这是一篇来自已证抗体库的有关人类 JNK2的综述,是根据302篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合JNK2 抗体。
JNK2 同义词: JNK-55; JNK2; JNK2A; JNK2ALPHA; JNK2B; JNK2BETA; PRKM9; SAPK; SAPK1a; p54a; p54aSAPK

圣克鲁斯生物技术
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 1:1000; 图 1a
  • 免疫印迹; 小鼠; 1:1000; 图 1n, s1h
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-7345)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1n, s1h). Nat Commun (2022) ncbi
小鼠 单克隆(G-7)
  • 免疫组化-石蜡切片; 大鼠; 图 4b
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, SC-6254)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 4b). Oxid Med Cell Longev (2022) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 小鼠; 1:2000; 图 s1h
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-7345)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s1h). J Cell Sci (2022) ncbi
小鼠 单克隆(G-7)
  • 免疫组化; 大鼠; 1:4000
圣克鲁斯生物技术 JNK2抗体(Santa Cruz Biotechnology, sc- 6254)被用于被用于免疫组化在大鼠样本上浓度为1:4000. J Inflamm Res (2020) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类; 1:200; 图 5a
圣克鲁斯生物技术 JNK2抗体(Santa Cruz biotechnology, sc-6254)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5a). Oncogenesis (2020) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 小鼠; 图 5f
圣克鲁斯生物技术 JNK2抗体(Santa Cruz Biotechnology, sc-7345)被用于被用于免疫印迹在小鼠样本上 (图 5f). Cell Rep (2019) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 小鼠; 图 5f
圣克鲁斯生物技术 JNK2抗体(Santa Cruz Biotechnology, sc-6254)被用于被用于免疫印迹在小鼠样本上 (图 5f). Cell Rep (2019) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 小鼠; 1:500; 图 5c
圣克鲁斯生物技术 JNK2抗体(Santa, sc-6254)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5c). Front Mol Neurosci (2019) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类; 图 4j
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-6254)被用于被用于免疫印迹在人类样本上 (图 4j). Nat Cell Biol (2019) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 大鼠; 1:500; 图 7
圣克鲁斯生物技术 JNK2抗体(Santa, sc-6254)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 7). J Pain Res (2018) ncbi
小鼠 单克隆(9H8)
  • 免疫印迹; 人类; 图 1b
圣克鲁斯生物技术 JNK2抗体(Santa, sc-81502)被用于被用于免疫印迹在人类样本上 (图 1b). Cell Mol Immunol (2018) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 大鼠; 1:1000; 图 4b
圣克鲁斯生物技术 JNK2抗体(SantaCruz, sc-7345)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4b). Phytomedicine (2018) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 大鼠; 1:1000; 图 4b
圣克鲁斯生物技术 JNK2抗体(SantaCruz, sc-6254)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4b). Phytomedicine (2018) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 小鼠; 图 2c
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, SC6254)被用于被用于免疫印迹在小鼠样本上 (图 2c). J Nutr Biochem (2017) ncbi
小鼠 单克隆(G-7)
  • 免疫组化; 小鼠; 1:100; 图 3
圣克鲁斯生物技术 JNK2抗体(Santa Cruz Biotechnology, sc-6254)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3). Hum Mol Genet (2017) ncbi
小鼠 单克隆(G-7)
  • 免疫细胞化学; 人类; 1:50; 图 1a
圣克鲁斯生物技术 JNK2抗体(SantaCruz, sc-6254)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1a). J Virol (2017) ncbi
小鼠 单克隆(G-7)
  • 免疫细胞化学; 小鼠; 1:100; 图 1a
圣克鲁斯生物技术 JNK2抗体(SantaCruz, 6254)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1a). Neural Plast (2017) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类; 图 s2b
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-6254)被用于被用于免疫印迹在人类样本上 (图 s2b). Sci Rep (2017) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 小鼠; 图 6
圣克鲁斯生物技术 JNK2抗体(SantaCruz, sc-6254)被用于被用于免疫印迹在小鼠样本上 (图 6). J Ethnopharmacol (2017) ncbi
小鼠 单克隆(14.Thr 183/Tyr 185)
  • 免疫印迹; 人类; 1:500; 图 4a
圣克鲁斯生物技术 JNK2抗体(Santa Cruz Biotechnology, sc-293136)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Exp Ther Med (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫细胞化学; 人类; 图 7e
  • 免疫印迹; 人类; 图 7e
圣克鲁斯生物技术 JNK2抗体(SantaCruz, sc-7345)被用于被用于免疫细胞化学在人类样本上 (图 7e) 和 被用于免疫印迹在人类样本上 (图 7e). Expert Opin Ther Targets (2017) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 小鼠; 1:1000; 图 9a
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-7345)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9a). PLoS ONE (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 小鼠; 图 2a
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, SC-7345)被用于被用于免疫印迹在小鼠样本上 (图 2a). JCI Insight (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 小鼠; 图 6e
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, Sc-7345)被用于被用于免疫印迹在小鼠样本上 (图 6e). Am J Pathol (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 1:1000; 图 4a
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-7345)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Oncol Lett (2016) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类; 1:1000; 图 4a
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-6254)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Oncol Lett (2016) ncbi
小鼠 单克隆(9H8)
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术 JNK2抗体(SantaCruz, sc-81502)被用于被用于免疫印迹在人类样本上 (图 3c). Sci Rep (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 小鼠; 图 7a
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-7345)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Immunol (2016) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 小鼠; 图 7a
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-6254)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Immunol (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-7345)被用于被用于免疫印迹在人类样本上 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-6254)被用于被用于免疫印迹在人类样本上 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(D-9)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-137019)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, SC-6254)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Cell Div (2016) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-6254)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS ONE (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 小鼠; 1:200; 图 3
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-7345)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3). Exp Ther Med (2016) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-6254)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 大鼠; 1:500; 图 5a
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, 6254)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 5a). Int J Endocrinol (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 小鼠; 图 7c
圣克鲁斯生物技术 JNK2抗体(Santa Cruz Biotechnology, sc-7345)被用于被用于免疫印迹在小鼠样本上 (图 7c). J Biol Chem (2016) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 小鼠; 图 7c
圣克鲁斯生物技术 JNK2抗体(Santa Cruz Biotechnology, sc-6254)被用于被用于免疫印迹在小鼠样本上 (图 7c). J Biol Chem (2016) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc6254)被用于被用于免疫印迹在人类样本上 (图 4). BMC Complement Altern Med (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 图 1b
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-7345)被用于被用于免疫印迹在人类样本上 (图 1b). Nat Cell Biol (2016) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, SC-6254)被用于被用于免疫印迹在小鼠样本上 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 大鼠; 1:1000; 图 3
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-7345)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 大鼠; 1:1000; 图 3
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-6254)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 大鼠; 1:200; 图 4
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, SC-6254)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 4). J Am Heart Assoc (2016) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-6254)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-7345)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(14.Thr 183/Tyr 185)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 JNK2抗体(Santa Cruz Biotechnology, SC-293136)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 JNK2抗体(Santa Cruz Biotechnology, SC-7345)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 小鼠; 图 6b
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-6254)被用于被用于免疫印迹在小鼠样本上 (图 6b). Neurosci Lett (2016) ncbi
小鼠 单克隆(D-2)
  • 其他; 人类; 图 st1
圣克鲁斯生物技术 JNK2抗体(SCBT, D-2)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(89.Thr 183/Tyr 185)
  • 免疫印迹; 人类; 1:1000; 图 5
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-293138)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 1:1000; 图 5
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-7345)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(9H8)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 JNK2抗体(Santa, sc-81502)被用于被用于免疫印迹在小鼠样本上 (图 5). Sci Rep (2015) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 JNK2抗体(Santa, sc-137020)被用于被用于免疫印迹在小鼠样本上 (图 5). Sci Rep (2015) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类; 1:500; 图 12
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-6254)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 12). J Neuroinflammation (2015) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 小鼠; 图 4d
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-6254)被用于被用于免疫印迹在小鼠样本上 (图 4d). ScientificWorldJournal (2015) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc6254)被用于被用于免疫印迹在人类样本上 (图 5c). Apoptosis (2016) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术 JNK2抗体(Santa Cruz Biotechnology, SC-6254)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Cell Mol Med (2016) ncbi
小鼠 单克隆(9H8)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-81502)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 JNK2抗体(Santa Cruz Biotechnology, sc-6254)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 JNK2抗体(Santa Cruz Laboratories, SC6254)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 图 s1
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-7345)被用于被用于免疫印迹在人类样本上 (图 s1) 和 被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(G-7)
  • 免疫组化-自由浮动切片; 大鼠
圣克鲁斯生物技术 JNK2抗体(Santa Cruz Biotechnology, sc-6254)被用于被用于免疫组化-自由浮动切片在大鼠样本上. Free Radic Biol Med (2015) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 大鼠; 1:500; 图 4
圣克鲁斯生物技术 JNK2抗体(SantaCruz, sc-7345)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4). Mol Med Rep (2015) ncbi
小鼠 单克隆(9H8)
  • 免疫印迹; 大鼠; 1:500; 图 4
圣克鲁斯生物技术 JNK2抗体(SantaCruz, sc-81502)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4). Mol Med Rep (2015) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 JNK2抗体(Santa Cruz Biotechnology, SC-7345)被用于被用于免疫印迹在小鼠样本上. J Nutr Biochem (2015) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类; 1:200; 图 4
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-6254)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 JNK2抗体(Santa Cruz Biotechnology, SC-6254)被用于被用于免疫印迹在人类样本上 (图 5). Br J Nutr (2015) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类; 1:300
圣克鲁斯生物技术 JNK2抗体(Santa Cruz Biotechnology, sc-6254)被用于被用于免疫印迹在人类样本上浓度为1:300. Cell Signal (2015) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类; 1:200
圣克鲁斯生物技术 JNK2抗体(Santa Cruz Biotechnology, sc-6254)被用于被用于免疫印迹在人类样本上浓度为1:200. Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-6254)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 JNK2抗体(Santa Cruz Biotechnology, sc-6254)被用于被用于免疫印迹在小鼠样本上. Vasc Cell (2014) ncbi
小鼠 单克隆(14.Thr 183/Tyr 185)
  • 免疫印迹; 小鼠; 图 4a
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-293136)被用于被用于免疫印迹在小鼠样本上 (图 4a). PLoS ONE (2015) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 小鼠; 1:200
圣克鲁斯生物技术 JNK2抗体(Santa Cruz Biotechnology, SC6254)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Mol Cell Biol (2015) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 小鼠; 1:200
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-6254)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Invest Ophthalmol Vis Sci (2015) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-7345)被用于被用于免疫印迹在人类样本上 (图 5). ACS Chem Neurosci (2015) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 大鼠; 1:100
圣克鲁斯生物技术 JNK2抗体(Santa Cruz Biotechnology, sc-6254)被用于被用于免疫印迹在大鼠样本上浓度为1:100. Life Sci (2015) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 大鼠; 1:500
圣克鲁斯生物技术 JNK2抗体(Santa Cruz Biotechnology, sc-7345)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Life Sci (2015) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-7345)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2015) ncbi
小鼠 单克隆(14.Thr 183/Tyr 185)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-293136)被用于被用于免疫印迹在人类样本上 (图 2). Mol Immunol (2015) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 JNK2抗体(Santa Cruz Biotechnology, Sc-6254)被用于被用于免疫印迹在人类样本上. Cancer Lett (2015) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-7345)被用于被用于免疫印迹在人类样本上. BMC Cancer (2014) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 JNK2抗体(Santa, sc-6254)被用于被用于免疫印迹在人类样本上. elife (2014) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类; 1:200
圣克鲁斯生物技术 JNK2抗体(Santa Cruz Biotechnology, sc-6254)被用于被用于免疫印迹在人类样本上浓度为1:200. Biomed Res Int (2014) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-6254)被用于被用于免疫印迹在小鼠样本上. Toxicol In Vitro (2014) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-7345)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Brain Res (2014) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-6254)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Brain Res (2014) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 JNK2抗体(Santa Cruz Biotechnology, sc-6254)被用于被用于免疫印迹在人类样本上. Free Radic Biol Med (2014) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 JNK2抗体(Santa Cruz Biotechnology, sc-6254)被用于被用于免疫印迹在小鼠样本上. Exp Mol Med (2014) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 番茄
圣克鲁斯生物技术 JNK2抗体(Santa Cruz Biotechnology, SC-6254)被用于被用于免疫印迹在番茄样本上. J Agric Food Chem (2014) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类; 图 s1
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-6254)被用于被用于免疫印迹在人类样本上 (图 s1). Mol Cancer Res (2014) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 图 4a, 4b
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc-7345)被用于被用于免疫印迹在人类样本上 (图 4a, 4b). Int J Oncol (2014) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, sc6254)被用于被用于免疫印迹在小鼠样本上. J Hepatol (2014) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 JNK2抗体(Santa Cruz, SC-6254)被用于被用于免疫印迹在人类样本上. Diabetes (2013) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 JNK2抗体(Santa Cruz Biotechnology, sc-6254)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
赛默飞世尔
鸡 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s3g
赛默飞世尔 JNK2抗体(Invitrogen, PA1-9594)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s3g). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 e6j
赛默飞世尔 JNK2抗体(Invitrogen, 44-682G)被用于被用于免疫印迹在小鼠样本上 (图 e6j). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛默飞世尔 JNK2抗体(Invitrogen, 44682)被用于被用于免疫印迹在人类样本上 (图 1c). Biochem J (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3b
  • 免疫印迹; pigs ; 图 3a
赛默飞世尔 JNK2抗体(Invitrogen, 44682G)被用于被用于免疫印迹在小鼠样本上 (图 3b) 和 被用于免疫印迹在pigs 样本上 (图 3a). Arthritis Rheumatol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s6
赛默飞世尔 JNK2抗体(Invitrogen, 44-682G)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s9
赛默飞世尔 JNK2抗体(Invitrogen, 44682G)被用于被用于免疫印迹在小鼠样本上 (图 s9). J Clin Invest (2016) ncbi
小鼠 单克隆(E.665.10)
  • 免疫印迹; 人类; 图 5d
赛默飞世尔 JNK2抗体(生活技术, E.665.10)被用于被用于免疫印迹在人类样本上 (图 5d). Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛默飞世尔 JNK2抗体(Invitrogen, 446826G)被用于被用于免疫印迹在人类样本上 (图 3b). EMBO Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 JNK2抗体(Invitrogen, 44682G)被用于被用于免疫印迹在小鼠样本上 (图 1). Arthritis Rheumatol (2016) ncbi
domestic rabbit 单克隆(F.971.6)
  • 免疫印迹; 人类; 图 6
赛默飞世尔 JNK2抗体(Thermo Scientific, MA5-14943)被用于被用于免疫印迹在人类样本上 (图 6). Tumour Biol (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 JNK2抗体(Invitrogen, 44682G)被用于. FEBS Lett (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 JNK2抗体(Invitrogen, 44682G)被用于. Biochem J (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 JNK2抗体(Invitrogen, 44682G)被用于. Arthritis Rheumatol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 JNK2抗体(Cell Signaling Technology, 44682G)被用于. J Invest Dermatol (2015) ncbi
小鼠 单克隆(E.665.10)
  • 免疫组化-石蜡切片; 斑马鱼; 1:100
赛默飞世尔 JNK2抗体(Thermo Scientific, MA5-15228)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:100. J Immunol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 JNK2抗体(BioSource, 44-682G)被用于. J Virol (2015) ncbi
domestic rabbit 重组(D12H7L17)
  • 免疫印迹; 小鼠; 1:2000; 图 4
赛默飞世尔 JNK2抗体(生活技术, 700031)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4). Eur J Neurosci (2014) ncbi
domestic rabbit 重组(D12H7L17)
  • 免疫印迹; 小鼠; 图 5
赛默飞世尔 JNK2抗体(Invitrogen, 700031)被用于被用于免疫印迹在小鼠样本上 (图 5). Gastroenterology (2012) ncbi
domestic rabbit 重组(D12H7L17)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 JNK2抗体(Invitrogen, 700031)被用于被用于免疫印迹在人类样本上 (图 1). Hepatology (2012) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8f
艾博抗(上海)贸易有限公司 JNK2抗体(Abcam, 112501)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8f). Int J Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3f
艾博抗(上海)贸易有限公司 JNK2抗体(Abcam, ab4821)被用于被用于免疫印迹在人类样本上 (图 3f). Cell Res (2020) ncbi
domestic rabbit 单克隆(EP1595Y)
  • 免疫印迹; 人类; 1:1000; 图 3e
艾博抗(上海)贸易有限公司 JNK2抗体(Abcam, ab76125)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Cancer Cell Int (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 4a
艾博抗(上海)贸易有限公司 JNK2抗体(Abcam, ab4821)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4a). Front Aging Neurosci (2020) ncbi
domestic rabbit 单克隆(EP1597Y)
  • 免疫印迹; 人类; 图 4h
艾博抗(上海)贸易有限公司 JNK2抗体(Abcam, ab76572)被用于被用于免疫印迹在人类样本上 (图 4h). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:5000; 图 5a
艾博抗(上海)贸易有限公司 JNK2抗体(Abcam, ab131499)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 5a). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4b
艾博抗(上海)贸易有限公司 JNK2抗体(Abcam, ab4821)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Front Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:2000; 图 5c
艾博抗(上海)贸易有限公司 JNK2抗体(Abcam, ab131499)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 5c). Stroke (2018) ncbi
domestic rabbit 单克隆(EP1595Y)
  • 免疫印迹; 小鼠; 图 6a
艾博抗(上海)贸易有限公司 JNK2抗体(Abcam, ab76125)被用于被用于免疫印迹在小鼠样本上 (图 6a). Cell Physiol Biochem (2017) ncbi
domestic rabbit 单克隆(EP1595Y)
  • 免疫印迹; 人类; 图 6c
艾博抗(上海)贸易有限公司 JNK2抗体(Abcam, ab76125)被用于被用于免疫印迹在人类样本上 (图 6c). PLoS Pathog (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6e
艾博抗(上海)贸易有限公司 JNK2抗体(Abcam, ab4821)被用于被用于免疫印迹在小鼠样本上 (图 6e). Am J Pathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 6
艾博抗(上海)贸易有限公司 JNK2抗体(Abcam, ab4821)被用于被用于免疫组化在小鼠样本上 (图 6). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司 JNK2抗体(Abcam, ab112501)被用于被用于免疫印迹在小鼠样本上 (图 4). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司 JNK2抗体(Abcam, ab4821)被用于被用于免疫印迹在小鼠样本上 (图 4). Stem Cell Reports (2016) ncbi
domestic rabbit 单克隆(EP1595Y)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 JNK2抗体(Abcam, ab76125)被用于被用于免疫印迹在人类样本上 (图 5). Autophagy (2015) ncbi
domestic rabbit 单克隆(EP1597Y)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 JNK2抗体(Abcam, ab76572)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s5b
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上 (图 s5b) 和 被用于免疫印迹在人类样本上 (图 4a). Clin Transl Med (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 s4a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s4a). iScience (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1f
赛信通(上海)生物试剂有限公司 JNK2抗体(CST, 9252)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1f). Allergy Asthma Immunol Res (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8g, 8h
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在小鼠样本上 (图 8g, 8h). PLoS Pathog (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7e
赛信通(上海)生物试剂有限公司 JNK2抗体(CST, 9252)被用于被用于免疫印迹在人类样本上 (图 7e). Int J Med Sci (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 JNK2抗体(CST, 9252)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Leukemia (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5i
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5i). Oxid Med Cell Longev (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:300; 图 4b
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:300 (图 4b). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 JNK2抗体(CST, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Cancers (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252S)被用于被用于免疫印迹在人类样本上 (图 5f). Redox Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s10b
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technologies, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s10b). Sci Adv (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 JNK2抗体(CST, 9252S)被用于被用于免疫印迹在小鼠样本上 (图 5b). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s8c
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在小鼠样本上 (图 s8c). Sci Adv (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 JNK2抗体(CST, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). J Inflamm Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3f, 5d
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3f, 5d). Front Oncol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8c
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上 (图 8c). J Inflamm Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252S)被用于被用于免疫印迹在小鼠样本上 (图 4a). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 s2
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252S)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s2). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6b, 7e
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6b, 7e). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 JNK2抗体(CST, 9252)被用于被用于免疫印迹在人类样本上 (图 5e). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 JNK2抗体(CST, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). JCI Insight (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在小鼠样本上 (图 2b). Redox Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8a). J Cardiothorac Surg (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signalling, 9252)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Environ Health Perspect (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 JNK2抗体(CST, 9252)被用于被用于免疫印迹在人类样本上 (图 2b). Neuropathol Appl Neurobiol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 JNK2抗体(CST, 9252)被用于被用于免疫印迹在小鼠样本上 (图 6a). Front Immunol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s6a
赛信通(上海)生物试剂有限公司 JNK2抗体(cst, 9252S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s6a). Redox Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell signaling technology, 9252)被用于被用于免疫印迹在人类样本上 (图 6a). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signalling, 9252)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2d
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d) 和 被用于免疫印迹在人类样本上 (图 2d). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s7a
赛信通(上海)生物试剂有限公司 JNK2抗体(CST, 9252S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7a). PLoS Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在人类样本上 (图 6b). Oncogenesis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 JNK2抗体(CST, 9252)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4c). Dis Model Mech (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4c, 5c
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c, 5c). Mol Metab (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2e
  • 免疫印迹; 小鼠; 1:1000; 图 4d, 4e
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2e) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d, 4e). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司 JNK2抗体(CST, 9252)被用于被用于免疫印迹在小鼠样本上 (图 s4a). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 JNK2抗体(CST, 9252)被用于被用于免疫印迹在人类样本上 (图 5a). Cancer Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 5c
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5c). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在小鼠样本上 (图 6a). J Cell Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 6b
赛信通(上海)生物试剂有限公司 JNK2抗体(CST, 9252)被用于被用于免疫印迹在大鼠样本上 (图 6b). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 JNK2抗体(CST, 9252)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Arthritis Res Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell signaling technology, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Front Immunol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signalling, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell signaling, 9252)被用于被用于免疫印迹在人类样本上. Theranostics (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4f
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在小鼠样本上 (图 4f). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在人类样本上 (图 3f). Cell Death Differ (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6d
  • 免疫印迹; 人类; 图 6h
赛信通(上海)生物试剂有限公司 JNK2抗体(CST, 9252)被用于被用于免疫印迹在小鼠样本上 (图 6d) 和 被用于免疫印迹在人类样本上 (图 6h). Hepatology (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 9c
赛信通(上海)生物试剂有限公司 JNK2抗体(CST, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9c). Front Mol Biosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4g, 5c
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上 (图 4g, 5c). Sci Adv (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 JNK2抗体(CST, 9252S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Front Aging Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Oncogenesis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1k
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1k). Sci Adv (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在人类样本上 (图 4a). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1f
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在小鼠样本上 (图 1f). Adv Sci (Weinh) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 2a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signalling, 9252)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2a). Artif Cells Nanomed Biotechnol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 JNK2抗体(CST, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Mol Cells (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s4i
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在小鼠样本上 (图 s4i). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在小鼠样本上 (图 3e). Mol Med Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Breast Cancer Res Treat (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:600; 图 4f
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在大鼠样本上浓度为1:600 (图 4f). Sci Signal (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 11a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 11a). Biomolecules (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2i
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上 (图 2i). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). J Physiol Biochem (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在人类样本上 (图 4d). Theranostics (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上 (图 4c). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252S)被用于被用于免疫印迹在人类样本上 (图 4a). J Immunol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s5d
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上 (图 s5d). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s2c
赛信通(上海)生物试剂有限公司 JNK2抗体(CST, 9252)被用于被用于免疫印迹在小鼠样本上 (图 s2c). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Neurobiol Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell signaling, 9252)被用于被用于免疫印迹在人类样本上 (图 1c). Biol Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell signaling, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Front Mol Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1h
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在小鼠样本上 (图 1h). Cancer Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在人类样本上 (图 4c). BMC Cancer (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252S)被用于被用于免疫印迹在小鼠样本上 (图 4c). EBioMedicine (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252S)被用于被用于免疫印迹在小鼠样本上 (图 2b). J Biol Chem (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在小鼠样本上 (图 6a). Hepatology (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7c
赛信通(上海)生物试剂有限公司 JNK2抗体(CST, 9252)被用于被用于免疫印迹在人类样本上 (图 7c). Cell Death Differ (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 4672S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). Int J Nanomedicine (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252s)被用于被用于免疫印迹在小鼠样本上 (图 8a). J Cell Mol Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在小鼠样本上 (图 4d). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在人类样本上 (图 4a). Oncoimmunology (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在人类样本上 (图 4c). Cell Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在人类样本上 (图 6f). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 4d
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫细胞化学在小鼠样本上 (图 4d) 和 被用于免疫印迹在人类样本上 (图 1b). Cell Mol Immunol (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 4672)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Biochem Biophys Res Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8b
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8b). Br J Pharmacol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 1a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 4672)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1a). J Biol Chem (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Am J Physiol Heart Circ Physiol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s7a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上 (图 s7a). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在人类样本上 (图 1c). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 9a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 9a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252S)被用于被用于免疫印迹在小鼠样本上 (图 5a). Mol Biol Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 JNK2抗体(cell signalling, 9252)被用于被用于免疫印迹在小鼠样本上 (图 1a). Cell Death Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4C
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell signaling, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4C). Neurochem Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫沉淀在小鼠样本上 (图 4). Neural Plast (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1c
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在大鼠样本上 (图 1c). Toxicology (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 JNK2抗体(CST, 4672)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Theranostics (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signalling, 9252)被用于被用于免疫印迹在小鼠样本上 (图 4b) 和 被用于免疫印迹在人类样本上 (图 4e). BMC Cancer (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s9e
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在人类样本上 (图 s9e). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s5e
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上 (图 s5e). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上 (图 5d). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s3
赛信通(上海)生物试剂有限公司 JNK2抗体(cell signalling, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在人类样本上 (图 5a). Peerj (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在人类样本上 (图 3f). Mol Immunol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 6b
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell signaling, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6b). Clin Sci (Lond) (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2d,2h
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上 (图 2d,2h). Cell Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 图 s3h
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell signaling, 9252)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 s3h). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上 (图 6). Am J Physiol Endocrinol Metab (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Biochim Biophys Acta Mol Cell Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 JNK2抗体(CST, 9252)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Am Heart Assoc (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5i
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上 (图 5i). Exp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s3f
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3f). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7e
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在人类样本上 (图 7e). J Cell Biochem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1g
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1g). EMBO Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上 (图 4a). Mol Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signalling, 9252)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上 (图 3d). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6a). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s5
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signalling, 9252)被用于被用于免疫印迹在人类样本上 (图 s5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 6d
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s5b, s6b
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上 (图 s5b, s6b). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, Inc., 9252)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell signaling, 9252)被用于被用于免疫印迹在小鼠样本上 (图 5a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s6
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在人类样本上 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在人类样本上 (图 2c). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell signaling, 9252)被用于被用于免疫印迹在小鼠样本上 (图 s4a). Biol Reprod (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上 (图 2b). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在大鼠样本上 (图 4). Physiol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在人类样本上 (图 4a). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell signaling, 9252)被用于被用于免疫印迹在人类样本上 (图 7). BMC Complement Altern Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signalling, 9252)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Tech, 9252)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 4
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). Aging Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252s)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Tech, 9252)被用于被用于免疫印迹在人类样本上 (图 s1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在小鼠样本上 (图 2). Cell Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 4672)被用于被用于免疫印迹在人类样本上 (图 2). J Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 1a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8). Psychopharmacology (Berl) (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:250; 图 s5
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252S)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 s5). Ann Clin Transl Neurol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Tech, 9252)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell signaling, 9252)被用于被用于免疫印迹在小鼠样本上 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell signaling, 9252S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). J Am Heart Assoc (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Tech, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Evid Based Complement Alternat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4g
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在人类样本上 (图 4g). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell signaling, 9252)被用于被用于免疫印迹在小鼠样本上 (图 2). Mol Neurodegener (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; pigs ; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252s)被用于被用于免疫印迹在pigs 样本上浓度为1:1000 (图 2). Am J Physiol Regul Integr Comp Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4). Mol Cell Proteomics (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 仓鼠; 图 3a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在仓鼠样本上 (图 3a). Cell Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Arch Toxicol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). J Exp Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 4672)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). J Diabetes Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). J Diabetes Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 4672)被用于被用于免疫印迹在大鼠样本上 (图 3). J Neuroinflammation (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell signaling, 9252)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在人类样本上 (图 3a). Mol Endocrinol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell signaling, 9252)被用于被用于免疫印迹在人类样本上 (图 2b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell signaling, 9252)被用于被用于免疫印迹在人类样本上 (图 5). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上 (图 5c). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上 (图 2c). Exp Hematol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在小鼠样本上 (图 5). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在小鼠样本上 (图 5). Mol Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b, 2c
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在人类样本上 (图 2b, 2c). Nat Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在小鼠样本上 (图 4). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Mol Cell Biochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:300
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling Technology, 9252)被用于被用于免疫印迹在小鼠样本上浓度为1:300. FASEB J (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 JNK2抗体(Cell Signaling, 9252)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2016) ncbi
碧迪BD
小鼠 单克隆(G151-666)
  • 免疫印迹; 小鼠; 1:1000; 图 3f
碧迪BD JNK2抗体(BD Bioscience, 554285)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3f). Nat Commun (2021) ncbi
小鼠 单克隆(G151-666)
  • 免疫印迹; 小鼠; 图 5b
碧迪BD JNK2抗体(BD Pharmingen, 554285)被用于被用于免疫印迹在小鼠样本上 (图 5b). Liver Res (2021) ncbi
小鼠 单克隆(G151-666)
  • 免疫印迹; 小鼠; 1:500; 图 1a
碧迪BD JNK2抗体(BD Biosciences, G151-666)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1a). J Biol Chem (2018) ncbi
小鼠 单克隆(G151-666)
  • 免疫印迹; 小鼠; 图 2a
碧迪BD JNK2抗体(Cell Signaling Technology, 554285)被用于被用于免疫印迹在小鼠样本上 (图 2a). J Biol Chem (2017) ncbi
小鼠 单克隆(G151-666)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
碧迪BD JNK2抗体(Pharmingen, 554285)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Mol Psychiatry (2018) ncbi
小鼠 单克隆(G151-666)
  • 免疫印迹; 小鼠; 图 3
碧迪BD JNK2抗体(BD Biosciences, 554285)被用于被用于免疫印迹在小鼠样本上 (图 3). elife (2016) ncbi
小鼠 单克隆(G151-666)
  • 免疫印迹; 小鼠; 图 7d
碧迪BD JNK2抗体(BD Biosciences, 554285)被用于被用于免疫印迹在小鼠样本上 (图 7d). elife (2016) ncbi
小鼠 单克隆(G151-666)
  • 免疫印迹; 人类; 图 3b
碧迪BD JNK2抗体(BD Biosciences, 554285)被用于被用于免疫印迹在人类样本上 (图 3b). EMBO Rep (2016) ncbi
小鼠 单克隆(G151-666)
  • 其他; 人类; 图 st1
碧迪BD JNK2抗体(BD, G151-666)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(G151-666)
  • 免疫印迹; 人类
碧迪BD JNK2抗体(Pharmingen, 554285)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(G151-666)
  • 免疫印迹; 小鼠; 图 s1d
碧迪BD JNK2抗体(BD, 554285)被用于被用于免疫印迹在小鼠样本上 (图 s1d). Nat Immunol (2015) ncbi
小鼠 单克隆(G151-666)
  • 免疫印迹; 小鼠
碧迪BD JNK2抗体(BD Biosciences, 554285)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(G151-666)
  • 免疫印迹; 小鼠; 1:500; 图 4
碧迪BD JNK2抗体(BD Biosciences, 554285)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). Eur J Neurosci (2014) ncbi
小鼠 单克隆(G151-666)
  • 免疫印迹; 大鼠
碧迪BD JNK2抗体(BD Biosciences, 554285)被用于被用于免疫印迹在大鼠样本上. Basic Res Cardiol (2014) ncbi
文章列表
  1. Chi J, Hsiao Y, Liang H, Huang T, Chen F, Chen C, et al. Blockade of the pentraxin 3/CD44 interaction attenuates lung injury-induced fibrosis. Clin Transl Med. 2022;12:e1099 pubmed 出版商
  2. Pan R, Yu Y, Zhu H, Zhang W, Qin Y, Ye L, et al. RSPO2 promotes progression of ovarian cancer through dual receptor-mediated FAK/Src signaling activation. iScience. 2022;25:105184 pubmed 出版商
  3. Feng K, Meng P, Zhang M, Zou X, Li S, Huang C, et al. IL-24 Contributes to Neutrophilic Asthma in an IL-17A-Dependent Manner and Is Suppressed by IL-37. Allergy Asthma Immunol Res. 2022;14:505-527 pubmed 出版商
  4. Liu J, Lai X, Yu R, Ding H, Bai H, Yang Z, et al. Progranulin aggravates lethal Candida albicans sepsis by regulating inflammatory response and antifungal immunity. PLoS Pathog. 2022;18:e1010873 pubmed 出版商
  5. Mu R, Chen B, Bi B, Yu H, Liu J, Li J, et al. LIM Mineralization Protein-1 Enhances the Committed Differentiation of Dental Pulp Stem Cells through the ERK1/2 and p38 MAPK Pathways and BMP Signaling. Int J Med Sci. 2022;19:1307-1319 pubmed 出版商
  6. Zhou W, Xu Y, Zhang J, Zhang P, Yao Z, Yan Z, et al. MiRNA-363-3p/DUSP10/JNK axis mediates chemoresistance by enhancing DNA damage repair in diffuse large B-cell lymphoma. Leukemia. 2022;36:1861-1869 pubmed 出版商
  7. Zang T, Chen H, Shen S, Xu F, Wang R, Yin J, et al. Highly Purified Eicosapentaenoic Acid Alleviates the Inflammatory Response and Oxidative Stress in Macrophages during Atherosclerosis via the miR-1a-3p/sFRP1/Wnt/PCP-JNK Pathway. Oxid Med Cell Longev. 2022;2022:9451058 pubmed 出版商
  8. Xiong W, Gao X, Zhang T, Jiang B, Hu M, Bu X, et al. USP8 inhibition reshapes an inflamed tumor microenvironment that potentiates the immunotherapy. Nat Commun. 2022;13:1700 pubmed 出版商
  9. Muhammad A, Hao L, Al Kury L, Rehman N, Alvi A, Badshah H, et al. Carveol Promotes Nrf2 Contribution in Depressive Disorders through an Anti-inflammatory Mechanism. Oxid Med Cell Longev. 2022;2022:4509204 pubmed 出版商
  10. Pantasis S, Friemel J, Brütsch S, Hu Z, Krautbauer S, Liebisch G, et al. Vertebrate lonesome kinase modulates the hepatocyte secretome to prevent perivascular liver fibrosis and inflammation. J Cell Sci. 2022;135: pubmed 出版商
  11. Nahle A, Joseph Y, Pereira S, Mori Y, Poon F, Ghadieh H, et al. Nicotinamide Mononucleotide Prevents Free Fatty Acid-Induced Reduction in Glucose Tolerance by Decreasing Insulin Clearance. Int J Mol Sci. 2021;22: pubmed 出版商
  12. Correia de Sousa M, Calo N, Sobolewski C, Gjorgjieva M, Clement S, Maeder C, et al. Mir-21 Suppression Promotes Mouse Hepatocarcinogenesis. Cancers (Basel). 2021;13: pubmed 出版商
  13. Hoste E, Lecomte K, Annusver K, Vandamme N, Roels J, Maschalidi S, et al. OTULIN maintains skin homeostasis by controlling keratinocyte death and stem cell identity. Nat Commun. 2021;12:5913 pubmed 出版商
  14. Bhattarai K, Kim H, Chaudhary M, Ur Rashid M, Kim J, Kim H, et al. TMBIM6 regulates redox-associated posttranslational modifications of IRE1α and ER stress response failure in aging mice and humans. Redox Biol. 2021;47:102128 pubmed 出版商
  15. Rossetti G, Ermer J, Stentenbach M, Siira S, Richman T, Milenkovic D, et al. A common genetic variant of a mitochondrial RNA processing enzyme predisposes to insulin resistance. Sci Adv. 2021;7:eabi7514 pubmed 出版商
  16. Liu Y, Li Y, Huang S, Li Y, Xia J, Jia J, et al. Liver-specific over-expression of Cripto-1 in transgenic mice promotes hepatocyte proliferation and deregulated expression of hepatocarcinogenesis-related genes and signaling pathways. Aging (Albany NY). 2021;13:21155-21190 pubmed 出版商
  17. Sun H, Ni H, McCracken J, Akakpo J, Fulte S, McKeen T, et al. Liver-specific deletion of mechanistic target of rapamycin does not protect against acetaminophen-induced liver injury in mice. Liver Res. 2021;5:79-87 pubmed 出版商
  18. Cheng J, Dong Y, Ma J, Pan R, Liao Y, Kong X, et al. Microglial Calhm2 regulates neuroinflammation and contributes to Alzheimer's disease pathology. Sci Adv. 2021;7: pubmed 出版商
  19. Liu M, Shan M, Zhang Y, Guo Z. Progranulin Protects Against Airway Remodeling Through the Modulation of Autophagy via HMGB1 Suppression in House Dust Mite-Induced Chronic Asthma. J Inflamm Res. 2021;14:3891-3904 pubmed 出版商
  20. Fan M, Zhang G, Chen W, Qi L, Xie M, Zhang Y, et al. Siglec-15 Promotes Tumor Progression in Osteosarcoma via DUSP1/MAPK Pathway. Front Oncol. 2021;11:710689 pubmed 出版商
  21. Cao W, Song S, Fang G, Li Y, Wang Y, Wang Q. Cadherin-11 Deficiency Attenuates Ang-II-Induced Atrial Fibrosis and Susceptibility to Atrial Fibrillation. J Inflamm Res. 2021;14:2897-2911 pubmed 出版商
  22. Hering L, Katkeviciute E, Schwarzfischer M, Niechcial A, Riggs J, Wawrzyniak M, et al. Macrophages Compensate for Loss of Protein Tyrosine Phosphatase N2 in Dendritic Cells to Protect from Elevated Colitis. Int J Mol Sci. 2021;22: pubmed 出版商
  23. Emre C, Do K, Jun B, Hjorth E, Alcalde S, Kautzmann M, et al. Age-related changes in brain phospholipids and bioactive lipids in the APP knock-in mouse model of Alzheimer's disease. Acta Neuropathol Commun. 2021;9:116 pubmed 出版商
  24. Wu X, Shu L, Zhang Z, Li J, Zong J, Cheong L, et al. Adipocyte Fatty Acid Binding Protein Promotes the Onset and Progression of Liver Fibrosis via Mediating the Crosstalk between Liver Sinusoidal Endothelial Cells and Hepatic Stellate Cells. Adv Sci (Weinh). 2021;8:e2003721 pubmed 出版商
  25. Lai W, Zhu W, Xiao C, Li X, Wang Y, Han Y, et al. HJURP promotes proliferation in prostate cancer cells through increasing CDKN1A degradation via the GSK3β/JNK signaling pathway. Cell Death Dis. 2021;12:583 pubmed 出版商
  26. Xu L, Humphries F, Delagic N, Wang B, Holland A, Edgar K, et al. ECSIT is a critical limiting factor for cardiac function. JCI Insight. 2021;6: pubmed 出版商
  27. Liu Y, Cong P, Zhang T, Wang R, Wang X, Liu J, et al. Plasmalogen attenuates the development of hepatic steatosis and cognitive deficit through mechanism involving p75NTR inhibition. Redox Biol. 2021;43:102002 pubmed 出版商
  28. Huang W, Liu H, Pan Y, Yang H, Lin J, Zhang H. Mechanical stretching of the pulmonary vein mediates pulmonary hypertension due to left heart disease by regulating SAC/MAPK pathway and the expression of IL-6 and TNF-α. J Cardiothorac Surg. 2021;16:127 pubmed 出版商
  29. Wang Y, Lee Y, Hsu Y, Chiu I, Huang C, Huang C, et al. The Kidney-Related Effects of Polystyrene Microplastics on Human Kidney Proximal Tubular Epithelial Cells HK-2 and Male C57BL/6 Mice. Environ Health Perspect. 2021;129:57003 pubmed 出版商
  30. Korotkov A, Sim N, Luinenburg M, Anink J, van Scheppingen J, Zimmer T, et al. MicroRNA-34a activation in tuberous sclerosis complex during early brain development may lead to impaired corticogenesis. Neuropathol Appl Neurobiol. 2021;47:796-811 pubmed 出版商
  31. Zheng H, Zhang Y, He J, Yang Z, Zhang R, Li L, et al. Hydroxychloroquine Inhibits Macrophage Activation and Attenuates Renal Fibrosis After Ischemia-Reperfusion Injury. Front Immunol. 2021;12:645100 pubmed 出版商
  32. Pramanick A, Chakraborti S, Mahata T, Basak M, Das K, Verma S, et al. G protein β5-ATM complexes drive acetaminophen-induced hepatotoxicity. Redox Biol. 2021;43:101965 pubmed 出版商
  33. Chen X, Ma W, Yao Y, Zhang Q, Li J, Wu X, et al. Serum deprivation-response protein induces apoptosis in hepatocellular carcinoma through ASK1-JNK/p38 MAPK pathways. Cell Death Dis. 2021;12:425 pubmed 出版商
  34. Low H, Wong Z, Wu B, Kong L, Png C, Cho Y, et al. DUSP16 promotes cancer chemoresistance through regulation of mitochondria-mediated cell death. Nat Commun. 2021;12:2284 pubmed 出版商
  35. Li Q, Xu Q, Tan J, Hu L, Ge C, Xu M. Carminic acid supplementation protects against fructose-induced kidney injury mainly through suppressing inflammation and oxidative stress via improving Nrf-2 signaling. Aging (Albany NY). 2021;13:10326-10353 pubmed 出版商
  36. Yi M, Liu Y, Umpierre A, Chen T, Ying Y, Zheng J, et al. Optogenetic activation of spinal microglia triggers chronic pain in mice. PLoS Biol. 2021;19:e3001154 pubmed 出版商
  37. Nagamura Y, Miyazaki M, Nagano Y, Yuki M, Fukami K, Yanagihara K, et al. PLEKHA5 regulates the survival and peritoneal dissemination of diffuse-type gastric carcinoma cells with Met gene amplification. Oncogenesis. 2021;10:25 pubmed 出版商
  38. Wu M, Ma Y, Chen X, Liang N, Qu S, Chen H. Hyperuricemia causes kidney damage by promoting autophagy and NLRP3-mediated inflammation in rats with urate oxidase deficiency. Dis Model Mech. 2021;14: pubmed 出版商
  39. Bugler Lamb A, Hasib A, Weng X, Hennayake C, Lin C, McCrimmon R, et al. Adipocyte integrin-linked kinase plays a key role in the development of diet-induced adipose insulin resistance in male mice. Mol Metab. 2021;49:101197 pubmed 出版商
  40. Huang S, You S, Qian J, Dai C, Shen S, Wang J, et al. Myeloid differentiation 2 deficiency attenuates AngII-induced arterial vascular oxidative stress, inflammation, and remodeling. Aging (Albany NY). 2021;13:4409-4427 pubmed 出版商
  41. Hou P, Jia P, Yang K, Li Z, Tian T, Lin Y, et al. An unconventional role of an ASB family protein in NF-κB activation and inflammatory response during microbial infection and colitis. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  42. Zulfiqar Z, Shah F, Shafique S, Alattar A, Ali T, Alvi A, et al. Repurposing FDA Approved Drugs as JNK3 Inhibitor for Prevention of Neuroinflammation Induced by MCAO in Rats. J Inflamm Res. 2020;13:1185-1205 pubmed 出版商
  43. Li X, Zhang M, Huang X, Liang W, Li G, Lu X, et al. Ubiquitination of RIPK1 regulates its activation mediated by TNFR1 and TLRs signaling in distinct manners. Nat Commun. 2020;11:6364 pubmed 出版商
  44. Zhang G, Jiao Q, Shen C, Song H, Zhang H, Qiu Z, et al. Interleukin 6 regulates the expression of programmed cell death ligand 1 in thyroid cancer. Cancer Sci. 2021;112:997-1010 pubmed 出版商
  45. Wang H, Yang G, Zhang Q, Liang X, Liu Y, Gao M, et al. Apremilast ameliorates ox-LDL-induced endothelial dysfunction mediated by KLF6. Aging (Albany NY). 2020;12:19012-19021 pubmed 出版商
  46. Yao C, Haensel D, Gaddam S, Patel T, Atwood S, Sarin K, et al. AP-1 and TGFß cooperativity drives non-canonical Hedgehog signaling in resistant basal cell carcinoma. Nat Commun. 2020;11:5079 pubmed 出版商
  47. Zhao L, Fan M, Zhao L, Yun H, Yang Y, Wang C, et al. Fibroblast growth factor 1 ameliorates adipose tissue inflammation and systemic insulin resistance via enhancing adipocyte mTORC2/Rictor signal. J Cell Mol Med. 2020;24:12813-12825 pubmed 出版商
  48. Chen Y, Li J, Ma B, Li N, Wang S, Sun Z, et al. MSC-derived exosomes promote recovery from traumatic brain injury via microglia/macrophages in rat. Aging (Albany NY). 2020;12:18274-18296 pubmed 出版商
  49. Xu J, Jiang C, Cai Y, Guo Y, Wang X, Zhang J, et al. Intervening upregulated SLC7A5 could mitigate inflammatory mediator by mTOR-P70S6K signal in rheumatoid arthritis synoviocytes. Arthritis Res Ther. 2020;22:200 pubmed 出版商
  50. Lee T, Yeh C, Lee Y, Shih Y, Chen Y, Hung C, et al. Fibroblast-enriched endoplasmic reticulum protein TXNDC5 promotes pulmonary fibrosis by augmenting TGFβ signaling through TGFBR1 stabilization. Nat Commun. 2020;11:4254 pubmed 出版商
  51. Sun Z, Ji N, Ma Q, Zhu R, Chen Z, Wang Z, et al. Epithelial-Mesenchymal Transition in Asthma Airway Remodeling Is Regulated by the IL-33/CD146 Axis. Front Immunol. 2020;11:1598 pubmed 出版商
  52. Lechertier T, Reynolds L, Kim H, Pedrosa A, Gómez Escudero J, Muñoz Félix J, et al. Pericyte FAK negatively regulates Gas6/Axl signalling to suppress tumour angiogenesis and tumour growth. Nat Commun. 2020;11:2810 pubmed 出版商
  53. Liao T, Lin C, Jiang J, Yang S, Teng H, Yang M. Harnessing stemness and PD-L1 expression by AT-rich interaction domain-containing protein 3B in colorectal cancer. Theranostics. 2020;10:6095-6112 pubmed 出版商
  54. Du T, Yan Z, Zhu S, Chen G, Wang L, Ye Z, et al. QKI deficiency leads to osteoporosis by promoting RANKL-induced osteoclastogenesis and disrupting bone metabolism. Cell Death Dis. 2020;11:330 pubmed 出版商
  55. Kong Y, Xu S. Juglanin administration protects skin against UVB‑induced injury by reducing Nrf2‑dependent ROS generation. Int J Mol Med. 2020;46:67-82 pubmed 出版商
  56. Wu Y, Chou T, Young L, Hsieh F, Pan H, Mo S, et al. Tumor suppressor death-associated protein kinase 1 inhibits necroptosis by p38 MAPK activation. Cell Death Dis. 2020;11:305 pubmed 出版商
  57. Simula L, Corrado M, Accordi B, Di Rita A, Nazio F, Antonucci Y, et al. JNK1 and ERK1/2 modulate lymphocyte homeostasis via BIM and DRP1 upon AICD induction. Cell Death Differ. 2020;: pubmed 出版商
  58. Chen S, Zhang H, Li J, Shi J, Tang H, Zhang Y, et al. Tripartite Motif-Containing 27 Attenuates Liver Ischemia/Reperfusion Injury by Suppressing Transforming Growth Factor β-Activated Kinase 1 (TAK1) by TAK1 Binding Protein 2/3 Degradation. Hepatology. 2021;73:738-758 pubmed 出版商
  59. Luo P, Yan H, Chen X, Zhang Y, Zhao Z, Cao J, et al. s-HBEGF/SIRT1 circuit-dictated crosstalk between vascular endothelial cells and keratinocytes mediates sorafenib-induced hand-foot skin reaction that can be reversed by nicotinamide. Cell Res. 2020;30:779-793 pubmed 出版商
  60. Zhang Y, Beketaev I, Segura A, Yu W, Xi Y, Chang J, et al. Contribution of Increased Expression of Yin Yang 2 to Development of Cardiomyopathy. Front Mol Biosci. 2020;7:35 pubmed 出版商
  61. Wang X, Shan Y, Tan Q, Tan C, Zhang H, Liu J, et al. MEX3A knockdown inhibits the development of pancreatic ductal adenocarcinoma. Cancer Cell Int. 2020;20:63 pubmed 出版商
  62. Fu Y, Ding Y, Wang Q, Zhu F, Tan Y, Lu X, et al. Blood-stage malaria parasites manipulate host innate immune responses through the induction of sFGL2. Sci Adv. 2020;6:eaay9269 pubmed 出版商
  63. Tang Y, Xu A, Shao S, Zhou Y, Xiong B, Li Z. Electroacupuncture Ameliorates Cognitive Impairment by Inhibiting the JNK Signaling Pathway in a Mouse Model of Alzheimer's Disease. Front Aging Neurosci. 2020;12:23 pubmed 出版商
  64. Siu M, Jiang Y, Wang J, Leung T, Ngu S, Cheung A, et al. PDK1 promotes ovarian cancer metastasis by modulating tumor-mesothelial adhesion, invasion, and angiogenesis via α5β1 integrin and JNK/IL-8 signaling. Oncogenesis. 2020;9:24 pubmed 出版商
  65. Xhima K, Markham Coultes K, Nedev H, Heinen S, Saragovi H, Hynynen K, et al. Focused ultrasound delivery of a selective TrkA agonist rescues cholinergic function in a mouse model of Alzheimer's disease. Sci Adv. 2020;6:eaax6646 pubmed 出版商
  66. Lin L, Li Y, Liu M, Li Q, Liu Q, Li R. The Interleukin-33/ST2 axis promotes glioma mesenchymal transition, stemness and TMZ resistance via JNK activation. Aging (Albany NY). 2020;12:1685-1703 pubmed 出版商
  67. Chen M, Zhao Z, Meng Q, Liang P, Su Z, Wu Y, et al. TRIM14 Promotes Noncanonical NF-κB Activation by Modulating p100/p52 Stability via Selective Autophagy. Adv Sci (Weinh). 2020;7:1901261 pubmed 出版商
  68. Li Y, Xu S, Xu Q, Chen Y. Clostridium difficile toxin B induces colonic inflammation through the TRIM46/DUSP1/MAPKs and NF-κB signalling pathway. Artif Cells Nanomed Biotechnol. 2020;48:452-462 pubmed 出版商
  69. Kim K, Kim J, Kim I, Seong S, Kim N. Rev-erbα Negatively Regulates Osteoclast and Osteoblast Differentiation through p38 MAPK Signaling Pathway. Mol Cells. 2020;43:34-47 pubmed 出版商
  70. Tang L, Li J, Fu W, Wu W, Xu J. Suppression of FADS1 induces ROS generation, cell cycle arrest, and apoptosis in melanocytes: implications for vitiligo. Aging (Albany NY). 2019;11:11829-11843 pubmed 出版商
  71. Yu H, Rimbert A, Palmer A, Toyohara T, Xia Y, Xia F, et al. GPR146 Deficiency Protects against Hypercholesterolemia and Atherosclerosis. Cell. 2019;179:1276-1288.e14 pubmed 出版商
  72. Kim D, Choi J, Jo I, Kim M, Lee H, Hong S, et al. Berberine ameliorates lipopolysaccharide‑induced inflammatory responses in mouse inner medullary collecting duct‑3 cells by downregulation of NF‑κB pathway. Mol Med Rep. 2020;21:258-266 pubmed 出版商
  73. Tracey N, Creedon H, Kemp A, Culley J, Muir M, Klinowska T, et al. HO-1 drives autophagy as a mechanism of resistance against HER2-targeted therapies. Breast Cancer Res Treat. 2020;179:543-555 pubmed 出版商
  74. Mahmoudi S, Mancini E, Xu L, Moore A, Jahanbani F, Hebestreit K, et al. Heterogeneity in old fibroblasts is linked to variability in reprogramming and wound healing. Nature. 2019;574:553-558 pubmed 出版商
  75. Wang H, Wei Y, Pu Y, Jiang D, Jiang X, Zhang Y, et al. Brain-derived neurotrophic factor stimulation of T-type Ca2+ channels in sensory neurons contributes to increased peripheral pain sensitivity. Sci Signal. 2019;12: pubmed 出版商
  76. Wang Q, Yang Q, Zhang A, Kang Z, Wang Y, Zhang Z. Silencing of SPARC represses heterotopic ossification via inhibition of the MAPK signaling pathway. Biosci Rep. 2019;39: pubmed 出版商
  77. Zhong B, Shi D, Wu F, Wang S, Hu H, Cheng C, et al. Dynasore suppresses cell proliferation, migration, and invasion and enhances the antitumor capacity of cisplatin via STAT3 pathway in osteosarcoma. Cell Death Dis. 2019;10:687 pubmed 出版商
  78. Xu B, Lang L, Li S, Guo J, Wang J, Yang H, et al. Microglia Activated by Excess Cortisol Induce HMGB1 Acetylation and Neuroinflammation in the Hippocampal DG Region of Mice Following Cold Exposure. Biomolecules. 2019;9: pubmed 出版商
  79. Solis A, Bielecki P, Steach H, Sharma L, Harman C, Yun S, et al. Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature. 2019;573:69-74 pubmed 出版商
  80. Zhao J, Peng W, Ran Y, Ge H, Zhang C, Zou H, et al. Dysregulated expression of ACTN4 contributes to endothelial cell injury via the activation of the p38-MAPK/p53 apoptosis pathway in preeclampsia. J Physiol Biochem. 2019;: pubmed 出版商
  81. Du F, Qiao C, Li X, Chen Z, Liu H, Wu S, et al. Forkhead box K2 promotes human colorectal cancer metastasis by upregulating ZEB1 and EGFR. Theranostics. 2019;9:3879-3902 pubmed 出版商
  82. Loh J, Xu S, Huo J, Kim S, Wang Y, Lam K. Dok3-protein phosphatase 1 interaction attenuates Card9 signaling and neutrophil-dependent antifungal immunity. J Clin Invest. 2019;129:2717-2729 pubmed 出版商
  83. Gu C, Wang L, Zurawski S, Oh S. Signaling Cascade through DC-ASGPR Induces Transcriptionally Active CREB for IL-10 Induction and Immune Regulation. J Immunol. 2019;: pubmed 出版商
  84. Shami Shah A, Batrouni A, Kim D, Punyala A, Cao W, Han C, et al. PLEKHA4/kramer Attenuates Dishevelled Ubiquitination to Modulate Wnt and Planar Cell Polarity Signaling. Cell Rep. 2019;27:2157-2170.e8 pubmed 出版商
  85. Hernández Alvarez M, Sebastian D, Vives S, Ivanova S, Bartoccioni P, Kakimoto P, et al. Deficient Endoplasmic Reticulum-Mitochondrial Phosphatidylserine Transfer Causes Liver Disease. Cell. 2019;177:881-895.e17 pubmed 出版商
  86. Mogilenko D, Haas J, L homme L, Fleury S, Quemener S, Levavasseur M, et al. Metabolic and Innate Immune Cues Merge into a Specific Inflammatory Response via the UPR. Cell. 2019;177:1201-1216.e19 pubmed 出版商
  87. Chang H, Di T, Wang Y, Zeng X, Li G, Wan Q, et al. Seipin deletion in mice enhances phosphorylation and aggregation of tau protein through reduced neuronal PPARγ and insulin resistance. Neurobiol Dis. 2019;127:350-361 pubmed 出版商
  88. Li W, Yu X, Zhu C, Wang Z, Zhao Z, Li Y, et al. Notum attenuates HBV-related liver fibrosis through inhibiting Wnt 5a mediated non-canonical pathways. Biol Res. 2019;52:10 pubmed 出版商
  89. Upadhyay A, Hosseinibarkooie S, Schneider S, Kaczmarek A, Torres Benito L, Mendoza Ferreira N, et al. Neurocalcin Delta Knockout Impairs Adult Neurogenesis Whereas Half Reduction Is Not Pathological. Front Mol Neurosci. 2019;12:19 pubmed 出版商
  90. Dong H, Ye X, Zhong L, Xu J, Qiu J, Wang J, et al. Role of FOXO3 Activated by HIV-1 Tat in HIV-Associated Neurocognitive Disorder Neuronal Apoptosis. Front Neurosci. 2019;13:44 pubmed 出版商
  91. Carugo A, Minelli R, Sapio L, Soeung M, Carbone F, Robinson F, et al. p53 Is a Master Regulator of Proteostasis in SMARCB1-Deficient Malignant Rhabdoid Tumors. Cancer Cell. 2019;35:204-220.e9 pubmed 出版商
  92. Liu P, Shah R, Li Y, Arora A, Ung P, Raman R, et al. An IRAK1-PIN1 signalling axis drives intrinsic tumour resistance to radiation therapy. Nat Cell Biol. 2019;21:203-213 pubmed 出版商
  93. Li Z, Mbah N, Overmeyer J, Sarver J, George S, Trabbic C, et al. The JNK signaling pathway plays a key role in methuosis (non-apoptotic cell death) induced by MOMIPP in glioblastoma. BMC Cancer. 2019;19:77 pubmed 出版商
  94. Li J, Wang Y, Ma M, Jiang S, Zhang X, Zhang Y, et al. Autocrine CTHRC1 activates hepatic stellate cells and promotes liver fibrosis by activating TGF-β signaling. EBioMedicine. 2019;40:43-55 pubmed 出版商
  95. Liu Z, Li C, Kang N, Malhi H, Shah V, Maiers J. Transforming growth factor β (TGFβ) cross-talk with the unfolded protein response is critical for hepatic stellate cell activation. J Biol Chem. 2019;294:3137-3151 pubmed 出版商
  96. Ye P, Liu J, Xu W, Liu D, Ding X, Le S, et al. Dual-Specificity Phosphatase 26 Protects Against Nonalcoholic Fatty Liver Disease in Mice Through Transforming Growth Factor Beta-Activated Kinase 1 Suppression. Hepatology. 2019;69:1946-1964 pubmed 出版商
  97. Sheng C, Yao C, Wang Z, Chen H, Zhao Y, Xu D, et al. Cyclophilin J limits inflammation through the blockage of ubiquitin chain sensing. Nat Commun. 2018;9:4381 pubmed 出版商
  98. Fauster A, Rebsamen M, Willmann K, César Razquin A, Girardi E, Bigenzahn J, et al. Systematic genetic mapping of necroptosis identifies SLC39A7 as modulator of death receptor trafficking. Cell Death Differ. 2019;26:1138-1155 pubmed 出版商
  99. Pan H, Palekar R, Hou K, Bacon J, Yan H, Springer L, et al. Anti-JNK2 peptide-siRNA nanostructures improve plaque endothelium and reduce thrombotic risk in atherosclerotic mice. Int J Nanomedicine. 2018;13:5187-5205 pubmed 出版商
  100. Xie H, Wang Y, Zhang H, Fan Q, Dai D, Zhuang L, et al. Tubular epithelial C1orf54 mediates protection and recovery from acute kidney injury. J Cell Mol Med. 2018;22:4985-4996 pubmed 出版商
  101. Liu Q, Liu C, Jiang L, Li M, Long T, He W, et al. α7 Nicotinic acetylcholine receptor-mediated anti-inflammatory effect in a chronic migraine rat model via the attenuation of glial cell activation. J Pain Res. 2018;11:1129-1140 pubmed 出版商
  102. Li F, Li Y, Liang H, Xu T, Kong Y, Huang M, et al. HECTD3 mediates TRAF3 polyubiquitination and type I interferon induction during bacterial infection. J Clin Invest. 2018;128:4148-4162 pubmed 出版商
  103. Yang M, Li C, Zhu S, Cao L, Kroemer G, Zeh H, et al. TFAM is a novel mediator of immunogenic cancer cell death. Oncoimmunology. 2018;7:e1431086 pubmed 出版商
  104. Xue Z, Vis D, Bruna A, Sustic T, van Wageningen S, Batra A, et al. MAP3K1 and MAP2K4 mutations are associated with sensitivity to MEK inhibitors in multiple cancer models. Cell Res. 2018;28:719-729 pubmed 出版商
  105. Han Y, Liu Q, Hou J, Gu Y, Zhang Y, Chen Z, et al. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression. Cell. 2018;173:634-648.e12 pubmed 出版商
  106. Qiang L, Wang J, Zhang Y, Ge P, Chai Q, Li B, et al. Mycobacterium tuberculosis Mce2E suppresses the macrophage innate immune response and promotes epithelial cell proliferation. Cell Mol Immunol. 2018;: pubmed 出版商
  107. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  108. Wu J, Liu Y, Liang J, Huang Q, Dou Y, Nie J, et al. Protective role of ?-patchoulene from Pogostemon cablin against indomethacin-induced gastric ulcer in rats: Involvement of anti-inflammation and angiogenesis. Phytomedicine. 2018;39:111-118 pubmed 出版商
  109. Kou W, Xu X, Ji S, Chen M, Liu D, Wang K, et al. The inhibition of the effect and mechanism of vascular intimal hyperplasia in Tiam1 knockout mice. Biochem Biophys Res Commun. 2018;497:248-255 pubmed 出版商
  110. Lu Y, Kim N, Jiang Y, Zhang H, Zheng D, Zhu F, et al. Cambogin suppresses dextran sulphate sodium-induced colitis by enhancing Treg cell stability and function. Br J Pharmacol. 2018;175:1085-1099 pubmed 出版商
  111. Zhou K, Enkhjargal B, Xie Z, Sun C, Wu L, Malaguit J, et al. Dihydrolipoic Acid Inhibits Lysosomal Rupture and NLRP3 Through Lysosome-Associated Membrane Protein-1/Calcium/Calmodulin-Dependent Protein Kinase II/TAK1 Pathways After Subarachnoid Hemorrhage in Rat. Stroke. 2018;49:175-183 pubmed 出版商
  112. Sala M, Chen C, Zhang Q, Do Umehara H, Wu W, Misharin A, et al. JNK2 up-regulates hypoxia-inducible factors and contributes to hypoxia-induced erythropoiesis and pulmonary hypertension. J Biol Chem. 2018;293:271-284 pubmed 出版商
  113. Padilla J, Carpenter A, Das N, Kandikattu H, López Ongil S, Martinez Lemus L, et al. TRAF3IP2 mediates high glucose-induced endothelin-1 production as well as endothelin-1-induced inflammation in endothelial cells. Am J Physiol Heart Circ Physiol. 2018;314:H52-H64 pubmed 出版商
  114. Bagarolli R, Tobar N, Oliveira A, Araújo T, Carvalho B, Rocha G, et al. Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice. J Nutr Biochem. 2017;50:16-25 pubmed 出版商
  115. Jiang Y, Lin X, Tang Z, Lee C, Tian G, Du Y, et al. Critical role of caveolin-1 in ocular neovascularization and multitargeted antiangiogenic effects of cavtratin via JNK. Proc Natl Acad Sci U S A. 2017;114:10737-10742 pubmed 出版商
  116. Wu G, Mu T, Gao Z, Wang J, Sy M, Li C. Prion protein is required for tumor necrosis factor α (TNFα)-triggered nuclear factor κB (NF-κB) signaling and cytokine production. J Biol Chem. 2017;292:18747-18759 pubmed 出版商
  117. Zhang Y, Qu Y, Lin Y, Wu X, Chen H, Wang X, et al. Enoyl-CoA hydratase-1 regulates mTOR signaling and apoptosis by sensing nutrients. Nat Commun. 2017;8:464 pubmed 出版商
  118. Lv R, Zhao J, Lei M, Xiao D, Yu Y, Xie J. IL-33 Attenuates Sepsis by Inhibiting IL-17 Receptor Signaling through Upregulation of SOCS3. Cell Physiol Biochem. 2017;42:1961-1972 pubmed 出版商
  119. Sheng X, You Q, Zhu H, Chang Z, Li Q, Wang H, et al. Bacterial effector NleL promotes enterohemorrhagic E. coli-induced attaching and effacing lesions by ubiquitylating and inactivating JNK. PLoS Pathog. 2017;13:e1006534 pubmed 出版商
  120. Mamo T, Wittern A, Kleppa M, Bohnenpoll T, Weiss A, Kispert A. BMP4 uses several different effector pathways to regulate proliferation and differentiation in the epithelial and mesenchymal tissue compartments of the developing mouse ureter. Hum Mol Genet. 2017;26:3553-3563 pubmed 出版商
  121. Kurapati S, Sadaoka T, Rajbhandari L, Jagdish B, Shukla P, Ali M, et al. Role of the JNK Pathway in Varicella-Zoster Virus Lytic Infection and Reactivation. J Virol. 2017;91: pubmed 出版商
  122. Zhang J, MacArtney T, Peggie M, Cohen P. Interleukin-1 and TRAF6-dependent activation of TAK1 in the absence of TAB2 and TAB3. Biochem J. 2017;474:2235-2248 pubmed 出版商
  123. Kaufman D, Papillon J, Larose L, Iwawaki T, Cybulsky A. Deletion of inositol-requiring enzyme-1? in podocytes disrupts glomerular capillary integrity and autophagy. Mol Biol Cell. 2017;28:1636-1651 pubmed 出版商
  124. Wassermann Dozorets R, Rubinstein M. C/EBPβ LIP augments cell death by inducing osteoglycin. Cell Death Dis. 2017;8:e2733 pubmed 出版商
  125. Chen S, Sun J, Zhao G, Guo A, Chen Y, Fu R, et al. Liraglutide Improves Water Maze Learning and Memory Performance While Reduces Hyperphosphorylation of Tau and Neurofilaments in APP/PS1/Tau Triple Transgenic Mice. Neurochem Res. 2017;42:2326-2335 pubmed 出版商
  126. Biggi S, Buccarello L, Sclip A, Lippiello P, Tonna N, Rumio C, et al. Evidence of Presynaptic Localization and Function of the c-Jun N-Terminal Kinase. Neural Plast. 2017;2017:6468356 pubmed 出版商
  127. Chambers T, Santiesteban L, Gomez D, Chambers J. Sab mediates mitochondrial dysfunction involved in imatinib mesylate-induced cardiotoxicity. Toxicology. 2017;382:24-35 pubmed 出版商
  128. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  129. Song Y, Lai L, Chong Z, He J, Zhang Y, Xue Y, et al. E3 ligase FBXW7 is critical for RIG-I stabilization during antiviral responses. Nat Commun. 2017;8:14654 pubmed 出版商
  130. Retzlaff J, Thamm K, Ghosh C, Ziegler W, Haller H, Parikh S, et al. Flunarizine suppresses endothelial Angiopoietin-2 in a calcium - dependent fashion in sepsis. Sci Rep. 2017;7:44113 pubmed 出版商
  131. Shi J, Bei Y, Kong X, Liu X, Lei Z, Xu T, et al. miR-17-3p Contributes to Exercise-Induced Cardiac Growth and Protects against Myocardial Ischemia-Reperfusion Injury. Theranostics. 2017;7:664-676 pubmed 出版商
  132. de Oliveira R, de Campos Castilho G, da Cunha A, Miyajima F, de Oliveira Martins D. Dilodendron bipinnatum Radlk. inhibits pro-inflammatory mediators through the induction of MKP-1 and the down-regulation of MAPKp38/JNK/NF-?B pathways and COX-2 in LPS-activated RAW 264.7 cells. J Ethnopharmacol. 2017;202:127-137 pubmed 出版商
  133. Singh V, Katta S, Kumar S. WD-repeat protein WDR13 is a novel transcriptional regulator of c-Jun and modulates intestinal homeostasis in mice. BMC Cancer. 2017;17:148 pubmed 出版商
  134. He Y, Wang X, Zhang J, Liu Z, Pan W, Shen Y, et al. Association of Serum HMGB2 Levels With In-Stent Restenosis: HMGB2 Promotes Neointimal Hyperplasia in Mice With Femoral Artery Injury and Proliferation and Migration of VSMCs. Arterioscler Thromb Vasc Biol. 2017;37:717-729 pubmed 出版商
  135. Dong Q, Fu L, Zhao Y, Tan S, Wang E. Derlin-1 overexpression confers poor prognosis in muscle invasive bladder cancer and contributes to chemoresistance and invasion through PI3K/AKT and ERK/MMP signaling. Oncotarget. 2017;8:17059-17069 pubmed 出版商
  136. Genovese G, Carugo A, TEPPER J, Robinson F, Li L, Svelto M, et al. Synthetic vulnerabilities of mesenchymal subpopulations in pancreatic cancer. Nature. 2017;542:362-366 pubmed 出版商
  137. Zhang H, Qi Y, Yuan Y, Cai L, Xu H, Zhang L, et al. Paeoniflorin Ameliorates Experimental Autoimmune Encephalomyelitis via Inhibition of Dendritic Cell Function and Th17 Cell Differentiation. Sci Rep. 2017;7:41887 pubmed 出版商
  138. Lim E, Nakanishi S, Hoghooghi V, Eaton S, Palmer A, Frederick A, et al. AlphaB-crystallin regulates remyelination after peripheral nerve injury. Proc Natl Acad Sci U S A. 2017;114:E1707-E1716 pubmed 出版商
  139. Ha S, Jin F, Kwak C, Abekura F, Park J, Park N, et al. Jellyfish extract induces apoptotic cell death through the p38 pathway and cell cycle arrest in chronic myelogenous leukemia K562 cells. Peerj. 2017;5:e2895 pubmed 出版商
  140. Lin Y, Lin Y, Huang M, Kuo P, Wu C, Lee M, et al. Tumor necrosis factor-alpha inhibitors suppress CCL2 chemokine in monocytes via epigenetic modification. Mol Immunol. 2017;83:82-91 pubmed 出版商
  141. Peng Y, Shi X, Li Z, He X, Sun Y. Particularly interesting Cys-His-rich protein is highly expressed in human intracranial aneurysms and resists aneurysmal rupture. Exp Ther Med. 2016;12:3905-3912 pubmed 出版商
  142. Irrera N, Vaccaro M, Bitto A, Pallio G, Pizzino G, Lentini M, et al. BAY 11-7082 inhibits the NF-?B and NLRP3 inflammasome pathways and protects against IMQ-induced psoriasis. Clin Sci (Lond). 2017;131:487-498 pubmed 出版商
  143. Luo Y, Duan H, Qian Y, Feng L, Wu Z, Wang F, et al. Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis. Cell Res. 2017;27:352-372 pubmed 出版商
  144. Eritja N, Chen B, Rodríguez Barrueco R, Santacana M, Gatius S, Vidal A, et al. Autophagy orchestrates adaptive responses to targeted therapy in endometrial cancer. Autophagy. 2017;13:608-624 pubmed 出版商
  145. Gudiksen A, Bertholdt L, Vingborg M, Hansen H, Ringholm S, Pilegaard H. Muscle interleukin-6 and fasting-induced PDH regulation in mouse skeletal muscle. Am J Physiol Endocrinol Metab. 2017;312:E204-E214 pubmed 出版商
  146. Hayakawa M, Hayakawa H, Petrova T, Ritprajak P, Sutavani R, Jiménez Andrade G, et al. Loss of Functionally Redundant p38 Isoforms in T Cells Enhances Regulatory T Cell Induction. J Biol Chem. 2017;292:1762-1772 pubmed 出版商
  147. Su C, Gao X, Yang W, Zhao Y, Fu X, Cui X, et al. Phosphorylation of Tudor-SN, a novel substrate of JNK, is involved in the efficient recruitment of Tudor-SN into stress granules. Biochim Biophys Acta Mol Cell Res. 2017;1864:562-571 pubmed 出版商
  148. Chao M, Guo J, Cheng W, Zhu X, She Z, Huang Z, et al. Loss of Caspase-Activated DNase Protects Against Atherosclerosis in Apolipoprotein E-Deficient Mice. J Am Heart Assoc. 2016;5: pubmed 出版商
  149. Bodrikov V, Pauschert A, Kochlamazashvili G, Stuermer C. Reggie-1 and reggie-2 (flotillins) participate in Rab11a-dependent cargo trafficking, spine synapse formation and LTP-related AMPA receptor (GluA1) surface exposure in mouse hippocampal neurons. Exp Neurol. 2017;289:31-45 pubmed 出版商
  150. Chhabra A, Mukherji B, Batra D. Activation induced cell death (AICD) of human melanoma antigen-specific TCR engineered CD8 T cells involves JNK, Bim and p53. Expert Opin Ther Targets. 2017;21:117-129 pubmed 出版商
  151. Wang L, Luo J, Li B, Tian X, Chen L, Huang Y, et al. Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature. 2016;540:579-582 pubmed 出版商
  152. Natarajan S, Muthukrishnan E, Khalimonchuk O, Mott J, Becker D. Evidence for Pipecolate Oxidase in Mediating Protection Against Hydrogen Peroxide Stress. J Cell Biochem. 2017;118:1678-1688 pubmed 出版商
  153. Choi S, Piao Z, Jin L, Kim J, Kim G, Ryu Y, et al. Piceatannol Attenuates Renal Fibrosis Induced by Unilateral Ureteral Obstruction via Downregulation of Histone Deacetylase 4/5 or p38-MAPK Signaling. PLoS ONE. 2016;11:e0167340 pubmed 出版商
  154. Su F, Myers V, Knezevic T, Wang J, Gao E, Madesh M, et al. Bcl-2-associated athanogene 3 protects the heart from ischemia/reperfusion injury. JCI Insight. 2016;1:e90931 pubmed 出版商
  155. Yang S, Lee D, Shin J, Lee S, Baek S, Kim J, et al. Nec-1 alleviates cognitive impairment with reduction of Aβ and tau abnormalities in APP/PS1 mice. EMBO Mol Med. 2017;9:61-77 pubmed 出版商
  156. Mohammad H, Marchisella F, Ortega Martinez S, Hollos P, Eerola K, Komulainen E, et al. JNK1 controls adult hippocampal neurogenesis and imposes cell-autonomous control of anxiety behaviour from the neurogenic niche. Mol Psychiatry. 2018;23:362-374 pubmed 出版商
  157. Ismail H, Didangelos A, Vincent T, Saklatvala J. Rapid Activation of Transforming Growth Factor ?-Activated Kinase 1 in Chondrocytes by Phosphorylation and K63 -Linked Polyubiquitination Upon Injury to Animal Articular Cartilage. Arthritis Rheumatol. 2017;69:565-575 pubmed 出版商
  158. Kennedy T, Swiderski K, Murphy K, Gehrig S, Curl C, Chandramouli C, et al. BGP-15 Improves Aspects of the Dystrophic Pathology in mdx and dko Mice with Differing Efficacies in Heart and Skeletal Muscle. Am J Pathol. 2016;186:3246-3260 pubmed 出版商
  159. Choi Y, Shembade N, Parvatiyar K, Balachandran S, Harhaj E. TAX1BP1 Restrains Virus-Induced Apoptosis by Facilitating Itch-Mediated Degradation of the Mitochondrial Adaptor MAVS. Mol Cell Biol. 2017;37: pubmed 出版商
  160. Guan S, Zhao Y, Lu J, Yu Y, Sun W, Mao X, et al. Second-generation proteasome inhibitor carfilzomib sensitizes neuroblastoma cells to doxorubicin-induced apoptosis. Oncotarget. 2016;7:75914-75925 pubmed 出版商
  161. Zhong W, Wang X, Pan B, Li F, Kuang L, Su Z. Eupatilin induces human renal cancer cell apoptosis via ROS-mediated MAPK and PI3K/AKT signaling pathways. Oncol Lett. 2016;12:2894-2899 pubmed
  162. Wang J, Teng J, Zhao D, Ge P, Li B, Woo P, et al. The ubiquitin ligase TRIM27 functions as a host restriction factor antagonized by Mycobacterium tuberculosis PtpA during mycobacterial infection. Sci Rep. 2016;6:34827 pubmed 出版商
  163. Huai W, Song H, Yu Z, Wang W, Han L, Sakamoto T, et al. Mint3 potentiates TLR3/4- and RIG-I-induced IFN-? expression and antiviral immune responses. Proc Natl Acad Sci U S A. 2016;113:11925-11930 pubmed
  164. Wu X, Gu W, Lu H, Liu C, Yu B, Xu H, et al. Soluble Receptor for Advanced Glycation End Product Ameliorates Chronic Intermittent Hypoxia Induced Renal Injury, Inflammation, and Apoptosis via P38/JNK Signaling Pathways. Oxid Med Cell Longev. 2016;2016:1015390 pubmed
  165. Ang Z, Er J, Tan N, Lu J, Liou Y, Grosse J, et al. Human and mouse monocytes display distinct signalling and cytokine profiles upon stimulation with FFAR2/FFAR3 short-chain fatty acid receptor agonists. Sci Rep. 2016;6:34145 pubmed 出版商
  166. Cao R, Meng Z, Liu T, Wang G, Qian G, Cao T, et al. Decreased TRPM7 inhibits activities and induces apoptosis of bladder cancer cells via ERK1/2 pathway. Oncotarget. 2016;7:72941-72960 pubmed 出版商
  167. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  168. Vernia S, Edwards Y, Han M, Cavanagh Kyros J, Barrett T, Kim J, et al. An alternative splicing program promotes adipose tissue thermogenesis. elife. 2016;5: pubmed 出版商
  169. Wu Y, Ren D, Chen G. Siglec-E Negatively Regulates the Activation of TLR4 by Controlling Its Endocytosis. J Immunol. 2016;197:3336-3347 pubmed
  170. Janowski A, Colegio O, Hornick E, McNiff J, Martin M, Badovinac V, et al. NLRC4 suppresses melanoma tumor progression independently of inflammasome activation. J Clin Invest. 2016;126:3917-3928 pubmed 出版商
  171. Cao Y, Wang X, Xu C, Gao Z, Zhou H, Wang Y, et al. 4-HPR impairs bladder cancer cell migration and invasion by interfering with the Wnt5a/JNK and Wnt5a/MMP-2 signaling pathways. Oncol Lett. 2016;12:1833-1839 pubmed
  172. Lee J, Jung H, Han Y, Yoon Y, Yun C, Sun H, et al. Antioxidant effects of Cirsium setidens extract on oxidative stress in human mesenchymal stem cells. Mol Med Rep. 2016;14:3777-84 pubmed 出版商
  173. Ando Y, Oku T, Tsuji T. Platelet Supernatant Suppresses LPS-Induced Nitric Oxide Production from Macrophages Accompanied by Inhibition of NF-?B Signaling and Increased Arginase-1 Expression. PLoS ONE. 2016;11:e0162208 pubmed 出版商
  174. Shang W, Zhao L, Dong X, Zhao Z, Li J, Zhang B, et al. Curcumin inhibits osteoclastogenic potential in PBMCs from rheumatoid arthritis patients via the suppression of MAPK/RANK/c-Fos/NFATc1 signaling pathways. Mol Med Rep. 2016;14:3620-6 pubmed 出版商
  175. Fern ndez Majada V, Welz P, Ermolaeva M, Schell M, Adam A, Dietlein F, et al. The tumour suppressor CYLD regulates the p53 DNA damage response. Nat Commun. 2016;7:12508 pubmed 出版商
  176. Zhou Q, Yu X, Demirkaya E, Deuitch N, Stone D, Tsai W, et al. Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. Proc Natl Acad Sci U S A. 2016;113:10127-32 pubmed 出版商
  177. Gómez Puerto M, Verhagen L, Braat A, Lam E, Coffer P, Lorenowicz M. Activation of autophagy by FOXO3 regulates redox homeostasis during osteogenic differentiation. Autophagy. 2016;12:1804-1816 pubmed
  178. Nadeau Vallée M, Boudreault A, Leimert K, Hou X, Obari D, Madaan A, et al. Uterotonic Neuromedin U Receptor 2 and Its Ligands Are Upregulated by Inflammation in Mice and Humans, and Elicit Preterm Birth. Biol Reprod. 2016;95:72 pubmed
  179. Ramo K, Sugamura K, Craige S, Keaney J, Davis R. Suppression of ischemia in arterial occlusive disease by JNK-promoted native collateral artery development. elife. 2016;5: pubmed 出版商
  180. Tsai S, Rodriguez A, Dastidar S, Del Greco E, Carr K, Sitzmann J, et al. Increased 4E-BP1 Expression Protects against Diet-Induced Obesity and Insulin Resistance in Male Mice. Cell Rep. 2016;16:1903-14 pubmed 出版商
  181. El Jamal S, Taylor E, Abd Elmageed Z, Alamodi A, Selimovic D, Alkhateeb A, et al. Interferon gamma-induced apoptosis of head and neck squamous cell carcinoma is connected to indoleamine-2,3-dioxygenase via mitochondrial and ER stress-associated pathways. Cell Div. 2016;11:11 pubmed 出版商
  182. Kawamoto E, Koshinaka K, Yoshimura T, Masuda H, Kawanaka K. Immobilization rapidly induces muscle insulin resistance together with the activation of MAPKs (JNK and p38) and impairment of AS160 phosphorylation. Physiol Rep. 2016;4: pubmed 出版商
  183. Wang J, Zhou J, Kho D, Reiners J, Wu G. Role for DUSP1 (dual-specificity protein phosphatase 1) in the regulation of autophagy. Autophagy. 2016;12:1791-1803 pubmed
  184. Jeong H, Cho Y, Kim K, Kim Y, Kim K, Na Y, et al. Anti-lipoapoptotic effects of Alisma orientalis extract on non-esterified fatty acid-induced HepG2 cells. BMC Complement Altern Med. 2016;16:239 pubmed 出版商
  185. Ciaraldi T, Ryan A, Mudaliar S, Henry R. Altered Myokine Secretion Is an Intrinsic Property of Skeletal Muscle in Type 2 Diabetes. PLoS ONE. 2016;11:e0158209 pubmed 出版商
  186. Jiao K, Zeng G, Niu L, Yang H, Ren G, Xu X, et al. Activation of ?2A-adrenergic signal transduction in chondrocytes promotes degenerative remodelling of temporomandibular joint. Sci Rep. 2016;6:30085 pubmed 出版商
  187. Bao H, Liu P, Jiang K, Zhang X, Xie L, Wang Z, et al. Huaier polysaccharide induces apoptosis in hepatocellular carcinoma cells through p38 MAPK. Oncol Lett. 2016;12:1058-1066 pubmed
  188. Wang J, Li H, Li B, Gong Q, Chen X, Wang Q. Co-culture of bone marrow stem cells and macrophages indicates intermediate mechanism between local inflammation and innate immune system in diabetic periodontitis. Exp Ther Med. 2016;12:567-572 pubmed
  189. Raguz J, Jerić I, Niault T, Nowacka J, Kuzet S, Rupp C, et al. Epidermal RAF prevents allergic skin disease. elife. 2016;5: pubmed 出版商
  190. Rackov G, Hernandez Jimenez E, Shokri R, Carmona Rodríguez L, Manes S, Alvarez Mon M, et al. p21 mediates macrophage reprogramming through regulation of p50-p50 NF-?B and IFN-?. J Clin Invest. 2016;126:3089-103 pubmed 出版商
  191. McClelland Descalzo D, Satoorian T, Walker L, Sparks N, Pulyanina P, zur Nieden N. Glucose-Induced Oxidative Stress Reduces Proliferation in Embryonic Stem Cells via FOXO3A/?-Catenin-Dependent Transcription of p21(cip1). Stem Cell Reports. 2016;7:55-68 pubmed 出版商
  192. Manassero G, Guglielmotto M, Zamfir R, Borghi R, Colombo L, Salmona M, et al. Beta-amyloid 1-42 monomers, but not oligomers, produce PHF-like conformation of Tau protein. Aging Cell. 2016;15:914-23 pubmed 出版商
  193. Botchlett R, Li H, Guo X, Qi T, Zhao J, Zheng J, et al. Glucose and Palmitate Differentially Regulate PFKFB3/iPFK2 and Inflammatory Responses in Mouse Intestinal Epithelial Cells. Sci Rep. 2016;6:28963 pubmed 出版商
  194. Shen P, Chen M, He M, Chen L, Song Y, Xiao P, et al. Inhibition of ER?/ERK/P62 cascades induces "autophagic switch" in the estrogen receptor-positive breast cancer cells exposed to gemcitabine. Oncotarget. 2016;7:48501-48516 pubmed 出版商
  195. Beauvais D, Jung O, Yang Y, Sanderson R, Rapraeger A. Syndecan-1 (CD138) Suppresses Apoptosis in Multiple Myeloma by Activating IGF1 Receptor: Prevention by SynstatinIGF1R Inhibits Tumor Growth. Cancer Res. 2016;76:4981-93 pubmed 出版商
  196. Tsai S, Huang P, Hsu Y, Peng Y, Lee C, Wang J, et al. Inhibition of hypoxia inducible factor-1α attenuates abdominal aortic aneurysm progression through the down-regulation of matrix metalloproteinases. Sci Rep. 2016;6:28612 pubmed 出版商
  197. Zhao W, Li A, Feng X, Hou T, Liu K, Liu B, et al. Metformin and resveratrol ameliorate muscle insulin resistance through preventing lipolysis and inflammation in hypoxic adipose tissue. Cell Signal. 2016;28:1401-11 pubmed 出版商
  198. Trapé A, Liu S, Cortés A, Ueno N, Gonzalez Angulo A. Effects of CDK4/6 Inhibition in Hormone Receptor-Positive/Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer Cells with Acquired Resistance to Paclitaxel. J Cancer. 2016;7:947-56 pubmed 出版商
  199. Desrochers L, Bordeleau F, Reinhart King C, Cerione R, Antonyak M. Microvesicles provide a mechanism for intercellular communication by embryonic stem cells during embryo implantation. Nat Commun. 2016;7:11958 pubmed 出版商
  200. Garcia Fuster M, Garcia Sevilla J. Effects of anti-depressant treatments on FADD and p-FADD protein in rat brain cortex: enhanced anti-apoptotic p-FADD/FADD ratio after chronic desipramine and fluoxetine administration. Psychopharmacology (Berl). 2016;233:2955-71 pubmed 出版商
  201. Genç B, Jara J, Schultz M, Manuel M, Stanford M, Gautam M, et al. Absence of UCHL 1 function leads to selective motor neuropathy. Ann Clin Transl Neurol. 2016;3:331-45 pubmed 出版商
  202. Lu Z, Chen W, Li Y, Li L, Zhang H, Pang Y, et al. TNF-? enhances vascular cell adhesion molecule-1 expression in human bone marrow mesenchymal stem cells via the NF-?B, ERK and JNK signaling pathways. Mol Med Rep. 2016;14:643-8 pubmed 出版商
  203. Zhang C, Li L, Zhao B, Jiao A, Li X, Sun N, et al. Ghrelin Protects against Dexamethasone-Induced INS-1 Cell Apoptosis via ERK and p38MAPK Signaling. Int J Endocrinol. 2016;2016:4513051 pubmed 出版商
  204. de Jong P, Taniguchi K, Harris A, Bertin S, Takahashi N, Duong J, et al. ERK5 signalling rescues intestinal epithelial turnover and tumour cell proliferation upon ERK1/2 abrogation. Nat Commun. 2016;7:11551 pubmed 出版商
  205. Pei H, Jiang T, Liu G, Li Z, Luo K, An J, et al. The Effect of Minimally Invasive Hematoma Aspiration on the JNK Signal Transduction Pathway after Experimental Intracerebral Hemorrhage in Rats. Int J Mol Sci. 2016;17: pubmed 出版商
  206. Xu Z, Mei F, Liu H, Sun C, Zheng Z. C-C Motif Chemokine Receptor 9 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy and Dysfunction. J Am Heart Assoc. 2016;5: pubmed 出版商
  207. Hu L, Tan J, Yang X, Tan H, Xu X, You M, et al. Polysaccharide Extracted from Laminaria japonica Delays Intrinsic Skin Aging in Mice. Evid Based Complement Alternat Med. 2016;2016:5137386 pubmed 出版商
  208. Wu Y, Lan C, Ren D, Chen G. Induction of Siglec-1 by Endotoxin Tolerance Suppresses the Innate Immune Response by Promoting TGF-?1 Production. J Biol Chem. 2016;291:12370-82 pubmed 出版商
  209. Wang Y, Cao J, Fan Y, Xie Y, Xu Z, Yin Z, et al. Artemisinin inhibits monocyte adhesion to HUVECs through the NF-?B and MAPK pathways in vitro. Int J Mol Med. 2016;37:1567-75 pubmed 出版商
  210. Choi H, Kim M, Choi Y, Shin Y, Cho S, Ko S. Rhus verniciflua Stokes (RVS) and butein induce apoptosis of paclitaxel-resistant SKOV-3/PAX ovarian cancer cells through inhibition of AKT phosphorylation. BMC Complement Altern Med. 2016;16:122 pubmed 出版商
  211. Afonina I, Van Nuffel E, Baudelet G, Driege Y, Kreike M, Staal J, et al. The paracaspase MALT1 mediates CARD14-induced signaling in keratinocytes. EMBO Rep. 2016;17:914-27 pubmed 出版商
  212. Kim B, Silverman S, Liu Y, Wordinger R, Pang I, Clark A. In vitro and in vivo neuroprotective effects of cJun N-terminal kinase inhibitors on retinal ganglion cells. Mol Neurodegener. 2016;11:30 pubmed 出版商
  213. Uto T, Fukaya T, Takagi H, Arimura K, Nakamura T, Kojima N, et al. Clec4A4 is a regulatory receptor for dendritic cells that impairs inflammation and T-cell immunity. Nat Commun. 2016;7:11273 pubmed 出版商
  214. Su K, Cao J, Tang Z, Dai S, He Y, Sampson S, et al. HSF1 critically attunes proteotoxic stress sensing by mTORC1 to combat stress and promote growth. Nat Cell Biol. 2016;18:527-39 pubmed 出版商
  215. Ganesan S, Reynolds C, Hollinger K, Pearce S, Gabler N, Baumgard L, et al. Twelve hours of heat stress induces inflammatory signaling in porcine skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2016;310:R1288-96 pubmed 出版商
  216. Federspiel J, Codreanu S, Palubinsky A, Winland A, Betanzos C, McLaughlin B, et al. Assembly Dynamics and Stoichiometry of the Apoptosis Signal-regulating Kinase (ASK) Signalosome in Response to Electrophile Stress. Mol Cell Proteomics. 2016;15:1947-61 pubmed 出版商
  217. Gao Z, Zhang H, Hu F, Yang L, Yang X, Zhu Y, et al. Glycan-deficient PrP stimulates VEGFR2 signaling via glycosaminoglycan. Cell Signal. 2016;28:652-62 pubmed 出版商
  218. Du K, Farhood A, Jaeschke H. Mitochondria-targeted antioxidant Mito-Tempo protects against acetaminophen hepatotoxicity. Arch Toxicol. 2017;91:761-773 pubmed 出版商
  219. Patzke C, Acuna C, Giam L, Wernig M, Südhof T. Conditional deletion of L1CAM in human neurons impairs both axonal and dendritic arborization and action potential generation. J Exp Med. 2016;213:499-515 pubmed 出版商
  220. Prause M, Mayer C, Brorsson C, Frederiksen K, Billestrup N, Størling J, et al. JNK1 Deficient Insulin-Producing Cells Are Protected against Interleukin-1β-Induced Apoptosis Associated with Abrogated Myc Expression. J Diabetes Res. 2016;2016:1312705 pubmed 出版商
  221. Christensen D, Ejlerskov P, Rasmussen I, Vilhardt F. Reciprocal signals between microglia and neurons regulate α-synuclein secretion by exophagy through a neuronal cJUN-N-terminal kinase-signaling axis. J Neuroinflammation. 2016;13:59 pubmed 出版商
  222. Antony A, Paillard M, Moffat C, Juskeviciute E, Correnti J, Bolon B, et al. MICU1 regulation of mitochondrial Ca(2+) uptake dictates survival and tissue regeneration. Nat Commun. 2016;7:10955 pubmed 出版商
  223. Liu S, Wu C, Huang K, Wang C, Guan S, Chen L, et al. C/EBP homologous protein (CHOP) deficiency ameliorates renal fibrosis in unilateral ureteral obstructive kidney disease. Oncotarget. 2016;7:21900-12 pubmed 出版商
  224. Choi J, Kim I, Kim Y, Lee M, Nam T. Pyropia yezoensis glycoprotein regulates antioxidant status and prevents hepatotoxicity in a rat model of D-galactosamine/lipopolysaccharide-induced acute liver failure. Mol Med Rep. 2016;13:3110-4 pubmed 出版商
  225. Chusri P, Kumthip K, Hong J, Zhu C, Duan X, Jilg N, et al. HCV induces transforming growth factor β1 through activation of endoplasmic reticulum stress and the unfolded protein response. Sci Rep. 2016;6:22487 pubmed 出版商
  226. Rubattu S, Di Castro S, Schulz H, Geurts A, Cotugno M, Bianchi F, et al. Ndufc2 Gene Inhibition Is Associated With Mitochondrial Dysfunction and Increased Stroke Susceptibility in an Animal Model of Complex Human Disease. J Am Heart Assoc. 2016;5: pubmed 出版商
  227. Liao B, McManus S, Hughes W, Schmitz Peiffer C. Flavin-Containing Monooxygenase 3 Reduces Endoplasmic Reticulum Stress in Lipid-Treated Hepatocytes. Mol Endocrinol. 2016;30:417-28 pubmed 出版商
  228. Wang P, Zhang X, Luo P, Jiang X, Zhang P, Guo J, et al. Hepatocyte TRAF3 promotes liver steatosis and systemic insulin resistance through targeting TAK1-dependent signalling. Nat Commun. 2016;7:10592 pubmed 出版商
  229. Wu T, Li Y, Liu B, Zhang S, Wu L, Zhu X, et al. Expression of Ferritin Light Chain (FTL) Is Elevated in Glioblastoma, and FTL Silencing Inhibits Glioblastoma Cell Proliferation via the GADD45/JNK Pathway. PLoS ONE. 2016;11:e0149361 pubmed 出版商
  230. Fu X, Xie F, Dong P, Li Q, Yu G, Xiao R. High-Dose Fluoride Impairs the Properties of Human Embryonic Stem Cells via JNK Signaling. PLoS ONE. 2016;11:e0148819 pubmed 出版商
  231. Yang Q, Sun G, Cao Z, Yin H, Qi Q, Wang J, et al. The expression of NLRX1 in C57BL/6 mice cochlear hair cells: Possible relation to aging- and neomycin-induced deafness. Neurosci Lett. 2016;616:138-46 pubmed 出版商
  232. Lu S, Natarajan S, Mott J, Kharbanda K, Harrison Findik D. Ceramide Induces Human Hepcidin Gene Transcription through JAK/STAT3 Pathway. PLoS ONE. 2016;11:e0147474 pubmed 出版商
  233. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  234. Avgustinova A, Iravani M, Robertson D, Fearns A, Gao Q, Klingbeil P, et al. Tumour cell-derived Wnt7a recruits and activates fibroblasts to promote tumour aggressiveness. Nat Commun. 2016;7:10305 pubmed 出版商
  235. Puvirajesinghe T, Bertucci F, Jain A, Scerbo P, Belotti E, Audebert S, et al. Identification of p62/SQSTM1 as a component of non-canonical Wnt VANGL2-JNK signalling in breast cancer. Nat Commun. 2016;7:10318 pubmed 出版商
  236. Vincendeau M, Hadian K, Messias A, Brenke J, Hålander J, Griesbach R, et al. Inhibition of Canonical NF-κB Signaling by a Small Molecule Targeting NEMO-Ubiquitin Interaction. Sci Rep. 2016;6:18934 pubmed 出版商
  237. Xu Y, Wu D, Zheng W, Yu F, Yang F, Yao Y, et al. Proteome profiling of cadmium-induced apoptosis by antibody array analyses in human bronchial epithelial cells. Oncotarget. 2016;7:6146-58 pubmed 出版商
  238. Ishibashi T, Yaguchi A, Terada K, Ueno Yokohata H, Tomita O, Iijima K, et al. Ph-like ALL-related novel fusion kinase ATF7IP-PDGFRB exhibits high sensitivity to tyrosine kinase inhibitors in murine cells. Exp Hematol. 2016;44:177-88.e5 pubmed 出版商
  239. Su X, Yan H, Huang Y, Yun H, Zeng B, Wang E, et al. Expression of FABP4, adipsin and adiponectin in Paneth cells is modulated by gut Lactobacillus. Sci Rep. 2015;5:18588 pubmed 出版商
  240. Wang Y, Xu S, Xu W, Yang H, Hu P, Li Y. Sodium formate induces autophagy and apoptosis via the JNK signaling pathway of photoreceptor cells. Mol Med Rep. 2016;13:1111-8 pubmed 出版商
  241. Ismail H, Miotla Zarebska J, Troeberg L, Tang X, Stott B, Yamamoto K, et al. Brief Report: JNK-2 Controls Aggrecan Degradation in Murine Articular Cartilage and the Development of Experimental Osteoarthritis. Arthritis Rheumatol. 2016;68:1165-71 pubmed 出版商
  242. Kaizuka T, Mizushima N. Atg13 Is Essential for Autophagy and Cardiac Development in Mice. Mol Cell Biol. 2016;36:585-95 pubmed 出版商
  243. Zhou Q, Wang H, Schwartz D, Stoffels M, Park Y, Zhang Y, et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat Genet. 2016;48:67-73 pubmed 出版商
  244. Daniele S, Zappelli E, Martini C. Trazodone regulates neurotrophic/growth factors, mitogen-activated protein kinases and lactate release in human primary astrocytes. J Neuroinflammation. 2015;12:225 pubmed 出版商
  245. Dinh C, Szabo A, Yu Y, Camer D, Wang H, Huang X. Bardoxolone Methyl Prevents Mesenteric Fat Deposition and Inflammation in High-Fat Diet Mice. ScientificWorldJournal. 2015;2015:549352 pubmed 出版商
  246. Giri K, Pabelick C, Mukherjee P, Prakash Y. Hepatoma derived growth factor (HDGF) dynamics in ovarian cancer cells. Apoptosis. 2016;21:329-39 pubmed 出版商
  247. El Khattouti A, Selimovic D, Hannig M, Taylor E, Abd Elmageed Z, Hassan S, et al. Imiquimod-induced apoptosis of melanoma cells is mediated by ER stress-dependent Noxa induction and enhanced by NF-κB inhibition. J Cell Mol Med. 2016;20:266-86 pubmed 出版商
  248. Li W, Wei S, Liu C, Song M, Wu H, Yang Y. Regulation of the osteogenic and adipogenic differentiation of bone marrow-derived stromal cells by extracellular uridine triphosphate: The role of P2Y2 receptor and ERK1/2 signaling. Int J Mol Med. 2016;37:63-73 pubmed 出版商
  249. Park Y, Kim S, Kwon T, Kim J, Song I, Shin H, et al. Peroxiredoxin II promotes hepatic tumorigenesis through cooperation with Ras/Forkhead box M1 signaling pathway. Oncogene. 2016;35:3503-13 pubmed 出版商
  250. Wang Y, Sun Z, Chen S, Jiao Y, Bai C. ROS-mediated activation of JNK/p38 contributes partially to the pro-apoptotic effect of ajoene on cells of lung adenocarcinoma. Tumour Biol. 2016;37:3727-38 pubmed 出版商
  251. Patruno A, Pesce M, Grilli A, Speranza L, Franceschelli S, De Lutiis M, et al. mTOR Activation by PI3K/Akt and ERK Signaling in Short ELF-EMF Exposed Human Keratinocytes. PLoS ONE. 2015;10:e0139644 pubmed 出版商
  252. Qiu H, Liu B, Liu W, Liu S. Interleukin-27 enhances TNF-α-mediated activation of human coronary artery endothelial cells. Mol Cell Biochem. 2016;411:1-10 pubmed 出版商
  253. Zarpelon A, Rodrigues F, Lopes A, Souza G, Carvalho T, Pinto L, et al. Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain. FASEB J. 2016;30:54-65 pubmed 出版商
  254. Wong T, Lin S, Leung L. The Flavone Luteolin Suppresses SREBP-2 Expression and Post-Translational Activation in Hepatic Cells. PLoS ONE. 2015;10:e0135637 pubmed 出版商
  255. Tan B, Mu R, Chang Y, Wang Y, Wu M, Tu H, et al. RNF4 negatively regulates NF-κB signaling by down-regulating TAB2. FEBS Lett. 2015;589:2850-8 pubmed 出版商
  256. Wu M, Lee W, Hua K, Kuo M, Lin M. Macrophage Infiltration Induces Gastric Cancer Invasiveness by Activating the β-Catenin Pathway. PLoS ONE. 2015;10:e0134122 pubmed 出版商
  257. Lee C, Yang Y, Chen C, Liu J. Syk-mediated tyrosine phosphorylation of mule promotes TNF-induced JNK activation and cell death. Oncogene. 2016;35:1988-95 pubmed 出版商
  258. Picot N, Guerrette R, Beauregard A, Jean S, Michaud P, Harquail J, et al. Mammaglobin 1 promotes breast cancer malignancy and confers sensitivity to anticancer drugs. Mol Carcinog. 2016;55:1150-62 pubmed 出版商
  259. Chen I, Hsu P, Hsu W, Chen N, Tseng P. Polyubiquitination of Transforming Growth Factor β-activated Kinase 1 (TAK1) at Lysine 562 Residue Regulates TLR4-mediated JNK and p38 MAPK Activation. Sci Rep. 2015;5:12300 pubmed 出版商
  260. Gorojod R, Alaimo A, Porte Alcon S, Pomilio C, Saravia F, Kotler M. The autophagic- lysosomal pathway determines the fate of glial cells under manganese- induced oxidative stress conditions. Free Radic Biol Med. 2015;87:237-51 pubmed 出版商
  261. Wang Z, Tang B, Tang F, Li Y, Zhang G, Zhong L, et al. Protection of rat intestinal epithelial cells from ischemia/reperfusion injury by (D-Ala2, D-Leu5)-enkephalin through inhibition of the MKK7-JNK signaling pathway. Mol Med Rep. 2015;12:4079-4088 pubmed 出版商
  262. Luan Q, Jin L, Jiang C, Tay K, Lai F, Liu X, et al. RIPK1 regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy. Autophagy. 2015;11:975-94 pubmed 出版商
  263. Bargut T, Mandarim de Lacerda C, Aguila M. A high-fish-oil diet prevents adiposity and modulates white adipose tissue inflammation pathways in mice. J Nutr Biochem. 2015;26:960-9 pubmed 出版商
  264. Hao W, Yuan X, Yu L, Gao C, Sun X, Wang D, et al. Licochalcone A-induced human gastric cancer BGC-823 cells apoptosis by regulating ROS-mediated MAPKs and PI3K/AKT signaling pathways. Sci Rep. 2015;5:10336 pubmed 出版商
  265. Wong T, Lin S, Leung L. The flavone apigenin blocks nuclear translocation of sterol regulatory element-binding protein-2 in the hepatic cells WRL-68. Br J Nutr. 2015;113:1844-52 pubmed 出版商
  266. Daniele S, Da Pozzo E, Zappelli E, Martini C. Trazodone treatment protects neuronal-like cells from inflammatory insult by inhibiting NF-?B, p38 and JNK. Cell Signal. 2015;27:1609-29 pubmed 出版商
  267. Benzina S, Pitaval A, Lemercier C, Lustremant C, Frouin V, Wu N, et al. A kinome-targeted RNAi-based screen links FGF signaling to H2AX phosphorylation in response to radiation. Cell Mol Life Sci. 2015;72:3559-73 pubmed 出版商
  268. Malik N, Vollmer S, Nanda S, López Pelaéz M, Prescott A, Gray N, et al. Suppression of interferon β gene transcription by inhibitors of bromodomain and extra-terminal (BET) family members. Biochem J. 2015;468:363-72 pubmed 出版商
  269. Pan J, Li H, Zhang B, Xiong R, Zhang Y, Kang W, et al. Small peptide inhibitor of JNK3 protects dopaminergic neurons from MPTP induced injury via inhibiting the ASK1-JNK3 signaling pathway. PLoS ONE. 2015;10:e0119204 pubmed 出版商
  270. Zhang Q, Kuang H, Chen C, Yan J, Do Umehara H, Liu X, et al. The kinase Jnk2 promotes stress-induced mitophagy by targeting the small mitochondrial form of the tumor suppressor ARF for degradation. Nat Immunol. 2015;16:458-66 pubmed 出版商
  271. Roost M, van Iperen L, De Melo Bernardo A, Mummery C, Carlotti F, de Koning E, et al. Lymphangiogenesis and angiogenesis during human fetal pancreas development. Vasc Cell. 2014;6:22 pubmed 出版商
  272. Ismail H, Yamamoto K, Vincent T, Nagase H, Troeberg L, Saklatvala J. Interleukin-1 Acts via the JNK-2 Signaling Pathway to Induce Aggrecan Degradation by Human Chondrocytes. Arthritis Rheumatol. 2015;67:1826-36 pubmed 出版商
  273. Williams J, Ni H, Haynes A, Manley S, Li Y, Jaeschke H, et al. Chronic Deletion and Acute Knockdown of Parkin Have Differential Responses to Acetaminophen-induced Mitophagy and Liver Injury in Mice. J Biol Chem. 2015;290:10934-46 pubmed 出版商
  274. Kim S, Kim W, Yoon J, Ji J, Morgan M, Cho H, et al. Upregulated RIP3 Expression Potentiates MLKL Phosphorylation-Mediated Programmed Necrosis in Toxic Epidermal Necrolysis. J Invest Dermatol. 2015;135:2021-2030 pubmed 出版商
  275. Huang P, Chen C, Hsu I, Salim S, Kao S, Cheng C, et al. Huntingtin-associated protein 1 interacts with breakpoint cluster region protein to regulate neuronal differentiation. PLoS ONE. 2015;10:e0116372 pubmed 出版商
  276. Seaberg B, Henslee G, Wang S, Paez Colasante X, Landreth G, Rimer M. Muscle-derived extracellular signal-regulated kinases 1 and 2 are required for the maintenance of adult myofibers and their neuromuscular junctions. Mol Cell Biol. 2015;35:1238-53 pubmed 出版商
  277. de Oliveira S, Boudinot P, Calado Ã, Mulero V. Duox1-derived H2O2 modulates Cxcl8 expression and neutrophil recruitment via JNK/c-JUN/AP-1 signaling and chromatin modifications. J Immunol. 2015;194:1523-33 pubmed 出版商
  278. Mello C, Ramos L, Gimenes A, Andrade T, Oliani S, Gil C. Immunomodulatory effects of galectin-1 on an IgE-mediated allergic conjunctivitis model. Invest Ophthalmol Vis Sci. 2015;56:693-704 pubmed 出版商
  279. Zou H, Limpert A, Zou J, Dembo A, Lee P, Grant D, et al. Benzodiazepinone derivatives protect against endoplasmic reticulum stress-mediated cell death in human neuronal cell lines. ACS Chem Neurosci. 2015;6:464-75 pubmed 出版商
  280. Park D, Lalli J, Sedlackova Slavikova L, Rice S. Functional comparison of herpes simplex virus 1 (HSV-1) and HSV-2 ICP27 homologs reveals a role for ICP27 in virion release. J Virol. 2015;89:2892-905 pubmed 出版商
  281. Passos E, Pereira C, Gonçalves I, Rocha Rodrigues S, Silva N, Guimarães J, et al. Role of physical exercise on hepatic insulin, glucocorticoid and inflammatory signaling pathways in an animal model of non-alcoholic steatohepatitis. Life Sci. 2015;123:51-60 pubmed 出版商
  282. Suzuki S, Okada M, Shibuya K, Seino M, Sato A, Takeda H, et al. JNK suppression of chemotherapeutic agents-induced ROS confers chemoresistance on pancreatic cancer stem cells. Oncotarget. 2015;6:458-70 pubmed
  283. Amara S, López K, Banan B, Brown S, Whalen M, Myles E, et al. Synergistic effect of pro-inflammatory TNFα and IL-17 in periostin mediated collagen deposition: potential role in liver fibrosis. Mol Immunol. 2015;64:26-35 pubmed 出版商
  284. El Khattouti A, Sheehan N, Monico J, Drummond H, Haikel Y, Brodell R, et al. CD133⁺ melanoma subpopulation acquired resistance to caffeic acid phenethyl ester-induced apoptosis is attributed to the elevated expression of ABCB5: significance for melanoma treatment. Cancer Lett. 2015;357:83-104 pubmed 出版商
  285. Tobar N, Toyos M, Urra C, Méndez N, Arancibia R, Smith P, et al. c-Jun N terminal kinase modulates NOX-4 derived ROS production and myofibroblasts differentiation in human breast stromal cells. BMC Cancer. 2014;14:640 pubmed 出版商
  286. Dvoriantchikova G, Ivanov D. Tumor necrosis factor-alpha mediates activation of NF-κB and JNK signaling cascades in retinal ganglion cells and astrocytes in opposite ways. Eur J Neurosci. 2014;40:3171-8 pubmed 出版商
  287. Ji X, Lu H, Zhou Q, Luo K. LARP7 suppresses P-TEFb activity to inhibit breast cancer progression and metastasis. elife. 2014;3:e02907 pubmed 出版商
  288. Chondrogiannis G, Kastamoulas M, Kanavaros P, Vartholomatos G, Bai M, Baltogiannis D, et al. Cytokine effects on cell viability and death of prostate carcinoma cells. Biomed Res Int. 2014;2014:536049 pubmed 出版商
  289. Yang Q, Hao J, Chen M, Li G. Dermatopontin is a novel regulator of the CdCl2-induced decrease in claudin-11 expression. Toxicol In Vitro. 2014;28:1158-64 pubmed 出版商
  290. Kopaliani I, Martin M, Zatschler B, Bortlik K, Müller B, Deussen A. Cell-specific and endothelium-dependent regulations of matrix metalloproteinase-2 in rat aorta. Basic Res Cardiol. 2014;109:419 pubmed 出版商
  291. Wei X, Zhang F, Wang K, Zhang Q, Rong L. Assembly of the FKBP51-PHLPP2-AKT signaling complex in cerebral ischemia/reperfusion injury in rats. Brain Res. 2014;1566:60-8 pubmed 出版商
  292. Bhattacharyya S, Ghosh S, Sil P. Amelioration of aspirin induced oxidative impairment and apoptotic cell death by a novel antioxidant protein molecule isolated from the herb Phyllanthus niruri. PLoS ONE. 2014;9:e89026 pubmed 出版商
  293. Valente A, Irimpen A, Siebenlist U, Chandrasekar B. OxLDL induces endothelial dysfunction and death via TRAF3IP2: inhibition by HDL3 and AMPK activators. Free Radic Biol Med. 2014;70:117-28 pubmed 出版商
  294. Jin Y, Wi H, Choi M, Hong S, Bae Y. Regulation of anti-inflammatory cytokines IL-10 and TGF-? in mouse dendritic cells through treatment with Clonorchis sinensis crude antigen. Exp Mol Med. 2014;46:e74 pubmed 出版商
  295. Gámez M, Calvo M, Selgas M, García M, Erler K, Böhm V, et al. Effect of E-beam treatment on the chemistry and on the antioxidant activity of lycopene from dry tomato peel and tomato powder. J Agric Food Chem. 2014;62:1557-63 pubmed 出版商
  296. Megison M, Gillory L, Stewart J, Nabers H, Mrozcek Musulman E, Beierle E. FAK inhibition abrogates the malignant phenotype in aggressive pediatric renal tumors. Mol Cancer Res. 2014;12:514-26 pubmed 出版商
  297. Okada M, Sato A, Shibuya K, Watanabe E, Seino S, Suzuki S, et al. JNK contributes to temozolomide resistance of stem-like glioblastoma cells via regulation of MGMT expression. Int J Oncol. 2014;44:591-9 pubmed 出版商
  298. Hou J, Xia Y, Jiang R, Chen D, Xu J, Deng L, et al. PTPRO plays a dual role in hepatic ischemia reperfusion injury through feedback activation of NF-?B. J Hepatol. 2014;60:306-12 pubmed 出版商
  299. Cheng X, Chapple S, Patel B, Puszyk W, Sugden D, Yin X, et al. Gestational diabetes mellitus impairs Nrf2-mediated adaptive antioxidant defenses and redox signaling in fetal endothelial cells in utero. Diabetes. 2013;62:4088-97 pubmed 出版商
  300. Yuan F, Xu Z, Yang M, Wei Q, Zhang Y, Yu J, et al. Overexpressed DNA polymerase iota regulated by JNK/c-Jun contributes to hypermutagenesis in bladder cancer. PLoS ONE. 2013;8:e69317 pubmed 出版商
  301. Ayata C, Ganal S, Hockenjos B, Willim K, Vieira R, Grimm M, et al. Purinergic P2Y? receptors promote neutrophil infiltration and hepatocyte death in mice with acute liver injury. Gastroenterology. 2012;143:1620-1629.e4 pubmed 出版商
  302. Fuest M, Willim K, MacNelly S, Fellner N, Resch G, Blum H, et al. The transcription factor c-Jun protects against sustained hepatic endoplasmic reticulum stress thereby promoting hepatocyte survival. Hepatology. 2012;55:408-18 pubmed 出版商