFN丙抗体(BD Biosciences, 554698)被用于被用于抑制或激活实验在人类样本上浓度为10 ng/ml (图 7a). elife (2019) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 1:333; 图 s6
碧迪BDIFN丙抗体(BD Biosciences, 557643)被用于被用于流式细胞仪在人类样本上浓度为1:333 (图 s6). Science (2019) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 1g
碧迪BDIFN丙抗体(BD Biosciences, 554702)被用于被用于流式细胞仪在人类样本上 (图 1g). Cell (2019) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 1:50; 图 1d
碧迪BDIFN丙抗体(BD Biosciences, 4S.B3)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1d). Gastroenterology (2019) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 3a
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上 (图 3a). Blood (2019) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 1b
碧迪BDIFN丙抗体(BD, B27)被用于被用于流式细胞仪在人类样本上 (图 1b). J Virol (2019) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 1a
碧迪BDIFN丙抗体(BD, B27)被用于被用于流式细胞仪在人类样本上 (图 1a). J Virol (2019) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 1b
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上 (图 1b). Nat Med (2019) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 5b
碧迪BDIFN丙抗体(BD, 554702)被用于被用于流式细胞仪在人类样本上 (图 5b). Cell (2018) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 2d
碧迪BDIFN丙抗体(BD Biosciences, 554552)被用于被用于流式细胞仪在人类样本上 (图 2d). Cell Rep (2018) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 ex8d
碧迪BDIFN丙抗体(BD Pharmingen, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 ex8d). Nature (2018) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 s3
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上 (图 s3). J Infect Dis (2019) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 2e
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上 (图 2e). J Infect Dis (2018) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 s8
碧迪BDIFN丙抗体(BD, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 s8). J Clin Invest (2018) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 s3b
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上 (图 s3b). Int J Hematol (2018) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 1e
碧迪BDIFN丙抗体(BD Biosciences, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 1e). J Immunol (2018) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 2a
碧迪BDIFN丙抗体(BD, B27)被用于被用于流式细胞仪在人类样本上 (图 2a). J Immunol (2018) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 表 1
碧迪BDIFN丙抗体(BD Biosciences, 554702)被用于被用于流式细胞仪在人类样本上 (表 1). J Clin Invest (2018) ncbi
小鼠 单克隆(4S.B3)
  • 酶联免疫吸附测定; 人类; 1 ug/ml; 图 s5o
碧迪BDIFN丙抗体(BD, 4S.B3)被用于被用于酶联免疫吸附测定在人类样本上浓度为1 ug/ml (图 s5o). J Cell Biol (2018) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 6h
碧迪BDIFN丙抗体(BD, B27)被用于被用于流式细胞仪在人类样本上 (图 6h). Cancer Res (2018) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 5a
碧迪BDIFN丙抗体(BD Biosciences, 554702)被用于被用于流式细胞仪在人类样本上 (图 5a). Front Immunol (2018) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 1f
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上 (图 1f). Front Immunol (2018) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 4a
碧迪BDIFN丙抗体(BD Biosciences, 554702)被用于被用于流式细胞仪在人类样本上 (图 4a). Oncotarget (2018) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 6b
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上 (图 6b). Sci Rep (2018) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 猕猴; 图 1a
碧迪BDIFN丙抗体(BD Biosciences, 561024)被用于被用于流式细胞仪在猕猴样本上 (图 1a). Cell (2018) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 3e
碧迪BDIFN丙抗体(BD Biosciences, 554702)被用于被用于流式细胞仪在人类样本上 (图 3e). Cell (2018) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 s1
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上 (图 s1). PLoS ONE (2017) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 1a
  • 酶联免疫吸附测定; 人类; 图 3a
碧迪BDIFN丙抗体(BD, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 1a) 和 被用于酶联免疫吸附测定在人类样本上 (图 3a). J Immunol (2017) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 3d
碧迪BDIFN丙抗体(BD, 554552)被用于被用于流式细胞仪在人类样本上 (图 3d). J Clin Invest (2017) ncbi
小鼠 单克隆(25723.11)
  • 流式细胞仪; 人类; 图 5d
碧迪BDIFN丙抗体(BD Biosciences, 340452)被用于被用于流式细胞仪在人类样本上 (图 5d). Oncoimmunology (2017) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 4b
碧迪BDIFN丙抗体(BD Bioscience, 559327)被用于被用于流式细胞仪在人类样本上 (图 4b). Oncoimmunology (2017) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 5c
碧迪BDIFN丙抗体(BD Bioscience, B27)被用于被用于流式细胞仪在人类样本上 (图 5c). Cancer Res (2017) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 猕猴; 图 5c
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在猕猴样本上 (图 5c). JCI Insight (2017) ncbi
小鼠 单克隆(4S.B3)
  • 酶联免疫吸附测定; 人类; 图 7b
  • 酶联免疫吸附测定; 小鼠; 图 5a, 6a
碧迪BDIFN丙抗体(BD, 554550)被用于被用于酶联免疫吸附测定在人类样本上 (图 7b) 和 被用于酶联免疫吸附测定在小鼠样本上 (图 5a, 6a). J Immunol (2017) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 4c
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上 (图 4c). J Immunol (2017) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 5
碧迪BDIFN丙抗体(BD, 557995)被用于被用于流式细胞仪在人类样本上 (图 5). Eur J Immunol (2017) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 小鼠; 图 s6d
碧迪BDIFN丙抗体(BD Horizon, B27)被用于被用于流式细胞仪在小鼠样本上 (图 s6d). Nature (2017) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 6a
碧迪BDIFN丙抗体(BD Bioscience, B27)被用于被用于流式细胞仪在人类样本上 (图 6a). Immunity (2017) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 猕猴; 图 3a
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在猕猴样本上 (图 3a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 1:10; 图 2b
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上浓度为1:10 (图 2b). JCI Insight (2017) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类
碧迪BDIFN丙抗体(BD Bioscience, B27)被用于被用于流式细胞仪在人类样本上. Sci Rep (2017) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 5a
碧迪BDIFN丙抗体(BD Bioscience, 562016)被用于被用于流式细胞仪在人类样本上 (图 5a). Sci Rep (2017) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 猕猴; 表 1
碧迪BDIFN丙抗体(BD Biosciences, 4S.B3)被用于被用于流式细胞仪在猕猴样本上 (表 1). Vaccine (2017) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 1a
碧迪BDIFN丙抗体(BD, B27)被用于被用于流式细胞仪在人类样本上 (图 1a). Tuberculosis (Edinb) (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 猕猴; 图 6b
碧迪BDIFN丙抗体(BD Pharmingen, 560371)被用于被用于流式细胞仪在猕猴样本上 (图 6b). Transplantation (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 2c
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上 (图 2c). J Immunol (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 s4b
碧迪BDIFN丙抗体(BD Biosciences, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 s4b). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 猕猴; 图 4a
碧迪BDIFN丙抗体(BD Pharmingen, B27)被用于被用于流式细胞仪在猕猴样本上 (图 4a). J Immunol (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 8a
碧迪BDIFN丙抗体(BD, 554700)被用于被用于流式细胞仪在人类样本上 (图 8a). J Virol (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 猕猴; 图 8b
碧迪BDIFN丙抗体(BD, 552882)被用于被用于流式细胞仪在猕猴样本上 (图 8b). Sci Rep (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 s3b
碧迪BDIFN丙抗体(BD Biosciences, 554702)被用于被用于流式细胞仪在人类样本上 (图 s3b). Cell (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类
碧迪BDIFN丙抗体(BD, B27)被用于被用于流式细胞仪在人类样本上. J Exp Med (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 1a
碧迪BDIFN丙抗体(BD, B27)被用于被用于流式细胞仪在人类样本上 (图 1a). Clin Immunol (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 猕猴; 图 6d
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在猕猴样本上 (图 6d). Front Immunol (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 猕猴; 图 1b
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在猕猴样本上 (图 1b). J Virol (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 2c
碧迪BDIFN丙抗体(Becton-Dickinson, B27)被用于被用于流式细胞仪在人类样本上 (图 2c). J Immunol (2016) ncbi
小鼠 单克隆(4S.B3)
  • 酶联免疫吸附测定; 人类; 图 1
碧迪BDIFN丙抗体(BD Biosciences, 4S.B3)被用于被用于酶联免疫吸附测定在人类样本上 (图 1). Arthritis Res Ther (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 1
碧迪BDIFN丙抗体(BD Pharmigen, 557643)被用于被用于流式细胞仪在人类样本上 (图 1). Oncoimmunology (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 1
碧迪BDIFN丙抗体(BD Bioscience, 557844)被用于被用于流式细胞仪在人类样本上 (图 1). Oncoimmunology (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 6c
碧迪BDIFN丙抗体(BD, B27)被用于被用于流式细胞仪在人类样本上 (图 6c). J Immunol (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 3a
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上 (图 3a). J Immunol (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 s1b
碧迪BDIFN丙抗体(BD, B27)被用于被用于流式细胞仪在人类样本上 (图 s1b). J Immunol (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 1d
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上 (图 1d). Clin Transl Gastroenterol (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 s1
碧迪BDIFN丙抗体(BD Pharmingen, B27)被用于被用于流式细胞仪在人类样本上 (图 s1). J Immunol (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 6
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上 (图 6). J Transl Med (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 猕猴; 图 4f
碧迪BDIFN丙抗体(Beckman Coulter, 554702)被用于被用于流式细胞仪在猕猴样本上 (图 4f). Nat Med (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 3b
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上 (图 3b). J Immunol (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 1a
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2016) ncbi
小鼠 单克隆(25723.11)
  • 流式细胞仪; 人类; 图 s5c
碧迪BDIFN丙抗体(BD Bioscience, 25723.11)被用于被用于流式细胞仪在人类样本上 (图 s5c). Nat Commun (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; African green monkey; 图 1c
碧迪BDIFN丙抗体(BD, B27)被用于被用于流式细胞仪在African green monkey样本上 (图 1c). J Med Primatol (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 6b
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上 (图 6b). PLoS ONE (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 3a
碧迪BDIFN丙抗体(BD Bioscience, B27)被用于被用于流式细胞仪在人类样本上 (图 3a). Nat Immunol (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 表 2
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上 (表 2). Vaccine (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 猕猴
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在猕猴样本上. PLoS ONE (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 4a
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上 (图 4a). Sci Rep (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 猕猴; 图 3e
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在猕猴样本上 (图 3e). J Immunol (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 s1
碧迪BDIFN丙抗体(BD Biosciences, 557844)被用于被用于流式细胞仪在人类样本上 (图 s1). J Clin Invest (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类
碧迪BDIFN丙抗体(BD, 557995)被用于被用于流式细胞仪在人类样本上. Oncoimmunology (2016) ncbi
小鼠 单克隆(25723.11)
  • 流式细胞仪; 人类; 图 6
碧迪BDIFN丙抗体(BD Biosciences, 25723.11)被用于被用于流式细胞仪在人类样本上 (图 6). J Virol (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; African green monkey; 图 5a
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在African green monkey样本上 (图 5a). Infect Immun (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 4a
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上 (图 4a). J Immunol (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 2d
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上 (图 2d). J Allergy Clin Immunol (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 s2
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上 (图 s2). PLoS ONE (2015) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 1b
碧迪BDIFN丙抗体(BD, B27)被用于被用于流式细胞仪在人类样本上 (图 1b). J Virol (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 7
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上 (图 7). Retrovirology (2015) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 8b
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上 (图 8b). J Biol Chem (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 猕猴; 图 3
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在猕猴样本上 (图 3). J Virol (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 2a
碧迪BDIFN丙抗体(BD Pharmingen, B27)被用于被用于流式细胞仪在人类样本上 (图 2a). Eur J Immunol (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 犬; 图 5
碧迪BDIFN丙抗体(BD, 559327)被用于被用于流式细胞仪在犬样本上 (图 5). Acta Vet Scand (2015) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 4c
碧迪BDIFN丙抗体(BD-PharMingen, 557718)被用于被用于流式细胞仪在人类样本上 (图 4c). Hum Vaccin Immunother (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 1
碧迪BDIFN丙抗体(BD Biosciences, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 1). Mucosal Immunol (2016) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 猕猴; 图 3
碧迪BDIFN丙抗体(BD Pharmingen, B27)被用于被用于流式细胞仪在猕猴样本上 (图 3). J Virol (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 6
碧迪BDIFN丙抗体(BD, 559326)被用于被用于流式细胞仪在人类样本上 (图 6). J Exp Med (2015) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 1:200; 图 1
碧迪BDIFN丙抗体(BD, 557995)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类
碧迪BDIFN丙抗体(BD Biosciences, clone B27)被用于被用于流式细胞仪在人类样本上. Clin Vaccine Immunol (2015) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类
碧迪BDIFN丙抗体(BD PharMingen, 560371)被用于被用于流式细胞仪在人类样本上. MAbs (2015) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; South American squirrel monkey
  • 酶联免疫吸附测定; South American squirrel monkey
碧迪BDIFN丙抗体(BD Bioscience, B27)被用于被用于流式细胞仪在South American squirrel monkey样本上 和 被用于酶联免疫吸附测定在South American squirrel monkey样本上. Malar J (2015) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 1b
碧迪BDIFN丙抗体(BD Pharmingen, B27)被用于被用于流式细胞仪在人类样本上 (图 1b). Retrovirology (2015) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 1:20; 图 1
碧迪BDIFN丙抗体(BD, 557995)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 1). Clin Vaccine Immunol (2015) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 3
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上 (图 3). J Virol (2015) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 6:100; 图 3b
碧迪BDIFN丙抗体(Becton Dickinson, B27)被用于被用于流式细胞仪在人类样本上浓度为6:100 (图 3b). Nat Commun (2015) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 2b
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上 (图 2b). J Immunol (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类
碧迪BDIFN丙抗体(BD, 4S.B3)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2015) ncbi
小鼠 单克隆(4S.B3)
  • 酶联免疫吸附测定; 人类; 图 1
碧迪BDIFN丙抗体(BD Pharmingen, 554550)被用于被用于酶联免疫吸附测定在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 5
碧迪BDIFN丙抗体(BD Bioscience, B27)被用于被用于流式细胞仪在人类样本上 (图 5). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类
碧迪BDIFN丙抗体(BD Horizon, . 562392)被用于被用于流式细胞仪在人类样本上. Curr Protoc Cytom (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 1a
碧迪BDIFN丙抗体(BD Bioscience, 557074)被用于被用于流式细胞仪在人类样本上 (图 1a). Immunol Res (2015) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上. J Immunol Methods (2015) ncbi
小鼠 单克隆(25723.11)
  • 流式细胞仪; 人类
碧迪BDIFN丙抗体(BD Biosciences, 25723.11)被用于被用于流式细胞仪在人类样本上. J Immunol Methods (2015) ncbi
小鼠 单克隆(25723.11)
  • 流式细胞仪; 人类
碧迪BDIFN丙抗体(BD Bioscience, 25723.11)被用于被用于流式细胞仪在人类样本上. Immun Inflamm Dis (2014) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类
碧迪BDIFN丙抗体(BD Pharmingen, B27)被用于被用于流式细胞仪在人类样本上. Chest (2015) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类
碧迪BDIFN丙抗体(BD, B27)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类
碧迪BDIFN丙抗体(BD, B27)被用于被用于流式细胞仪在人类样本上. Nat Immunol (2015) ncbi
小鼠 单克隆(25723.11)
  • 流式细胞仪; 人类; 1:10
碧迪BDIFN丙抗体(BD Biosciences, 25723.11)被用于被用于流式细胞仪在人类样本上浓度为1:10. Nat Commun (2014) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 7
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上 (图 7). Immunol Cell Biol (2015) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 猕猴
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在猕猴样本上. J Immunol (2014) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上. J Gen Virol (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类
碧迪BDIFN丙抗体(BD Biosciences, 4S.B3)被用于被用于流式细胞仪在人类样本上. Rheumatology (Oxford) (2015) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类
碧迪BDIFN丙抗体(BD Pharmingen, B27)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(B27)
  • 免疫细胞化学; 人类
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于免疫细胞化学在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 猕猴
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在猕猴样本上. J Immunol (2014) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类
碧迪BDIFN丙抗体(BD, B27)被用于被用于流式细胞仪在人类样本上. Eur J Immunol (2014) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 2
碧迪BDIFN丙抗体(BD Pharmingen, clone B27)被用于被用于流式细胞仪在人类样本上 (图 2). Clin Immunol (2014) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类
碧迪BDIFN丙抗体(BD Biosciences, Clone B27)被用于被用于流式细胞仪在人类样本上. Vaccine (2014) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类
碧迪BDIFN丙抗体(BD Pharmingen, B27)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 猕猴
碧迪BDIFN丙抗体(BD Biosciences, 4S.B3)被用于被用于流式细胞仪在猕猴样本上. J Leukoc Biol (2014) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 猕猴
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在猕猴样本上. Blood (2014) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类
碧迪BDIFN丙抗体(BD Bioscience, B27)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(25723.11)
  • 流式细胞仪; 人类
碧迪BDIFN丙抗体(BD Biosciences, 25723.11)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 猕猴; 图 5b
碧迪BDIFN丙抗体(BD, B27)被用于被用于流式细胞仪在猕猴样本上 (图 5b). J Immunol (2014) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类
碧迪BDIFN丙抗体(BD Pharmingen, 4S.B3)被用于被用于流式细胞仪在人类样本上. Virol J (2014) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类
碧迪BDIFN丙抗体(BD, B27)被用于被用于流式细胞仪在人类样本上. J Exp Med (2014) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 6c
碧迪BDIFN丙抗体(BD Bioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 6c). J Immunol (2014) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(B27)
  • 酶联免疫吸附测定; 人类; 图 3
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于酶联免疫吸附测定在人类样本上 (图 3). Sci Transl Med (2014) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 猕猴
碧迪BDIFN丙抗体(BD, B27)被用于被用于流式细胞仪在猕猴样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 1
碧迪BDIFN丙抗体(BD Pharmingen, clone B27)被用于被用于流式细胞仪在人类样本上 (图 1). Front Immunol (2014) ncbi
小鼠 单克隆(B27)
  • 流式细胞仪; 人类; 图 1a
碧迪BDIFN丙抗体(BD Biosciences, B27)被用于被用于流式细胞仪在人类样本上 (图 1a). J Infect Dis (2014) ncbi
文章列表
  1. Lee J, Hall J, Kroehling L, Wu L, Najar T, Nguyen H, et al. Serum Amyloid A Proteins Induce Pathogenic Th17 Cells and Promote Inflammatory Disease. Cell. 2020;180:79-91.e16 pubmed 出版商
  2. Martínez Fábregas J, Wilmes S, Wang L, Hafer M, Pohler E, Lokau J, et al. Kinetics of cytokine receptor trafficking determine signaling and functional selectivity. elife. 2019;8: pubmed 出版商
  3. Crank M, Ruckwardt T, Chen M, Morabito K, Phung E, Costner P, et al. A proof of concept for structure-based vaccine design targeting RSV in humans. Science. 2019;365:505-509 pubmed 出版商
  4. Meckiff B, Ladell K, McLaren J, Ryan G, Leese A, James E, et al. Primary EBV Infection Induces an Acute Wave of Activated Antigen-Specific Cytotoxic CD4+ T Cells. J Immunol. 2019;203:1276-1287 pubmed 出版商
  5. Jennewein M, Goldfarb I, Dolatshahi S, Cosgrove C, Noelette F, Krykbaeva M, et al. Fc Glycan-Mediated Regulation of Placental Antibody Transfer. Cell. 2019;: pubmed 出版商
  6. Gauthier L, Morel A, Anceriz N, Rossi B, Blanchard Alvarez A, Grondin G, et al. Multifunctional Natural Killer Cell Engagers Targeting NKp46 Trigger Protective Tumor Immunity. Cell. 2019;177:1701-1713.e16 pubmed 出版商
  7. Ahmed R, Omidian Z, Giwa A, Cornwell B, Majety N, Bell D, et al. A Public BCR Present in a Unique Dual-Receptor-Expressing Lymphocyte from Type 1 Diabetes Patients Encodes a Potent T Cell Autoantigen. Cell. 2019;177:1583-1599.e16 pubmed 出版商
  8. Zumaquero E, Stone S, Scharer C, Jenks S, Nellore A, Mousseau B, et al. IFNγ induces epigenetic programming of human T-bethi B cells and promotes TLR7/8 and IL-21 induced differentiation. elife. 2019;8: pubmed 出版商
  9. Thauland T, Pellerin L, Ohgami R, Bacchetta R, Butte M. Case Study: Mechanism for Increased Follicular Helper T Cell Development in Activated PI3K Delta Syndrome. Front Immunol. 2019;10:753 pubmed 出版商
  10. van de Garde M, van Westen E, Poelen M, Rots N, van Els C. Prediction and Validation of Immunogenic Domains of Pneumococcal Proteins Recognized by Human CD4+ T Cells. Infect Immun. 2019;87: pubmed 出版商
  11. Bacher P, Hohnstein T, Beerbaum E, Röcker M, Blango M, Kaufmann S, et al. Human Anti-fungal Th17 Immunity and Pathology Rely on Cross-Reactivity against Candida albicans. Cell. 2019;: pubmed 出版商
  12. Lodygin D, Hermann M, Schweingruber N, Flügel Koch C, Watanabe T, Schlosser C, et al. β-Synuclein-reactive T cells induce autoimmune CNS grey matter degeneration. Nature. 2019;566:503-508 pubmed 出版商
  13. Karimzadeh H, Kiraithe M, Oberhardt V, Salimi Alizei E, Bockmann J, Schulze zur Wiesch J, et al. Mutations in Hepatitis D Virus Allow It to Escape Detection by CD8+ T Cells and Evolve at the Population Level. Gastroenterology. 2019;156:1820-1833 pubmed 出版商
  14. Mayassi T, Ladell K, Gudjonson H, McLaren J, Shaw D, Tran M, et al. Chronic Inflammation Permanently Reshapes Tissue-Resident Immunity in Celiac Disease. Cell. 2019;176:967-981.e19 pubmed 出版商
  15. Hallner A, Bernson E, Hussein B, Sander F, Brune M, Aurelius J, et al. The HLA-B -21 dimorphism impacts on NK cell education and clinical outcome of immunotherapy in acute myeloid leukemia. Blood. 2019;: pubmed 出版商
  16. Amelio P, Portevin D, Hella J, Reither K, Kamwela L, Lweno O, et al. HIV Infection Functionally Impairs Mycobacterium tuberculosis-Specific CD4 and CD8 T-Cell Responses. J Virol. 2019;93: pubmed 出版商
  17. Jegaskanda S, Vanderven H, Tan H, Alcantara S, Wragg K, Parsons M, et al. Influenza Virus Infection Enhances Antibody-Mediated NK Cell Functions via Type I Interferon-Dependent Pathways. J Virol. 2019;93: pubmed 出版商
  18. Scheper W, Kelderman S, Fanchi L, Linnemann C, Bendle G, de Rooij M, et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat Med. 2019;25:89-94 pubmed 出版商
  19. Andre P, Denis C, Soulas C, Bourbon Caillet C, Lopez J, Arnoux T, et al. Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells. Cell. 2018;175:1731-1743.e13 pubmed 出版商
  20. Kim C, Hu B, Jadhav R, Jin J, Zhang H, Cavanagh M, et al. Activation of miR-21-Regulated Pathways in Immune Aging Selects against Signatures Characteristic of Memory T Cells. Cell Rep. 2018;25:2148-2162.e5 pubmed 出版商
  21. Aulicino A, Rue Albrecht K, Preciado Llanes L, Napolitani G, Ashley N, Cribbs A, et al. Invasive Salmonella exploits divergent immune evasion strategies in infected and bystander dendritic cell subsets. Nat Commun. 2018;9:4883 pubmed 出版商
  22. Dias J, Boulouis C, Gorin J, van den Biggelaar R, Lal K, Gibbs A, et al. The CD4-CD8- MAIT cell subpopulation is a functionally distinct subset developmentally related to the main CD8+ MAIT cell pool. Proc Natl Acad Sci U S A. 2018;115:E11513-E11522 pubmed 出版商
  23. Wagner D, Amini L, Wendering D, Burkhardt L, Akyüz L, Reinke P, et al. High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat Med. 2019;25:242-248 pubmed 出版商
  24. Song M, Sandoval T, Chae C, Chopra S, Tan C, Rutkowski M, et al. IRE1α-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature. 2018;562:423-428 pubmed 出版商
  25. Ye W, Chew M, Hou J, Lai F, Leopold S, Loo H, et al. Microvesicles from malaria-infected red blood cells activate natural killer cells via MDA5 pathway. PLoS Pathog. 2018;14:e1007298 pubmed 出版商
  26. Bradley T, Peppa D, Pedroza Pacheco I, Li D, Cain D, Henao R, et al. RAB11FIP5 Expression and Altered Natural Killer Cell Function Are Associated with Induction of HIV Broadly Neutralizing Antibody Responses. Cell. 2018;175:387-399.e17 pubmed 出版商
  27. van Erp E, Feyaerts D, Duijst M, Mulder H, Wicht O, Luytjes W, et al. Respiratory Syncytial Virus Infects Primary Neonatal and Adult Natural Killer Cells and Affects Their Antiviral Effector Function. J Infect Dis. 2019;219:723-733 pubmed 出版商
  28. Patel N, Vukmanovic Stejic M, Suárez Fariñas M, Chambers E, Sandhu D, Fuentes Duculan J, et al. Impact of Zostavax Vaccination on T-Cell Accumulation and Cutaneous Gene Expression in the Skin of Older Humans After Varicella Zoster Virus Antigen-Specific Challenge. J Infect Dis. 2018;218:S88-S98 pubmed 出版商
  29. Petrelli A, Mijnheer G, Hoytema van Konijnenburg D, van der Wal M, Giovannone B, Mocholí E, et al. PD-1+CD8+ T cells are clonally expanding effectors in human chronic inflammation. J Clin Invest. 2018;128:4669-4681 pubmed 出版商
  30. Watanabe N, Takaku T, Takeda K, Shirane S, Toyota T, Koike M, et al. Dasatinib-induced anti-leukemia cellular immunity through a novel subset of CD57 positive helper/cytotoxic CD4 T cells in chronic myelogenous leukemia patients. Int J Hematol. 2018;108:588-597 pubmed 出版商
  31. Walwyn Brown K, Guldevall K, Saeed M, Pende D, Önfelt B, MacDonald A, et al. Human NK Cells Lyse Th2-Polarizing Dendritic Cells via NKp30 and DNAM-1. J Immunol. 2018;201:2028-2041 pubmed 出版商
  32. McGill J, Wang Y, Ganta C, Boorgula G, Ganta R. Antigen-Specific CD4+CD8+ Double-Positive T Cells Are Increased in the Blood and Spleen During Ehrlichia chaffeensis Infection in the Canine Host. Front Immunol. 2018;9:1585 pubmed 出版商
  33. Levin M, Kroehl M, Johnson M, Hammes A, Reinhold D, Lang N, et al. Th1 memory differentiates recombinant from live herpes zoster vaccines. J Clin Invest. 2018;128:4429-4440 pubmed 出版商
  34. Yang T, St John L, Garber H, Kerros C, Ruisaard K, Clise Dwyer K, et al. Membrane-Associated Proteinase 3 on Granulocytes and Acute Myeloid Leukemia Inhibits T Cell Proliferation. J Immunol. 2018;201:1389-1399 pubmed 出版商
  35. D Addio F, Vergani A, Potena L, Maestroni A, Usuelli V, Ben Nasr M, et al. P2X7R mutation disrupts the NLRP3-mediated Th program and predicts poor cardiac allograft outcomes. J Clin Invest. 2018;128:3490-3503 pubmed 出版商
  36. Srpan K, Ambrose A, Karampatzakis A, Saeed M, Cartwright A, Guldevall K, et al. Shedding of CD16 disassembles the NK cell immune synapse and boosts serial engagement of target cells. J Cell Biol. 2018;217:3267-3283 pubmed 出版商
  37. Jung I, Kim Y, Yu H, Lee M, Kim S, Lee J. CRISPR/Cas9-Mediated Knockout of DGK Improves Antitumor Activities of Human T Cells. Cancer Res. 2018;78:4692-4703 pubmed 出版商
  38. Boutboul D, Kuehn H, Van de Wyngaert Z, Niemela J, Callebaut I, Stoddard J, et al. Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. J Clin Invest. 2018;128:3071-3087 pubmed 出版商
  39. Capuano C, Battella S, Pighi C, Franchitti L, Turriziani O, Morrone S, et al. Tumor-Targeting Anti-CD20 Antibodies Mediate In Vitro Expansion of Memory Natural Killer Cells: Impact of CD16 Affinity Ligation Conditions and In Vivo Priming. Front Immunol. 2018;9:1031 pubmed 出版商
  40. Zacharakis N, Chinnasamy H, Black M, Xu H, Lu Y, Zheng Z, et al. Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat Med. 2018;24:724-730 pubmed 出版商
  41. García Nores G, Ly C, Cuzzone D, Kataru R, Hespe G, Torrisi J, et al. CD4+ T cells are activated in regional lymph nodes and migrate to skin to initiate lymphedema. Nat Commun. 2018;9:1970 pubmed 出版商
  42. Provine N, Binder B, FitzPatrick M, Schuch A, Garner L, Williamson K, et al. Unique and Common Features of Innate-Like Human Vδ2+ γδT Cells and Mucosal-Associated Invariant T Cells. Front Immunol. 2018;9:756 pubmed 出版商
  43. Clayton K, Collins D, Lengieza J, Ghebremichael M, Dotiwala F, Lieberman J, et al. Resistance of HIV-infected macrophages to CD8+ T lymphocyte-mediated killing drives activation of the immune system. Nat Immunol. 2018;19:475-486 pubmed 出版商
  44. Shi Y, Zhang P, Wang G, Liu X, Sun X, Zhang X, et al. Description of organ-specific phenotype, and functional characteristics of tissue resident lymphocytes from liver transplantation donor and research on immune tolerance mechanism of liver. Oncotarget. 2018;9:15552-15565 pubmed 出版商
  45. Zhang C, Peng Y, Hublitz P, Zhang H, Dong T. Genetic abrogation of immune checkpoints in antigen-specific cytotoxic T-lymphocyte as a potential alternative to blockade immunotherapy. Sci Rep. 2018;8:5549 pubmed 出版商
  46. Li M, Zhang W, Liu J, Li M, Zhang Y, Xiong Y, et al. Dynamic changes in the immunological characteristics of T lymphocytes in surviving patients with severe fever with thrombocytopenia syndrome (SFTS). Int J Infect Dis. 2018;70:72-80 pubmed 出版商
  47. Stanko K, Iwert C, Appelt C, Vogt K, Schumann J, Strunk F, et al. CD96 expression determines the inflammatory potential of IL-9-producing Th9 cells. Proc Natl Acad Sci U S A. 2018;115:E2940-E2949 pubmed 出版商
  48. Li N, van Unen V, Höllt T, Thompson A, van Bergen J, Pezzotti N, et al. Mass cytometry reveals innate lymphoid cell differentiation pathways in the human fetal intestine. J Exp Med. 2018;215:1383-1396 pubmed 出版商
  49. Oei V, Siernicka M, Graczyk Jarzynka A, Hoel H, Yang W, Palacios D, et al. Intrinsic Functional Potential of NK-Cell Subsets Constrains Retargeting Driven by Chimeric Antigen Receptors. Cancer Immunol Res. 2018;6:467-480 pubmed 出版商
  50. Seki A, Rutz S. Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J Exp Med. 2018;215:985-997 pubmed 出版商
  51. Hsieh W, Hsu T, Chang Y, Lai M. IL-6 receptor blockade corrects defects of XIAP-deficient regulatory T cells. Nat Commun. 2018;9:463 pubmed 出版商
  52. Linehan J, Harrison O, Han S, Byrd A, Vujkovic Cvijin I, Villarino A, et al. Non-classical Immunity Controls Microbiota Impact on Skin Immunity and Tissue Repair. Cell. 2018;172:784-796.e18 pubmed 出版商
  53. Rivino L, Le Bert N, Gill U, Kunasegaran K, Cheng Y, Tan D, et al. Hepatitis B virus-specific T cells associate with viral control upon nucleos(t)ide-analogue therapy discontinuation. J Clin Invest. 2018;128:668-681 pubmed 出版商
  54. Pizzolla A, Nguyen T, Sant S, Jaffar J, Loudovaris T, Mannering S, et al. Influenza-specific lung-resident memory T cells are proliferative and polyfunctional and maintain diverse TCR profiles. J Clin Invest. 2018;128:721-733 pubmed 出版商
  55. Barrow A, Edeling M, Trifonov V, Luo J, Goyal P, Bohl B, et al. Natural Killer Cells Control Tumor Growth by Sensing a Growth Factor. Cell. 2018;172:534-548.e19 pubmed 出版商
  56. Gee M, Han A, Lofgren S, Beausang J, Mendoza J, Birnbaum M, et al. Antigen Identification for Orphan T Cell Receptors Expressed on Tumor-Infiltrating Lymphocytes. Cell. 2018;172:549-563.e16 pubmed 出版商
  57. Pugh J, Nemat Gorgani N, Norman P, Guethlein L, Parham P. Human NK Cells Downregulate Zap70 and Syk in Response to Prolonged Activation or DNA Damage. J Immunol. 2018;200:1146-1158 pubmed 出版商
  58. Jeffery H, McDowell P, Lutz P, Wawman R, Roberts S, Bagnall C, et al. Human intrahepatic ILC2 are IL-13positive amphiregulinpositive and their frequency correlates with model of end stage liver disease score. PLoS ONE. 2017;12:e0188649 pubmed 出版商
  59. Wang C, Edilova M, Wagar L, Mujib S, Singer M, Bernard N, et al. Effect of IL-7 Therapy on Phospho-Ribosomal Protein S6 and TRAF1 Expression in HIV-Specific CD8 T Cells in Patients Receiving Antiretroviral Therapy. J Immunol. 2018;200:558-564 pubmed 出版商
  60. Johnson R, Yu H, Strank N, Karunakaran K, Zhu Y, Brunham R. B Cell Presentation of Chlamydia Antigen Selects Out Protective CD4?13 T Cells: Implications for Genital Tract Tissue-Resident Memory Lymphocyte Clusters. Infect Immun. 2018;86: pubmed 出版商
  61. Moreno Cubero E, Subira D, Sanz de Villalobos E, Parra Cid T, Madejon A, Miquel J, et al. According to Hepatitis C Virus (HCV) Infection Stage, Interleukin-7 Plus 4-1BB Triggering Alone or Combined with PD-1 Blockade Increases TRAF1low HCV-Specific CD8+ Cell Reactivity. J Virol. 2018;92: pubmed 出版商
  62. Herndler Brandstetter D, Shan L, Yao Y, Stecher C, Plajer V, Lietzenmayer M, et al. Humanized mouse model supports development, function, and tissue residency of human natural killer cells. Proc Natl Acad Sci U S A. 2017;114:E9626-E9634 pubmed 出版商
  63. Meng Y, Zhou W, Jin L, Liu L, Chang K, Mei J, et al. RANKL-mediated harmonious dialogue between fetus and mother guarantees smooth gestation by inducing decidual M2 macrophage polarization. Cell Death Dis. 2017;8:e3105 pubmed 出版商
  64. Hydes T, Noll A, Salinas Riester G, Abuhilal M, Armstrong T, Hamady Z, et al. IL-12 and IL-15 induce the expression of CXCR6 and CD49a on peripheral natural killer cells. Immun Inflamm Dis. 2018;6:34-46 pubmed 出版商
  65. Molnar C, Scherer A, Baraliakos X, de Hooge M, Micheroli R, Exer P, et al. TNF blockers inhibit spinal radiographic progression in ankylosing spondylitis by reducing disease activity: results from the Swiss Clinical Quality Management cohort. Ann Rheum Dis. 2018;77:63-69 pubmed 出版商
  66. Jackson E, Zhang C, Kiani Z, Lisovsky I, Tallon B, Del Corpo A, et al. HIV exposed seronegative (HESN) compared to HIV infected individuals have higher frequencies of telomeric Killer Immunoglobulin-like Receptor (KIR) B motifs; Contribution of KIR B motif encoded genes to NK cell responsiveness. PLoS ONE. 2017;12:e0185160 pubmed 出版商
  67. Salio M, Gasser O, González López C, Martens A, Veerapen N, Gileadi U, et al. Activation of Human Mucosal-Associated Invariant T Cells Induces CD40L-Dependent Maturation of Monocyte-Derived and Primary Dendritic Cells. J Immunol. 2017;199:2631-2638 pubmed 出版商
  68. Zhang X, Lian X, Dai Z, Zheng H, Chen X, Zheng Y. ?3-Deletion Isoform of HLA-A11 Modulates Cytotoxicity of NK Cells: Correlations with HIV-1 Infection of Cells. J Immunol. 2017;199:2030-2042 pubmed 出版商
  69. Ott P, Hu Z, Keskin D, Shukla S, Sun J, Bozym D, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547:217-221 pubmed 出版商
  70. Chew V, Lai L, Pan L, Lim C, Li J, Ong R, et al. Delineation of an immunosuppressive gradient in hepatocellular carcinoma using high-dimensional proteomic and transcriptomic analyses. Proc Natl Acad Sci U S A. 2017;114:E5900-E5909 pubmed 出版商
  71. Dias J, Leeansyah E, Sandberg J. Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines. Proc Natl Acad Sci U S A. 2017;114:E5434-E5443 pubmed 出版商
  72. Watanabe R, Shirai T, Namkoong H, Zhang H, Berry G, Wallis B, et al. Pyruvate controls the checkpoint inhibitor PD-L1 and suppresses T cell immunity. J Clin Invest. 2017;127:2725-2738 pubmed 出版商
  73. Lu G, Zhang X, Shen L, Qiao Q, Li Y, Sun J, et al. CCL20 secreted from IgA1-stimulated human mesangial cells recruits inflammatory Th17 cells in IgA nephropathy. PLoS ONE. 2017;12:e0178352 pubmed 出版商
  74. Iampietro M, Younan P, Nishida A, Dutta M, Lubaki N, Santos R, et al. Ebola virus glycoprotein directly triggers T lymphocyte death despite of the lack of infection. PLoS Pathog. 2017;13:e1006397 pubmed 出版商
  75. Domae E, Hirai Y, Ikeo T, Goda S, Shimizu Y. Cytokine-mediated activation of human ex vivo-expanded V?9V?2 T cells. Oncotarget. 2017;8:45928-45942 pubmed 出版商
  76. Tong A, Hashem H, Eid S, Allen F, Kingsley D, Huang A. Adoptive natural killer cell therapy is effective in reducing pulmonary metastasis of Ewing sarcoma. Oncoimmunology. 2017;6:e1303586 pubmed 出版商
  77. Djaoud Z, Guethlein L, Horowitz A, Azzi T, Nemat Gorgani N, Olive D, et al. Two alternate strategies for innate immunity to Epstein-Barr virus: One using NK cells and the other NK cells and ?? T cells. J Exp Med. 2017;214:1827-1841 pubmed 出版商
  78. Chen C, Sun W, Chen J, Huang J. Dynamic variations of the peripheral blood immune cell subpopulation in patients with critical H7N9 swine-origin influenza A virus infection: A retrospective small-scale study. Exp Ther Med. 2017;13:1490-1494 pubmed 出版商
  79. Stevanović S, Pasetto A, Helman S, Gartner J, Prickett T, Howie B, et al. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science. 2017;356:200-205 pubmed 出版商
  80. Van Caeneghem Y, De Munter S, Tieppo P, Goetgeluk G, Weening K, Verstichel G, et al. Antigen receptor-redirected T cells derived from hematopoietic precursor cells lack expression of the endogenous TCR/CD3 receptor and exhibit specific antitumor capacities. Oncoimmunology. 2017;6:e1283460 pubmed 出版商
  81. Nelde A, Walz J, Kowalewski D, Schuster H, Wolz O, Peper J, et al. HLA class I-restricted MYD88 L265P-derived peptides as specific targets for lymphoma immunotherapy. Oncoimmunology. 2017;6:e1219825 pubmed 出版商
  82. Gaggianesi M, Turdo A, Chinnici A, Lipari E, Apuzzo T, Benfante A, et al. IL4 Primes the Dynamics of Breast Cancer Progression via DUSP4 Inhibition. Cancer Res. 2017;77:3268-3279 pubmed 出版商
  83. Wattegedera S, Corripio Miyar Y, Pang Y, Frew D, McNeilly T, Palarea Albaladejo J, et al. Enhancing the toolbox to study IL-17A in cattle and sheep. Vet Res. 2017;48:20 pubmed 出版商
  84. Dowling D, van Haren S, Scheid A, Bergelson I, Kim D, Mancuso C, et al. TLR7/8 adjuvant overcomes newborn hyporesponsiveness to pneumococcal conjugate vaccine at birth. JCI Insight. 2017;2:e91020 pubmed 出版商
  85. Tyler C, McCarthy N, Lindsay J, Stagg A, Moser B, Eberl M. Antigen-Presenting Human γδ T Cells Promote Intestinal CD4+ T Cell Expression of IL-22 and Mucosal Release of Calprotectin. J Immunol. 2017;198:3417-3425 pubmed 出版商
  86. Whitfield S, Taylor C, Risdall J, Griffiths G, Jones J, Williamson E, et al. Interference of the T Cell and Antigen-Presenting Cell Costimulatory Pathway Using CTLA4-Ig (Abatacept) Prevents Staphylococcal Enterotoxin B Pathology. J Immunol. 2017;198:3989-3998 pubmed 出版商
  87. Klinker M, Marklein R, Lo Surdo J, Wei C, Bauer S. Morphological features of IFN-γ-stimulated mesenchymal stromal cells predict overall immunosuppressive capacity. Proc Natl Acad Sci U S A. 2017;114:E2598-E2607 pubmed 出版商
  88. Li R, Rezk A, Li H, Gommerman J, Prat A, Bar Or A. Antibody-Independent Function of Human B Cells Contributes to Antifungal T Cell Responses. J Immunol. 2017;198:3245-3254 pubmed 出版商
  89. Pfaender S, Walter S, Grabski E, Todt D, Bruening J, Romero Brey I, et al. Immune protection against reinfection with nonprimate hepacivirus. Proc Natl Acad Sci U S A. 2017;114:E2430-E2439 pubmed 出版商
  90. Cardinaud S, Urrutia A, Rouers A, Coulon P, Kervevan J, Richetta C, et al. Triggering of TLR-3, -4, NOD2, and DC-SIGN reduces viral replication and increases T-cell activation capacity of HIV-infected human dendritic cells. Eur J Immunol. 2017;47:818-829 pubmed 出版商
  91. Eyquem J, Mansilla Soto J, Giavridis T, van der Stegen S, Hamieh M, Cunanan K, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 2017;543:113-117 pubmed 出版商
  92. Szabo P, Goswami A, Mazzuca D, Kim K, O Gorman D, Hess D, et al. Rapid and Rigorous IL-17A Production by a Distinct Subpopulation of Effector Memory T Lymphocytes Constitutes a Novel Mechanism of Toxic Shock Syndrome Immunopathology. J Immunol. 2017;198:2805-2818 pubmed 出版商
  93. Sullivan A, Wang E, Farrell J, Whitaker P, Faulkner L, Peckham D, et al. ?-Lactam hypersensitivity involves expansion of circulating and skin-resident TH22 cells. J Allergy Clin Immunol. 2018;141:235-249.e8 pubmed 出版商
  94. Cheuk S, Schlums H, Gallais Sérézal I, Martini E, Chiang S, Marquardt N, et al. CD49a Expression Defines Tissue-Resident CD8+ T Cells Poised for Cytotoxic Function in Human Skin. Immunity. 2017;46:287-300 pubmed 出版商
  95. Mordmuller B, Surat G, Lagler H, Chakravarty S, Ishizuka A, Lalremruata A, et al. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine. Nature. 2017;542:445-449 pubmed 出版商
  96. Mylvaganam G, Rios D, Abdelaal H, Iyer S, Tharp G, Mavigner M, et al. Dynamics of SIV-specific CXCR5+ CD8 T cells during chronic SIV infection. Proc Natl Acad Sci U S A. 2017;114:1976-1981 pubmed 出版商
  97. Raposo R, de Mulder Rougvie M, Paquin Proulx D, Brailey P, Cabido V, Zdinak P, et al. IFITM1 targets HIV-1 latently infected cells for antibody-dependent cytolysis. JCI Insight. 2017;2:e85811 pubmed 出版商
  98. Mufarrege E, Giorgetti S, Etcheverrigaray M, Terry F, Martin W, De Groot A. De-immunized and Functional Therapeutic (DeFT) versions of a long lasting recombinant alpha interferon for antiviral therapy. Clin Immunol. 2017;176:31-41 pubmed 出版商
  99. Tauriainen J, Scharf L, Frederiksen J, Naji A, Ljunggren H, Sonnerborg A, et al. Perturbed CD8+ T cell TIGIT/CD226/PVR axis despite early initiation of antiretroviral treatment in HIV infected individuals. Sci Rep. 2017;7:40354 pubmed 出版商
  100. Lundell A, Nordström I, Andersson K, Lundqvist C, Telemo E, Nava S, et al. IFN type I and II induce BAFF secretion from human decidual stromal cells. Sci Rep. 2017;7:39904 pubmed 出版商
  101. Roberts E, Carnathan D, Li H, Shaw G, Silvestri G, Betts M. Collapse of Cytolytic Potential in SIV-Specific CD8+ T Cells Following Acute SIV Infection in Rhesus Macaques. PLoS Pathog. 2016;12:e1006135 pubmed 出版商
  102. Stanfield B, Pahar B, Chouljenko V, Veazey R, Kousoulas K. Vaccination of rhesus macaques with the live-attenuated HSV-1 vaccine VC2 stimulates the proliferation of mucosal T cells and germinal center responses resulting in sustained production of highly neutralizing antibodies. Vaccine. 2017;35:536-543 pubmed 出版商
  103. Izawa K, Martin E, Soudais C, Bruneau J, Boutboul D, Rodriguez R, et al. Inherited CD70 deficiency in humans reveals a critical role for the CD70-CD27 pathway in immunity to Epstein-Barr virus infection. J Exp Med. 2017;214:73-89 pubmed 出版商
  104. Griffiths K, Ahmed M, Das S, Gopal R, Horne W, Connell T, et al. Targeting dendritic cells to accelerate T-cell activation overcomes a bottleneck in tuberculosis vaccine efficacy. Nat Commun. 2016;7:13894 pubmed 出版商
  105. Cheng L, Ma J, Li J, Li D, Li G, Li F, et al. Blocking type I interferon signaling enhances T cell recovery and reduces HIV-1 reservoirs. J Clin Invest. 2017;127:269-279 pubmed 出版商
  106. Lévy R, Okada S, Béziat V, Moriya K, Liu C, Chai L, et al. Genetic, immunological, and clinical features of patients with bacterial and fungal infections due to inherited IL-17RA deficiency. Proc Natl Acad Sci U S A. 2016;113:E8277-E8285 pubmed 出版商
  107. Cassady Cain R, Blackburn E, Bell C, Elshina E, Hope J, Stevens M. Inhibition of Antigen-Specific and Nonspecific Stimulation of Bovine T and B Cells by Lymphostatin from Attaching and Effacing Escherichia coli. Infect Immun. 2017;85: pubmed 出版商
  108. Zhu H, Hu F, Sun X, Zhang X, Zhu L, Liu X, et al. CD16+ Monocyte Subset Was Enriched and Functionally Exacerbated in Driving T-Cell Activation and B-Cell Response in Systemic Lupus Erythematosus. Front Immunol. 2016;7:512 pubmed
  109. Ryan P, Sumaria N, Holland C, Bradford C, Izotova N, Grandjean C, et al. Heterogeneous yet stable Vδ2(+) T-cell profiles define distinct cytotoxic effector potentials in healthy human individuals. Proc Natl Acad Sci U S A. 2016;113:14378-14383 pubmed
  110. Tomic A, Varanasi P, Golemac M, Malic S, Riese P, Borst E, et al. Activation of Innate and Adaptive Immunity by a Recombinant Human Cytomegalovirus Strain Expressing an NKG2D Ligand. PLoS Pathog. 2016;12:e1006015 pubmed 出版商
  111. Riou C, Bunjun R, Müller T, Kiravu A, Ginbot Z, Oni T, et al. Selective reduction of IFN-γ single positive mycobacteria-specific CD4+ T cells in HIV-1 infected individuals with latent tuberculosis infection. Tuberculosis (Edinb). 2016;101:25-30 pubmed 出版商
  112. Hippen K, Watkins B, Tkachev V, Lemire A, Lehnen C, Riddle M, et al. Preclinical Testing of Antihuman CD28 Fab' Antibody in a Novel Nonhuman Primate Small Animal Rodent Model of Xenogenic Graft-Versus-Host Disease. Transplantation. 2016;100:2630-2639 pubmed 出版商
  113. Li J, Shayan G, Avery L, Jie H, Gildener Leapman N, Schmitt N, et al. Tumor-infiltrating Tim-3+ T cells proliferate avidly except when PD-1 is co-expressed: Evidence for intracellular cross talk. Oncoimmunology. 2016;5:e1200778 pubmed
  114. Wu X, Wu X, Ma Y, Shao F, Tan Y, Tan T, et al. CUG-binding protein 1 regulates HSC activation and liver fibrogenesis. Nat Commun. 2016;7:13498 pubmed 出版商
  115. Carroll R, Troelnikov A, Chong A. Virtual Global Transplant Laboratory Standard Operating Protocol for Donor Alloantigen-specific Interferon-gamma ELISPOT Assay. Transplant Direct. 2016;2:e111 pubmed
  116. Cuff A, Robertson F, Stegmann K, Pallett L, Maini M, Davidson B, et al. Eomeshi NK Cells in Human Liver Are Long-Lived and Do Not Recirculate but Can Be Replenished from the Circulation. J Immunol. 2016;197:4283-4291 pubmed
  117. van Haren S, Dowling D, Foppen W, Christensen D, Andersen P, Reed S, et al. Age-Specific Adjuvant Synergy: Dual TLR7/8 and Mincle Activation of Human Newborn Dendritic Cells Enables Th1 Polarization. J Immunol. 2016;197:4413-4424 pubmed
  118. Peters C, Häsler R, Wesch D, Kabelitz D. Human Vδ2 T cells are a major source of interleukin-9. Proc Natl Acad Sci U S A. 2016;113:12520-12525 pubmed
  119. Hu X, Valentin A, Dayton F, Kulkarni V, Alicea C, Rosati M, et al. DNA Prime-Boost Vaccine Regimen To Increase Breadth, Magnitude, and Cytotoxicity of the Cellular Immune Responses to Subdominant Gag Epitopes of Simian Immunodeficiency Virus and HIV. J Immunol. 2016;197:3999-4013 pubmed
  120. Chandele A, Sewatanon J, Gunisetty S, Singla M, Onlamoon N, Akondy R, et al. Characterization of Human CD8 T Cell Responses in Dengue Virus-Infected Patients from India. J Virol. 2016;90:11259-11278 pubmed
  121. Swaminathan G, Thoryk E, Cox K, Smith J, Wolf J, Gindy M, et al. A Tetravalent Sub-unit Dengue Vaccine Formulated with Ionizable Cationic Lipid Nanoparticle induces Significant Immune Responses in Rodents and Non-Human Primates. Sci Rep. 2016;6:34215 pubmed 出版商
  122. Roybal K, Williams J, Morsut L, Rupp L, Kolinko I, Choe J, et al. Engineering T Cells with Customized Therapeutic Response Programs Using Synthetic Notch Receptors. Cell. 2016;167:419-432.e16 pubmed 出版商
  123. Lu L, Chung A, Rosebrock T, Ghebremichael M, Yu W, Grace P, et al. A Functional Role for Antibodies in Tuberculosis. Cell. 2016;167:433-443.e14 pubmed 出版商
  124. Wang Y, Ma C, Ling Y, Bousfiha A, Camcioglu Y, Jacquot S, et al. Dual T cell- and B cell-intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med. 2016;213:2413-2435 pubmed
  125. Wahid R, Fresnay S, Levine M, Sztein M. Cross-reactive multifunctional CD4+ T cell responses against Salmonella enterica serovars Typhi, Paratyphi A and Paratyphi B in humans following immunization with live oral typhoid vaccine Ty21a. Clin Immunol. 2016;173:87-95 pubmed 出版商
  126. Vargas Inchaustegui D, Ying O, Demberg T, Robert Guroff M. Evaluation of Functional NK Cell Responses in Vaccinated and SIV-Infected Rhesus Macaques. Front Immunol. 2016;7:340 pubmed 出版商
  127. Tagawa T, Albanese M, Bouvet M, Moosmann A, Mautner J, Heissmeyer V, et al. Epstein-Barr viral miRNAs inhibit antiviral CD4+ T cell responses targeting IL-12 and peptide processing. J Exp Med. 2016;213:2065-80 pubmed 出版商
  128. Pachnio A, Ciáurriz M, Begum J, Lal N, Zuo J, Beggs A, et al. Cytomegalovirus Infection Leads to Development of High Frequencies of Cytotoxic Virus-Specific CD4+ T Cells Targeted to Vascular Endothelium. PLoS Pathog. 2016;12:e1005832 pubmed 出版商
  129. Jiang J, Chen X, An H, Yang B, Zhang F, Cheng X. Enhanced immune response of MAIT cells in tuberculous pleural effusions depends on cytokine signaling. Sci Rep. 2016;6:32320 pubmed 出版商
  130. Ayala V, Trivett M, Barsov E, Jain S, Piatak M, Trubey C, et al. Adoptive Transfer of Engineered Rhesus Simian Immunodeficiency Virus-Specific CD8+ T Cells Reduces the Number of Transmitted/Founder Viruses Established in Rhesus Macaques. J Virol. 2016;90:9942-9952 pubmed 出版商
  131. Kagoya Y, Nakatsugawa M, Yamashita Y, Ochi T, Guo T, Anczurowski M, et al. BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. J Clin Invest. 2016;126:3479-94 pubmed 出版商
  132. La Porta J, Matus Nicodemos R, Valentin Acevedo A, Covey L. The RNA-Binding Protein, Polypyrimidine Tract-Binding Protein 1 (PTBP1) Is a Key Regulator of CD4 T Cell Activation. PLoS ONE. 2016;11:e0158708 pubmed 出版商
  133. Hervier B, Perez M, Allenbach Y, Devilliers H, Cohen F, Uzunhan Y, et al. Involvement of NK Cells and NKp30 Pathway in Antisynthetase Syndrome. J Immunol. 2016;197:1621-30 pubmed 出版商
  134. He R, Hou S, Liu C, Zhang A, Bai Q, Han M, et al. Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection. Nature. 2016;537:412-428 pubmed 出版商
  135. Xing Y, Cao R, Hu H. TLR and NLRP3 inflammasome-dependent innate immune responses to tumor-derived autophagosomes (DRibbles). Cell Death Dis. 2016;7:e2322 pubmed 出版商
  136. Dahal L, Basu N, Youssef H, Khanolkar R, Barker R, Erwig L, et al. Immunoregulatory soluble CTLA-4 modifies effector T-cell responses in systemic lupus erythematosus. Arthritis Res Ther. 2016;18:180 pubmed 出版商
  137. Demers K, Makedonas G, Buggert M, Eller M, Ratcliffe S, Goonetilleke N, et al. Temporal Dynamics of CD8+ T Cell Effector Responses during Primary HIV Infection. PLoS Pathog. 2016;12:e1005805 pubmed 出版商
  138. Kritikou J, Dahlberg C, Baptista M, Wagner A, Banerjee P, Gwalani L, et al. IL-2 in the tumor microenvironment is necessary for Wiskott-Aldrich syndrome protein deficient NK cells to respond to tumors in vivo. Sci Rep. 2016;6:30636 pubmed 出版商
  139. Rölle A, Halenius A, Ewen E, Cerwenka A, Hengel H, Momburg F. CD2-CD58 interactions are pivotal for the activation and function of adaptive natural killer cells in human cytomegalovirus infection. Eur J Immunol. 2016;46:2420-2425 pubmed 出版商
  140. Franzese O, Palermo B, Di Donna C, Sperduti I, Ferraresi V, Stabile H, et al. Polyfunctional Melan-A-specific tumor-reactive CD8(+) T cells elicited by dacarbazine treatment before peptide-vaccination depends on AKT activation sustained by ICOS. Oncoimmunology. 2016;5:e1114203 pubmed 出版商
  141. Peper J, Bösmüller H, Schuster H, Gückel B, Hörzer H, Roehle K, et al. HLA ligandomics identifies histone deacetylase 1 as target for ovarian cancer immunotherapy. Oncoimmunology. 2016;5:e1065369 pubmed 出版商
  142. Neumann L, Mueller M, Moos V, Heller F, Meyer T, Loddenkemper C, et al. Mucosal Inducible NO Synthase-Producing IgA+ Plasma Cells in Helicobacter pylori-Infected Patients. J Immunol. 2016;197:1801-8 pubmed 出版商
  143. Sadallah S, Schmied L, Eken C, Charoudeh H, Amicarella F, Schifferli J. Platelet-Derived Ectosomes Reduce NK Cell Function. J Immunol. 2016;197:1663-71 pubmed 出版商
  144. Schiavano G, Dominici S, Rinaldi L, Cangiano A, Brandi G, Magnani M. Modulation of Stat-1 in Human Macrophages Infected with Different Species of Intracellular Pathogenic Bacteria. J Immunol Res. 2016;2016:5086928 pubmed 出版商
  145. Piancone F, Saresella M, Marventano I, La Rosa F, Zoppis M, Agostini S, et al. B Lymphocytes in Multiple Sclerosis: Bregs and BTLA/CD272 Expressing-CD19+ Lymphocytes Modulate Disease Severity. Sci Rep. 2016;6:29699 pubmed 出版商
  146. Suliman S, Geldenhuys H, Johnson J, Hughes J, Smit E, Murphy M, et al. Bacillus Calmette-Guérin (BCG) Revaccination of Adults with Latent Mycobacterium tuberculosis Infection Induces Long-Lived BCG-Reactive NK Cell Responses. J Immunol. 2016;197:1100-1110 pubmed 出版商
  147. Di Liberto D, Mansueto P, D Alcamo A, Lo Pizzo M, Lo Presti E, Geraci G, et al. Predominance of Type 1 Innate Lymphoid Cells in the Rectal Mucosa of Patients With Non-Celiac Wheat Sensitivity: Reversal After a Wheat-Free Diet. Clin Transl Gastroenterol. 2016;7:e178 pubmed 出版商
  148. van Wilgenburg B, Scherwitzl I, Hutchinson E, Leng T, Kurioka A, Kulicke C, et al. MAIT cells are activated during human viral infections. Nat Commun. 2016;7:11653 pubmed 出版商
  149. Cheng W, van Asten S, Burns L, Evans H, Walter G, Hashim A, et al. Periodontitis-associated pathogens P. gingivalis and A. actinomycetemcomitans activate human CD14(+) monocytes leading to enhanced Th17/IL-17 responses. Eur J Immunol. 2016;46:2211-21 pubmed 出版商
  150. Heath J, Newhook N, Comeau E, Gallant M, Fudge N, Grant M. NKG2C(+)CD57(+) Natural Killer Cell Expansion Parallels Cytomegalovirus-Specific CD8(+) T Cell Evolution towards Senescence. J Immunol Res. 2016;2016:7470124 pubmed 出版商
  151. Arbore G, West E, Spolski R, Robertson A, Klos A, Rheinheimer C, et al. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4⁺ T cells. Science. 2016;352:aad1210 pubmed 出版商
  152. Coulon P, Richetta C, Rouers A, Blanchet F, Urrutia A, Guerbois M, et al. HIV-Infected Dendritic Cells Present Endogenous MHC Class II-Restricted Antigens to HIV-Specific CD4+ T Cells. J Immunol. 2016;197:517-32 pubmed 出版商
  153. Li C, Zhang Y, Tang L, Zhao H, Gao C, Gao L, et al. Expression of factors involved in the regulation of angiogenesis in the full-term human placenta: Effects of in vitro fertilization. Reprod Biol. 2016;16:104-12 pubmed 出版商
  154. Domingues R, de Carvalho G, Aoki V, da Silva Duarte A, Sato M. Activation of myeloid dendritic cells, effector cells and regulatory T cells in lichen planus. J Transl Med. 2016;14:171 pubmed 出版商
  155. Zanetti S, Ziblat A, Torres N, Zwirner N, Bouzat C. Expression and Functional Role of ?7 Nicotinic Receptor in Human Cytokine-stimulated Natural Killer (NK) Cells. J Biol Chem. 2016;291:16541-52 pubmed 出版商
  156. Kranz L, Diken M, Haas H, Kreiter S, Loquai C, Reuter K, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 2016;534:396-401 pubmed 出版商
  157. Vaccari M, Gordon S, Fourati S, Schifanella L, Liyanage N, Cameron M, et al. Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition. Nat Med. 2016;22:762-70 pubmed 出版商
  158. Loyon R, Picard E, Mauvais O, Queiroz L, Mougey V, Pallandre J, et al. IL-21-Induced MHC Class II+ NK Cells Promote the Expansion of Human Uncommitted CD4+ Central Memory T Cells in a Macrophage Migration Inhibitory Factor-Dependent Manner. J Immunol. 2016;197:85-96 pubmed 出版商
  159. Goodier M, Rodríguez Galán A, Lusa C, Nielsen C, Darboe A, Moldoveanu A, et al. Influenza Vaccination Generates Cytokine-Induced Memory-like NK Cells: Impact of Human Cytomegalovirus Infection. J Immunol. 2016;197:313-25 pubmed 出版商
  160. Kwon H, Choi G, Ryu S, Kwon S, Kim S, Booth C, et al. Stepwise phosphorylation of p65 promotes NF-?B activation and NK cell responses during target cell recognition. Nat Commun. 2016;7:11686 pubmed 出版商
  161. Neumann B, Shi T, Gan L, Klippert A, Daskalaki M, Stolte Leeb N, et al. Comprehensive panel of cross-reacting monoclonal antibodies for analysis of different immune cells and their distribution in the common marmoset (Callithrix jacchus). J Med Primatol. 2016;45:139-46 pubmed 出版商
  162. Li W, Liu L, Gomez A, Zhang J, Ramadan A, Zhang Q, et al. Proteomics analysis reveals a Th17-prone cell population in presymptomatic graft-versus-host disease. JCI Insight. 2016;1: pubmed 出版商
  163. Yin W, Tong S, Zhang Q, Shao J, Liu Q, Peng H, et al. Functional dichotomy of Vδ2 γδ T cells in chronic hepatitis C virus infections: role in cytotoxicity but not for IFN-γ production. Sci Rep. 2016;6:26296 pubmed 出版商
  164. Kay A, Strauss Albee D, Blish C. Application of Mass Cytometry (CyTOF) for Functional and Phenotypic Analysis of Natural Killer Cells. Methods Mol Biol. 2016;1441:13-26 pubmed 出版商
  165. Stikvoort A, Sundin M, Uzunel M, Gertow J, Sundberg B, Schaffer M, et al. Long-Term Stable Mixed Chimerism after Hematopoietic Stem Cell Transplantation in Patients with Non-Malignant Disease, Shall We Be Tolerant?. PLoS ONE. 2016;11:e0154737 pubmed 出版商
  166. Qualai J, Li L, Cantero J, Tarrats A, Fernández M, Sumoy L, et al. Expression of CD11c Is Associated with Unconventional Activated T Cell Subsets with High Migratory Potential. PLoS ONE. 2016;11:e0154253 pubmed 出版商
  167. Bal S, Bernink J, Nagasawa M, Groot J, Shikhagaie M, Golebski K, et al. IL-1?, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nat Immunol. 2016;17:636-45 pubmed 出版商
  168. Graves S, Kouriba B, Diarra I, Daou M, Niangaly A, Coulibaly D, et al. Strain-specific Plasmodium falciparum multifunctional CD4(+) T cell cytokine expression in Malian children immunized with the FMP2.1/AS02A vaccine candidate. Vaccine. 2016;34:2546-55 pubmed 出版商
  169. Zurawski G, Zurawski S, Flamar A, Richert L, Wagner R, Tomaras G, et al. Targeting HIV-1 Env gp140 to LOX-1 Elicits Immune Responses in Rhesus Macaques. PLoS ONE. 2016;11:e0153484 pubmed 出版商
  170. Dimitrova M, Zenarruzabeitia O, Borrego F, Simhadri V. CD300c is uniquely expressed on CD56 bright Natural Killer Cells and differs from CD300a upon ligand recognition. Sci Rep. 2016;6:23942 pubmed 出版商
  171. Rueda C, Presicce P, Jackson C, Miller L, Kallapur S, Jobe A, et al. Lipopolysaccharide-Induced Chorioamnionitis Promotes IL-1-Dependent Inflammatory FOXP3+ CD4+ T Cells in the Fetal Rhesus Macaque. J Immunol. 2016;196:3706-15 pubmed 出版商
  172. Gielen P, Schulte B, Kers Rebel E, Verrijp K, Bossman S, ter Laan M, et al. Elevated levels of polymorphonuclear myeloid-derived suppressor cells in patients with glioblastoma highly express S100A8/9 and arginase and suppress T cell function. Neuro Oncol. 2016;18:1253-64 pubmed 出版商
  173. Macdonald K, Hoeppli R, Huang Q, Gillies J, Luciani D, Orban P, et al. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J Clin Invest. 2016;126:1413-24 pubmed 出版商
  174. Moreira M, Costa Pereira C, Alves M, Marteleto B, Ribeiro V, Peruhype Magalhães V, et al. Vaccination against canine leishmaniosis increases the phagocytic activity, nitric oxide production and expression of cell activation/migration molecules in neutrophils and monocytes. Vet Parasitol. 2016;220:33-45 pubmed 出版商
  175. Carrasco A, Fernández Bañares F, Pedrosa E, Salas A, Loras C, Rosinach M, et al. Regional Specialisation of T Cell Subsets and Apoptosis in the Human Gut Mucosa: Differences Between Ileum and Colon in Healthy Intestine and Inflammatory Bowel Diseases. J Crohns Colitis. 2016;10:1042-54 pubmed 出版商
  176. Gao J, Duan Z, Zhang L, Huang X, Long L, Tu J, et al. Failure recovery of circulating NKG2D+CD56dimNK cells in HBV-associated hepatocellular carcinoma after hepatectomy predicts early recurrence. Oncoimmunology. 2016;5:e1048061 pubmed
  177. Fisher J, Flutter B, Wesemann F, Frosch J, Rossig C, Gustafsson K, et al. Effective combination treatment of GD2-expressing neuroblastoma and Ewing's sarcoma using anti-GD2 ch14.18/CHO antibody with Vγ9Vδ2+ γδT cells. Oncoimmunology. 2016;5:e1025194 pubmed
  178. Carrasco A, Esteve M, Salas A, Pedrosa E, Rosinach M, Aceituno M, et al. Immunological Differences between Lymphocytic and Collagenous Colitis. J Crohns Colitis. 2016;10:1055-66 pubmed 出版商
  179. Offersen R, Nissen S, Rasmussen T, Østergaard L, Denton P, Søgaard O, et al. A Novel Toll-Like Receptor 9 Agonist, MGN1703, Enhances HIV-1 Transcription and NK Cell-Mediated Inhibition of HIV-1-Infected Autologous CD4+ T Cells. J Virol. 2016;90:4441-4453 pubmed 出版商
  180. Phuah J, Wong E, Gideon H, Maiello P, Coleman M, Hendricks M, et al. Effects of B Cell Depletion on Early Mycobacterium tuberculosis Infection in Cynomolgus Macaques. Infect Immun. 2016;84:1301-1311 pubmed 出版商
  181. Vallera D, Felices M, McElmurry R, McCullar V, Zhou X, Schmohl J, et al. IL15 Trispecific Killer Engagers (TriKE) Make Natural Killer Cells Specific to CD33+ Targets While Also Inducing Persistence, In Vivo Expansion, and Enhanced Function. Clin Cancer Res. 2016;22:3440-50 pubmed 出版商
  182. Roan F, Stoklasek T, Whalen E, Molitor J, Bluestone J, Buckner J, et al. CD4+ Group 1 Innate Lymphoid Cells (ILC) Form a Functionally Distinct ILC Subset That Is Increased in Systemic Sclerosis. J Immunol. 2016;196:2051-2062 pubmed 出版商
  183. Cao Y, Amezquita R, Kleinstein S, Stathopoulos P, Nowak R, O Connor K. Autoreactive T Cells from Patients with Myasthenia Gravis Are Characterized by Elevated IL-17, IFN-γ, and GM-CSF and Diminished IL-10 Production. J Immunol. 2016;196:2075-84 pubmed 出版商
  184. James E, Gates T, LaFond R, Yamamoto S, Ni C, Mai D, et al. Neuroinvasive West Nile Infection Elicits Elevated and Atypically Polarized T Cell Responses That Promote a Pathogenic Outcome. PLoS Pathog. 2016;12:e1005375 pubmed 出版商
  185. Tham M, Schlör G, Yerly D, Mueller C, Surbek D, Villiger P, et al. Reduced pro-inflammatory profile of γδT cells in pregnant patients with rheumatoid arthritis. Arthritis Res Ther. 2016;18:26 pubmed 出版商
  186. Li L, Jiang Y, Lao S, Yang B, Yu S, Zhang Y, et al. Mycobacterium tuberculosis-Specific IL-21+IFN-γ+CD4+ T Cells Are Regulated by IL-12. PLoS ONE. 2016;11:e0147356 pubmed 出版商
  187. Di Meglio P, Villanova F, Navarini A, Mylonas A, Tosi I, Nestle F, et al. Targeting CD8(+) T cells prevents psoriasis development. J Allergy Clin Immunol. 2016;138:274-276.e6 pubmed 出版商
  188. Lood C, Blanco L, Purmalek M, Carmona Rivera C, De Ravin S, Smith C, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med. 2016;22:146-53 pubmed 出版商
  189. Bjerg Christensen A, Dige A, Vad Nielsen J, Brinkmann C, Bendix M, Østergaard L, et al. Administration of Panobinostat Is Associated with Increased IL-17A mRNA in the Intestinal Epithelium of HIV-1 Patients. Mediators Inflamm. 2015;2015:120605 pubmed 出版商
  190. Paris R, Petrovas C, Ferrando Martinez S, Moysi E, Boswell K, Archer E, et al. Selective Loss of Early Differentiated, Highly Functional PD1high CD4 T Cells with HIV Progression. PLoS ONE. 2015;10:e0144767 pubmed 出版商
  191. Lee W, Richard J, Lichtfuss M, Smith A, Park J, Courter J, et al. Antibody-Dependent Cellular Cytotoxicity against Reactivated HIV-1-Infected Cells. J Virol. 2016;90:2021-30 pubmed 出版商
  192. Cleret Buhot A, Zhang Y, Planas D, Goulet J, Monteiro P, Gosselin A, et al. Identification of novel HIV-1 dependency factors in primary CCR4(+)CCR6(+)Th17 cells via a genome-wide transcriptional approach. Retrovirology. 2015;12:102 pubmed 出版商
  193. Woodfolk J, Glesner J, Wright P, Kepley C, Li M, Himly M, et al. Antigenic Determinants of the Bilobal Cockroach Allergen Bla g 2. J Biol Chem. 2016;291:2288-301 pubmed 出版商
  194. Wu F, Wang L, Guo Q, Zhao M, Gu H, Xu H, et al. A Homogeneous Immunoassay Method for Detecting Interferon-Gamma in Patients with Latent Tuberculosis Infection. J Microbiol Biotechnol. 2016;26:588-95 pubmed 出版商
  195. Bolton D, Pegu A, Wang K, McGinnis K, Nason M, Foulds K, et al. Human Immunodeficiency Virus Type 1 Monoclonal Antibodies Suppress Acute Simian-Human Immunodeficiency Virus Viremia and Limit Seeding of Cell-Associated Viral Reservoirs. J Virol. 2016;90:1321-32 pubmed 出版商
  196. EskicioÄŸlu F, Özdemir A, Özdemir R, Turan G, Akan Z, Hasdemir S. The association of HLA-G and immune markers in recurrent miscarriages. J Matern Fetal Neonatal Med. 2016;29:3056-60 pubmed 出版商
  197. van Nierop G, Janssen M, Mitterreiter J, van de Vijver D, De Swart R, Haagmans B, et al. Intrathecal CD4(+) and CD8(+) T-cell responses to endogenously synthesized candidate disease-associated human autoantigens in multiple sclerosis patients. Eur J Immunol. 2016;46:347-53 pubmed 出版商
  198. Scottà C, Fanelli G, Hoong S, Romano M, Lamperti E, Sukthankar M, et al. Impact of immunosuppressive drugs on the therapeutic efficacy of ex vivo expanded human regulatory T cells. Haematologica. 2016;101:91-100 pubmed 出版商
  199. Schulz A, Mälzer J, Domingo C, Jürchott K, Grützkau A, Babel N, et al. Low Thymic Activity and Dendritic Cell Numbers Are Associated with the Immune Response to Primary Viral Infection in Elderly Humans. J Immunol. 2015;195:4699-711 pubmed 出版商
  200. Simonetta F, Pradier A, Bosshard C, Masouridi Levrat S, Chalandon Y, Roosnek E. NK Cell Functional Impairment after Allogeneic Hematopoietic Stem Cell Transplantation Is Associated with Reduced Levels of T-bet and Eomesodermin. J Immunol. 2015;195:4712-20 pubmed 出版商
  201. Rosario M, Liu B, Kong L, Collins L, Schneider S, Chen X, et al. The IL-15-Based ALT-803 Complex Enhances FcγRIIIa-Triggered NK Cell Responses and In Vivo Clearance of B Cell Lymphomas. Clin Cancer Res. 2016;22:596-608 pubmed 出版商
  202. Berinstein N, Karkada M, Oza A, Odunsi K, Villella J, Nemunaitis J, et al. Survivin-targeted immunotherapy drives robust polyfunctional T cell generation and differentiation in advanced ovarian cancer patients. Oncoimmunology. 2015;4:e1026529 pubmed
  203. Moreira M, Dorneles E, Soares R, Magalhães C, Costa Pereira C, Lage A, et al. Cross-reactivity of commercially available anti-human monoclonal antibodies with canine cytokines: establishment of a reliable panel to detect the functional profile of peripheral blood lymphocytes by intracytoplasmic staining. Acta Vet Scand. 2015;57:51 pubmed 出版商
  204. Campi Azevedo A, Costa Pereira C, Antonelli L, Fonseca C, Teixeira Carvalho A, Villela Rezende G, et al. Booster dose after 10 years is recommended following 17DD-YF primary vaccination. Hum Vaccin Immunother. 2016;12:491-502 pubmed 出版商
  205. Leeansyah E, Svärd J, Dias J, Buggert M, Nyström J, Quigley M, et al. Arming of MAIT Cell Cytolytic Antimicrobial Activity Is Induced by IL-7 and Defective in HIV-1 Infection. PLoS Pathog. 2015;11:e1005072 pubmed 出版商
  206. Zhu F, Qiao J, Cao J, Sun H, Wu Q, Sun Z, et al. Decreased level of cytotoxic T lymphocyte antigen-4 (CTLA-4) in patients with acute immune thrombocytopenia (ITP). Thromb Res. 2015;136:797-802 pubmed 出版商
  207. Weist B, Wehler P, El Ahmad L, Schmueck Henneresse M, Millward J, Nienen M, et al. A revised strategy for monitoring BKV-specific cellular immunity in kidney transplant patients. Kidney Int. 2015;88:1293-1303 pubmed 出版商
  208. Schnorfeil F, Lichtenegger F, Emmerig K, Schlueter M, Neitz J, Draenert R, et al. T cells are functionally not impaired in AML: increased PD-1 expression is only seen at time of relapse and correlates with a shift towards the memory T cell compartment. J Hematol Oncol. 2015;8:93 pubmed 出版商
  209. Riou C, Tanko R, Soares A, Masson L, Werner L, Garrett N, et al. Restoration of CD4+ Responses to Copathogens in HIV-Infected Individuals on Antiretroviral Therapy Is Dependent on T Cell Memory Phenotype. J Immunol. 2015;195:2273-2281 pubmed 出版商
  210. Wang Y, Zhong H, Xie X, Chen C, Huang D, Shen L, et al. Long noncoding RNA derived from CD244 signaling epigenetically controls CD8+ T-cell immune responses in tuberculosis infection. Proc Natl Acad Sci U S A. 2015;112:E3883-92 pubmed 出版商
  211. Adoro S, Cubillos Ruiz J, Chen X, Deruaz M, Vrbanac V, Song M, et al. IL-21 induces antiviral microRNA-29 in CD4 T cells to limit HIV-1 infection. Nat Commun. 2015;6:7562 pubmed 出版商
  212. Yawata N, Selva K, Liu Y, Tan K, Lee A, Siak J, et al. Dynamic change in natural killer cell type in the human ocular mucosa in situ as means of immune evasion by adenovirus infection. Mucosal Immunol. 2016;9:159-70 pubmed 出版商
  213. Chowdhury A, Hayes T, Bosinger S, Lawson B, Vanderford T, Schmitz J, et al. Differential Impact of In Vivo CD8+ T Lymphocyte Depletion in Controller versus Progressor Simian Immunodeficiency Virus-Infected Macaques. J Virol. 2015;89:8677-86 pubmed 出版商
  214. Chang D, Moniz R, Xu Z, Sun J, Signoretti S, Zhu Q, et al. Human anti-CAIX antibodies mediate immune cell inhibition of renal cell carcinoma in vitro and in a humanized mouse model in vivo. Mol Cancer. 2015;14:119 pubmed 出版商
  215. Boisson B, Laplantine E, Dobbs K, Cobat A, Tarantino N, Hazen M, et al. Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia. J Exp Med. 2015;212:939-51 pubmed 出版商
  216. Wang Z, Wan Y, Qiu C, Quiñones Parra S, Zhu Z, Loh L, et al. Recovery from severe H7N9 disease is associated with diverse response mechanisms dominated by CD8⁺ T cells. Nat Commun. 2015;6:6833 pubmed 出版商
  217. Boer M, Prins C, van Meijgaarden K, van Dissel J, Ottenhoff T, Joosten S. Mycobacterium bovis BCG Vaccination Induces Divergent Proinflammatory or Regulatory T Cell Responses in Adults. Clin Vaccine Immunol. 2015;22:778-88 pubmed 出版商
  218. Kinder M, Greenplate A, Strohl W, Jordan R, Brezski R. An Fc engineering approach that modulates antibody-dependent cytokine release without altering cell-killing functions. MAbs. 2015;7:494-504 pubmed 出版商
  219. Lee J, Jeong I, Joh J, Jung Y, Sim S, Choi B, et al. Differential expression of CD57 in antigen-reactive CD4+ T cells between active and latent tuberculosis infection. Clin Immunol. 2015;159:37-46 pubmed 出版商
  220. Riccio E, Pratt Riccio L, Bianco Júnior C, Sanchez V, Totino P, Carvalho L, et al. Molecular and immunological tools for the evaluation of the cellular immune response in the neotropical monkey Saimiri sciureus, a non-human primate model for malaria research. Malar J. 2015;14:166 pubmed 出版商
  221. DaFonseca S, Niessl J, Pouvreau S, Wacleche V, Gosselin A, Cleret Buhot A, et al. Impaired Th17 polarization of phenotypically naive CD4(+) T-cells during chronic HIV-1 infection and potential restoration with early ART. Retrovirology. 2015;12:38 pubmed 出版商
  222. Lenz N, Schindler T, Kagina B, Zhang J, Lukindo T, Mpina M, et al. Antiviral Innate Immune Activation in HIV-Infected Adults Negatively Affects H1/IC31-Induced Vaccine-Specific Memory CD4+ T Cells. Clin Vaccine Immunol. 2015;22:688-96 pubmed 出版商
  223. Schmueck Henneresse M, Sharaf R, Vogt K, Weist B, Landwehr Kenzel S, Fuehrer H, et al. Peripheral blood-derived virus-specific memory stem T cells mature to functional effector memory subsets with self-renewal potency. J Immunol. 2015;194:5559-67 pubmed 出版商
  224. Dyring Andersen B, Bonefeld C, Bzorek M, Løvendorf M, Lauritsen J, Skov L, et al. The Vitamin D Analogue Calcipotriol Reduces the Frequency of CD8+ IL-17+ T Cells in Psoriasis Lesions. Scand J Immunol. 2015;82:84-91 pubmed 出版商
  225. Meulenbroeks C, van der Lugt J, van der Meide N, Willemse T, Rutten V, Zaiss D. Allergen-Specific Cytokine Polarization Protects Shetland Ponies against Culicoides obsoletus-Induced Insect Bite Hypersensitivity. PLoS ONE. 2015;10:e0122090 pubmed 出版商
  226. Wu Z, Frascaroli G, Bayer C, Schmal T, Mertens T. Interleukin-2 from Adaptive T Cells Enhances Natural Killer Cell Activity against Human Cytomegalovirus-Infected Macrophages. J Virol. 2015;89:6435-41 pubmed 出版商
  227. Zhou J, Amran F, Kramski M, Angelovich T, Elliott J, Hearps A, et al. An NK Cell Population Lacking FcRγ Is Expanded in Chronically Infected HIV Patients. J Immunol. 2015;194:4688-97 pubmed 出版商
  228. Xu M, Chen X, Yin H, Yin L, Liu F, Fu Y, et al. Cloning and characterization of the human integrin β6 gene promoter. PLoS ONE. 2015;10:e0121439 pubmed 出版商
  229. Trabanelli S, Lecciso M, Salvestrini V, Cavo M, Očadlíková D, Lemoli R, et al. PGE2-induced IDO1 inhibits the capacity of fully mature DCs to elicit an in vitro antileukemic immune response. J Immunol Res. 2015;2015:253191 pubmed 出版商
  230. Hong M, Sandalova E, Low D, Gehring A, Fieni S, Amadei B, et al. Trained immunity in newborn infants of HBV-infected mothers. Nat Commun. 2015;6:6588 pubmed 出版商
  231. Misra R, Shah S, Fowell D, Wang H, Scheible K, Misra S, et al. Preterm cord blood CD4⁺ T cells exhibit increased IL-6 production in chorioamnionitis and decreased CD4⁺ T cells in bronchopulmonary dysplasia. Hum Immunol. 2015;76:329-338 pubmed 出版商
  232. Bradley S, Chen Z, Melendez B, Talukder A, Khalili J, Rodríguez Cruz T, et al. BRAFV600E Co-opts a Conserved MHC Class I Internalization Pathway to Diminish Antigen Presentation and CD8+ T-cell Recognition of Melanoma. Cancer Immunol Res. 2015;3:602-9 pubmed 出版商
  233. Ohnuma K, Hatano R, Aune T, Otsuka H, Iwata S, Dang N, et al. Regulation of pulmonary graft-versus-host disease by IL-26+CD26+CD4 T lymphocytes. J Immunol. 2015;194:3697-712 pubmed 出版商
  234. Laing K, Russell R, Dong L, Schmid D, Stern M, Magaret A, et al. Zoster Vaccination Increases the Breadth of CD4+ T Cells Responsive to Varicella Zoster Virus. J Infect Dis. 2015;212:1022-31 pubmed 出版商
  235. Obiero J, Shekalaghe S, Hermsen C, Mpina M, Bijker E, Roestenberg M, et al. Impact of malaria preexposure on antiparasite cellular and humoral immune responses after controlled human malaria infection. Infect Immun. 2015;83:2185-96 pubmed 出版商
  236. Chen M, Hu P, Ling N, Peng H, Lei Y, Hu H, et al. Enhanced functions of peripheral γδ T cells in chronic hepatitis B infection during interferon α treatment in vivo and in vitro. PLoS ONE. 2015;10:e0120086 pubmed 出版商
  237. Bowcutt R, Malter L, Chen L, Wolff M, Robertson I, Rifkin D, et al. Isolation and cytokine analysis of lamina propria lymphocytes from mucosal biopsies of the human colon. J Immunol Methods. 2015;421:27-35 pubmed 出版商
  238. Steindor M, Nkwouano V, Mayatepek E, Mackenzie C, Schramm D, Jacobsen M. Rapid detection and immune characterization of Mycobacterium abscessus infection in cystic fibrosis patients. PLoS ONE. 2015;10:e0119737 pubmed 出版商
  239. Tsai C, Liong K, Gunalan M, Li N, Lim D, Fisher D, et al. Type I IFNs and IL-18 regulate the antiviral response of primary human γδ T cells against dendritic cells infected with Dengue virus. J Immunol. 2015;194:3890-900 pubmed 出版商
  240. Rodriguez J, Marchicio J, López M, Ziblat A, Elias F, Fló J, et al. PyNTTTTGT and CpG immunostimulatory oligonucleotides: effect on granulocyte/monocyte colony-stimulating factor (GM-CSF) secretion by human CD56+ (NK and NKT) cells. PLoS ONE. 2015;10:e0117484 pubmed 出版商
  241. Severson J, Serracino H, Mateescu V, Raeburn C, McIntyre R, Sams S, et al. PD-1+Tim-3+ CD8+ T Lymphocytes Display Varied Degrees of Functional Exhaustion in Patients with Regionally Metastatic Differentiated Thyroid Cancer. Cancer Immunol Res. 2015;3:620-30 pubmed 出版商
  242. Lu Y, Xue Q, Eisele M, Sulistijo E, Brower K, Han L, et al. Highly multiplexed profiling of single-cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands. Proc Natl Acad Sci U S A. 2015;112:E607-15 pubmed 出版商
  243. Rissiek A, Baumann I, Cuapio A, Mautner A, Kolster M, Arck P, et al. The expression of CD39 on regulatory T cells is genetically driven and further upregulated at sites of inflammation. J Autoimmun. 2015;58:12-20 pubmed 出版商
  244. Triplett T, Tucker C, Triplett K, Alderman Z, Sun L, Ling L, et al. STAT3 Signaling Is Required for Optimal Regression of Large Established Tumors in Mice Treated with Anti-OX40 and TGFβ Receptor Blockade. Cancer Immunol Res. 2015;3:526-35 pubmed 出版商
  245. Dimova T, Brouwer M, Gosselin F, Tassignon J, Leo O, Donner C, et al. Effector Vγ9Vδ2 T cells dominate the human fetal γδ T-cell repertoire. Proc Natl Acad Sci U S A. 2015;112:E556-65 pubmed 出版商
  246. Bourgeois E, Subramaniam S, Cheng T, de Jong A, Layre E, Ly D, et al. Bee venom processes human skin lipids for presentation by CD1a. J Exp Med. 2015;212:149-63 pubmed 出版商
  247. Karlsson F, Hassan Zahraee M. Quantification of Th1 and Th17 Cells with Intracellular Staining Following PMA/Ionomycin Stimulation. Curr Protoc Cytom. 2015;71:6.35.1-7 pubmed 出版商
  248. Li F, Ji L, Wang W, Hua F, Zhan Y, Zou S, et al. Insufficient secretion of IL-10 by Tregs compromised its control on over-activated CD4+ T effector cells in newly diagnosed adult immune thrombocytopenia patients. Immunol Res. 2015;61:269-80 pubmed 出版商
  249. Hatano R, Ohnuma K, Otsuka H, Komiya E, Taki I, Iwata S, et al. CD26-mediated induction of EGR2 and IL-10 as potential regulatory mechanism for CD26 costimulatory pathway. J Immunol. 2015;194:960-72 pubmed 出版商
  250. Touzot M, Cacoub P, Bodaghi B, Soumelis V, Saadoun D. IFN-α induces IL-10 production and tilt the balance between Th1 and Th17 in Behçet disease. Autoimmun Rev. 2015;14:370-5 pubmed 出版商
  251. Nguyen L, Pan J, Dinh T, Hadeiba H, O Hara E, Ebtikar A, et al. Role and species-specific expression of colon T cell homing receptor GPR15 in colitis. Nat Immunol. 2015;16:207-213 pubmed 出版商
  252. Kagina B, Mansoor N, Kpamegan E, Penn Nicholson A, Nemes E, Smit E, et al. Qualification of a whole blood intracellular cytokine staining assay to measure mycobacteria-specific CD4 and CD8 T cell immunity by flow cytometry. J Immunol Methods. 2015;417:22-33 pubmed 出版商
  253. Heninger A, Wentrup S, Al Saeedi M, Schiessling S, Giese T, Wartha F, et al. Immunomodulation of human intestinal T cells by the synthetic CD80 antagonist RhuDex®. Immun Inflamm Dis. 2014;2:166-80 pubmed 出版商
  254. Bürgler S, Gimeno A, Parente Ribes A, Wang D, Os A, Devereux S, et al. Chronic lymphocytic leukemia cells express CD38 in response to Th1 cell-derived IFN-γ by a T-bet-dependent mechanism. J Immunol. 2015;194:827-35 pubmed 出版商
  255. Setoguchi R, Matsui Y, Mouri K. mTOR signaling promotes a robust and continuous production of IFN-γ by human memory CD8+ T cells and their proliferation. Eur J Immunol. 2015;45:893-902 pubmed 出版商
  256. Gerner W, Talker S, Koinig H, Sedlak C, Mair K, Saalmüller A. Phenotypic and functional differentiation of porcine αβ T cells: current knowledge and available tools. Mol Immunol. 2015;66:3-13 pubmed 出版商
  257. Van Eyck L, Hershfield M, Pombal D, Kelly S, Ganson N, Moens L, et al. Hematopoietic stem cell transplantation rescues the immunologic phenotype and prevents vasculopathy in patients with adenosine deaminase 2 deficiency. J Allergy Clin Immunol. 2015;135:283-7.e5 pubmed 出版商
  258. Zhang P, Lu X, Tao K, Shi L, Li W, Wang G, et al. Siglec-10 is associated with survival and natural killer cell dysfunction in hepatocellular carcinoma. J Surg Res. 2015;194:107-13 pubmed 出版商
  259. Hautefort A, Girerd B, Montani D, Cohen Kaminsky S, Price L, Lambrecht B, et al. T-helper 17 cell polarization in pulmonary arterial hypertension. Chest. 2015;147:1610-1620 pubmed 出版商
  260. Rovetta A, Peña D, Hernández Del Pino R, Recalde G, Pellegrini J, Bigi F, et al. IFNG-mediated immune responses enhance autophagy against Mycobacterium tuberculosis antigens in patients with active tuberculosis. Autophagy. 2014;10:2109-21 pubmed 出版商
  261. Huss D, Mehta D, Sharma A, You X, Riester K, Sheridan J, et al. In vivo maintenance of human regulatory T cells during CD25 blockade. J Immunol. 2015;194:84-92 pubmed
  262. Dominguez Villar M, Gautron A, de Marcken M, Keller M, Hafler D. TLR7 induces anergy in human CD4(+) T cells. Nat Immunol. 2015;16:118-28 pubmed 出版商
  263. Kamburova E, Koenen H, van den Hoogen M, Baas M, Joosten I, Hilbrands L. Longitudinal analysis of T and B cell phenotype and function in renal transplant recipients with or without rituximab induction therapy. PLoS ONE. 2014;9:e112658 pubmed 出版商
  264. Vogelpoel L, Hansen I, Rispens T, Muller F, van Capel T, Turina M, et al. Fc gamma receptor-TLR cross-talk elicits pro-inflammatory cytokine production by human M2 macrophages. Nat Commun. 2014;5:5444 pubmed 出版商
  265. Fernandez C, Amarasena T, Kelleher A, Rossjohn J, McCluskey J, Godfrey D, et al. MAIT cells are depleted early but retain functional cytokine expression in HIV infection. Immunol Cell Biol. 2015;93:177-88 pubmed 出版商
  266. Fujita T, Burwitz B, Chew G, Reed J, Pathak R, Seger E, et al. Expansion of dysfunctional Tim-3-expressing effector memory CD8+ T cells during simian immunodeficiency virus infection in rhesus macaques. J Immunol. 2014;193:5576-83 pubmed 出版商
  267. Weiskopf D, Angelo M, Bangs D, Sidney J, Paul S, Peters B, et al. The human CD8+ T cell responses induced by a live attenuated tetravalent dengue vaccine are directed against highly conserved epitopes. J Virol. 2015;89:120-8 pubmed 出版商
  268. Lim D, Yawata N, Selva K, Li N, Tsai C, Yeong L, et al. The combination of type I IFN, TNF-α, and cell surface receptor engagement with dendritic cells enables NK cells to overcome immune evasion by dengue virus. J Immunol. 2014;193:5065-75 pubmed 出版商
  269. Gerna G, Lilleri D, Fornara C, Bruno F, Gabanti E, Cane I, et al. Differential kinetics of human cytomegalovirus load and antibody responses in primary infection of the immunocompetent and immunocompromised host. J Gen Virol. 2015;96:360-9 pubmed 出版商
  270. Jansen D, Hameetman M, van Bergen J, Huizinga T, van der Heijde D, Toes R, et al. IL-17-producing CD4+ T cells are increased in early, active axial spondyloarthritis including patients without imaging abnormalities. Rheumatology (Oxford). 2015;54:728-35 pubmed 出版商
  271. Cucak H, Vistisen D, Witte D, Philipsen A, Rosendahl A. Reduction of specific circulating lymphocyte populations with metabolic risk factors in patients at risk to develop type 2 diabetes. PLoS ONE. 2014;9:e107140 pubmed 出版商
  272. Yu C, Becker C, Metang P, Marches F, Wang Y, Toshiyuki H, et al. Human CD141+ dendritic cells induce CD4+ T cells to produce type 2 cytokines. J Immunol. 2014;193:4335-43 pubmed 出版商
  273. Mylvaganam G, Velu V, Hong J, Sadagopal S, Kwa S, Basu R, et al. Diminished viral control during simian immunodeficiency virus infection is associated with aberrant PD-1hi CD4 T cell enrichment in the lymphoid follicles of the rectal mucosa. J Immunol. 2014;193:4527-36 pubmed 出版商
  274. Gibbons D, Fleming P, Virasami A, Michel M, Sebire N, Costeloe K, et al. Interleukin-8 (CXCL8) production is a signatory T cell effector function of human newborn infants. Nat Med. 2014;20:1206-10 pubmed 出版商
  275. Kudernatsch R, Letsch A, Guerreiro M, Löbel M, Bauer S, Volk H, et al. Human bone marrow contains a subset of quiescent early memory CD8(+) T cells characterized by high CD127 expression and efflux capacity. Eur J Immunol. 2014;44:3532-42 pubmed 出版商
  276. Valentin A, McKinnon K, Li J, Rosati M, Kulkarni V, Pilkington G, et al. Comparative analysis of SIV-specific cellular immune responses induced by different vaccine platforms in rhesus macaques. Clin Immunol. 2014;155:91-107 pubmed 出版商
  277. Kagina B, Tameris M, Geldenhuys H, Hatherill M, Abel B, Hussey G, et al. The novel tuberculosis vaccine, AERAS-402, is safe in healthy infants previously vaccinated with BCG, and induces dose-dependent CD4 and CD8T cell responses. Vaccine. 2014;32:5908-17 pubmed 出版商
  278. Hu H, Eller M, Zafar S, Zhou Y, Gu M, Wei Z, et al. Preferential infection of human Ad5-specific CD4 T cells by HIV in Ad5 naturally exposed and recombinant Ad5-HIV vaccinated individuals. Proc Natl Acad Sci U S A. 2014;111:13439-44 pubmed 出版商
  279. Li Z, Li W, Li N, Jiao Y, Chen D, Cui L, et al. γδ T cells are involved in acute HIV infection and associated with AIDS progression. PLoS ONE. 2014;9:e106064 pubmed 出版商
  280. Bacher P, Kniemeyer O, Teutschbein J, Thön M, Vödisch M, Wartenberg D, et al. Identification of immunogenic antigens from Aspergillus fumigatus by direct multiparameter characterization of specific conventional and regulatory CD4+ T cells. J Immunol. 2014;193:3332-43 pubmed 出版商
  281. Madhavi V, Ana Sosa Batiz F, Jegaskanda S, Center R, Winnall W, Parsons M, et al. Antibody-dependent effector functions against HIV decline in subjects receiving antiretroviral therapy. J Infect Dis. 2015;211:529-38 pubmed 出版商
  282. Davey M, Morgan M, Liuzzi A, Tyler C, Khan M, Szakmany T, et al. Microbe-specific unconventional T cells induce human neutrophil differentiation into antigen cross-presenting cells. J Immunol. 2014;193:3704-3716 pubmed 出版商
  283. Ohue Y, Kurose K, Mizote Y, Matsumoto H, Nishio Y, Isobe M, et al. Prolongation of overall survival in advanced lung adenocarcinoma patients with the XAGE1 (GAGED2a) antibody. Clin Cancer Res. 2014;20:5052-63 pubmed 出版商
  284. Frencher J, Shen H, Yan L, Wilson J, Freitag N, Rizzo A, et al. HMBPP-deficient Listeria mutant immunization alters pulmonary/systemic responses, effector functions, and memory polarization of Vγ2Vδ2 T cells. J Leukoc Biol. 2014;96:957-67 pubmed 出版商
  285. Jin J, Zhang W, Wong K, Kwak M, van Driel I, Yu Q. Inhibition of breast cancer resistance protein (ABCG2) in human myeloid dendritic cells induces potent tolerogenic functions during LPS stimulation. PLoS ONE. 2014;9:e104753 pubmed 出版商
  286. Tchakoute C, Hesseling A, Kidzeru E, Gamieldien H, Passmore J, Jones C, et al. Delaying BCG vaccination until 8 weeks of age results in robust BCG-specific T-cell responses in HIV-exposed infants. J Infect Dis. 2015;211:338-46 pubmed 出版商
  287. Saresella M, Piancone F, Marventano I, La Rosa F, Tortorella P, Caputo D, et al. A role for the TIM-3/GAL-9/BAT3 pathway in determining the clinical phenotype of multiple sclerosis. FASEB J. 2014;28:5000-9 pubmed 出版商
  288. Lee Chang C, Bodogai M, Moritoh K, Olkhanud P, Chan A, Croft M, et al. Accumulation of 4-1BBL+ B cells in the elderly induces the generation of granzyme-B+ CD8+ T cells with potential antitumor activity. Blood. 2014;124:1450-9 pubmed 出版商
  289. Buggert M, Tauriainen J, Yamamoto T, Frederiksen J, Ivarsson M, Michaelsson J, et al. T-bet and Eomes are differentially linked to the exhausted phenotype of CD8+ T cells in HIV infection. PLoS Pathog. 2014;10:e1004251 pubmed 出版商
  290. Chandran P, Keller A, Weinmann L, Seida A, Braun M, Andreev K, et al. The TGF-?-inducible miR-23a cluster attenuates IFN-? levels and antigen-specific cytotoxicity in human CD8? T cells. J Leukoc Biol. 2014;96:633-45 pubmed 出版商
  291. Kistowska M, Meier B, Proust T, Feldmeyer L, Cozzio A, Kuendig T, et al. Propionibacterium acnes promotes Th17 and Th17/Th1 responses in acne patients. J Invest Dermatol. 2015;135:110-118 pubmed 出版商
  292. Pegram H, Purdon T, van Leeuwen D, Curran K, Giralt S, Barker J, et al. IL-12-secreting CD19-targeted cord blood-derived T cells for the immunotherapy of B-cell acute lymphoblastic leukemia. Leukemia. 2015;29:415-22 pubmed 出版商
  293. Ye S, Li Z, Luo D, Huang B, Chen Y, Zhang X, et al. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget. 2014;5:5439-52 pubmed
  294. Kim K, Chung B, Kim B, Cho M, Yang C. The effect of mammalian target of rapamycin inhibition on T helper type 17 and regulatory T cell differentiation in vitro and in vivo in kidney transplant recipients. Immunology. 2015;144:68-78 pubmed 出版商
  295. Blodörn K, Hägglund S, Fix J, Dubuquoy C, Makabi Panzu B, Thom M, et al. Vaccine safety and efficacy evaluation of a recombinant bovine respiratory syncytial virus (BRSV) with deletion of the SH gene and subunit vaccines based on recombinant human RSV proteins: N-nanorings, P and M2-1, in calves with maternal antibodies. PLoS ONE. 2014;9:e100392 pubmed 出版商
  296. Eisenhardt M, Glässner A, Wolter F, Kramer B, Kokordelis P, Nischalke H, et al. CD27(+)CD56Bright natural killer cells may be involved in spontaneous clearance of acute hepatitis C in HIV-positive patients. AIDS. 2014;28:1879-84 pubmed 出版商
  297. Gupta M, Kolli D, Molteni C, Casola A, Garofalo R. Paramyxovirus infection regulates T cell responses by BDCA-1+ and BDCA-3+ myeloid dendritic cells. PLoS ONE. 2014;9:e99227 pubmed 出版商
  298. Hong J, Amancha P, Rogers K, Courtney C, Havenar Daughton C, Crotty S, et al. Early lymphoid responses and germinal center formation correlate with lower viral load set points and better prognosis of simian immunodeficiency virus infection. J Immunol. 2014;193:797-806 pubmed 出版商
  299. Payne T, Blackinton J, Frisbee A, Pickeral J, Sawant S, Vandergrift N, et al. Transcriptional and posttranscriptional regulation of cytokine gene expression in HIV-1 antigen-specific CD8+ T cells that mediate virus inhibition. J Virol. 2014;88:9514-28 pubmed 出版商
  300. Sueur C, Lupo J, Mas P, Morand P, Boyer V. Difference in cytokine production and cell cycle progression induced by Epstein-Barr virus Lmp1 deletion variants in Kmh2, a Hodgkin lymphoma cell line. Virol J. 2014;11:94 pubmed 出版商
  301. Jiang B, Wu X, Li X, Yang X, Zhou Y, Yan H, et al. Expansion of NK cells by engineered K562 cells co-expressing 4-1BBL and mMICA, combined with soluble IL-21. Cell Immunol. 2014;290:10-20 pubmed 出版商
  302. Bukh I, Calcedo R, Roy S, Carnathan D, Grant R, Qin Q, et al. Increased mucosal CD4+ T cell activation in rhesus macaques following vaccination with an adenoviral vector. J Virol. 2014;88:8468-78 pubmed 出版商
  303. Staumont Sallé D, Fleury S, Lazzari A, Molendi Coste O, Hornez N, Lavogiez C, et al. CX?CL1 (fractalkine) and its receptor CX?CR1 regulate atopic dermatitis by controlling effector T cell retention in inflamed skin. J Exp Med. 2014;211:1185-96 pubmed 出版商
  304. Deng N, Weaver J, Mosmann T. Cytokine diversity in the Th1-dominated human anti-influenza response caused by variable cytokine expression by Th1 cells, and a minor population of uncommitted IL-2+IFN?- Thpp cells. PLoS ONE. 2014;9:e95986 pubmed 出版商
  305. Hebel K, Weinert S, Kuropka B, Knolle J, Kosak B, Jorch G, et al. CD4+ T cells from human neonates and infants are poised spontaneously to run a nonclassical IL-4 program. J Immunol. 2014;192:5160-70 pubmed 出版商
  306. Buggert M, Norstr m M, Salemi M, Hecht F, Karlsson A. Functional avidity and IL-2/perforin production is linked to the emergence of mutations within HLA-B*5701-restricted epitopes and HIV-1 disease progression. J Immunol. 2014;192:4685-96 pubmed 出版商
  307. Dhodapkar M, Sznol M, Zhao B, Wang D, Carvajal R, Keohan M, et al. Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205. Sci Transl Med. 2014;6:232ra51 pubmed 出版商
  308. Ye W, Xing Y, Paustian C, van de Ven R, Moudgil T, Hilton T, et al. Cross-presentation of viral antigens in dribbles leads to efficient activation of virus-specific human memory T cells. J Transl Med. 2014;12:100 pubmed 出版商
  309. Lanteri M, Diamond M, Law J, Chew G, Wu S, Inglis H, et al. Increased frequency of Tim-3 expressing T cells is associated with symptomatic West Nile virus infection. PLoS ONE. 2014;9:e92134 pubmed 出版商
  310. Sereti I, Estes J, Thompson W, Morcock D, Fischl M, Croughs T, et al. Decreases in colonic and systemic inflammation in chronic HIV infection after IL-7 administration. PLoS Pathog. 2014;10:e1003890 pubmed 出版商
  311. Chang S, Kohrt H, Maecker H. Monitoring the immune competence of cancer patients to predict outcome. Cancer Immunol Immunother. 2014;63:713-9 pubmed 出版商
  312. Kulkarni V, Valentin A, Rosati M, Alicea C, Singh A, Jalah R, et al. Altered response hierarchy and increased T-cell breadth upon HIV-1 conserved element DNA vaccination in macaques. PLoS ONE. 2014;9:e86254 pubmed 出版商
  313. Salerno Goncalves R, Rezwan T, Sztein M. B cells modulate mucosal associated invariant T cell immune responses. Front Immunol. 2014;4:511 pubmed 出版商
  314. Narita T, Ishida T, Masaki A, Suzuki S, Ito A, Mori F, et al. HTLV-1 bZIP factor-specific CD4 T cell responses in adult T cell leukemia/lymphoma patients after allogeneic hematopoietic stem cell transplantation. J Immunol. 2014;192:940-7 pubmed 出版商
  315. Galindo Albarrán A, Ramirez Pliego O, Labastida Conde R, Melchy Pérez E, Liquitaya Montiel A, Esquivel Guadarrama F, et al. CD43 signals prepare human T cells to receive cytokine differentiation signals. J Cell Physiol. 2014;229:172-80 pubmed
  316. Rodriguez M, Loyd C, Ding X, Karim A, MCDONALD D, Canaday D, et al. Mycobacterial phosphatidylinositol mannoside 6 (PIM6) up-regulates TCR-triggered HIV-1 replication in CD4+ T cells. PLoS ONE. 2013;8:e80938 pubmed 出版商
  317. Lutwama F, Kagina B, Wajja A, Waiswa F, Mansoor N, Kirimunda S, et al. Distinct T-cell responses when BCG vaccination is delayed from birth to 6 weeks of age in Ugandan infants. J Infect Dis. 2014;209:887-97 pubmed 出版商
  318. Wiernik A, Foley B, Zhang B, Verneris M, Warlick E, Gleason M, et al. Targeting natural killer cells to acute myeloid leukemia in vitro with a CD16 x 33 bispecific killer cell engager and ADAM17 inhibition. Clin Cancer Res. 2013;19:3844-55 pubmed 出版商
  319. Marin N, Paris S, Rojas M, Garcia L. Functional profile of CD4+ and CD8+ T cells in latently infected individuals and patients with active TB. Tuberculosis (Edinb). 2013;93:155-66 pubmed 出版商
  320. Wolff M, Leung J, Davenport M, Poles M, Cho I, Loke P. TH17, TH22 and Treg cells are enriched in the healthy human cecum. PLoS ONE. 2012;7:e41373 pubmed 出版商
  321. Qi Y, Operario D, Georas S, Mosmann T. The acute environment, rather than T cell subset pre-commitment, regulates expression of the human T cell cytokine amphiregulin. PLoS ONE. 2012;7:e39072 pubmed 出版商
  322. McArthur M, Sztein M. Heterogeneity of multifunctional IL-17A producing S. Typhi-specific CD8+ T cells in volunteers following Ty21a typhoid immunization. PLoS ONE. 2012;7:e38408 pubmed 出版商
  323. Teirlinck A, McCall M, Roestenberg M, Scholzen A, Woestenenk R, de Mast Q, et al. Longevity and composition of cellular immune responses following experimental Plasmodium falciparum malaria infection in humans. PLoS Pathog. 2011;7:e1002389 pubmed 出版商
  324. Karnell J, Karnell F, Stephens G, Rajan B, Morehouse C, Li Y, et al. Mycophenolic acid differentially impacts B cell function depending on the stage of differentiation. J Immunol. 2011;187:3603-12 pubmed 出版商
  325. Chen M, Tsai T, Lin Y, Tsai Y, Wang L, Lee M, et al. Antipsychotic drugs suppress the AKT/NF-?B pathway and regulate the differentiation of T-cell subsets. Immunol Lett. 2011;140:81-91 pubmed 出版商
  326. Pradier A, Passweg J, Villard J, Kindler V. Human bone marrow stromal cells and skin fibroblasts inhibit natural killer cell proliferation and cytotoxic activity. Cell Transplant. 2011;20:681-91 pubmed 出版商
  327. Reeves R, Gillis J, Wong F, Yu Y, Connole M, Johnson R. CD16- natural killer cells: enrichment in mucosal and secondary lymphoid tissues and altered function during chronic SIV infection. Blood. 2010;115:4439-46 pubmed 出版商
  328. Oo Y, Weston C, Lalor P, Curbishley S, Withers D, Reynolds G, et al. Distinct roles for CCR4 and CXCR3 in the recruitment and positioning of regulatory T cells in the inflamed human liver. J Immunol. 2010;184:2886-98 pubmed 出版商
  329. Brucklacher Waldert V, Steinbach K, Lioznov M, Kolster M, Holscher C, Tolosa E. Phenotypical characterization of human Th17 cells unambiguously identified by surface IL-17A expression. J Immunol. 2009;183:5494-501 pubmed 出版商
  330. Trabattoni D, Saresella M, Pacei M, Marventano I, Mendozzi L, Rovaris M, et al. Costimulatory pathways in multiple sclerosis: distinctive expression of PD-1 and PD-L1 in patients with different patterns of disease. J Immunol. 2009;183:4984-93 pubmed 出版商
  331. Daubersies P, Ollomo B, Sauzet J, Brahimi K, Perlaza B, Eling W, et al. Genetic immunisation by liver stage antigen 3 protects chimpanzees against malaria despite low immune responses. PLoS ONE. 2008;3:e2659 pubmed 出版商
  332. Gurer C, Strowig T, Brilot F, Pack M, Trumpfheller C, Arrey F, et al. Targeting the nuclear antigen 1 of Epstein-Barr virus to the human endocytic receptor DEC-205 stimulates protective T-cell responses. Blood. 2008;112:1231-9 pubmed 出版商
  333. Yamada H, Nakashima Y, Okazaki K, Mawatari T, Fukushi J, Kaibara N, et al. Th1 but not Th17 cells predominate in the joints of patients with rheumatoid arthritis. Ann Rheum Dis. 2008;67:1299-304 pubmed
  334. De Fanis U, Mori F, Kurnat R, Lee W, Bova M, Adkinson N, et al. GATA3 up-regulation associated with surface expression of CD294/CRTH2: a unique feature of human Th cells. Blood. 2007;109:4343-50 pubmed
  335. Takeda K, Suzuki T, Shimada S, Shida K, Nanno M, Okumura K. Interleukin-12 is involved in the enhancement of human natural killer cell activity by Lactobacillus casei Shirota. Clin Exp Immunol. 2006;146:109-15 pubmed
  336. Gorski K, Waller E, Bjornton Severson J, Hanten J, Riter C, Kieper W, et al. Distinct indirect pathways govern human NK-cell activation by TLR-7 and TLR-8 agonists. Int Immunol. 2006;18:1115-26 pubmed
  337. Njemini R, Lambert M, Demanet C, Mets T. The effect of aging and inflammation on heat shock protein 27 in human monocytes and lymphocytes. Exp Gerontol. 2006;41:312-9 pubmed
  338. Bratke K, Kuepper M, Bade B, Virchow J, Luttmann W. Differential expression of human granzymes A, B, and K in natural killer cells and during CD8+ T cell differentiation in peripheral blood. Eur J Immunol. 2005;35:2608-16 pubmed
  339. Haddeland U, Sletten G, Brandtzaeg P, Nakstad B. Impaired interleukin (IL)-4-associated generation of CCR4-expressing T cells in neonates with hereditary allergy risk. Clin Exp Immunol. 2005;139:314-22 pubmed
  340. Temmerman S, Pethe K, Parra M, Alonso S, Rouanet C, Pickett T, et al. Methylation-dependent T cell immunity to Mycobacterium tuberculosis heparin-binding hemagglutinin. Nat Med. 2004;10:935-41 pubmed
  341. Singh S, Soe S, Mejia J, Roussilhon C, Theisen M, Corradin G, et al. Identification of a conserved region of Plasmodium falciparum MSP3 targeted by biologically active antibodies to improve vaccine design. J Infect Dis. 2004;190:1010-8 pubmed
  342. Kooijman R, Coppens A. Insulin-like growth factor-I stimulates IL-10 production in human T cells. J Leukoc Biol. 2004;76:862-7 pubmed
  343. Stewart S, Vidali M, Day C, Albano E, Jones D. Oxidative stress as a trigger for cellular immune responses in patients with alcoholic liver disease. Hepatology. 2004;39:197-203 pubmed
  344. Listvanova S, Temmerman S, Stordeur P, Verscheure V, Place S, Zhou L, et al. Optimal kinetics for quantification of antigen-induced cytokines in human peripheral blood mononuclear cells by real-time PCR and by ELISA. J Immunol Methods. 2003;281:27-35 pubmed
  345. Kumar P, Uchil P, Sulochana P, Nirmala G, Chandrashekar R, Haridattatreya M, et al. Screening for T cell-eliciting proteins of Japanese encephalitis virus in a healthy JE-endemic human cohort using recombinant baculovirus-infected insect cell preparations. Arch Virol. 2003;148:1569-91 pubmed
  346. Meloni F, Cascina A, Paschetto E, Marone Bianco A, Morosini M, Pellegrini C, et al. Monocyte chemoattractant protein-1 levels in bronchoalveolar lavage fluid of lung-transplanted patients treated with tacrolimus as rescue treatment for refractory acute rejection. Transplant Proc. 2003;35:1523-6 pubmed
  347. Mascart F, Verscheure V, Malfroot A, Hainaut M, Pierard D, Temerman S, et al. Bordetella pertussis infection in 2-month-old infants promotes type 1 T cell responses. J Immunol. 2003;170:1504-9 pubmed
  348. Cousins D, Lee T, Staynov D. Cytokine coexpression during human Th1/Th2 cell differentiation: direct evidence for coordinated expression of Th2 cytokines. J Immunol. 2002;169:2498-506 pubmed
  349. Roach D, Bean A, Demangel C, France M, Briscoe H, Britton W. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J Immunol. 2002;168:4620-7 pubmed
  350. Bullens D, Rafiq K, Charitidou L, Peng X, Kasran A, Warmerdam P, et al. Effects of co-stimulation by CD58 on human T cell cytokine production: a selective cytokine pattern with induction of high IL-10 production. Int Immunol. 2001;13:181-91 pubmed
  351. Boyaka P, Wright P, Marinaro M, Kiyono H, Johnson J, Gonzales R, et al. Human nasopharyngeal-associated lymphoreticular tissues. Functional analysis of subepithelial and intraepithelial B and T cells from adenoids and tonsils. Am J Pathol. 2000;157:2023-35 pubmed
  352. Ribeiro U, Whiteside T, Basse P, Safatle Ribeiro A, Huneke C, Posner M. Activated natural killer cell tumor retention and cytokine production in colon tumor using a tissue-isolated model. J Surg Res. 1999;82:78-87 pubmed
  353. Koshiba M, Rosin D, Hayashi N, Linden J, Sitkovsky M. Patterns of A2A extracellular adenosine receptor expression in different functional subsets of human peripheral T cells. Flow cytometry studies with anti-A2A receptor monoclonal antibodies. Mol Pharmacol. 1999;55:614-24 pubmed
  354. Braun M, He J, Wu C, Kelsall B. Cholera toxin suppresses interleukin (IL)-12 production and IL-12 receptor beta1 and beta2 chain expression. J Exp Med. 1999;189:541-52 pubmed