这是一篇来自已证抗体库的有关人类 IKK甲 (IKK alpha) 的综述,是根据153篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合IKK甲 抗体。
IKK甲 同义词: IKBKA; IKK-alpha; IKK1; IKKA; NFKBIKA; TCF16

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR16628)
  • 免疫印迹; 小鼠; 1:1000; 图 5l, 6h
艾博抗(上海)贸易有限公司IKK甲抗体(Abcam, ab178870)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5l, 6h). Int J Biol Sci (2022) ncbi
domestic rabbit 单克隆(Y463)
  • 免疫印迹; 人类; 1:1000; 图 9b
艾博抗(上海)贸易有限公司IKK甲抗体(Abcam, ab32041)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 9b). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(Y463)
  • 免疫印迹; 人类; 图 7f
艾博抗(上海)贸易有限公司IKK甲抗体(Abcam, ab32041)被用于被用于免疫印迹在人类样本上 (图 7f). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2b
  • 免疫印迹; 小鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司IKK甲抗体(Abcam, ab38515)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(Y463)
  • 免疫印迹; 人类; 1:1000; 图 2b
  • 免疫印迹; 小鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司IKK甲抗体(Abcam, ab32041)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 3b
艾博抗(上海)贸易有限公司IKK甲抗体(Abcam, ab194528)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3b). Oncogene (2021) ncbi
domestic rabbit 单克隆(EPR464)
  • 免疫印迹; 人类; 1:1000; 图 3b
艾博抗(上海)贸易有限公司IKK甲抗体(Abcam, ab109749)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Oncogene (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司IKK甲抗体(Abcam, ab17943)被用于被用于免疫印迹在人类样本上 (图 4a). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(Y463)
  • 免疫印迹; 小鼠; 图 2c
  • 免疫印迹基因敲除验证; 人类; 图 3g
  • 免疫印迹; 人类; 图 1b, 1c, 5i
艾博抗(上海)贸易有限公司IKK甲抗体(Abcam, ab32041)被用于被用于免疫印迹在小鼠样本上 (图 2c), 被用于免疫印迹基因敲除验证在人类样本上 (图 3g) 和 被用于免疫印迹在人类样本上 (图 1b, 1c, 5i). Mol Cell (2019) ncbi
domestic rabbit 单克隆(Y463)
  • 免疫印迹; 人类; 1:1000; 图 2b
艾博抗(上海)贸易有限公司IKK甲抗体(Abcam, ab32041)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Biomed Pharmacother (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3c
艾博抗(上海)贸易有限公司IKK甲抗体(Abcam, ab38515)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Biochem Biophys Res Commun (2018) ncbi
domestic rabbit 单克隆(EPR16628)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
艾博抗(上海)贸易有限公司IKK甲抗体(Abcam, ab178870)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Nat Commun (2018) ncbi
domestic rabbit 单克隆(Y463)
  • 免疫印迹; 小鼠; 1:1000; 图 3e
艾博抗(上海)贸易有限公司IKK甲抗体(Abcam, ab32041)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). Biochem Biophys Res Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3e
艾博抗(上海)贸易有限公司IKK甲抗体(Abcam, ab38515)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). Biochem Biophys Res Commun (2018) ncbi
domestic rabbit 单克隆(Y463)
  • 免疫细胞化学; 人类; 图 5
艾博抗(上海)贸易有限公司IKK甲抗体(abcam, ab32041)被用于被用于免疫细胞化学在人类样本上 (图 5). Curr Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 s3
艾博抗(上海)贸易有限公司IKK甲抗体(Abcam, Ab194528)被用于被用于免疫细胞化学在小鼠样本上 (图 s3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:100; 图 3
  • 免疫印迹; 大鼠; 图 4
艾博抗(上海)贸易有限公司IKK甲抗体(Abcam, ab38515)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 3) 和 被用于免疫印迹在大鼠样本上 (图 4). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(Y463)
  • 免疫印迹; 小鼠; 图 6
艾博抗(上海)贸易有限公司IKK甲抗体(Abcam, ab32041)被用于被用于免疫印迹在小鼠样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
艾博抗(上海)贸易有限公司IKK甲抗体(Abcam, ab38515)被用于被用于免疫印迹在小鼠样本上 (图 6). Sci Rep (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(B-8)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 5a
圣克鲁斯生物技术IKK甲抗体(Santa Cruz, sc-7606)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 5a). Mol Cancer (2021) ncbi
小鼠 单克隆(B-8)
  • 免疫印迹基因敲除验证; 人类; 图 4g
圣克鲁斯生物技术IKK甲抗体(Santa Cruz Biotechnology, sc-7606)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 4g). Mol Cell Biol (2020) ncbi
小鼠 单克隆(B-8)
  • 免疫印迹; 人类; 1:2000; 图 5A
圣克鲁斯生物技术IKK甲抗体(Santa Cruz, sc-7606)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5A). Mol Med Rep (2016) ncbi
小鼠 单克隆(B-8)
  • 免疫印迹; 人类; 图 6b
圣克鲁斯生物技术IKK甲抗体(SantaCruz, sc-7606)被用于被用于免疫印迹在人类样本上 (图 6b). Mol Cell Biol (2015) ncbi
小鼠 单克隆(B-8)
  • 免疫印迹; 人类
圣克鲁斯生物技术IKK甲抗体(Santa Cruz, sc-7606)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(B-8)
  • 免疫印迹; 人类
圣克鲁斯生物技术IKK甲抗体(Santa Cruz, SC-7606)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2015) ncbi
小鼠 单克隆(B-8)
  • 免疫印迹; 人类
圣克鲁斯生物技术IKK甲抗体(Santa Cruz, sc-7606)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2013) ncbi
小鼠 单克隆(C-6)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术IKK甲抗体(Santa Cruz Biotechnology, SC-166231)被用于被用于免疫印迹在小鼠样本上 (图 4). PLoS ONE (2012) ncbi
Novus Biologicals
小鼠 单克隆(14A231)
  • 免疫沉淀; 小鼠; 1:1000; 图 8c
  • 免疫印迹; 小鼠; 1:1000; 图 7a
Novus BiologicalsIKK甲抗体(Novus, NB100-56704)被用于被用于免疫沉淀在小鼠样本上浓度为1:1000 (图 8c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). J Mol Cell Cardiol (2018) ncbi
小鼠 单克隆(14A231)
  • 免疫组化-石蜡切片; 人类; 图 1
Novus BiologicalsIKK甲抗体(Novus Biologicals, NB100-56704)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Oncotarget (2016) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(2G4)
  • 免疫组化-石蜡切片; 人类; 图 1
亚诺法生技股份有限公司IKK甲抗体(Abnova, H00001147-M04)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Oncotarget (2016) ncbi
赛默飞世尔
domestic rabbit 单克隆(J.10.3)
  • 免疫印迹; 人类
赛默飞世尔IKK甲抗体(Pierce Biotechnology, MA5-14857)被用于被用于免疫印迹在人类样本上. EMBO Mol Med (2013) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 2697S)被用于被用于免疫印迹在小鼠样本上 (图 5c). Clin Transl Med (2022) ncbi
domestic rabbit 单克隆(D3W6N)
  • 免疫印迹; 人类; 1:1000; 图 8f
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 61294S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8f). Nat Commun (2022) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 1:1000; 图 8f
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8f). Nat Commun (2022) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 小鼠; 图 5i
赛信通(上海)生物试剂有限公司IKK甲抗体(cell signaling technology, cst2697)被用于被用于免疫印迹在小鼠样本上 (图 5i). Front Physiol (2021) ncbi
小鼠 单克隆(3G12)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 11930)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 2697)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 小鼠; 图 s8c
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 2697)被用于被用于免疫印迹在小鼠样本上 (图 s8c). Sci Adv (2021) ncbi
domestic rabbit 单克隆(16A6)
  • 流式细胞仪; 小鼠
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 2697)被用于被用于流式细胞仪在小鼠样本上. Cancer Cell (2021) ncbi
小鼠 单克隆(3G12)
  • 免疫印迹; 人类; 图 s4h, s4i
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 11930)被用于被用于免疫印迹在人类样本上 (图 s4h, s4i). Protein Cell (2021) ncbi
小鼠 单克隆(3G12)
  • 免疫印迹; 人类; 图 1a, 7f
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 11930)被用于被用于免疫印迹在人类样本上 (图 1a, 7f) 和 被用于免疫印迹在小鼠样本上 (图 6a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 小鼠; 图 6a
  • 免疫印迹; 人类; 图 1a, 7f
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 2697)被用于被用于免疫印迹在小鼠样本上 (图 6a) 和 被用于免疫印迹在人类样本上 (图 1a, 7f). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(C84E11)
  • 免疫印迹; pigs
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 2078)被用于被用于免疫印迹在pigs 样本上. Nucleic Acids Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5h
赛信通(上海)生物试剂有限公司IKK甲抗体(CST, 2682)被用于被用于免疫印迹在小鼠样本上 (图 5h). J Nutr Biochem (2021) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 2697)被用于被用于免疫印迹在小鼠样本上 (图 3d). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 小鼠; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6e). Cell Death Differ (2021) ncbi
domestic rabbit 单克隆(C84E11)
  • 免疫印迹; 小鼠; 图 3f
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2078)被用于被用于免疫印迹在小鼠样本上 (图 3f). Signal Transduct Target Ther (2021) ncbi
domestic rabbit 单克隆(D3W6N)
  • 免疫沉淀; 人类; 1:200; 图 1c
赛信通(上海)生物试剂有限公司IKK甲抗体(CST, 61294)被用于被用于免疫沉淀在人类样本上浓度为1:200 (图 1c). Mol Cancer (2021) ncbi
小鼠 单克隆(3G12)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司IKK甲抗体(CST, 11930)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Mol Cancer (2021) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 1:1000; 图 1e
  • 免疫印迹; 小鼠; 1:1000; 图 4d, 4e
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d, 4e). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(C84E11)
  • 免疫印迹; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司IKK甲抗体(CST, 2078)被用于被用于免疫印迹在小鼠样本上 (图 s4a). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司IKK甲抗体(CST, 2682)被用于被用于免疫印迹在小鼠样本上 (图 s4a). Nat Commun (2020) ncbi
domestic rabbit 单克隆(C84E11)
  • 免疫组化; 小鼠; 1:100; 图 5b
  • 免疫印迹; 小鼠; 1:500; 图 5e
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 2078)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5b) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 5e). elife (2020) ncbi
domestic rabbit 单克隆(C84E11)
  • 免疫印迹; 小鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 2078)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). Cell Death Dis (2020) ncbi
小鼠 单克隆(3G12)
  • 免疫印迹; 小鼠; 1:1000; 图 4b, s12b
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 11930)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b, s12b). Nat Commun (2020) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 小鼠; 1:1000; 图 4b, s12b
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b, s12b). Nat Commun (2020) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 小鼠; 1:1000; 图 2i, 5h
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2i, 5h). Front Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2i, 5h
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2682)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2i, 5h). Front Neurosci (2020) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 2697S)被用于被用于免疫印迹在人类样本上 (图 1b). Adv Sci (Weinh) (2020) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 1:5000; 图 2b, 3b, 4b, 5b, 6b, 7b
  • 免疫沉淀; 人类; 1:5000; 图 2b, 3b, 4b, 5b, 6b, 7b
赛信通(上海)生物试剂有限公司IKK甲抗体(CST, #2682)被用于被用于其他在人类样本上浓度为1:5000 (图 2b, 3b, 4b, 5b, 6b, 7b) 和 被用于免疫沉淀在人类样本上浓度为1:5000 (图 2b, 3b, 4b, 5b, 6b, 7b). Sci Rep (2019) ncbi
小鼠 单克隆(3G12)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 11930)被用于被用于免疫印迹在人类样本上 (图 5d). Mol Oncol (2020) ncbi
domestic rabbit 单克隆(D3W6N)
  • 免疫印迹; 人类; 图 e3p
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, D3W6N)被用于被用于免疫印迹在人类样本上 (图 e3p). Nature (2020) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 小鼠; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7b). Front Pharmacol (2019) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 大鼠; 图 6i
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在大鼠样本上 (图 6i). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Sci Adv (2019) ncbi
小鼠 单克隆(3G12)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 11930)被用于被用于免疫印迹在人类样本上 (图 4a). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在人类样本上 (图 2d). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2682)被用于被用于免疫印迹在人类样本上 (图 4a). Cells (2019) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在人类样本上 (图 4a). Cells (2019) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 2697S)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS Pathog (2019) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697S)被用于被用于免疫印迹在人类样本上 (图 2f). J Immunol (2019) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 1:1000; 图 2h
赛信通(上海)生物试剂有限公司IKK甲抗体(CST, 2697)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2h). Sci Adv (2019) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在小鼠样本上 (图 4c). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(C84E11)
  • 免疫印迹; 人类; 图 s4a
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2078S)被用于被用于免疫印迹在人类样本上 (图 s4a). J Immunol (2019) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 小鼠; 图 s1c
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697S)被用于被用于免疫印迹在小鼠样本上 (图 s1c). Sci Adv (2019) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Nat Commun (2019) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司IKK甲抗体(CST, 2697)被用于被用于免疫印迹在人类样本上 (图 3a). Front Immunol (2019) ncbi
小鼠 单克隆(3G12)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司IKK甲抗体(CST, 11930)被用于被用于免疫印迹在人类样本上 (图 3a). Front Immunol (2019) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Sci Signal (2019) ncbi
domestic rabbit 单克隆(C84E11)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell signaling technology, 2078)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2682)被用于被用于免疫印迹在人类样本上 (图 5a). Biomed Pharmacother (2019) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 1:800; 图 1e
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 1e). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2682)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3g). Biochem Biophys Res Commun (2018) ncbi
domestic rabbit 单克隆(C84E11)
  • 免疫印迹; 小鼠; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2078)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3g). Biochem Biophys Res Commun (2018) ncbi
domestic rabbit 单克隆(16A6)
  • 流式细胞仪; 人类; 1:100
  • 免疫印迹; 人类; 1:500; 图 4f
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于流式细胞仪在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上浓度为1:500 (图 4f). Nature (2018) ncbi
小鼠 单克隆(3G12)
  • 免疫印迹; 人类; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 11930)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4g). Nature (2018) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在小鼠样本上 (图 5a). Cell (2018) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 图 7c
赛信通(上海)生物试剂有限公司IKK甲抗体(CST, 2697)被用于被用于免疫印迹在人类样本上 (图 7c). Cell Death Differ (2019) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 图 3e
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology., 2682)被用于被用于免疫沉淀在人类样本上 (图 3e). Sci Adv (2018) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 1:1000; 图 s9a
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s9a). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3h
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 2682)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3h). Nat Commun (2018) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 2697s)被用于被用于免疫印迹在小鼠样本上 (图 4d). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 2682)被用于被用于免疫印迹在小鼠样本上 (图 4d). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(C84E11)
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2078)被用于被用于免疫印迹在小鼠样本上 (图 6c). Cell (2018) ncbi
domestic rabbit 单克隆(16A6)
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于. JCI Insight (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 人类; 图 7e
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2682)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 7e). PLoS Pathog (2017) ncbi
domestic rabbit 单克隆(C84E11)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2078)被用于被用于免疫印迹在人类样本上 (图 1b). PLoS Pathog (2017) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Am J Physiol Heart Circ Physiol (2018) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 2697)被用于被用于免疫印迹在人类样本上 (图 2b). J Biol Chem (2017) ncbi
小鼠 单克隆(3G12)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 11930)被用于被用于免疫印迹在人类样本上 (图 1c). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在人类样本上 (图 3a). J Virol (2017) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在人类样本上 (图 5b). Biochem J (2017) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 图 s1a
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在人类样本上 (图 s1a) 和 被用于免疫印迹在小鼠样本上. Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 2697)被用于被用于免疫印迹在人类样本上 (图 2b). Oncotarget (2017) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697S)被用于被用于免疫印迹在人类样本上 (图 8a). J Immunol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司IKK甲抗体(cell signalling, 2682)被用于被用于免疫印迹在人类样本上 (图 1b). Cell Death Dis (2017) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 图 8a
  • 免疫印迹; 小鼠; 图 EV3d
赛信通(上海)生物试剂有限公司IKK甲抗体(cell signalling, 2697)被用于被用于免疫印迹在人类样本上 (图 8a) 和 被用于免疫印迹在小鼠样本上 (图 EV3d). EMBO J (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2682)被用于被用于免疫印迹在人类样本上 (图 5a). J Cell Biol (2017) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 图 1b, 2b
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在人类样本上 (图 1b, 2b). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在小鼠样本上 (图 5b). Sci Rep (2017) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 图 1a
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在人类样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 2a). PLoS Pathog (2017) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司IKK甲抗体(cell signalling, 2697)被用于被用于免疫印迹在人类样本上 (图 1a). J Immunol (2017) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在小鼠样本上 (图 2e). Sci Rep (2016) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Front Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司IKK甲抗体(cell Signaling Tech, CST2682)被用于被用于免疫印迹在人类样本上 (图 5). Curr Biol (2016) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 小鼠; 图 4G
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell signaling, 16A6)被用于被用于免疫印迹在小鼠样本上 (图 4G). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(16A6)
  • 流式细胞仪; 人类; 图 1a
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell signaling, 16A6)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2016) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; pigs ; 图 1a
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 16A6)被用于被用于免疫印迹在pigs 样本上 (图 1a). Arthritis Rheumatol (2017) ncbi
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 9958)被用于被用于免疫印迹在人类样本上. PLoS Pathog (2016) ncbi
小鼠 单克隆(3G12)
  • 免疫印迹; 小鼠; 1:2000; 图 9a
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 3G12)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 9a). Drug Des Devel Ther (2016) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 小鼠; 1:1000; 图 9a
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 16A6)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9a). Drug Des Devel Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2682)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Int J Biochem Cell Biol (2016) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Int J Biochem Cell Biol (2016) ncbi
小鼠 单克隆(3G12)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司IKK甲抗体(CST, 11930)被用于被用于免疫印迹在人类样本上 (图 4b). Nat Microbiol (2016) ncbi
小鼠 单克隆(3G12)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 11930)被用于被用于免疫印迹在人类样本上 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在人类样本上 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 1:1000; 图 s15
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s15). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, CST-2682)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C84E11)
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2078)被用于被用于免疫印迹在小鼠样本上 (图 3c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2682)被用于被用于免疫印迹在小鼠样本上 (图 3c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signalling, 2697)被用于被用于免疫印迹在小鼠样本上 (图 5a). Circ Res (2016) ncbi
domestic rabbit 单克隆(C84E11)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signalling, 2078)被用于被用于免疫印迹在小鼠样本上 (图 5a). Circ Res (2016) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司IKK甲抗体(cell signalling, 2697)被用于被用于免疫印迹在人类样本上 (图 3b). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司IKK甲抗体(cell signalling, 2682)被用于被用于免疫印迹在人类样本上 (图 3b). Nucleic Acids Res (2016) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS Pathog (2016) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 16A6)被用于被用于免疫印迹在人类样本上 (图 1a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell signaling, 2697)被用于被用于免疫印迹在人类样本上 (图 3d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在人类样本上 (图 4). Biochem Biophys Res Commun (2016) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Dig Dis Sci (2016) ncbi
domestic rabbit 单克隆(C84E11)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell signaling, 2078)被用于被用于免疫印迹在小鼠样本上 (图 4a). elife (2016) ncbi
domestic rabbit 单克隆(C84E11)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell signaling, 2078P)被用于被用于免疫印迹在人类样本上 (图 4). Nat Immunol (2016) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫细胞化学; 小鼠; 图 5c
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司IKK甲抗体(cell signalling, 2697)被用于被用于免疫细胞化学在小鼠样本上 (图 5c) 和 被用于免疫印迹在小鼠样本上 (图 5d). Drug Des Devel Ther (2016) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 16A6)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technolog, 2697)被用于被用于免疫印迹在小鼠样本上 (图 3). Cell Death Differ (2016) ncbi
小鼠 单克隆(3G12)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 11930)被用于被用于免疫印迹在人类样本上 (图 2b). Nat Genet (2016) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 图 2b, 2c
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在人类样本上 (图 2b, 2c). Nat Genet (2016) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell signaling, 2697)被用于被用于免疫印迹在人类样本上 (图 5d). J Exp Med (2015) ncbi
小鼠 单克隆(3G12)
  • 免疫印迹; 人类; 1:100
赛信通(上海)生物试剂有限公司IKK甲抗体(Cellular Signaling Tech, #11930)被用于被用于免疫印迹在人类样本上浓度为1:100. Cancer Chemother Pharmacol (2015) ncbi
domestic rabbit 单克隆(C84E11)
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2078)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 s1). Sci Rep (2015) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 图 1, 5, 6
  • 免疫印迹; 小鼠; 图 1, 5, 6
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在人类样本上 (图 1, 5, 6) 和 被用于免疫印迹在小鼠样本上 (图 1, 5, 6). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 16A6)被用于被用于免疫印迹在人类样本上 (图 3). J Exp Med (2015) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 图 8.a,b,c,d
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在人类样本上 (图 8.a,b,c,d). Virology (2015) ncbi
domestic rabbit 单克隆(C84E11)
  • 免疫印迹; 人类; 图 f4
赛信通(上海)生物试剂有限公司IKK甲抗体(cell signaling technology, 2078S)被用于被用于免疫印迹在人类样本上 (图 f4). Oncotarget (2015) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 2697)被用于被用于免疫印迹在人类样本上 (图 1d). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6e). Nat Commun (2015) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 2697)被用于被用于免疫印迹在人类样本上浓度为1:1000. Arch Biochem Biophys (2015) ncbi
domestic rabbit 单克隆(C84E11)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 2078)被用于被用于免疫印迹在人类样本上 (图 2). Nucleic Acids Res (2015) ncbi
domestic rabbit 单克隆(C84E11)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell signaling, 2078)被用于被用于免疫印迹在小鼠样本上 (图 6). Infect Immun (2015) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell signaling, 2697)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司IKK甲抗体(CST, 2697S)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
domestic rabbit 单克隆(C84E11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 2078)被用于被用于免疫印迹在人类样本上. J Invest Dermatol (2015) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 2697)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 小鼠; 1:250
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 2697)被用于被用于免疫印迹在小鼠样本上浓度为1:250. Biol Reprod (2014) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell signaling, 2697)被用于被用于免疫印迹在小鼠样本上 (图 6). Nat Commun (2014) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 5
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 2697)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 5). Oncogene (2015) ncbi
domestic rabbit 单克隆(16A6)
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 2697L)被用于. Neurobiol Dis (2014) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在大鼠样本上. World J Gastroenterol (2014) ncbi
domestic rabbit 单克隆(C84E11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 2078)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在人类样本上. J Physiol (2014) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司IKK甲抗体(cell signalling, 2697)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2). Nat Cell Biol (2014) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, 2697)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. J Nutr Biochem (2014) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Neurobiol Dis (2014) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell signaling, 2697)被用于被用于免疫组化-石蜡切片在小鼠样本上. Exp Toxicol Pathol (2013) ncbi
domestic rabbit 单克隆(C84E11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling Technology, C84E11)被用于被用于免疫印迹在人类样本上. J Virol (2013) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697)被用于被用于免疫印迹在人类样本上. Cell Cycle (2012) ncbi
domestic rabbit 单克隆(C84E11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, C84E11)被用于被用于免疫印迹在人类样本上. J Biol Chem (2012) ncbi
domestic rabbit 单克隆(16A6)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司IKK甲抗体(Cell Signaling, 2697S)被用于被用于免疫印迹在人类样本上 (图 5). Nat Immunol (2011) ncbi
碧迪BD
小鼠 单克隆(25/IkBa/MAD-3)
  • 免疫印迹; 人类; 图 6d
碧迪BDIKK甲抗体(BD Biosciences, 610690)被用于被用于免疫印迹在人类样本上 (图 6d). Cell (2019) ncbi
小鼠 单克隆(B78-1)
  • 免疫印迹; 人类; 1:1000; 图 5d
碧迪BDIKK甲抗体(BD Bioscience, 556532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Int J Mol Sci (2017) ncbi
小鼠 单克隆(N19-39)
  • 流式细胞仪; 人类; 图 2a
碧迪BDIKK甲抗体(BD Biosciences, N19-39)被用于被用于流式细胞仪在人类样本上 (图 2a). J Immunol (2016) ncbi
小鼠 单克隆(25/IkBa/MAD-3)
  • 免疫印迹; 人类; 图 3
碧迪BDIKK甲抗体(BD Transduction Labs, 610690)被用于被用于免疫印迹在人类样本上 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(F18-1875)
  • 免疫印迹; 人类; 图 4
碧迪BDIKK甲抗体(BD Biosciences, 551920)被用于被用于免疫印迹在人类样本上 (图 4). Nat Immunol (2016) ncbi
小鼠 单克隆(25/IkBa/MAD-3)
  • 免疫印迹; 人类; 图 4
碧迪BDIKK甲抗体(BD, 610690)被用于被用于免疫印迹在人类样本上 (图 4). Cell Mol Life Sci (2016) ncbi
小鼠 单克隆(25/IkBa/MAD-3)
  • 免疫印迹; 人类; 图 3
碧迪BDIKK甲抗体(BD, 610690)被用于被用于免疫印迹在人类样本上 (图 3). J Exp Med (2015) ncbi
小鼠 单克隆(B78-1)
  • 免疫细胞化学; 人类
碧迪BDIKK甲抗体(BD Pharmingen, B78-1)被用于被用于免疫细胞化学在人类样本上. J Virol (2015) ncbi
小鼠 单克隆(25/IkBa/MAD-3)
  • 流式细胞仪; 人类; 2.5:100
碧迪BDIKK甲抗体(BD, 560818)被用于被用于流式细胞仪在人类样本上浓度为2.5:100. Cytometry A (2015) ncbi
小鼠 单克隆(25/IkBa/MAD-3)
  • 免疫印迹; 人类
碧迪BDIKK甲抗体(BD Biosciences, 610691)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(B78-1)
  • 免疫印迹; 人类; 图 5
碧迪BDIKK甲抗体(BD Pharmingen, 556532)被用于被用于免疫印迹在人类样本上 (图 5). Nat Immunol (2011) ncbi
小鼠 单克隆(24/IKKbeta)
  • 免疫印迹; 人类; 图 5
碧迪BDIKK甲抗体(BD Pharmingen, 611254)被用于被用于免疫印迹在人类样本上 (图 5). Nat Immunol (2011) ncbi
文章列表
  1. Zhu Y, Gu H, Yang L, Li N, Chen Q, Kang D, et al. Involvement of MST1/mTORC1/STAT1 activity in the regulation of B-cell receptor signalling by chemokine receptor 2. Clin Transl Med. 2022;12:e887 pubmed 出版商
  2. Yong L, Yu Y, Li B, Ge H, Zhen Q, Mao Y, et al. Calcium/calmodulin-dependent protein kinase IV promotes imiquimod-induced psoriatic inflammation via macrophages and keratinocytes in mice. Nat Commun. 2022;13:4255 pubmed 出版商
  3. Wang C, Chen S, Guo H, Jiang H, Liu H, Fu H, et al. Forsythoside A Mitigates Alzheimer's-like Pathology by Inhibiting Ferroptosis-mediated Neuroinflammation via Nrf2/GPX4 Axis Activation. Int J Biol Sci. 2022;18:2075-2090 pubmed 出版商
  4. Ma S, Xu H, Huang W, Gao Y, Zhou H, Li X, et al. Chrysophanol Relieves Cisplatin-Induced Nephrotoxicity via Concomitant Inhibition of Oxidative Stress, Apoptosis, and Inflammation. Front Physiol. 2021;12:706359 pubmed 出版商
  5. Wang X, Yung M, Sharma R, Chen F, Poon Y, Lam W, et al. Epigenetic Silencing of miR-33b Promotes Peritoneal Metastases of Ovarian Cancer by Modulating the TAK1/FASN/CPT1A/NF-κB Axis. Cancers (Basel). 2021;13: pubmed 出版商
  6. Cheng J, Dong Y, Ma J, Pan R, Liao Y, Kong X, et al. Microglial Calhm2 regulates neuroinflammation and contributes to Alzheimer's disease pathology. Sci Adv. 2021;7: pubmed 出版商
  7. Hutton C, Heider F, Blanco Gómez A, Banyard A, Kononov A, Zhang X, et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell. 2021;: pubmed 出版商
  8. Xu X, Sun Y, Cen X, Shan B, Zhao Q, Xie T, et al. Metformin activates chaperone-mediated autophagy and improves disease pathologies in an Alzheimer disease mouse model. Protein Cell. 2021;: pubmed 出版商
  9. Liu Y, Bao S, Guo W, Liu W. Bone mesenchymal stem cell derived exosomes alleviate high phosphorus-induced calcification of vascular smooth muscle cells through the NONHSAT 084969.2/NF-κB axis. Aging (Albany NY). 2021;13:16749-16762 pubmed 出版商
  10. Chen S, Liu H, Li Z, Tang J, Huang B, Zhi F, et al. Epithelial PBLD attenuates intestinal inflammatory response and improves intestinal barrier function by inhibiting NF-κB signaling. Cell Death Dis. 2021;12:563 pubmed 出版商
  11. Zong X, Xiao X, Shen B, Jiang Q, Wang H, Lu Z, et al. The N6-methyladenosine RNA-binding protein YTHDF1 modulates the translation of TRAF6 to mediate the intestinal immune response. Nucleic Acids Res. 2021;49:5537-5552 pubmed 出版商
  12. Zhang G, Li R, Li W, Yang S, Sun Q, Yin H, et al. Toll-like receptor 3 ablation prevented high-fat diet-induced obesity and metabolic disorder. J Nutr Biochem. 2021;95:108761 pubmed 出版商
  13. Li Q, Xu Q, Tan J, Hu L, Ge C, Xu M. Carminic acid supplementation protects against fructose-induced kidney injury mainly through suppressing inflammation and oxidative stress via improving Nrf-2 signaling. Aging (Albany NY). 2021;13:10326-10353 pubmed 出版商
  14. Watahiki A, Hoshikawa S, Chiba M, Egusa H, Fukumoto S, Inuzuka H. Deficiency of Lipin2 Results in Enhanced NF-κB Signaling and Osteoclast Formation in RAW-D Murine Macrophages. Int J Mol Sci. 2021;22: pubmed 出版商
  15. Fang Y, Jiang Q, Li S, Zhu H, Xu R, Song N, et al. Opposing functions of β-arrestin 1 and 2 in Parkinson's disease via microglia inflammation and Nprl3. Cell Death Differ. 2021;28:1822-1836 pubmed 出版商
  16. Yu Z, Li X, Yang M, Huang J, Fang Q, Jia J, et al. TRIM41 is required to innate antiviral response by polyubiquitinating BCL10 and recruiting NEMO. Signal Transduct Target Ther. 2021;6:90 pubmed 出版商
  17. Moser B, Hochreiter B, Basílio J, Gleitsmann V, Panhuber A, Pardo Garcia A, et al. The inflammatory kinase IKKα phosphorylates and stabilizes c-Myc and enhances its activity. Mol Cancer. 2021;20:16 pubmed 出版商
  18. Hou P, Jia P, Yang K, Li Z, Tian T, Lin Y, et al. An unconventional role of an ASB family protein in NF-κB activation and inflammatory response during microbial infection and colitis. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  19. Wang Z, Shi Y, Ying C, Jiang Y, Hu J. Hypoxia-induced PLOD1 overexpression contributes to the malignant phenotype of glioblastoma via NF-κB signaling. Oncogene. 2021;: pubmed 出版商
  20. Li X, Zhang M, Huang X, Liang W, Li G, Lu X, et al. Ubiquitination of RIPK1 regulates its activation mediated by TNFR1 and TLRs signaling in distinct manners. Nat Commun. 2020;11:6364 pubmed 出版商
  21. Li J, Zhang L, Zheng Y, Shao R, Liang Q, Yu W, et al. BAD inactivation exacerbates rheumatoid arthritis pathology by promoting survival of sublining macrophages. elife. 2020;9: pubmed 出版商
  22. Wu Y, Chou T, Young L, Hsieh F, Pan H, Mo S, et al. Tumor suppressor death-associated protein kinase 1 inhibits necroptosis by p38 MAPK activation. Cell Death Dis. 2020;11:305 pubmed 出版商
  23. von Roemeling C, Wang Y, Qie Y, Yuan H, Zhao H, Liu X, et al. Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity. Nat Commun. 2020;11:1508 pubmed 出版商
  24. Yang H, Wang L, Zang C, Wang Y, Shang J, Zhang Z, et al. Src Inhibition Attenuates Neuroinflammation and Protects Dopaminergic Neurons in Parkinson's Disease Models. Front Neurosci. 2020;14:45 pubmed 出版商
  25. Chen M, Zhao Z, Meng Q, Liang P, Su Z, Wu Y, et al. TRIM14 Promotes Noncanonical NF-κB Activation by Modulating p100/p52 Stability via Selective Autophagy. Adv Sci (Weinh). 2020;7:1901261 pubmed 出版商
  26. Smolko C, Janes K. An ultrasensitive fiveplex activity assay for cellular kinases. Sci Rep. 2019;9:19409 pubmed 出版商
  27. Wang H, Chen Z, Wang S, Gao X, Qian M, Qiu W, et al. TGFβ1-induced beta-site APP-cleaving enzyme 2 upregulation promotes tumorigenesis through the NF-κB signalling pathway in human gliomas. Mol Oncol. 2020;14:407-425 pubmed 出版商
  28. Tasdogan A, Faubert B, Ramesh V, Ubellacker J, Shen B, Solmonson A, et al. Metabolic heterogeneity confers differences in melanoma metastatic potential. Nature. 2020;577:115-120 pubmed 出版商
  29. Yuan Z, Yang L, Zhang X, Ji P, Hua Y, Wei Y. Huang-Lian-Jie-Du Decoction Ameliorates Acute Ulcerative Colitis in Mice via Regulating NF-κB and Nrf2 Signaling Pathways and Enhancing Intestinal Barrier Function. Front Pharmacol. 2019;10:1354 pubmed 出版商
  30. Huang X, Ni B, Xi Y, Chu X, Zhang R, You H. Protease-activated receptor 2 (PAR-2) antagonist AZ3451 as a novel therapeutic agent for osteoarthritis. Aging (Albany NY). 2019;11:12532-12545 pubmed 出版商
  31. Abe H, Satoh J, Shirasaka Y, Kogure A, Kato H, Ito S, et al. Priming Phosphorylation of TANK-Binding Kinase 1 by IκB Kinase β Is Essential in Toll-Like Receptor 3/4 Signaling. Mol Cell Biol. 2020;40: pubmed 出版商
  32. Wu Y, Chen K, Xing G, Li L, Ma B, Hu Z, et al. Phospholipid remodeling is critical for stem cell pluripotency by facilitating mesenchymal-to-epithelial transition. Sci Adv. 2019;5:eaax7525 pubmed 出版商
  33. Zoi I, Karamouzis M, Xingi E, Sarantis P, Thomaidou D, Lembessis P, et al. Combining RANK/RANKL and ERBB-2 targeting as a novel strategy in ERBB-2-positive breast carcinomas. Breast Cancer Res. 2019;21:132 pubmed 出版商
  34. Managò A, Audrito V, Mazzola F, Sorci L, Gaudino F, Gizzi K, et al. Extracellular nicotinate phosphoribosyltransferase binds Toll like receptor 4 and mediates inflammation. Nat Commun. 2019;10:4116 pubmed 出版商
  35. Barbero G, Castro M, Villanueva M, Quezada M, Fernández N, Demorrow S, et al. An Autocrine Wnt5a Loop Promotes NF-κB Pathway Activation and Cytokine/Chemokine Secretion in Melanoma. Cells. 2019;8: pubmed 出版商
  36. Xu G, Xia Z, Deng F, Liu L, Wang Q, Yu Y, et al. Inducible LGALS3BP/90K activates antiviral innate immune responses by targeting TRAF6 and TRAF3 complex. PLoS Pathog. 2019;15:e1008002 pubmed 出版商
  37. Colomer C, Margalef P, Villanueva A, Vert A, Pecharroman I, Sole L, et al. IKKα Kinase Regulates the DNA Damage Response and Drives Chemo-resistance in Cancer. Mol Cell. 2019;75:669-682.e5 pubmed 出版商
  38. Xia Z, Xu G, Nie L, Liu L, Peng N, He Q, et al. NAC1 Potentiates Cellular Antiviral Signaling by Bridging MAVS and TBK1. J Immunol. 2019;: pubmed 出版商
  39. Hari P, Millar F, Tarrats N, Birch J, Quintanilla A, Rink C, et al. The innate immune sensor Toll-like receptor 2 controls the senescence-associated secretory phenotype. Sci Adv. 2019;5:eaaw0254 pubmed 出版商
  40. Loh J, Xu S, Huo J, Kim S, Wang Y, Lam K. Dok3-protein phosphatase 1 interaction attenuates Card9 signaling and neutrophil-dependent antifungal immunity. J Clin Invest. 2019;129:2717-2729 pubmed 出版商
  41. Gu C, Wang L, Zurawski S, Oh S. Signaling Cascade through DC-ASGPR Induces Transcriptionally Active CREB for IL-10 Induction and Immune Regulation. J Immunol. 2019;: pubmed 出版商
  42. Yang S, Harding A, Sweeney C, Miao D, Swan G, Zhou C, et al. Control of antiviral innate immune response by protein geranylgeranylation. Sci Adv. 2019;5:eaav7999 pubmed 出版商
  43. Ben J, Jiang B, Wang D, Liu Q, Zhang Y, Qi Y, et al. Major vault protein suppresses obesity and atherosclerosis through inhibiting IKK-NF-κB signaling mediated inflammation. Nat Commun. 2019;10:1801 pubmed 出版商
  44. Oda H, Beck D, Kuehn H, Sampaio Moura N, Hoffmann P, Ibarra M, et al. Second Case of HOIP Deficiency Expands Clinical Features and Defines Inflammatory Transcriptome Regulated by LUBAC. Front Immunol. 2019;10:479 pubmed 出版商
  45. Herb M, Gluschko A, Wiegmann K, Farid A, Wolf A, Utermöhlen O, et al. Mitochondrial reactive oxygen species enable proinflammatory signaling through disulfide linkage of NEMO. Sci Signal. 2019;12: pubmed 出版商
  46. Georgouli M, Herraiz C, Crosas Molist E, Fanshawe B, Maiques O, Perdrix A, et al. Regional Activation of Myosin II in Cancer Cells Drives Tumor Progression via a Secretory Cross-Talk with the Immune Microenvironment. Cell. 2019;176:757-774.e23 pubmed 出版商
  47. He S, Nian F, Chen W, Yin L, Auchoybur M, Tao Z, et al. I-κB kinase-ε knockout protects against angiotensin II induced aortic valve thickening in apolipoprotein E deficient mice. Biomed Pharmacother. 2019;109:1287-1295 pubmed 出版商
  48. Li C, Liu Q, Xie L. Suppressing NLRP2 expression accelerates hepatic steatosis: A mechanism involving inflammation and oxidative stress. Biochem Biophys Res Commun. 2018;507:22-29 pubmed 出版商
  49. Panda S, Gekara N. The deubiquitinase MYSM1 dampens NOD2-mediated inflammation and tissue damage by inactivating the RIP2 complex. Nat Commun. 2018;9:4654 pubmed 出版商
  50. Lou C, Lu H, Ma Z, Liu C, Zhang Y. Ginkgolide B enhances gemcitabine sensitivity in pancreatic cancer cell lines via inhibiting PAFR/NF-кB pathway. Biomed Pharmacother. 2019;109:563-572 pubmed 出版商
  51. Sheng C, Yao C, Wang Z, Chen H, Zhao Y, Xu D, et al. Cyclophilin J limits inflammation through the blockage of ubiquitin chain sensing. Nat Commun. 2018;9:4381 pubmed 出版商
  52. Zhang X, Zhang M, Wang C. Loss of LRRC25 accelerates pathological cardiac hypertrophy through promoting fibrosis and inflammation regulated by TGF-β1. Biochem Biophys Res Commun. 2018;506:137-144 pubmed 出版商
  53. Deng M, Gui X, Kim J, Xie L, Chen W, Li Z, et al. LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature. 2018;562:605-609 pubmed 出版商
  54. Xu X, Xu J, Wu J, Hu Y, Han Y, Gu Y, et al. Phosphorylation-Mediated IFN-γR2 Membrane Translocation Is Required to Activate Macrophage Innate Response. Cell. 2018;175:1336-1351.e17 pubmed 出版商
  55. Fauster A, Rebsamen M, Willmann K, César Razquin A, Girardi E, Bigenzahn J, et al. Systematic genetic mapping of necroptosis identifies SLC39A7 as modulator of death receptor trafficking. Cell Death Differ. 2019;26:1138-1155 pubmed 出版商
  56. Gong F, Gu J, Wang H. Up regulated Tmbim1 activation promotes high fat diet (HFD)-induced cardiomyopathy by enhancement of inflammation and oxidative stress. Biochem Biophys Res Commun. 2018;504:797-804 pubmed 出版商
  57. Chuang H, Tsai C, Hsueh C, Tan T. GLK-IKKβ signaling induces dimerization and translocation of the AhR-RORγt complex in IL-17A induction and autoimmune disease. Sci Adv. 2018;4:eaat5401 pubmed 出版商
  58. Cao Y, Xu Y, Auchoybur M, Chen W, He S, Qin W, et al. Regulatory role of IKKɑ in myocardial ischemia/reperfusion injury by the determination of M1 versus M2 polarization of macrophages. J Mol Cell Cardiol. 2018;123:1-12 pubmed 出版商
  59. Cuchet Lourenço D, Eletto D, Wu C, Plagnol V, Papapietro O, CURTIS J, et al. Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation. Science. 2018;361:810-813 pubmed 出版商
  60. Cho S, Lee H, Yu I, Choi Y, Huang H, Hashemifar S, et al. Differential cell-intrinsic regulations of germinal center B and T cells by miR-146a and miR-146b. Nat Commun. 2018;9:2757 pubmed 出版商
  61. Li F, Li Y, Liang H, Xu T, Kong Y, Huang M, et al. HECTD3 mediates TRAF3 polyubiquitination and type I interferon induction during bacterial infection. J Clin Invest. 2018;128:4148-4162 pubmed 出版商
  62. Zhao P, Wong K, Sun X, Reilly S, Uhm M, Liao Z, et al. TBK1 at the Crossroads of Inflammation and Energy Homeostasis in Adipose Tissue. Cell. 2018;172:731-743.e12 pubmed 出版商
  63. Sui Y, Liu Z, Park S, Thatcher S, Zhu B, Fernandez J, et al. IKKβ is a β-catenin kinase that regulates mesenchymal stem cell differentiation. JCI Insight. 2018;3: pubmed 出版商
  64. Fang R, Jiang Q, Zhou X, Wang C, Guan Y, Tao J, et al. MAVS activates TBK1 and IKK? through TRAFs in NEMO dependent and independent manner. PLoS Pathog. 2017;13:e1006720 pubmed 出版商
  65. Padilla J, Carpenter A, Das N, Kandikattu H, López Ongil S, Martinez Lemus L, et al. TRAF3IP2 mediates high glucose-induced endothelin-1 production as well as endothelin-1-induced inflammation in endothelial cells. Am J Physiol Heart Circ Physiol. 2018;314:H52-H64 pubmed 出版商
  66. Wu G, Mu T, Gao Z, Wang J, Sy M, Li C. Prion protein is required for tumor necrosis factor α (TNFα)-triggered nuclear factor κB (NF-κB) signaling and cytokine production. J Biol Chem. 2017;292:18747-18759 pubmed 出版商
  67. Skowron M, Niegisch G, Albrecht P, Van Koeveringe G, Romano A, Albers P, et al. Various Mechanisms Involve the Nuclear Factor (Erythroid-Derived 2)-Like (NRF2) to Achieve Cytoprotection in Long-Term Cisplatin-Treated Urothelial Carcinoma Cell Lines. Int J Mol Sci. 2017;18: pubmed 出版商
  68. Franz S, Rennert P, Woznik M, Grützke J, Lüdde A, Arriero Pais E, et al. Mumps Virus SH Protein Inhibits NF-κB Activation by Interacting with Tumor Necrosis Factor Receptor 1, Interleukin-1 Receptor 1, and Toll-Like Receptor 3 Complexes. J Virol. 2017;91: pubmed 出版商
  69. Zhang J, MacArtney T, Peggie M, Cohen P. Interleukin-1 and TRAF6-dependent activation of TAK1 in the absence of TAB2 and TAB3. Biochem J. 2017;474:2235-2248 pubmed 出版商
  70. Strickson S, Emmerich C, Goh E, Zhang J, Kelsall I, MacArtney T, et al. Roles of the TRAF6 and Pellino E3 ligases in MyD88 and RANKL signaling. Proc Natl Acad Sci U S A. 2017;114:E3481-E3489 pubmed 出版商
  71. Wang X, Wang R, Luo M, Li C, Wang H, Huan C, et al. (DEAD)-box RNA helicase 3 modulates NF-κB signal pathway by controlling the phosphorylation of PP2A-C subunit. Oncotarget. 2017;8:33197-33213 pubmed 出版商
  72. Xia Z, Xu G, Yang X, Peng N, Zuo Q, Zhu S, et al. Inducible TAP1 Negatively Regulates the Antiviral Innate Immune Response by Targeting the TAK1 Complex. J Immunol. 2017;198:3690-3704 pubmed 出版商
  73. Sahu U, Choudhury A, Parvez S, Biswas S, Kar S. Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell Death Dis. 2017;8:e2667 pubmed 出版商
  74. Lafont E, Kantari Mimoun C, Dráber P, De Miguel D, Hartwig T, Reichert M, et al. The linear ubiquitin chain assembly complex regulates TRAIL-induced gene activation and cell death. EMBO J. 2017;36:1147-1166 pubmed 出版商
  75. Labrousse Arias D, Martínez Alonso E, Corral Escariz M, Bienes Martínez R, Berridy J, Serrano Oviedo L, et al. VHL promotes immune response against renal cell carcinoma via NF-κB-dependent regulation of VCAM-1. J Cell Biol. 2017;216:835-847 pubmed 出版商
  76. Hsia H, Hutti J, Baldwin A. Cytosolic DNA Promotes Signal Transducer and Activator of Transcription 3 (STAT3) Phosphorylation by TANK-binding Kinase 1 (TBK1) to Restrain STAT3 Activity. J Biol Chem. 2017;292:5405-5417 pubmed 出版商
  77. Zhang H, Qi Y, Yuan Y, Cai L, Xu H, Zhang L, et al. Paeoniflorin Ameliorates Experimental Autoimmune Encephalomyelitis via Inhibition of Dendritic Cell Function and Th17 Cell Differentiation. Sci Rep. 2017;7:41887 pubmed 出版商
  78. Shibata Y, Tokunaga F, Goto E, Komatsu G, Gohda J, Saeki Y, et al. HTLV-1 Tax Induces Formation of the Active Macromolecular IKK Complex by Generating Lys63- and Met1-Linked Hybrid Polyubiquitin Chains. PLoS Pathog. 2017;13:e1006162 pubmed 出版商
  79. Dudhgaonkar S, Ranade S, Nagar J, Subramani S, Prasad D, Karunanithi P, et al. Selective IRAK4 Inhibition Attenuates Disease in Murine Lupus Models and Demonstrates Steroid Sparing Activity. J Immunol. 2017;198:1308-1319 pubmed 出版商
  80. Huh H, Ra E, Lee T, Kang S, Park A, Lee E, et al. STRAP Acts as a Scaffolding Protein in Controlling the TLR2/4 Signaling Pathway. Sci Rep. 2016;6:38849 pubmed 出版商
  81. Lin C, Lin W, Cho R, Wang C, Hsiao L, Yang C. TNF-?-Induced cPLA2 Expression via NADPH Oxidase/Reactive Oxygen Species-Dependent NF-?B Cascade on Human Pulmonary Alveolar Epithelial Cells. Front Pharmacol. 2016;7:447 pubmed
  82. Jung J, Ravi S, Lee D, McFadden K, Kamradt M, Toussaint L, et al. NIK/MAP3K14 Regulates Mitochondrial Dynamics and Trafficking to Promote Cell Invasion. Curr Biol. 2016;26:3288-3302 pubmed 出版商
  83. Marichal T, Gaudenzio N, El Abbas S, Sibilano R, Zurek O, Starkl P, et al. Guanine nucleotide exchange factor RABGEF1 regulates keratinocyte-intrinsic signaling to maintain skin homeostasis. J Clin Invest. 2016;126:4497-4515 pubmed 出版商
  84. Chen D, Ireland S, Remington G, Alvarez E, Racke M, Greenberg B, et al. CD40-Mediated NF-?B Activation in B Cells Is Increased in Multiple Sclerosis and Modulated by Therapeutics. J Immunol. 2016;197:4257-4265 pubmed
  85. Ismail H, Didangelos A, Vincent T, Saklatvala J. Rapid Activation of Transforming Growth Factor ?-Activated Kinase 1 in Chondrocytes by Phosphorylation and K63 -Linked Polyubiquitination Upon Injury to Animal Articular Cartilage. Arthritis Rheumatol. 2017;69:565-575 pubmed 出版商
  86. Li S, Hu H, He Z, Liang D, Sun R, Lan K. Fine-Tuning of the Kaposi's Sarcoma-Associated Herpesvirus Life Cycle in Neighboring Cells through the RTA-JAG1-Notch Pathway. PLoS Pathog. 2016;12:e1005900 pubmed 出版商
  87. He Y, Yan Y, Zhang H, Lin Y, Chen Y, Yan Y, et al. Methyl salicylate 2-O-?-d-lactoside alleviates the pathological progression of pristane-induced systemic lupus erythematosus-like disease in mice via suppression of inflammatory response and signal transduction. Drug Des Devel Ther. 2016;10:3183-3196 pubmed
  88. Bettaieb A, Cremonini E, Kang H, Kang J, Haj F, Oteiza P. Anti-inflammatory actions of (-)-epicatechin in the adipose tissue of obese mice. Int J Biochem Cell Biol. 2016;81:383-392 pubmed 出版商
  89. Scholefield J, Henriques R, Savulescu A, Fontan E, Boucharlat A, Laplantine E, et al. Super-resolution microscopy reveals a preformed NEMO lattice structure that is collapsed in incontinentia pigmenti. Nat Commun. 2016;7:12629 pubmed 出版商
  90. de Jong M, Liu Z, Chen D, Alto N. Shigella flexneri suppresses NF-?B activation by inhibiting linear ubiquitin chain ligation. Nat Microbiol. 2016;1:16084 pubmed 出版商
  91. Zhou Q, Yu X, Demirkaya E, Deuitch N, Stone D, Tsai W, et al. Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. Proc Natl Acad Sci U S A. 2016;113:10127-32 pubmed 出版商
  92. Nakazawa S, Oikawa D, Ishii R, Ayaki T, Takahashi H, Takeda H, et al. Linear ubiquitination is involved in the pathogenesis of optineurin-associated amyotrophic lateral sclerosis. Nat Commun. 2016;7:12547 pubmed 出版商
  93. Oh B, Kim S, Lee Y, Hong H, Kim T, Kim S, et al. Twist1-induced epithelial-mesenchymal transition according to microsatellite instability status in colon cancer cells. Oncotarget. 2016;7:57066-57076 pubmed 出版商
  94. Zhou Y, Xu H, Ding Y, Lu Q, Zou M, Song P. AMPK?1 deletion in fibroblasts promotes tumorigenesis in athymic nude mice by p52-mediated elevation of erythropoietin and CDK2. Oncotarget. 2016;7:53654-53667 pubmed 出版商
  95. Cameron A, Morrison V, Levin D, Mohan M, Forteath C, Beall C, et al. Anti-Inflammatory Effects of Metformin Irrespective of Diabetes Status. Circ Res. 2016;119:652-65 pubmed 出版商
  96. Garcia P, Seiva F, Carniato A, de Mello Júnior W, Duran N, Macedo A, et al. Increased toll-like receptors and p53 levels regulate apoptosis and angiogenesis in non-muscle invasive bladder cancer: mechanism of action of P-MAPA biological response modifier. BMC Cancer. 2016;16:422 pubmed 出版商
  97. Taminiau A, Draime A, Tys J, Lambert B, Vandeputte J, Nguyen N, et al. HOXA1 binds RBCK1/HOIL-1 and TRAF2 and modulates the TNF/NF-?B pathway in a transcription-independent manner. Nucleic Acids Res. 2016;44:7331-49 pubmed 出版商
  98. Wang T, Pan D, Zhou Z, You Y, Jiang C, Zhao X, et al. Dectin-3 Deficiency Promotes Colitis Development due to Impaired Antifungal Innate Immune Responses in the Gut. PLoS Pathog. 2016;12:e1005662 pubmed 出版商
  99. Kwon H, Choi G, Ryu S, Kwon S, Kim S, Booth C, et al. Stepwise phosphorylation of p65 promotes NF-?B activation and NK cell responses during target cell recognition. Nat Commun. 2016;7:11686 pubmed 出版商
  100. Diamant G, Bahat A, Dikstein R. The elongation factor Spt5 facilitates transcription initiation for rapid induction of inflammatory-response genes. Nat Commun. 2016;7:11547 pubmed 出版商
  101. Chen Z, Mei Y, Lei H, Tian R, Ni N, Han F, et al. LYTAK1, a TAK1 inhibitor, suppresses proliferation and epithelial?mesenchymal transition in retinal pigment epithelium cells. Mol Med Rep. 2016;14:145-50 pubmed 出版商
  102. Park S, Yi H, Suh N, Park Y, Koh J, Jeong S, et al. Inhibition of EHMT2/G9a epigenetically increases the transcription of Beclin-1 via an increase in ROS and activation of NF-?B. Oncotarget. 2016;7:39796-39808 pubmed 出版商
  103. Emmerich C, Bakshi S, Kelsall I, Ortiz Guerrero J, Shpiro N, Cohen P. Lys63/Met1-hybrid ubiquitin chains are commonly formed during the activation of innate immune signalling. Biochem Biophys Res Commun. 2016;474:452-461 pubmed 出版商
  104. Alameda J, Gaspar M, Ramirez A, Navarro M, Page A, Suárez Cabrera C, et al. Deciphering the role of nuclear and cytoplasmic IKK? in skin cancer. Oncotarget. 2016;7:29531-47 pubmed 出版商
  105. Mendel I, Yacov N, Shoham A, Ishai E, Breitbart E. Treatment with Oxidized Phospholipids Directly Inhibits Nonalcoholic Steatohepatitis and Liver Fibrosis Without Affecting Steatosis. Dig Dis Sci. 2016;61:2545-53 pubmed 出版商
  106. Yu Z, Chen T, Li X, Yang M, Tang S, Zhu X, et al. Lys29-linkage of ASK1 by Skp1-Cullin 1-Fbxo21 ubiquitin ligase complex is required for antiviral innate response. elife. 2016;5: pubmed 出版商
  107. Starokadomskyy P, Gemelli T, Rios J, Xing C, Wang R, Li H, et al. DNA polymerase-? regulates the activation of type I interferons through cytosolic RNA:DNA synthesis. Nat Immunol. 2016;17:495-504 pubmed 出版商
  108. Dang Y, Mu Y, Wang K, Xu K, Yang J, Zhu Y, et al. Papaverine inhibits lipopolysaccharide-induced microglial activation by suppressing NF-κB signaling pathway. Drug Des Devel Ther. 2016;10:851-9 pubmed 出版商
  109. Acharya M, Sokolovska A, Tam J, Conway K, Stefani C, Raso F, et al. αv Integrins combine with LC3 and atg5 to regulate Toll-like receptor signalling in B cells. Nat Commun. 2016;7:10917 pubmed 出版商
  110. Barroso González J, Auclair S, Luan S, Thomas L, Atkins K, Aslan J, et al. PACS-2 mediates the ATM and NF-κB-dependent induction of anti-apoptotic Bcl-xL in response to DNA damage. Cell Death Differ. 2016;23:1448-57 pubmed 出版商
  111. Liu Z, Gan L, Chen Y, Luo D, Zhang Z, Cao W, et al. Mark4 promotes oxidative stress and inflammation via binding to PPARγ and activating NF-κB pathway in mice adipocytes. Sci Rep. 2016;6:21382 pubmed 出版商
  112. Pedersen S, Chan W, Jattani R, Mackie d, Pomerantz J. Negative Regulation of CARD11 Signaling and Lymphoma Cell Survival by the E3 Ubiquitin Ligase RNF181. Mol Cell Biol. 2015;36:794-808 pubmed 出版商
  113. Zhou Q, Wang H, Schwartz D, Stoffels M, Park Y, Zhang Y, et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat Genet. 2016;48:67-73 pubmed 出版商
  114. Varney M, Niederkorn M, Konno H, Matsumura T, Gohda J, Yoshida N, et al. Loss of Tifab, a del(5q) MDS gene, alters hematopoiesis through derepression of Toll-like receptor-TRAF6 signaling. J Exp Med. 2015;212:1967-85 pubmed 出版商
  115. Suzuki M, Watanabe M, Nakamaru Y, Takagi D, Takahashi H, Fukuda S, et al. TRIM39 negatively regulates the NFκB-mediated signaling pathway through stabilization of Cactin. Cell Mol Life Sci. 2016;73:1085-101 pubmed 出版商
  116. Ying L, Chunxia Y, Wei L. Inhibition of ovarian cancer cell growth by a novel TAK1 inhibitor LYTAK1. Cancer Chemother Pharmacol. 2015;76:641-50 pubmed 出版商
  117. Chen I, Hsu P, Hsu W, Chen N, Tseng P. Polyubiquitination of Transforming Growth Factor β-activated Kinase 1 (TAK1) at Lysine 562 Residue Regulates TLR4-mediated JNK and p38 MAPK Activation. Sci Rep. 2015;5:12300 pubmed 出版商
  118. Pulvino M, Chen L, Oleksyn D, Li J, Compitello G, Rossi R, et al. Inhibition of COP9-signalosome (CSN) deneddylating activity and tumor growth of diffuse large B-cell lymphomas by doxycycline. Oncotarget. 2015;6:14796-813 pubmed
  119. Hwang B, McCool K, Wan J, Wuerzberger Davis S, Young E, Choi E, et al. IPO3-mediated Nonclassical Nuclear Import of NF-κB Essential Modulator (NEMO) Drives DNA Damage-dependent NF-κB Activation. J Biol Chem. 2015;290:17967-84 pubmed 出版商
  120. Boisson B, Laplantine E, Dobbs K, Cobat A, Tarantino N, Hazen M, et al. Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia. J Exp Med. 2015;212:939-51 pubmed 出版商
  121. Sahu G, Farley K, El Hage N, Aiamkitsumrit B, Fassnacht R, Kashanchi F, et al. Cocaine promotes both initiation and elongation phase of HIV-1 transcription by activating NF-κB and MSK1 and inducing selective epigenetic modifications at HIV-1 LTR. Virology. 2015;483:185-202 pubmed 出版商
  122. Yang L, Zhang S, George S, Teng R, You X, Xu M, et al. Targeting Notch1 and proteasome as an effective strategy to suppress T-cell lymphoproliferative neoplasms. Oncotarget. 2015;6:14953-69 pubmed
  123. Wang W, Huang X, Xin H, Fu M, Xue A, Wu Z. TRAF Family Member-associated NF-κB Activator (TANK) Inhibits Genotoxic Nuclear Factor κB Activation by Facilitating Deubiquitinase USP10-dependent Deubiquitination of TRAF6 Ligase. J Biol Chem. 2015;290:13372-85 pubmed 出版商
  124. Dong T, Li C, Wang X, Dian L, Zhang X, Li L, et al. Ainsliadimer A selectively inhibits IKKα/β by covalently binding a conserved cysteine. Nat Commun. 2015;6:6522 pubmed 出版商
  125. Contreras T, Ricciardi E, Cremonini E, Oteiza P. (-)-Epicatechin in the prevention of tumor necrosis alpha-induced loss of Caco-2 cell barrier integrity. Arch Biochem Biophys. 2015;573:84-91 pubmed 出版商
  126. Pène V, Li Q, Sodroski C, Hsu C, Liang T. Dynamic Interaction of Stress Granules, DDX3X, and IKK-α Mediates Multiple Functions in Hepatitis C Virus Infection. J Virol. 2015;89:5462-77 pubmed 出版商
  127. Wu Z, Wang C, Bai M, Li X, Mei Q, Li X, et al. An LRP16-containing preassembly complex contributes to NF-κB activation induced by DNA double-strand breaks. Nucleic Acids Res. 2015;43:3167-79 pubmed 出版商
  128. Kim K, Kim N, Kim S, Kim I, Kim K, Lee G. Cyclo(Phe-Pro) produced by the human pathogen Vibrio vulnificus inhibits host innate immune responses through the NF-κB pathway. Infect Immun. 2015;83:1150-61 pubmed 出版商
  129. Nemes E, Kagina B, Smit E, Africa H, Steyn M, Hanekom W, et al. Differential leukocyte counting and immunophenotyping in cryopreserved ex vivo whole blood. Cytometry A. 2015;87:157-65 pubmed 出版商
  130. Cañeda Guzmán I, Salaiza Suazo N, Fernández Figueroa E, Carrada Figueroa G, Aguirre García M, Becker I. NK cell activity differs between patients with localized and diffuse cutaneous leishmaniasis infected with Leishmania mexicana: a comparative study of TLRs and cytokines. PLoS ONE. 2014;9:e112410 pubmed 出版商
  131. Makowski S, Wang Z, Pomerantz J. A protease-independent function for SPPL3 in NFAT activation. Mol Cell Biol. 2015;35:451-67 pubmed 出版商
  132. Zhuang C, Sheng C, Shin W, Wu Y, Li J, Yao J, et al. A novel drug discovery strategy: mechanistic investigation of an enantiomeric antitumor agent targeting dual p53 and NF-κB pathways. Oncotarget. 2014;5:10830-9 pubmed
  133. Wu N, Huang D, Tsou H, Lin Y, Lin W. Syk mediates IL-17-induced CCL20 expression by targeting Act1-dependent K63-linked ubiquitination of TRAF6. J Invest Dermatol. 2015;135:490-498 pubmed 出版商
  134. Zhao X, Zhu L, Chang Q, Jiang C, You Y, Luo T, et al. C-type lectin receptor dectin-3 mediates trehalose 6,6'-dimycolate (TDM)-induced Mincle expression through CARD9/Bcl10/MALT1-dependent nuclear factor (NF)-κB activation. J Biol Chem. 2014;289:30052-62 pubmed 出版商
  135. Nteeba J, Ganesan S, Keating A. Progressive obesity alters ovarian folliculogenesis with impacts on pro-inflammatory and steroidogenic signaling in female mice. Biol Reprod. 2014;91:86 pubmed 出版商
  136. Tang S, Chen T, Yu Z, Zhu X, Yang M, Xie B, et al. RasGRP3 limits Toll-like receptor-triggered inflammatory response in macrophages by activating Rap1 small GTPase. Nat Commun. 2014;5:4657 pubmed 出版商
  137. Watanabe T, Nakamura S, Ono T, Ui S, Yagi S, Kagawa H, et al. Pyrrolidinium fullerene induces apoptosis by activation of procaspase-9 via suppression of Akt in primary effusion lymphoma. Biochem Biophys Res Commun. 2014;451:93-100 pubmed 出版商
  138. Stodden G, Lindberg M, King M, Paquet M, MacLean J, Mann J, et al. Loss of Cdh1 and Trp53 in the uterus induces chronic inflammation with modification of tumor microenvironment. Oncogene. 2015;34:2471-82 pubmed 出版商
  139. König H, Coughlan K, Kinsella S, Breen B, Prehn J. The BCL-2 family protein Bid is critical for pro-inflammatory signaling in astrocytes. Neurobiol Dis. 2014;70:99-107 pubmed 出版商
  140. Qian H, Shi J, Fan T, Lv J, Chen S, Song C, et al. Sophocarpine attenuates liver fibrosis by inhibiting the TLR4 signaling pathway in rats. World J Gastroenterol. 2014;20:1822-32 pubmed 出版商
  141. Cheng J, Fan Y, Xu X, Dou J, Tang Y, Zhong X, et al. A small-molecule inhibitor of UBE2N induces neuroblastoma cell death via activation of p53 and JNK pathways. Cell Death Dis. 2014;5:e1079 pubmed 出版商
  142. Olesen J, Gliemann L, Biensø R, Schmidt J, Hellsten Y, Pilegaard H. Exercise training, but not resveratrol, improves metabolic and inflammatory status in skeletal muscle of aged men. J Physiol. 2014;592:1873-86 pubmed 出版商
  143. Piao H, Yuan Y, Wang M, Sun Y, Liang H, Ma L. ?-catenin acts as a tumour suppressor in E-cadherin-negative basal-like breast cancer by inhibiting NF-?B signalling. Nat Cell Biol. 2014;16:245-54 pubmed 出版商
  144. Zhang Q, Pan Y, Wang R, Kang L, Xue Q, Wang X, et al. Quercetin inhibits AMPK/TXNIP activation and reduces inflammatory lesions to improve insulin signaling defect in the hypothalamus of high fructose-fed rats. J Nutr Biochem. 2014;25:420-8 pubmed 出版商
  145. Bhaskar K, Maphis N, Xu G, Varvel N, Kokiko Cochran O, Weick J, et al. Microglial derived tumor necrosis factor-? drives Alzheimer's disease-related neuronal cell cycle events. Neurobiol Dis. 2014;62:273-85 pubmed 出版商
  146. Aoshiba K, Tsuji T, Kameyama S, Itoh M, Semba S, Yamaguchi K, et al. Senescence-associated secretory phenotype in a mouse model of bleomycin-induced lung injury. Exp Toxicol Pathol. 2013;65:1053-62 pubmed 出版商
  147. Liu Y, Hawkins O, Su Y, Vilgelm A, Sobolik T, Thu Y, et al. Targeting aurora kinases limits tumour growth through DNA damage-mediated senescence and blockade of NF-?B impairs this drug-induced senescence. EMBO Mol Med. 2013;5:149-66 pubmed 出版商
  148. Chan W, Schaffer T, Pomerantz J. A quantitative signaling screen identifies CARD11 mutations in the CARD and LATCH domains that induce Bcl10 ubiquitination and human lymphoma cell survival. Mol Cell Biol. 2013;33:429-43 pubmed 出版商
  149. Journo C, Bonnet A, Favre Bonvin A, Turpin J, Vinera J, C t E, et al. Human T cell leukemia virus type 2 tax-mediated NF-?B activation involves a mechanism independent of Tax conjugation to ubiquitin and SUMO. J Virol. 2013;87:1123-36 pubmed 出版商
  150. Lau R, Niu M, Pratt M. cIAP2 represses IKK?/?-mediated activation of MDM2 to prevent p53 degradation. Cell Cycle. 2012;11:4009-19 pubmed 出版商
  151. Lecat A, Di Valentin E, Somja J, Jourdan S, Fillet M, Kufer T, et al. The c-Jun N-terminal kinase (JNK)-binding protein (JNKBP1) acts as a negative regulator of NOD2 protein signaling by inhibiting its oligomerization process. J Biol Chem. 2012;287:29213-26 pubmed 出版商
  152. Castoldi A, Braga T, Correa Costa M, Aguiar C, Bassi E, Correa Silva R, et al. TLR2, TLR4 and the MYD88 signaling pathway are crucial for neutrophil migration in acute kidney injury induced by sepsis. PLoS ONE. 2012;7:e37584 pubmed 出版商
  153. Wan F, Weaver A, Gao X, Bern M, Hardwidge P, Lenardo M. IKK? phosphorylation regulates RPS3 nuclear translocation and NF-?B function during infection with Escherichia coli strain O157:H7. Nat Immunol. 2011;12:335-43 pubmed 出版商