这是一篇来自已证抗体库的有关人类 IGF-IR (IGF-IR) 的综述,是根据122篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合IGF-IR 抗体。
IGF-IR 同义词: CD221; IGFIR; IGFR; JTK13

赛默飞世尔
小鼠 单克隆(1H7)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔IGF-IR抗体(Thermo Fisher, 17-8849-42)被用于被用于流式细胞仪在人类样本上 (图 1a). Int J Mol Sci (2020) ncbi
小鼠 单克隆(1H7)
  • 流式细胞仪; 人类; 图 3f
赛默飞世尔IGF-IR抗体(生活技术, 17-8849-42)被用于被用于流式细胞仪在人类样本上 (图 3f). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4i
赛默飞世尔IGF-IR抗体(Invitrogen, 44-804G)被用于被用于免疫印迹在小鼠样本上 (图 4i). JCI Insight (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛默飞世尔IGF-IR抗体(Invitrogen, 44802G)被用于被用于免疫印迹在人类样本上. Diabetes (2017) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 7
赛默飞世尔IGF-IR抗体(Invitrogen, 44802G)被用于被用于其他在人类样本上 (图 7). Cell Signal (2016) ncbi
小鼠 单克隆(24-31)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 4b
  • 免疫细胞化学; 人类; 4 ug/ml; 图 1b
赛默飞世尔IGF-IR抗体(Thermo Scientific, 24-31)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 4b) 和 被用于免疫细胞化学在人类样本上浓度为4 ug/ml (图 1b). Oncotarget (2016) ncbi
小鼠 单克隆(24-31)
  • 免疫细胞化学; 人类; 图 1b
赛默飞世尔IGF-IR抗体(Thermo Scientific, 24-31)被用于被用于免疫细胞化学在人类样本上 (图 1b). PLoS ONE (2016) ncbi
domestic rabbit 重组(15H10L8)
  • 免疫印迹; 人类; 1:500; 图 1
赛默飞世尔IGF-IR抗体(生活技术, 701067)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). Cancer Lett (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔IGF-IR抗体(生活技术, 44-806G)被用于. Physiol Rep (2015) ncbi
domestic rabbit 重组(97H9L7)
  • 免疫印迹; 小鼠; 图 1c
赛默飞世尔IGF-IR抗体(Invitrogen, 700393)被用于被用于免疫印迹在小鼠样本上 (图 1c). J Clin Invest (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔IGF-IR抗体(invitrogen, 44-804G)被用于. Mol Cancer (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔IGF-IR抗体(Invitrogen, 44-804G)被用于. Gastroenterology (2015) ncbi
小鼠 单克隆(ZI001)
  • 免疫印迹; 人类; 图 3
赛默飞世尔IGF-IR抗体(生活技术, 396700)被用于被用于免疫印迹在人类样本上 (图 3). Mol Cancer (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔IGF-IR抗体(生活技术, 44804G)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(ZI001)
  • 免疫印迹; 人类
赛默飞世尔IGF-IR抗体(Invitrogen, 39-6700)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(24-31)
  • 免疫组化-石蜡切片; 人类; 1:25
赛默飞世尔IGF-IR抗体(Invitrogen, AHR0321)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25. J Geriatr Oncol (2014) ncbi
小鼠 单克隆(24-31)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
赛默飞世尔IGF-IR抗体(Neomarkers, 24-31)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1). Br J Cancer (2012) ncbi
小鼠 单克隆(ZI001)
  • 免疫印迹; 人类; 图 3
赛默飞世尔IGF-IR抗体(Zymed, 39-6700)被用于被用于免疫印迹在人类样本上 (图 3). Am J Pathol (2012) ncbi
小鼠 单克隆(24-31)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 1
赛默飞世尔IGF-IR抗体(Neomarkers, 24-31)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 1). BJU Int (2005) ncbi
圣克鲁斯生物技术
小鼠 单克隆(3G5C1)
  • 免疫组化; 人类; 图 2a
圣克鲁斯生物技术IGF-IR抗体(Santa Cruz Biotechnology, sc-81167)被用于被用于免疫组化在人类样本上 (图 2a). Front Endocrinol (Lausanne) (2021) ncbi
小鼠 单克隆(7G11)
  • 免疫组化; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术IGF-IR抗体(Santa cruz, sc-81464)被用于被用于免疫组化在小鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 3). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(7G11)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术IGF-IR抗体(Santa Cruz, 7G11)被用于被用于免疫印迹在人类样本上 (图 3a). Cells (2020) ncbi
小鼠 单克隆(F-1)
  • 免疫印迹; 小鼠; 1:200; 图 1h
圣克鲁斯生物技术IGF-IR抗体(Santa Cruz, sc-390130)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 1h). EMBO Mol Med (2020) ncbi
小鼠 单克隆(2C8)
  • 免疫印迹; 小鼠; 图 3a
圣克鲁斯生物技术IGF-IR抗体(Santa Cruz, sc-463)被用于被用于免疫印迹在小鼠样本上 (图 3a). Int J Mol Sci (2017) ncbi
  • 免疫组化; 小鼠; 图 1
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术IGF-IR抗体(Santa Cruz, sc713)被用于被用于免疫组化在小鼠样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). Physiol Rep (2016) ncbi
  • 免疫印迹; 人类; 1:1000; 图 5a
圣克鲁斯生物技术IGF-IR抗体(Santa Cruz, sc-713)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Nat Commun (2016) ncbi
  • 免疫印迹; 小鼠; 图 3a
圣克鲁斯生物技术IGF-IR抗体(SantaCruz, sc-713)被用于被用于免疫印迹在小鼠样本上 (图 3a). Mol Carcinog (2017) ncbi
小鼠 单克隆(3G5C1)
  • 免疫印迹; 人类; 图 1d
圣克鲁斯生物技术IGF-IR抗体(Santa Cruz Biotechnology, sc-81167)被用于被用于免疫印迹在人类样本上 (图 1d). Cell Death Differ (2016) ncbi
小鼠 单克隆(3B7)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术IGF-IR抗体(Santa Cruz, sc-462)被用于被用于免疫印迹在人类样本上 (图 4). Oncol Lett (2015) ncbi
小鼠 单克隆(3B7)
  • 免疫组化; 小鼠; 1:400; 图 4
圣克鲁斯生物技术IGF-IR抗体(SantaCruz, sc-462)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 4). Nat Med (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR19322)
  • 免疫组化-石蜡切片; 小鼠; 图 3d
艾博抗(上海)贸易有限公司IGF-IR抗体(Abcam, ab182408)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3d). Front Aging Neurosci (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 9a
艾博抗(上海)贸易有限公司IGF-IR抗体(Abcam, ab39398)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 9a). Mol Med Rep (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 2b
艾博抗(上海)贸易有限公司IGF-IR抗体(Abcam, ab39398)被用于被用于免疫组化在人类样本上 (图 2b). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4j
艾博抗(上海)贸易有限公司IGF-IR抗体(Abcam, ab5681)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4j). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(EPR19322)
  • 免疫组化; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 3
艾博抗(上海)贸易有限公司IGF-IR抗体(abcam, ab182408)被用于被用于免疫组化在小鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 3). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(alphaIR3)
  • 免疫组化-石蜡切片; 人类; 图 2
  • 流式细胞仪; 人类; 图 1
  • 免疫印迹; 人类; 图 s1
艾博抗(上海)贸易有限公司IGF-IR抗体(Abcam, ab16890)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2), 被用于流式细胞仪在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 s1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2
艾博抗(上海)贸易有限公司IGF-IR抗体(abcam, ab5681)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
艾博抗(上海)贸易有限公司IGF-IR抗体(Abcam, ab39675)被用于被用于免疫印迹在小鼠样本上 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
艾博抗(上海)贸易有限公司IGF-IR抗体(Abcam, ab-39398)被用于被用于免疫印迹在小鼠样本上 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s4
艾博抗(上海)贸易有限公司IGF-IR抗体(Abcam, ab39398)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s4). Cancer Discov (2016) ncbi
  • 免疫组化; 小鼠; 图 2
  • 流式细胞仪; 人类; 图 s2
艾博抗(上海)贸易有限公司IGF-IR抗体(Abcam, ab131476)被用于被用于免疫组化在小鼠样本上 (图 2) 和 被用于流式细胞仪在人类样本上 (图 s2). J Am Heart Assoc (2015) ncbi
BioLegend
小鼠 单克隆(1H7/CD221)
  • 流式细胞仪; 人类; 图 2a
BioLegendIGF-IR抗体(Biolegend, 1H7/CD221)被用于被用于流式细胞仪在人类样本上 (图 2a). Bone Rep (2020) ncbi
小鼠 单克隆(1H7/CD221)
  • 流式细胞仪; 人类
BioLegendIGF-IR抗体(Biolegend, 351805)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2013) ncbi
美天旎
人类 单克隆(REA271)
  • 抑制或激活实验; 小鼠; 1:10; 图 1a
美天旎IGF-IR抗体(Miltenyi Biotech, REA271)被用于被用于抑制或激活实验在小鼠样本上浓度为1:10 (图 1a). PLoS ONE (2018) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 人类; 1:1000; 图 2g
  • 免疫印迹; 小鼠; 1:1000; 图 5a, 6b, s9a
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3024)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2g) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a, 6b, s9a). Nat Commun (2022) ncbi
domestic rabbit 单克隆(D23H3)
  • 免疫印迹; 人类; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 9750S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Nature (2022) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 人类; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3024S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Nature (2022) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3024)被用于被用于免疫印迹在人类样本上 (图 1b). Cell Oncol (Dordr) (2022) ncbi
domestic rabbit 单克隆(D23H3)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 9750)被用于被用于免疫印迹在人类样本上 (图 2d). Cell Oncol (Dordr) (2022) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 小鼠; 图 5a, 5b
  • 免疫印迹; 小鼠; 图 5a, 5b
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3027)被用于被用于免疫沉淀在小鼠样本上 (图 5a, 5b) 和 被用于免疫印迹在小鼠样本上 (图 5a, 5b). Acta Neuropathol Commun (2022) ncbi
domestic rabbit 单克隆(DA7A8)
  • 免疫印迹; 小鼠; 图 5a, 5b
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3918)被用于被用于免疫印迹在小鼠样本上 (图 5a, 5b). Acta Neuropathol Commun (2022) ncbi
domestic rabbit 单克隆(D23H3)
  • 免疫印迹; 人类; 1:500; 图 e8q, e9b
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 9750S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 e8q, e9b). Nature (2022) ncbi
domestic rabbit 单克隆(DA7A8)
  • 免疫印迹; 人类; 1:1000; 图 e8q, e9b
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3918S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 e8q, e9b). Nature (2022) ncbi
domestic rabbit 单克隆(D23H3)
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 4i, s5n
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 9750)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 4i, s5n). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 图 7f
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling Technology, 3027)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 7f). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3024)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). J Immunother Cancer (2021) ncbi
domestic rabbit 单克隆(D23H3)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 9750)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). J Immunother Cancer (2021) ncbi
单克隆(D6D5L)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司IGF-IR抗体(cell signalling technology, 80732)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(111A9)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司IGF-IR抗体(cell signalling technology, 3018)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 小鼠; 图 7e
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3024)被用于被用于免疫印迹在小鼠样本上 (图 7e). Sci Rep (2021) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 小鼠; 1:500; 图 4g
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell signaling, 3024)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4g). J Clin Invest (2021) ncbi
domestic rabbit 单克隆(DA7A8)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3918S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Cell Rep (2021) ncbi
domestic rabbit 单克隆(111A9)
  • 免疫印迹; 人类; 1:2500; 图 3a
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3018S)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 3a). Cell Rep (2021) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 小鼠; 1:1000; 图 8b
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signalling Technology, CST3024)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8b). Bone Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3027)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Cancer Sci (2021) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3024)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Cancer Sci (2021) ncbi
domestic rabbit 单克隆(D23H3)
  • 免疫印迹基因敲除验证; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 9750S)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 1a). Mol Metab (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3i
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3021)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3i). Commun Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3i
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3027)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3i). Commun Biol (2021) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司IGF-IR抗体(CST, 3024)被用于被用于免疫印迹在小鼠样本上 (图 3d). Sci Rep (2020) ncbi
domestic rabbit 单克隆(D23H3)
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司IGF-IR抗体(CST, 9750)被用于被用于免疫印迹在小鼠样本上 (图 3d). Sci Rep (2020) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 人类; 1:100
赛信通(上海)生物试剂有限公司IGF-IR抗体(CST, 19H7)被用于被用于免疫印迹在人类样本上浓度为1:100. Dev Cell (2020) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 人类; 图 5a, 5b
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling Technology, 3024)被用于被用于免疫印迹在人类样本上 (图 5a, 5b). J Hematol Oncol (2020) ncbi
domestic rabbit 单克隆(D23H3)
  • 免疫印迹; 人类; 图 5a, 5b
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling Technology, 9750)被用于被用于免疫印迹在人类样本上 (图 5a, 5b). J Hematol Oncol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4a
  • 免疫印迹; 小鼠; 1:1000; 图 s3h
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling Technology, 3027)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3h). Sci Adv (2020) ncbi
单克隆(D6D5L)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, D6D5L)被用于被用于免疫印迹在人类样本上 (图 3a). Cells (2020) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 小鼠; 1:1000; 图 5e, 5f, 5g
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3024)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5e, 5f, 5g). elife (2019) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell signaling, 19H7)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). elife (2019) ncbi
domestic rabbit 单克隆(D23H3)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling Technology, 9750)被用于被用于免疫印迹在人类样本上 (图 3b). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(D23H3)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 9750)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 1a). PLoS ONE (2019) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 小鼠; 图 1c
  • 染色质免疫沉淀 ; 人类; 图 2g
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3027)被用于被用于免疫沉淀在小鼠样本上 (图 1c) 和 被用于染色质免疫沉淀 在人类样本上 (图 2g). Cell (2019) ncbi
domestic rabbit 单克隆(111A9)
  • 免疫印迹; 人类; 1:2000; 图 7d
赛信通(上海)生物试剂有限公司IGF-IR抗体(CST, 3018)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7d). elife (2019) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 大鼠; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3024)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4f). Br J Pharmacol (2019) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 小鼠; 1:500; 图 1k
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling Technology, 3024)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1k). J Biol Chem (2018) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 人类; 图 s10f
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3024)被用于被用于免疫印迹在人类样本上 (图 s10f). Nat Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s10f
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3027)被用于被用于免疫印迹在人类样本上 (图 s10f). Nat Med (2018) ncbi
domestic rabbit 单克隆(DA7A8)
  • 免疫组化-石蜡切片; 小鼠; 图 s5a
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3918)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s5a). Mol Cancer Res (2018) ncbi
domestic rabbit 单克隆(19H7)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3024)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3027)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3024S)被用于被用于免疫印迹在小鼠样本上 (图 3a). Biochem Biophys Res Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2f
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell signaling, 6113)被用于被用于免疫印迹在小鼠样本上 (图 2f). Cancer Res (2017) ncbi
domestic rabbit 单克隆(D23H3)
  • 免疫印迹; 小鼠; 图 2f
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell signaling, 9750)被用于被用于免疫印迹在小鼠样本上 (图 2f). Cancer Res (2017) ncbi
domestic rabbit 单克隆(D23H3)
  • 免疫印迹; 人类; 图 3i
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 9750S)被用于被用于免疫印迹在人类样本上 (图 3i). Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3027)被用于被用于免疫印迹在小鼠样本上 (图 7a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D23H3)
  • 免疫印迹; 小鼠; 图 3a
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 9750)被用于被用于免疫印迹在小鼠样本上 (图 3a) 和 被用于免疫印迹在人类样本上 (图 4a). Sci Signal (2017) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell signaling, 3024)被用于被用于免疫印迹在小鼠样本上 (图 3a). Mol Biol Cell (2017) ncbi
domestic rabbit 单克隆(111A9)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell signaling, 3018)被用于被用于免疫印迹在小鼠样本上 (图 3a). Mol Biol Cell (2017) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 小鼠; 1:500; 图 5a
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell signaling, 3024)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1a
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3021)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 小鼠; 1:1000; 图 5d-f
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3024)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d-f). J Lipid Res (2017) ncbi
domestic rabbit 单克隆(D23H3)
  • 免疫印迹; 仓鼠; 图 1b
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 9750)被用于被用于免疫印迹在仓鼠样本上 (图 1b). Nature (2016) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 仓鼠; 图 1g
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3024)被用于被用于免疫印迹在仓鼠样本上 (图 1g). Nature (2016) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell signaling, 3024S)被用于被用于免疫印迹在人类样本上 (图 2c). J Mol Histol (2017) ncbi
domestic rabbit 单克隆(19H7)
  • 酶联免疫吸附测定; 人类
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3024)被用于被用于酶联免疫吸附测定在人类样本上. Diabetes (2017) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling Technology, 3024)被用于被用于免疫印迹在人类样本上 (图 4a). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3027)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3024)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C14A11)
  • 免疫细胞化学; 大鼠; 1:50; 图 1b
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, C14A11)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 1b). Mol Neurobiol (2017) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s23
  • 免疫细胞化学; 人类; 1:200; 图 2f
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3024)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s23), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 2f) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3027)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3027)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D23H3)
  • 免疫印迹; 人类; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 9750)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3f). Exp Ther Med (2016) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 人类; 图 6A
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3024)被用于被用于免疫印迹在人类样本上 (图 6A). J Exp Clin Cancer Res (2016) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell signaling, 3024)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 st1
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3027)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 st1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司IGF-IR抗体(cell signaling, 3027S)被用于被用于免疫印迹在人类样本上 (图 4c). Sci Rep (2016) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling Technology, 3024)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(19H7)
  • 其他; 人类; 图 7
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3024)被用于被用于其他在人类样本上 (图 7). Cell Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling Technology, 3027)被用于被用于免疫细胞化学在小鼠样本上. Mol Metab (2016) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3024)被用于被用于免疫印迹在小鼠样本上 (图 5). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(D23H3)
  • 免疫印迹; 人类; 1:1000; 图 3
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling Technology, cst-9750)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 小鼠; 1:1000; 图 1
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling Technology, cst-3024)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling Technology, 3027)被用于被用于免疫组化在小鼠样本上 (图 1). Neuron (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell signaling, 3027)被用于被用于免疫印迹在人类样本上 (图 4). Mol Cancer (2016) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell signaling, 3024)被用于被用于免疫印迹在人类样本上 (图 4). Mol Cancer (2016) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3024)被用于被用于免疫印迹在人类样本上 (图 5). Mol Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3027)被用于被用于免疫印迹在人类样本上 (图 5). Mol Cancer Res (2016) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 人类; 1:50; 图 1b
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signalling, 3024)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 1b). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:50; 图 1b
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signalling, 3027)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 1b). Nat Commun (2016) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3024)被用于被用于免疫印迹在人类样本上 (图 6e). Arthritis Rheumatol (2016) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3024)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D23H3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling Technology, 9750)被用于被用于免疫印迹在人类样本上. Development (2015) ncbi
domestic rabbit 单克隆(D23H3)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 9750)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Nat Commun (2015) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3024)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling Technology, 3024)被用于被用于免疫组化在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Mol Neurodegener (2015) ncbi
domestic rabbit 单克隆(D23H3)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司IGF-IR抗体(cell signaling, 9750)被用于被用于免疫印迹在人类样本上 (图 5). Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(111A9)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell signaling, 3018)被用于被用于免疫印迹在人类样本上 (图 3). MAbs (2015) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell signaling, 3024)被用于被用于免疫印迹在人类样本上 (图 3). MAbs (2015) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 人类; 图 1c,2a,2b,2c,2d,2e,2f,2g,2i,2j
赛信通(上海)生物试剂有限公司IGF-IR抗体(CST, 3024)被用于被用于免疫印迹在人类样本上 (图 1c,2a,2b,2c,2d,2e,2f,2g,2i,2j). Mol Cancer (2015) ncbi
domestic rabbit 单克隆(111A9)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling Tech, 3018)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncotarget (2015) ncbi
domestic rabbit 单克隆(DA7A8)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling Tech, 3918)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D23H3)
  • 免疫组化-石蜡切片; 小鼠; 2 ug/ml; 图 4
  • 免疫印迹; 小鼠; 0.2 ug/ml; 图 4
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 9750)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为2 ug/ml (图 4) 和 被用于免疫印迹在小鼠样本上浓度为0.2 ug/ml (图 4). Endocrinology (2015) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3024)被用于被用于免疫印迹在人类样本上 (图 4). Endocrinology (2015) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3024)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Endocrinology (2015) ncbi
domestic rabbit 单克隆(DA7A8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling Technology, 3918)被用于被用于免疫印迹在人类样本上. Cancer Sci (2015) ncbi
domestic rabbit 单克隆(D23H3)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, D23H3)被用于被用于免疫印迹在人类样本上浓度为1:1000. Front Endocrinol (Lausanne) (2014) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling Technology, 3024)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(DA7A8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling Biotechnology, 3918)被用于被用于免疫印迹在人类样本上. Cell Signal (2014) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3024S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(D23H3)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 9750)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. Invest Ophthalmol Vis Sci (2013) ncbi
domestic rabbit 单克隆(19H7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司IGF-IR抗体(Cell Signaling, 3024S)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2013) ncbi
碧迪BD
小鼠 单克隆(1H7)
  • 流式细胞仪; 人类; 表 3
碧迪BDIGF-IR抗体(BD Pharmingen, 1H7)被用于被用于流式细胞仪在人类样本上 (表 3). Am J Pathol (2017) ncbi
小鼠 单克隆(1H7)
  • 流式细胞仪; 人类; 图 st1
碧迪BDIGF-IR抗体(BD, 555999)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(1H7)
  • 流式细胞仪; 人类
碧迪BDIGF-IR抗体(BD Pharmingen, 555999)被用于被用于流式细胞仪在人类样本上. Cytometry A (2015) ncbi
小鼠 单克隆(1H7)
  • 流式细胞仪; 人类
碧迪BDIGF-IR抗体(BD Biosciences, 555999)被用于被用于流式细胞仪在人类样本上. J Clin Endocrinol Metab (2014) ncbi
文章列表
  1. Park J, Li J, Mayer J, Ball K, Wu J, Hall C, et al. Activation of the insulin receptor by an insulin mimetic peptide. Nat Commun. 2022;13:5594 pubmed 出版商
  2. Marei H, Tsai W, Kee Y, Ruiz K, He J, Cox C, et al. Antibody targeting of E3 ubiquitin ligases for receptor degradation. Nature. 2022;610:182-189 pubmed 出版商
  3. Cyra M, Schulte M, Berthold R, Heinst L, Jansen E, Gr xfc newald I, et al. SS18-SSX drives CREB activation in synovial sarcoma. Cell Oncol (Dordr). 2022;45:399-413 pubmed 出版商
  4. Rauskolb S, Andreska T, Fries S, von Collenberg C, Blum R, Monoranu C, et al. Insulin-like growth factor 5 associates with human Aß plaques and promotes cognitive impairment. Acta Neuropathol Commun. 2022;10:68 pubmed 出版商
  5. Miller L, Tarantini S, Nyúl Tóth Á, Johnston M, Martin T, Bullen E, et al. Increased Susceptibility to Cerebral Microhemorrhages Is Associated With Imaging Signs of Microvascular Degeneration in the Retina in an Insulin-Like Growth Factor 1 Deficient Mouse Model of Accelerated Aging. Front Aging Neurosci. 2022;14:788296 pubmed 出版商
  6. Weiss J, Hunter M, CRUZ N, Baggiolini A, Tagore M, Ma Y, et al. Anatomic position determines oncogenic specificity in melanoma. Nature. 2022;604:354-361 pubmed 出版商
  7. Yeh C, Liu H, Lee M, Leu Y, Chiang W, Chang H, et al. Phytochemical‑rich herbal formula ATG‑125 protects against sucrose‑induced gastrocnemius muscle atrophy by rescuing Akt signaling and improving mitochondrial dysfunction in young adult mice. Mol Med Rep. 2022;25: pubmed 出版商
  8. Vichas A, Riley A, Nkinsi N, Kamlapurkar S, Parrish P, Lo A, et al. Integrative oncogene-dependency mapping identifies RIT1 vulnerabilities and synergies in lung cancer. Nat Commun. 2021;12:4789 pubmed 出版商
  9. Prekovic S, Schuurman K, Mayayo Peralta I, Manjón A, Buijs M, Yavuz S, et al. Glucocorticoid receptor triggers a reversible drug-tolerant dormancy state with acquired therapeutic vulnerabilities in lung cancer. Nat Commun. 2021;12:4360 pubmed 出版商
  10. Wang W, Lu G, Liu H, Xiong Z, Leung H, Cao R, et al. Pten Regulates Cardiomyocyte Differentiation by Modulating Non-CG Methylation via Dnmt3. Adv Sci (Weinh). 2021;:e2100849 pubmed 出版商
  11. Achlaug L, Somri Gannam L, Meisel Sharon S, Sarfstein R, Dixit M, Yakar S, et al. ZYG11A Is Expressed in Epithelial Ovarian Cancer and Correlates With Low Grade Disease. Front Endocrinol (Lausanne). 2021;12:688104 pubmed 出版商
  12. Wu Q, Tian A, Li B, Leduc M, Forveille S, Hamley P, et al. IGF1 receptor inhibition amplifies the effects of cancer drugs by autophagy and immune-dependent mechanisms. J Immunother Cancer. 2021;9: pubmed 出版商
  13. López Gambero A, Rosell Valle C, Medina Vera D, Navarro J, Vargas A, Rivera P, et al. A Negative Energy Balance Is Associated with Metabolic Dysfunctions in the Hypothalamus of a Humanized Preclinical Model of Alzheimer's Disease, the 5XFAD Mouse. Int J Mol Sci. 2021;22: pubmed 出版商
  14. Luo L, Zhang Z, Qiu N, Ling L, Jia X, Song Y, et al. Disruption of FOXO3a-miRNA feedback inhibition of IGF2/IGF-1R/IRS1 signaling confers Herceptin resistance in HER2-positive breast cancer. Nat Commun. 2021;12:2699 pubmed 出版商
  15. Jacques S, Arjomand A, Per xe9 e H, Collins P, Mayer A, Lavergne A, et al. Dual-specificity phosphatase 3 deletion promotes obesity, non-alcoholic steatohepatitis and hepatocellular carcinoma. Sci Rep. 2021;11:5817 pubmed 出版商
  16. Wang L, Liu Y, Stratigopoulos G, Panigrahi S, Sui L, Zhang Y, et al. Bardet-Biedl syndrome proteins regulate intracellular signaling and neuronal function in patient-specific iPSC-derived neurons. J Clin Invest. 2021;131: pubmed 出版商
  17. Musicant A, Parag Sharma K, Gong W, Sengupta M, Chatterjee A, Henry E, et al. CRTC1/MAML2 directs a PGC-1α-IGF-1 circuit that confers vulnerability to PPARγ inhibition. Cell Rep. 2021;34:108768 pubmed 出版商
  18. Tangseefa P, Martin S, Chin P, Breen J, Mah C, Baldock P, et al. The mTORC1 complex in pre-osteoblasts regulates whole-body energy metabolism independently of osteocalcin. Bone Res. 2021;9:10 pubmed 出版商
  19. Isomura H, Taguchi A, Kajino T, Asai N, Nakatochi M, Kato S, et al. Conditional Ror1 knockout reveals crucial involvement in lung adenocarcinoma development and identifies novel HIF-1α regulator. Cancer Sci. 2021;: pubmed 出版商
  20. Okawa E, Gupta M, Kahraman S, Goli P, Sakaguchi M, Hu J, et al. Essential roles of insulin and IGF-1 receptors during embryonic lineage development. Mol Metab. 2021;47:101164 pubmed 出版商
  21. Stojakovic A, Trushin S, Sheu A, Khalili L, Chang S, Li X, et al. Partial inhibition of mitochondrial complex I ameliorates Alzheimer's disease pathology and cognition in APP/PS1 female mice. Commun Biol. 2021;4:61 pubmed 出版商
  22. Grundmann S, Schutkowski A, Berger C, Baur A, König B, Stangl G. High-phosphorus diets reduce aortic lesions and cardiomyocyte size and modify lipid metabolism in Ldl receptor knockout mice. Sci Rep. 2020;10:20748 pubmed 出版商
  23. Jin Y, Cheng X, Huang X, Ding F, Lee S, Wang F, et al. The role of Hrd1 in ultraviolet (UV) radiation induced photoaging. Aging (Albany NY). 2020;12:21273-21289 pubmed 出版商
  24. Ferreira Mendes J, de Faro Valverde L, Torres Andion Vidal M, Paredes B, Coelho P, Allahdadi K, et al. Effects of IGF-1 on Proliferation, Angiogenesis, Tumor Stem Cell Populations and Activation of AKT and Hedgehog Pathways in Oral Squamous Cell Carcinoma. Int J Mol Sci. 2020;21: pubmed 出版商
  25. Dabelsteen S, Pallesen E, Marinova I, Nielsen M, Adamopoulou M, Rømer T, et al. Essential Functions of Glycans in Human Epithelia Dissected by a CRISPR-Cas9-Engineered Human Organotypic Skin Model. Dev Cell. 2020;54:669-684.e7 pubmed 出版商
  26. Zhou X, Chen N, Xu H, Zhou X, Wang J, Fang X, et al. Regulation of Hippo-YAP signaling by insulin-like growth factor-1 receptor in the tumorigenesis of diffuse large B-cell lymphoma. J Hematol Oncol. 2020;13:77 pubmed 出版商
  27. Bi H, Zhang X, Zhang Y, Xie X, Xia Y, Du J, et al. The deubiquitinase UCHL1 regulates cardiac hypertrophy by stabilizing epidermal growth factor receptor. Sci Adv. 2020;6:eaax4826 pubmed 出版商
  28. Rigiracciolo D, Nohata N, Lappano R, Cirillo F, Talia M, Scordamaglia D, et al. IGF-1/IGF-1R/FAK/YAP Transduction Signaling Prompts Growth Effects in Triple-Negative Breast Cancer (TNBC) Cells. Cells. 2020;9: pubmed 出版商
  29. Zhang Z, Le K, La Placa D, Armstrong B, Miller M, Shively J. CXCR2 specific endocytosis of immunomodulatory peptide LL-37 in human monocytes and formation of LL-37 positive large vesicles in differentiated monoosteophils. Bone Rep. 2020;12:100237 pubmed 出版商
  30. Bella P, Farini A, Banfi S, Parolini D, Tonna N, Meregalli M, et al. Blockade of IGF2R improves muscle regeneration and ameliorates Duchenne muscular dystrophy. EMBO Mol Med. 2020;12:e11019 pubmed 出版商
  31. Helsley R, Varadharajan V, Brown A, Gromovsky A, Schugar R, Ramachandiran I, et al. Obesity-linked suppression of membrane-bound O-acyltransferase 7 (MBOAT7) drives non-alcoholic fatty liver disease. elife. 2019;8: pubmed 出版商
  32. Uchikawa E, Choi E, Shang G, Yu H, Bai X. Activation mechanism of the insulin receptor revealed by cryo-EM structure of the fully liganded receptor-ligand complex. elife. 2019;8: pubmed 出版商
  33. Hori A, Shimoda M, Naoi Y, Kagara N, Tanei T, Miyake T, et al. Vasculogenic mimicry is associated with trastuzumab resistance of HER2-positive breast cancer. Breast Cancer Res. 2019;21:88 pubmed 出版商
  34. Jin J, Ravindran P, Di Meo D, Püschel A. Igf1R/InsR function is required for axon extension and corpus callosum formation. PLoS ONE. 2019;14:e0219362 pubmed 出版商
  35. Hancock M, Meyer R, Mistry M, Khetani R, Wagschal A, Shin T, et al. Insulin Receptor Associates with Promoters Genome-wide and Regulates Gene Expression. Cell. 2019;177:722-736.e22 pubmed 出版商
  36. Xu H, Xu S, Xie S, Zhang Y, Yang J, Zhang W, et al. MicroRNA-122 supports robust innate immunity in hepatocytes by targeting the RTKs/STAT3 signaling pathway. elife. 2019;8: pubmed 出版商
  37. Zhou X, Zhang R, Zou Z, Shen X, Xie T, Xu C, et al. Hypoglycaemic effects of glimepiride in sulfonylurea receptor 1 deficient rat. Br J Pharmacol. 2019;176:478-490 pubmed 出版商
  38. Jones R, Franks S, Moorehead R. Comparative mRNA and miRNA transcriptome analysis of a mouse model of IGFIR-driven lung cancer. PLoS ONE. 2018;13:e0206948 pubmed 出版商
  39. Gubbiotti M, Seifert E, Rodeck U, Hoek J, Iozzo R. Metabolic reprogramming of murine cardiomyocytes during autophagy requires the extracellular nutrient sensor decorin. J Biol Chem. 2018;293:16940-16950 pubmed 出版商
  40. Ruess D, Heynen G, Ciecielski K, Ai J, Berninger A, Kabacaoglu D, et al. Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat Med. 2018;24:954-960 pubmed 出版商
  41. Park J, Kim I, Choi J, Lim H, Shin J, Kim Y, et al. AHNAK Loss in Mice Promotes Type II Pneumocyte Hyperplasia and Lung Tumor Development. Mol Cancer Res. 2018;16:1287-1298 pubmed 出版商
  42. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  43. Bekkering S, Arts R, Novakovic B, Kourtzelis I, van der Heijden C, Li Y, et al. Metabolic Induction of Trained Immunity through the Mevalonate Pathway. Cell. 2018;172:135-146.e9 pubmed 出版商
  44. Wei X, Guo L, Liu Y, Zhou S, Liu Y, Dou X, et al. Synthesis of cytochrome c oxidase 1 (SCO1) inhibits insulin sensitivity by decreasing copper levels in adipocytes. Biochem Biophys Res Commun. 2017;491:814-820 pubmed 出版商
  45. Akiel M, Guo C, Li X, Rajasekaran D, Mendoza R, Robertson C, et al. IGFBP7 Deletion Promotes Hepatocellular Carcinoma. Cancer Res. 2017;77:4014-4025 pubmed 出版商
  46. Tawo R, Pokrzywa W, Kevei E, Akyuz M, Balaji V, Adrian S, et al. The Ubiquitin Ligase CHIP Integrates Proteostasis and Aging by Regulation of Insulin Receptor Turnover. Cell. 2017;169:470-482.e13 pubmed 出版商
  47. Cai W, Sakaguchi M, Kleinridders A, Gonzalez Del Pino G, Dreyfuss J, O Neill B, et al. Domain-dependent effects of insulin and IGF-1 receptors on signalling and gene expression. Nat Commun. 2017;8:14892 pubmed 出版商
  48. Ting W, Huang C, Jiang C, Lin Y, Chung L, Shen C, et al. Treatment with 17?-Estradiol Reduced Body Weight and the Risk of Cardiovascular Disease in a High-Fat Diet-Induced Animal Model of Obesity. Int J Mol Sci. 2017;18: pubmed 出版商
  49. CAROMILE L, Dortche K, Rahman M, Grant C, Stoddard C, Ferrer F, et al. PSMA redirects cell survival signaling from the MAPK to the PI3K-AKT pathways to promote the progression of prostate cancer. Sci Signal. 2017;10: pubmed 出版商
  50. Chaudhari A, Gupta R, Patel S, Velingkaar N, Kondratov R. Cryptochromes regulate IGF-1 production and signaling through control of JAK2-dependent STAT5B phosphorylation. Mol Biol Cell. 2017;28:834-842 pubmed 出版商
  51. Decourtye L, Mire E, Clemessy M, Heurtier V, Ledent T, Robinson I, et al. IGF-1 Induces GHRH Neuronal Axon Elongation during Early Postnatal Life in Mice. PLoS ONE. 2017;12:e0170083 pubmed 出版商
  52. Björner S, Rosendahl A, Simonsson M, Markkula A, Jirström K, Borgquist S, et al. Combined and individual tumor-specific expression of insulin-like growth factor-I receptor, insulin receptor and phospho-insulin-like growth factor-I receptor/insulin receptor in primary breast cancer: Implications for prognosis in different treatmen. Oncotarget. 2017;8:9093-9107 pubmed 出版商
  53. Fromm J, Thomas A, Wood B. Characterization and Purification of Neoplastic Cells of Nodular Lymphocyte Predominant Hodgkin Lymphoma from Lymph Nodes by Flow Cytometry and Flow Cytometric Cell Sorting. Am J Pathol. 2017;187:304-317 pubmed 出版商
  54. Li L, Byrd M, Doh K, Dixon P, Lee H, Tiwari S, et al. Absence of renal enlargement in fructose-fed proximal-tubule-select insulin receptor (IR), insulin-like-growth factor receptor (IGF1R) double knockout mice. Physiol Rep. 2016;4: pubmed
  55. Langhi C, Arias N, Rajamoorthi A, Basta J, Lee R, Baldán A. Therapeutic silencing of fat-specific protein 27 improves glycemic control in mouse models of obesity and insulin resistance. J Lipid Res. 2017;58:81-91 pubmed 出版商
  56. Wang X, Cao Q, Yu L, Shi H, Xue B, Shi H. Epigenetic regulation of macrophage polarization and inflammation by DNA methylation in obesity. JCI Insight. 2016;1:e87748 pubmed 出版商
  57. Han C, Juncadella I, Kinchen J, Buckley M, Klibanov A, Dryden K, et al. Macrophages redirect phagocytosis by non-professional phagocytes and influence inflammation. Nature. 2016;539:570-574 pubmed 出版商
  58. Iyer S, Chhabra Y, Harvey T, Wang R, Chiu H, Smith A, et al. CRIM1 is necessary for coronary vascular endothelial cell development and homeostasis. J Mol Histol. 2017;48:53-61 pubmed 出版商
  59. Cieniewicz A, Kirchner T, Hinke S, Nanjunda R, D AQUINO K, Boayke K, et al. Novel Monoclonal Antibody Is an Allosteric Insulin Receptor Antagonist That Induces Insulin Resistance. Diabetes. 2017;66:206-217 pubmed 出版商
  60. Fan Y, Wang N, Rocchi A, Zhang W, Vassar R, Zhou Y, et al. Identification of natural products with neuronal and metabolic benefits through autophagy induction. Autophagy. 2017;13:41-56 pubmed 出版商
  61. Yong K, Li A, Ou W, Hong C, Zhao W, Wang F, et al. Targeting SALL4 by entinostat in lung cancer. Oncotarget. 2016;7:75425-75440 pubmed 出版商
  62. Oksdath M, Guil A, Grassi D, Sosa L, Quiroga S. The Motor KIF5C Links the Requirements of Stable Microtubules and IGF-1 Receptor Membrane Insertion for Neuronal Polarization. Mol Neurobiol. 2017;54:6085-6096 pubmed 出版商
  63. Boo H, Min H, Jang H, Yun H, Smith J, Jin Q, et al. The tobacco-specific carcinogen-operated calcium channel promotes lung tumorigenesis via IGF2 exocytosis in lung epithelial cells. Nat Commun. 2016;7:12961 pubmed 出版商
  64. Chen P, Qin L, Li G, Tellides G, Simons M. Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGF?)-dependent smooth muscle cell phenotype modulation. Sci Rep. 2016;6:33407 pubmed 出版商
  65. Jiang M, Qiu J, Zhang L, Lu D, Long M, Chen L, et al. Changes in tension regulates proliferation and migration of fibroblasts by remodeling expression of ECM proteins. Exp Ther Med. 2016;12:1542-1550 pubmed
  66. Bassi D, Zhang J, Renner C, Klein Szanto A. Targeting proprotein convertases in furin-rich lung cancer cells results in decreased in vitro and in vivo growth. Mol Carcinog. 2017;56:1182-1188 pubmed 出版商
  67. Buta C, Benabou E, Lequoy M, Régnault H, Wendum D, Meratbene F, et al. Heregulin-1ß and HER3 in hepatocellular carcinoma: status and regulation by insulin. J Exp Clin Cancer Res. 2016;35:126 pubmed 出版商
  68. Hirakawa T, Yashiro M, Doi Y, Kinoshita H, Morisaki T, Fukuoka T, et al. Pancreatic Fibroblasts Stimulate the Motility of Pancreatic Cancer Cells through IGF1/IGF1R Signaling under Hypoxia. PLoS ONE. 2016;11:e0159912 pubmed 出版商
  69. Saisana M, Griffin S, May F. Importance of the type I insulin-like growth factor receptor in HER2, FGFR2 and MET-unamplified gastric cancer with and without Ras pathway activation. Oncotarget. 2016;7:54445-54462 pubmed 出版商
  70. Huber M, Falkenberg N, Hauck S, Priller M, Braselmann H, Feuchtinger A, et al. Cyr61 and YB-1 are novel interacting partners of uPAR and elevate the malignancy of triple-negative breast cancer. Oncotarget. 2016;7:44062-44075 pubmed 出版商
  71. Svalina M, Kikuchi K, Abraham J, Lal S, Davare M, Settelmeyer T, et al. IGF1R as a Key Target in High Risk, Metastatic Medulloblastoma. Sci Rep. 2016;6:27012 pubmed 出版商
  72. Leonard S, Kinsella G, Benetti E, Findlay J. Regulating the effects of GPR21, a novel target for type 2 diabetes. Sci Rep. 2016;6:27002 pubmed 出版商
  73. Allodi I, Comley L, Nichterwitz S, Nizzardo M, Simone C, Benitez J, et al. Differential neuronal vulnerability identifies IGF-2 as a protective factor in ALS. Sci Rep. 2016;6:25960 pubmed 出版商
  74. Ting W, Yang J, Kuo C, Xiao Z, Lu X, Yeh Y, et al. Environmental tobacco smoke increases autophagic effects but decreases longevity associated with Sirt-1 protein expression in young C57BL mice hearts. Oncotarget. 2016;7:39017-39025 pubmed 出版商
  75. Cieniewicz A, Cooper P, MCGEHEE J, Lingham R, Kihm A. Novel method demonstrates differential ligand activation and phosphatase-mediated deactivation of insulin receptor tyrosine-specific phosphorylation. Cell Signal. 2016;28:1037-47 pubmed 出版商
  76. Boothe T, Lim G, Cen H, Skovsø S, Piske M, Li S, et al. Inter-domain tagging implicates caveolin-1 in insulin receptor trafficking and Erk signaling bias in pancreatic beta-cells. Mol Metab. 2016;5:366-378 pubmed 出版商
  77. Winnay J, Solheim M, Dirice E, Sakaguchi M, Noh H, Kang H, et al. PI3-kinase mutation linked to insulin and growth factor resistance in vivo. J Clin Invest. 2016;126:1401-12 pubmed 出版商
  78. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  79. Park J, Lee J, Zhang Y, Hoffman R, Bouvet M. Targeting the insulin growth factor-1 receptor with fluorescent antibodies enables high resolution imaging of human pancreatic cancer in orthotopic mouse models. Oncotarget. 2016;7:18262-8 pubmed 出版商
  80. Mason J, Davison Versagli C, Leliaert A, Pape D, McCallister C, Zuo J, et al. Oncogenic Ras differentially regulates metabolism and anoikis in extracellular matrix-detached cells. Cell Death Differ. 2016;23:1271-82 pubmed 出版商
  81. Ding M, Bruick R, Yu Y. Secreted IGFBP5 mediates mTORC1-dependent feedback inhibition of IGF-1 signalling. Nat Cell Biol. 2016;18:319-27 pubmed 出版商
  82. Gazit N, Vertkin I, Shapira I, Helm M, Slomowitz E, Sheiba M, et al. IGF-1 Receptor Differentially Regulates Spontaneous and Evoked Transmission via Mitochondria at Hippocampal Synapses. Neuron. 2016;89:583-97 pubmed 出版商
  83. Luey B, May F. Insulin-like growth factors are essential to prevent anoikis in oestrogen-responsive breast cancer cells: importance of the type I IGF receptor and PI3-kinase/Akt pathway. Mol Cancer. 2016;15:8 pubmed 出版商
  84. Heynen G, Nevedomskaya E, Palit S, Jagalur Basheer N, Lieftink C, Schlicker A, et al. Mastermind-Like 3 Controls Proliferation and Differentiation in Neuroblastoma. Mol Cancer Res. 2016;14:411-22 pubmed 出版商
  85. Park J, Murakami T, Lee J, Zhang Y, Hoffman R, Bouvet M. Fluorescent-Antibody Targeting of Insulin-Like Growth Factor-1 Receptor Visualizes Metastatic Human Colon Cancer in Orthotopic Mouse Models. PLoS ONE. 2016;11:e0146504 pubmed 出版商
  86. Yamaguchi T, Lu C, Ida L, Yanagisawa K, Usukura J, Cheng J, et al. ROR1 sustains caveolae and survival signalling as a scaffold of cavin-1 and caveolin-1. Nat Commun. 2016;7:10060 pubmed 出版商
  87. Hamada D, Maynard R, Schott E, Drinkwater C, Ketz J, Kates S, et al. Suppressive Effects of Insulin on Tumor Necrosis Factor-Dependent Early Osteoarthritic Changes Associated With Obesity and Type 2 Diabetes Mellitus. Arthritis Rheumatol. 2016;68:1392-402 pubmed 出版商
  88. Xu Y, Huang J, Ma L, Shan J, Shen J, Yang Z, et al. MicroRNA-122 confers sorafenib resistance to hepatocellular carcinoma cells by targeting IGF-1R to regulate RAS/RAF/ERK signaling pathways. Cancer Lett. 2016;371:171-81 pubmed 出版商
  89. Dimitrova N, Gocheva V, Bhutkar A, Resnick R, Jong R, Miller K, et al. Stromal Expression of miR-143/145 Promotes Neoangiogenesis in Lung Cancer Development. Cancer Discov. 2016;6:188-201 pubmed 出版商
  90. Goto A, Egawa T, Sakon I, Oshima R, Ito K, Serizawa Y, et al. Heat stress acutely activates insulin-independent glucose transport and 5'-AMP-activated protein kinase prior to an increase in HSP72 protein in rat skeletal muscle. Physiol Rep. 2015;3: pubmed 出版商
  91. Ramcharan R, Aleksic T, Kamdoum W, Gao S, Pfister S, Tanner J, et al. IGF-1R inhibition induces schedule-dependent sensitization of human melanoma to temozolomide. Oncotarget. 2015;6:39877-90 pubmed 出版商
  92. Luehders K, Sasai N, Davaapil H, Kurosawa Yoshida M, Hiura H, Brah T, et al. The small leucine-rich repeat secreted protein Asporin induces eyes in Xenopus embryos through the IGF signalling pathway. Development. 2015;142:3351-61 pubmed 出版商
  93. Nemazanyy I, Montagnac G, Russell R, Morzyglod L, Burnol A, Guan K, et al. Class III PI3K regulates organismal glucose homeostasis by providing negative feedback on hepatic insulin signalling. Nat Commun. 2015;6:8283 pubmed 出版商
  94. Jackson R, Tilokee E, Latham N, Mount S, Rafatian G, Strydhorst J, et al. Paracrine Engineering of Human Cardiac Stem Cells With Insulin-Like Growth Factor 1 Enhances Myocardial Repair. J Am Heart Assoc. 2015;4:e002104 pubmed 出版商
  95. Denkovskij J, Rudys R, Bernotiene E, Minderis M, Bagdonas S, Kirdaite G. Cell surface markers and exogenously induced PpIX in synovial mesenchymal stem cells. Cytometry A. 2015;87:1001-11 pubmed 出版商
  96. Krishnan N, Krishnan K, Connors C, Choy M, Page R, Peti W, et al. PTP1B inhibition suggests a therapeutic strategy for Rett syndrome. J Clin Invest. 2015;125:3163-77 pubmed 出版商
  97. Tan X, Xue Y, Ma T, Wang X, Li J, Lan L, et al. Partial eNOS deficiency causes spontaneous thrombotic cerebral infarction, amyloid angiopathy and cognitive impairment. Mol Neurodegener. 2015;10:24 pubmed 出版商
  98. Meyer K, Albaugh B, Schoenike B, Roopra A. Type 1 Insulin-Like Growth Factor Receptor/Insulin Receptor Substrate 1 Signaling Confers Pathogenic Activity on Breast Tumor Cells Lacking REST. Mol Cell Biol. 2015;35:2991-3004 pubmed 出版商
  99. Shen Y, Zeng L, Novosyadlyy R, Forest A, Zhu A, Korytko A, et al. A bi-functional antibody-receptor domain fusion protein simultaneously targeting IGF-IR and VEGF for degradation. MAbs. 2015;7:931-45 pubmed 出版商
  100. Min H, Yun H, Lee J, Lee H, Cho J, Jang H, et al. Targeting the insulin-like growth factor receptor and Src signaling network for the treatment of non-small cell lung cancer. Mol Cancer. 2015;14:113 pubmed 出版商
  101. Sharon C, Baranwal S, Patel N, Rodriguez Agudo D, Pandak W, Majumdar A, et al. Inhibition of insulin-like growth factor receptor/AKT/mammalian target of rapamycin axis targets colorectal cancer stem cells by attenuating mevalonate-isoprenoid pathway in vitro and in vivo. Oncotarget. 2015;6:15332-47 pubmed
  102. Bettaieb A, Jiang J, Sasaki Y, Chao T, Kiss Z, Chen X, et al. Hepatocyte Nicotinamide Adenine Dinucleotide Phosphate Reduced Oxidase 4 Regulates Stress Signaling, Fibrosis, and Insulin Sensitivity During Development of Steatohepatitis in Mice. Gastroenterology. 2015;149:468-80.e10 pubmed 出版商
  103. Cookman C, Belcher S. Estrogen Receptor-β Up-Regulates IGF1R Expression and Activity to Inhibit Apoptosis and Increase Growth of Medulloblastoma. Endocrinology. 2015;156:2395-408 pubmed 出版商
  104. Vishwamitra D, Curry C, Alkan S, Song Y, Gallick G, Kaseb A, et al. The transcription factors Ik-1 and MZF1 downregulate IGF-IR expression in NPM-ALK⁺ T-cell lymphoma. Mol Cancer. 2015;14:53 pubmed 出版商
  105. Balhara B, Burkart A, Topcu V, Lee Y, Cowan C, Kahn C, et al. Severe insulin resistance alters metabolism in mesenchymal progenitor cells. Endocrinology. 2015;156:2039-48 pubmed 出版商
  106. Cabail M, Li S, Lemmon E, Bowen M, Hubbard S, Miller W. The insulin and IGF1 receptor kinase domains are functional dimers in the activated state. Nat Commun. 2015;6:6406 pubmed 出版商
  107. Chen C, Zhao Z, Liu Y, Mu D. microRNA-99a is downregulated and promotes proliferation, migration and invasion in non-small cell lung cancer A549 and H1299 cells. Oncol Lett. 2015;9:1128-1134 pubmed
  108. Isoyama S, Kajiwara G, Tamaki N, Okamura M, Yoshimi H, Nakamura N, et al. Basal expression of insulin-like growth factor 1 receptor determines intrinsic resistance of cancer cells to a phosphatidylinositol 3-kinase inhibitor ZSTK474. Cancer Sci. 2015;106:171-8 pubmed 出版商
  109. Wein N, Vulin A, Falzarano M, Szigyarto C, Maiti B, Findlay A, et al. Translation from a DMD exon 5 IRES results in a functional dystrophin isoform that attenuates dystrophinopathy in humans and mice. Nat Med. 2014;20:992-1000 pubmed 出版商
  110. George S, Vishwamitra D, Manshouri R, Shi P, Amin H. The ALK inhibitor ASP3026 eradicates NPM-ALK? T-cell anaplastic large-cell lymphoma in vitro and in a systemic xenograft lymphoma model. Oncotarget. 2014;5:5750-63 pubmed
  111. Chen H, Mester T, Raychaudhuri N, Kauh C, Gupta S, Smith T, et al. Teprotumumab, an IGF-1R blocking monoclonal antibody inhibits TSH and IGF-1 action in fibrocytes. J Clin Endocrinol Metab. 2014;99:E1635-40 pubmed 出版商
  112. Zeng L, Holly J, Perks C. Effects of physiological levels of the green tea extract epigallocatechin-3-gallate on breast cancer cells. Front Endocrinol (Lausanne). 2014;5:61 pubmed 出版商
  113. Subramani R, Lopez Valdez R, Arumugam A, Nandy S, Boopalan T, Lakshmanaswamy R. Targeting insulin-like growth factor 1 receptor inhibits pancreatic cancer growth and metastasis. PLoS ONE. 2014;9:e97016 pubmed 出版商
  114. Liu J, Druta M, Shibata D, Coppola D, Boler I, Elahi A, et al. Metabolic syndrome and colorectal cancer: is hyperinsulinemia/insulin receptor-mediated angiogenesis a critical process?. J Geriatr Oncol. 2014;5:40-8 pubmed 出版商
  115. Leiphrakpam P, Rajput A, Mathiesen M, Agarwal E, Lazenby A, Are C, et al. Ezrin expression and cell survival regulation in colorectal cancer. Cell Signal. 2014;26:868-79 pubmed 出版商
  116. Ziegler A, Chidambaram S, Forbes B, Wood T, Levison S. Insulin-like growth factor-II (IGF-II) and IGF-II analogs with enhanced insulin receptor-a binding affinity promote neural stem cell expansion. J Biol Chem. 2014;289:4626-33 pubmed 出版商
  117. Fuentes T, Appleby N, Tsay E, Martinez J, Bailey L, Hasaniya N, et al. Human neonatal cardiovascular progenitors: unlocking the secret to regenerative ability. PLoS ONE. 2013;8:e77464 pubmed 出版商
  118. Wang Y, Zhao X, Shi D, Chen P, Yu Y, Yang L, et al. Overexpression of SIRT1 promotes high glucose-attenuated corneal epithelial wound healing via p53 regulation of the IGFBP3/IGF-1R/AKT pathway. Invest Ophthalmol Vis Sci. 2013;54:3806-14 pubmed 出版商
  119. Jacobo S, DeAngelis M, Kim I, Kazlauskas A. Age-related macular degeneration-associated silent polymorphisms in HtrA1 impair its ability to antagonize insulin-like growth factor 1. Mol Cell Biol. 2013;33:1976-90 pubmed 出版商
  120. Gallardo A, Lerma E, Escuin D, Tibau A, Munoz J, Ojeda B, et al. Increased signalling of EGFR and IGF1R, and deregulation of PTEN/PI3K/Akt pathway are related with trastuzumab resistance in HER2 breast carcinomas. Br J Cancer. 2012;106:1367-73 pubmed 出版商
  121. Vishwamitra D, Li Y, Wilson D, Manshouri R, Curry C, Shi B, et al. MicroRNA 96 is a post-transcriptional suppressor of anaplastic lymphoma kinase expression. Am J Pathol. 2012;180:1772-80 pubmed 出版商
  122. Langner C, Ratschek M, Rehak P, Tsybrovskyy O, Zigeuner R. The pT1a and pT1b category subdivision in renal cell carcinoma: is it reflected by differences in tumour biology?. BJU Int. 2005;95:310-4 pubmed