这是一篇来自已证抗体库的有关人类 IRF4的综述,是根据55篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合IRF4 抗体。
IRF4 同义词: LSIRF; MUM1; NF-EM5; SHEP8

赛默飞世尔
大鼠 单克隆(3E4)
  • 流式细胞仪; 小鼠; 图 4c
赛默飞世尔 IRF4抗体(eBioscience, 48-9858-80)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Cell Mol Gastroenterol Hepatol (2021) ncbi
大鼠 单克隆(3E4)
  • 流式细胞仪; 小鼠; 1:200; 图 3b
赛默飞世尔 IRF4抗体(Ebioscience, 3E4)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3b). elife (2020) ncbi
大鼠 单克隆(3E4)
  • 流式细胞仪; 小鼠; 图 1g
赛默飞世尔 IRF4抗体(ThermoFisher, 3E4)被用于被用于流式细胞仪在小鼠样本上 (图 1g). Blood Adv (2020) ncbi
大鼠 单克隆(3E4)
  • 流式细胞仪; 小鼠; 1:200; 图 1h
赛默飞世尔 IRF4抗体(eBioscience, 46-9858-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1h). elife (2020) ncbi
大鼠 单克隆(3E4)
  • 流式细胞仪; 小鼠; 1:2000; 图 7e
赛默飞世尔 IRF4抗体(eBioscience, 3E4)被用于被用于流式细胞仪在小鼠样本上浓度为1:2000 (图 7e). elife (2019) ncbi
大鼠 单克隆(3E4)
  • 流式细胞仪; 小鼠; 1:300; 图 2a
赛默飞世尔 IRF4抗体(ThermoFisher, 12-9858-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 2a). Nat Commun (2019) ncbi
大鼠 单克隆(3E4)
  • 流式细胞仪; 小鼠; 图 3g
赛默飞世尔 IRF4抗体(ebioscience, 25-9858)被用于被用于流式细胞仪在小鼠样本上 (图 3g). Cell Death Dis (2017) ncbi
大鼠 单克隆(3E4)
  • 流式细胞仪; 小鼠
赛默飞世尔 IRF4抗体(eBioscience, 3E4)被用于被用于流式细胞仪在小鼠样本上. Cell Immunol (2017) ncbi
大鼠 单克隆(3E4)
  • 流式细胞仪; 人类; 图 s14c
赛默飞世尔 IRF4抗体(eBiosciences, 3E4)被用于被用于流式细胞仪在人类样本上 (图 s14c). Science (2017) ncbi
大鼠 单克隆(3E4)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 IRF4抗体(eBioscience, 3E4)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Immunology (2017) ncbi
大鼠 单克隆(3E4)
  • 流式细胞仪; 人类; 图 st12
赛默飞世尔 IRF4抗体(eBioscience, 3E4)被用于被用于流式细胞仪在人类样本上 (图 st12). Science (2017) ncbi
大鼠 单克隆(3E4)
  • 流式细胞仪; 小鼠
赛默飞世尔 IRF4抗体(eBioscience, 3E4)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(3E4)
  • 流式细胞仪; 小鼠; 图 2g
赛默飞世尔 IRF4抗体(eBiosciences, 46-9858-80)被用于被用于流式细胞仪在小鼠样本上 (图 2g). elife (2016) ncbi
大鼠 单克隆(3E4)
  • 流式细胞仪; 小鼠; 图 s5
赛默飞世尔 IRF4抗体(eBioscience, 3E4)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Nat Immunol (2015) ncbi
大鼠 单克隆(3E4)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔 IRF4抗体(eBiosciences, 3E4)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Cancer Res (2014) ncbi
大鼠 单克隆(3E4)
  • 流式细胞仪; 猕猴
赛默飞世尔 IRF4抗体(eBioscience, 3E4)被用于被用于流式细胞仪在猕猴样本上. Clin Immunol (2014) ncbi
BioLegend
大鼠 单克隆(IRF4.3E4)
  • 流式细胞仪; 小鼠; 图 4i
  • 流式细胞仪; 人类; 图 4
BioLegend IRF4抗体(BioLegend, IRF4.3F4)被用于被用于流式细胞仪在小鼠样本上 (图 4i) 和 被用于流式细胞仪在人类样本上 (图 4). Aging Cell (2021) ncbi
大鼠 单克隆(IRF4.3E4)
  • 流式细胞仪; 小鼠; 图 4b
  • 流式细胞仪; 人类; 图 4b
BioLegend IRF4抗体(Biolegend, 646404)被用于被用于流式细胞仪在小鼠样本上 (图 4b) 和 被用于流式细胞仪在人类样本上 (图 4b). Cell Rep (2019) ncbi
大鼠 单克隆(IRF4.3E4)
  • 流式细胞仪; 人类; 1:600; 图 1f
BioLegend IRF4抗体(Biolegend, 646403)被用于被用于流式细胞仪在人类样本上浓度为1:600 (图 1f). elife (2019) ncbi
大鼠 单克隆(IRF4.3E4)
  • 流式细胞仪; 小鼠; 1:400; 图 ex2c
BioLegend IRF4抗体(BioLegend, IRF4.3E4)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 ex2c). Nat Med (2019) ncbi
大鼠 单克隆(IRF4.3E4)
  • 流式细胞仪; 小鼠; 图 8d
BioLegend IRF4抗体(BioLegend, IRF4.3E4)被用于被用于流式细胞仪在小鼠样本上 (图 8d). Nat Commun (2018) ncbi
大鼠 单克隆(IRF4.3E4)
  • 流式细胞仪; 小鼠; 图 s9f
BioLegend IRF4抗体(BioLegend, 646408)被用于被用于流式细胞仪在小鼠样本上 (图 s9f). Nature (2017) ncbi
大鼠 单克隆(IRF4.3E4)
  • 流式细胞仪; 人类; 图 7e
BioLegend IRF4抗体(BioLegend, IRF4.3E4)被用于被用于流式细胞仪在人类样本上 (图 7e). Oncotarget (2016) ncbi
大鼠 单克隆(IRF4.3E4)
  • 流式细胞仪; 小鼠; 图 3a
  • 免疫细胞化学; 小鼠; 图 2e
BioLegend IRF4抗体(Biolegend, IRF4.3E4)被用于被用于流式细胞仪在小鼠样本上 (图 3a) 和 被用于免疫细胞化学在小鼠样本上 (图 2e). Sci Rep (2016) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EP5699)
  • 免疫印迹; 人类; 图 4c
艾博抗(上海)贸易有限公司 IRF4抗体(Abcam, ab133590)被用于被用于免疫印迹在人类样本上 (图 4c). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(EP5699)
  • 免疫印迹; 人类; 图 s5
艾博抗(上海)贸易有限公司 IRF4抗体(Abcam, ab133590)被用于被用于免疫印迹在人类样本上 (图 s5). Clin Cancer Res (2016) ncbi
美天旎
人类 单克隆(REA201)
  • 流式细胞仪; 小鼠; 1:20; 图 4c
美天旎 IRF4抗体(Miltenyi Biotec, 130-100-915)被用于被用于流式细胞仪在小鼠样本上浓度为1:20 (图 4c). Nat Commun (2019) ncbi
圣克鲁斯生物技术
小鼠 单克隆(E-7)
  • 染色质免疫沉淀 ; 人类; 图 3
圣克鲁斯生物技术 IRF4抗体(Santa Cruz, sc-377383)被用于被用于染色质免疫沉淀 在人类样本上 (图 3). Ann Rheum Dis (2016) ncbi
大鼠 单克隆(3E4)
  • 流式细胞仪; 小鼠; 图 5
圣克鲁斯生物技术 IRF4抗体(Santa Cruz Biotechnology, sc-130921)被用于被用于流式细胞仪在小鼠样本上 (图 5). Reprod Fertil Dev (2015) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(MUM1p)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2c
丹科医疗器械技术服务(上海)有限公司 IRF4抗体(Dako, M7259)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2c). BMC Cancer (2020) ncbi
小鼠 单克隆(MUM1p)
  • 免疫组化-石蜡切片; 人类; 表 4
丹科医疗器械技术服务(上海)有限公司 IRF4抗体(DakoCytomation, MUM1p)被用于被用于免疫组化-石蜡切片在人类样本上 (表 4). Ann Hematol (2017) ncbi
小鼠 单克隆(MUM1p)
  • 免疫组化-石蜡切片; 人类; 图 2e
  • 免疫组化; 人类; 图 1e
丹科医疗器械技术服务(上海)有限公司 IRF4抗体(Dako, MUM1p)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2e) 和 被用于免疫组化在人类样本上 (图 1e). Ann Diagn Pathol (2016) ncbi
小鼠 单克隆(MUM1p)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 2
丹科医疗器械技术服务(上海)有限公司 IRF4抗体(Dako, MUM1p)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 2). Virchows Arch (2016) ncbi
小鼠 单克隆(MUM1p)
  • 免疫组化-石蜡切片; 人类; 图 1a
丹科医疗器械技术服务(上海)有限公司 IRF4抗体(Dako, MUM1p)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). J Immunol (2016) ncbi
小鼠 单克隆(MUM1p)
  • 免疫组化-石蜡切片; 人类; 图 2a
丹科医疗器械技术服务(上海)有限公司 IRF4抗体(DAKO, MUM1P)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2a). Int J STD AIDS (2017) ncbi
小鼠 单克隆(MUM1p)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 10
丹科医疗器械技术服务(上海)有限公司 IRF4抗体(Dako, Mum1p)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 10). PLoS ONE (2015) ncbi
小鼠 单克隆(MUM1p)
  • 免疫组化-石蜡切片; 人类; 图 3f
丹科医疗器械技术服务(上海)有限公司 IRF4抗体(DAKO, MUM1p)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3f). Mod Pathol (2015) ncbi
小鼠 单克隆(MUM1p)
  • 免疫组化; 国内马; 1:25
丹科医疗器械技术服务(上海)有限公司 IRF4抗体(DakoCytomation, M7259)被用于被用于免疫组化在国内马样本上浓度为1:25. J S Afr Vet Assoc (2014) ncbi
小鼠 单克隆(MUM1p)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 IRF4抗体(Dako, MUM1p)被用于被用于免疫组化在人类样本上浓度为1:50. Leuk Res (2015) ncbi
小鼠 单克隆(MUM1p)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 IRF4抗体(DAKO, MUM1p)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Int J Hematol (2015) ncbi
小鼠 单克隆(MUM1p)
  • 免疫组化-石蜡切片; 人类; 1:1500
丹科医疗器械技术服务(上海)有限公司 IRF4抗体(Dako, M7259)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1500. PLoS ONE (2014) ncbi
小鼠 单克隆(MUM1p)
  • 免疫组化-石蜡切片; 人类; 1:25
丹科医疗器械技术服务(上海)有限公司 IRF4抗体(Dako, MUM1p)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25. PLoS ONE (2014) ncbi
小鼠 单克隆(MUM1p)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 IRF4抗体(Dako, MUM1P)被用于被用于免疫组化在人类样本上. Int J Hematol (2014) ncbi
小鼠 单克隆(MUM1p)
  • 免疫组化; 人类; 1:25
丹科医疗器械技术服务(上海)有限公司 IRF4抗体(Dako, M7259)被用于被用于免疫组化在人类样本上浓度为1:25. Blood Cancer J (2013) ncbi
小鼠 单克隆(MUM1p)
  • 免疫组化; 人类; 1:20
丹科医疗器械技术服务(上海)有限公司 IRF4抗体(DAKO, MUM1p)被用于被用于免疫组化在人类样本上浓度为1:20. Leukemia (2014) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司 IRF4抗体(Cell Signaling, 4964)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3f). J Immunother Cancer (2021) ncbi
domestic rabbit 单克隆(D43H10)
  • 免疫印迹; 人类; 图 1g
赛信通(上海)生物试剂有限公司 IRF4抗体(Cell Signaling Technology, 4299)被用于被用于免疫印迹在人类样本上 (图 1g). Sci Adv (2021) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 1-2 ug / 500 ul chr; 图 4c
  • 染色质免疫沉淀 ; 人类; 图 4c
赛信通(上海)生物试剂有限公司 IRF4抗体(Cell Signaling, 4964)被用于被用于ChIP-Seq在人类样本上浓度为1-2 ug / 500 ul chr (图 4c) 和 被用于染色质免疫沉淀 在人类样本上 (图 4c). Cell Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 IRF4抗体(Cell Signaling, 4964)被用于被用于免疫印迹在人类样本上 (图 4d). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 IRF4抗体(Cell Signaling Technology, 4964)被用于被用于免疫印迹在人类样本上 (图 2a). Blood Cancer J (2019) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 IRF4抗体(Cell Signaling Technology., 4964S)被用于被用于免疫沉淀在小鼠样本上 (图 2d). Sci Adv (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3f
赛信通(上海)生物试剂有限公司 IRF4抗体(Cell Signaling, 4964)被用于被用于免疫印迹在小鼠样本上 (图 3f). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D43H10)
  • 染色质免疫沉淀 ; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 IRF4抗体(Cell Signaling, D43H10)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 6a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 IRF4抗体(Cell Signaling Technology, 4964)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 IRF4抗体(Cell Signaling Technology, 4948)被用于被用于免疫印迹在人类样本上 (图 5). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 IRF4抗体(Cell Signaling Technology, 4964)被用于被用于免疫印迹在人类样本上 (图 4). elife (2016) ncbi
文章列表
  1. Zheng J, Yao L, Zhou Y, Gu X, Wang C, Bao K, et al. A novel function of NLRP3 independent of inflammasome as a key transcription factor of IL-33 in epithelial cells of atopic dermatitis. Cell Death Dis. 2021;12:871 pubmed 出版商
  2. Schanz O, Cornez I, Yajnanarayana S, David F, Peer S, Gruber T, et al. Tumor rejection in Cblb -/- mice depends on IL-9 and Th9 cells. J Immunother Cancer. 2021;9: pubmed 出版商
  3. Liu J, Hideshima T, Xing L, Wang S, Zhou W, Samur M, et al. ERK signaling mediates resistance to immunomodulatory drugs in the bone marrow microenvironment. Sci Adv. 2021;7: pubmed 出版商
  4. Go D, Lee S, Lee S, Woo S, Kim K, Kim K, et al. Programmed Death Ligand 1-Expressing Classical Dendritic Cells MitigateHelicobacter-Induced Gastritis. Cell Mol Gastroenterol Hepatol. 2021;12:715-739 pubmed 出版商
  5. Webb L, Fra Bido S, Innocentin S, Matheson L, Attaf N, Bignon A, et al. Ageing promotes early T follicular helper cell differentiation by modulating expression of RBPJ. Aging Cell. 2021;20:e13295 pubmed 出版商
  6. Xu A, Barbosa R, Calado D. Genetic timestamping of plasma cells in vivo reveals tissue-specific homeostatic population turnover. elife. 2020;9: pubmed 出版商
  7. Witalis M, Chang J, Zhong M, Bouklouch Y, Panneton V, Li J, et al. Progression of AITL-like tumors in mice is driven by Tfh signature proteins and T-B cross talk. Blood Adv. 2020;4:868-879 pubmed 出版商
  8. Cho I, Lee H, Yoon S, Ryu K, Ko Y, Kim W, et al. Serum levels of soluble programmed death-ligand 1 (sPD-L1) in patients with primary central nervous system diffuse large B-cell lymphoma. BMC Cancer. 2020;20:120 pubmed 出版商
  9. Lee J, Zhang J, Chung Y, Kim J, Kook C, Gonzalez Navajas J, et al. Inhibition of IRF4 in dendritic cells by PRR-independent and -dependent signals inhibit Th2 and promote Th17 responses. elife. 2020;9: pubmed 出版商
  10. Senigl F, Maman Y, Dinesh R, Alinikula J, Seth R, Pecnova L, et al. Topologically Associated Domains Delineate Susceptibility to Somatic Hypermutation. Cell Rep. 2019;29:3902-3915.e8 pubmed 出版商
  11. Leylek R, Alcántara Hernández M, Lanzar Z, Lüdtke A, Perez O, Reizis B, et al. Integrated Cross-Species Analysis Identifies a Conserved Transitional Dendritic Cell Population. Cell Rep. 2019;29:3736-3750.e8 pubmed 出版商
  12. Lynn R, Weber E, Sotillo E, Gennert D, Xu P, Good Z, et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature. 2019;576:293-300 pubmed 出版商
  13. Leclerc M, Voilin E, Gros G, Corgnac S, de Montpreville V, Validire P, et al. Regulation of antitumour CD8 T-cell immunity and checkpoint blockade immunotherapy by Neuropilin-1. Nat Commun. 2019;10:3345 pubmed 出版商
  14. Koike T, Harada K, Horiuchi S, Kitamura D. The quantity of CD40 signaling determines the differentiation of B cells into functionally distinct memory cell subsets. elife. 2019;8: pubmed 出版商
  15. Zumaquero E, Stone S, Scharer C, Jenks S, Nellore A, Mousseau B, et al. IFNγ induces epigenetic programming of human T-bethi B cells and promotes TLR7/8 and IL-21 induced differentiation. elife. 2019;8: pubmed 出版商
  16. Hammerich L, Marron T, Upadhyay R, Svensson Arvelund J, Dhainaut M, Hussein S, et al. Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat Med. 2019;25:814-824 pubmed 出版商
  17. Zhu H, Bhatt B, Sivaprakasam S, Cai Y, Liu S, Kodeboyina S, et al. Ufbp1 promotes plasma cell development and ER expansion by modulating distinct branches of UPR. Nat Commun. 2019;10:1084 pubmed 出版商
  18. Zhu Y, Shi C, Bruins L, Wang X, Riggs D, Porter B, et al. Identification of lenalidomide resistance pathways in myeloma and targeted resensitization using cereblon replacement, inhibition of STAT3 or targeting of IRF4. Blood Cancer J. 2019;9:19 pubmed 出版商
  19. Li F, Zeng Z, Xing S, Gullicksrud J, Shan Q, Choi J, et al. Ezh2 programs TFH differentiation by integrating phosphorylation-dependent activation of Bcl6 and polycomb-dependent repression of p19Arf. Nat Commun. 2018;9:5452 pubmed 出版商
  20. Chuang H, Tsai C, Hsueh C, Tan T. GLK-IKKβ signaling induces dimerization and translocation of the AhR-RORγt complex in IL-17A induction and autoimmune disease. Sci Adv. 2018;4:eaat5401 pubmed 出版商
  21. Meng Y, Zhou W, Jin L, Liu L, Chang K, Mei J, et al. RANKL-mediated harmonious dialogue between fetus and mother guarantees smooth gestation by inducing decidual M2 macrophage polarization. Cell Death Dis. 2017;8:e3105 pubmed 出版商
  22. Shimono J, Miyoshi H, Kamimura T, Eto T, Miyagishima T, Sasaki Y, et al. Clinicopathological features of primary splenic follicular lymphoma. Ann Hematol. 2017;96:2063-2070 pubmed 出版商
  23. Seifert H, Benedek G, Liang J, Nguyen H, Kent G, Vandenbark A, et al. Sex differences in regulatory cells in experimental stroke. Cell Immunol. 2017;318:49-54 pubmed 出版商
  24. See P, Dutertre C, Chen J, Günther P, McGovern N, Irac S, et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science. 2017;356: pubmed 出版商
  25. Kammertoens T, Friese C, Arina A, Idel C, Briesemeister D, Rothe M, et al. Tumour ischaemia by interferon-? resembles physiological blood vessel regression. Nature. 2017;545:98-102 pubmed 出版商
  26. Meinicke H, Bremser A, Brack M, Akeus P, Pearson C, Bullers S, et al. Tumour-associated changes in intestinal epithelial cells cause local accumulation of KLRG1+ GATA3+ regulatory T cells in mice. Immunology. 2017;152:74-88 pubmed 出版商
  27. Villani A, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science. 2017;356: pubmed 出版商
  28. Wang H, Mo L, Xiao X, An S, Liu X, Ba J, et al. Pplase of Dermatophagoides farinae promotes ovalbumin-induced airway allergy by modulating the functions of dendritic cells in a mouse model. Sci Rep. 2017;7:43322 pubmed 出版商
  29. Soon G, Ow G, Chan H, Ng S, Wang S. Primary cardiac diffuse large B-cell lymphoma in immunocompetent patients: clinical, histologic, immunophenotypic, and genotypic features of 3 cases. Ann Diagn Pathol. 2016;24:40-6 pubmed 出版商
  30. Gallo M, Cacheux V, Vincent L, Bret C, Tempier A, Guittard C, et al. Leukemic non-nodal mantle cell lymphomas have a distinct phenotype and are associated with deletion of PARP1 and 13q14. Virchows Arch. 2016;469:697-706 pubmed
  31. Ladle B, Li K, Phillips M, Pucsek A, Haile A, Powell J, et al. De novo DNA methylation by DNA methyltransferase 3a controls early effector CD8+ T-cell fate decisions following activation. Proc Natl Acad Sci U S A. 2016;113:10631-6 pubmed 出版商
  32. Kuwahara M, Ise W, Ochi M, Suzuki J, Kometani K, Maruyama S, et al. Bach2-Batf interactions control Th2-type immune response by regulating the IL-4 amplification loop. Nat Commun. 2016;7:12596 pubmed 出版商
  33. Neumann L, Mueller M, Moos V, Heller F, Meyer T, Loddenkemper C, et al. Mucosal Inducible NO Synthase-Producing IgA+ Plasma Cells in Helicobacter pylori-Infected Patients. J Immunol. 2016;197:1801-8 pubmed 出版商
  34. Allison K, Sajti E, Collier J, Gosselin D, Troutman T, Stone E, et al. Affinity and dose of TCR engagement yield proportional enhancer and gene activity in CD4+ T cells. elife. 2016;5: pubmed 出版商
  35. Eichner R, Heider M, Fernández Sáiz V, van Bebber F, Garz A, Lemeer S, et al. Immunomodulatory drugs disrupt the cereblon-CD147-MCT1 axis to exert antitumor activity and teratogenicity. Nat Med. 2016;22:735-43 pubmed 出版商
  36. Wang D, Zheng Y, Zeng D, Yang Y, Zhang X, Feng Y, et al. Clinicopathologic characteristics of HIV/AIDS-related plasmablastic lymphoma. Int J STD AIDS. 2017;28:380-388 pubmed 出版商
  37. Jourdan M, Cren M, Schafer P, Robert N, Duperray C, Vincent L, et al. Differential effects of lenalidomide during plasma cell differentiation. Oncotarget. 2016;7:28096-111 pubmed 出版商
  38. Vieyra Garcia P, Wei T, Naym D, Fredholm S, Fink Puches R, Cerroni L, et al. STAT3/5-Dependent IL9 Overexpression Contributes to Neoplastic Cell Survival in Mycosis Fungoides. Clin Cancer Res. 2016;22:3328-39 pubmed 出版商
  39. Metz P, Lopez J, Kim S, Akimoto K, Ohno S, Chang J. Regulation of Asymmetric Division by Atypical Protein Kinase C Influences Early Specification of CD8(+) T Lymphocyte Fates. Sci Rep. 2016;6:19182 pubmed 出版商
  40. Conery A, Centore R, Neiss A, Keller P, Joshi S, Spillane K, et al. Bromodomain inhibition of the transcriptional coactivators CBP/EP300 as a therapeutic strategy to target the IRF4 network in multiple myeloma. elife. 2016;5: pubmed 出版商
  41. Vecellio M, Roberts A, Cohen C, Cortes A, Knight J, Bowness P, et al. The genetic association of RUNX3 with ankylosing spondylitis can be explained by allele-specific effects on IRF4 recruitment that alter gene expression. Ann Rheum Dis. 2016;75:1534-40 pubmed 出版商
  42. Banat G, Tretyn A, Pullamsetti S, Wilhelm J, Weigert A, Olesch C, et al. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma. PLoS ONE. 2015;10:e0139073 pubmed 出版商
  43. Ribera Cortada I, Martinez D, Amador V, Royo C, Navarro A, Beà S, et al. Plasma cell and terminal B-cell differentiation in mantle cell lymphoma mainly occur in the SOX11-negative subtype. Mod Pathol. 2015;28:1435-47 pubmed 出版商
  44. Wang J, Yin T, Wen Y, Tian F, He X, Zhou D, et al. Potential effects of interferon regulatory factor 4 in a murine model of polyinosinic-polycytidylic acid-induced embryo resorption. Reprod Fertil Dev. 2015;: pubmed 出版商
  45. Williams J, van Niekerk S, Human S, van Wilpe E, Venter M. Pathology of fatal lineage 1 and 2 West Nile virus infections in horses in South Africa. J S Afr Vet Assoc. 2014;85:1105 pubmed 出版商
  46. Shrestha S, Yang K, Guy C, Vogel P, Neale G, Chi H. Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat Immunol. 2015;16:178-87 pubmed 出版商
  47. Song M, Chung J, Lee G, Cho S, Hong J, Shin D, et al. Statin use has negative clinical impact on non-germinal center in patients with diffuse large B cell lymphoma in rituximab era. Leuk Res. 2015;39:211-5 pubmed 出版商
  48. Song M, Chung J, Lee J, Yang D, Kim I, Shin D, et al. High Ki-67 expression in involved bone marrow predicts worse clinical outcome in diffuse large B cell lymphoma patients treated with R-CHOP therapy. Int J Hematol. 2015;101:140-7 pubmed 出版商
  49. Knutson S, Warholic N, Johnston L, Klaus C, Wigle T, Iwanowicz D, et al. Synergistic Anti-Tumor Activity of EZH2 Inhibitors and Glucocorticoid Receptor Agonists in Models of Germinal Center Non-Hodgkin Lymphomas. PLoS ONE. 2014;9:e111840 pubmed 出版商
  50. Chatterjee S, Thyagarajan K, Kesarwani P, Song J, Soloshchenko M, Fu J, et al. Reducing CD73 expression by IL1?-Programmed Th17 cells improves immunotherapeutic control of tumors. Cancer Res. 2014;74:6048-59 pubmed 出版商
  51. Bellas C, Garcia D, Vicente Y, Kilany L, Abraira V, Navarro B, et al. Immunohistochemical and molecular characteristics with prognostic significance in diffuse large B-cell lymphoma. PLoS ONE. 2014;9:e98169 pubmed 出版商
  52. Demberg T, Mohanram V, Venzon D, Robert Guroff M. Phenotypes and distribution of mucosal memory B-cell populations in the SIV/SHIV rhesus macaque model. Clin Immunol. 2014;153:264-76 pubmed 出版商
  53. Li Y, Yimamu M, Wang X, Zhang X, Mao M, Fu L, et al. Addition of rituximab to a CEOP regimen improved the outcome in the treatment of non-germinal center immunophenotype diffuse large B cell lymphoma cells with high Bcl-2 expression. Int J Hematol. 2014;99:79-86 pubmed 出版商
  54. Caramuta S, Lee L, Ozata D, Akçakaya P, Georgii Hemming P, Xie H, et al. Role of microRNAs and microRNA machinery in the pathogenesis of diffuse large B-cell lymphoma. Blood Cancer J. 2013;3:e152 pubmed 出版商
  55. Wong K, Gascoyne D, Brown P, Soilleux E, Snell C, Chen H, et al. Reciprocal expression of the endocytic protein HIP1R and its repressor FOXP1 predicts outcome in R-CHOP-treated diffuse large B-cell lymphoma patients. Leukemia. 2014;28:362-72 pubmed 出版商