这是一篇来自已证抗体库的有关人类 IL-17 (IL-17) 的综述,是根据189篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合IL-17 抗体。
IL-17 同义词: CTLA-8; CTLA8; IL-17; IL-17A; IL17

赛默飞世尔
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类
赛默飞世尔IL-17抗体(eBioscience, 11-7179-42)被用于被用于流式细胞仪在人类样本上. J Immunother Cancer (2022) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类; 1:100; 图 9a
赛默飞世尔IL-17抗体(eBioscience, 12-7179-42)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 9a). Nat Commun (2021) ncbi
小鼠 单克隆(eBio64CAP17)
  • 流式细胞仪; 小鼠
赛默飞世尔IL-17抗体(eBiosciences, eBio64CAP17)被用于被用于流式细胞仪在小鼠样本上. Aging Cell (2021) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类; 1:20; 图 s11
赛默飞世尔IL-17抗体(eBioscience, eBio64-DEC17)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 s11). Science (2021) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类; 图 6e
赛默飞世尔IL-17抗体(eBioscience, eBio64DEC17)被用于被用于流式细胞仪在人类样本上 (图 6e). Sci Adv (2020) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类; 图 s3a
赛默飞世尔IL-17抗体(Thermo Fisher, 12-7179-42)被用于被用于流式细胞仪在人类样本上 (图 s3a). Cell (2020) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类; 图 2j
赛默飞世尔IL-17抗体(eBioscience, eBio64DEC17)被用于被用于流式细胞仪在人类样本上 (图 2j). Nat Immunol (2019) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类; 图 s3c
赛默飞世尔IL-17抗体(eBiosciences, eBio64DEC17)被用于被用于流式细胞仪在人类样本上 (图 s3c). Int J Hematol (2018) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 犬; 图 5b
赛默飞世尔IL-17抗体(eBioscience, eBio64DEC17)被用于被用于流式细胞仪在犬样本上 (图 5b). Front Immunol (2018) ncbi
小鼠 单克隆(eBio64CAP17)
  • 流式细胞仪; 人类; 图 3b
赛默飞世尔IL-17抗体(Thermo Fisher Scientific, 12-7178-41)被用于被用于流式细胞仪在人类样本上 (图 3b). J Clin Invest (2018) ncbi
小鼠 单克隆(eBio64CAP17)
  • 流式细胞仪; 人类; 图 s4c
赛默飞世尔IL-17抗体(eBioscience, eBio64CAP17)被用于被用于流式细胞仪在人类样本上 (图 s4c). J Clin Invest (2018) ncbi
小鼠 单克隆(eBio64CAP17)
  • 流式细胞仪; 人类; 1:100; 图 5h
赛默飞世尔IL-17抗体(eBioscience, eBio64CAP17)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 5h). Nat Commun (2018) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类
赛默飞世尔IL-17抗体(eBioscience, 11-7179)被用于被用于流式细胞仪在人类样本上. J Immunol (2017) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 家羊; 图 4b
  • 流式细胞仪; 牛; 图 4b
赛默飞世尔IL-17抗体(eBiosciences, 12-7179-41)被用于被用于流式细胞仪在家羊样本上 (图 4b) 和 被用于流式细胞仪在牛样本上 (图 4b). Vet Res (2017) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类; 图 4b
赛默飞世尔IL-17抗体(eBioscience, eBio64DEC17)被用于被用于流式细胞仪在人类样本上 (图 4b). J Immunol (2017) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类; 图 4a
赛默飞世尔IL-17抗体(eBiosciences, eBio64-DEC17)被用于被用于流式细胞仪在人类样本上 (图 4a). J Immunol (2017) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类; 图 6a
赛默飞世尔IL-17抗体(eBioscience, eBio64DEC17)被用于被用于流式细胞仪在人类样本上 (图 6a). Immunity (2017) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类; 图 5a
赛默飞世尔IL-17抗体(Ebiosciences, eBio64DEC17)被用于被用于流式细胞仪在人类样本上 (图 5a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类; 图 4c
赛默飞世尔IL-17抗体(eBioscience, 17-7179-42)被用于被用于流式细胞仪在人类样本上 (图 4c). Front Immunol (2016) ncbi
小鼠 单克隆(eBio64CAP17)
  • 流式细胞仪; 猕猴; 图 6c
赛默飞世尔IL-17抗体(eBioscience, 12-7178-41)被用于被用于流式细胞仪在猕猴样本上 (图 6c). Transplantation (2016) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔IL-17抗体(eBioscience, eBio64DEC17)被用于被用于流式细胞仪在人类样本上 (图 2). PLoS Pathog (2016) ncbi
小鼠 单克隆(eBio64CAP17)
  • 酶联免疫吸附测定; 人类; 图 1
赛默飞世尔IL-17抗体(eBiosciences, eBio64CAP17)被用于被用于酶联免疫吸附测定在人类样本上 (图 1). Arthritis Res Ther (2016) ncbi
小鼠 单克隆(eBio64DEC17)
  • 酶联免疫吸附测定; 人类; 图 1
赛默飞世尔IL-17抗体(eBiosciences, eBio64DEC17)被用于被用于酶联免疫吸附测定在人类样本上 (图 1). Arthritis Res Ther (2016) ncbi
小鼠 单克隆(eBio64DEC17)
赛默飞世尔IL-17抗体(eBioscience, 25-7179-42)被用于. Nat Med (2016) ncbi
小鼠 单克隆(eBio64CAP17)
  • 流式细胞仪; African green monkey; 图 1e
赛默飞世尔IL-17抗体(eBioscience, eBio64CAP17)被用于被用于流式细胞仪在African green monkey样本上 (图 1e). J Med Primatol (2016) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类; 图 2e
赛默飞世尔IL-17抗体(eBiosciences, eBio64DEC17)被用于被用于流式细胞仪在人类样本上 (图 2e). JCI Insight (2016) ncbi
小鼠 单克隆(eBio64CAP17)
  • 流式细胞仪; 人类; 1:100; 图 2b
赛默飞世尔IL-17抗体(eBiosciences, 12-7178)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2b). Mol Med Rep (2016) ncbi
小鼠 单克隆(eBio64CAP17)
  • 流式细胞仪; 猕猴; 图 1b
赛默飞世尔IL-17抗体(eBiosciences, eBio64CAP17)被用于被用于流式细胞仪在猕猴样本上 (图 1b). J Immunol (2016) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类; 图 5f
赛默飞世尔IL-17抗体(eBiosciences, eBio64DEC17)被用于被用于流式细胞仪在人类样本上 (图 5f). J Leukoc Biol (2016) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类; 1:10; 表 2
赛默飞世尔IL-17抗体(eBioscience, eBio64DEC17b)被用于被用于流式细胞仪在人类样本上浓度为1:10 (表 2). Vet Parasitol (2016) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类; 图 3f
赛默飞世尔IL-17抗体(eBiosciences, eBio64DEC17)被用于被用于流式细胞仪在人类样本上 (图 3f). PLoS ONE (2016) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔IL-17抗体(eBioscience, 17-7179-42)被用于被用于流式细胞仪在人类样本上 (图 3). Mediators Inflamm (2015) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类; 图 7
赛默飞世尔IL-17抗体(eBioscience, 64DEC17)被用于被用于流式细胞仪在人类样本上 (图 7). Retrovirology (2015) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类; 图 7
赛默飞世尔IL-17抗体(eBioscience, eBio64DEC17)被用于被用于流式细胞仪在人类样本上 (图 7). Haematologica (2016) ncbi
小鼠 单克隆(eBio64CAP17)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔IL-17抗体(eBioscience, 14-7178-85)被用于被用于流式细胞仪在人类样本上 (图 2). Allergy (2016) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔IL-17抗体(eBioscience, 53-7179)被用于被用于流式细胞仪在人类样本上 (图 3). Allergy (2016) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔IL-17抗体(eBioscience, 12-7179)被用于被用于流式细胞仪在人类样本上 (图 1). Stem Cell Reports (2015) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类; 图 3b
赛默飞世尔IL-17抗体(eBioscience, eBio64DEC17)被用于被用于流式细胞仪在人类样本上 (图 3b). Kidney Int (2015) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类
赛默飞世尔IL-17抗体(eBioscience, clone eBio64DEC17)被用于被用于流式细胞仪在人类样本上. Clin Vaccine Immunol (2015) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类
赛默飞世尔IL-17抗体(Ebioscience, eBio64DEC17)被用于被用于流式细胞仪在人类样本上. Clin Immunol (2015) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类
赛默飞世尔IL-17抗体(eBioscience, 17-7179-42)被用于被用于流式细胞仪在人类样本上. Scand J Immunol (2015) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类; 表 s5
赛默飞世尔IL-17抗体(eBioscience, 64DEC17)被用于被用于流式细胞仪在人类样本上 (表 s5). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类
赛默飞世尔IL-17抗体(eBioscience, . 53-7179-41)被用于被用于流式细胞仪在人类样本上. Curr Protoc Cytom (2015) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类
赛默飞世尔IL-17抗体(eBioscience, eBio64DEC17)被用于被用于流式细胞仪在人类样本上. Immun Inflamm Dis (2014) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类
赛默飞世尔IL-17抗体(eBioscience, eBio64DEC17)被用于被用于流式细胞仪在人类样本上. J Allergy Clin Immunol (2015) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类
赛默飞世尔IL-17抗体(eBioscience, eBio64DEC17)被用于被用于流式细胞仪在人类样本上. Chest (2015) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类
赛默飞世尔IL-17抗体(eBioscience, eBio64DEC17)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(eBio64CAP17)
  • 流式细胞仪; 人类
赛默飞世尔IL-17抗体(eBioscience, EBIO64CAP17)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(eBio64DEC17)
  • 酶联免疫吸附测定; 人类; 1:1000
赛默飞世尔IL-17抗体(eBioscience, eBio64dec17)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:1000. Nat Commun (2014) ncbi
小鼠 单克隆(eBio64CAP17)
  • 酶联免疫吸附测定; 人类; 1:1000
赛默飞世尔IL-17抗体(eBioscience, eBio64cap17)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:1000. Nat Commun (2014) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类
赛默飞世尔IL-17抗体(eBioscience, eBio64DEC17)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(eBio64CAP17)
  • 流式细胞仪; 人类
赛默飞世尔IL-17抗体(eBioscience, eBio64CAP17)被用于被用于流式细胞仪在人类样本上. Vaccine (2014) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔IL-17抗体(eBioscience, eBio64dec17)被用于被用于流式细胞仪在人类样本上 (图 1). Immunology (2015) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类
赛默飞世尔IL-17抗体(eBioscience, eBio64DEC17)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类
赛默飞世尔IL-17抗体(eBioscience, ebio64Dec17)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类
赛默飞世尔IL-17抗体(eBioscience, eBio64DEC17)被用于被用于流式细胞仪在人类样本上. J Cell Physiol (2014) ncbi
小鼠 单克隆(eBio64CAP17)
  • 流式细胞仪; 人类; 图 1d
赛默飞世尔IL-17抗体(eBiosciences, eBio64CAP17)被用于被用于流式细胞仪在人类样本上 (图 1d). J Infect Dis (2014) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔IL-17抗体(eBioscience, eBio64DEC17)被用于被用于流式细胞仪在人类样本上 (图 2). Ann Rheum Dis (2014) ncbi
小鼠 单克隆(eBio64CAP17)
  • 流式细胞仪; African green monkey; 图 s1c
赛默飞世尔IL-17抗体(eBioscience, eBio64CAP17)被用于被用于流式细胞仪在African green monkey样本上 (图 s1c). J Immunol (2013) ncbi
小鼠 单克隆(eBio64CAP17)
  • 流式细胞仪; 人类
赛默飞世尔IL-17抗体(eBioscience, eBIO64CAP17)被用于被用于流式细胞仪在人类样本上. Tuberculosis (Edinb) (2013) ncbi
小鼠 单克隆(eBio64CAP17)
  • 流式细胞仪; 人类; 1:50; 图 1
赛默飞世尔IL-17抗体(eBioscience, eBio64CAP17)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1). PLoS ONE (2012) ncbi
小鼠 单克隆(eBio64CAP17)
  • 流式细胞仪; 猕猴
  • 免疫组化; 猕猴
赛默飞世尔IL-17抗体(eBioscience, eBio64CAP17)被用于被用于流式细胞仪在猕猴样本上 和 被用于免疫组化在猕猴样本上. Mucosal Immunol (2012) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔IL-17抗体(eBioscience, eBio64DEC17)被用于被用于流式细胞仪在人类样本上 (图 3). Immunology (2010) ncbi
小鼠 单克隆(eBio64CAP17)
  • 流式细胞仪; 人类
赛默飞世尔IL-17抗体(eBioscience, 64CAP17)被用于被用于流式细胞仪在人类样本上. Arthritis Rheum (2010) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔IL-17抗体(eBioscience, eBio64DEC17)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2009) ncbi
小鼠 单克隆(eBio64CAP17)
  • 流式细胞仪; 人类; 图 4a
赛默飞世尔IL-17抗体(eBioscience, 6CAP17)被用于被用于流式细胞仪在人类样本上 (图 4a). Blood (2008) ncbi
小鼠 单克隆(eBio64DEC17)
  • 流式细胞仪; 人类; 图 1A
赛默飞世尔IL-17抗体(e-Bioscience, eBio64DEC17)被用于被用于流式细胞仪在人类样本上 (图 1A). Ann Rheum Dis (2008) ncbi
BioLegend
小鼠 单克隆(BL168)
  • mass cytometry; 人类; 图 3a, 3b
BioLegendIL-17抗体(Biolegend, BL168)被用于被用于mass cytometry在人类样本上 (图 3a, 3b). Mol Cell Proteomics (2022) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 图 4i
BioLegendIL-17抗体(Biolegend, BL168)被用于被用于流式细胞仪在人类样本上 (图 4i). PLoS ONE (2022) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 图 1e
BioLegendIL-17抗体(BioLegend, 512306)被用于被用于流式细胞仪在人类样本上 (图 1e). Mol Ther Nucleic Acids (2022) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 图 6d
BioLegendIL-17抗体(Biolegend, 512306)被用于被用于流式细胞仪在人类样本上 (图 6d). Nat Commun (2022) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 图 2d
BioLegendIL-17抗体(Biolegend, BL168)被用于被用于流式细胞仪在人类样本上 (图 2d). Acta Neuropathol (2021) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类
BioLegendIL-17抗体(BioLegend, 512336)被用于被用于流式细胞仪在人类样本上. Cell (2021) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 图 2a
BioLegendIL-17抗体(Biolegend, BL168)被用于被用于流式细胞仪在人类样本上 (图 2a). Arthritis Res Ther (2020) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 1:100; 图 7b
BioLegendIL-17抗体(Biolegend, 512334)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 7b). elife (2019) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 图 7e
BioLegendIL-17抗体(BioLegend, 512308)被用于被用于流式细胞仪在人类样本上 (图 7e). Cell (2019) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 1:20; 图 s6
BioLegendIL-17抗体(Biolegend, 512326)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 s6). Science (2019) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 图 3b
BioLegendIL-17抗体(BioLegend, BL168)被用于被用于流式细胞仪在人类样本上 (图 3b). Infect Immun (2019) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 1:50; 图 s10c
BioLegendIL-17抗体(Biolegend, BL168)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s10c). Nature (2019) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 图 7b
BioLegendIL-17抗体(Biolegend, BL168)被用于被用于流式细胞仪在人类样本上 (图 7b). Front Pharmacol (2019) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 图 3a
BioLegendIL-17抗体(BioLegend, BL168)被用于被用于流式细胞仪在人类样本上 (图 3a). Front Immunol (2018) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 猕猴; 图 1a
BioLegendIL-17抗体(BioLegend, 512307)被用于被用于流式细胞仪在猕猴样本上 (图 1a). Cell (2018) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 图 s1a
BioLegendIL-17抗体(biolegend, BL168)被用于被用于流式细胞仪在人类样本上 (图 s1a). J Immunol (2017) ncbi
小鼠 单克隆(BL168)
  • mass cytometry; 人类; 图 2a
BioLegendIL-17抗体(BioLegend, BL168)被用于被用于mass cytometry在人类样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 图 1a
BioLegendIL-17抗体(BioLegend, BL168)被用于被用于流式细胞仪在人类样本上 (图 1a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 图 3d
BioLegendIL-17抗体(BioLegend, 512304)被用于被用于流式细胞仪在人类样本上 (图 3d). J Clin Invest (2017) ncbi
小鼠 单克隆(BL168)
  • 免疫组化-石蜡切片; 人类; 图 7
  • 流式细胞仪; 人类; 图 4a
BioLegendIL-17抗体(BioLegend, BL168)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7) 和 被用于流式细胞仪在人类样本上 (图 4a). PLoS ONE (2017) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 图 5a
BioLegendIL-17抗体(BioLegend, BL168)被用于被用于流式细胞仪在人类样本上 (图 5a). J Immunol (2016) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 表 1
BioLegendIL-17抗体(Biolegend, BL168)被用于被用于流式细胞仪在人类样本上 (表 1). Cytometry A (2017) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 图 3a
BioLegendIL-17抗体(BioLegend, BL168)被用于被用于流式细胞仪在人类样本上 (图 3a). Int J Cancer (2017) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 图 6a
BioLegendIL-17抗体(Biolegend, BL168)被用于被用于流式细胞仪在人类样本上 (图 6a). Clin Immunol (2016) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 图 s1c
BioLegendIL-17抗体(Biolegend, BL168)被用于被用于流式细胞仪在人类样本上 (图 s1c). Eur J Immunol (2016) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 图 3a
BioLegendIL-17抗体(biolegend, BL168)被用于被用于流式细胞仪在人类样本上 (图 3a). J Immunol (2016) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 图 2a
BioLegendIL-17抗体(Biolegend, BL168)被用于被用于流式细胞仪在人类样本上 (图 2a). PLoS Pathog (2016) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; African green monkey; 图 1
BioLegendIL-17抗体(Biolegend, BL168)被用于被用于流式细胞仪在African green monkey样本上 (图 1). J Immunol (2016) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 图 4c
BioLegendIL-17抗体(BioLegend, BL168)被用于被用于流式细胞仪在人类样本上 (图 4c). PLoS ONE (2015) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 图 s2a
BioLegendIL-17抗体(Biolegend, BL168)被用于被用于流式细胞仪在人类样本上 (图 s2a). J Immunol (2015) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 图 6i
BioLegendIL-17抗体(BioLegend, BL168)被用于被用于流式细胞仪在人类样本上 (图 6i). J Allergy Clin Immunol (2016) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类
BioLegendIL-17抗体(Biolegend, BL168)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2015) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 1:200; 图 6
BioLegendIL-17抗体(Biolegend, BL168;)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 6). Nat Commun (2015) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类
BioLegendIL-17抗体(BioLegend, 512305)被用于被用于流式细胞仪在人类样本上. J Clin Immunol (2015) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类
BioLegendIL-17抗体(Biolegend, Clone BL168)被用于被用于流式细胞仪在人类样本上. Int J Infect Dis (2015) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 2 ul/test
BioLegendIL-17抗体(Biolegend, BL168)被用于被用于流式细胞仪在人类样本上浓度为2 ul/test. J Immunol Methods (2015) ncbi
小鼠 单克隆(BL23)
  • dot blot; 人类; 表 s1
BioLegendIL-17抗体(Biolegend, 512702)被用于被用于dot blot在人类样本上 (表 s1). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 图 1
BioLegendIL-17抗体(BioLegend, BL168)被用于被用于流式细胞仪在人类样本上 (图 1). J Autoimmun (2015) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 图 4
BioLegendIL-17抗体(Biolegend, BL168)被用于被用于流式细胞仪在人类样本上 (图 4). Nat Immunol (2015) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类
BioLegendIL-17抗体(Biolegend, BL168)被用于被用于流式细胞仪在人类样本上. Nat Immunol (2015) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 1:20
BioLegendIL-17抗体(BioLegend, BL168)被用于被用于流式细胞仪在人类样本上浓度为1:20. Nat Med (2014) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类
BioLegendIL-17抗体(Biolegend, BL168)被用于被用于流式细胞仪在人类样本上. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 图 2
BioLegendIL-17抗体(Biolegend, BL168)被用于被用于流式细胞仪在人类样本上 (图 2). J Infect Dis (2015) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 小鼠; 1:50
BioLegendIL-17抗体(BioLegend, BL168)被用于被用于流式细胞仪在小鼠样本上浓度为1:50. Nat Commun (2014) ncbi
小鼠 单克隆(BL168)
  • 流式细胞仪; 人类; 图 5a
BioLegendIL-17抗体(Biolegend, BL168)被用于被用于流式细胞仪在人类样本上 (图 5a). J Invest Dermatol (2015) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2a
艾博抗(上海)贸易有限公司IL-17抗体(Abcam, ab79056)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 2a). Exp Ther Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2b
艾博抗(上海)贸易有限公司IL-17抗体(Abcam, ab91649)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2b). Mediators Inflamm (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 2f
  • 免疫组化; 人类; 1:400; 图 1c
艾博抗(上海)贸易有限公司IL-17抗体(Abcam, ab79056)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 2f) 和 被用于免疫组化在人类样本上浓度为1:400 (图 1c). Cells (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 2h
艾博抗(上海)贸易有限公司IL-17抗体(Abcam, ab79056)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 2h). J Am Heart Assoc (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1.5 ug/ml; 图 6a, 6b
艾博抗(上海)贸易有限公司IL-17抗体(Abcam, ab79056)被用于被用于免疫印迹在小鼠样本上浓度为1.5 ug/ml (图 6a, 6b). BMC Nephrol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 图 2b
艾博抗(上海)贸易有限公司IL-17抗体(Abcam, ab79056)被用于被用于免疫组化-冰冻切片在人类样本上 (图 2b). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4
艾博抗(上海)贸易有限公司IL-17抗体(Abcam, ab79056)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Arthritis Res Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1
艾博抗(上海)贸易有限公司IL-17抗体(Abcam, ab79056)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Oncotarget (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(G-4)
  • 免疫印迹; 小鼠; 图 2a
圣克鲁斯生物技术IL-17抗体(Santa Cruz, sc-374218)被用于被用于免疫印迹在小鼠样本上 (图 2a). Int J Mol Sci (2021) ncbi
小鼠 单克隆(G-4)
  • 免疫组化-石蜡切片; 小鼠; 图 2d
圣克鲁斯生物技术IL-17抗体(Santa Cruz, sc-374218)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2d). Theranostics (2021) ncbi
小鼠 单克隆(G-4)
  • 免疫印迹; 大鼠; 图 5
圣克鲁斯生物技术IL-17抗体(Santa Cruz, sc-374218)被用于被用于免疫印迹在大鼠样本上 (图 5). Mol Med Rep (2016) ncbi
安迪生物R&D
小鼠 单克隆(41802)
  • 流式细胞仪; 人类; 图 2c
安迪生物R&DIL-17抗体(Biotechne, 41802)被用于被用于流式细胞仪在人类样本上 (图 2c). Arthritis Res Ther (2021) ncbi
MABTECH
小鼠 单克隆(MT44.6)
  • 流式细胞仪; 牛; 图 4c
  • 流式细胞仪; 家羊; 图 4c
MABTECHIL-17抗体(Mabtech, 3520-3-250)被用于被用于流式细胞仪在牛样本上 (图 4c) 和 被用于流式细胞仪在家羊样本上 (图 4c). Vet Res (2017) ncbi
小鼠 单克隆(MT504)
  • 流式细胞仪; 牛; 图 4c
  • 流式细胞仪; 家羊; 图 4c
MABTECHIL-17抗体(Mabtech, 3520-6-250)被用于被用于流式细胞仪在牛样本上 (图 4c) 和 被用于流式细胞仪在家羊样本上 (图 4c). Vet Res (2017) ncbi
小鼠 单克隆(MT241)
  • 流式细胞仪; 家羊; 图 4c
  • 流式细胞仪; 牛; 图 4c
MABTECHIL-17抗体(Mabtech, 3520M-3-250)被用于被用于流式细胞仪在家羊样本上 (图 4c) 和 被用于流式细胞仪在牛样本上 (图 4c). Vet Res (2017) ncbi
武汉博士德生物工程有限公司
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 4e
  • 免疫细胞化学; 人类; 1:250; 图 1e
  • 免疫印迹; 人类; 1:1000; 图 1b
武汉博士德生物工程有限公司IL-17抗体(BOSTER, A00421-2)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 4e), 被用于免疫细胞化学在人类样本上浓度为1:250 (图 1e) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Allergy Asthma Immunol Res (2022) ncbi
碧迪BD
单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 1:200; 图 5b, 5d, s5a
碧迪BDIL-17抗体(BD Biosciences, TC11-18H10)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5b, 5d, s5a). Nat Commun (2021) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BDIL-17抗体(BD Biosciences, 560522)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Mucosal Immunol (2021) ncbi
单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 图 5f
碧迪BDIL-17抗体(BD, TC11-18H10)被用于被用于流式细胞仪在小鼠样本上 (图 5f). Front Immunol (2021) ncbi
单克隆(TC11-18H10)
  • 酶联免疫吸附测定; 小鼠; 图 5
碧迪BDIL-17抗体(BD Pharmingen, TC11-18H10)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 5). Arthritis Res Ther (2021) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 图 2a, 3b
碧迪BDIL-17抗体(BD Biosciences, TC11-18H10)被用于被用于流式细胞仪在小鼠样本上 (图 2a, 3b). Front Immunol (2021) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 图 s4b
碧迪BDIL-17抗体(BD Biosciences, 559502)被用于被用于流式细胞仪在小鼠样本上 (图 s4b). JCI Insight (2021) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 1:100; 图 s2-1a
碧迪BDIL-17抗体(BD Biosciences, 559502)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2-1a). elife (2021) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 1:100; 图 3c
碧迪BDIL-17抗体(BD Biosciences, 559502)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3c). elife (2020) ncbi
单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 图 1g
碧迪BDIL-17抗体(BD, TC11-18H10)被用于被用于流式细胞仪在小鼠样本上 (图 1g). Sci Immunol (2020) ncbi
单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 图 3c
碧迪BDIL-17抗体(BD Pharmingen, TC11-18H10)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Aging Cell (2020) ncbi
单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 图 2c
碧迪BDIL-17抗体(BD, TC11-18H10)被用于被用于流式细胞仪在小鼠样本上 (图 2c). J Exp Med (2019) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 图 e7l
碧迪BDIL-17抗体(BD, 56022)被用于被用于流式细胞仪在小鼠样本上 (图 e7l). Nature (2019) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 图 s3e
碧迪BDIL-17抗体(BD, 559502)被用于被用于流式细胞仪在小鼠样本上 (图 s3e). Cell (2018) ncbi
单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 图 1e
碧迪BDIL-17抗体(BD Pharmingen, TC11-18H10)被用于被用于流式细胞仪在小鼠样本上 (图 1e). J Immunol Res (2018) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 图 2c
碧迪BDIL-17抗体(BD Biosciences, TC11-18H10)被用于被用于流式细胞仪在小鼠样本上 (图 2c). J Immunol (2017) ncbi
小鼠 单克隆(N49-653)
  • 流式细胞仪; 人类; 图 1
碧迪BDIL-17抗体(BD Biosciences, 560486)被用于被用于流式细胞仪在人类样本上 (图 1). Exp Ther Med (2017) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 图 s3c
碧迪BDIL-17抗体(BD Pharmingen, TC11-18H10)被用于被用于流式细胞仪在小鼠样本上 (图 s3c). J Clin Invest (2017) ncbi
小鼠 单克隆(N49-653)
  • 流式细胞仪; 人类; 图 4a
碧迪BDIL-17抗体(BD Biosciences, N49-653)被用于被用于流式细胞仪在人类样本上 (图 4a). J Immunol (2017) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 图 8a
碧迪BDIL-17抗体(BD PharMingen, TC11-18H10)被用于被用于流式细胞仪在小鼠样本上 (图 8a). PLoS ONE (2017) ncbi
大鼠 单克隆(TC11-18H10)
  • 酶联免疫吸附测定; 小鼠; 图 3b
碧迪BDIL-17抗体(BD Biosciences, 555068)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 3b). Oncol Rep (2017) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 1:100; 图 s4a
碧迪BDIL-17抗体(BD Biosciences, TC11-18H10)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s4a). Nat Commun (2016) ncbi
小鼠 单克隆(N49-653)
  • 流式细胞仪; 人类; 图 1a
碧迪BDIL-17抗体(BD, N49-653)被用于被用于流式细胞仪在人类样本上 (图 1a). Tuberculosis (Edinb) (2016) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 图 7c
碧迪BDIL-17抗体(BD Biosciences, TC11-18H10)被用于被用于流式细胞仪在小鼠样本上 (图 7c). Immunology (2017) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 1:200
碧迪BDIL-17抗体(BD Bioscience, TC11-18H10)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 1:300; 图 4
碧迪BDIL-17抗体(BD Biosciences, 559502)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 4). Exp Ther Med (2016) ncbi
小鼠 单克隆(N49-653)
  • 流式细胞仪; 人类; 图 1c
碧迪BDIL-17抗体(BD Biosciences, N49-653)被用于被用于流式细胞仪在人类样本上 (图 1c). Oncotarget (2016) ncbi
小鼠 单克隆(N49-653)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BDIL-17抗体(BD Biosciences, N49.653)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BDIL-17抗体(BD Pharmingen, TC11-18H10)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Infect Immun (2016) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 图 3f
碧迪BDIL-17抗体(BD Biosciences, TC11-18H10)被用于被用于流式细胞仪在小鼠样本上 (图 3f). J Immunol (2016) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 图 5b
碧迪BDIL-17抗体(BD, TC11-18H10)被用于被用于流式细胞仪在小鼠样本上 (图 5b). J Exp Med (2016) ncbi
小鼠 单克隆(N49-653)
  • 流式细胞仪; 人类; 图 s1b
碧迪BDIL-17抗体(BD, N49-653)被用于被用于流式细胞仪在人类样本上 (图 s1b). J Immunol (2016) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠
碧迪BDIL-17抗体(BD Biosciences, TC11-18H10)被用于被用于流式细胞仪在小鼠样本上. J Neuroimmunol (2016) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 图 2
碧迪BDIL-17抗体(BD Bioscience, TC11-18H10)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Clin Invest (2016) ncbi
小鼠 单克隆(SCPL1362)
  • 流式细胞仪; 小鼠; 图 2
碧迪BDIL-17抗体(BD Pharmingen, 560438)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS Pathog (2016) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠
碧迪BDIL-17抗体(BD- Pharmingen, TC11-18H10)被用于被用于流式细胞仪在小鼠样本上. Science (2016) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 1:100
碧迪BDIL-17抗体(BD Biosciences, 559502)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2016) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 1:300; 图 2a
碧迪BDIL-17抗体(BD Biosciences, 559502)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 2a). Nat Immunol (2016) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 图 1, 2
碧迪BDIL-17抗体(BD Biosciences, TC11-18H10)被用于被用于流式细胞仪在小鼠样本上 (图 1, 2). J Allergy Clin Immunol (2016) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠
碧迪BDIL-17抗体(BD Biosciences, TC11-18H10.1)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
小鼠 单克隆(N49-653)
  • 流式细胞仪; 人类; 图 2b
碧迪BDIL-17抗体(BD Biosciences, N49-653)被用于被用于流式细胞仪在人类样本上 (图 2b). J Allergy Clin Immunol (2016) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 图 3
碧迪BDIL-17抗体(BD Biosciences, TC11-18H10)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Virol (2016) ncbi
小鼠 单克隆(SCPL1362)
  • 流式细胞仪; 人类; 图 2c
碧迪BDIL-17抗体(BD PharMingen, 560436)被用于被用于流式细胞仪在人类样本上 (图 2c). PLoS ONE (2015) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 图 5b
碧迪BDIL-17抗体(BD Pharmingen, TC11-18H10)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Nat Immunol (2015) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BDIL-17抗体(BD Biosciences, TC11-18H10)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Cancer Res (2015) ncbi
小鼠 单克隆(N49-653)
  • 流式细胞仪; 人类; 图 4
碧迪BDIL-17抗体(BD Biosciences, N49-653)被用于被用于流式细胞仪在人类样本上 (图 4). Mucosal Immunol (2016) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 图 s1
碧迪BDIL-17抗体(BD Biosciences, TC11-18H10)被用于被用于流式细胞仪在小鼠样本上 (图 s1). PLoS ONE (2015) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 大鼠; 图 5a
碧迪BDIL-17抗体(BD Biosciences, TC11-18H10)被用于被用于流式细胞仪在大鼠样本上 (图 5a). Brain Behav Immun (2015) ncbi
小鼠 单克隆(SCPL1362)
  • 流式细胞仪; 人类; 1:50; 图 1
碧迪BDIL-17抗体(BD, 560439)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1). Clin Vaccine Immunol (2015) ncbi
小鼠 单克隆(N49-653)
  • 流式细胞仪; 人类; 4:100; 图 3a
碧迪BDIL-17抗体(Becton Dickinson, N49-653)被用于被用于流式细胞仪在人类样本上浓度为4:100 (图 3a). Nat Commun (2015) ncbi
小鼠 单克隆(N49-653)
  • 流式细胞仪; 人类; 图 2b
碧迪BDIL-17抗体(BD Biosciences, N49-653)被用于被用于流式细胞仪在人类样本上 (图 2b). J Immunol (2015) ncbi
大鼠 单克隆(TC11-18H10)
  • 免疫印迹; 小鼠; 1:100; 图 5,6
碧迪BDIL-17抗体(BD Bioscience, 18H10)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 5,6). Nat Commun (2015) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 图 s5
碧迪BDIL-17抗体(BD Biosciences, TC11-18H10)被用于被用于流式细胞仪在小鼠样本上 (图 s5). J Clin Invest (2015) ncbi
小鼠 单克隆(SCPL1362)
  • 流式细胞仪; 人类; 图 4
碧迪BDIL-17抗体(BD Pharmingen, SCPL1362)被用于被用于流式细胞仪在人类样本上 (图 4). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(N49-653)
  • 流式细胞仪; 人类; 图 1d
碧迪BDIL-17抗体(BD Bioscience, 560799)被用于被用于流式细胞仪在人类样本上 (图 1d). Immunol Res (2015) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠
碧迪BDIL-17抗体(BD, TC11-18H10)被用于被用于流式细胞仪在小鼠样本上. Nature (2015) ncbi
小鼠 单克隆(SCPL1362)
  • 流式细胞仪; pigs
碧迪BDIL-17抗体(BD Biosciences, SCPL1362)被用于被用于流式细胞仪在pigs 样本上. Mol Immunol (2015) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 图 8
碧迪BDIL-17抗体(BD Pharmingen, TC11-18H10)被用于被用于流式细胞仪在小鼠样本上 (图 8). Clin Exp Immunol (2015) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 图 3
碧迪BDIL-17抗体(BD Biosciences, TC11-18H10)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2015) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠
碧迪BDIL-17抗体(BD Bioscience, TC11-1 8H10)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(SCPL1362)
  • 流式细胞仪; 人类; 图 3a
碧迪BDIL-17抗体(BD Biosciences, 560436)被用于被用于流式细胞仪在人类样本上 (图 3a). Oncotarget (2014) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠
碧迪BDIL-17抗体(BD Biosciences, 559502)被用于被用于流式细胞仪在小鼠样本上. J Neurosci (2014) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠; 图 1
碧迪BDIL-17抗体(BD Biosciences, TC11-18H10)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2014) ncbi
小鼠 单克隆(N49-653)
  • 流式细胞仪; 人类
碧迪BDIL-17抗体(BD, N49-653)被用于被用于流式细胞仪在人类样本上. J Exp Med (2014) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠
碧迪BDIL-17抗体(BD Biosciences, Tc11-18H10)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
大鼠 单克隆(TC11-18H10)
  • 流式细胞仪; 小鼠
碧迪BDIL-17抗体(BD Biosciences, TC11-18H10)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2014) ncbi
大鼠 单克隆(TC11-18H10)
  • 免疫组化-冰冻切片; 小鼠; 图 3b
碧迪BDIL-17抗体(BD, TC11-18H10)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3b). PLoS ONE (2012) ncbi
大鼠 单克隆(TC11-18H10)
  • 其他; 小鼠; 图 6c
碧迪BDIL-17抗体(BD PharMingen, TC11- 18H10.1)被用于被用于其他在小鼠样本上 (图 6c). J Leukoc Biol (2007) ncbi
文章列表
  1. Feng K, Meng P, Zhang M, Zou X, Li S, Huang C, et al. IL-24 Contributes to Neutrophilic Asthma in an IL-17A-Dependent Manner and Is Suppressed by IL-37. Allergy Asthma Immunol Res. 2022;14:505-527 pubmed 出版商
  2. Ni H, Zhang H, Li L, Huang H, Guo H, Zhang L, et al. T cell-intrinsic STING signaling promotes regulatory T cell induction and immunosuppression by upregulating FOXP3 transcription in cervical cancer. J Immunother Cancer. 2022;10: pubmed 出版商
  3. Wang H, Chen L, Qi L, Jiang N, Zhang Z, Guo H, et al. A Single-Cell Atlas of Tumor-Infiltrating Immune Cells in Pancreatic Ductal Adenocarcinoma. Mol Cell Proteomics. 2022;21:100258 pubmed 出版商
  4. Hickman T, Choi E, Whiteman K, Muralidharan S, Pai T, Johnson T, et al. BOXR1030, an anti-GPC3 CAR with exogenous GOT2 expression, shows enhanced T cell metabolism and improved anti-cell line derived tumor xenograft activity. PLoS ONE. 2022;17:e0266980 pubmed 出版商
  5. Tu J, Han D, Fang Y, Jiang H, Tan X, Xu Z, et al. MicroRNA-10b promotes arthritis development by disrupting CD4+ T cell subtypes. Mol Ther Nucleic Acids. 2022;27:733-750 pubmed 出版商
  6. Du Y, Peng Q, Cheng D, Pan T, Sun W, Wang H, et al. Cancer cell-expressed BTNL2 facilitates tumour immune escape via engagement with IL-17A-producing γδ T cells. Nat Commun. 2022;13:231 pubmed 出版商
  7. Dai Z, Ma X, Yang R, Wang H, Xu D, Yang J, et al. Intestinal flora alterations in patients with ulcerative colitis and their association with inflammation. Exp Ther Med. 2021;22:1322 pubmed 出版商
  8. Rajendran R, Rajendran V, Giraldo Velasquez M, Megalofonou F, Gurski F, Stadelmann C, et al. Oligodendrocyte-Specific Deletion of FGFR1 Reduces Cerebellar Inflammation and Neurodegeneration in MOG35-55-Induced EAE. Int J Mol Sci. 2021;22: pubmed 出版商
  9. Moreira T, Mangani D, Cox L, Leibowitz J, Lobo E, Oliveira M, et al. PD-L1+ and XCR1+ dendritic cells are region-specific regulators of gut homeostasis. Nat Commun. 2021;12:4907 pubmed 出版商
  10. Chen J, Yang F, Shi S, Liu X, Qin F, Wei X, et al. The Severity of CVB3-Induced Myocarditis Can Be Improved by Blocking the Orchestration of NLRP3 and Th17 in Balb/c Mice. Mediators Inflamm. 2021;2021:5551578 pubmed 出版商
  11. Cao C, Tian B, Geng X, Zhou H, Xu Z, Lai T, et al. IL-17-Mediated Inflammation Promotes Cigarette Smoke-Induced Genomic Instability. Cells. 2021;10: pubmed 出版商
  12. Hawerkamp H, Domdey A, Radau L, Sewerin P, Oláh P, Homey B, et al. Tofacitinib downregulates antiviral immune defence in keratinocytes and reduces T cell activation. Arthritis Res Ther. 2021;23:144 pubmed 出版商
  13. Borkner L, Curham L, Wilk M, Moran B, Mills K. IL-17 mediates protective immunity against nasal infection with Bordetella pertussis by mobilizing neutrophils, especially Siglec-F+ neutrophils. Mucosal Immunol. 2021;14:1183-1202 pubmed 出版商
  14. Yang C, Kwon D, Kim M, Im S, Lee Y. Commensal Microbiome Expands Tγδ17 Cells in the Lung and Promotes Particulate Matter-Induced Acute Neutrophilia. Front Immunol. 2021;12:645741 pubmed 出版商
  15. Akgul A, Maddaloni M, Jun S, Nelson A, Odreman V, Hoffman C, et al. Stimulation of regulatory T cells with Lactococcus lactis expressing enterotoxigenic E. coli colonization factor antigen 1 retains salivary flow in a genetic model of Sjögren's syndrome. Arthritis Res Ther. 2021;23:99 pubmed 出版商
  16. Horiuchi H, Parajuli B, Komiya H, Ogawa Y, Jin S, Takahashi K, et al. Interleukin-19 Abrogates Experimental Autoimmune Encephalomyelitis by Attenuating Antigen-Presenting Cell Activation. Front Immunol. 2021;12:615898 pubmed 出版商
  17. Ingelfinger F, Krishnarajah S, Kramer M, Utz S, Galli E, Lutz M, et al. Single-cell profiling of myasthenia gravis identifies a pathogenic T cell signature. Acta Neuropathol. 2021;141:901-915 pubmed 出版商
  18. Xiao Y, Shu L, Wu X, Liu Y, Cheong L, Liao B, et al. Fatty acid binding protein 4 promotes autoimmune diabetes by recruitment and activation of pancreatic islet macrophages. JCI Insight. 2021;6: pubmed 出版商
  19. Minns D, Smith K, Alessandrini V, Hardisty G, Melrose L, Jackson Jones L, et al. The neutrophil antimicrobial peptide cathelicidin promotes Th17 differentiation. Nat Commun. 2021;12:1285 pubmed 出版商
  20. Sun Z, Yao Y, You M, Liu J, Guo W, Qi Z, et al. The kinase PDK1 is critical for promoting T follicular helper cell differentiation. elife. 2021;10: pubmed 出版商
  21. Nian Y, Iske J, Maenosono R, Minami K, Heinbokel T, Quante M, et al. Targeting age-specific changes in CD4+ T cell metabolism ameliorates alloimmune responses and prolongs graft survival. Aging Cell. 2021;20:e13299 pubmed 出版商
  22. Sharma N, Hans C. Interleukin 12p40 Deficiency Promotes Abdominal Aortic Aneurysm by Activating CCN2/MMP2 Pathways. J Am Heart Assoc. 2021;10:e017633 pubmed 出版商
  23. Break T, Oikonomou V, Dutzan N, Desai J, Swidergall M, Freiwald T, et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science. 2021;371: pubmed 出版商
  24. Luo R, Cheng Y, Chang D, Liu T, Liu L, Pei G, et al. Tertiary lymphoid organs are associated with the progression of kidney damage and regulated by interleukin-17A. Theranostics. 2021;11:117-131 pubmed 出版商
  25. Rodda L, Netland J, Shehata L, Pruner K, Morawski P, Thouvenel C, et al. Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell. 2021;184:169-183.e17 pubmed 出版商
  26. Malacco N, Souza J, Martins F, Rachid M, Simplicio J, Tirapelli C, et al. Chronic ethanol consumption compromises neutrophil function in acute pulmonary Aspergillus fumigatus infection. elife. 2020;9: pubmed 出版商
  27. Harbour S, DiToro D, Witte S, Zindl C, Gao M, Schoeb T, et al. TH17 cells require ongoing classic IL-6 receptor signaling to retain transcriptional and functional identity. Sci Immunol. 2020;5: pubmed 出版商
  28. Ryu S, Lee E, Kim D, Kim Y, Chung D, Kim J, et al. Reduction of circulating innate lymphoid cell progenitors results in impaired cytokine production by innate lymphoid cells in patients with lupus nephritis. Arthritis Res Ther. 2020;22:63 pubmed 出版商
  29. Chen J, Haller C, Jernigan F, Koerner S, Wong D, Wang Y, et al. Modulation of lymphocyte-mediated tissue repair by rational design of heterocyclic aryl hydrocarbon receptor agonists. Sci Adv. 2020;6:eaay8230 pubmed 出版商
  30. Cheng M, Chen Y, Huang D, Chen W, Xu W, Chen Y, et al. Intrinsically altered lung-resident γδT cells control lung melanoma by producing interleukin-17A in the elderly. Aging Cell. 2020;19:e13099 pubmed 出版商
  31. Lee J, Hall J, Kroehling L, Wu L, Najar T, Nguyen H, et al. Serum Amyloid A Proteins Induce Pathogenic Th17 Cells and Promote Inflammatory Disease. Cell. 2020;180:79-91.e16 pubmed 出版商
  32. Martínez Fábregas J, Wilmes S, Wang L, Hafer M, Pohler E, Lokau J, et al. Kinetics of cytokine receptor trafficking determine signaling and functional selectivity. elife. 2019;8: pubmed 出版商
  33. Grandclaudon M, Perrot Dockès M, Trichot C, Karpf L, Abouzid O, Chauvin C, et al. A Quantitative Multivariate Model of Human Dendritic Cell-T Helper Cell Communication. Cell. 2019;179:432-447.e21 pubmed 出版商
  34. Fu D, Senouthai S, Wang J, You Y. Vasoactive intestinal peptide ameliorates renal injury in a pristane-induced lupus mouse model by modulating Th17/Treg balance. BMC Nephrol. 2019;20:350 pubmed 出版商
  35. Crank M, Ruckwardt T, Chen M, Morabito K, Phung E, Costner P, et al. A proof of concept for structure-based vaccine design targeting RSV in humans. Science. 2019;365:505-509 pubmed 出版商
  36. Kotov J, Kotov D, Linehan J, Bardwell V, Gearhart M, Jenkins M. BCL6 corepressor contributes to Th17 cell formation by inhibiting Th17 fate suppressors. J Exp Med. 2019;216:1450-1464 pubmed 出版商
  37. Esterházy D, Canesso M, Mesin L, Muller P, de Castro T, Lockhart A, et al. Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature. 2019;569:126-130 pubmed 出版商
  38. van de Garde M, van Westen E, Poelen M, Rots N, van Els C. Prediction and Validation of Immunogenic Domains of Pneumococcal Proteins Recognized by Human CD4+ T Cells. Infect Immun. 2019;87: pubmed 出版商
  39. Lodygin D, Hermann M, Schweingruber N, Flügel Koch C, Watanabe T, Schlosser C, et al. β-Synuclein-reactive T cells induce autoimmune CNS grey matter degeneration. Nature. 2019;566:503-508 pubmed 出版商
  40. Lichnog C, Klabunde S, Becker E, Fuh F, Tripal P, Atreya R, et al. Cellular Mechanisms of Etrolizumab Treatment in Inflammatory Bowel Disease. Front Pharmacol. 2019;10:39 pubmed 出版商
  41. Wen Z, Jin K, Shen Y, Yang Z, Li Y, Wu B, et al. N-myristoyltransferase deficiency impairs activation of kinase AMPK and promotes synovial tissue inflammation. Nat Immunol. 2019;20:313-325 pubmed 出版商
  42. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  43. Qu J, Li L, Xie H, Zhang X, Yang Q, Qiu H, et al. TLR3 Modulates the Response of NK Cells against Schistosoma japonicum. J Immunol Res. 2018;2018:7519856 pubmed 出版商
  44. Watanabe N, Takaku T, Takeda K, Shirane S, Toyota T, Koike M, et al. Dasatinib-induced anti-leukemia cellular immunity through a novel subset of CD57 positive helper/cytotoxic CD4 T cells in chronic myelogenous leukemia patients. Int J Hematol. 2018;108:588-597 pubmed 出版商
  45. McGill J, Wang Y, Ganta C, Boorgula G, Ganta R. Antigen-Specific CD4+CD8+ Double-Positive T Cells Are Increased in the Blood and Spleen During Ehrlichia chaffeensis Infection in the Canine Host. Front Immunol. 2018;9:1585 pubmed 出版商
  46. D Addio F, Vergani A, Potena L, Maestroni A, Usuelli V, Ben Nasr M, et al. P2X7R mutation disrupts the NLRP3-mediated Th program and predicts poor cardiac allograft outcomes. J Clin Invest. 2018;128:3490-3503 pubmed 出版商
  47. Boutboul D, Kuehn H, Van de Wyngaert Z, Niemela J, Callebaut I, Stoddard J, et al. Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. J Clin Invest. 2018;128:3071-3087 pubmed 出版商
  48. Provine N, Binder B, FitzPatrick M, Schuch A, Garner L, Williamson K, et al. Unique and Common Features of Innate-Like Human Vδ2+ γδT Cells and Mucosal-Associated Invariant T Cells. Front Immunol. 2018;9:756 pubmed 出版商
  49. Hsieh W, Hsu T, Chang Y, Lai M. IL-6 receptor blockade corrects defects of XIAP-deficient regulatory T cells. Nat Commun. 2018;9:463 pubmed 出版商
  50. Linehan J, Harrison O, Han S, Byrd A, Vujkovic Cvijin I, Villarino A, et al. Non-classical Immunity Controls Microbiota Impact on Skin Immunity and Tissue Repair. Cell. 2018;172:784-796.e18 pubmed 出版商
  51. Matos T, O Malley J, Lowry E, Hamm D, Kirsch I, Robins H, et al. Clinically resolved psoriatic lesions contain psoriasis-specific IL-17-producing ?? T cell clones. J Clin Invest. 2017;127:4031-4041 pubmed 出版商
  52. Kyoizumi S, Kubo Y, Kajimura J, Yoshida K, Hayashi T, Nakachi K, et al. Fate Decision Between Group 3 Innate Lymphoid and Conventional NK Cell Lineages by Notch Signaling in Human Circulating Hematopoietic Progenitors. J Immunol. 2017;199:2777-2793 pubmed 出版商
  53. Muschaweckh A, Petermann F, Korn T. IL-1? and IL-23 Promote Extrathymic Commitment of CD27+CD122- ?? T Cells to ??T17 Cells. J Immunol. 2017;199:2668-2679 pubmed 出版商
  54. Chew V, Lai L, Pan L, Lim C, Li J, Ong R, et al. Delineation of an immunosuppressive gradient in hepatocellular carcinoma using high-dimensional proteomic and transcriptomic analyses. Proc Natl Acad Sci U S A. 2017;114:E5900-E5909 pubmed 出版商
  55. Dias J, Leeansyah E, Sandberg J. Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines. Proc Natl Acad Sci U S A. 2017;114:E5434-E5443 pubmed 出版商
  56. Watanabe R, Shirai T, Namkoong H, Zhang H, Berry G, Wallis B, et al. Pyruvate controls the checkpoint inhibitor PD-L1 and suppresses T cell immunity. J Clin Invest. 2017;127:2725-2738 pubmed 出版商
  57. Lu G, Zhang X, Shen L, Qiao Q, Li Y, Sun J, et al. CCL20 secreted from IgA1-stimulated human mesangial cells recruits inflammatory Th17 cells in IgA nephropathy. PLoS ONE. 2017;12:e0178352 pubmed 出版商
  58. Chen C, Sun W, Chen J, Huang J. Dynamic variations of the peripheral blood immune cell subpopulation in patients with critical H7N9 swine-origin influenza A virus infection: A retrospective small-scale study. Exp Ther Med. 2017;13:1490-1494 pubmed 出版商
  59. Zanin Zhorov A, Weiss J, Trzeciak A, Chen W, Zhang J, Nyuydzefe M, et al. Cutting Edge: Selective Oral ROCK2 Inhibitor Reduces Clinical Scores in Patients with Psoriasis Vulgaris and Normalizes Skin Pathology via Concurrent Regulation of IL-17 and IL-10. J Immunol. 2017;198:3809-3814 pubmed 出版商
  60. Wattegedera S, Corripio Miyar Y, Pang Y, Frew D, McNeilly T, Palarea Albaladejo J, et al. Enhancing the toolbox to study IL-17A in cattle and sheep. Vet Res. 2017;48:20 pubmed 出版商
  61. Tyler C, McCarthy N, Lindsay J, Stagg A, Moser B, Eberl M. Antigen-Presenting Human γδ T Cells Promote Intestinal CD4+ T Cell Expression of IL-22 and Mucosal Release of Calprotectin. J Immunol. 2017;198:3417-3425 pubmed 出版商
  62. Ansa Addo E, Zhang Y, Yang Y, Hussey G, Howley B, Salem M, et al. Membrane-organizing protein moesin controls Treg differentiation and antitumor immunity via TGF-β signaling. J Clin Invest. 2017;127:1321-1337 pubmed 出版商
  63. Li R, Rezk A, Li H, Gommerman J, Prat A, Bar Or A. Antibody-Independent Function of Human B Cells Contributes to Antifungal T Cell Responses. J Immunol. 2017;198:3245-3254 pubmed 出版商
  64. Szabo P, Goswami A, Mazzuca D, Kim K, O Gorman D, Hess D, et al. Rapid and Rigorous IL-17A Production by a Distinct Subpopulation of Effector Memory T Lymphocytes Constitutes a Novel Mechanism of Toxic Shock Syndrome Immunopathology. J Immunol. 2017;198:2805-2818 pubmed 出版商
  65. Cheuk S, Schlums H, Gallais Sérézal I, Martini E, Chiang S, Marquardt N, et al. CD49a Expression Defines Tissue-Resident CD8+ T Cells Poised for Cytotoxic Function in Human Skin. Immunity. 2017;46:287-300 pubmed 出版商
  66. Jiang X, Park C, Geddes Sweeney J, Yoo M, Gaide O, Kupper T. Dermal ?? T Cells Do Not Freely Re-Circulate Out of Skin and Produce IL-17 to Promote Neutrophil Infiltration during Primary Contact Hypersensitivity. PLoS ONE. 2017;12:e0169397 pubmed 出版商
  67. Okuyama H, Tominaga A, Fukuoka S, Taguchi T, Kusumoto Y, Ono S. Spirulina lipopolysaccharides inhibit tumor growth in a Toll-like receptor 4-dependent manner by altering the cytokine milieu from interleukin-17/interleukin-23 to interferon-?. Oncol Rep. 2017;37:684-694 pubmed 出版商
  68. Griffiths K, Ahmed M, Das S, Gopal R, Horne W, Connell T, et al. Targeting dendritic cells to accelerate T-cell activation overcomes a bottleneck in tuberculosis vaccine efficacy. Nat Commun. 2016;7:13894 pubmed 出版商
  69. Lévy R, Okada S, Béziat V, Moriya K, Liu C, Chai L, et al. Genetic, immunological, and clinical features of patients with bacterial and fungal infections due to inherited IL-17RA deficiency. Proc Natl Acad Sci U S A. 2016;113:E8277-E8285 pubmed 出版商
  70. Zhu H, Hu F, Sun X, Zhang X, Zhu L, Liu X, et al. CD16+ Monocyte Subset Was Enriched and Functionally Exacerbated in Driving T-Cell Activation and B-Cell Response in Systemic Lupus Erythematosus. Front Immunol. 2016;7:512 pubmed
  71. Riou C, Bunjun R, Müller T, Kiravu A, Ginbot Z, Oni T, et al. Selective reduction of IFN-γ single positive mycobacteria-specific CD4+ T cells in HIV-1 infected individuals with latent tuberculosis infection. Tuberculosis (Edinb). 2016;101:25-30 pubmed 出版商
  72. Hippen K, Watkins B, Tkachev V, Lemire A, Lehnen C, Riddle M, et al. Preclinical Testing of Antihuman CD28 Fab' Antibody in a Novel Nonhuman Primate Small Animal Rodent Model of Xenogenic Graft-Versus-Host Disease. Transplantation. 2016;100:2630-2639 pubmed 出版商
  73. Kadivar M, Petersson J, Svensson L, Marsal J. CD8??+ ?? T Cells: A Novel T Cell Subset with a Potential Role in Inflammatory Bowel Disease. J Immunol. 2016;197:4584-4592 pubmed
  74. Sumatoh H, Teng K, Cheng Y, Newell E. Optimization of mass cytometry sample cryopreservation after staining. Cytometry A. 2017;91:48-61 pubmed 出版商
  75. Kwong Chung C, Ronchi F, Geuking M. Detrimental effect of systemic antimicrobial CD4+ T-cell reactivity on gut epithelial integrity. Immunology. 2017;150:221-235 pubmed 出版商
  76. Nagase H, Takeoka T, Urakawa S, Morimoto Okazawa A, Kawashima A, Iwahori K, et al. ICOS+ Foxp3+ TILs in gastric cancer are prognostic markers and effector regulatory T cells associated with Helicobacter pylori. Int J Cancer. 2017;140:686-695 pubmed 出版商
  77. Ippagunta S, Gangwar R, Finkelstein D, Vogel P, Pelletier S, Gingras S, et al. Keratinocytes contribute intrinsically to psoriasis upon loss of Tnip1 function. Proc Natl Acad Sci U S A. 2016;113:E6162-E6171 pubmed
  78. Wahid R, Fresnay S, Levine M, Sztein M. Cross-reactive multifunctional CD4+ T cell responses against Salmonella enterica serovars Typhi, Paratyphi A and Paratyphi B in humans following immunization with live oral typhoid vaccine Ty21a. Clin Immunol. 2016;173:87-95 pubmed 出版商
  79. Pachnio A, Ciáurriz M, Begum J, Lal N, Zuo J, Beggs A, et al. Cytomegalovirus Infection Leads to Development of High Frequencies of Cytotoxic Virus-Specific CD4+ T Cells Targeted to Vascular Endothelium. PLoS Pathog. 2016;12:e1005832 pubmed 出版商
  80. Ruan G, Tao B, Wang D, Li Y, Wu J, Yin G. Chinese herbal medicine formula Gu-Ben-Fang-Xiao-Tang attenuates airway inflammation by modulating Th17/Treg balance in an ovalbumin-induced murine asthma model. Exp Ther Med. 2016;12:1428-1434 pubmed
  81. Chuang H, Chen Y, Hung W, Li J, Chen D, Lan J, et al. Downregulation of the phosphatase JKAP/DUSP22 in T cells as a potential new biomarker of systemic lupus erythematosus nephritis. Oncotarget. 2016;7:57593-57605 pubmed 出版商
  82. Ulges A, Witsch E, Pramanik G, Klein M, Birkner K, Bühler U, et al. Protein kinase CK2 governs the molecular decision between encephalitogenic TH17 cell and Treg cell development. Proc Natl Acad Sci U S A. 2016;113:10145-50 pubmed 出版商
  83. Dahal L, Basu N, Youssef H, Khanolkar R, Barker R, Erwig L, et al. Immunoregulatory soluble CTLA-4 modifies effector T-cell responses in systemic lupus erythematosus. Arthritis Res Ther. 2016;18:180 pubmed 出版商
  84. Ferreirinha P, Pérez Cabezas B, Correia A, Miyazawa B, França A, Carvalhais V, et al. Poly-N-Acetylglucosamine Production by Staphylococcus epidermidis Cells Increases Their In Vivo Proinflammatory Effect. Infect Immun. 2016;84:2933-43 pubmed 出版商
  85. Biton J, Khaleghparast Athari S, Thiolat A, Santinon F, Lemeiter D, Hervé R, et al. In Vivo Expansion of Activated Foxp3+ Regulatory T Cells and Establishment of a Type 2 Immune Response upon IL-33 Treatment Protect against Experimental Arthritis. J Immunol. 2016;197:1708-19 pubmed 出版商
  86. Parsa R, Lund H, Georgoudaki A, Zhang X, Ortlieb Guerreiro Cacais A, Grommisch D, et al. BAFF-secreting neutrophils drive plasma cell responses during emergency granulopoiesis. J Exp Med. 2016;213:1537-53 pubmed 出版商
  87. Suliman S, Geldenhuys H, Johnson J, Hughes J, Smit E, Murphy M, et al. Bacillus Calmette-Guérin (BCG) Revaccination of Adults with Latent Mycobacterium tuberculosis Infection Induces Long-Lived BCG-Reactive NK Cell Responses. J Immunol. 2016;197:1100-1110 pubmed 出版商
  88. Chukkapalli S, Rivera Kweh M, Gehlot P, Velsko I, Bhattacharyya I, Calise S, et al. Periodontal bacterial colonization in synovial tissues exacerbates collagen-induced arthritis in B10.RIII mice. Arthritis Res Ther. 2016;18:161 pubmed 出版商
  89. Keil M, Sonner J, Lanz T, Oezen I, Bunse T, Bittner S, et al. General control non-derepressible 2 (GCN2) in T cells controls disease progression of autoimmune neuroinflammation. J Neuroimmunol. 2016;297:117-26 pubmed 出版商
  90. Cheng W, van Asten S, Burns L, Evans H, Walter G, Hashim A, et al. Periodontitis-associated pathogens P. gingivalis and A. actinomycetemcomitans activate human CD14(+) monocytes leading to enhanced Th17/IL-17 responses. Eur J Immunol. 2016;46:2211-21 pubmed 出版商
  91. Saha A, O Connor R, Thangavelu G, Lovitch S, Dandamudi D, Wilson C, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126:2642-60 pubmed 出版商
  92. Wang T, Pan D, Zhou Z, You Y, Jiang C, Zhao X, et al. Dectin-3 Deficiency Promotes Colitis Development due to Impaired Antifungal Innate Immune Responses in the Gut. PLoS Pathog. 2016;12:e1005662 pubmed 出版商
  93. Sujino T, London M, Hoytema van Konijnenburg D, Rendon T, Buch T, Silva H, et al. Tissue adaptation of regulatory and intraepithelial CD4? T cells controls gut inflammation. Science. 2016;352:1581-6 pubmed 出版商
  94. Vaccari M, Gordon S, Fourati S, Schifanella L, Liyanage N, Cameron M, et al. Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition. Nat Med. 2016;22:762-70 pubmed 出版商
  95. Neumann B, Shi T, Gan L, Klippert A, Daskalaki M, Stolte Leeb N, et al. Comprehensive panel of cross-reacting monoclonal antibodies for analysis of different immune cells and their distribution in the common marmoset (Callithrix jacchus). J Med Primatol. 2016;45:139-46 pubmed 出版商
  96. Li W, Liu L, Gomez A, Zhang J, Ramadan A, Zhang Q, et al. Proteomics analysis reveals a Th17-prone cell population in presymptomatic graft-versus-host disease. JCI Insight. 2016;1: pubmed 出版商
  97. Fu D, Song X, Hu H, Sun M, Li Z, Tian Z. Downregulation of RUNX3 moderates the frequency of Th17 and Th22 cells in patients with psoriasis. Mol Med Rep. 2016;13:4606-12 pubmed 出版商
  98. Li M, Chen X, Liu J, Wang D, Gan L, Lv X, et al. Treatment of experimental autoimmune uveoretinitis with different natural compounds. Mol Med Rep. 2016;13:4654-8 pubmed 出版商
  99. Uto T, Fukaya T, Takagi H, Arimura K, Nakamura T, Kojima N, et al. Clec4A4 is a regulatory receptor for dendritic cells that impairs inflammation and T-cell immunity. Nat Commun. 2016;7:11273 pubmed 出版商
  100. Rueda C, Presicce P, Jackson C, Miller L, Kallapur S, Jobe A, et al. Lipopolysaccharide-Induced Chorioamnionitis Promotes IL-1-Dependent Inflammatory FOXP3+ CD4+ T Cells in the Fetal Rhesus Macaque. J Immunol. 2016;196:3706-15 pubmed 出版商
  101. Taylor P, Roy S, Meszaros E, Sun Y, Howell S, Malemud C, et al. JAK/STAT regulation of Aspergillus fumigatus corneal infections and IL-6/23-stimulated neutrophil, IL-17, elastase, and MMP9 activity. J Leukoc Biol. 2016;100:213-22 pubmed 出版商
  102. Chen C, Liu Y, Hua M, Li X, Ji C, Ma D. Neuropathy correlated with imbalanced Foxp3/IL-17 in bone marrow microenvironment of patients with acute myeloid leukemia. Oncotarget. 2016;7:24455-65 pubmed 出版商
  103. Martin B, Wang C, Zhang C, Kang Z, Gulen M, Zepp J, et al. T cell-intrinsic ASC critically promotes T(H)17-mediated experimental autoimmune encephalomyelitis. Nat Immunol. 2016;17:583-92 pubmed 出版商
  104. Moreira M, Costa Pereira C, Alves M, Marteleto B, Ribeiro V, Peruhype Magalhães V, et al. Vaccination against canine leishmaniosis increases the phagocytic activity, nitric oxide production and expression of cell activation/migration molecules in neutrophils and monocytes. Vet Parasitol. 2016;220:33-45 pubmed 出版商
  105. Roan F, Stoklasek T, Whalen E, Molitor J, Bluestone J, Buckner J, et al. CD4+ Group 1 Innate Lymphoid Cells (ILC) Form a Functionally Distinct ILC Subset That Is Increased in Systemic Sclerosis. J Immunol. 2016;196:2051-2062 pubmed 出版商
  106. Kim J, Choi Y, Lee B, Song M, Ban C, Kim J, et al. Programmed cell death ligand 1 alleviates psoriatic inflammation by suppressing IL-17A production from programmed cell death 1-high T cells. J Allergy Clin Immunol. 2016;137:1466-1476.e3 pubmed 出版商
  107. James E, Gates T, LaFond R, Yamamoto S, Ni C, Mai D, et al. Neuroinvasive West Nile Infection Elicits Elevated and Atypically Polarized T Cell Responses That Promote a Pathogenic Outcome. PLoS Pathog. 2016;12:e1005375 pubmed 出版商
  108. Luo C, Liao W, Dadi S, Toure A, Li M. Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity. Nature. 2016;529:532-6 pubmed 出版商
  109. Li L, Jiang Y, Lao S, Yang B, Yu S, Zhang Y, et al. Mycobacterium tuberculosis-Specific IL-21+IFN-γ+CD4+ T Cells Are Regulated by IL-12. PLoS ONE. 2016;11:e0147356 pubmed 出版商
  110. Di Meglio P, Villanova F, Navarini A, Mylonas A, Tosi I, Nestle F, et al. Targeting CD8(+) T cells prevents psoriasis development. J Allergy Clin Immunol. 2016;138:274-276.e6 pubmed 出版商
  111. Vargas Inchaustegui D, Demers A, Shaw J, Kang G, Ball D, Tuero I, et al. Vaccine Induction of Lymph Node-Resident Simian Immunodeficiency Virus Env-Specific T Follicular Helper Cells in Rhesus Macaques. J Immunol. 2016;196:1700-10 pubmed 出版商
  112. Bjerg Christensen A, Dige A, Vad Nielsen J, Brinkmann C, Bendix M, Østergaard L, et al. Administration of Panobinostat Is Associated with Increased IL-17A mRNA in the Intestinal Epithelium of HIV-1 Patients. Mediators Inflamm. 2015;2015:120605 pubmed 出版商
  113. Paris R, Petrovas C, Ferrando Martinez S, Moysi E, Boswell K, Archer E, et al. Selective Loss of Early Differentiated, Highly Functional PD1high CD4 T Cells with HIV Progression. PLoS ONE. 2015;10:e0144767 pubmed 出版商
  114. Cleret Buhot A, Zhang Y, Planas D, Goulet J, Monteiro P, Gosselin A, et al. Identification of novel HIV-1 dependency factors in primary CCR4(+)CCR6(+)Th17 cells via a genome-wide transcriptional approach. Retrovirology. 2015;12:102 pubmed 出版商
  115. Verma S, Weiskopf D, Gupta A, McDonald B, Peters B, Sette A, et al. Cytomegalovirus-Specific CD4 T Cells Are Cytolytic and Mediate Vaccine Protection. J Virol. 2016;90:650-8 pubmed 出版商
  116. Scottà C, Fanelli G, Hoong S, Romano M, Lamperti E, Sukthankar M, et al. Impact of immunosuppressive drugs on the therapeutic efficacy of ex vivo expanded human regulatory T cells. Haematologica. 2016;101:91-100 pubmed 出版商
  117. Schulz A, Mälzer J, Domingo C, Jürchott K, Grützkau A, Babel N, et al. Low Thymic Activity and Dendritic Cell Numbers Are Associated with the Immune Response to Primary Viral Infection in Elderly Humans. J Immunol. 2015;195:4699-711 pubmed 出版商
  118. Mitson Salazar A, Yin Y, Wansley D, Young M, Bolan H, Arceo S, et al. Hematopoietic prostaglandin D synthase defines a proeosinophilic pathogenic effector human T(H)2 cell subpopulation with enhanced function. J Allergy Clin Immunol. 2016;137:907-18.e9 pubmed 出版商
  119. Wawrzyniak M, Ochsner U, Wirz O, Wawrzyniak P, Van De Veen W, Akdis C, et al. A novel, dual cytokine-secretion assay for the purification of human Th22 cells that do not co-produce IL-17A. Allergy. 2016;71:47-57 pubmed 出版商
  120. Gao Y, Zhang M, Li J, Yang M, Liu Y, Guo X, et al. Circulating FoxP3+ Regulatory T and Interleukin17-Producing Th17 Cells Actively Influence HBV Clearance in De Novo Hepatitis B Virus Infected Patients after Orthotopic Liver Transplantation. PLoS ONE. 2015;10:e0137881 pubmed 出版商
  121. Nakatsukasa H, Zhang D, Maruyama T, Chen H, Cui K, Ishikawa M, et al. The DNA-binding inhibitor Id3 regulates IL-9 production in CD4(+) T cells. Nat Immunol. 2015;16:1077-84 pubmed 出版商
  122. Wang W, Yen M, Liu K, Hsu P, Lin M, Chen P, et al. Interleukin-25 Mediates Transcriptional Control of PD-L1 via STAT3 in Multipotent Human Mesenchymal Stromal Cells (hMSCs) to Suppress Th17 Responses. Stem Cell Reports. 2015;5:392-404 pubmed 出版商
  123. Leeansyah E, Svärd J, Dias J, Buggert M, Nyström J, Quigley M, et al. Arming of MAIT Cell Cytolytic Antimicrobial Activity Is Induced by IL-7 and Defective in HIV-1 Infection. PLoS Pathog. 2015;11:e1005072 pubmed 出版商
  124. Weist B, Wehler P, El Ahmad L, Schmueck Henneresse M, Millward J, Nienen M, et al. A revised strategy for monitoring BKV-specific cellular immunity in kidney transplant patients. Kidney Int. 2015;88:1293-1303 pubmed 出版商
  125. Benevides L, da Fonseca D, Donate P, Tiezzi D, De Carvalho D, de Andrade J, et al. IL17 Promotes Mammary Tumor Progression by Changing the Behavior of Tumor Cells and Eliciting Tumorigenic Neutrophils Recruitment. Cancer Res. 2015;75:3788-99 pubmed 出版商
  126. Adoro S, Cubillos Ruiz J, Chen X, Deruaz M, Vrbanac V, Song M, et al. IL-21 induces antiviral microRNA-29 in CD4 T cells to limit HIV-1 infection. Nat Commun. 2015;6:7562 pubmed 出版商
  127. Yawata N, Selva K, Liu Y, Tan K, Lee A, Siak J, et al. Dynamic change in natural killer cell type in the human ocular mucosa in situ as means of immune evasion by adenovirus infection. Mucosal Immunol. 2016;9:159-70 pubmed 出版商
  128. Suzuki H, Watari A, Hashimoto E, Yonemitsu M, Kiyono H, Yagi K, et al. C-Terminal Clostridium perfringens Enterotoxin-Mediated Antigen Delivery for Nasal Pneumococcal Vaccine. PLoS ONE. 2015;10:e0126352 pubmed 出版商
  129. Patel N, Gallagher J, Torgerson T, Gilman A. Successful haploidentical donor hematopoietic stem cell transplant and restoration of STAT3 function in an adolescent with autosomal dominant hyper-IgE syndrome. J Clin Immunol. 2015;35:479-85 pubmed 出版商
  130. Boer M, Prins C, van Meijgaarden K, van Dissel J, Ottenhoff T, Joosten S. Mycobacterium bovis BCG Vaccination Induces Divergent Proinflammatory or Regulatory T Cell Responses in Adults. Clin Vaccine Immunol. 2015;22:778-88 pubmed 出版商
  131. Nacka Aleksić M, Djikić J, Pilipović I, Stojić Vukanić Z, Kosec D, Bufan B, et al. Male rats develop more severe experimental autoimmune encephalomyelitis than female rats: sexual dimorphism and diergism at the spinal cord level. Brain Behav Immun. 2015;49:101-18 pubmed 出版商
  132. Lee J, Jeong I, Joh J, Jung Y, Sim S, Choi B, et al. Differential expression of CD57 in antigen-reactive CD4+ T cells between active and latent tuberculosis infection. Clin Immunol. 2015;159:37-46 pubmed 出版商
  133. Lenz N, Schindler T, Kagina B, Zhang J, Lukindo T, Mpina M, et al. Antiviral Innate Immune Activation in HIV-Infected Adults Negatively Affects H1/IC31-Induced Vaccine-Specific Memory CD4+ T Cells. Clin Vaccine Immunol. 2015;22:688-96 pubmed 出版商
  134. Dyring Andersen B, Bonefeld C, Bzorek M, Løvendorf M, Lauritsen J, Skov L, et al. The Vitamin D Analogue Calcipotriol Reduces the Frequency of CD8+ IL-17+ T Cells in Psoriasis Lesions. Scand J Immunol. 2015;82:84-91 pubmed 出版商
  135. Axelsson Robertson R, Ju J, Kim H, Zumla A, Maeurer M. Mycobacterium tuberculosis-specific and MHC class I-restricted CD8+ T-cells exhibit a stem cell precursor-like phenotype in patients with active pulmonary tuberculosis. Int J Infect Dis. 2015;32:13-22 pubmed 出版商
  136. Hong M, Sandalova E, Low D, Gehring A, Fieni S, Amadei B, et al. Trained immunity in newborn infants of HBV-infected mothers. Nat Commun. 2015;6:6588 pubmed 出版商
  137. Ohnuma K, Hatano R, Aune T, Otsuka H, Iwata S, Dang N, et al. Regulation of pulmonary graft-versus-host disease by IL-26+CD26+CD4 T lymphocytes. J Immunol. 2015;194:3697-712 pubmed 出版商
  138. Bowcutt R, Malter L, Chen L, Wolff M, Robertson I, Rifkin D, et al. Isolation and cytokine analysis of lamina propria lymphocytes from mucosal biopsies of the human colon. J Immunol Methods. 2015;421:27-35 pubmed 出版商
  139. Hsiao H, Hsu T, Liu W, Hsieh W, Chou T, Wu Y, et al. Deltex1 antagonizes HIF-1α and sustains the stability of regulatory T cells in vivo. Nat Commun. 2015;6:6353 pubmed 出版商
  140. Lu Y, Xue Q, Eisele M, Sulistijo E, Brower K, Han L, et al. Highly multiplexed profiling of single-cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands. Proc Natl Acad Sci U S A. 2015;112:E607-15 pubmed 出版商
  141. Rissiek A, Baumann I, Cuapio A, Mautner A, Kolster M, Arck P, et al. The expression of CD39 on regulatory T cells is genetically driven and further upregulated at sites of inflammation. J Autoimmun. 2015;58:12-20 pubmed 出版商
  142. Dimova T, Brouwer M, Gosselin F, Tassignon J, Leo O, Donner C, et al. Effector Vγ9Vδ2 T cells dominate the human fetal γδ T-cell repertoire. Proc Natl Acad Sci U S A. 2015;112:E556-65 pubmed 出版商
  143. Zhang Y, Wu B, Metelli A, Thaxton J, Hong F, Rachidi S, et al. GP96 is a GARP chaperone and controls regulatory T cell functions. J Clin Invest. 2015;125:859-69 pubmed 出版商
  144. Laranjeira P, Pedrosa M, Pedreiro S, Gomes J, Martinho A, Antunes B, et al. Effect of human bone marrow mesenchymal stromal cells on cytokine production by peripheral blood naive, memory, and effector T cells. Stem Cell Res Ther. 2015;6:3 pubmed 出版商
  145. Karlsson F, Hassan Zahraee M. Quantification of Th1 and Th17 Cells with Intracellular Staining Following PMA/Ionomycin Stimulation. Curr Protoc Cytom. 2015;71:6.35.1-7 pubmed 出版商
  146. Li F, Ji L, Wang W, Hua F, Zhan Y, Zou S, et al. Insufficient secretion of IL-10 by Tregs compromised its control on over-activated CD4+ T effector cells in newly diagnosed adult immune thrombocytopenia patients. Immunol Res. 2015;61:269-80 pubmed 出版商
  147. Nguyen L, Pan J, Dinh T, Hadeiba H, O Hara E, Ebtikar A, et al. Role and species-specific expression of colon T cell homing receptor GPR15 in colitis. Nat Immunol. 2015;16:207-213 pubmed 出版商
  148. Heninger A, Wentrup S, Al Saeedi M, Schiessling S, Giese T, Wartha F, et al. Immunomodulation of human intestinal T cells by the synthetic CD80 antagonist RhuDex®. Immun Inflamm Dis. 2014;2:166-80 pubmed 出版商
  149. Rutz S, Kayagaki N, Phung Q, Eidenschenk C, Noubade R, Wang X, et al. Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells. Nature. 2015;518:417-21 pubmed 出版商
  150. Gerner W, Talker S, Koinig H, Sedlak C, Mair K, Saalmüller A. Phenotypic and functional differentiation of porcine αβ T cells: current knowledge and available tools. Mol Immunol. 2015;66:3-13 pubmed 出版商
  151. Van Eyck L, Hershfield M, Pombal D, Kelly S, Ganson N, Moens L, et al. Hematopoietic stem cell transplantation rescues the immunologic phenotype and prevents vasculopathy in patients with adenosine deaminase 2 deficiency. J Allergy Clin Immunol. 2015;135:283-7.e5 pubmed 出版商
  152. Frossard C, Asigbetse K, Burger D, Eigenmann P. Gut T cell receptor-γδ(+) intraepithelial lymphocytes are activated selectively by cholera toxin to break oral tolerance in mice. Clin Exp Immunol. 2015;180:118-30 pubmed 出版商
  153. Hautefort A, Girerd B, Montani D, Cohen Kaminsky S, Price L, Lambrecht B, et al. T-helper 17 cell polarization in pulmonary arterial hypertension. Chest. 2015;147:1610-1620 pubmed 出版商
  154. Nakamura M, Shibata K, Hatano S, Sato T, Ohkawa Y, Yamada H, et al. A genome-wide analysis identifies a notch-RBP-Jκ-IL-7Rα axis that controls IL-17-producing γδ T cell homeostasis in mice. J Immunol. 2015;194:243-51 pubmed 出版商
  155. Huss D, Mehta D, Sharma A, You X, Riester K, Sheridan J, et al. In vivo maintenance of human regulatory T cells during CD25 blockade. J Immunol. 2015;194:84-92 pubmed
  156. Dominguez Villar M, Gautron A, de Marcken M, Keller M, Hafler D. TLR7 induces anergy in human CD4(+) T cells. Nat Immunol. 2015;16:118-28 pubmed 出版商
  157. Kamburova E, Koenen H, van den Hoogen M, Baas M, Joosten I, Hilbrands L. Longitudinal analysis of T and B cell phenotype and function in renal transplant recipients with or without rituximab induction therapy. PLoS ONE. 2014;9:e112658 pubmed 出版商
  158. Vogelpoel L, Hansen I, Rispens T, Muller F, van Capel T, Turina M, et al. Fc gamma receptor-TLR cross-talk elicits pro-inflammatory cytokine production by human M2 macrophages. Nat Commun. 2014;5:5444 pubmed 出版商
  159. Å krnjug I, Guzmán C, Rueckert C, Ruecker C. Cyclic GMP-AMP displays mucosal adjuvant activity in mice. PLoS ONE. 2014;9:e110150 pubmed 出版商
  160. Cucak H, Vistisen D, Witte D, Philipsen A, Rosendahl A. Reduction of specific circulating lymphocyte populations with metabolic risk factors in patients at risk to develop type 2 diabetes. PLoS ONE. 2014;9:e107140 pubmed 出版商
  161. Gibbons D, Fleming P, Virasami A, Michel M, Sebire N, Costeloe K, et al. Interleukin-8 (CXCL8) production is a signatory T cell effector function of human newborn infants. Nat Med. 2014;20:1206-10 pubmed 出版商
  162. Kagina B, Tameris M, Geldenhuys H, Hatherill M, Abel B, Hussey G, et al. The novel tuberculosis vaccine, AERAS-402, is safe in healthy infants previously vaccinated with BCG, and induces dose-dependent CD4 and CD8T cell responses. Vaccine. 2014;32:5908-17 pubmed 出版商
  163. Hu H, Eller M, Zafar S, Zhou Y, Gu M, Wei Z, et al. Preferential infection of human Ad5-specific CD4 T cells by HIV in Ad5 naturally exposed and recombinant Ad5-HIV vaccinated individuals. Proc Natl Acad Sci U S A. 2014;111:13439-44 pubmed 出版商
  164. Tchakoute C, Hesseling A, Kidzeru E, Gamieldien H, Passmore J, Jones C, et al. Delaying BCG vaccination until 8 weeks of age results in robust BCG-specific T-cell responses in HIV-exposed infants. J Infect Dis. 2015;211:338-46 pubmed 出版商
  165. Chuang H, Sheu W, Lin Y, Tsai C, Yang C, Cheng Y, et al. HGK/MAP4K4 deficiency induces TRAF2 stabilization and Th17 differentiation leading to insulin resistance. Nat Commun. 2014;5:4602 pubmed 出版商
  166. Kistowska M, Meier B, Proust T, Feldmeyer L, Cozzio A, Kuendig T, et al. Propionibacterium acnes promotes Th17 and Th17/Th1 responses in acne patients. J Invest Dermatol. 2015;135:110-118 pubmed 出版商
  167. Ye S, Li Z, Luo D, Huang B, Chen Y, Zhang X, et al. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget. 2014;5:5439-52 pubmed
  168. Kim K, Chung B, Kim B, Cho M, Yang C. The effect of mammalian target of rapamycin inhibition on T helper type 17 and regulatory T cell differentiation in vitro and in vivo in kidney transplant recipients. Immunology. 2015;144:68-78 pubmed 出版商
  169. Moreno M, Bannerman P, Ma J, Guo F, Miers L, Soulika A, et al. Conditional ablation of astroglial CCL2 suppresses CNS accumulation of M1 macrophages and preserves axons in mice with MOG peptide EAE. J Neurosci. 2014;34:8175-85 pubmed 出版商
  170. Gupta M, Kolli D, Molteni C, Casola A, Garofalo R. Paramyxovirus infection regulates T cell responses by BDCA-1+ and BDCA-3+ myeloid dendritic cells. PLoS ONE. 2014;9:e99227 pubmed 出版商
  171. Geem D, Medina Contreras O, McBride M, Newberry R, Koni P, Denning T. Specific microbiota-induced intestinal Th17 differentiation requires MHC class II but not GALT and mesenteric lymph nodes. J Immunol. 2014;193:431-8 pubmed 出版商
  172. Staumont Sallé D, Fleury S, Lazzari A, Molendi Coste O, Hornez N, Lavogiez C, et al. CX?CL1 (fractalkine) and its receptor CX?CR1 regulate atopic dermatitis by controlling effector T cell retention in inflamed skin. J Exp Med. 2014;211:1185-96 pubmed 出版商
  173. Pick J, Arra A, Lingel H, Hegel J, Huber M, Nishanth G, et al. CTLA-4 (CD152) enhances the Tc17 differentiation program. Eur J Immunol. 2014;44:2139-52 pubmed 出版商
  174. Sereti I, Estes J, Thompson W, Morcock D, Fischl M, Croughs T, et al. Decreases in colonic and systemic inflammation in chronic HIV infection after IL-7 administration. PLoS Pathog. 2014;10:e1003890 pubmed 出版商
  175. Galindo Albarrán A, Ramirez Pliego O, Labastida Conde R, Melchy Pérez E, Liquitaya Montiel A, Esquivel Guadarrama F, et al. CD43 signals prepare human T cells to receive cytokine differentiation signals. J Cell Physiol. 2014;229:172-80 pubmed
  176. Chan I, Jain R, Tessmer M, Gorman D, Mangadu R, Sathe M, et al. Interleukin-23 is sufficient to induce rapid de novo gut tumorigenesis, independent of carcinogens, through activation of innate lymphoid cells. Mucosal Immunol. 2014;7:842-56 pubmed 出版商
  177. Lutwama F, Kagina B, Wajja A, Waiswa F, Mansoor N, Kirimunda S, et al. Distinct T-cell responses when BCG vaccination is delayed from birth to 6 weeks of age in Ugandan infants. J Infect Dis. 2014;209:887-97 pubmed 出版商
  178. Melis L, Van Praet L, Pircher H, Venken K, Elewaut D. Senescence marker killer cell lectin-like receptor G1 (KLRG1) contributes to TNF-? production by interaction with its soluble E-cadherin ligand in chronically inflamed joints. Ann Rheum Dis. 2014;73:1223-31 pubmed 出版商
  179. Canary L, Vinton C, Morcock D, Pierce J, Estes J, Brenchley J, et al. Rate of AIDS progression is associated with gastrointestinal dysfunction in simian immunodeficiency virus-infected pigtail macaques. J Immunol. 2013;190:2959-65 pubmed 出版商
  180. Marin N, Paris S, Rojas M, Garcia L. Functional profile of CD4+ and CD8+ T cells in latently infected individuals and patients with active TB. Tuberculosis (Edinb). 2013;93:155-66 pubmed 出版商
  181. Wolff M, Leung J, Davenport M, Poles M, Cho I, Loke P. TH17, TH22 and Treg cells are enriched in the healthy human cecum. PLoS ONE. 2012;7:e41373 pubmed 出版商
  182. Uto Konomi A, Miyauchi K, Ozaki N, Motomura Y, Suzuki Y, Yoshimura A, et al. Dysregulation of suppressor of cytokine signaling 3 in keratinocytes causes skin inflammation mediated by interleukin-20 receptor-related cytokines. PLoS ONE. 2012;7:e40343 pubmed 出版商
  183. Klatt N, Estes J, Sun X, Ortiz A, Barber J, Harris L, et al. Loss of mucosal CD103+ DCs and IL-17+ and IL-22+ lymphocytes is associated with mucosal damage in SIV infection. Mucosal Immunol. 2012;5:646-57 pubmed 出版商
  184. Magalhaes I, Vudattu N, Ahmed R, Kuhlmann Berenzon S, Ngo Y, Sizemore D, et al. High content cellular immune profiling reveals differences between rhesus monkeys and men. Immunology. 2010;131:128-40 pubmed 出版商
  185. Hunter P, Nistala K, Jina N, Eddaoudi A, Thomson W, Hubank M, et al. Biologic predictors of extension of oligoarticular juvenile idiopathic arthritis as determined from synovial fluid cellular composition and gene expression. Arthritis Rheum. 2010;62:896-907 pubmed 出版商
  186. Brucklacher Waldert V, Steinbach K, Lioznov M, Kolster M, Holscher C, Tolosa E. Phenotypical characterization of human Th17 cells unambiguously identified by surface IL-17A expression. J Immunol. 2009;183:5494-501 pubmed 出版商
  187. Koenen H, Smeets R, Vink P, van Rijssen E, Boots A, Joosten I. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood. 2008;112:2340-52 pubmed 出版商
  188. Yamada H, Nakashima Y, Okazaki K, Mawatari T, Fukushi J, Kaibara N, et al. Th1 but not Th17 cells predominate in the joints of patients with rheumatoid arthritis. Ann Rheum Dis. 2008;67:1299-304 pubmed
  189. Nakae S, Iwakura Y, Suto H, Galli S. Phenotypic differences between Th1 and Th17 cells and negative regulation of Th1 cell differentiation by IL-17. J Leukoc Biol. 2007;81:1258-68 pubmed