这是一篇来自已证抗体库的有关人类 IFNA13的综述,是根据43篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合IFNA13 抗体。
赛默飞世尔
小鼠 单克隆(3F9)
  • 免疫印迹; 人类; 1:5000; 图 3g
赛默飞世尔 IFNA13抗体(Thermo Fisher, MA5-24415)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3g). Aging (Albany NY) (2021) ncbi
小鼠 单克隆(AB5)
  • 免疫印迹; 小鼠; 1:3000; 图 1g
赛默飞世尔 IFNA13抗体(Thermo Scientific, Ab-5)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 1g). Cell Death Dis (2018) ncbi
小鼠 单克隆(EBI-1)
  • 抑制或激活实验; 人类; 图 5a
赛默飞世尔 IFNA13抗体(eBiosciences, EBI-1)被用于被用于抑制或激活实验在人类样本上 (图 5a). J Virol (2017) ncbi
小鼠 单克隆(MMHA-2)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 IFNA13抗体(Biosource, MMHA-2)被用于被用于免疫组化-石蜡切片在人类样本上. Ann Rheum Dis (2008) ncbi
小鼠 单克隆(MMHA-2)
  • 流式细胞仪; 人类
赛默飞世尔 IFNA13抗体(Biosource, MMHA-2)被用于被用于流式细胞仪在人类样本上. Blood (2006) ncbi
圣克鲁斯生物技术
小鼠 单克隆(5D4)
  • 免疫组化-石蜡切片; 人类; 图 1b
圣克鲁斯生物技术 IFNA13抗体(Santa Cruz, sc-80996)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1b). Ann Rheum Dis (2018) ncbi
小鼠 单克隆(F-7)
圣克鲁斯生物技术 IFNA13抗体(Santa Cruz, F-7)被用于. Int J Clin Exp Pathol (2015) ncbi
小鼠 单克隆(F-7)
圣克鲁斯生物技术 IFNA13抗体(Santa Cruz Biotechnology, F-7)被用于. Sci Rep (2015) ncbi
小鼠 单克隆(F-7)
圣克鲁斯生物技术 IFNA13抗体(Santa Cruz Biotechnology, F-7)被用于. Cell (2014) ncbi
小鼠 单克隆(F-7)
圣克鲁斯生物技术 IFNA13抗体(Santa Cruz Biotechnology, F-7)被用于. Oncogene (2014) ncbi
MABTECH
小鼠 单克隆(MT2/4/6)
  • 酶联免疫吸附测定; 人类; 图 1
MABTECH IFNA13抗体(Mabtech, MT2/4/6)被用于被用于酶联免疫吸附测定在人类样本上 (图 1). Arthritis Res Ther (2016) ncbi
小鼠 单克隆(MT1/3/5)
  • 酶联免疫吸附测定; 人类; 图 1
MABTECH IFNA13抗体(Mabtech, MT1/3/5)被用于被用于酶联免疫吸附测定在人类样本上 (图 1). Arthritis Res Ther (2016) ncbi
美天旎
小鼠 单克隆(LT27:295)
  • 流式细胞仪; 人类; 图 1b
美天旎 IFNA13抗体(Miltenyi Biotec, LT27:295)被用于被用于流式细胞仪在人类样本上 (图 1b). Sci Adv (2019) ncbi
小鼠 单克隆(LT27:295)
  • 流式细胞仪; 人类; 图 2g
美天旎 IFNA13抗体(Miltenyi Biotec, LT27:295)被用于被用于流式细胞仪在人类样本上 (图 2g). Science (2017) ncbi
碧迪BD
小鼠 单克隆(25723.11)
  • 流式细胞仪; 人类; 1:100; 图 3a, s4a
碧迪BD IFNA13抗体(BD Biosciences, 341117)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 3a, s4a). J Immunother Cancer (2022) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 1:200; 图 6c, 6f
碧迪BD IFNA13抗体(BD Biosciences, 557844)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 6c, 6f). Nat Commun (2021) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 1c
碧迪BD IFNA13抗体(BD Biosciences, 554552)被用于被用于流式细胞仪在人类样本上 (图 1c). Cell Host Microbe (2021) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 小鼠; 图 s2a
碧迪BD IFNA13抗体(BD Biosciences, 4S.B3)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). J Exp Med (2020) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 1:50; 图 1d
碧迪BD IFNA13抗体(BD Biosciences, 4S.B3)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1d). Gastroenterology (2019) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 2d
碧迪BD IFNA13抗体(BD Biosciences, 554552)被用于被用于流式细胞仪在人类样本上 (图 2d). Cell Rep (2018) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 ex8d
碧迪BD IFNA13抗体(BD Pharmingen, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 ex8d). Nature (2018) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 s8
碧迪BD IFNA13抗体(BD, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 s8). J Clin Invest (2018) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 1e
碧迪BD IFNA13抗体(BD Biosciences, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 1e). J Immunol (2018) ncbi
小鼠 单克隆(4S.B3)
  • 酶联免疫吸附测定; 人类; 1 ug/ml; 图 s5o
碧迪BD IFNA13抗体(BD, 4S.B3)被用于被用于酶联免疫吸附测定在人类样本上浓度为1 ug/ml (图 s5o). J Cell Biol (2018) ncbi
小鼠 单克隆(NIB42)
  • 酶联免疫吸附测定; 人类; 1 ug/ml; 图 s5o
碧迪BD IFNA13抗体(BD, NIB42)被用于被用于酶联免疫吸附测定在人类样本上浓度为1 ug/ml (图 s5o). J Cell Biol (2018) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 1a
  • 酶联免疫吸附测定; 人类; 图 3a
碧迪BD IFNA13抗体(BD, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 1a) 和 被用于酶联免疫吸附测定在人类样本上 (图 3a). J Immunol (2017) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 3d
碧迪BD IFNA13抗体(BD, 554552)被用于被用于流式细胞仪在人类样本上 (图 3d). J Clin Invest (2017) ncbi
小鼠 单克隆(4S.B3)
  • 酶联免疫吸附测定; 人类; 图 7b
  • 酶联免疫吸附测定; 小鼠; 图 5a, 6a
碧迪BD IFNA13抗体(BD, 554550)被用于被用于酶联免疫吸附测定在人类样本上 (图 7b) 和 被用于酶联免疫吸附测定在小鼠样本上 (图 5a, 6a). J Immunol (2017) ncbi
小鼠 单克隆(NIB42)
  • 酶联免疫吸附测定; 人类; 图 7b
  • 酶联免疫吸附测定; 小鼠; 图 5a, 6a
碧迪BD IFNA13抗体(BD, 551221)被用于被用于酶联免疫吸附测定在人类样本上 (图 7b) 和 被用于酶联免疫吸附测定在小鼠样本上 (图 5a, 6a). J Immunol (2017) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 猕猴; 表 1
碧迪BD IFNA13抗体(BD Biosciences, 4S.B3)被用于被用于流式细胞仪在猕猴样本上 (表 1). Vaccine (2017) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 s4b
碧迪BD IFNA13抗体(BD Biosciences, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 s4b). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(25723.11)
  • 流式细胞仪; 人类; 1:10; 图 7b
碧迪BD IFNA13抗体(BD, 341117)被用于被用于流式细胞仪在人类样本上浓度为1:10 (图 7b). Nat Biotechnol (2016) ncbi
小鼠 单克隆(NIB42)
  • 酶联免疫吸附测定; 人类; 图 1
碧迪BD IFNA13抗体(BD Biosciences, NIB42)被用于被用于酶联免疫吸附测定在人类样本上 (图 1). Arthritis Res Ther (2016) ncbi
小鼠 单克隆(4S.B3)
  • 酶联免疫吸附测定; 人类; 图 1
碧迪BD IFNA13抗体(BD Biosciences, 4S.B3)被用于被用于酶联免疫吸附测定在人类样本上 (图 1). Arthritis Res Ther (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 1
碧迪BD IFNA13抗体(BD Bioscience, 557844)被用于被用于流式细胞仪在人类样本上 (图 1). Oncoimmunology (2016) ncbi
小鼠 单克隆(7N4-1)
  • 流式细胞仪; 人类; 图 1
碧迪BD IFNA13抗体(BD Biosciences, 7N4-1)被用于被用于流式细胞仪在人类样本上 (图 1). J Transl Med (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 s1
碧迪BD IFNA13抗体(BD Biosciences, 557844)被用于被用于流式细胞仪在人类样本上 (图 s1). J Clin Invest (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 1
碧迪BD IFNA13抗体(BD Biosciences, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 1). Mucosal Immunol (2016) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 6
碧迪BD IFNA13抗体(BD, 559326)被用于被用于流式细胞仪在人类样本上 (图 6). J Exp Med (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 2
碧迪BD IFNA13抗体(BD Biosciences, 554551)被用于被用于流式细胞仪在人类样本上 (图 2). Oncoimmunology (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类
碧迪BD IFNA13抗体(BD, 4S.B3)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2015) ncbi
小鼠 单克隆(4S.B3)
  • 酶联免疫吸附测定; 人类; 图 1
碧迪BD IFNA13抗体(BD Pharmingen, 554550)被用于被用于酶联免疫吸附测定在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 1a
碧迪BD IFNA13抗体(BD Bioscience, 557074)被用于被用于流式细胞仪在人类样本上 (图 1a). Immunol Res (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类
碧迪BD IFNA13抗体(BD Biosciences, 4S.B3)被用于被用于流式细胞仪在人类样本上. Rheumatology (Oxford) (2015) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 猕猴
碧迪BD IFNA13抗体(BD Biosciences, 4S.B3)被用于被用于流式细胞仪在猕猴样本上. J Leukoc Biol (2014) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类
碧迪BD IFNA13抗体(BD Pharmingen, 4S.B3)被用于被用于流式细胞仪在人类样本上. Virol J (2014) ncbi
小鼠 单克隆(4S.B3)
  • 流式细胞仪; 人类; 图 6c
碧迪BD IFNA13抗体(BD Bioscience, 4S.B3)被用于被用于流式细胞仪在人类样本上 (图 6c). J Immunol (2014) ncbi
小鼠 单克隆(25723.11)
  • 流式细胞仪; 人类; 图 s2
碧迪BD IFNA13抗体(BD Bioscience, 25723.11)被用于被用于流式细胞仪在人类样本上 (图 s2). J Infect Dis (2014) ncbi
文章列表
  1. Bajor M, Graczyk Jarzynka A, Marhelava K, Burdzińska A, Muchowicz A, Góral A, et al. PD-L1 CAR effector cells induce self-amplifying cytotoxic effects against target cells. J Immunother Cancer. 2022;10: pubmed 出版商
  2. Petley E, Koay H, Henderson M, Sek K, Todd K, Keam S, et al. MAIT cells regulate NK cell-mediated tumor immunity. Nat Commun. 2021;12:4746 pubmed 出版商
  3. Motozono C, Toyoda M, Zahradník J, Saito A, Nasser H, Tan T, et al. SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity. Cell Host Microbe. 2021;29:1124-1136.e11 pubmed 出版商
  4. Xiong Y, Liu D, Shen R, Xiong Y. A short deletion in the DNA-binding domain of STAT3 suppresses growth and progression of colon cancer cells. Aging (Albany NY). 2021;13:5185-5196 pubmed 出版商
  5. Okumura G, Iguchi Manaka A, Murata R, Yamashita Kanemaru Y, Shibuya A, Shibuya K. Tumor-derived soluble CD155 inhibits DNAM-1-mediated antitumor activity of natural killer cells. J Exp Med. 2020;217: pubmed 出版商
  6. Maarifi G, Smith N, Maillet S, Moncorgé O, Chamontin C, Edouard J, et al. TRIM8 is required for virus-induced IFN response in human plasmacytoid dendritic cells. Sci Adv. 2019;5:eaax3511 pubmed 出版商
  7. Karimzadeh H, Kiraithe M, Oberhardt V, Salimi Alizei E, Bockmann J, Schulze zur Wiesch J, et al. Mutations in Hepatitis D Virus Allow It to Escape Detection by CD8+ T Cells and Evolve at the Population Level. Gastroenterology. 2019;156:1820-1833 pubmed 出版商
  8. Kim C, Hu B, Jadhav R, Jin J, Zhang H, Cavanagh M, et al. Activation of miR-21-Regulated Pathways in Immune Aging Selects against Signatures Characteristic of Memory T Cells. Cell Rep. 2018;25:2148-2162.e5 pubmed 出版商
  9. Song M, Sandoval T, Chae C, Chopra S, Tan C, Rutkowski M, et al. IRE1α-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature. 2018;562:423-428 pubmed 出版商
  10. Petrelli A, Mijnheer G, Hoytema van Konijnenburg D, van der Wal M, Giovannone B, Mocholí E, et al. PD-1+CD8+ T cells are clonally expanding effectors in human chronic inflammation. J Clin Invest. 2018;128:4669-4681 pubmed 出版商
  11. Walia M, Taylor S, Ho P, Martin T, Walkley C. Tolerance to sustained activation of the cAMP/Creb pathway activity in osteoblastic cells is enabled by loss of p53. Cell Death Dis. 2018;9:844 pubmed 出版商
  12. Walwyn Brown K, Guldevall K, Saeed M, Pende D, Önfelt B, MacDonald A, et al. Human NK Cells Lyse Th2-Polarizing Dendritic Cells via NKp30 and DNAM-1. J Immunol. 2018;201:2028-2041 pubmed 出版商
  13. Sarkar M, Hile G, Tsoi L, Xing X, Liu J, Liang Y, et al. Photosensitivity and type I IFN responses in cutaneous lupus are driven by epidermal-derived interferon kappa. Ann Rheum Dis. 2018;77:1653-1664 pubmed 出版商
  14. Srpan K, Ambrose A, Karampatzakis A, Saeed M, Cartwright A, Guldevall K, et al. Shedding of CD16 disassembles the NK cell immune synapse and boosts serial engagement of target cells. J Cell Biol. 2018;217:3267-3283 pubmed 出版商
  15. Salio M, Gasser O, González López C, Martens A, Veerapen N, Gileadi U, et al. Activation of Human Mucosal-Associated Invariant T Cells Induces CD40L-Dependent Maturation of Monocyte-Derived and Primary Dendritic Cells. J Immunol. 2017;199:2631-2638 pubmed 出版商
  16. Watanabe R, Shirai T, Namkoong H, Zhang H, Berry G, Wallis B, et al. Pyruvate controls the checkpoint inhibitor PD-L1 and suppresses T cell immunity. J Clin Invest. 2017;127:2725-2738 pubmed 出版商
  17. Decalf J, Desdouits M, Rodrigues V, Gobert F, Gentili M, Marques Ladeira S, et al. Sensing of HIV-1 Entry Triggers a Type I Interferon Response in Human Primary Macrophages. J Virol. 2017;91: pubmed 出版商
  18. See P, Dutertre C, Chen J, Günther P, McGovern N, Irac S, et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science. 2017;356: pubmed 出版商
  19. Whitfield S, Taylor C, Risdall J, Griffiths G, Jones J, Williamson E, et al. Interference of the T Cell and Antigen-Presenting Cell Costimulatory Pathway Using CTLA4-Ig (Abatacept) Prevents Staphylococcal Enterotoxin B Pathology. J Immunol. 2017;198:3989-3998 pubmed 出版商
  20. Stanfield B, Pahar B, Chouljenko V, Veazey R, Kousoulas K. Vaccination of rhesus macaques with the live-attenuated HSV-1 vaccine VC2 stimulates the proliferation of mucosal T cells and germinal center responses resulting in sustained production of highly neutralizing antibodies. Vaccine. 2017;35:536-543 pubmed 出版商
  21. Peters C, Häsler R, Wesch D, Kabelitz D. Human Vδ2 T cells are a major source of interleukin-9. Proc Natl Acad Sci U S A. 2016;113:12520-12525 pubmed
  22. Bentzen A, Marquard A, Lyngaa R, Saini S, Ramskov S, Donia M, et al. Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes. Nat Biotechnol. 2016;34:1037-1045 pubmed 出版商
  23. Dahal L, Basu N, Youssef H, Khanolkar R, Barker R, Erwig L, et al. Immunoregulatory soluble CTLA-4 modifies effector T-cell responses in systemic lupus erythematosus. Arthritis Res Ther. 2016;18:180 pubmed 出版商
  24. Peper J, Bösmüller H, Schuster H, Gückel B, Hörzer H, Roehle K, et al. HLA ligandomics identifies histone deacetylase 1 as target for ovarian cancer immunotherapy. Oncoimmunology. 2016;5:e1065369 pubmed 出版商
  25. Domingues R, de Carvalho G, Aoki V, da Silva Duarte A, Sato M. Activation of myeloid dendritic cells, effector cells and regulatory T cells in lichen planus. J Transl Med. 2016;14:171 pubmed 出版商
  26. Macdonald K, Hoeppli R, Huang Q, Gillies J, Luciani D, Orban P, et al. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J Clin Invest. 2016;126:1413-24 pubmed 出版商
  27. Song H, Tao L, Chen C, Pan L, Hao J, Ni Y, et al. USP17-mediated deubiquitination and stabilization of HDAC2 in cigarette smoke extract-induced inflammation. Int J Clin Exp Pathol. 2015;8:10707-15 pubmed
  28. Zhou Z, Xu C, Chen P, Liu C, Pang S, Yao X, et al. Stability of HIB-Cul3 E3 ligase adaptor HIB Is Regulated by Self-degradation and Availability of Its Substrates. Sci Rep. 2015;5:12709 pubmed 出版商
  29. Yawata N, Selva K, Liu Y, Tan K, Lee A, Siak J, et al. Dynamic change in natural killer cell type in the human ocular mucosa in situ as means of immune evasion by adenovirus infection. Mucosal Immunol. 2016;9:159-70 pubmed 出版商
  30. Boisson B, Laplantine E, Dobbs K, Cobat A, Tarantino N, Hazen M, et al. Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia. J Exp Med. 2015;212:939-51 pubmed 出版商
  31. Partlová S, Bouček J, Kloudová K, Lukešová E, Zábrodský M, Grega M, et al. Distinct patterns of intratumoral immune cell infiltrates in patients with HPV-associated compared to non-virally induced head and neck squamous cell carcinoma. Oncoimmunology. 2015;4:e965570 pubmed
  32. Laing K, Russell R, Dong L, Schmid D, Stern M, Magaret A, et al. Zoster Vaccination Increases the Breadth of CD4+ T Cells Responsive to Varicella Zoster Virus. J Infect Dis. 2015;212:1022-31 pubmed 出版商
  33. Rodriguez J, Marchicio J, López M, Ziblat A, Elias F, Fló J, et al. PyNTTTTGT and CpG immunostimulatory oligonucleotides: effect on granulocyte/monocyte colony-stimulating factor (GM-CSF) secretion by human CD56+ (NK and NKT) cells. PLoS ONE. 2015;10:e0117484 pubmed 出版商
  34. Li F, Ji L, Wang W, Hua F, Zhan Y, Zou S, et al. Insufficient secretion of IL-10 by Tregs compromised its control on over-activated CD4+ T effector cells in newly diagnosed adult immune thrombocytopenia patients. Immunol Res. 2015;61:269-80 pubmed 出版商
  35. Jansen D, Hameetman M, van Bergen J, Huizinga T, van der Heijde D, Toes R, et al. IL-17-producing CD4+ T cells are increased in early, active axial spondyloarthritis including patients without imaging abnormalities. Rheumatology (Oxford). 2015;54:728-35 pubmed 出版商
  36. Frencher J, Shen H, Yan L, Wilson J, Freitag N, Rizzo A, et al. HMBPP-deficient Listeria mutant immunization alters pulmonary/systemic responses, effector functions, and memory polarization of Vγ2Vδ2 T cells. J Leukoc Biol. 2014;96:957-67 pubmed 出版商
  37. Stingele J, Schwarz M, Bloemeke N, Wolf P, Jentsch S. A DNA-dependent protease involved in DNA-protein crosslink repair. Cell. 2014;158:327-338 pubmed 出版商
  38. Sueur C, Lupo J, Mas P, Morand P, Boyer V. Difference in cytokine production and cell cycle progression induced by Epstein-Barr virus Lmp1 deletion variants in Kmh2, a Hodgkin lymphoma cell line. Virol J. 2014;11:94 pubmed 出版商
  39. Hebel K, Weinert S, Kuropka B, Knolle J, Kosak B, Jorch G, et al. CD4+ T cells from human neonates and infants are poised spontaneously to run a nonclassical IL-4 program. J Immunol. 2014;192:5160-70 pubmed 出版商
  40. Krishnan S, Wilson E, Sheikh V, Rupert A, Mendoza D, Yang J, et al. Evidence for innate immune system activation in HIV type 1-infected elite controllers. J Infect Dis. 2014;209:931-9 pubmed 出版商
  41. Lu H, Hu L, Yu L, Wang X, Urvalek A, Li T, et al. KLF8 and FAK cooperatively enrich the active MMP14 on the cell surface required for the metastatic progression of breast cancer. Oncogene. 2014;33:2909-17 pubmed 出版商
  42. Reefman E, Kuiper H, Limburg P, Kallenberg C, Bijl M. Type I interferons are involved in the development of ultraviolet B-induced inflammatory skin lesions in systemic lupus erythaematosus patients. Ann Rheum Dis. 2008;67:11-18 pubmed
  43. Schmidlin H, Dontje W, Groot F, Ligthart S, Colantonio A, Oud M, et al. Stimulated plasmacytoid dendritic cells impair human T-cell development. Blood. 2006;108:3792-800 pubmed