这是一篇来自已证抗体库的有关人类 Janus激酶2 (Jak2) 的综述,是根据122篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Janus激酶2 抗体。
Janus激酶2 同义词: JTK10; THCYT3

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(E132)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司Janus激酶2抗体(Abcam, ab32101)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3a). Physiol Rep (2022) ncbi
domestic rabbit 单克隆(EPR108(2))
  • 免疫印迹; 人类; 1:1000; 图 5c, 6a, 8d
艾博抗(上海)贸易有限公司Janus激酶2抗体(Abcam, ab108596)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c, 6a, 8d). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(E132)
  • 免疫印迹; 人类; 1:1000; 图 5c, 6a, 8d
艾博抗(上海)贸易有限公司Janus激酶2抗体(Abcam, ab32101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c, 6a, 8d). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆
  • 流式细胞仪; 小鼠
艾博抗(上海)贸易有限公司Janus激酶2抗体(Abcam, ab219728)被用于被用于流式细胞仪在小鼠样本上. Cancer Cell (2021) ncbi
domestic rabbit 单克隆(E132)
  • 免疫组化; 人类; 图 6a
  • 免疫印迹; 人类; 图 1i, 2a
艾博抗(上海)贸易有限公司Janus激酶2抗体(Abcam, ab32101)被用于被用于免疫组化在人类样本上 (图 6a) 和 被用于免疫印迹在人类样本上 (图 1i, 2a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(E132)
  • 免疫组化; 小鼠; 1:100; 图 6a
  • 免疫印迹; 人类; 图 8
艾博抗(上海)贸易有限公司Janus激酶2抗体(Abcam, ab32101)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6a) 和 被用于免疫印迹在人类样本上 (图 8). J Mol Endocrinol (2021) ncbi
domestic rabbit 单克隆(EPR108(2))
  • 免疫印迹; 人类; 1:100; 图 8
艾博抗(上海)贸易有限公司Janus激酶2抗体(Abcam, ab108596)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 8). J Mol Endocrinol (2021) ncbi
domestic rabbit 单克隆(EPR108(2))
  • 免疫印迹; 人类; 图 6a
艾博抗(上海)贸易有限公司Janus激酶2抗体(Abcam, ab108596)被用于被用于免疫印迹在人类样本上 (图 6a). Cell Mol Biol Lett (2020) ncbi
domestic rabbit 单克隆(EPR108(2))
  • 免疫印迹; 人类; 1:1000; 图 3c
艾博抗(上海)贸易有限公司Janus激酶2抗体(Abcam, ab108596)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Biosci Rep (2020) ncbi
domestic rabbit 单克隆(E132)
  • 免疫印迹; 人类; 1:1000; 图 3c
艾博抗(上海)贸易有限公司Janus激酶2抗体(Abcam, Ab32101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Biosci Rep (2020) ncbi
domestic rabbit 单克隆(E132)
  • 免疫组化; 大鼠; 图 5a
  • 免疫印迹; 大鼠; 图 4ba
艾博抗(上海)贸易有限公司Janus激酶2抗体(Abcam, ab32101)被用于被用于免疫组化在大鼠样本上 (图 5a) 和 被用于免疫印迹在大鼠样本上 (图 4ba). Mol Med Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1c
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司Janus激酶2抗体(Abcam, ab195055)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1c) 和 被用于免疫印迹在人类样本上 (图 5a). Cell Prolif (2020) ncbi
domestic rabbit 单克隆(E132)
  • 免疫印迹; 人类; 1:1000; 图 8a
艾博抗(上海)贸易有限公司Janus激酶2抗体(Abcam, ab32101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8a). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(EPR108(2))
  • 免疫印迹; 人类; 1:2000; 图 8a
艾博抗(上海)贸易有限公司Janus激酶2抗体(Abcam, ab108596)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 8a). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(EPR108(2))
  • 免疫印迹; 人类; 图 4d
艾博抗(上海)贸易有限公司Janus激酶2抗体(Abcam, EPR108)被用于被用于免疫印迹在人类样本上 (图 4d). Science (2019) ncbi
domestic rabbit 单克隆(E132)
  • 免疫印迹; 人类; 图 4d
艾博抗(上海)贸易有限公司Janus激酶2抗体(Abcam, E132)被用于被用于免疫印迹在人类样本上 (图 4d). Science (2019) ncbi
domestic rabbit 单克隆(E132)
  • 免疫印迹; 小鼠; 图 3b
艾博抗(上海)贸易有限公司Janus激酶2抗体(Abcam, ab32101)被用于被用于免疫印迹在小鼠样本上 (图 3b). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3e
艾博抗(上海)贸易有限公司Janus激酶2抗体(Abcam, ab195055)被用于被用于免疫印迹在小鼠样本上 (图 3e). Mol Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司Janus激酶2抗体(Abcam, ab39636)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6a). Exp Ther Med (2016) ncbi
domestic rabbit 单克隆(E132)
  • 免疫印迹; 大鼠; 1:500; 图 6a
艾博抗(上海)贸易有限公司Janus激酶2抗体(Abcam, ab32101)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 6a). Exp Ther Med (2016) ncbi
domestic rabbit 单克隆(EPR108(2))
  • 免疫沉淀; 小鼠; 图 5e
  • 免疫印迹; 小鼠; 图 5f
  • 免疫沉淀; 人类; 图 3g
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司Janus激酶2抗体(Abcam, ab108596)被用于被用于免疫沉淀在小鼠样本上 (图 5e), 被用于免疫印迹在小鼠样本上 (图 5f), 被用于免疫沉淀在人类样本上 (图 3g) 和 被用于免疫印迹在人类样本上 (图 2a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
艾博抗(上海)贸易有限公司Janus激酶2抗体(Abcam, ab39636)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Onco Targets Ther (2016) ncbi
domestic rabbit 单克隆(EPR108(2))
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司Janus激酶2抗体(Epitomics, 2863)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 3
艾博抗(上海)贸易有限公司Janus激酶2抗体(Epitomics, ab39636)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(EPR108(2))
  • 免疫印迹; 小鼠; 图 3a
艾博抗(上海)贸易有限公司Janus激酶2抗体(Abcam, AB108596)被用于被用于免疫印迹在小鼠样本上 (图 3a). Biol Sex Differ (2016) ncbi
domestic rabbit 单克隆(E132)
  • 免疫组化-石蜡切片; 人类; 图 1
艾博抗(上海)贸易有限公司Janus激酶2抗体(Abcam, ab32101)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Clin Breast Cancer (2016) ncbi
domestic rabbit 单克隆(E132)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司Janus激酶2抗体(AbCam, ab32101)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. APMIS (2015) ncbi
domestic rabbit 单克隆(E132)
  • 免疫组化; 人类; 1:100; 图 5d
艾博抗(上海)贸易有限公司Janus激酶2抗体(Abcam, ab32101)被用于被用于免疫组化在人类样本上浓度为1:100 (图 5d). Cancer Lett (2015) ncbi
domestic rabbit 单克隆(E132)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司Janus激酶2抗体(Abcam, ab32101)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(E132)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司Janus激酶2抗体(Abcam, E132)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于免疫组化-石蜡切片在人类样本上. Cell Death Differ (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(C-10)
  • 免疫印迹; 人类; 图 s3b
圣克鲁斯生物技术Janus激酶2抗体(Santa Cruz, sc-390539)被用于被用于免疫印迹在人类样本上 (图 s3b). Nat Cancer (2022) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 人类; 图 8b, 8c
圣克鲁斯生物技术Janus激酶2抗体(Santa Cruz, sc-390539)被用于被用于免疫印迹在人类样本上 (图 8b, 8c). Cancer Cell Int (2021) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 大鼠; 1:200; 图 5
圣克鲁斯生物技术Janus激酶2抗体(Santa Cruz Biotechnology, sc-390539)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 5). J Immunol Res (2016) ncbi
赛默飞世尔
小鼠 单克隆(691R5)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔Janus激酶2抗体(Invitrogen, AHO1352)被用于被用于免疫印迹在小鼠样本上 (图 1). Mol Endocrinol (2016) ncbi
小鼠 单克隆(691R5)
  • 免疫印迹; 人类; 图 4
赛默飞世尔Janus激酶2抗体(Invitrogen, AHO1352)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2012) ncbi
小鼠 单克隆(691R5)
  • 免疫细胞化学; 人类
赛默飞世尔Janus激酶2抗体(Biosource, AHO1352)被用于被用于免疫细胞化学在人类样本上. Mol Endocrinol (2011) ncbi
小鼠 单克隆(691R5)
  • 免疫沉淀; 人类; 图 3
  • 免疫印迹; 人类; 图 3
赛默飞世尔Janus激酶2抗体(Biosource, clone AHO1352)被用于被用于免疫沉淀在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2011) ncbi
小鼠 单克隆(691R5)
  • 免疫印迹; 小鼠; 1:2000; 图 s2
赛默飞世尔Janus激酶2抗体(Biosource, 691R5)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s2). Oncogene (2010) ncbi
小鼠 单克隆(691R5)
  • 免疫印迹; 人类; 图 2
赛默飞世尔Janus激酶2抗体(Biosource, AHO1352)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (2007) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(C80C3)
  • 免疫印迹; 大鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司Janus激酶2抗体(CST, 3776S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7a). World J Stem Cells (2022) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 大鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司Janus激酶2抗体(CST, 3230S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7a). World J Stem Cells (2022) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 小鼠; 1:2000; 图 1c
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1c). Stroke Vasc Neurol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3771S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). Stroke Vasc Neurol (2021) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, 3230)被用于被用于免疫印迹在人类样本上 (图 1f). Int J Med Sci (2021) ncbi
domestic rabbit 单克隆(C80C3)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, 3776)被用于被用于免疫印迹在人类样本上 (图 1f). Int J Med Sci (2021) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 小鼠; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell signaling, 3230)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6b). J Lipid Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3h
  • 免疫印迹; 人类; 1:1000; 图 3g, 3i
赛信通(上海)生物试剂有限公司Janus激酶2抗体(CST, 3771)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3h) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3g, 3i). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司Janus激酶2抗体(CST, 3771)被用于被用于免疫印迹在小鼠样本上 (图 4b). J Cell Mol Med (2021) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫沉淀; 人类; 图 3b
  • 免疫印迹; 人类; 图 s4b
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, 3230)被用于被用于免疫沉淀在人类样本上 (图 3b) 和 被用于免疫印迹在人类样本上 (图 s4b). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 图 6g, s11b
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230T)被用于被用于免疫印迹在人类样本上 (图 6g, s11b). Mol Cancer (2021) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司Janus激酶2抗体(CST, 3230S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(D15E2)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司Janus激酶2抗体(CST, 4406S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 小鼠; 图 4f
赛信通(上海)生物试剂有限公司Janus激酶2抗体(CST, 3230)被用于被用于免疫印迹在小鼠样本上 (图 4f). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 2b
赛信通(上海)生物试剂有限公司Janus激酶2抗体(CST, 3771)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 1:2000; 图 2b
赛信通(上海)生物试剂有限公司Janus激酶2抗体(CST, 3230)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2b). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(C80C3)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司Janus激酶2抗体(CST, 3776S,)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7a, 7c
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3771S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a, 7c). Oncol Rep (2021) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 1:1000; 图 7a, 7c
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230T)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a, 7c). Oncol Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, 3771)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Theranostics (2021) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, 3230)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Theranostics (2021) ncbi
domestic rabbit 单克隆(C80C3)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3776)被用于被用于免疫印迹在小鼠样本上 (图 3a). Infect Immun (2021) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230)被用于被用于免疫印迹在小鼠样本上 (图 3a). Infect Immun (2021) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司Janus激酶2抗体(CST, 3230)被用于被用于免疫印迹在人类样本上 (图 7a). Cancer Sci (2021) ncbi
domestic rabbit 单克隆(C80C3)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, C80C3)被用于被用于免疫印迹在小鼠样本上 (图 1c). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, D2E12)被用于被用于免疫印迹在小鼠样本上 (图 1c). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230)被用于被用于免疫印迹在人类样本上 (图 1f). Int J Mol Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3771)被用于被用于免疫印迹在人类样本上 (图 5e). Science (2020) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230)被用于被用于免疫印迹在人类样本上 (图 5e). Science (2020) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫组化基因敲除验证; 小鼠; 1:200; 图 2e
  • 免疫印迹基因敲除验证; 小鼠; 图 2c, 2d
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230s)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:200 (图 2e), 被用于免疫印迹基因敲除验证在小鼠样本上 (图 2c, 2d) 和 被用于免疫印迹在人类样本上 (图 5a). Cell Prolif (2020) ncbi
domestic rabbit 单克隆(D15E2)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司Janus激酶2抗体(CST, 4406T)被用于被用于免疫印迹在人类样本上 (图 5b). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司Janus激酶2抗体(CST, 3230T)被用于被用于免疫印迹在人类样本上 (图 5b). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(D4A8)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, D4A8)被用于被用于免疫印迹在人类样本上 (图 4c). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, D2E12)被用于被用于免疫印迹在人类样本上 (图 4c). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1a
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell signaling, 3771)被用于被用于免疫印迹在大鼠样本上 (图 1a). Cell Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, 3771)被用于被用于免疫印迹在人类样本上 (图 7a). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, 3230)被用于被用于免疫印迹在人类样本上 (图 7a). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, D2E12)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(D4A8)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 8082)被用于被用于免疫印迹在小鼠样本上 (图 1c). Cell Stem Cell (2019) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 图 1a
  • 免疫印迹; 小鼠; 图 1h
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, 3230)被用于被用于免疫印迹在人类样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 1h). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(C80C3)
  • 免疫印迹; 小鼠; 图 1h
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, 3776)被用于被用于免疫印迹在小鼠样本上 (图 1h) 和 被用于免疫印迹在人类样本上 (图 1a). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, D2E12)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Br J Cancer (2019) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230)被用于被用于免疫印迹在小鼠样本上 (图 2b). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3771)被用于被用于免疫印迹在小鼠样本上 (图 2b). Sci Adv (2019) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 图 s6g
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, 3230)被用于被用于免疫印迹在人类样本上 (图 s6g). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230)被用于被用于免疫印迹在小鼠样本上 (图 3d). Cancer Discov (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3771)被用于被用于免疫印迹在小鼠样本上 (图 3d). Cancer Discov (2019) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 小鼠; 图 1f
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230)被用于被用于免疫印迹在小鼠样本上 (图 1f). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1f
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3771)被用于被用于免疫印迹在小鼠样本上 (图 1f). Cell (2018) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230)被用于被用于免疫印迹在小鼠样本上 (图 5b). Blood (2018) ncbi
domestic rabbit 单克隆(C80C3)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3776)被用于被用于免疫印迹在小鼠样本上 (图 5b). Blood (2018) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 小鼠; 图 2h
  • 免疫印迹基因敲除验证; 人类; 图 1f
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230)被用于被用于免疫印迹在小鼠样本上 (图 2h), 被用于免疫印迹基因敲除验证在人类样本上 (图 1f) 和 被用于免疫印迹在人类样本上 (图 1b). Genes Dev (2018) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technologies, 3230)被用于被用于免疫印迹在人类样本上 (图 1b). Oncoimmunology (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technologies, 3771)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technologies, 3230)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signalling Technologies, 3771)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signalling Technologies, 3230)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Nat Commun (2018) ncbi
domestic rabbit 单克隆(C80C3)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司Janus激酶2抗体(CST, 3776)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS Pathog (2018) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司Janus激酶2抗体(CST, 3230)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS Pathog (2018) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, D2E12)被用于被用于免疫印迹在小鼠样本上 (图 6d). Oncogene (2018) ncbi
domestic rabbit 单克隆(D2E12)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3771)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 单克隆(D15E2)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 4406)被用于被用于免疫印迹在人类样本上 (图 2a). PLoS ONE (2018) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230)被用于被用于免疫印迹在人类样本上 (图 2a). PLoS ONE (2018) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 小鼠; 1:1000; 图 2h
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2h). J Cell Sci (2018) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹基因敲除验证; 人类; 图 5a
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 5a) 和 被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(C80C3)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3776)被用于被用于免疫印迹在小鼠样本上 (图 5b). J Nutr Biochem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3771)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(D4A8)
  • 免疫印迹; 小鼠; 1:1000; 图 9b
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 8082)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9b). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 小鼠; 1:1000; 图 9b
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9b). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D4A8)
  • 免疫印迹; 人类; 1:200; 图 3a
赛信通(上海)生物试剂有限公司Janus激酶2抗体(CST, 8082)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 图 s9c
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230)被用于被用于免疫印迹在人类样本上 (图 s9c). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 单克隆(D15E2)
  • 免疫印迹; 人类; 图 s9c
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 4406)被用于被用于免疫印迹在人类样本上 (图 s9c). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell signaling, 3230)被用于被用于免疫印迹在人类样本上 (图 3e). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D15E2)
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell signaling, 4406)被用于被用于免疫印迹在小鼠样本上 (图 4d). Mol Biol Cell (2017) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D4A8)
  • 免疫印迹; 小鼠; 图 s8
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 8082)被用于被用于免疫印迹在小鼠样本上 (图 s8). Circ Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3771)被用于被用于免疫印迹在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫沉淀; 小鼠; 图 4
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230)被用于被用于免疫沉淀在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 牛; 1:1000; 表 2
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230)被用于被用于免疫印迹在牛样本上浓度为1:1000 (表 2). Mol Cell Endocrinol (2017) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, D2E12)被用于被用于免疫印迹在小鼠样本上 (图 6c). J Exp Med (2016) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 小鼠; 图 6e
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell signaling, D2E12)被用于被用于免疫印迹在小鼠样本上 (图 6e). Cancer Discov (2017) ncbi
domestic rabbit 单克隆(C80C3)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, C80C3)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, D2E12)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5f
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3771)被用于被用于免疫印迹在小鼠样本上 (图 5f) 和 被用于免疫印迹在人类样本上 (图 2a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C80C3)
  • 免疫印迹; 大鼠; 图 2
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3776)被用于被用于免疫印迹在大鼠样本上 (图 2). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 大鼠; 图 2
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230)被用于被用于免疫印迹在大鼠样本上 (图 2). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(D4A8)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 8082S)被用于被用于免疫印迹在小鼠样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司Janus激酶2抗体(CST, 3230)被用于被用于免疫印迹在小鼠样本上 (图 1c). J Exp Med (2016) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 小鼠; 1:1000; 图 7D
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7D). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 7D
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3771)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 7D). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3771)被用于被用于免疫印迹在人类样本上 (图 5c). Carcinogenesis (2016) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230)被用于被用于免疫印迹在人类样本上 (图 5c). Carcinogenesis (2016) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 小鼠; 1:500; 图 S6c
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technologies, D2E12)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 S6c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230)被用于被用于免疫印迹在小鼠样本上 (图 5b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3771)被用于被用于免疫组化在小鼠样本上 (图 5c). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D4A8)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, 8082)被用于被用于免疫印迹在人类样本上 (图 5). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, 3230)被用于被用于免疫印迹在人类样本上 (图 5). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, 3230)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C80C3)
  • 免疫印迹; 小鼠; 图 s5
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3776)被用于被用于免疫印迹在小鼠样本上 (图 s5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, 3771)被用于被用于免疫印迹在人类样本上 (图 1c). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, 3230)被用于被用于免疫印迹在人类样本上 (图 1c). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230)被用于被用于免疫印迹在人类样本上 (图 5d). Oncogene (2016) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫组化; 人类; 1:20; 表 2
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230)被用于被用于免疫组化在人类样本上浓度为1:20 (表 2). Hematol Oncol (2017) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, 3230)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(D4A8)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, 8082)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D15E2)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 4406)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 e2
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3771)被用于被用于免疫印迹在人类样本上 (图 e2). Nature (2016) ncbi
domestic rabbit 单克隆(C80C3)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司Janus激酶2抗体(cell signalling technology, 3776)被用于被用于免疫印迹在人类样本上 (图 3). Oncol Rep (2015) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司Janus激酶2抗体(cell signalling technology, 3230)被用于被用于免疫印迹在人类样本上 (图 3). Oncol Rep (2015) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, 3230)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Anesthesiology (2015) ncbi
domestic rabbit 单克隆(C80C3)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, C80C3)被用于被用于免疫印迹在人类样本上 (图 2d). Leukemia (2016) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫组化-冰冻切片; 人类
  • 免疫细胞化学; 人类; 图 6
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, D2E12)被用于被用于免疫组化-冰冻切片在人类样本上, 被用于免疫细胞化学在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 2d). Leukemia (2016) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, 3230)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫组化-石蜡切片; 人类; 1:800
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, 3230)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800. APMIS (2015) ncbi
domestic rabbit 单克隆(D15E2)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell signaling, 4406P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230)被用于被用于免疫印迹在人类样本上 (图 s1). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 1:1000; 图 6f
  • proximity ligation assay; 小鼠; 1:100; 图 6h
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, 3230)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6f) 和 被用于proximity ligation assay在小鼠样本上浓度为1:100 (图 6h). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 图 7c
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, D2E12)被用于被用于免疫印迹在人类样本上 (图 7c). J Immunol (2015) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, 3230)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, D2E12)被用于被用于免疫印迹在人类样本上 (图 6a). Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(C80C3)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, 3776)被用于被用于免疫印迹在小鼠样本上. J Agric Food Chem (2014) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling, 3230)被用于被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2014) ncbi
domestic rabbit 单克隆(D4A8)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signalling, 8082)被用于被用于免疫印迹在大鼠样本上. Basic Res Cardiol (2014) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signalling, 3230)被用于被用于免疫印迹在大鼠样本上. Basic Res Cardiol (2014) ncbi
domestic rabbit 单克隆(D2E12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Janus激酶2抗体(Cell Signaling Technology, 3230)被用于被用于免疫印迹在人类样本上. Cell Cycle (2014) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7a
西格玛奥德里奇Janus激酶2抗体(Sigma Aldrich, SAB4300124)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Mol Med Rep (2021) ncbi
小鼠 单克隆(10.1.5)
  • 免疫印迹; 人类; 1:200; 图 3a
西格玛奥德里奇Janus激酶2抗体(Sigma Aldrich, SAB4200483)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3a). Oncotarget (2017) ncbi
文章列表
  1. Dong N, Zhou P, Li D, Zhu H, Liu L, Ma H, et al. Intratracheal administration of umbilical cord-derived mesenchymal stem cells attenuates hyperoxia-induced multi-organ injury via heme oxygenase-1 and JAK/STAT pathways. World J Stem Cells. 2022;14:556-576 pubmed 出版商
  2. Abousaad S, Ahmed F, Abouzeid A, Ongeri E. Meprin β expression modulates the interleukin-6 mediated JAK2-STAT3 signaling pathway in ischemia/reperfusion-induced kidney injury. Physiol Rep. 2022;10:e15468 pubmed 出版商
  3. Deng S, Wang C, Wang Y, Xu Y, Li X, Johnson N, et al. Ectopic JAK-STAT activation enables the transition to a stem-like and multilineage state conferring AR-targeted therapy resistance. Nat Cancer. 2022;3:1071-1087 pubmed 出版商
  4. Zheng Z, Chen J, Lyu H, Lam S, Lu G, Chan W, et al. Novel role of STAT3 in microglia-dependent neuroinflammation after experimental subarachnoid haemorrhage. Stroke Vasc Neurol. 2021;: pubmed 出版商
  5. Wang X, Yang B, Li Y, Luo J, Wang Y. AKR1C1 alleviates LPS‑induced ALI in mice by activating the JAK2/STAT3 signaling pathway. Mol Med Rep. 2021;24: pubmed 出版商
  6. Han J, Chen X, Xu J, Chu L, Li R, Sun N, et al. Simultaneous silencing Aurora-A and UHRF1 inhibits colorectal cancer cell growth through regulating expression of DNMT1 and STAT1. Int J Med Sci. 2021;18:3437-3451 pubmed 出版商
  7. Berger C, Heyne H, Heiland T, Dommel S, Höfling C, Guiu Jurado E, et al. A novel compound heterozygous leptin receptor mutation causes more severe obesity than in Leprdb/db mice. J Lipid Res. 2021;62:100105 pubmed 出版商
  8. Liu W, Long Q, Zhang W, Zeng D, Hu B, Liu S, et al. miRNA-221-3p derived from M2-polarized tumor-associated macrophage exosomes aggravates the growth and metastasis of osteosarcoma through SOCS3/JAK2/STAT3 axis. Aging (Albany NY). 2021;13:19760-19775 pubmed 出版商
  9. Xu P, Xiong W, Lin Y, Fan L, Pan H, Li Y. Histone deacetylase 2 knockout suppresses immune escape of triple-negative breast cancer cells via downregulating PD-L1 expression. Cell Death Dis. 2021;12:779 pubmed 出版商
  10. Hutton C, Heider F, Blanco Gómez A, Banyard A, Kononov A, Zhang X, et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell. 2021;: pubmed 出版商
  11. Gao L, Meng J, Yue C, Wu X, Su Q, Wu H, et al. Integrative analysis the characterization of peroxiredoxins in pan-cancer. Cancer Cell Int. 2021;21:366 pubmed 出版商
  12. Xie C, Ye F, Zhang N, Huang Y, Pan Y, Xie X. CCL7 contributes to angiotensin II-induced abdominal aortic aneurysm by promoting macrophage infiltration and pro-inflammatory phenotype. J Cell Mol Med. 2021;25:7280-7293 pubmed 出版商
  13. Hu F, Song D, Yan Y, Huang C, Shen C, Lan J, et al. IL-6 regulates autophagy and chemotherapy resistance by promoting BECN1 phosphorylation. Nat Commun. 2021;12:3651 pubmed 出版商
  14. Liu Z, Li C, Zhang R, Wei D, Shang Y, Yong Y, et al. EYA2 suppresses the progression of hepatocellular carcinoma via SOCS3-mediated blockade of JAK/STAT signaling. Mol Cancer. 2021;20:79 pubmed 出版商
  15. Jiang M, Liu J, Liu W, Zhu X, Bano Y, Liao H, et al. Bone marrow stem cells secretome accelerates simulated birth trauma-induced stress urinary incontinence recovery in rats. Aging (Albany NY). 2021;13:10517-10534 pubmed 出版商
  16. Zhang Z, Zhou H, Zhou J. Neuritin inhibits astrogliosis to ameliorate diabetic cognitive dysfunction. J Mol Endocrinol. 2021;66:259-272 pubmed 出版商
  17. Arenas E, Martínez Sabadell A, Rius Ruiz I, Román Alonso M, Escorihuela M, Luque A, et al. Acquired cancer cell resistance to T cell bispecific antibodies and CAR T targeting HER2 through JAK2 down-modulation. Nat Commun. 2021;12:1237 pubmed 出版商
  18. Xiong Y, Liu D, Shen R, Xiong Y. A short deletion in the DNA-binding domain of STAT3 suppresses growth and progression of colon cancer cells. Aging (Albany NY). 2021;13:5185-5196 pubmed 出版商
  19. McGuire J, Frieling J, Lo C, Li T, Muhammad A, Lawrence H, et al. Mesenchymal stem cell-derived interleukin-28 drives the selection of apoptosis resistant bone metastatic prostate cancer. Nat Commun. 2021;12:723 pubmed 出版商
  20. Zhang K, Wang D, Cai H, Cao M, Zhang Y, Zhuang P, et al. IL‑6 plays a crucial role in epithelial‑mesenchymal transition and pro‑metastasis induced by sorafenib in liver cancer. Oncol Rep. 2021;45:1105-1117 pubmed 出版商
  21. Zheng Q, Dong H, Mo J, Zhang Y, Huang J, Ouyang S, et al. A novel STAT3 inhibitor W2014-S regresses human non-small cell lung cancer xenografts and sensitizes EGFR-TKI acquired resistance. Theranostics. 2021;11:824-840 pubmed 出版商
  22. Zhao J, Liu X, Chen Y, Zhang L, Zhang Y, Ji D, et al. STAT3 Promotes Schistosome-Induced Liver Injury by Inflammation, Oxidative Stress, Proliferation, and Apoptosis Signal Pathway. Infect Immun. 2021;89: pubmed 出版商
  23. Zhang G, Jiao Q, Shen C, Song H, Zhang H, Qiu Z, et al. Interleukin 6 regulates the expression of programmed cell death ligand 1 in thyroid cancer. Cancer Sci. 2021;112:997-1010 pubmed 出版商
  24. Liu X, Kong W, Peterson C, McGrail D, Hoang A, Zhang X, et al. PBRM1 loss defines a nonimmunogenic tumor phenotype associated with checkpoint inhibitor resistance in renal carcinoma. Nat Commun. 2020;11:2135 pubmed 出版商
  25. Ding H, Zhang X, Su Y, Jia C, Dai C. GNAS promotes inflammation-related hepatocellular carcinoma progression by promoting STAT3 activation. Cell Mol Biol Lett. 2020;25:8 pubmed 出版商
  26. Hu D, Chen H, Lou L, Zhang H, Yang G. SKA3 promotes lung adenocarcinoma metastasis through the EGFR-PI3K-Akt axis. Biosci Rep. 2020;40: pubmed 出版商
  27. Hindupur S, Schmid S, Koch J, Youssef A, Baur E, Wang D, et al. STAT3/5 Inhibitors Suppress Proliferation in Bladder Cancer and Enhance Oncolytic Adenovirus Therapy. Int J Mol Sci. 2020;21: pubmed 出版商
  28. Wilmes S, Hafer M, Vuorio J, Tucker J, Winkelmann H, Löchte S, et al. Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations. Science. 2020;367:643-652 pubmed 出版商
  29. Wang T, Sun X, Cui H, Liu K, Zhao J. The peptide compound urantide regulates collagen metabolism in atherosclerotic rat hearts and inhibits the JAK2/STAT3 pathway. Mol Med Rep. 2020;21:1097-1106 pubmed 出版商
  30. Zhang L, Wang Y, Wu G, Rao L, Wei Y, Yue H, et al. Blockade of JAK2 protects mice against hypoxia-induced pulmonary arterial hypertension by repressing pulmonary arterial smooth muscle cell proliferation. Cell Prolif. 2020;53:e12742 pubmed 出版商
  31. Li W, Zhang X, Wu F, Zhou Y, Bao Z, Li H, et al. Gastric cancer-derived mesenchymal stromal cells trigger M2 macrophage polarization that promotes metastasis and EMT in gastric cancer. Cell Death Dis. 2019;10:918 pubmed 出版商
  32. Zhong B, Shi D, Wu F, Wang S, Hu H, Cheng C, et al. Dynasore suppresses cell proliferation, migration, and invasion and enhances the antitumor capacity of cisplatin via STAT3 pathway in osteosarcoma. Cell Death Dis. 2019;10:687 pubmed 出版商
  33. Thiem A, Hesbacher S, Kneitz H, di Primio T, Heppt M, Hermanns H, et al. IFN-gamma-induced PD-L1 expression in melanoma depends on p53 expression. J Exp Clin Cancer Res. 2019;38:397 pubmed 出版商
  34. Wang Z, Xiang J, Liu X, Yu S, Manfredsson F, Sandoval I, et al. Deficiency in BDNF/TrkB Neurotrophic Activity Stimulates δ-Secretase by Upregulating C/EBPβ in Alzheimer's Disease. Cell Rep. 2019;28:655-669.e5 pubmed 出版商
  35. Soutto M, Chen Z, Bhat A, Wang L, Zhu S, Gomaa A, et al. Activation of STAT3 signaling is mediated by TFF1 silencing in gastric neoplasia. Nat Commun. 2019;10:3039 pubmed 出版商
  36. Ying W, Li X, Rangarajan S, Feng W, Curtis L, Sanders P. Immunoglobulin light chains generate proinflammatory and profibrotic kidney injury. J Clin Invest. 2019;129:2792-2806 pubmed 出版商
  37. Mohan K, Ueda G, Kim A, Jude K, Fallas J, Guo Y, et al. Topological control of cytokine receptor signaling induces differential effects in hematopoiesis. Science. 2019;364: pubmed 出版商
  38. You Y, Qin Z, Zhang H, Yuan Z, Yu X. MicroRNA-153 promotes brain-derived neurotrophic factor and hippocampal neuron proliferation to alleviate autism symptoms through inhibition of JAK-STAT pathway by LEPR. Biosci Rep. 2019;: pubmed 出版商
  39. Wang E, Dai Z, Ferrante A, Drake C, Christiano A. A Subset of TREM2+ Dermal Macrophages Secretes Oncostatin M to Maintain Hair Follicle Stem Cell Quiescence and Inhibit Hair Growth. Cell Stem Cell. 2019;: pubmed 出版商
  40. Stivala S, Codilupi T, Brkic S, Baerenwaldt A, Ghosh N, Hao Shen H, et al. Targeting compensatory MEK/ERK activation increases JAK inhibitor efficacy in myeloproliferative neoplasms. J Clin Invest. 2019;130:1596-1611 pubmed 出版商
  41. Martin V, Chiriaco C, Modica C, Acquadro A, Cortese M, Galimi F, et al. Met inhibition revokes IFNγ-induction of PD-1 ligands in MET-amplified tumours. Br J Cancer. 2019;120:527-536 pubmed 出版商
  42. Huang X, Feng Z, Jiang Y, Li J, Xiang Q, Guo S, et al. VSIG4 mediates transcriptional inhibition of Nlrp3 and Il-1β in macrophages. Sci Adv. 2019;5:eaau7426 pubmed 出版商
  43. Song J, Zhang X, Liao Z, Liang H, Chu L, Dong W, et al. 14-3-3ζ inhibits heme oxygenase-1 (HO-1) degradation and promotes hepatocellular carcinoma proliferation: involvement of STAT3 signaling. J Exp Clin Cancer Res. 2019;38:3 pubmed 出版商
  44. Biffi G, Oni T, Spielman B, Hao Y, Elyada E, Park Y, et al. IL1-Induced JAK/STAT Signaling Is Antagonized by TGFβ to Shape CAF Heterogeneity in Pancreatic Ductal Adenocarcinoma. Cancer Discov. 2019;9:282-301 pubmed 出版商
  45. Xu X, Xu J, Wu J, Hu Y, Han Y, Gu Y, et al. Phosphorylation-Mediated IFN-γR2 Membrane Translocation Is Required to Activate Macrophage Innate Response. Cell. 2018;175:1336-1351.e17 pubmed 出版商
  46. Chorzalska A, Morgan J, Ahsan N, Treaba D, Olszewski A, Petersen M, et al. Bone marrow-specific loss of ABI1 induces myeloproliferative neoplasm with features resembling human myelofibrosis. Blood. 2018;: pubmed 出版商
  47. Kim S, Knight D, Jones L, Vervoort S, Ng A, Seymour J, et al. JAK2 is dispensable for maintenance of JAK2 mutant B-cell acute lymphoblastic leukemias. Genes Dev. 2018;32:849-864 pubmed 出版商
  48. Luo N, Formisano L, Gonzalez Ericsson P, Sanchez V, Dean P, Opalenik S, et al. Melanoma response to anti-PD-L1 immunotherapy requires JAK1 signaling, but not JAK2. Oncoimmunology. 2018;7:e1438106 pubmed 出版商
  49. Ng S, Yoshida N, Christie A, Ghandi M, Dharia N, Dempster J, et al. Targetable vulnerabilities in T- and NK-cell lymphomas identified through preclinical models. Nat Commun. 2018;9:2024 pubmed 出版商
  50. Sevin M, Kubovcakova L, Pernet N, Causse S, Vitte F, Villeval J, et al. HSP27 is a partner of JAK2-STAT5 and a potential therapeutic target in myelofibrosis. Nat Commun. 2018;9:1431 pubmed 出版商
  51. Morgan E, Wasson C, Hanson L, Kealy D, Pentland I, McGuire V, et al. STAT3 activation by E6 is essential for the differentiation-dependent HPV18 life cycle. PLoS Pathog. 2018;14:e1006975 pubmed 出版商
  52. Xi J, Huang Q, Wang L, Ma X, Deng Q, Kumar M, et al. miR-21 depletion in macrophages promotes tumoricidal polarization and enhances PD-1 immunotherapy. Oncogene. 2018;37:3151-3165 pubmed 出版商
  53. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  54. Giurisato E, Xu Q, Lonardi S, Telfer B, Russo I, Pearson A, et al. Myeloid ERK5 deficiency suppresses tumor growth by blocking protumor macrophage polarization via STAT3 inhibition. Proc Natl Acad Sci U S A. 2018;115:E2801-E2810 pubmed 出版商
  55. Kulling P, Olson K, Hamele C, Toro M, Tan S, Feith D, et al. Dysregulation of the IFN-?-STAT1 signaling pathway in a cell line model of large granular lymphocyte leukemia. PLoS ONE. 2018;13:e0193429 pubmed 出版商
  56. Xu S, Zhou Z, Li H, Liu Z, Pan X, Wang F, et al. BMSCs ameliorate septic coagulopathy by suppressing inflammation in cecal ligation and puncture-induced sepsis. J Cell Sci. 2018;131: pubmed 出版商
  57. Shen T, Chen Z, Zhao Z, Wu J. Genetic defects of the IRF1-mediated major histocompatibility complex class I antigen presentation pathway occur prevalently in the JAK2 gene in non-small cell lung cancer. Oncotarget. 2017;8:60975-60986 pubmed 出版商
  58. Bagarolli R, Tobar N, Oliveira A, Araújo T, Carvalho B, Rocha G, et al. Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice. J Nutr Biochem. 2017;50:16-25 pubmed 出版商
  59. Yu J, Wu H, Liu Z, Zhu Q, Shan C, Zhang K. Advanced glycation end products induce the apoptosis of and inflammation in mouse podocytes through CXCL9-mediated JAK2/STAT3 pathway activation. Int J Mol Med. 2017;40:1185-1193 pubmed 出版商
  60. Koyama Y, Wang P, Liang S, Iwaisako K, Liu X, Xu J, et al. Mesothelin/mucin 16 signaling in activated portal fibroblasts regulates cholestatic liver fibrosis. J Clin Invest. 2017;127:1254-1270 pubmed 出版商
  61. Basu R, Wu S, Kopchick J. Targeting growth hormone receptor in human melanoma cells attenuates tumor progression and epithelial mesenchymal transition via suppression of multiple oncogenic pathways. Oncotarget. 2017;8:21579-21598 pubmed 出版商
  62. He Y, Wang X, Zhang J, Liu Z, Pan W, Shen Y, et al. Association of Serum HMGB2 Levels With In-Stent Restenosis: HMGB2 Promotes Neointimal Hyperplasia in Mice With Femoral Artery Injury and Proliferation and Migration of VSMCs. Arterioscler Thromb Vasc Biol. 2017;37:717-729 pubmed 出版商
  63. Cayrol F, Praditsuktavorn P, Fernando T, Kwiatkowski N, Marullo R, Calvo Vidal M, et al. THZ1 targeting CDK7 suppresses STAT transcriptional activity and sensitizes T-cell lymphomas to BCL2 inhibitors. Nat Commun. 2017;8:14290 pubmed 出版商
  64. Chaudhari A, Gupta R, Patel S, Velingkaar N, Kondratov R. Cryptochromes regulate IGF-1 production and signaling through control of JAK2-dependent STAT5B phosphorylation. Mol Biol Cell. 2017;28:834-842 pubmed 出版商
  65. Li J, Liu B, Shi Y, Xie K, Yin H, Yan L, et al. CXCL4 Contributes to the Pathogenesis of Chronic Liver Allograft Dysfunction. J Immunol Res. 2016;2016:9276986 pubmed 出版商
  66. Eletto D, Burns S, Angulo I, Plagnol V, Gilmour K, Henriquez F, et al. Biallelic JAK1 mutations in immunodeficient patient with mycobacterial infection. Nat Commun. 2016;7:13992 pubmed 出版商
  67. Ganta V, Choi M, Kutateladze A, Annex B. VEGF165b Modulates Endothelial VEGFR1-STAT3 Signaling Pathway and Angiogenesis in Human and Experimental Peripheral Arterial Disease. Circ Res. 2017;120:282-295 pubmed 出版商
  68. Ramratnam M, Salama G, Sharma R, Wang D, Smith S, Banerjee S, et al. Gene-Targeted Mice with the Human Troponin T R141W Mutation Develop Dilated Cardiomyopathy with Calcium Desensitization. PLoS ONE. 2016;11:e0167681 pubmed 出版商
  69. Myllymäki M, Määttä J, Dimova E, Izzi V, Väisänen T, Myllyharju J, et al. Notch Downregulation and Extramedullary Erythrocytosis in Hypoxia-Inducible Factor Prolyl 4-Hydroxylase 2-Deficient Mice. Mol Cell Biol. 2017;37: pubmed 出版商
  70. Ontsouka C, Huang X, Aliyev E, Albrecht C. In vitro characterization and endocrine regulation of cholesterol and phospholipid transport in the mammary gland. Mol Cell Endocrinol. 2017;439:35-45 pubmed 出版商
  71. Luo L, Xie D, Zhang X, Jiang R. Osthole decreases renal ischemia-reperfusion injury by suppressing JAK2/STAT3 signaling activation. Exp Ther Med. 2016;12:2009-2014 pubmed
  72. Textor A, Schmidt K, Kloetzel P, Weißbrich B, Perez C, Charo J, et al. Preventing tumor escape by targeting a post-proteasomal trimming independent epitope. J Exp Med. 2016;213:2333-2348 pubmed
  73. Svoronos N, Perales Puchalt A, Allegrezza M, Rutkowski M, Payne K, Tesone A, et al. Tumor Cell-Independent Estrogen Signaling Drives Disease Progression through Mobilization of Myeloid-Derived Suppressor Cells. Cancer Discov. 2017;7:72-85 pubmed 出版商
  74. Ma Y, Chen L, Xie G, Zhou Y, Yue C, Yuan X, et al. Elevated level of interleukin-35 in colorectal cancer induces conversion of T cells into iTr35 by activating STAT1/STAT3. Oncotarget. 2016;7:73003-73015 pubmed 出版商
  75. Kim M, Jeong J, Seo J, Kim H, Kim S, Jin W. Dysregulated JAK2 expression by TrkC promotes metastasis potential, and EMT program of metastatic breast cancer. Sci Rep. 2016;6:33899 pubmed 出版商
  76. Zhang Y, Hu S, Chen Y, Guo M, Wang S. Hepatocyte growth factor inhibits hypoxia/reoxygenation-induced activation of xanthine oxidase in endothelial cells through the JAK2 signaling pathway. Int J Mol Med. 2016;38:1055-62 pubmed 出版商
  77. Guo L, Costanzo Garvey D, Smith D, Zavorka M, Venable Kang M, MacDonald R, et al. Cell non-autonomous regulation of hepatic IGF-1 and neonatal growth by Kinase Suppressor of Ras 2 (KSR2). Sci Rep. 2016;6:32093 pubmed 出版商
  78. Liu Y, Wang Y, Ding G, Yang T, Yao L, Hua J, et al. JAK2 inhibitor combined with DC-activated AFP-specific T-cells enhances antitumor function in a Fas/FasL signal-independent pathway. Onco Targets Ther. 2016;9:4425-33 pubmed 出版商
  79. Jiang S, Gao Y, Hou W, Liu R, Qi X, Xu X, et al. Sinomenine inhibits A549 human lung cancer cell invasion by mediating the STAT3 signaling pathway. Oncol Lett. 2016;12:1380-1386 pubmed
  80. Sashida G, Wang C, Tomioka T, Oshima M, Aoyama K, Kanai A, et al. The loss of Ezh2 drives the pathogenesis of myelofibrosis and sensitizes tumor-initiating cells to bromodomain inhibition. J Exp Med. 2016;213:1459-77 pubmed 出版商
  81. Liu S, Li Q, Zhang M, Mao Ying Q, Hu L, Wu G, et al. Curcumin ameliorates neuropathic pain by down-regulating spinal IL-1β via suppressing astroglial NALP1 inflammasome and JAK2-STAT3 signalling. Sci Rep. 2016;6:28956 pubmed 出版商
  82. Peng H, Cheng Y, Hsu Y, Wu G, Kuo C, Liou J, et al. MPT0B098, a Microtubule Inhibitor, Suppresses JAK2/STAT3 Signaling Pathway through Modulation of SOCS3 Stability in Oral Squamous Cell Carcinoma. PLoS ONE. 2016;11:e0158440 pubmed 出版商
  83. Beck D, Zobel J, Barber R, Evans S, Lezina L, Allchin R, et al. Synthetic Lethal Screen Demonstrates That a JAK2 Inhibitor Suppresses a BCL6-dependent IL10RA/JAK2/STAT3 Pathway in High Grade B-cell Lymphoma. J Biol Chem. 2016;291:16686-98 pubmed 出版商
  84. Sun F, Zhang Z, Tan E, Lim Z, Li Y, Wang X, et al. Icaritin suppresses development of neuroendocrine differentiation of prostate cancer through inhibition of IL-6/STAT3 and Aurora kinase A pathways in TRAMP mice. Carcinogenesis. 2016;37:701-711 pubmed 出版商
  85. O Leary C, Riling C, Spruce L, Ding H, Kumar S, Deng G, et al. Ndfip-mediated degradation of Jak1 tunes cytokine signalling to limit expansion of CD4+ effector T cells. Nat Commun. 2016;7:11226 pubmed 出版商
  86. Li J, Chen K, Li S, Liu T, Wang F, Xia Y, et al. Pretreatment with Fucoidan from Fucus vesiculosus Protected against ConA-Induced Acute Liver Injury by Inhibiting Both Intrinsic and Extrinsic Apoptosis. PLoS ONE. 2016;11:e0152570 pubmed 出版商
  87. Huang J, Yao C, Chuang S, Yeh C, Lee L, Chen R, et al. Honokiol inhibits sphere formation and xenograft growth of oral cancer side population cells accompanied with JAK/STAT signaling pathway suppression and apoptosis induction. BMC Cancer. 2016;16:245 pubmed 出版商
  88. Afsar T, Trembley J, Salomon C, Razak S, Khan M, Ahmed K. Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways. Sci Rep. 2016;6:23077 pubmed 出版商
  89. Wang X, Chen L, Liu J, Yan T, Wu G, Xia Y, et al. In vivo treatment of rat arterial adventitia with interleukin‑1β induces intimal proliferation via the JAK2/STAT3 signaling pathway. Mol Med Rep. 2016;13:3451-8 pubmed 出版商
  90. Mishra V, DiAngelo S, Silveyra P. Sex-specific IL-6-associated signaling activation in ozone-induced lung inflammation. Biol Sex Differ. 2016;7:16 pubmed 出版商
  91. Krause C, Popp O, Thirunarayanan N, Dittmar G, Lipp M, Müller G. MicroRNA-34a promotes genomic instability by a broad suppression of genome maintenance mechanisms downstream of the oncogene KSHV-vGPCR. Oncotarget. 2016;7:10414-32 pubmed 出版商
  92. Nespital T, van der Velden L, Mensinga A, van der Vaart E, Strous G. Fos-Zippered GH Receptor Cytosolic Tails Act as Jak2 Substrates and Signal Transducers. Mol Endocrinol. 2016;30:290-301 pubmed 出版商
  93. Heir P, Srikumar T, Bikopoulos G, Bunda S, Poon B, Lee J, et al. Oxygen-dependent Regulation of Erythropoietin Receptor Turnover and Signaling. J Biol Chem. 2016;291:7357-72 pubmed 出版商
  94. Teng Y, Pi W, Wang Y, Cowell J. WASF3 provides the conduit to facilitate invasion and metastasis in breast cancer cells through HER2/HER3 signaling. Oncogene. 2016;35:4633-40 pubmed 出版商
  95. Menter T, Dickenmann M, Juskevicius D, Steiger J, Dirnhofer S, Tzankov A. Comprehensive phenotypic characterization of PTLD reveals potential reliance on EBV or NF-κB signalling instead of B-cell receptor signalling. Hematol Oncol. 2017;35:187-197 pubmed 出版商
  96. Cui L, Gao B, Cao Z, Chen X, Zhang S, Zhang W. Downregulation of B7-H4 in the MHCC97-H hepatocellular carcinoma cell line by arsenic trioxide. Mol Med Rep. 2016;13:2032-8 pubmed 出版商
  97. Jhaveri K, Teplinsky E, Silvera D, Valeta Magara A, Arju R, Giashuddin S, et al. Hyperactivated mTOR and JAK2/STAT3 Pathways: Molecular Drivers and Potential Therapeutic Targets of Inflammatory and Invasive Ductal Breast Cancers After Neoadjuvant Chemotherapy. Clin Breast Cancer. 2016;16:113-22.e1 pubmed 出版商
  98. Park K, Yun H, Quang T, Oh H, Lee D, Auh Q, et al. 4-Methoxydalbergione suppresses growth and induces apoptosis in human osteosarcoma cells in vitro and in vivo xenograft model through down-regulation of the JAK2/STAT3 pathway. Oncotarget. 2016;7:6960-71 pubmed 出版商
  99. Shu S, Lin C, He H, Witwicki R, Tabassum D, Roberts J, et al. Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature. 2016;529:413-417 pubmed 出版商
  100. Wu L, Guo L, Liang Y, Liu X, Jiang L, Wang L. Curcumin suppresses stem-like traits of lung cancer cells via inhibiting the JAK2/STAT3 signaling pathway. Oncol Rep. 2015;34:3311-7 pubmed 出版商
  101. Liu S, Mi W, Li Q, Zhang M, Han P, Hu S, et al. Spinal IL-33/ST2 Signaling Contributes to Neuropathic Pain via Neuronal CaMKII-CREB and Astroglial JAK2-STAT3 Cascades in Mice. Anesthesiology. 2015;123:1154-69 pubmed 出版商
  102. Roncero A, López Nieva P, Cobos Fernández M, Villa Morales M, González Sánchez L, López Lorenzo J, et al. Contribution of JAK2 mutations to T-cell lymphoblastic lymphoma development. Leukemia. 2016;30:94-103 pubmed 出版商
  103. Pulvino M, Chen L, Oleksyn D, Li J, Compitello G, Rossi R, et al. Inhibition of COP9-signalosome (CSN) deneddylating activity and tumor growth of diffuse large B-cell lymphomas by doxycycline. Oncotarget. 2015;6:14796-813 pubmed
  104. Andreasen S, Therkildsen M, Grauslund M, Friis Hansen L, Wessel I, Homøe P. Activation of the interleukin-6/Janus kinase/STAT3 pathway in pleomorphic adenoma of the parotid gland. APMIS. 2015;123:706-15 pubmed 出版商
  105. Zucha M, Wu A, Lee W, Wang L, Lin W, Yuan C, et al. Bruton's tyrosine kinase (Btk) inhibitor ibrutinib suppresses stem-like traits in ovarian cancer. Oncotarget. 2015;6:13255-68 pubmed
  106. Cheng H, Liang Y, Kuo Y, Chuu C, Lin C, Lee M, et al. Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis. 2015;6:e1753 pubmed 出版商
  107. Salvucci O, Ohnuki H, Maric D, Hou X, Li X, Yoon S, et al. EphrinB2 controls vessel pruning through STAT1-JNK3 signalling. Nat Commun. 2015;6:6576 pubmed 出版商
  108. Wei Z, Xia G, Wu Y, Chen W, Xiang Z, Schwarz R, et al. CXCL1 promotes tumor growth through VEGF pathway activation and is associated with inferior survival in gastric cancer. Cancer Lett. 2015;359:335-43 pubmed 出版商
  109. Mirenda M, Toffali L, Montresor A, Scardoni G, Sorio C, Laudanna C. Protein tyrosine phosphatase receptor type γ is a JAK phosphatase and negatively regulates leukocyte integrin activation. J Immunol. 2015;194:2168-79 pubmed 出版商
  110. Matsuo R, Morihara H, Mohri T, Murasawa S, Takewaki K, Nakayama H, et al. The inhibition of N-glycosylation of glycoprotein 130 molecule abolishes STAT3 activation by IL-6 family cytokines in cultured cardiac myocytes. PLoS ONE. 2014;9:e111097 pubmed 出版商
  111. Jay J, Hammer A, Nestor Kalinoski A, Diakonova M. JAK2 tyrosine kinase phosphorylates and is negatively regulated by centrosomal protein Ninein. Mol Cell Biol. 2015;35:111-31 pubmed 出版商
  112. Huang S, Lee C, Wang H, Chang Y, Lin C, Chen C, et al. 6-Dehydrogingerdione restrains lipopolysaccharide-induced inflammatory responses in RAW 264.7 macrophages. J Agric Food Chem. 2014;62:9171-9 pubmed 出版商
  113. Tao W, Leng X, Chakraborty S, Ma H, Arlinghaus R. c-Abl activates janus kinase 2 in normal hematopoietic cells. J Biol Chem. 2014;289:21463-72 pubmed 出版商
  114. Kopaliani I, Martin M, Zatschler B, Bortlik K, Müller B, Deussen A. Cell-specific and endothelium-dependent regulations of matrix metalloproteinase-2 in rat aorta. Basic Res Cardiol. 2014;109:419 pubmed 出版商
  115. Bao Y, Cao X, Luo D, Sun R, Peng L, Wang L, et al. Urokinase-type plasminogen activator receptor signaling is critical in nasopharyngeal carcinoma cell growth and metastasis. Cell Cycle. 2014;13:1958-69 pubmed 出版商
  116. Sedek M, van der Velden L, Strous G. Multimeric growth hormone receptor complexes serve as signaling platforms. J Biol Chem. 2014;289:65-73 pubmed 出版商
  117. Chan S, Rickert C, Vermi W, Sheehan K, Arthur C, Allen J, et al. Dysregulated STAT1-SOCS1 control of JAK2 promotes mammary luminal progenitor cell survival and drives ER?(+) tumorigenesis. Cell Death Differ. 2014;21:234-46 pubmed 出版商
  118. Nespital T, Strous G. The Jak/STAT signaling pathway is downregulated at febrile temperatures. PLoS ONE. 2012;7:e49374 pubmed 出版商
  119. Tao J, Oladimeji P, Rider L, Diakonova M. PAK1-Nck regulates cyclin D1 promoter activity in response to prolactin. Mol Endocrinol. 2011;25:1565-78 pubmed 出版商
  120. Putters J, da Silva Almeida A, van Kerkhof P, van Rossum A, Gracanin A, Strous G. Jak2 is a negative regulator of ubiquitin-dependent endocytosis of the growth hormone receptor. PLoS ONE. 2011;6:e14676 pubmed 出版商
  121. Sakamoto K, Triplett A, Schuler L, Wagner K. Janus kinase 2 is required for the initiation but not maintenance of prolactin-induced mammary cancer. Oncogene. 2010;29:5359-69 pubmed 出版商
  122. Rider L, Shatrova A, Feener E, Webb L, Diakonova M. JAK2 tyrosine kinase phosphorylates PAK1 and regulates PAK1 activity and functions. J Biol Chem. 2007;282:30985-96 pubmed