这是一篇来自已证抗体库的有关人类 IRS-1 (IRS-1) 的综述,是根据70篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合IRS-1 抗体。
IRS-1 同义词: HIRS-1

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EP260Y)
  • 免疫印迹; 小鼠; 1:1000; 图 6g
艾博抗(上海)贸易有限公司IRS-1抗体(Abcam, ab46800)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6g). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(EP263Y)
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司IRS-1抗体(Abcam, ab40777)被用于被用于免疫印迹在人类样本上 (图 5a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(EP263Y)
  • 免疫印迹; 人类; 1:2000; 图 3d
艾博抗(上海)贸易有限公司IRS-1抗体(Abcam, ab40777)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3d). Genome Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2e
艾博抗(上海)贸易有限公司IRS-1抗体(Abcam, ab52167)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). Mol Metab (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b, 7d
艾博抗(上海)贸易有限公司IRS-1抗体(Abcam, ab52167)被用于被用于免疫印迹在小鼠样本上 (图 4b, 7d). Pharmacol Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:300; 图 4bc
艾博抗(上海)贸易有限公司IRS-1抗体(Abcam, ab1194)被用于被用于免疫印迹在小鼠样本上浓度为1:300 (图 4bc). J Proteomics (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 3g
艾博抗(上海)贸易有限公司IRS-1抗体(Abcam, ab5603)被用于被用于免疫细胞化学在小鼠样本上 (图 3g). Stem Cell Reports (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 5a
艾博抗(上海)贸易有限公司IRS-1抗体(Abcam, ab1194)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5a). J Cell Sci (2017) ncbi
domestic rabbit 单克隆(EP260Y)
  • 免疫印迹; 小鼠; 图 S1b
艾博抗(上海)贸易有限公司IRS-1抗体(Abcam, ab46800)被用于被用于免疫印迹在小鼠样本上 (图 S1b). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 S1b
艾博抗(上海)贸易有限公司IRS-1抗体(Abcam, ab52167)被用于被用于免疫印迹在小鼠样本上 (图 S1b). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2d
艾博抗(上海)贸易有限公司IRS-1抗体(Abcam, 52167)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2d). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(EP260Y)
  • 免疫印迹; 小鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司IRS-1抗体(Abcam, 46800)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EP263Y)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司IRS-1抗体(Abcam, ab40777)被用于被用于免疫印迹在人类样本上 (图 3). Mol Cancer (2015) ncbi
domestic rabbit 单克隆(EP263Y)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司IRS-1抗体(Abcam, ab40777)被用于被用于免疫印迹在人类样本上. J Proteomics (2015) ncbi
domestic rabbit 单克隆(EP263Y)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司IRS-1抗体(Abcam, ab40777)被用于被用于免疫印迹在人类样本上. Aging Cell (2014) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1f
赛默飞世尔IRS-1抗体(Invitrogen, 44-550G)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1f). Front Immunol (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:300; 图 4h
赛默飞世尔IRS-1抗体(Thermo Fisher Scientific, PA1-1054)被用于被用于免疫印迹在小鼠样本上浓度为1:300 (图 4h). Redox Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6e
赛默飞世尔IRS-1抗体(Invitrogen, 44-816G)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6e). Sci Rep (2021) ncbi
domestic rabbit 单克隆(K.346.8)
  • 免疫沉淀; 小鼠; 1:100; 图 s9c
  • 免疫印迹; 小鼠; 1:1000; 图 s9c
赛默飞世尔IRS-1抗体(Invitrogen, MA5-15068)被用于被用于免疫沉淀在小鼠样本上浓度为1:100 (图 s9c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s9c). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3b
赛默飞世尔IRS-1抗体(ThermoFisher, 44-813G)被用于被用于免疫印迹在大鼠样本上 (图 3b). Molecules (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4i
赛默飞世尔IRS-1抗体(Invitrogen, 44-816G)被用于被用于免疫印迹在小鼠样本上 (图 4i). JCI Insight (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔IRS-1抗体(Thermo Fisher, 44-813G)被用于被用于免疫印迹在小鼠样本上 (图 4). Hepatology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛默飞世尔IRS-1抗体(Life Technologiesy, 44-816G)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔IRS-1抗体(生活技术, 44-816G)被用于. Mol Brain (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔IRS-1抗体(生活技术, 44-550G)被用于. Mol Brain (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔IRS-1抗体(Thermo Scientific, PA5-29667)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔IRS-1抗体(Invitrogen, 44816G)被用于. Mol Cell Biol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔IRS-1抗体(生活技术, 44-816G)被用于. PLoS ONE (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(E-12)
  • 免疫印迹; 小鼠; 1:1000; 图 3e
圣克鲁斯生物技术IRS-1抗体(Santa Cruz Biotechnology, E-12)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). Theranostics (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 8b
圣克鲁斯生物技术IRS-1抗体(SantaCruz, SC-515017)被用于被用于免疫印迹在小鼠样本上 (图 8b). Neurobiol Aging (2017) ncbi
小鼠 单克隆(E-12)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术IRS-1抗体(Santa Cruz, sc-8038)被用于被用于免疫印迹在小鼠样本上 (图 4). Hepatology (2016) ncbi
小鼠 单克隆(E-12)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术IRS-1抗体(Santa Cruz Biotechnology, sc-8038)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Life Sci (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D23G12)
  • 免疫印迹; 小鼠; 1:1000; 图 s6-1b
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling Technology, 3407)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6-1b). elife (2022) ncbi
domestic rabbit 单克隆(C15H5)
  • 免疫印迹; 小鼠; 1:1000; 图 s10e
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling, 3203)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s10e). Nat Commun (2022) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 7b
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signalling Technology, CST2382)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 7b). BMC Biol (2021) ncbi
domestic rabbit 单克隆(D23G12)
  • 免疫印迹; 小鼠; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signalling Technology, 3407)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5e). elife (2021) ncbi
domestic rabbit 单克隆(D23G12)
  • 免疫印迹; 小鼠; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signalling Technology, 3407)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5e). BMC Neurol (2021) ncbi
domestic rabbit 单克隆(D23G12)
  • 免疫印迹; 小鼠; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signalling Technology, 3407)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5e). Nature (2021) ncbi
domestic rabbit 单克隆(D23G12)
  • 免疫印迹; 小鼠; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signalling Technology, 3407)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5e). elife (2021) ncbi
domestic rabbit 单克隆(C15H5)
  • 免疫印迹; 小鼠; 1:1000; 图 6g
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling, 3203P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6g). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(D23G12)
  • 免疫印迹; 小鼠; 1:1000; 图 6g
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling, 3407P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6g). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 5c
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling, 2381)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5c). J Inflamm Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 5a
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling, 2382)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5a). J Inflamm Res (2021) ncbi
domestic rabbit 单克隆(C15H5)
  • 免疫印迹; 小鼠; 1:2000; 图 5a
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling, 3203)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5a). J Inflamm Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5b
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling Technology, 2382)被用于被用于免疫印迹在大鼠样本上 (图 5b). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 1e
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司IRS-1抗体(cell signalling technology, 2382)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 1e) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s6b
赛信通(上海)生物试剂有限公司IRS-1抗体(CST, 3070S)被用于被用于免疫印迹在人类样本上 (图 s6b). J Biol Chem (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling Technology, 2381)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3f). Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling, 2382)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Aging Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 4a
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling Technology, 2382)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4a). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1g
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling, 2382)被用于被用于免疫印迹在小鼠样本上 (图 1g). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司IRS-1抗体(CST, 2382S)被用于被用于免疫印迹在小鼠样本上 (图 5d). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司IRS-1抗体(CST, 2381T)被用于被用于免疫印迹在小鼠样本上 (图 5d). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell signalling technology, 2384)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a). Pharmacol Res (2020) ncbi
domestic rabbit 单克隆(D23G12)
  • 免疫细胞化学; 人类; 图 3c, 3e
  • 免疫印迹; 人类; 图 1a, 1e
  • 免疫印迹; 小鼠; 图 4f
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling, 3407)被用于被用于免疫细胞化学在人类样本上 (图 3c, 3e), 被用于免疫印迹在人类样本上 (图 1a, 1e) 和 被用于免疫印迹在小鼠样本上 (图 4f). J Biol Chem (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell signaling, 2388s)被用于被用于免疫印迹在小鼠样本上 (图 3b). Cardiovasc Diabetol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell signaling, 2382s)被用于被用于免疫印迹在小鼠样本上 (图 3b). Cardiovasc Diabetol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling Technology, 2382)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). Nat Commun (2019) ncbi
domestic rabbit 单克隆(59G8)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling Technology, 2390s)被用于被用于免疫印迹在人类样本上 (图 4a). Eur J Obstet Gynecol Reprod Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3h
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling Technology, 2382)被用于被用于免疫印迹在小鼠样本上 (图 3h). Hepatology (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4f, 5f
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling, 2382)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4f, 5f). Br J Pharmacol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signalling, 2382)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). J Endocrinol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling, 3070)被用于被用于免疫印迹在人类样本上 (图 7). Mol Oncol (2017) ncbi
domestic rabbit 单克隆(C15H5)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling, 3203)被用于被用于免疫印迹在人类样本上 (图 2). Mol Oncol (2017) ncbi
小鼠 单克隆(L3D12)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling, 3194)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling, 2381)被用于被用于免疫印迹在小鼠样本上 (图 2a). Exp Clin Endocrinol Diabetes (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling, 2382)被用于被用于免疫印迹在小鼠样本上 (图 2a). Exp Clin Endocrinol Diabetes (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s20a
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling, 2382)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s20a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell signaling, 2580)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s8i
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell signalling, 2388)被用于被用于免疫印迹在小鼠样本上 (图 s8i). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:250; 图 5f
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling, 2382)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 5f). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(D23G12)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling Technology, 3407)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 st2
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell signaling, 2382)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 st2). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D23G12)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling, 3407)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D51C3)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling Technology, 5610)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Nat Immunol (2016) ncbi
domestic rabbit 单克隆(D23G12)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell signaling, 3407)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 6
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling, 2381)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 6). Physiol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling, 3070)被用于被用于免疫印迹在小鼠样本上 (图 6). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling, 2388)被用于被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling, 2385)被用于被用于免疫印迹在小鼠样本上 (图 3). Hepatology (2016) ncbi
小鼠 单克隆(L3D12)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling Technology, 3194)被用于被用于免疫印迹在人类样本上 (图 2a). Mol Endocrinol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling, 2388)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 3
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell signaling, 2381)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3). Free Radic Biol Med (2016) ncbi
domestic rabbit 单克隆(D23G12)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell signaling, 3407)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Free Radic Biol Med (2016) ncbi
domestic rabbit 单克隆(D23G12)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司IRS-1抗体(cell signaling, 3407)被用于被用于免疫印迹在人类样本上 (图 5). Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(D23G12)
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell Signaling, 3407)被用于被用于免疫印迹在小鼠样本上 (图 2e). Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 单克隆(D23G12)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司IRS-1抗体(Cell signaling, 3407)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. J Exerc Nutrition Biochem (2014) ncbi
碧迪BD
小鼠 单克隆(K9-211)
  • 其他; 人类; 图 st1
碧迪BDIRS-1抗体(BD, K9-211)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4f, 5f
西格玛奥德里奇IRS-1抗体(Sigma, I2658)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4f, 5f). Br J Pharmacol (2019) ncbi
文章列表
  1. Zhao M, Banhos Danneskiold Sams xf8 e N, Uličná L, Nguyen Q, Voilquin L, Lee D, et al. Phosphoproteomic mapping reveals distinct signaling actions and activation of muscle protein synthesis by Isthmin-1. elife. 2022;11: pubmed 出版商
  2. Park J, Li J, Mayer J, Ball K, Wu J, Hall C, et al. Activation of the insulin receptor by an insulin mimetic peptide. Nat Commun. 2022;13:5594 pubmed 出版商
  3. Erlandsson M, Erdogan S, Was xe9 n C, Andersson K, Silfversw xe4 rd S, Pullerits R, et al. IGF1R signalling is a guardian of self-tolerance restricting autoantibody production. Front Immunol. 2022;13:958206 pubmed 出版商
  4. Mahata T, Sengar A, Basak M, Das K, Pramanick A, Verma S, et al. Hepatic Regulator of G Protein Signaling 6 (RGS6) drives non-alcoholic fatty liver disease by promoting oxidative stress and ATM-dependent cell death. Redox Biol. 2021;46:102105 pubmed 出版商
  5. Coudert L, Osseni A, Gangloff Y, Schaeffer L, Leblanc P. The ESCRT-0 subcomplex component Hrs/Hgs is a master regulator of myogenesis via modulation of signaling and degradation pathways. BMC Biol. 2021;19:153 pubmed 出版商
  6. Lertpatipanpong P, Lee J, Kim I, Eling T, Oh S, Seong J, et al. The anti-diabetic effects of NAG-1/GDF15 on HFD/STZ-induced mice. Sci Rep. 2021;11:15027 pubmed 出版商
  7. Bruce J, Sánchez Alvarez R, Sans M, Sugden S, Qi N, James A, et al. Insulin protects acinar cells during pancreatitis by preserving glycolytic ATP supply to calcium pumps. Nat Commun. 2021;12:4386 pubmed 出版商
  8. Kearney A, Norris D, Ghomlaghi M, Kin Lok Wong M, Humphrey S, Carroll L, et al. Akt phosphorylates insulin receptor substrate to limit PI3K-mediated PIP3 synthesis. elife. 2021;10: pubmed 出版商
  9. Alanazy M, Bakry S, Alqahtani A, AlAkeel N, Alazwary N, Osman A, et al. Clinical features and outcome of Guillain-Barre syndrome in Saudi Arabia: a multicenter, retrospective study. BMC Neurol. 2021;21:275 pubmed 出版商
  10. Arunachalam P, Scott M, Hagan T, Li C, Feng Y, Wimmers F, et al. Systems vaccinology of the BNT162b2 mRNA vaccine in humans. Nature. 2021;596:410-416 pubmed 出版商
  11. Zilova L, Weinhardt V, Tavhelidse T, Schlagheck C, Thumberger T, Wittbrodt J. Fish primary embryonic pluripotent cells assemble into retinal tissue mirroring in vivo early eye development. elife. 2021;10: pubmed 出版商
  12. López Gambero A, Rosell Valle C, Medina Vera D, Navarro J, Vargas A, Rivera P, et al. A Negative Energy Balance Is Associated with Metabolic Dysfunctions in the Hypothalamus of a Humanized Preclinical Model of Alzheimer's Disease, the 5XFAD Mouse. Int J Mol Sci. 2021;22: pubmed 出版商
  13. Li L, Yang L, Yang F, Zhao X, Xue S, Gong F. Ginkgo biloba Extract 50 (GBE50) Ameliorates Insulin Resistance, Hepatic Steatosis and Liver Injury in High Fat Diet-Fed Mice. J Inflamm Res. 2021;14:1959-1971 pubmed 出版商
  14. Zou Z, Chai M, Guo F, Fu X, Lan Y, Cao S, et al. MicroRNA-126 engineered muscle-derived stem cells attenuates cavernosa injury-induced erectile dysfunction in rats. Aging (Albany NY). 2021;13:14399-14415 pubmed 出版商
  15. Luo L, Zhang Z, Qiu N, Ling L, Jia X, Song Y, et al. Disruption of FOXO3a-miRNA feedback inhibition of IGF2/IGF-1R/IRS1 signaling confers Herceptin resistance in HER2-positive breast cancer. Nat Commun. 2021;12:2699 pubmed 出版商
  16. Chen Y, Hu W, Li Q, Zhao S, Zhao D, Zhang S, et al. NGBR is required to ameliorate type 2 diabetes in mice by enhancing insulin sensitivity. J Biol Chem. 2021;296:100624 pubmed 出版商
  17. Li D, Sun S, Fu J, Ouyang S, Zhao Q, Su L, et al. NAD+-boosting therapy alleviates nonalcoholic fatty liver disease via stimulating a novel exerkine Fndc5/irisin. Theranostics. 2021;11:4381-4402 pubmed 出版商
  18. Wallace M, Aguirre N, Marcotte G, Marshall A, Baehr L, Hughes D, et al. The ketogenic diet preserves skeletal muscle with aging in mice. Aging Cell. 2021;20:e13322 pubmed 出版商
  19. Ogura Y, Tajiri K, Murakoshi N, Xu D, Yonebayashi S, Li S, et al. Neutrophil Elastase Deficiency Ameliorates Myocardial Injury Post Myocardial Infarction in Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  20. Pan S, Zhao X, Shao C, Fu B, Huang Y, Zhang N, et al. STIM1 promotes angiogenesis by reducing exosomal miR-145 in breast cancer MDA-MB-231 cells. Cell Death Dis. 2021;12:38 pubmed 出版商
  21. Eyler C, Matsunaga H, Hovestadt V, Vantine S, van Galen P, Bernstein B. Single-cell lineage analysis reveals genetic and epigenetic interplay in glioblastoma drug resistance. Genome Biol. 2020;21:174 pubmed 出版商
  22. Ruiz Velasco A, Zi M, Hille S, Azam T, Kaur N, Jiang J, et al. Targeting mir128-3p alleviates myocardial insulin resistance and prevents ischemia-induced heart failure. elife. 2020;9: pubmed 出版商
  23. Xu M, Ge C, Qin Y, Lou D, Li Q, Feng J, et al. Functional loss of inactive rhomboid-like protein 2 mitigates obesity by suppressing pro-inflammatory macrophage activation-triggered adipose inflammation. Mol Metab. 2020;34:112-123 pubmed 出版商
  24. Shi H, Wang Q, Zheng M, Hao S, Lum J, Chen X, et al. Supplement of microbiota-accessible carbohydrates prevents neuroinflammation and cognitive decline by improving the gut microbiota-brain axis in diet-induced obese mice. J Neuroinflammation. 2020;17:77 pubmed 出版商
  25. Yang S, Ma C, Wu H, Zhang H, Yuan F, Yang G, et al. Tectorigenin attenuates diabetic nephropathy by improving vascular endothelium dysfunction through activating AdipoR1/2 pathway. Pharmacol Res. 2020;153:104678 pubmed 出版商
  26. Tian S, Jia W, Lu M, Zhao J, Sun X. Dual-specificity tyrosine phosphorylation-regulated kinase 1A ameliorates insulin resistance in neurons by up-regulating IRS-1 expression. J Biol Chem. 2019;: pubmed 出版商
  27. Yang N, Yu L, Deng Y, Han Q, Wang J, Yu L, et al. Identification and characterization of proteins that are differentially expressed in adipose tissue of olanzapine-induced insulin resistance rat by iTRAQ quantitative proteomics. J Proteomics. 2020;212:103570 pubmed 出版商
  28. Uddin G, Zhang L, Shah S, Fukushima A, Wagg C, Gopal K, et al. Impaired branched chain amino acid oxidation contributes to cardiac insulin resistance in heart failure. Cardiovasc Diabetol. 2019;18:86 pubmed 出版商
  29. Ogawa S, Yamada M, Nakamura A, Sugawara T, Nakamura A, Miyajima S, et al. Zscan5b Deficiency Impairs DNA Damage Response and Causes Chromosomal Aberrations during Mitosis. Stem Cell Reports. 2019;12:1366-1379 pubmed 出版商
  30. Bazzari F, Abdallah D, El Abhar H. Chenodeoxycholic Acid Ameliorates AlCl3-Induced Alzheimer's Disease Neurotoxicity and Cognitive Deterioration via Enhanced Insulin Signaling in Rats. Molecules. 2019;24: pubmed 出版商
  31. Hwang J, Kim A, Kim K, Il Park J, Oh H, Moon S, et al. TAZ couples Hippo/Wnt signalling and insulin sensitivity through Irs1 expression. Nat Commun. 2019;10:421 pubmed 出版商
  32. He T, Liu Y, Zhao S, Liu H, Wang Z, Shi Y. Comprehensive assessment the expression of core elements related to IGFIR/PI3K pathway in granulosa cells of women with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol. 2019;233:134-140 pubmed 出版商
  33. Ye P, Liu J, Xu W, Liu D, Ding X, Le S, et al. Dual-Specificity Phosphatase 26 Protects Against Nonalcoholic Fatty Liver Disease in Mice Through Transforming Growth Factor Beta-Activated Kinase 1 Suppression. Hepatology. 2019;69:1946-1964 pubmed 出版商
  34. Zhou X, Zhang R, Zou Z, Shen X, Xie T, Xu C, et al. Hypoglycaemic effects of glimepiride in sulfonylurea receptor 1 deficient rat. Br J Pharmacol. 2019;176:478-490 pubmed 出版商
  35. Ameen G, Mora S. Cbl downregulation increases RBP4 expression in adipocytes of female mice. J Endocrinol. 2018;236:29-41 pubmed 出版商
  36. Baumann C, Ullrich A, Torka R. GAS6-expressing and self-sustaining cancer cells in 3D spheroids activate the PDK-RSK-mTOR pathway for survival and drug resistance. Mol Oncol. 2017;11:1430-1447 pubmed 出版商
  37. Wang H, Lee K, Pei Z, Khan A, Bakshi K, Burns L. PTI-125 binds and reverses an altered conformation of filamin A to reduce Alzheimer's disease pathogenesis. Neurobiol Aging. 2017;55:99-114 pubmed 出版商
  38. Vidal Quadras M, Holst M, Francis M, Larsson E, Hachimi M, Yau W, et al. Endocytic turnover of Rab8 controls cell polarization. J Cell Sci. 2017;130:1147-1157 pubmed 出版商
  39. Yu N, Fang X, Zhao D, Mu Q, Zuo J, Ma Y, et al. Anti-Diabetic Effects of Jiang Tang Xiao Ke Granule via PI3K/Akt Signalling Pathway in Type 2 Diabetes KKAy Mice. PLoS ONE. 2017;12:e0168980 pubmed 出版商
  40. Tian X, Ye M, Cao Y, Wang C. Losartan Improves Palmitate-Induced Insulin Resistance in 3T3-L1 Adipocytes Through Upregulation of Src Phosphorylation. Exp Clin Endocrinol Diabetes. 2017;125:136-140 pubmed 出版商
  41. Liu Z, Gan L, Wu T, Feng F, Luo D, Gu H, et al. Adiponectin reduces ER stress-induced apoptosis through PPARα transcriptional regulation of ATF2 in mouse adipose. Cell Death Dis. 2016;7:e2487 pubmed 出版商
  42. Wang X, Cao Q, Yu L, Shi H, Xue B, Shi H. Epigenetic regulation of macrophage polarization and inflammation by DNA methylation in obesity. JCI Insight. 2016;1:e87748 pubmed 出版商
  43. Boo H, Min H, Jang H, Yun H, Smith J, Jin Q, et al. The tobacco-specific carcinogen-operated calcium channel promotes lung tumorigenesis via IGF2 exocytosis in lung epithelial cells. Nat Commun. 2016;7:12961 pubmed 出版商
  44. Na H, Hegde V, Dubuisson O, Dhurandhar N. E4orf1 Enhances Glucose Uptake Independent of Proximal Insulin Signaling. PLoS ONE. 2016;11:e0161275 pubmed 出版商
  45. Tsai S, Rodriguez A, Dastidar S, Del Greco E, Carr K, Sitzmann J, et al. Increased 4E-BP1 Expression Protects against Diet-Induced Obesity and Insulin Resistance in Male Mice. Cell Rep. 2016;16:1903-14 pubmed 出版商
  46. Metz H, Kargl J, Busch S, Kim K, Kurland B, Abberbock S, et al. Insulin receptor substrate-1 deficiency drives a proinflammatory phenotype in KRAS mutant lung adenocarcinoma. Proc Natl Acad Sci U S A. 2016;113:8795-800 pubmed 出版商
  47. Roychowdhury S, McCullough R, Sanz Garcia C, Saikia P, Alkhouri N, Matloob A, et al. Receptor interacting protein 3 protects mice from high-fat diet-induced liver injury. Hepatology. 2016;64:1518-1533 pubmed 出版商
  48. Leonard S, Kinsella G, Benetti E, Findlay J. Regulating the effects of GPR21, a novel target for type 2 diabetes. Sci Rep. 2016;6:27002 pubmed 出版商
  49. Gharib M, Tao H, Fungwe T, Hajri T. Cluster Differentiating 36 (CD36) Deficiency Attenuates Obesity-Associated Oxidative Stress in the Heart. PLoS ONE. 2016;11:e0155611 pubmed 出版商
  50. Wang K, Cao P, Wang H, Tang Z, Wang N, Wang J, et al. Chronic administration of Angelica sinensis polysaccharide effectively improves fatty liver and glucose homeostasis in high-fat diet-fed mice. Sci Rep. 2016;6:26229 pubmed 出版商
  51. Swamy M, Pathak S, Grzes K, Damerow S, Sinclair L, van Aalten D, et al. Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nat Immunol. 2016;17:712-20 pubmed 出版商
  52. Dinger K, Kasper P, Hucklenbruch Rother E, Vohlen C, Jobst E, Janoschek R, et al. Early-onset obesity dysregulates pulmonary adipocytokine/insulin signaling and induces asthma-like disease in mice. Sci Rep. 2016;6:24168 pubmed 出版商
  53. Talukder M, Preda M, Ryzhova L, Prudovsky I, PINZ I. Heterozygous caveolin-3 mice show increased susceptibility to palmitate-induced insulin resistance. Physiol Rep. 2016;4: pubmed 出版商
  54. Winnay J, Solheim M, Dirice E, Sakaguchi M, Noh H, Kang H, et al. PI3-kinase mutation linked to insulin and growth factor resistance in vivo. J Clin Invest. 2016;126:1401-12 pubmed 出版商
  55. Atiq R, Hertz R, Eldad S, Smeir E, Bar Tana J. Suppression of B-Raf(V600E) cancers by MAPK hyper-activation. Oncotarget. 2016;7:18694-704 pubmed 出版商
  56. Gong Q, Hu Z, Zhang F, Cui A, Chen X, Jiang H, et al. Fibroblast growth factor 21 improves hepatic insulin sensitivity by inhibiting mammalian target of rapamycin complex 1 in mice. Hepatology. 2016;64:425-38 pubmed 出版商
  57. Liao B, McManus S, Hughes W, Schmitz Peiffer C. Flavin-Containing Monooxygenase 3 Reduces Endoplasmic Reticulum Stress in Lipid-Treated Hepatocytes. Mol Endocrinol. 2016;30:417-28 pubmed 出版商
  58. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  59. Kim K, Qiang L, Hayden M, Sparling D, Purcell N, Pajvani U. mTORC1-independent Raptor prevents hepatic steatosis by stabilizing PHLPP2. Nat Commun. 2016;7:10255 pubmed 出版商
  60. Barone E, Di Domenico F, Cassano T, Arena A, Tramutola A, Lavecchia M, et al. Impairment of biliverdin reductase-A promotes brain insulin resistance in Alzheimer disease: A new paradigm. Free Radic Biol Med. 2016;91:127-42 pubmed 出版商
  61. Garwood C, Ratcliffe L, Morgan S, Simpson J, Owens H, Vazquez Villaseñor I, et al. Insulin and IGF1 signalling pathways in human astrocytes in vitro and in vivo; characterisation, subcellular localisation and modulation of the receptors. Mol Brain. 2015;8:51 pubmed 出版商
  62. Barbone D, Follo C, Echeverry N, Gerbaudo V, Klabatsa A, Bueno R, et al. Autophagy Correlates with the Therapeutic Responsiveness of Malignant Pleural Mesothelioma in 3D Models. PLoS ONE. 2015;10:e0134825 pubmed 出版商
  63. Meyer K, Albaugh B, Schoenike B, Roopra A. Type 1 Insulin-Like Growth Factor Receptor/Insulin Receptor Substrate 1 Signaling Confers Pathogenic Activity on Breast Tumor Cells Lacking REST. Mol Cell Biol. 2015;35:2991-3004 pubmed 出版商
  64. Vishwamitra D, Curry C, Alkan S, Song Y, Gallick G, Kaseb A, et al. The transcription factors Ik-1 and MZF1 downregulate IGF-IR expression in NPM-ALK⁺ T-cell lymphoma. Mol Cancer. 2015;14:53 pubmed 出版商
  65. Shi Y, Chen J, Karner C, Long F. Hedgehog signaling activates a positive feedback mechanism involving insulin-like growth factors to induce osteoblast differentiation. Proc Natl Acad Sci U S A. 2015;112:4678-83 pubmed 出版商
  66. Nakazawa H, Yamada M, Tanaka T, Kramer J, Yu Y, Fischman A, et al. Role of protein farnesylation in burn-induced metabolic derangements and insulin resistance in mouse skeletal muscle. PLoS ONE. 2015;10:e0116633 pubmed 出版商
  67. Kang E, Cho J. Effects of treadmill exercise on brain insulin signaling and β-amyloid in intracerebroventricular streptozotocin induced-memory impairment in rats. J Exerc Nutrition Biochem. 2014;18:89-96 pubmed 出版商
  68. Passos E, Pereira C, Gonçalves I, Rocha Rodrigues S, Silva N, Guimarães J, et al. Role of physical exercise on hepatic insulin, glucocorticoid and inflammatory signaling pathways in an animal model of non-alcoholic steatohepatitis. Life Sci. 2015;123:51-60 pubmed 出版商
  69. Xu W, Yang X, Li D, Zheng K, Qiu P, Zhang W, et al. Up-regulation of fatty acid oxidation in the ligament as a contributing factor of ankylosing spondylitis: A comparative proteomic study. J Proteomics. 2015;113:57-72 pubmed 出版商
  70. El Ami T, Moll L, Carvalhal Marques F, Volovik Y, Reuveni H, Cohen E. A novel inhibitor of the insulin/IGF signaling pathway protects from age-onset, neurodegeneration-linked proteotoxicity. Aging Cell. 2014;13:165-74 pubmed 出版商