这是一篇来自已证抗体库的有关人类 JAGGED1的综述,是根据48篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合JAGGED1 抗体。
JAGGED1 同义词: AGS; AGS1; AHD; AWS; CD339; DCHE; HJ1; JAGL1

圣克鲁斯生物技术
小鼠 单克隆(E-12)
  • 免疫组化; 小鼠; 图 s4c
圣克鲁斯生物技术 JAGGED1抗体(Santa Cruz Biotechnology, sc-390177)被用于被用于免疫组化在小鼠样本上 (图 s4c). Cell Rep (2021) ncbi
小鼠 单克隆(E-12)
  • 免疫组化; 小鼠; 1:100; 图 4c
圣克鲁斯生物技术 JAGGED1抗体(Santa Cruz, sc-390177)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4c). Life Sci Alliance (2021) ncbi
小鼠 单克隆(1C8)
  • 免疫印迹; 小鼠; 1:500; 图 1c, 3d
圣克鲁斯生物技术 JAGGED1抗体(Santa Cruz, sc-81515)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1c, 3d). EMBO Mol Med (2020) ncbi
  • 免疫细胞化学; 人类; 图 1a
圣克鲁斯生物技术 JAGGED1抗体(SantaCruz, C20)被用于被用于免疫细胞化学在人类样本上 (图 1a). Cancer Res (2018) ncbi
  • 免疫印迹; 人类; 图 7b
圣克鲁斯生物技术 JAGGED1抗体(Santa Cruz, C20)被用于被用于免疫印迹在人类样本上 (图 7b). Biochemistry (2018) ncbi
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术 JAGGED1抗体(Santa Cruz, C-20)被用于被用于免疫印迹在人类样本上 (图 1a). Neuron (2018) ncbi
  • 免疫印迹; 小鼠; 1:500; 图 4o
圣克鲁斯生物技术 JAGGED1抗体(SantaCruz, C-20)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4o). Genes Dev (2017) ncbi
  • 免疫沉淀; 人类; 图 s2a
  • 免疫印迹; 人类; 图 s2a
  • 免疫印迹; 小鼠; 图 1c
圣克鲁斯生物技术 JAGGED1抗体(Santa Cruz, C20)被用于被用于免疫沉淀在人类样本上 (图 s2a), 被用于免疫印迹在人类样本上 (图 s2a) 和 被用于免疫印迹在小鼠样本上 (图 1c). Proc Natl Acad Sci U S A (2017) ncbi
  • 免疫组化-石蜡切片; 小鼠; 图 5c
圣克鲁斯生物技术 JAGGED1抗体(Santa, sc-6011)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5c). J Biol Chem (2017) ncbi
小鼠 单克隆(1C8)
圣克鲁斯生物技术 JAGGED1抗体(Santa Cruz, sc-81515)被用于. Front Pharmacol (2016) ncbi
小鼠 单克隆(E-12)
  • 免疫印迹; 人类; 1:1000; 图 3b
  • 免疫印迹; 小鼠; 1:1000; 图 7b
圣克鲁斯生物技术 JAGGED1抗体(Santa Cruz, sc-390177)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7b). Oncol Lett (2016) ncbi
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2c
  • 免疫印迹; 小鼠; 1:500; 图 2d
圣克鲁斯生物技术 JAGGED1抗体(Santa, sc-6011)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2c) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 2d). Oncogene (2017) ncbi
  • 免疫细胞化学; 人类; 2 ug/ml; 图 1d
  • 免疫印迹; 人类; 1:2000; 图 1b
圣克鲁斯生物技术 JAGGED1抗体(Santa Cruz, SC-6011)被用于被用于免疫细胞化学在人类样本上浓度为2 ug/ml (图 1d) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). Stem Cell Rev (2016) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 8
圣克鲁斯生物技术 JAGGED1抗体(Santa Cruz, sc6011)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 8). Nat Commun (2016) ncbi
  • 其他; 人类; 图 st1
圣克鲁斯生物技术 JAGGED1抗体(SCBT, C-20)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(1C8)
  • 免疫沉淀; 大鼠; 1:200; 图 4d
  • 免疫印迹; 大鼠; 1:200; 图 4f
圣克鲁斯生物技术 JAGGED1抗体(Santa Cruz, sc-81515)被用于被用于免疫沉淀在大鼠样本上浓度为1:200 (图 4d) 和 被用于免疫印迹在大鼠样本上浓度为1:200 (图 4f). J Cell Sci (2015) ncbi
  • 免疫印迹; 小鼠; 图 8
圣克鲁斯生物技术 JAGGED1抗体(Santa Cruz, C-20)被用于被用于免疫印迹在小鼠样本上 (图 8). Acta Neuropathol Commun (2015) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 8g
艾博抗(上海)贸易有限公司 JAGGED1抗体(Abcam, ab7771)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 8g). J Clin Invest (2022) ncbi
domestic rabbit 单克隆(EPR4290)
  • 其他; 人类; 图 4c
艾博抗(上海)贸易有限公司 JAGGED1抗体(Abcam, ab109536)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(EPR4290)
  • 免疫印迹; 大鼠; 1:1000; 图 5c
艾博抗(上海)贸易有限公司 JAGGED1抗体(Abcam, ab109536)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5c). Stroke (2018) ncbi
domestic rabbit 单克隆(EPR4290)
  • 免疫组化-石蜡切片; 小鼠; 图 4c
艾博抗(上海)贸易有限公司 JAGGED1抗体(Abcam, ab109536)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4c). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(EPR4290)
  • 免疫组化; 小鼠; 1:50; 图 6b
  • 免疫印迹; 小鼠; 1:10,000; 图 2b
艾博抗(上海)贸易有限公司 JAGGED1抗体(ABCAM, ab109536)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 6b) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 2b). Sci Rep (2016) ncbi
Rockland Immunochemicals
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 s10
Rockland Immunochemicals JAGGED1抗体(Rockland, 200-401-698S)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s10). J R Soc Interface (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D4Y1R)
  • 免疫印迹; 小鼠; 图 3g
赛信通(上海)生物试剂有限公司 JAGGED1抗体(Cell Signaling, 70109)被用于被用于免疫印迹在小鼠样本上 (图 3g). Theranostics (2022) ncbi
domestic rabbit 单克隆(D4Y1R)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4a
赛信通(上海)生物试剂有限公司 JAGGED1抗体(Cell Signaling, 70109)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4a). Mol Biol Cell (2021) ncbi
domestic rabbit 单克隆(28H8)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1a
赛信通(上海)生物试剂有限公司 JAGGED1抗体(Cell Signaling, 2620)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1a). elife (2019) ncbi
domestic rabbit 单克隆(D4Y1R)
  • 免疫印迹; 人类; 图 2f, s3a
赛信通(上海)生物试剂有限公司 JAGGED1抗体(Cell Signaling, 70109)被用于被用于免疫印迹在人类样本上 (图 2f, s3a). Mol Cancer (2019) ncbi
domestic rabbit 单克隆(28H8)
  • 免疫组化; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 JAGGED1抗体(Cell Signalling, 2620)被用于被用于免疫组化在小鼠样本上 (图 6a). elife (2019) ncbi
domestic rabbit 单克隆(28H8)
  • 免疫印迹; 小鼠; 1:1000; 图 f1s3b
赛信通(上海)生物试剂有限公司 JAGGED1抗体(Cell Signaling, 2620)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 f1s3b). elife (2019) ncbi
domestic rabbit 单克隆(28H8)
  • 免疫组化-石蜡切片; 人类; 1:150; 图 5c
赛信通(上海)生物试剂有限公司 JAGGED1抗体(Cell Signalling Technology, 2620)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (图 5c). elife (2018) ncbi
domestic rabbit 单克隆(28H8)
  • 免疫印迹; 人类; 图 3e, 5b
赛信通(上海)生物试剂有限公司 JAGGED1抗体(Cell Signaling Technology, 2620)被用于被用于免疫印迹在人类样本上 (图 3e, 5b). Cancer Res (2017) ncbi
domestic rabbit 单克隆(28H8)
  • 免疫沉淀; 人类; 图 s2a
  • 免疫印迹; 人类; 图 s2a
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 JAGGED1抗体(Cell Signaling, 28H8)被用于被用于免疫沉淀在人类样本上 (图 s2a), 被用于免疫印迹在人类样本上 (图 s2a) 和 被用于免疫印迹在小鼠样本上 (图 1c). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(D4Y1R)
  • 免疫印迹; 大鼠; 图 3e
赛信通(上海)生物试剂有限公司 JAGGED1抗体(Cell Signaling Technology, 70109)被用于被用于免疫印迹在大鼠样本上 (图 3e). Sci Rep (2017) ncbi
domestic rabbit 单克隆(28H8)
  • 免疫组化; 小鼠; 图 s9a
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 JAGGED1抗体(Cell Signaling, 2620)被用于被用于免疫组化在小鼠样本上 (图 s9a) 和 被用于免疫印迹在小鼠样本上 (图 1a). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(28H8)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 5e
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 JAGGED1抗体(Cell Signaling, 2620)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 5e) 和 被用于免疫印迹在小鼠样本上 (图 5c). Oncogene (2017) ncbi
domestic rabbit 单克隆(28H8)
  • 免疫细胞化学; 人类; 图 1e
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司 JAGGED1抗体(Cell Signaling, 2620P)被用于被用于免疫细胞化学在人类样本上 (图 1e) 和 被用于免疫印迹在人类样本上 (图 4e). PLoS Pathog (2016) ncbi
domestic rabbit 单克隆(28H8)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 JAGGED1抗体(Cell Signaling, 28H8)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(1C4)
  • 免疫印迹; 人类; 1:800; 图 1b
赛信通(上海)生物试剂有限公司 JAGGED1抗体(Cell Signaling, 2155)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 1b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(1C4)
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司 JAGGED1抗体(Cell signaling, 2155)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(28H8)
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 JAGGED1抗体(Cell Signaling, 2620)被用于被用于免疫印迹在人类样本上 (图 6d). Biochem Pharmacol (2016) ncbi
domestic rabbit 单克隆(28H8)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 JAGGED1抗体(Cell signaling, 2620)被用于被用于免疫印迹在人类样本上 (图 6a). Hepatology (2016) ncbi
domestic rabbit 单克隆(1C4)
  • 免疫组化-冰冻切片; 人类; 1:100
赛信通(上海)生物试剂有限公司 JAGGED1抗体(Cell Signaling, 2155)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100. Oncotarget (2015) ncbi
domestic rabbit 单克隆(28H8)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 JAGGED1抗体(Cell Signaling, 2620)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
domestic rabbit 单克隆(28H8)
  • 免疫印迹; 小鼠; 1:800; 图 4
赛信通(上海)生物试剂有限公司 JAGGED1抗体(Cell Signaling Technology, 2620)被用于被用于免疫印迹在小鼠样本上浓度为1:800 (图 4). elife (2014) ncbi
domestic rabbit 单克隆(28H8)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 JAGGED1抗体(Cell Signaling Technology, 2620)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). PLoS Genet (2013) ncbi
Developmental Studies Hybridoma Bank
大鼠 单克隆(TS1.15H)
  • 免疫组化; 小鼠; 1:200; 图 6h
Developmental Studies Hybridoma Bank JAGGED1抗体(Hybridoma Bank, TS1.15H)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 6h). Development (2021) ncbi
大鼠 单克隆(TS1.15H)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 2k
Developmental Studies Hybridoma Bank JAGGED1抗体(DSHB, TS1.15H)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 2k). Front Physiol (2020) ncbi
大鼠 单克隆(TS1.15H)
  • 免疫组化; 小鼠; 1:300; 图 3b
Developmental Studies Hybridoma Bank JAGGED1抗体(DSHB, Ts1.15h)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 3b). Development (2020) ncbi
大鼠 单克隆(TS1.15H)
  • 免疫组化; 小鼠; 1:50; 图 2c
Developmental Studies Hybridoma Bank JAGGED1抗体(Developmental Studies Hybridoma Bank, TS1.15H)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 2c). Development (2019) ncbi
文章列表
  1. Liu C, Chen Q, Shang Y, Chen L, Myers J, Awadallah A, et al. Endothelial PERK-ATF4-JAG1 axis activated by T-ALL remodels bone marrow vascular niche. Theranostics. 2022;12:2894-2907 pubmed 出版商
  2. Dave J, Chakraborty R, Ntokou A, Saito J, Saddouk F, Feng Z, et al. JAGGED1/NOTCH3 activation promotes aortic hypermuscularization and stenosis in elastin deficiency. J Clin Invest. 2022;132: pubmed 出版商
  3. Molina L, Zhu J, Li Q, Pradhan Sundd T, Krutsenko Y, Sayed K, et al. Compensatory hepatic adaptation accompanies permanent absence of intrahepatic biliary network due to YAP1 loss in liver progenitors. Cell Rep. 2021;36:109310 pubmed 出版商
  4. Li H, Kurtzeborn K, Kupari J, Gui Y, Siefker E, Lu B, et al. Postnatal prolongation of mammalian nephrogenesis by excess fetal GDNF. Development. 2021;148: pubmed 出版商
  5. Zhang H, Xie J, So K, Tong K, Sae Pang J, Wang L, et al. Hoxb3 Regulates Jag1 Expression in Pharyngeal Epithelium and Affects Interaction With Neural Crest Cells. Front Physiol. 2020;11:612230 pubmed 出版商
  6. Chung W, Challagundla L, Zhou Y, Li M, Atfi A, Xu K. Loss of Jag1 cooperates with oncogenic Kras to induce pancreatic cystic neoplasms. Life Sci Alliance. 2021;4: pubmed 出版商
  7. Chiremba T, Neufeld K. Constitutive Musashi1 expression impairs mouse postnatal development and intestinal homeostasis. Mol Biol Cell. 2021;32:28-44 pubmed 出版商
  8. Wang L, Xie J, Zhang H, Tsang L, Tsang S, Braune E, et al. Notch signalling regulates epibranchial placode patterning and segregation. Development. 2020;147: pubmed 出版商
  9. Bella P, Farini A, Banfi S, Parolini D, Tonna N, Meregalli M, et al. Blockade of IGF2R improves muscle regeneration and ameliorates Duchenne muscular dystrophy. EMBO Mol Med. 2020;12:e11019 pubmed 出版商
  10. Travisano S, Oliveira V, Prados B, Grego Bessa J, Piñeiro Sabarís R, Bou V, et al. Coronary arterial development is regulated by a Dll4-Jag1-EphrinB2 signaling cascade. elife. 2019;8: pubmed 出版商
  11. Lin Q, Chen X, Meng F, Ogawa K, Li M, Song R, et al. ASPH-notch Axis guided Exosomal delivery of Prometastatic Secretome renders breast Cancer multi-organ metastasis. Mol Cancer. 2019;18:156 pubmed 出版商
  12. Reinhardt R, Gullotta F, Nusspaumer G, Unal E, Ivanek R, Zuniga A, et al. Molecular signatures identify immature mesenchymal progenitors in early mouse limb buds that respond differentially to morphogen signaling. Development. 2019;146: pubmed 出版商
  13. Lawlor K, Zappia L, Lefevre J, Park J, Hamilton N, Oshlack A, et al. Nephron progenitor commitment is a stochastic process influenced by cell migration. elife. 2019;8: pubmed 出版商
  14. Nandagopal N, Santat L, Elowitz M. Cis-activation in the Notch signaling pathway. elife. 2019;8: pubmed 出版商
  15. Eley L, Alqahtani A, MacGrogan D, Richardson R, Murphy L, Salguero Jimenez A, et al. A novel source of arterial valve cells linked to bicuspid aortic valve without raphe in mice. elife. 2018;7: pubmed 出版商
  16. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  17. Rahman M, Hazan A, Selway J, Herath D, Harwood C, Pirzado M, et al. A Novel Mechanism for Activation of GLI1 by Nuclear SMO That Escapes Anti-SMO Inhibitors. Cancer Res. 2018;78:2577-2588 pubmed 出版商
  18. Wang Z, Kim M, Martinez Ferrando I, Koleske A, Pandey A, Cole P. Analysis of Cellular Tyrosine Phosphorylation via Chemical Rescue of Conditionally Active Abl Kinase. Biochemistry. 2018;57:1390-1398 pubmed 出版商
  19. Zunke F, Moise A, Belur N, Gelyana E, Stojkovska I, Dzaferbegovic H, et al. Reversible Conformational Conversion of α-Synuclein into Toxic Assemblies by Glucosylceramide. Neuron. 2018;97:92-107.e10 pubmed 出版商
  20. Zhou K, Enkhjargal B, Xie Z, Sun C, Wu L, Malaguit J, et al. Dihydrolipoic Acid Inhibits Lysosomal Rupture and NLRP3 Through Lysosome-Associated Membrane Protein-1/Calcium/Calmodulin-Dependent Protein Kinase II/TAK1 Pathways After Subarachnoid Hemorrhage in Rat. Stroke. 2018;49:175-183 pubmed 出版商
  21. Nakagawa N, Li J, Yabuno Nakagawa K, Eom T, Cowles M, Mapp T, et al. APC sets the Wnt tone necessary for cerebral cortical progenitor development. Genes Dev. 2017;31:1679-1692 pubmed 出版商
  22. Jin L, Vu T, Yuan G, Datta P. STRAP Promotes Stemness of Human Colorectal Cancer via Epigenetic Regulation of the NOTCH Pathway. Cancer Res. 2017;77:5464-5478 pubmed 出版商
  23. Antfolk D, Sjöqvist M, Cheng F, Isoniemi K, Duran C, Rivero Muller A, et al. Selective regulation of Notch ligands during angiogenesis is mediated by vimentin. Proc Natl Acad Sci U S A. 2017;114:E4574-E4581 pubmed 出版商
  24. Rippe C, Zhu B, Krawczyk K, Bavel E, Albinsson S, Sjölund J, et al. Hypertension reduces soluble guanylyl cyclase expression in the mouse aorta via the Notch signaling pathway. Sci Rep. 2017;7:1334 pubmed 出版商
  25. Zhu X, Yuan X, Wang M, Fang Y, Liu Y, Zhang X, et al. A Wnt/Notch/Pax7 signaling network supports tissue integrity in tongue development. J Biol Chem. 2017;292:9409-9419 pubmed 出版商
  26. Lin C, Lin W, Cho R, Wang C, Hsiao L, Yang C. TNF-?-Induced cPLA2 Expression via NADPH Oxidase/Reactive Oxygen Species-Dependent NF-?B Cascade on Human Pulmonary Alveolar Epithelial Cells. Front Pharmacol. 2016;7:447 pubmed
  27. Xiao Y, Yang X, Miao Y, He X, Wang M, Sha W. Inhibition of cell proliferation and tumor growth of colorectal cancer by inhibitors of Wnt and Notch signaling pathways. Oncol Lett. 2016;12:3695-3700 pubmed
  28. Kim W, Khan S, Gvozdenovic Jeremic J, Kim Y, Dahlman J, Kim H, et al. Hippo signaling interactions with Wnt/?-catenin and Notch signaling repress liver tumorigenesis. J Clin Invest. 2017;127:137-152 pubmed 出版商
  29. Myllymäki M, Määttä J, Dimova E, Izzi V, Väisänen T, Myllyharju J, et al. Notch Downregulation and Extramedullary Erythrocytosis in Hypoxia-Inducible Factor Prolyl 4-Hydroxylase 2-Deficient Mice. Mol Cell Biol. 2017;37: pubmed 出版商
  30. Sizemore G, Balakrishnan S, Hammer A, Thies K, Trimboli A, Wallace J, et al. Stromal PTEN inhibits the expansion of mammary epithelial stem cells through Jagged-1. Oncogene. 2017;36:2297-2308 pubmed 出版商
  31. Li S, Hu H, He Z, Liang D, Sun R, Lan K. Fine-Tuning of the Kaposi's Sarcoma-Associated Herpesvirus Life Cycle in Neighboring Cells through the RTA-JAG1-Notch Pathway. PLoS Pathog. 2016;12:e1005900 pubmed 出版商
  32. Kuzmanov U, Guo H, Buchsbaum D, Cosme J, Abbasi C, Isserlin R, et al. Global phosphoproteomic profiling reveals perturbed signaling in a mouse model of dilated cardiomyopathy. Proc Natl Acad Sci U S A. 2016;113:12592-12597 pubmed
  33. Asnaghi L, Tripathy A, Yang Q, Kaur H, Hanaford A, Yu W, et al. Targeting Notch signaling as a novel therapy for retinoblastoma. Oncotarget. 2016;7:70028-70044 pubmed 出版商
  34. Hoare M, Ito Y, Kang T, Weekes M, Matheson N, Patten D, et al. NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat Cell Biol. 2016;18:979-92 pubmed 出版商
  35. Zhang P, He D, Chen Z, Pan Q, Du F, Zang X, et al. Chemotherapy enhances tumor vascularization via Notch signaling-mediated formation of tumor-derived endothelium in breast cancer. Biochem Pharmacol. 2016;118:18-30 pubmed 出版商
  36. Su Q, Zhang B, Zhang L, Dang T, Rowley D, Ittmann M, et al. Jagged1 upregulation in prostate epithelial cells promotes formation of reactive stroma in the Pten null mouse model for prostate cancer. Oncogene. 2017;36:618-627 pubmed 出版商
  37. Gomi K, Staudt M, Salit J, Kaner R, Heldrich J, Rogalski A, et al. JAG1-Mediated Notch Signaling Regulates Secretory Cell Differentiation of the Human Airway Epithelium. Stem Cell Rev. 2016;12:454-63 pubmed 出版商
  38. Boareto M, Jolly M, Goldman A, Pietila M, Mani S, Sengupta S, et al. Notch-Jagged signalling can give rise to clusters of cells exhibiting a hybrid epithelial/mesenchymal phenotype. J R Soc Interface. 2016;13: pubmed 出版商
  39. Kaylan K, Ermilova V, Yada R, Underhill G. Combinatorial microenvironmental regulation of liver progenitor differentiation by Notch ligands, TGFβ, and extracellular matrix. Sci Rep. 2016;6:23490 pubmed 出版商
  40. Wang W, Jossin Y, Chai G, Lien W, Tissir F, Goffinet A. Feedback regulation of apical progenitor fate by immature neurons through Wnt7-Celsr3-Fzd3 signalling. Nat Commun. 2016;7:10936 pubmed 出版商
  41. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  42. Xiao S, Chang R, Yang M, Lei X, Liu X, Gao W, et al. Actin-like 6A predicts poor prognosis of hepatocellular carcinoma and promotes metastasis and epithelial-mesenchymal transition. Hepatology. 2016;63:1256-71 pubmed 出版商
  43. Cong X, Zhang Y, Li J, Mei M, Ding C, Xiang R, et al. Claudin-4 is required for modulation of paracellular permeability by muscarinic acetylcholine receptor in epithelial cells. J Cell Sci. 2015;128:2271-86 pubmed 出版商
  44. Rothaug M, Stroobants S, Schweizer M, Peters J, Zunke F, Allerding M, et al. LAMP-2 deficiency leads to hippocampal dysfunction but normal clearance of neuronal substrates of chaperone-mediated autophagy in a mouse model for Danon disease. Acta Neuropathol Commun. 2015;3:6 pubmed 出版商
  45. Lim K, Brandt W, Heth J, Muraszko K, Fan X, Bar E, et al. Lateral inhibition of Notch signaling in neoplastic cells. Oncotarget. 2015;6:1666-77 pubmed
  46. Dong X, Lin Q, Aihara A, Li Y, Huang C, Chung W, et al. Aspartate β-Hydroxylase expression promotes a malignant pancreatic cellular phenotype. Oncotarget. 2015;6:1231-48 pubmed
  47. Katz Y, Li F, Lambert N, Sokol E, Tam W, Cheng A, et al. Musashi proteins are post-transcriptional regulators of the epithelial-luminal cell state. elife. 2014;3:e03915 pubmed 出版商
  48. Reginensi A, Scott R, Gregorieff A, Bagherie Lachidan M, Chung C, Lim D, et al. Yap- and Cdc42-dependent nephrogenesis and morphogenesis during mouse kidney development. PLoS Genet. 2013;9:e1003380 pubmed 出版商