这是一篇来自已证抗体库的有关人类 ISL1的综述,是根据110篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合ISL1 抗体。
ISL1 同义词: ISLET1; Isl-1

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR10362)
  • 免疫细胞化学; 小鼠; 1:100; 图 1e
艾博抗(上海)贸易有限公司 ISL1抗体(Abcam, ab178400)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1e). Stem Cell Res Ther (2022) ncbi
小鼠 单克隆(1H9)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s4c
艾博抗(上海)贸易有限公司 ISL1抗体(Abcam, ab86472)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s4c). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 1a
艾博抗(上海)贸易有限公司 ISL1抗体(Abcam, Ab20670)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 1a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 s6b
艾博抗(上海)贸易有限公司 ISL1抗体(Abcam, ab20670)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s6b). Sci Rep (2020) ncbi
domestic rabbit 单克隆(EP4182)
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 3a
  • 免疫组化-冰冻切片; 鸡; 1:2000; 图 1b
艾博抗(上海)贸易有限公司 ISL1抗体(Abcam, ab109517)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 3a) 和 被用于免疫组化-冰冻切片在鸡样本上浓度为1:2000 (图 1b). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 1d
艾博抗(上海)贸易有限公司 ISL1抗体(Abcam, ab20670)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1d). Sci Rep (2018) ncbi
domestic rabbit 单克隆(EP4182)
  • 免疫组化; 小鼠; 1:100; 图 4a
艾博抗(上海)贸易有限公司 ISL1抗体(Abcam, ab109517)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4a). Dev Biol (2017) ncbi
domestic rabbit 单克隆(EP4182)
  • 免疫组化-冰冻切片; 人类; 1:2000
  • 免疫细胞化学; 人类; 1:2000; 图 e1c
艾博抗(上海)贸易有限公司 ISL1抗体(Abcam, AB109517)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:2000 和 被用于免疫细胞化学在人类样本上浓度为1:2000 (图 e1c). Nature (2017) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 图 s3e
艾博抗(上海)贸易有限公司 ISL1抗体(Abcam, ab20670)被用于被用于流式细胞仪在人类样本上 (图 s3e). Cell (2016) ncbi
domestic rabbit 单克隆(EP4182)
  • 免疫印迹; 小鼠; 图 3
艾博抗(上海)贸易有限公司 ISL1抗体(Abcam, ab109517)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(1H9)
  • 免疫组化; 人类; 1:1500; 图 2b
艾博抗(上海)贸易有限公司 ISL1抗体(Abcam, 1H9)被用于被用于免疫组化在人类样本上浓度为1:1500 (图 2b). Pathol Res Pract (2016) ncbi
domestic rabbit 单克隆(EP4182)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 2
艾博抗(上海)贸易有限公司 ISL1抗体(abcam, ab109517)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 2). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(EP4182)
  • 免疫印迹; 小鼠; 图 6
  • 染色质免疫沉淀 ; 仓鼠; 图 1
艾博抗(上海)贸易有限公司 ISL1抗体(Abcam, ab109517)被用于被用于免疫印迹在小鼠样本上 (图 6) 和 被用于染色质免疫沉淀 在仓鼠样本上 (图 1). Cell Cycle (2015) ncbi
domestic rabbit 单克隆(EP4182)
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 3
艾博抗(上海)贸易有限公司 ISL1抗体(Abcam, AB109517)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 3). Development (2015) ncbi
domestic rabbit 单克隆(EP4182)
  • 免疫细胞化学; 人类; 1:200; 图 4c
  • 免疫印迹; 人类; 图 4d
艾博抗(上海)贸易有限公司 ISL1抗体(Abcam, ab109517)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4c) 和 被用于免疫印迹在人类样本上 (图 4d). Cell Death Dis (2015) ncbi
小鼠 单克隆(1H9)
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司 ISL1抗体(Abcam, ab86472)被用于被用于免疫组化在人类样本上. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(1H9)
  • 流式细胞仪; 人类
艾博抗(上海)贸易有限公司 ISL1抗体(Abcam, Ab86472)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2013) ncbi
赛默飞世尔
小鼠 单克隆(1H9)
  • 免疫细胞化学; 人类; 1:1000; 图 3s5a
  • 免疫细胞化学; African green monkey; 1:1000; 图 3s5a
赛默飞世尔 ISL1抗体(Invitrogen, MA5-15515)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3s5a) 和 被用于免疫细胞化学在African green monkey样本上浓度为1:1000 (图 3s5a). elife (2021) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(2.00E+07)
  • ChIP-Seq; 人类
亚诺法生技股份有限公司 ISL1抗体(Abnova, H00003670-M05)被用于被用于ChIP-Seq在人类样本上. Front Genet (2015) ncbi
小鼠 单克隆(2.00E+07)
  • 免疫沉淀; 仓鼠; 图 2
  • 免疫沉淀; 小鼠; 图 6
亚诺法生技股份有限公司 ISL1抗体(Abnova, H00003670-M05)被用于被用于免疫沉淀在仓鼠样本上 (图 2) 和 被用于免疫沉淀在小鼠样本上 (图 6). Cell Cycle (2015) ncbi
小鼠 单克隆(2.00E+07)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类; 图 2
亚诺法生技股份有限公司 ISL1抗体(Abnova, H00003670-M05)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上 (图 2). Biochem Biophys Res Commun (2014) ncbi
安迪生物R&D
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 2d
安迪生物R&D ISL1抗体(R&D Systems, AF1837)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2d). Development (2021) ncbi
圣克鲁斯生物技术
小鼠 单克隆(B-1)
  • 免疫印迹; 大鼠; 图 3c
圣克鲁斯生物技术 ISL1抗体(Santa Cruz, sc-390793)被用于被用于免疫印迹在大鼠样本上 (图 3c). Am J Transl Res (2016) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(PCRP-ISL1-1A9)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1d
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, PCRP-ISL1-1A9)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1d). elife (2022) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 2r
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 2r). Cell Rep (2022) ncbi
小鼠 单克隆(40.2D6)
  • 免疫组化基因敲除验证; 人类; 图 1d
  • 免疫组化基因敲除验证; African green monkey; 图 s6a
  • 免疫组化-冰冻切片; African green monkey; 图 s6a
  • 免疫组化-冰冻切片; 大鼠; 图 2f
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 40.2D6)被用于被用于免疫组化基因敲除验证在人类样本上 (图 1d), 被用于免疫组化基因敲除验证在African green monkey样本上 (图 s6a), 被用于免疫组化-冰冻切片在African green monkey样本上 (图 s6a) 和 被用于免疫组化-冰冻切片在大鼠样本上 (图 2f). iScience (2022) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化; 小鼠; 图 6g
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫组化在小鼠样本上 (图 6g). Cell Rep Methods (2021) ncbi
小鼠 单克隆(40.3A4)
  • 免疫组化; 小鼠; 1:50; 图 8m
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 40.3A4)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 8m). BMC Biol (2021) ncbi
小鼠 单克隆(40.2D6)
  • 免疫组化; 小鼠; 1:30; 图 2d
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 40.2D6)被用于被用于免疫组化在小鼠样本上浓度为1:30 (图 2d). Int J Mol Sci (2021) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化; 小鼠; 1:20,000; 图 1e
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫组化在小鼠样本上浓度为1:20,000 (图 1e). Cell Rep (2021) ncbi
小鼠 单克隆(40.2D6)
  • 免疫组化; 小鼠; 1:200
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 40.2D6)被用于被用于免疫组化在小鼠样本上浓度为1:200. Sci Adv (2021) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 e1b, e4b
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 e1b, e4b). Nat Neurosci (2021) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化; 小鼠; 1:500; 图 4k, 4l
Developmental Studies Hybridoma Bank ISL1抗体(DHSB, 39.4D5)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4k, 4l). elife (2020) ncbi
小鼠 单克隆(39.4D5)
  • 免疫细胞化学; 人类; 1:300; 图 2b
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 2b). elife (2020) ncbi
小鼠 单克隆(40.3A4)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 s2c
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 40.3A4)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 s2c). Nat Commun (2020) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化-冰冻切片; 斑马鱼; 1:100; 图 1s1a
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:100 (图 1s1a). elife (2020) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化-冰冻切片; 小鼠; 1:20; 图 3a
Developmental Studies Hybridoma Bank ISL1抗体(Developmental Studies Hybridoma Bank, 39.4D5)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:20 (图 3a). Mol Metab (2020) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化; 小鼠; 1:200; 图 1d
Developmental Studies Hybridoma Bank ISL1抗体(DHSB, 39.4D5)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1d). Cell Rep (2020) ncbi
小鼠 单克隆(PCRP-ISL1-1A9)
  • 免疫组化; 小鼠; 1:400; 图 1f
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, PCRP-ISL1-1A9)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 1f). Development (2020) ncbi
小鼠 单克隆(40.2D6)
  • 免疫细胞化学; 人类; 图 1c
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 40.2D6)被用于被用于免疫细胞化学在人类样本上 (图 1c). Cell Rep (2020) ncbi
小鼠 单克隆(40.2D6)
  • 免疫细胞化学; 小鼠; 1:50; 图 s5d
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 40.2D6)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 s5d). Cell Rep (2019) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化; 斑马鱼; 1:300; 图 s3d
Developmental Studies Hybridoma Bank ISL1抗体(Developmental Studies Hybridoma Bank, 39.4D5)被用于被用于免疫组化在斑马鱼样本上浓度为1:300 (图 s3d). Cell (2019) ncbi
小鼠 单克隆(40.2D6)
  • 免疫组化; 小鼠; 1:50; 图 1d
Developmental Studies Hybridoma Bank ISL1抗体(Developmental Studies Hybridoma Bank, 40.2D6)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 1d). Cell Death Dis (2019) ncbi
小鼠 单克隆(40.2D6)
  • 免疫印迹; slender lungfish; 1:500; 图 2
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 40.2D6)被用于被用于免疫印迹在slender lungfish样本上浓度为1:500 (图 2). J Comp Neurol (2020) ncbi
小鼠 单克隆(40.2D6)
  • 免疫组化-冰冻切片; 鸡; 1:100; 图 5b
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 40.2D6)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:100 (图 5b). Sci Rep (2019) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 2f
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5-s)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 2f). Science (2019) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 6f
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 6f). J Comp Neurol (2019) ncbi
小鼠 单克隆(39.4D5)
  • 免疫印迹基因敲除验证; 小鼠; 1:10; 图 s4b
  • ChIP-Seq; 小鼠; 图 5b
  • 染色质免疫沉淀 ; 小鼠; 图 s7c
  • 免疫沉淀; 小鼠; 图 5k
  • 免疫印迹; 小鼠; 1:10; 图 5a
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:10 (图 s4b), 被用于ChIP-Seq在小鼠样本上 (图 5b), 被用于染色质免疫沉淀 在小鼠样本上 (图 s7c), 被用于免疫沉淀在小鼠样本上 (图 5k) 和 被用于免疫印迹在小鼠样本上浓度为1:10 (图 5a). Cell Res (2019) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化-冰冻切片; 小鼠; 图 5d
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4d5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5d). Dev Biol (2019) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化; 小鼠; 1:100; 图 6f
Developmental Studies Hybridoma Bank ISL1抗体(DSH Bank, 39.4D5)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6f). elife (2019) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化-冰冻切片; 人类; 1:20; 图 6a
  • 流式细胞仪; 人类; 1:100; 图 7e
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:20 (图 6a) 和 被用于流式细胞仪在人类样本上浓度为1:100 (图 7e). Dev Cell (2019) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化-石蜡切片; 人类; 1:150; 图 3w
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (图 3w). elife (2018) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化; 小鼠; 图 2c
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫组化在小鼠样本上 (图 2c). J Clin Invest (2018) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化; 小鼠; 1:100; 图 1a
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1a). J Comp Neurol (2019) ncbi
小鼠 单克隆(40.2D6)
  • 免疫组化; 人类; 1:100; 图 6b
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 40.2D6)被用于被用于免疫组化在人类样本上浓度为1:100 (图 6b). J Comp Neurol (2019) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 4c
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 4c). Gene Expr Patterns (2018) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化-冰冻切片; 小鼠; 图 6d
Developmental Studies Hybridoma Bank ISL1抗体(Developmental Studies Hybridoma Bank, 39.4D5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6d). Dev Biol (2018) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 1i
Developmental Studies Hybridoma Bank ISL1抗体(Developmental Hybridoma Bank, 39.4D5)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 1i). J Comp Neurol (2018) ncbi
小鼠 单克隆(39.4D5)
  • 免疫细胞化学; 人类; 图 2h
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫细胞化学在人类样本上 (图 2h). Cell Stem Cell (2017) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3e
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3e). J Comp Neurol (2017) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化-自由浮动切片; 非洲爪蛙; 1:500; 表 2
Developmental Studies Hybridoma Bank ISL1抗体(Developmental Studies Hybridoma Bank, 39.4D5)被用于被用于免疫组化-自由浮动切片在非洲爪蛙样本上浓度为1:500 (表 2). Front Neuroanat (2017) ncbi
小鼠 单克隆(40.2D6)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1b
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 40.2D6)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1b). Nat Commun (2017) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1b
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1b). Nat Commun (2017) ncbi
小鼠 单克隆(39.4D5)
  • 免疫细胞化学; 人类; 1:200; 图 st4
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5-c)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 st4). Nat Biotechnol (2017) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化; 斑马鱼; 1:10; 图 1a
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫组化在斑马鱼样本上浓度为1:10 (图 1a). Sci Rep (2017) ncbi
小鼠 单克隆(39.4D5)
  • 免疫细胞化学; 小鼠; 图 1b
Developmental Studies Hybridoma Bank ISL1抗体(Developmental Studies Hybridoma Bank, 39.4D5)被用于被用于免疫细胞化学在小鼠样本上 (图 1b). Stem Cells Int (2016) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5e
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5e). Dis Model Mech (2017) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s5k
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s5k). Sci Rep (2016) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化; 小鼠; 1:400; 图 s9
Developmental Studies Hybridoma Bank ISL1抗体(Hybridoma Bank, 39.4D5)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 s9). Science (2016) ncbi
小鼠 单克隆(40.2D6)
  • 免疫组化; 小鼠; 1:400; 图 s9
Developmental Studies Hybridoma Bank ISL1抗体(Hybridoma Bank, 40.2D6)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 s9). Science (2016) ncbi
小鼠 单克隆(39.4D5)
  • 流式细胞仪; 人类; 1:200; 图 s9c
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5-c)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 s9c). Nat Med (2016) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化; 小鼠; 图 5a
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫组化在小鼠样本上 (图 5a). Neural Dev (2016) ncbi
小鼠 单克隆(40.3A4)
  • 免疫细胞化学; 小鼠; 1:10; 图 3a
Developmental Studies Hybridoma Bank ISL1抗体(developmental studies hybridoma bank, 40.3A4-5)被用于被用于免疫细胞化学在小鼠样本上浓度为1:10 (图 3a). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(40.2D6)
  • 免疫细胞化学; 小鼠; 1:10; 图 3a
Developmental Studies Hybridoma Bank ISL1抗体(developmental studies hybridoma bank, 40.2D6)被用于被用于免疫细胞化学在小鼠样本上浓度为1:10 (图 3a). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化; 小鼠; 图 3s2
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫组化在小鼠样本上 (图 3s2). elife (2016) ncbi
小鼠 单克隆(39.4D5)
  • 免疫细胞化学; 小鼠; 1:200; 图 4
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化; 小鼠; 1:500; 图 1a
Developmental Studies Hybridoma Bank ISL1抗体(Hybridoma bank, 39.4D5)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1a). Cereb Cortex (2016) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化; 小鼠; 1:100; 图 6
Developmental Studies Hybridoma Bank ISL1抗体(Developmental Studies Hybridoma Bank, 39.4D5)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6). J Comp Neurol (2016) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化; 斑马鱼; 1:10; 图 s4
  • 免疫组化; 小鼠; 1:100; 图 1
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫组化在斑马鱼样本上浓度为1:10 (图 s4) 和 被用于免疫组化在小鼠样本上浓度为1:100 (图 1). PLoS Genet (2016) ncbi
小鼠 单克隆(40.2D6)
  • 免疫组化-冰冻切片; 斑马鱼; 1:100; 图 2
Developmental Studies Hybridoma Bank ISL1抗体(Developmental Studies Hybridoma Bank, 40.2D6)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:100 (图 2). Restor Neurol Neurosci (2016) ncbi
小鼠 单克隆(39.4D5)
  • 免疫细胞化学; 人类; 1:100; 图 s4
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s4). Nature (2016) ncbi
小鼠 单克隆(39.4D5)
  • 免疫细胞化学; 人类; 1:500; 表 1
Developmental Studies Hybridoma Bank ISL1抗体(Developmental Studies Hybridoma Bank, 39.4D5)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (表 1). Exp Eye Res (2016) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化-冰冻切片; 小鼠; 1:250-1:500; 图 1
Developmental Studies Hybridoma Bank ISL1抗体(DHSB, 39.4D5)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250-1:500 (图 1). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化-冰冻切片; 鸡; 1:5000; 表 1
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:5000 (表 1). PLoS ONE (2015) ncbi
小鼠 单克隆(39.4D5)
  • 免疫沉淀; 小鼠; 图 1c
  • 免疫组化; 小鼠; 1:1000; 图 2
  • 免疫印迹; 小鼠; 1:1000; 图 1a
  • 免疫组化; 人类; 图 5d
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫沉淀在小鼠样本上 (图 1c), 被用于免疫组化在小鼠样本上浓度为1:1000 (图 2), 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a) 和 被用于免疫组化在人类样本上 (图 5d). Mol Endocrinol (2015) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化; 小鼠; 图 6
Developmental Studies Hybridoma Bank ISL1抗体(Developmental Studies Hybridoma Bank (DSHB), 39.4D5)被用于被用于免疫组化在小鼠样本上 (图 6). Neural Dev (2015) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化; 小鼠; 1:50
Developmental Studies Hybridoma Bank ISL1抗体(Developmental Studies Hybridoma Bank developed under the auspices, 39.4D5)被用于被用于免疫组化在小鼠样本上浓度为1:50. Dev Biol (2016) ncbi
小鼠 单克隆(40.2D6)
  • 免疫组化; 小鼠; 1:100; 图 4
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 40.2D6)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4). PLoS Genet (2015) ncbi
小鼠 单克隆(40.2D6)
  • 免疫组化; 人类; 1:200; 图 1
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 40.2D6)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(39.4D5)
  • 免疫细胞化学; 人类; 1:50; 图 5
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 5). Dis Model Mech (2015) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1j
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1j). J Neurosci (2015) ncbi
小鼠 单克隆(40.3A4)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 2
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 40.3A4)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 2). Exp Anim (2015) ncbi
小鼠 单克隆(40.2D6)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4m-o
Developmental Studies Hybridoma Bank ISL1抗体(杂交瘤细胞, 40.2D6)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4m-o). BMC Biol (2015) ncbi
小鼠 单克隆(40.2D6)
  • 免疫组化; 小鼠; 1:750
Developmental Studies Hybridoma Bank ISL1抗体(Developmental Studies Hybridoma Bank, 40.2D6)被用于被用于免疫组化在小鼠样本上浓度为1:750. J Neurosci (2015) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化; 小鼠; 1:100; 图 2
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(40.2D6)
  • 免疫组化; 小鼠; 图 s5
Developmental Studies Hybridoma Bank ISL1抗体(Developmental Studies Hybridoma Bank, 40.2D6-c)被用于被用于免疫组化在小鼠样本上 (图 s5). Dev Cell (2015) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化-冰冻切片; 鸡; 1:20; 图 1
Developmental Studies Hybridoma Bank ISL1抗体(Developmental Studies Hybridoma Bank, 39.4D5)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:20 (图 1). Dev Neurobiol (2015) ncbi
小鼠 单克隆(40.2D6)
  • 免疫组化-冰冻切片; 鸡; 1:20; 图 1
Developmental Studies Hybridoma Bank ISL1抗体(Developmental Studies Hybridoma Bank, 40.2D6)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:20 (图 1). Dev Neurobiol (2015) ncbi
小鼠 单克隆(40.2D6)
  • 免疫组化-石蜡切片; 小鼠; 1:600; 图 4
Developmental Studies Hybridoma Bank ISL1抗体(Developmental Studies Hybridoma Bank at the University of Iowa, 40.2D6)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:600 (图 4). Mol Endocrinol (2015) ncbi
小鼠 单克隆(40.2D6)
  • 免疫组化-冰冻切片; 大鼠; 1:300; 图 2
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 40.2D6)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:300 (图 2). Invest Ophthalmol Vis Sci (2015) ncbi
小鼠 单克隆(40.2D6)
  • 免疫印迹; 小鼠; 1:200
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 40.2D6)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Nat Neurosci (2015) ncbi
小鼠 单克隆(40.2D6)
  • 免疫组化; 人类; 1:200; 图 2e
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 40.2D6)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2e). Hum Mol Genet (2015) ncbi
小鼠 单克隆(39.4D5)
  • 免疫细胞化学; 人类; 1:100; 图 5
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5). Nat Biotechnol (2015) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 5a
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 5a). Dev Dyn (2015) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化; 小鼠; 1:500
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5-b)被用于被用于免疫组化在小鼠样本上浓度为1:500. J Neurosci (2014) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
  • 染色质免疫沉淀 ; 小鼠
  • EMSA; 小鼠
Developmental Studies Hybridoma Bank ISL1抗体(Hybridoma Bank, 39.4D5)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000, 被用于染色质免疫沉淀 在小鼠样本上 和 被用于EMSA在小鼠样本上. Diabetes (2014) ncbi
小鼠 单克隆(40.2D6)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
  • EMSA; 小鼠
Developmental Studies Hybridoma Bank ISL1抗体(Hybridoma Bank, 40.2D6)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 和 被用于EMSA在小鼠样本上. Diabetes (2014) ncbi
小鼠 单克隆(40.3A4)
  • EMSA; 小鼠
Developmental Studies Hybridoma Bank ISL1抗体(Hybridoma Bank, 40.3A4)被用于被用于EMSA在小鼠样本上. Diabetes (2014) ncbi
小鼠 单克隆(40.2D6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 40.2.D6)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3). Nat Commun (2014) ncbi
小鼠 单克隆(40.2D6)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫印迹; 小鼠
Developmental Studies Hybridoma Bank ISL1抗体(Developmental Studies Hybridoma Bank, 40.2D6)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. BMC Biol (2014) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化-冰冻切片; 鸡; 1:20
  • 免疫组化; 鸡; 1:20
Developmental Studies Hybridoma Bank ISL1抗体(Developmental Studies Hybridoma Bank, 39.4D5)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:20 和 被用于免疫组化在鸡样本上浓度为1:20. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化-自由浮动切片; 非洲爪蛙; 1:500
Developmental Studies Hybridoma Bank ISL1抗体(Developmental Studies Hybridoma bank, 39.4D5)被用于被用于免疫组化-自由浮动切片在非洲爪蛙样本上浓度为1:500. J Comp Neurol (2014) ncbi
小鼠 单克隆(39.4D5)
  • 免疫细胞化学; 家羊; 图 5
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫细胞化学在家羊样本上 (图 5). J Tissue Eng Regen Med (2016) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化; 小鼠; 图 2
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 39.4D5)被用于被用于免疫组化在小鼠样本上 (图 2). Brain Struct Funct (2014) ncbi
小鼠 单克隆(40.2D6)
  • 免疫组化; 小鼠; 图 2
Developmental Studies Hybridoma Bank ISL1抗体(DSHB, 40.2D6)被用于被用于免疫组化在小鼠样本上 (图 2). Brain Struct Funct (2014) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化-石蜡切片; 大鼠; 1:200
Developmental Studies Hybridoma Bank ISL1抗体(Developmental, 39.4D5 Ms)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. J Comp Neurol (2013) ncbi
小鼠 单克隆(39.4D5)
  • 免疫组化; 小鼠; 1:100
Developmental Studies Hybridoma Bank ISL1抗体(Developmental Studies Hybridoma Bank, 39.4D5-s)被用于被用于免疫组化在小鼠样本上浓度为1:100. J Comp Neurol (2013) ncbi
碧迪BD
小鼠 单克隆(Q11-465)
  • 流式细胞仪; 人类; 图 s4d
碧迪BD ISL1抗体(BD Biosciences, 562547)被用于被用于流式细胞仪在人类样本上 (图 s4d). iScience (2022) ncbi
小鼠 单克隆(Q11-465)
  • 流式细胞仪; 人类; 1:100; 图 7e
碧迪BD ISL1抗体(BD Biosciences, 562547)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 7e). Dev Cell (2019) ncbi
小鼠 单克隆(Q11-465)
  • 流式细胞仪; 人类; 1:100; 图 4d
碧迪BD ISL1抗体(BD Biosciences, Q11-465)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 4d). Stem Cell Reports (2017) ncbi
小鼠 单克隆(Q11-465)
  • 流式细胞仪; 人类; 1:40; 图 s1
碧迪BD ISL1抗体(BD, 562547)被用于被用于流式细胞仪在人类样本上浓度为1:40 (图 s1). Diabetes (2016) ncbi
文章列表
  1. Leonard C, Quiros J, Lefcort F, Taneyhill L. Loss of Elp1 disrupts trigeminal ganglion neurodevelopment in a model of familial dysautonomia. elife. 2022;11: pubmed 出版商
  2. Schembs L, Willems A, Hasenpusch Theil K, Cooper J, Whiting K, Burr K, et al. The ciliary gene INPP5E confers dorsal telencephalic identity to human cortical organoids by negatively regulating Sonic hedgehog signaling. Cell Rep. 2022;39:110811 pubmed 出版商
  3. Zhu H, Liu X, DING Y, Tan K, Ni W, Ouyang W, et al. IL-6 coaxes cellular dedifferentiation as a pro-regenerative intermediate that contributes to pericardial ADSC-induced cardiac repair. Stem Cell Res Ther. 2022;13:44 pubmed 出版商
  4. Yamasaki S, Tu H, Matsuyama T, Horiuchi M, Hashiguchi T, Sho J, et al. A Genetic modification that reduces ON-bipolar cells in hESC-derived retinas enhances functional integration after transplantation. iScience. 2022;25:103657 pubmed 出版商
  5. Mangold K, Masek J, He J, Lendahl U, Fuchs E, Andersson E. Highly efficient manipulation of nervous system gene expression with NEPTUNE. Cell Rep Methods. 2021;1: pubmed 出版商
  6. Moyon S, Frawley R, Maréchal D, Huang D, Marshall Phelps K, Kegel L, et al. TET1-mediated DNA hydroxymethylation regulates adult remyelination in mice. Nat Commun. 2021;12:3359 pubmed 出版商
  7. Ofek S, Wiszniak S, Kagan S, Tondl M, Schwarz Q, Kalcheim C. Notch signaling is a critical initiator of roof plate formation as revealed by the use of RNA profiling of the dorsal neural tube. BMC Biol. 2021;19:84 pubmed 出版商
  8. Yusifov E, Dumoulin A, Stoeckli E. Investigating Primary Cilia during Peripheral Nervous System Formation. Int J Mol Sci. 2021;22: pubmed 出版商
  9. Landy M, Goyal M, Casey K, Liu C, Lai H. Loss of Prdm12 during development, but not in mature nociceptors, causes defects in pain sensation. Cell Rep. 2021;34:108913 pubmed 出版商
  10. Brodie Kommit J, Clark B, Shi Q, Shiau F, Kim D, Langel J, et al. Atoh7-independent specification of retinal ganglion cell identity. Sci Adv. 2021;7: pubmed 出版商
  11. Exelby K, Herrera Delgado E, Perez L, Perez Carrasco R, Sagner A, Metzis V, et al. Precision of tissue patterning is controlled by dynamical properties of gene regulatory networks. Development. 2021;148: pubmed 出版商
  12. Paredes I, Vieira J, Shah B, Ramunno C, Dyckow J, Adler H, et al. Oligodendrocyte precursor cell specification is regulated by bidirectional neural progenitor-endothelial cell crosstalk. Nat Neurosci. 2021;24:478-488 pubmed 出版商
  13. Schörnig M, Ju X, Fast L, Ebert S, Weigert A, Kanton S, et al. Comparison of induced neurons reveals slower structural and functional maturation in humans than in apes. elife. 2021;10: pubmed 出版商
  14. Stefanovic S, Laforest B, Desvignes J, Lescroart F, Argiro L, Maurel Zaffran C, et al. Hox-dependent coordination of mouse cardiac progenitor cell patterning and differentiation. elife. 2020;9: pubmed 出版商
  15. Lee H, Lee H, Lee B, Gerovska D, Park S, Zaehres H, et al. Sequentially induced motor neurons from human fibroblasts facilitate locomotor recovery in a rodent spinal cord injury model. elife. 2020;9: pubmed 出版商
  16. Soleilhavoup C, Travaglio M, Patrick K, Garção P, Boobalan E, Adolfs Y, et al. Nolz1 expression is required in dopaminergic axon guidance and striatal innervation. Nat Commun. 2020;11:3111 pubmed 出版商
  17. Kantarci H, Gou Y, Riley B. The Warburg Effect and lactate signaling augment Fgf-MAPK to promote sensory-neural development in the otic vesicle. elife. 2020;9: pubmed 出版商
  18. Hael C, Rojo D, Orquera D, Low M, Rubinstein M. The transcriptional regulator PRDM12 is critical for Pomc expression in the mouse hypothalamus and controlling food intake, adiposity, and body weight. Mol Metab. 2020;34:43-53 pubmed 出版商
  19. Vigouroux R, Cesar Q, Chedotal A, Nguyen Ba Charvet K. Revisiting the role of Dcc in visual system development with a novel eye clearing method. elife. 2020;9: pubmed 出版商
  20. Torres Mejía E, Trumbach D, Kleeberger C, Dornseifer U, Orschmann T, Bäcker T, et al. Sox2 controls Schwann cell self-organization through fibronectin fibrillogenesis. Sci Rep. 2020;10:1984 pubmed 出版商
  21. Suter T, Blagburn S, Fisher S, Anderson Keightly H, D Elia K, Jaworski A. TAG-1 Multifunctionality Coordinates Neuronal Migration, Axon Guidance, and Fasciculation. Cell Rep. 2020;30:1164-1177.e7 pubmed 出版商
  22. Wang L, Xie J, Zhang H, Tsang L, Tsang S, Braune E, et al. Notch signalling regulates epibranchial placode patterning and segregation. Development. 2020;147: pubmed 出版商
  23. Nickolls A, Lee M, Espinoza D, Szczot M, Lam R, Wang Q, et al. Transcriptional Programming of Human Mechanosensory Neuron Subtypes from Pluripotent Stem Cells. Cell Rep. 2020;30:932-946.e7 pubmed 出版商
  24. Oprişoreanu A, Smith H, Arya S, Webster R, Zhong Z, Wehner D, et al. Interaction of Axonal Chondrolectin with Collagen XIXa1 Is Necessary for Precise Neuromuscular Junction Formation. Cell Rep. 2019;29:1082-1098.e10 pubmed 出版商
  25. Wan Y, Wei Z, Looger L, Koyama M, Druckmann S, Keller P. Single-Cell Reconstruction of Emerging Population Activity in an Entire Developing Circuit. Cell. 2019;179:355-372.e23 pubmed 出版商
  26. Su T, Liu H, Zhang D, Xu G, Liu J, Evans S, et al. LIM homeodomain transcription factor Isl1 affects urethral epithelium differentiation and apoptosis via Shh. Cell Death Dis. 2019;10:713 pubmed 出版商
  27. Nam H, Jeon S, An H, Yoo J, Lee H, Lee S, et al. Critical roles of ARHGAP36 as a signal transduction mediator of Shh pathway in lateral motor columnar specification. elife. 2019;8: pubmed 出版商
  28. L pez J, Morona R, Moreno N, Lozano D, Jim nez S, Gonz lez A. Pax6 expression highlights regional organization in the adult brain of lungfishes, the closest living relatives of land vertebrates. J Comp Neurol. 2020;528:135-159 pubmed 出版商
  29. Schick E, McCaffery S, Keblish E, Thakurdin C, Emerson M. Lineage tracing analysis of cone photoreceptor associated cis-regulatory elements in the developing chicken retina. Sci Rep. 2019;9:9358 pubmed 出版商
  30. Soldatov R, Kaucka M, Kastriti M, Petersen J, Chontorotzea T, Englmaier L, et al. Spatiotemporal structure of cell fate decisions in murine neural crest. Science. 2019;364: pubmed 出版商
  31. Tulloch A, Teo S, Carvajal B, Tessier Lavigne M, Jaworski A. Diverse spinal commissural neuron populations revealed by fate mapping and molecular profiling using a novel Robo3Cre mouse. J Comp Neurol. 2019;527:2948-2972 pubmed 出版商
  32. Gao R, Liang X, Cheedipudi S, Cordero J, Jiang X, Zhang Q, et al. Pioneering function of Isl1 in the epigenetic control of cardiomyocyte cell fate. Cell Res. 2019;29:486-501 pubmed 出版商
  33. Rajderkar S, Mann J, Panaretos C, Yumoto K, Li H, Mishina Y, et al. Trim33 is required for appropriate development of pre-cardiogenic mesoderm. Dev Biol. 2019;450:101-114 pubmed 出版商
  34. Wizeman J, Guo Q, Wilion E, LI J. Specification of diverse cell types during early neurogenesis of the mouse cerebellum. elife. 2019;8: pubmed 出版商
  35. Sahara M, Santoro F, Sohlmér J, Zhou C, Witman N, Leung C, et al. Population and Single-Cell Analysis of Human Cardiogenesis Reveals Unique LGR5 Ventricular Progenitors in Embryonic Outflow Tract. Dev Cell. 2019;48:475-490.e7 pubmed 出版商
  36. Eley L, Alqahtani A, MacGrogan D, Richardson R, Murphy L, Salguero Jimenez A, et al. A novel source of arterial valve cells linked to bicuspid aortic valve without raphe in mice. elife. 2018;7: pubmed 出版商
  37. Wang B, Joo J, Mount R, Teubner B, Krenzer A, Ward A, et al. The COPII cargo adapter SEC24C is essential for neuronal homeostasis. J Clin Invest. 2018;128:3319-3332 pubmed 出版商
  38. Marcucci F, Soares C, Mason C. Distinct timing of neurogenesis of ipsilateral and contralateral retinal ganglion cells. J Comp Neurol. 2019;527:212-224 pubmed 出版商
  39. Zhang C, Yu W, Hoshino A, Huang J, Rieke F, Reh T, et al. Development of ON and OFF cholinergic amacrine cells in the human fetal retina. J Comp Neurol. 2019;527:174-186 pubmed 出版商
  40. Alshawaf A, Viventi S, Qiu W, D Abaco G, Nayagam B, Erlichster M, et al. Phenotypic and Functional Characterization of Peripheral Sensory Neurons derived from Human Embryonic Stem Cells. Sci Rep. 2018;8:603 pubmed 出版商
  41. Miesfeld J, Glaser T, Brown N. The dynamics of native Atoh7 protein expression during mouse retinal histogenesis, revealed with a new antibody. Gene Expr Patterns. 2018;27:114-121 pubmed 出版商
  42. Tahara N, Akiyama R, Theisen J, Kawakami H, Wong J, Garry D, et al. Gata6 restricts Isl1 to the posterior of nascent hindlimb buds through Isl1 cis-regulatory modules. Dev Biol. 2018;434:74-83 pubmed 出版商
  43. Tinterri A, Deck M, Keita M, Mailhes C, Rubin A, Kessaris N, et al. Tangential migration of corridor guidepost neurons contributes to anxiety circuits. J Comp Neurol. 2018;526:397-411 pubmed 出版商
  44. Tchieu J, Zimmer B, Fattahi F, Amin S, Zeltner N, Chen S, et al. A Modular Platform for Differentiation of Human PSCs into All Major Ectodermal Lineages. Cell Stem Cell. 2017;21:399-410.e7 pubmed 出版商
  45. Ohman Gault L, Huang T, KRIMM R. The transcription factor Phox2b distinguishes between oral and non-oral sensory neurons in the geniculate ganglion. J Comp Neurol. 2017;525:3935-3950 pubmed 出版商
  46. van Vliet P, Lin L, Boogerd C, Martin J, Andelfinger G, Grossfeld P, et al. Tissue specific requirements for WNT11 in developing outflow tract and dorsal mesenchymal protrusion. Dev Biol. 2017;429:249-259 pubmed 出版商
  47. Freire A, Waghray A, Soares da Silva F, Resende T, Lee D, Pereira C, et al. Transient HES5 Activity Instructs Mesodermal Cells toward a Cardiac Fate. Stem Cell Reports. 2017;9:136-148 pubmed 出版商
  48. Quadrato G, Nguyen T, Macosko E, Sherwood J, Min Yang S, Berger D, et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 2017;545:48-53 pubmed 出版商
  49. Moreno N, González A. Pattern of Neurogenesis and Identification of Neuronal Progenitor Subtypes during Pallial Development in Xenopus laevis. Front Neuroanat. 2017;11:24 pubmed 出版商
  50. Himmels P, Paredes I, Adler H, Karakatsani A, Luck R, Marti H, et al. Motor neurons control blood vessel patterning in the developing spinal cord. Nat Commun. 2017;8:14583 pubmed 出版商
  51. Qi Y, Zhang X, Renier N, Wu Z, Atkin T, Sun Z, et al. Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat Biotechnol. 2017;35:154-163 pubmed 出版商
  52. Witzel H, Cheedipudi S, Gao R, Stainier D, Dobreva G. Isl2b regulates anterior second heart field development in zebrafish. Sci Rep. 2017;7:41043 pubmed 出版商
  53. Maltabe V, Barka E, Kontonika M, Florou D, Kouvara Pritsouli M, Roumpi M, et al. Isolation of an ES-Derived Cardiovascular Multipotent Cell Population Based on VE-Cadherin Promoter Activity. Stem Cells Int. 2016;2016:8305624 pubmed 出版商
  54. Ang Y, Rivas R, Ribeiro A, Srivas R, Rivera J, Stone N, et al. Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis. Cell. 2016;167:1734-1749.e22 pubmed 出版商
  55. Kahn B, Corman T, Lovelace K, Hong M, Krauss R, Epstein D. Prenatal ethanol exposure in mice phenocopies Cdon mutation by impeding Shh function in the etiology of optic nerve hypoplasia. Dis Model Mech. 2017;10:29-37 pubmed 出版商
  56. Li Y, Tzatzalos E, Kwan K, Grumet M, Cai L. Transcriptional Regulation of Notch1 Expression by Nkx6.1 in Neural Stem/Progenitor Cells during Ventral Spinal Cord Development. Sci Rep. 2016;6:38665 pubmed 出版商
  57. Li F, Li Z, Jiang Z, Tian Y, Wang Z, Yi W, et al. Enhancement of early cardiac differentiation of dedifferentiated fat cells by dimethyloxalylglycine via notch signaling pathway. Am J Transl Res. 2016;8:4791-4801 pubmed
  58. Espinosa Medina I, Saha O, Boismoreau F, Chettouh Z, Rossi F, Richardson W, et al. The sacral autonomic outflow is sympathetic. Science. 2016;354:893-897 pubmed
  59. Zeltner N, Fattahi F, Dubois N, Saurat N, Lafaille F, Shang L, et al. Capturing the biology of disease severity in a PSC-based model of familial dysautonomia. Nat Med. 2016;22:1421-1427 pubmed 出版商
  60. Junge H, Yung A, Goodrich L, Chen Z. Netrin1/DCC signaling promotes neuronal migration in the dorsal spinal cord. Neural Dev. 2016;11:19 pubmed
  61. Cortes D, Robledo Arratia Y, Hernández Martinez R, Escobedo Ávila I, Bargas J, Velasco I. Transgenic GDNF Positively Influences Proliferation, Differentiation, Maturation and Survival of Motor Neurons Produced from Mouse Embryonic Stem Cells. Front Cell Neurosci. 2016;10:217 pubmed 出版商
  62. Kotoku T, Kosaka K, Nishio M, Ishida Y, Kawaichi M, Matsuda E. CIBZ Regulates Mesodermal and Cardiac Differentiation of by Suppressing T and Mesp1 Expression in Mouse Embryonic Stem Cells. Sci Rep. 2016;6:34188 pubmed 出版商
  63. Czapiewski P, Gorczyński A, Radecka K, Wiewiora C, Haybaeck J, Adam P, et al. Expression of SOX11, PAX5, TTF-1 and ISL-1 in medulloblastoma. Pathol Res Pract. 2016;212:965-971 pubmed 出版商
  64. Perdigoto C, Dauber K, Bar C, Tsai P, Valdes V, Cohen I, et al. Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development. PLoS Genet. 2016;12:e1006151 pubmed 出版商
  65. Leggere J, Saito Y, Darnell R, Tessier Lavigne M, Junge H, Chen Z. NOVA regulates Dcc alternative splicing during neuronal migration and axon guidance in the spinal cord. elife. 2016;5: pubmed 出版商
  66. Baleriola J, Álvarez Lindo N, de la Villa P, Bernad A, Blanco L, Suárez T, et al. Increased neuronal death and disturbed axonal growth in the Polμ-deficient mouse embryonic retina. Sci Rep. 2016;6:25928 pubmed 出版商
  67. Feng J, Xian Q, Guan T, Hu J, Wang M, Huang Y, et al. Celsr3 and Fzd3 Organize a Pioneer Neuron Scaffold to Steer Growing Thalamocortical Axons. Cereb Cortex. 2016;26:3323-34 pubmed 出版商
  68. Iwai Takekoshi L, Ramos A, Schaler A, Weinreb S, Blazeski R, Mason C. Retinal pigment epithelial integrity is compromised in the developing albino mouse retina. J Comp Neurol. 2016;524:3696-3716 pubmed 出版商
  69. Davey C, Mathewson A, Moens C. PCP Signaling between Migrating Neurons and their Planar-Polarized Neuroepithelial Environment Controls Filopodial Dynamics and Directional Migration. PLoS Genet. 2016;12:e1005934 pubmed 出版商
  70. Chen T, Yu Y, Hu C, Schachner M. L1.2, the zebrafish paralog of L1.1 and ortholog of the mammalian cell adhesion molecule L1 contributes to spinal cord regeneration in adult zebrafish. Restor Neurol Neurosci. 2016;34:325-35 pubmed 出版商
  71. Fattahi F, Steinbeck J, Kriks S, Tchieu J, Zimmer B, Kishinevsky S, et al. Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. Nature. 2016;531:105-9 pubmed 出版商
  72. de Souza C, Nivison Smith L, Christie D, Polkinghorne P, McGhee C, Kalloniatis M, et al. Macromolecular markers in normal human retina and applications to human retinal disease. Exp Eye Res. 2016;150:135-48 pubmed 出版商
  73. Bruin J, Saber N, O Dwyer S, Fox J, Mojibian M, Arora P, et al. Hypothyroidism Impairs Human Stem Cell-Derived Pancreatic Progenitor Cell Maturation in Mice. Diabetes. 2016;65:1297-309 pubmed 出版商
  74. Gayet Primo J, Puthussery T. Alterations in Kainate Receptor and TRPM1 Localization in Bipolar Cells after Retinal Photoreceptor Degeneration. Front Cell Neurosci. 2015;9:486 pubmed 出版商
  75. Lizio M, Ishizu Y, Itoh M, Lassmann T, Hasegawa A, Kubosaki A, et al. Mapping Mammalian Cell-type-specific Transcriptional Regulatory Networks Using KD-CAGE and ChIP-seq Data in the TC-YIK Cell Line. Front Genet. 2015;6:331 pubmed 出版商
  76. Pirson M, Debrulle S, Clippe A, Clotman F, Knoops B. Thioredoxin-2 Modulates Neuronal Programmed Cell Death in the Embryonic Chick Spinal Cord in Basal and Target-Deprived Conditions. PLoS ONE. 2015;10:e0142280 pubmed 出版商
  77. Galloway J, Bethea M, Liu Y, Underwood R, Mobley J, Hunter C. SSBP3 Interacts With Islet-1 and Ldb1 to Impact Pancreatic β-Cell Target Genes. Mol Endocrinol. 2015;29:1774-86 pubmed 出版商
  78. Hua Z, Emiliani F, Nathans J. Rac1 plays an essential role in axon growth and guidance and in neuronal survival in the central and peripheral nervous systems. Neural Dev. 2015;10:21 pubmed 出版商
  79. Huettl R, Eckstein S, Stahl T, Petricca S, Ninkovic J, Götz M, et al. Functional dissection of the Pax6 paired domain: Roles in neural tube patterning and peripheral nervous system development. Dev Biol. 2016;413:86-103 pubmed 出版商
  80. Yang Z, Zhang Q, Lu Q, Jia Z, Chen P, Ma K, et al. ISL-1 promotes pancreatic islet cell proliferation by forming an ISL-1/Set7/9/PDX-1 complex. Cell Cycle. 2015;14:3820-9 pubmed 出版商
  81. Ostrowski S, Wright M, Bolock A, Geng X, Maricich S. Ectopic Atoh1 expression drives Merkel cell production in embryonic, postnatal and adult mouse epidermis. Development. 2015;142:2533-44 pubmed 出版商
  82. Preuße K, Tveriakhina L, Schuster Gossler K, Gaspar C, Rosa A, Henrique D, et al. Context-Dependent Functional Divergence of the Notch Ligands DLL1 and DLL4 In Vivo. PLoS Genet. 2015;11:e1005328 pubmed 出版商
  83. Hoeber J, Trolle C, König N, Du Z, Gallo A, Hermans E, et al. Human Embryonic Stem Cell-Derived Progenitors Assist Functional Sensory Axon Regeneration after Dorsal Root Avulsion Injury. Sci Rep. 2015;5:10666 pubmed 出版商
  84. Lenzi J, De Santis R, de Turris V, Morlando M, Laneve P, Calvo A, et al. ALS mutant FUS proteins are recruited into stress granules in induced pluripotent stem cell-derived motoneurons. Dis Model Mech. 2015;8:755-66 pubmed 出版商
  85. Watanabe S, Sanuki R, Sugita Y, Imai W, Yamazaki R, Kozuka T, et al. Prdm13 regulates subtype specification of retinal amacrine interneurons and modulates visual sensitivity. J Neurosci. 2015;35:8004-20 pubmed 出版商
  86. Meganathan K, Jagtap S, Srinivasan S, Wagh V, Hescheler J, Hengstler J, et al. Neuronal developmental gene and miRNA signatures induced by histone deacetylase inhibitors in human embryonic stem cells. Cell Death Dis. 2015;6:e1756 pubmed 出版商
  87. Abdellatif A, Ogata K, Kudo T, Xiafukaiti G, Chang Y, Katoh M, et al. Role of large MAF transcription factors in the mouse endocrine pancreas. Exp Anim. 2015;64:305-12 pubmed 出版商
  88. Gay M, Valenta T, Herr P, Paratore Hari L, Basler K, Sommer L. Distinct adhesion-independent functions of β-catenin control stage-specific sensory neurogenesis and proliferation. BMC Biol. 2015;13:24 pubmed 出版商
  89. Miller N, Feng Z, Edens B, Yang B, Shi H, Sze C, et al. Non-aggregating tau phosphorylation by cyclin-dependent kinase 5 contributes to motor neuron degeneration in spinal muscular atrophy. J Neurosci. 2015;35:6038-50 pubmed 出版商
  90. Adams K, Rousso D, Umbach J, Novitch B. Foxp1-mediated programming of limb-innervating motor neurons from mouse and human embryonic stem cells. Nat Commun. 2015;6:6778 pubmed 出版商
  91. Eisner A, Pazyra Murphy M, Durresi E, Zhou P, Zhao X, Chadwick E, et al. The Eya1 phosphatase promotes Shh signaling during hindbrain development and oncogenesis. Dev Cell. 2015;33:22-35 pubmed 出版商
  92. Holzmann J, Hennchen M, Rohrer H. Prox1 identifies proliferating neuroblasts and nascent neurons during neurogenesis in sympathetic ganglia. Dev Neurobiol. 2015;75:1352-67 pubmed 出版商
  93. Gergics P, Brinkmeier M, Camper S. Lhx4 deficiency: increased cyclin-dependent kinase inhibitor expression and pituitary hypoplasia. Mol Endocrinol. 2015;29:597-612 pubmed 出版商
  94. Karunakaran D, Chhaya N, Lemoine C, Congdon S, Black A, Kanadia R. Loss of citron kinase affects a subset of progenitor cells that alters late but not early neurogenesis in the developing rat retina. Invest Ophthalmol Vis Sci. 2015;56:787-98 pubmed 出版商
  95. Blanchard J, Eade K, Szucs A, Lo Sardo V, Tsunemoto R, Williams D, et al. Selective conversion of fibroblasts into peripheral sensory neurons. Nat Neurosci. 2015;18:25-35 pubmed 出版商
  96. Johnson Kerner B, Ahmad F, Diaz A, Greene J, Gray S, Samulski R, et al. Intermediate filament protein accumulation in motor neurons derived from giant axonal neuropathy iPSCs rescued by restoration of gigaxonin. Hum Mol Genet. 2015;24:1420-31 pubmed 出版商
  97. Maury Y, Côme J, Piskorowski R, Salah Mohellibi N, Chevaleyre V, Peschanski M, et al. Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes. Nat Biotechnol. 2015;33:89-96 pubmed 出版商
  98. Zou M, Luo H, Xiang M. Selective neuronal lineages derived from Dll4-expressing progenitors/precursors in the retina and spinal cord. Dev Dyn. 2015;244:86-97 pubmed 出版商
  99. Whitney I, Keeley P, St John A, Kautzman A, Kay J, Reese B. Sox2 regulates cholinergic amacrine cell positioning and dendritic stratification in the retina. J Neurosci. 2014;34:10109-21 pubmed 出版商
  100. Ediger B, Du A, Liu J, Hunter C, Walp E, Schug J, et al. Islet-1 Is essential for pancreatic ?-cell function. Diabetes. 2014;63:4206-17 pubmed 出版商
  101. Veleri S, Manjunath S, Fariss R, May Simera H, Brooks M, Foskett T, et al. Ciliopathy-associated gene Cc2d2a promotes assembly of subdistal appendages on the mother centriole during cilia biogenesis. Nat Commun. 2014;5:4207 pubmed 出版商
  102. Zhang Q, Yang Z, Wang W, Guo T, Jia Z, Ma K, et al. A positive feedback regulation of ISL-1 in DLBCL but not in pancreatic ?-cells. Biochem Biophys Res Commun. 2014;449:295-300 pubmed 出版商
  103. Li Y, Pan J, Wei C, Chen J, Liu Y, Liu J, et al. LIM homeodomain transcription factor Isl1 directs normal pyloric development by targeting Gata3. BMC Biol. 2014;12:25 pubmed 出版商
  104. Lee K, Seo J, Shin J, Ji E, Roh J, Kim J, et al. Positive feedback loop between Sox2 and Sox6 inhibits neuronal differentiation in the developing central nervous system. Proc Natl Acad Sci U S A. 2014;111:2794-9 pubmed 出版商
  105. Fuentes T, Appleby N, Tsay E, Martinez J, Bailey L, Hasaniya N, et al. Human neonatal cardiovascular progenitors: unlocking the secret to regenerative ability. PLoS ONE. 2013;8:e77464 pubmed 出版商
  106. Dominguez L, González A, Moreno N. Characterization of the hypothalamus of Xenopus laevis during development. II. The basal regions. J Comp Neurol. 2014;522:1102-31 pubmed 出版商
  107. Weber B, Kehl D, Bleul U, Behr L, Sammut S, Frese L, et al. In vitro fabrication of autologous living tissue-engineered vascular grafts based on prenatally harvested ovine amniotic fluid-derived stem cells. J Tissue Eng Regen Med. 2016;10:52-70 pubmed 出版商
  108. Le Bras B, Fréal A, Czarnecki A, Legendre P, Bullier E, Komada M, et al. In vivo assembly of the axon initial segment in motor neurons. Brain Struct Funct. 2014;219:1433-50 pubmed 出版商
  109. Nivison Smith L, Sun D, Fletcher E, Marc R, Kalloniatis M. Mapping kainate activation of inner neurons in the rat retina. J Comp Neurol. 2013;521:2416-38 pubmed 出版商
  110. Favero C, Henshaw R, Grimsley Myers C, Shrestha A, Beier D, Dwyer N. Mutation of the BiP/GRP78 gene causes axon outgrowth and fasciculation defects in the thalamocortical connections of the mammalian forebrain. J Comp Neurol. 2013;521:677-96 pubmed 出版商