这是一篇来自已证抗体库的有关人类 KRT10的综述,是根据156篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合KRT10 抗体。
KRT10 同义词: BCIE; BIE; CK10; EHK; K10; KPP

赛默飞世尔
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 图 4a
赛默飞世尔 KRT10抗体(eBioscience, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4a). Proc Natl Acad Sci U S A (2020) ncbi
小鼠 单克隆(DE-K10)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4e
赛默飞世尔 KRT10抗体(Invitrogen, MA5-13705)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4e). Biomolecules (2020) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 猕猴; 0.2 ug/ml; 图 4g
赛默飞世尔 KRT10抗体(Thermo Fisher, 41-9003-82)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为0.2 ug/ml (图 4g). Science (2020) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1a
赛默飞世尔 KRT10抗体(eBioscience, 53-9003-80)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1a). Nat Cell Biol (2020) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类; 图 4, 5
赛默飞世尔 KRT10抗体(eBioscience, AE1/AE3)被用于被用于免疫细胞化学在人类样本上 (图 4, 5). Breast Cancer Res (2019) ncbi
小鼠 单克隆(RKSE60)
  • 免疫组化; 犬; 图 5a
赛默飞世尔 KRT10抗体(Thermo Fisher, RKSE60)被用于被用于免疫组化在犬样本上 (图 5a). J Histochem Cytochem (2019) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫细胞化学; 人类; 图 s1b
赛默飞世尔 KRT10抗体(Thermo Fischer, MA5-13203)被用于被用于免疫细胞化学在人类样本上 (图 s1b). Sci Rep (2017) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:150; 表 2
赛默飞世尔 KRT10抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (表 2). Hum Pathol (2017) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 图 3d
赛默飞世尔 KRT10抗体(Thermo Scientific, AE1-AE3)被用于被用于免疫组化在人类样本上 (图 3d). Case Rep Pathol (2016) ncbi
小鼠 单克隆(34betaE12)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
赛默飞世尔 KRT10抗体(Thermo Scientific, 34betaE12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). Hum Pathol (2017) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫细胞化学; 小鼠; 图 3c
  • 免疫印迹; 小鼠; 图 3d
赛默飞世尔 KRT10抗体(Thermo Scientific, MA5-13203)被用于被用于免疫细胞化学在小鼠样本上 (图 3c) 和 被用于免疫印迹在小鼠样本上 (图 3d). Oncogene (2017) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 图 5b
赛默飞世尔 KRT10抗体(Thermo Scientific, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5b). Breast Cancer Res Treat (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类; 1:50; 图 1
赛默飞世尔 KRT10抗体(ThermoFisher Scientific, MA5-13156)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1). Future Oncol (2016) ncbi
小鼠 单克隆(RKSE60)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
赛默飞世尔 KRT10抗体(Thermo, MAI-06319)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Cell Sci (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 图 s3
赛默飞世尔 KRT10抗体(分子探针, 985542A)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s3). Microbiome (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 图 s3
赛默飞世尔 KRT10抗体(Neomarkers, MS-343-P)被用于被用于免疫组化在人类样本上 (图 s3). Mol Cancer (2015) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛默飞世尔 KRT10抗体(Thermo Scientific, MA5-13203)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
赛默飞世尔 KRT10抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3). Pathol Res Pract (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 小鼠; 1:100; 表 2
赛默飞世尔 KRT10抗体(eBioscience, 41-9003)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (表 2). J Cell Physiol (2016) ncbi
小鼠 单克隆(DE-K10)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 5
赛默飞世尔 KRT10抗体(Thermo Fisher Scientific, MS-611-P1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 表 2
赛默飞世尔 KRT10抗体(Thermo Scientific, AE1/AE3)被用于被用于免疫组化在人类样本上 (表 2). Diagn Cytopathol (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 鲤
赛默飞世尔 KRT10抗体(生活技术, MA5-13156)被用于被用于免疫细胞化学在鲤样本上. In Vitro Cell Dev Biol Anim (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类; 1 ul
赛默飞世尔 KRT10抗体(eBioscience, 53-9003-82)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上浓度为1 ul. Nanomedicine (2015) ncbi
小鼠 单克隆(DE-K10)
  • 免疫组化-石蜡切片; 国内马; 1:100; 图 1
  • 免疫印迹; 国内马; 1:1000; 图 2
赛默飞世尔 KRT10抗体(Thermo Scientific, DE-K10)被用于被用于免疫组化-石蜡切片在国内马样本上浓度为1:100 (图 1) 和 被用于免疫印迹在国内马样本上浓度为1:1000 (图 2). Vet Dermatol (2015) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 KRT10抗体(Thermo Scientific, 4545)被用于被用于免疫印迹在人类样本上浓度为1:1000. BMC Cancer (2015) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫印迹; 人类
赛默飞世尔 KRT10抗体(Thermo Fisher Scientific, MA5-13203)被用于被用于免疫印迹在人类样本上. Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(AE1/AE3)
赛默飞世尔 KRT10抗体(Invitrogen, AE1/AE3)被用于. In Vitro Cell Dev Biol Anim (2015) ncbi
小鼠 单克隆(DE-K10)
  • 免疫组化; 人类; 1:100
赛默飞世尔 KRT10抗体(NeoMarkers, MS611P1)被用于被用于免疫组化在人类样本上浓度为1:100. J Biomed Mater Res A (2015) ncbi
小鼠 单克隆(DE-K10)
  • 免疫组化-石蜡切片; 人类; 图 2b
赛默飞世尔 KRT10抗体(Thermo Fisher, DE-K10)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2b). Mutat Res (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 国内马; 1:100
赛默飞世尔 KRT10抗体(Fisher Scientific, MA1-82041)被用于被用于免疫细胞化学在国内马样本上浓度为1:100. Equine Vet J (2016) ncbi
小鼠 单克隆(DE-K10)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 KRT10抗体(Labvision, DE-K10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Cell Tissue Res (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 10-20 ug/ml
赛默飞世尔 KRT10抗体(Lab.Vision, Ab-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为10-20 ug/ml. Asian Pac J Cancer Prev (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s6
赛默飞世尔 KRT10抗体(Thermo, MS-34)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s6). Nat Commun (2015) ncbi
小鼠 单克隆(AE1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s6
赛默飞世尔 KRT10抗体(Thermo, MS-34)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s6). Nat Commun (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 流式细胞仪; 斑马鱼; 1:100; 图 5
赛默飞世尔 KRT10抗体(Thermo Fisher Scientific, MA1-82041)被用于被用于流式细胞仪在斑马鱼样本上浓度为1:100 (图 5). Nat Commun (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5
赛默飞世尔 KRT10抗体(ThermoFisher Scientific, AE1/AE3)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5). Development (2015) ncbi
小鼠 单克隆(AE1)
  • 免疫组化; 人类; ready-to-use
赛默飞世尔 KRT10抗体(Thermo Scientific, AE1)被用于被用于免疫组化在人类样本上浓度为ready-to-use. Medicine (Baltimore) (2014) ncbi
小鼠 单克隆(AE-1)
  • 免疫组化; 人类; ready-to-use
赛默飞世尔 KRT10抗体(Thermo Scientific, AE1)被用于被用于免疫组化在人类样本上浓度为ready-to-use. Medicine (Baltimore) (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 KRT10抗体(Neo Markers, MS343)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Comp Med (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3
赛默飞世尔 KRT10抗体(eBioscience, 53-9003-80)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3). Nat Cell Biol (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 KRT10抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Hum Pathol (2014) ncbi
小鼠 单克隆(34betaE12)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 KRT10抗体(Thermo Fisher Scientific, 34betaE12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Rom J Morphol Embryol (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 KRT10抗体(Thermo Fisher Scientific, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Rom J Morphol Embryol (2014) ncbi
小鼠 单克隆(DE-K10)
  • 免疫印迹; 人类; 1:200
赛默飞世尔 KRT10抗体(Thermo Fisher Scientific, MS-611)被用于被用于免疫印迹在人类样本上浓度为1:200. J Invest Dermatol (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类
赛默飞世尔 KRT10抗体(Invitrogen, AE1/AE3)被用于被用于免疫细胞化学在人类样本上. Histopathology (2015) ncbi
小鼠 单克隆(DE-K10)
  • 免疫组化; 人类; 图 1
赛默飞世尔 KRT10抗体(Thermo Fisher Scientific, MS611P0)被用于被用于免疫组化在人类样本上 (图 1). Nature (2014) ncbi
小鼠 单克隆(DE-K10)
  • 免疫组化-石蜡切片; 人类; 1:600; 表 3
赛默飞世尔 KRT10抗体(Lab Vision/Neo Markers, MS-611)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:600 (表 3). Eur J Histochem (2014) ncbi
小鼠 单克隆(DE-K10)
  • 免疫细胞化学; 人类; 1:200; 图 6
赛默飞世尔 KRT10抗体(Thermo Scientific, DE-K10)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 6). BMC Cell Biol (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类
赛默飞世尔 KRT10抗体(Thermo, AE1/AE3)被用于被用于免疫组化在人类样本上. BMC Med Imaging (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类
赛默飞世尔 KRT10抗体(Thermo Fisher, AE1/AE3)被用于被用于免疫细胞化学在人类样本上. Biomed Mater (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 KRT10抗体(Thermoelectron, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上. BMC Med Imaging (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
赛默飞世尔 KRT10抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). Sci Rep (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类; 1:100; 图 1
赛默飞世尔 KRT10抗体(eBioscience, AE1/AE3)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 表 1
赛默飞世尔 KRT10抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化在人类样本上 (表 1). Head Face Med (2013) ncbi
小鼠 单克隆(DE-K10)
赛默飞世尔 KRT10抗体(Lab Vision, MS-611)被用于. J Invest Dermatol (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 1:200; 图 4
赛默飞世尔 KRT10抗体(Zymed, AE1-AE3)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4). Surg Neurol Int (2013) ncbi
小鼠 单克隆(DE-K10)
  • 免疫细胞化学; 人类; 1:100; 图 6
赛默飞世尔 KRT10抗体(Thermo Scientific, MS-611-P0)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6). PLoS ONE (2013) ncbi
小鼠 单克隆(DE-K10)
  • 免疫细胞化学; 人类
赛默飞世尔 KRT10抗体(Thermo Scientific, DE-K10)被用于被用于免疫细胞化学在人类样本上. J Periodontal Res (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 图 2
赛默飞世尔 KRT10抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化在人类样本上 (图 2). Diagn Pathol (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 大西洋鲑鱼; 1:50; 图 2
赛默飞世尔 KRT10抗体(Invitrogen, AE1/AE3)被用于被用于免疫细胞化学在大西洋鲑鱼样本上浓度为1:50 (图 2). Virol J (2013) ncbi
小鼠 单克隆(DE-K10)
  • 免疫组化; 人类; 1:200
赛默飞世尔 KRT10抗体(Neomarkers, MS-611-P)被用于被用于免疫组化在人类样本上浓度为1:200. Nature (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 KRT10抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Med Sci Monit (2012) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 KRT10抗体(Thermo Scientific, MS-343)被用于被用于免疫组化-石蜡切片在小鼠样本上. Anat Cell Biol (2011) ncbi
小鼠 单克隆(C-11)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔 KRT10抗体(Labvision, MS-149)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫细胞化学在人类样本上浓度为1:100. Br J Cancer (2012) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 KRT10抗体(Neomarkers, MS 343-P)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. PLoS ONE (2011) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 0.4 ug/ul; 图 1
赛默飞世尔 KRT10抗体(NeoMarkers, MS-343)被用于被用于免疫组化在人类样本上浓度为0.4 ug/ul (图 1). Eur J Oral Sci (2010) ncbi
小鼠 单克隆(DE-K10)
  • 免疫组化-石蜡切片; 人类; 1:600; 表 1
赛默飞世尔 KRT10抗体(Lab Vision, MS-611)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:600 (表 1). Am J Obstet Gynecol (2010) ncbi
小鼠 单克隆(AE-1)
  • 免疫组化-石蜡切片; 人类; 1:300; 表 2
赛默飞世尔 KRT10抗体(Zymed, AE1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (表 2). J Comp Pathol (2009) ncbi
小鼠 单克隆(AE1)
  • 免疫组化-石蜡切片; 人类; 1:300; 表 2
赛默飞世尔 KRT10抗体(Zymed, AE1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (表 2). J Comp Pathol (2009) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 小鼠
赛默飞世尔 KRT10抗体(Invitrogen, C-11)被用于被用于免疫印迹在小鼠样本上. Infect Immun (2009) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 小鼠
赛默飞世尔 KRT10抗体(Invitrogen, C-11)被用于被用于免疫印迹在小鼠样本上. Infect Immun (2009) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 KRT10抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Cancer (2008) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 KRT10抗体(Lab Vision, MS-343-P)被用于被用于免疫印迹在人类样本上 (图 5). Int J Cancer (2005) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 小鼠
赛默飞世尔 KRT10抗体(NeoMarkers, C-11)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2004) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 小鼠
赛默飞世尔 KRT10抗体(NeoMarkers, C-11)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2004) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:80; 表 1
赛默飞世尔 KRT10抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:80 (表 1). Pathol Int (2004) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔 KRT10抗体(Zymed, AE1/AE3)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Gynecol Oncol (2003) ncbi
圣克鲁斯生物技术
小鼠 单克隆(RKSE60)
  • 免疫组化; 小鼠; 图 3a
圣克鲁斯生物技术 KRT10抗体(Santa Cruz Biotechnology, sc-23877)被用于被用于免疫组化在小鼠样本上 (图 3a). Cell Death Differ (2020) ncbi
小鼠 单克隆(D-12)
  • 免疫组化-冰冻切片; 人类; 图 1j
圣克鲁斯生物技术 KRT10抗体(Santa Cruz, sc-17843)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1j). Oncogene (2019) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 图 1d
圣克鲁斯生物技术 KRT10抗体(Santa, sc81714)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1d). Br J Cancer (2019) ncbi
小鼠 单克隆(RKSE60)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4e
圣克鲁斯生物技术 KRT10抗体(Santa Cruz Biotechnology Inc, sc-23877)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4e). Cell Death Dis (2018) ncbi
小鼠 单克隆(4A27)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3b
  • 免疫印迹; 小鼠; 1:500; 图 s5c
圣克鲁斯生物技术 KRT10抗体(Santa, SC-70907)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3b) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 s5c). Nat Med (2018) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠; 图 9a
圣克鲁斯生物技术 KRT10抗体(SantaCruz, AE1/AE3)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 9a). Histochem Cell Biol (2017) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术 KRT10抗体(SantaCruz, sc-8018)被用于被用于免疫印迹在人类样本上 (图 3b). Eur J Pharmacol (2017) ncbi
小鼠 单克隆(LH2)
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术 KRT10抗体(Santa Cruz, sc-53252)被用于被用于免疫印迹在人类样本上 (图 4a). Exp Mol Med (2017) ncbi
小鼠 单克隆(DE-K10)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术 KRT10抗体(Santa Cruz, sc52318)被用于被用于免疫印迹在人类样本上 (图 1c). MBio (2017) ncbi
小鼠 单克隆(VIK-10)
  • 免疫组化-石蜡切片; 人类; 图 2e
圣克鲁斯生物技术 KRT10抗体(Santa Cruz, sc-51581)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2e). Int J Mol Med (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 7a
圣克鲁斯生物技术 KRT10抗体(Santa Cruz, sc-81714)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 7a). Int J Mol Sci (2016) ncbi
小鼠 单克隆(RKSE60)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 4C
圣克鲁斯生物技术 KRT10抗体(Santa Cruz, sc-23877)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 4C). Stem Cell Res Ther (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1
圣克鲁斯生物技术 KRT10抗体(Santa Cruz, sc-81714)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1). Mol Endocrinol (2016) ncbi
小鼠 单克隆(C11)
  • 免疫组化-冰冻切片; 人类; 图 2
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 KRT10抗体(Santa Cruz, sc-8018)被用于被用于免疫组化-冰冻切片在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(C11)
  • 免疫细胞化学; 大鼠; 1:10; 图 3
圣克鲁斯生物技术 KRT10抗体(Santa Cruz, sc-8018)被用于被用于免疫细胞化学在大鼠样本上浓度为1:10 (图 3). Front Physiol (2016) ncbi
小鼠 单克隆(C11)
  • 免疫组化-石蜡切片; 小鼠; 图 1d
圣克鲁斯生物技术 KRT10抗体(Santa Cruz, sc-8018)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1d). Int J Biol Sci (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 1:500; 图 2
圣克鲁斯生物技术 KRT10抗体(Santa Cruz Biotechnology, sc-81714)被用于被用于免疫组化在人类样本上浓度为1:500 (图 2). BMC Cancer (2016) ncbi
小鼠 单克隆(C11)
  • 免疫细胞化学; 大鼠; 1:50; 图 6
圣克鲁斯生物技术 KRT10抗体(Santa Cruz Biotechnology, sc-8018)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 6). Cell Med (2015) ncbi
小鼠 单克隆(DE-K13)
  • 免疫细胞化学; 人类; 1:400; 图 3f
圣克鲁斯生物技术 KRT10抗体(Santa Cruz, sc-6258)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 3f). Exp Eye Res (2016) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 人类; 图 s1
圣克鲁斯生物技术 KRT10抗体(Santa, sc-8018)被用于被用于免疫印迹在人类样本上 (图 s1). PLoS ONE (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-冰冻切片; 人类; 1:50
  • 免疫印迹; 人类; 1:100
圣克鲁斯生物技术 KRT10抗体(Santa, AE1/AE3)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 和 被用于免疫印迹在人类样本上浓度为1:100. PLoS ONE (2015) ncbi
小鼠 单克隆(RKSE60)
  • 免疫组化; 人类; 1:100
圣克鲁斯生物技术 KRT10抗体(Santa-Cruz, SC-23877)被用于被用于免疫组化在人类样本上浓度为1:100. Int J Cosmet Sci (2015) ncbi
小鼠 单克隆(LH2)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 KRT10抗体(Santa Cruz, sc-53252)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). J Biol Chem (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术 KRT10抗体(Santa Cruz, sc-81714)被用于被用于免疫细胞化学在人类样本上. Breast Cancer Res (2014) ncbi
小鼠 单克隆(RKSE60)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 4
圣克鲁斯生物技术 KRT10抗体(Santa Cruz, SC-23877)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 4). PLoS ONE (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术 KRT10抗体(Santa-Cruz, sc-81714)被用于被用于免疫细胞化学在人类样本上. Acta Naturae (2014) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 KRT10抗体(Santa, sc-8018)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Ovarian Res (2014) ncbi
西格玛奥德里奇
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1a
西格玛奥德里奇 KRT10抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1a). Cancer Immunol Immunother (2020) ncbi
小鼠 单克隆(C-11)
  • 免疫组化; 人类; 图 7a
西格玛奥德里奇 KRT10抗体(Sigma, C2931)被用于被用于免疫组化在人类样本上 (图 7a). Cell Rep (2018) ncbi
小鼠 单克隆(C-11)
  • 免疫组化-冰冻切片; 小鼠; 图 2a
西格玛奥德里奇 KRT10抗体(Sigma, C-11)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2a). PLoS ONE (2018) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 小鼠; 1:50; 图 3a
西格玛奥德里奇 KRT10抗体(Sigma-Aldrich, C2562)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3a). Science (2018) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s4a
西格玛奥德里奇 KRT10抗体(Sigma-Aldrich, C2562)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s4a). Am J Respir Cell Mol Biol (2017) ncbi
小鼠 单克隆(C-11)
  • 免疫细胞化学; 人类; 1:100; 图 6a
西格玛奥德里奇 KRT10抗体(Sigma, C-11)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6a). Nat Commun (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 小鼠; 图 6
西格玛奥德里奇 KRT10抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Am J Pathol (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2a
西格玛奥德里奇 KRT10抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 图 s5a
西格玛奥德里奇 KRT10抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s5a). Nature (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; pigs ; 1:100; 图 5h
西格玛奥德里奇 KRT10抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:100 (图 5h). Biotechnol J (2017) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 小鼠; 1:200
西格玛奥德里奇 KRT10抗体(Sigma, C2562)被用于被用于免疫组化在小鼠样本上浓度为1:200. Nat Commun (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 人类; 图 2b
西格玛奥德里奇 KRT10抗体(Sigma, c2562)被用于被用于免疫组化在人类样本上 (图 2b). Nat Biotechnol (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫细胞化学; 人类; 1:200; 图 5
西格玛奥德里奇 KRT10抗体(Sigma, C2562)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5). BMC Biol (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 人类; 1:4000; 表 2
西格玛奥德里奇 KRT10抗体(Sigma, C2562)被用于被用于免疫组化在人类样本上浓度为1:4000 (表 2). PLoS ONE (2016) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 人类; 1:1000; 图 1
西格玛奥德里奇 KRT10抗体(Sigma, C-2931)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫细胞化学; 小鼠; 图 2
西格玛奥德里奇 KRT10抗体(Sigma, C2562)被用于被用于免疫细胞化学在小鼠样本上 (图 2). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫细胞化学; 小鼠; 1:100; 图 2
西格玛奥德里奇 KRT10抗体(Sigma, C2562)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2). Fluids Barriers CNS (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 2
西格玛奥德里奇 KRT10抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 2). Clin Cancer Res (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇 KRT10抗体(Sigma, C2562)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 小鼠; 1:800; 图 5
西格玛奥德里奇 KRT10抗体(Sigma, C2562)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 5). Dis Model Mech (2015) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 大鼠
西格玛奥德里奇 KRT10抗体(Sigma-Aldrich, clone C-11)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(C-11)
  • 免疫细胞化学; 家羊; 10 ug/ml
西格玛奥德里奇 KRT10抗体(Sigma, C2931)被用于被用于免疫细胞化学在家羊样本上浓度为10 ug/ml. Cell Reprogram (2015) ncbi
小鼠 单克隆(C-11)
  • 免疫细胞化学; 非洲爪蛙
西格玛奥德里奇 KRT10抗体(Sigma, C2931)被用于被用于免疫细胞化学在非洲爪蛙样本上. Zygote (2015) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 1:2000
西格玛奥德里奇 KRT10抗体(Sigma-Aldrich, #C2562)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000. Am J Pathol (2014) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫印迹; 大鼠
西格玛奥德里奇 KRT10抗体(Sigma, C2562)被用于被用于免疫印迹在大鼠样本上. Carcinogenesis (2014) ncbi
小鼠 单克隆(C-11)
  • 免疫组化-石蜡切片; domestic rabbit; 1:100
西格玛奥德里奇 KRT10抗体(Sigma-Aldrich, C-11)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:100. Biomaterials (2014) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫印迹; 人类; 1:10000
  • 免疫印迹; pigs
西格玛奥德里奇 KRT10抗体(Sigma-Aldrich, C 2562)被用于被用于免疫印迹在人类样本上浓度为1:10000 和 被用于免疫印迹在pigs 样本上. Mol Oncol (2014) ncbi
小鼠 单克隆(C-11)
  • 免疫组化-石蜡切片; Gallot's lizard; 1:400
西格玛奥德里奇 KRT10抗体(Sigma-Aldrich, C2931)被用于被用于免疫组化-石蜡切片在Gallot's lizard样本上浓度为1:400. J Comp Neurol (2012) ncbi
BioLegend
domestic rabbit 多克隆(Poly19054)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s6-2e
BioLegend KRT10抗体(Covance, PRB-159P-100)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s6-2e). elife (2020) ncbi
domestic rabbit 多克隆(Poly19054)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4s1b
BioLegend KRT10抗体(Covance, PRB-159P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4s1b). elife (2019) ncbi
domestic rabbit 多克隆(Poly19054)
  • 免疫组化-冰冻切片; 小鼠; 图 1b
BioLegend KRT10抗体(Covance, PRB-159P)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1b). Cell (2019) ncbi
domestic rabbit 多克隆(Poly19054)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1b
BioLegend KRT10抗体(Covance Babco, PRB-159P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1b). Nat Commun (2019) ncbi
domestic rabbit 多克隆(Poly19054)
  • 免疫组化; 小鼠; 1:500; 图 e2g
BioLegend KRT10抗体(Covance, PRB-159P)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 e2g). Nature (2018) ncbi
domestic rabbit 多克隆(Poly19054)
  • 免疫细胞化学; 小鼠; 图 2b
BioLegend KRT10抗体(bioLegend, 905401)被用于被用于免疫细胞化学在小鼠样本上 (图 2b). Biochim Biophys Acta Mol Basis Dis (2018) ncbi
domestic rabbit 多克隆(Poly19054)
  • 免疫印迹; 小鼠; 图 3e
BioLegend KRT10抗体(Covance, PRB-159P)被用于被用于免疫印迹在小鼠样本上 (图 3e). J Invest Dermatol (2017) ncbi
domestic rabbit 多克隆(Poly19054)
  • 免疫印迹; 小鼠; 1:1000; 图 s4
BioLegend KRT10抗体(Covance, PRB-159P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4). Redox Biol (2017) ncbi
domestic rabbit 多克隆(Poly19054)
  • 免疫组化; 小鼠; 图 3b
BioLegend KRT10抗体(Covance, PRB-159P)被用于被用于免疫组化在小鼠样本上 (图 3b). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆(Poly19054)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3B
BioLegend KRT10抗体(Covance, PRB-159P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3B). J Clin Invest (2016) ncbi
domestic rabbit 多克隆(Poly19054)
  • 免疫组化; 小鼠; 图 1
BioLegend KRT10抗体(Covance, PRB-159P)被用于被用于免疫组化在小鼠样本上 (图 1). Nature (2016) ncbi
domestic rabbit 多克隆(Poly19054)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 2
  • 免疫印迹; 人类; 1:1000; 图 2
BioLegend KRT10抗体(Covance, PRB-159P)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Aging (Albany NY) (2016) ncbi
domestic rabbit 多克隆(Poly19054)
  • 免疫组化; 小鼠; 1:1000; 图 s5
BioLegend KRT10抗体(Biolegend, 905401)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s5). Nat Commun (2016) ncbi
domestic rabbit 多克隆(Poly19054)
  • 免疫组化-冰冻切片; 小鼠; 图 4
BioLegend KRT10抗体(Covance, PRB-159P)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 多克隆(Poly19054)
  • 免疫组化; 小鼠; 1:1000; 图 4c
BioLegend KRT10抗体(Covance, PRB-159P)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4c). Nat Cell Biol (2016) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EP1607IHCY)
  • 免疫组化-石蜡切片; 小鼠; 1:3000; 图 3c
  • 免疫印迹; 小鼠; 1:3000; 图 4a
  • 免疫印迹; 人类; 1:3000; 图 4b
艾博抗(上海)贸易有限公司 KRT10抗体(Abcam, ab76318)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:3000 (图 3c), 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 4a) 和 被用于免疫印迹在人类样本上浓度为1:3000 (图 4b). Biomol Ther (Seoul) (2019) ncbi
domestic rabbit 单克隆(EP1607IHCY)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5b
艾博抗(上海)贸易有限公司 KRT10抗体(Abcam, ab76318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5b). Stem Cell Res Ther (2019) ncbi
domestic rabbit 单克隆(EP1607IHCY)
  • 免疫印迹; 人类; 1:2000; 图 6j
  • 免疫组化-冰冻切片; 小鼠; 图 3l
艾博抗(上海)贸易有限公司 KRT10抗体(Abcam, ab76318)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6j) 和 被用于免疫组化-冰冻切片在小鼠样本上 (图 3l). Sci Rep (2018) ncbi
domestic rabbit 单克隆(EP1607IHCY)
  • 流式细胞仪; 大鼠; 图 1
艾博抗(上海)贸易有限公司 KRT10抗体(Abcam, ab76318)被用于被用于流式细胞仪在大鼠样本上 (图 1). Am J Transl Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
  • 免疫印迹; 人类; 1:1000; 图 5
艾博抗(上海)贸易有限公司 KRT10抗体(Abcam, ab111447)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(EP1607IHCY)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1
艾博抗(上海)贸易有限公司 KRT10抗体(Abcam, ab76318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1). J Cell Biol (2016) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(DE-K10)
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 KRT10抗体(Dako, M7002)被用于被用于免疫组化在人类样本上浓度为1:100. Dev Cell (2020) ncbi
小鼠 单克隆(DE-K10)
  • 免疫细胞化学; 犬; 1:100; 表 5
丹科医疗器械技术服务(上海)有限公司 KRT10抗体(Dako, DE-K10)被用于被用于免疫细胞化学在犬样本上浓度为1:100 (表 5). Int J Mol Sci (2016) ncbi
小鼠 单克隆(DE-K10)
  • 免疫组化; 人类; 图 2b
丹科医疗器械技术服务(上海)有限公司 KRT10抗体(Dako, M7002)被用于被用于免疫组化在人类样本上 (图 2b). Biotechnol J (2016) ncbi
小鼠 单克隆(DE-K10)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 1
丹科医疗器械技术服务(上海)有限公司 KRT10抗体(Dako, M7002)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(DE-K10)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 KRT10抗体(DAKO, DE-k10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Br J Cancer (2013) ncbi
Biogenex
小鼠 单克隆(AE1)
  • 免疫组化-石蜡切片; 斑马鱼; 1:100; 图 2
Biogenex KRT10抗体(BioGenex, AE1)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:100 (图 2). J Histochem Cytochem (2019) ncbi
小鼠 单克隆(AE1)
  • 免疫组化-石蜡切片; 人类
Biogenex KRT10抗体(BioGenex, AE1)被用于被用于免疫组化-石蜡切片在人类样本上. Int J Surg Pathol (2014) ncbi
Progen
小鼠 单克隆(DE-K10)
  • 免疫组化基因敲除验证; 小鼠; 1:10; 图 1
  • 免疫印迹基因敲除验证; 小鼠; 1:10; 图 1
Progen KRT10抗体(Progen, DE-K10)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:10 (图 1) 和 被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:10 (图 1). J Cell Sci (2012) ncbi
文章列表
  1. Biasci D, Smoragiewicz M, Connell C, Wang Z, Gao Y, Thaventhiran J, et al. CXCR4 inhibition in human pancreatic and colorectal cancers induces an integrated immune response. Proc Natl Acad Sci U S A. 2020;117:28960-28970 pubmed 出版商
  2. Ashcroft F, Mahammad N, Midtun Flatekvål H, Jullumstrø Feuerherm A, Johansen B. cPLA2α Enzyme Inhibition Attenuates Inflammation and Keratinocyte Proliferation. Biomolecules. 2020;10: pubmed 出版商
  3. Xi L, Carroll T, Matos I, Luo J, Polak L, Pasolli H, et al. m6A RNA methylation impacts fate choices during skin morphogenesis. elife. 2020;9: pubmed 出版商
  4. Dabelsteen S, Pallesen E, Marinova I, Nielsen M, Adamopoulou M, Rømer T, et al. Essential Functions of Glycans in Human Epithelia Dissected by a CRISPR-Cas9-Engineered Human Organotypic Skin Model. Dev Cell. 2020;54:669-684.e7 pubmed 出版商
  5. Chandrashekar A, Liu J, Martinot A, McMahan K, Mercado N, Peter L, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020;: pubmed 出版商
  6. Costanzo Garvey D, Keeley T, Case A, Watson G, Alsamraae M, Yu Y, et al. Neutrophils are mediators of metastatic prostate cancer progression in bone. Cancer Immunol Immunother. 2020;69:1113-1130 pubmed 出版商
  7. Sanz Gómez N, de Pedro I, Ortigosa B, Santamaria D, Malumbres M, de Carcer G, et al. Squamous differentiation requires G2/mitosis slippage to avoid apoptosis. Cell Death Differ. 2020;27:2451-2467 pubmed 出版商
  8. Gaglia G, Rashid R, Yapp C, Joshi G, Li C, Lindquist S, et al. HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat Cell Biol. 2020;22:151-158 pubmed 出版商
  9. Zhou Q, Wu X, Wang X, Yu Z, Pan T, Li Z, et al. The reciprocal interaction between tumor cells and activated fibroblasts mediated by TNF-α/IL-33/ST2L signaling promotes gastric cancer metastasis. Oncogene. 2019;: pubmed 出版商
  10. Jeong H, Lim K, Goldenring J, Nam K. Rab25 Deficiency Perturbs Epidermal Differentiation and Skin Barrier Function in Mice. Biomol Ther (Seoul). 2019;27:553-561 pubmed 出版商
  11. Laurin M, Gomez N, Levorse J, Sendoel A, Sribour M, Fuchs E. An RNAi screen unravels the complexities of Rho GTPase networks in skin morphogenesis. elife. 2019;8: pubmed 出版商
  12. Ramani V, Lemaire C, Triboulet M, Casey K, Heirich K, Renier C, et al. Investigating circulating tumor cells and distant metastases in patient-derived orthotopic xenograft models of triple-negative breast cancer. Breast Cancer Res. 2019;21:98 pubmed 出版商
  13. Capulli M, Hristova D, Valbret Z, Carys K, Arjan R, Maurizi A, et al. Notch2 pathway mediates breast cancer cellular dormancy and mobilisation in bone and contributes to haematopoietic stem cell mimicry. Br J Cancer. 2019;121:157-171 pubmed 出版商
  14. Zhou H, Wang L, Zhang C, Hu J, Chen J, Du W, et al. Feasibility of repairing full-thickness skin defects by iPSC-derived epithelial stem cells seeded on a human acellular amniotic membrane. Stem Cell Res Ther. 2019;10:155 pubmed 出版商
  15. Miao Y, Yang H, Levorse J, Yuan S, Polak L, Sribour M, et al. Adaptive Immune Resistance Emerges from Tumor-Initiating Stem Cells. Cell. 2019;177:1172-1186.e14 pubmed 出版商
  16. Krimpenfort P, Snoek M, Lambooij J, Song J, van der Weide R, Bhaskaran R, et al. A natural WNT signaling variant potently synergizes with Cdkn2ab loss in skin carcinogenesis. Nat Commun. 2019;10:1425 pubmed 出版商
  17. Schulz A, Brendler J, Blaschuk O, Landgraf K, Krueger M, Ricken A. Non-pathological Chondrogenic Features of Valve Interstitial Cells in Normal Adult Zebrafish. J Histochem Cytochem. 2019;67:361-373 pubmed 出版商
  18. Barros Silva J, Linn D, Steiner I, Guo G, Ali A, Pakula H, et al. Single-Cell Analysis Identifies LY6D as a Marker Linking Castration-Resistant Prostate Luminal Cells to Prostate Progenitors and Cancer. Cell Rep. 2018;25:3504-3518.e6 pubmed 出版商
  19. Goldie S, Cottle D, Tan F, Roslan S, Srivastava S, Brady R, et al. Loss of GRHL3 leads to TARC/CCL17-mediated keratinocyte proliferation in the epidermis. Cell Death Dis. 2018;9:1072 pubmed 出版商
  20. Pin D, Pendaries V, Keita Alassane S, Froment C, Amalric N, Cadiergues M, et al. Refined Immunochemical Characterization in Healthy Dog Skin of the Epidermal Cornification Proteins, Filaggrin, and Corneodesmosin. J Histochem Cytochem. 2019;67:85-97 pubmed 出版商
  21. Thyagarajan H, Lancaster J, Lira S, Ehrlich L. CCR8 is expressed by post-positive selection CD4-lineage thymocytes but is dispensable for central tolerance induction. PLoS ONE. 2018;13:e0200765 pubmed 出版商
  22. Zhang Z, Zi Z, Lee E, Zhao J, Contreras D, South A, et al. Differential glucose requirement in skin homeostasis and injury identifies a therapeutic target for psoriasis. Nat Med. 2018;24:617-627 pubmed 出版商
  23. Liakath Ali K, Mills E, Sequeira I, Lichtenberger B, Pisco A, Sipilä K, et al. An evolutionarily conserved ribosome-rescue pathway maintains epidermal homeostasis. Nature. 2018;556:376-380 pubmed 出版商
  24. Pereira E, Kedrin D, Seano G, Gautier O, Meijer E, Jones D, et al. Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science. 2018;359:1403-1407 pubmed 出版商
  25. Komori T, Ono M, Hara E, Ueda J, Nguyen H, Nguyen H, et al. Type IV collagen α6 chain is a regulator of keratin 10 in keratinization of oral mucosal epithelium. Sci Rep. 2018;8:2612 pubmed 出版商
  26. Rogerson C, Gissen P. VPS33B and VIPAR are essential for epidermal lamellar body biogenesis and function. Biochim Biophys Acta Mol Basis Dis. 2018;1864:1609-1621 pubmed 出版商
  27. Aprile F, Källstig E, Limorenko G, Vendruscolo M, Ron D, Hansen C. The molecular chaperones DNAJB6 and Hsp70 cooperate to suppress α-synuclein aggregation. Sci Rep. 2017;7:9039 pubmed 出版商
  28. Katsumata O, Mori M, Sawane Y, Niimura T, Ito A, Okamoto H, et al. Cellular and subcellular localization of ADP-ribosylation factor 6 in mouse peripheral tissues. Histochem Cell Biol. 2017;148:577-596 pubmed 出版商
  29. Young C, Eckert R, Adhikary G, Crumrine D, Elias P, Blumenberg M, et al. Embryonic AP1 Transcription Factor Deficiency Causes a Collodion Baby-Like Phenotype. J Invest Dermatol. 2017;137:1868-1877 pubmed 出版商
  30. Wang X, Xia Q, Ni H, Ye S, Li R, Wang X, et al. SFPQ/PSF-TFE3 renal cell carcinoma: a clinicopathologic study emphasizing extended morphology and reviewing the differences between SFPQ-TFE3 RCC and the corresponding mesenchymal neoplasm despite an identical gene fusion. Hum Pathol. 2017;63:190-200 pubmed 出版商
  31. Hennenberg M, Tamalunas A, Wang Y, Keller P, Schott M, Strittmatter F, et al. Inhibition of agonist-induced smooth muscle contraction by picotamide in the male human lower urinary tract outflow region. Eur J Pharmacol. 2017;803:39-47 pubmed 出版商
  32. Seo G, Lim Y, Koh D, Huh J, Hyun C, Kim Y, et al. TMF and glycitin act synergistically on keratinocytes and fibroblasts to promote wound healing and anti-scarring activity. Exp Mol Med. 2017;49:e302 pubmed 出版商
  33. Spriggs C, Laimins L. FANCD2 Binds Human Papillomavirus Genomes and Associates with a Distinct Set of DNA Repair Proteins to Regulate Viral Replication. MBio. 2017;8: pubmed 出版商
  34. Anderson P, Lynch T, Engelhardt J. Multipotent Myoepithelial Progenitor Cells Are Born Early during Airway Submucosal Gland Development. Am J Respir Cell Mol Biol. 2017;56:716-726 pubmed 出版商
  35. Zhu J, Wang P, Yu Z, Lai W, Cao Y, Huang P, et al. Advanced glycosylation end product promotes forkhead box O1 and inhibits Wnt pathway to suppress capacities of epidermal stem cells. Am J Transl Res. 2016;8:5569-5579 pubmed
  36. Song X, Narzt M, Nagelreiter I, Hohensinner P, Terlecki Zaniewicz L, Tschachler E, et al. Autophagy deficient keratinocytes display increased DNA damage, senescence and aberrant lipid composition after oxidative stress in vitro and in vivo. Redox Biol. 2017;11:219-230 pubmed 出版商
  37. De Luca Johnson J, Zenali M. A Previously Undescribed Presentation of Mixed Adenoneuroendocrine Carcinoma. Case Rep Pathol. 2016;2016:9063634 pubmed
  38. Shatirishvili M, Burk A, Franz C, Pace G, Kastilan T, Breuhahn K, et al. Epidermal-specific deletion of CD44 reveals a function in keratinocytes in response to mechanical stress. Cell Death Dis. 2016;7:e2461 pubmed 出版商
  39. Williamson S, Metcalf R, Trapani F, Mohan S, Antonello J, Abbott B, et al. Vasculogenic mimicry in small cell lung cancer. Nat Commun. 2016;7:13322 pubmed 出版商
  40. Marichal T, Gaudenzio N, El Abbas S, Sibilano R, Zurek O, Starkl P, et al. Guanine nucleotide exchange factor RABGEF1 regulates keratinocyte-intrinsic signaling to maintain skin homeostasis. J Clin Invest. 2016;126:4497-4515 pubmed 出版商
  41. Lin J, Kumari S, Kim C, Van T, Wachsmuth L, Polykratis A, et al. RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation. Nature. 2016;540:124-128 pubmed 出版商
  42. Hsieh M, Wang H, Lee Y, Ko J, Chang Y. Reevaluation of MAML2 fusion-negative mucoepidermoid carcinoma: a subgroup being actually hyalinizing clear cell carcinoma of the salivary gland with EWSR1 translocation. Hum Pathol. 2017;61:9-18 pubmed 出版商
  43. Ren S, Luo Y, Chen H, Warburton D, Lam H, Wang L, et al. Inactivation of Tsc2 in Mesoderm-Derived Cells Causes Polycystic Kidney Lesions and Impairs Lung Alveolarization. Am J Pathol. 2016;186:3261-3272 pubmed 出版商
  44. Takai K, Le A, Weaver V, Werb Z. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget. 2016;7:82889-82901 pubmed 出版商
  45. Hammer S, Becker A, Rateitschak K, Mohr A, Lüder Ripoli F, Hennecke S, et al. Longitudinal Claudin Gene Expression Analyses in Canine Mammary Tissues and Thereof Derived Primary Cultures and Cell Lines. Int J Mol Sci. 2016;17: pubmed
  46. Lange J, Weil F, Riegler C, Groeber F, Rebhan S, Kurdyn S, et al. Interactions of donor sources and media influence the histo-morphological quality of full-thickness skin models. Biotechnol J. 2016;11:1352-1361 pubmed 出版商
  47. Cubillos S, Norgauer J. Low vitamin D-modulated calcium-regulating proteins in psoriasis vulgaris plaques: S100A7 overexpression depends on joint involvement. Int J Mol Med. 2016;38:1083-92 pubmed 出版商
  48. Thienpont B, Steinbacher J, Zhao H, D Anna F, Kuchnio A, Ploumakis A, et al. Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature. 2016;537:63-68 pubmed 出版商
  49. Lv X, Guo Q, Han F, Chen C, Ling C, Chen W, et al. Electrospun Poly(l-lactide)/Poly(ethylene glycol) Scaffolds Seeded with Human Amniotic Mesenchymal Stem Cells for Urethral Epithelium Repair. Int J Mol Sci. 2016;17: pubmed 出版商
  50. Schuerlein S, Schwarz T, Krziminski S, Gätzner S, Hoppensack A, Schwedhelm I, et al. A versatile modular bioreactor platform for Tissue Engineering. Biotechnol J. 2017;12: pubmed 出版商
  51. Reginensi A, Enderle L, Gregorieff A, Johnson R, Wrana J, McNeill H. A critical role for NF2 and the Hippo pathway in branching morphogenesis. Nat Commun. 2016;7:12309 pubmed 出版商
  52. Iacovides D, Rizki G, Lapathitis G, Strati K. Direct conversion of mouse embryonic fibroblasts into functional keratinocytes through transient expression of pluripotency-related genes. Stem Cell Res Ther. 2016;7:98 pubmed 出版商
  53. Chen H, Wei Z, Sun J, Bhattacharya A, Savage D, Serda R, et al. A recellularized human colon model identifies cancer driver genes. Nat Biotechnol. 2016;34:845-51 pubmed 出版商
  54. Smirnov A, Panatta E, Lena A, Castiglia D, Di Daniele N, Melino G, et al. FOXM1 regulates proliferation, senescence and oxidative stress in keratinocytes and cancer cells. Aging (Albany NY). 2016;8:1384-97 pubmed 出版商
  55. Berens E, Sharif G, Schmidt M, Yan G, Shuptrine C, Weiner L, et al. Keratin-associated protein 5-5 controls cytoskeletal function and cancer cell vascular invasion. Oncogene. 2017;36:593-605 pubmed 出版商
  56. Frohwitter G, Buerger H, van Diest P, Korsching E, Kleinheinz J, Fillies T. Cytokeratin and protein expression patterns in squamous cell carcinoma of the oral cavity provide evidence for two distinct pathogenetic pathways. Oncol Lett. 2016;12:107-113 pubmed
  57. Toneff M, Sreekumar A, Tinnirello A, Hollander P, Habib S, Li S, et al. The Z-cad dual fluorescent sensor detects dynamic changes between the epithelial and mesenchymal cellular states. BMC Biol. 2016;14:47 pubmed 出版商
  58. Szalayova G, Ogrodnik A, Spencer B, Wade J, Bunn J, Ambaye A, et al. Human breast cancer biopsies induce eosinophil recruitment and enhance adjacent cancer cell proliferation. Breast Cancer Res Treat. 2016;157:461-74 pubmed 出版商
  59. Rigden H, Alias A, Havelock T, O Donnell R, Djukanovic R, Davies D, et al. Squamous Metaplasia Is Increased in the Bronchial Epithelium of Smokers with Chronic Obstructive Pulmonary Disease. PLoS ONE. 2016;11:e0156009 pubmed 出版商
  60. Fabbri R, Macciocca M, Vicenti R, Paradisi R, Klinger F, Pasquinelli G, et al. Doxorubicin and cisplatin induce apoptosis in ovarian stromal cells obtained from cryopreserved human ovarian tissue. Future Oncol. 2016;12:1699-711 pubmed 出版商
  61. Terakawa J, Rocchi A, Serna V, Bottinger E, Graff J, Kurita T. FGFR2IIIb-MAPK Activity Is Required for Epithelial Cell Fate Decision in the Lower Müllerian Duct. Mol Endocrinol. 2016;30:783-95 pubmed 出版商
  62. Alaee M, Danesh G, Pasdar M. Plakoglobin Reduces the in vitro Growth, Migration and Invasion of Ovarian Cancer Cells Expressing N-Cadherin and Mutant p53. PLoS ONE. 2016;11:e0154323 pubmed 出版商
  63. Kobayashi K, Tsugami Y, Matsunaga K, Oyama S, Kuki C, Kumura H. Prolactin and glucocorticoid signaling induces lactation-specific tight junctions concurrent with ?-casein expression in mammary epithelial cells. Biochim Biophys Acta. 2016;1863:2006-16 pubmed 出版商
  64. Li Z, Hodgkinson T, Gothard E, Boroumand S, Lamb R, Cummins I, et al. Epidermal Notch1 recruits RORγ(+) group 3 innate lymphoid cells to orchestrate normal skin repair. Nat Commun. 2016;7:11394 pubmed 出版商
  65. Wang Y, Gratzke C, Tamalunas A, Wiemer N, Ciotkowska A, Rutz B, et al. P21-Activated Kinase Inhibitors FRAX486 and IPA3: Inhibition of Prostate Stromal Cell Growth and Effects on Smooth Muscle Contraction in the Human Prostate. PLoS ONE. 2016;11:e0153312 pubmed 出版商
  66. El Mourabit H, Loeuillard E, Lemoinne S, Cadoret A, Housset C. Culture Model of Rat Portal Myofibroblasts. Front Physiol. 2016;7:120 pubmed 出版商
  67. Seidel P, Remus M, Delacher M, Grigaravicius P, Reuss D, Frappart L, et al. Epidermal Nbn deletion causes premature hair loss and a phenotype resembling psoriasiform dermatitis. Oncotarget. 2016;7:23006-18 pubmed 出版商
  68. Holloway K, Sinha V, Bu W, Toneff M, Dong J, Peng Y, et al. Targeting Oncogenes into a Defined Subset of Mammary Cells Demonstrates That the Initiating Oncogenic Mutation Defines the Resulting Tumor Phenotype. Int J Biol Sci. 2016;12:381-8 pubmed 出版商
  69. Panousopoulou E, Hobbs C, Mason I, Green J, Formstone C. Epiboly generates the epidermal basal monolayer and spreads the nascent mammalian skin to enclose the embryonic body. J Cell Sci. 2016;129:1915-27 pubmed 出版商
  70. Yang S, Sun Y, Geng Z, Ma K, Sun X, Fu X. Abnormalities in the basement membrane structure promote basal keratinocytes in the epidermis of hypertrophic scars to adopt a proliferative phenotype. Int J Mol Med. 2016;37:1263-73 pubmed 出版商
  71. Naipal K, Verkaik N, Sánchez H, van Deurzen C, Den Bakker M, Hoeijmakers J, et al. Tumor slice culture system to assess drug response of primary breast cancer. BMC Cancer. 2016;16:78 pubmed 出版商
  72. Raredon M, Ghaedi M, Calle E, Niklason L. A Rotating Bioreactor for Scalable Culture and Differentiation of Respiratory Epithelium. Cell Med. 2015;7:109-21 pubmed 出版商
  73. Lazarevic I, Engelhardt B. Modeling immune functions of the mouse blood-cerebrospinal fluid barrier in vitro: primary rather than immortalized mouse choroid plexus epithelial cells are suited to study immune cell migration across this brain barrier. Fluids Barriers CNS. 2016;13:2 pubmed 出版商
  74. Mardaryev A, Liu B, Rapisarda V, Poterlowicz K, Malashchuk I, Rudolf J, et al. Cbx4 maintains the epithelial lineage identity and cell proliferation in the developing stratified epithelium. J Cell Biol. 2016;212:77-89 pubmed 出版商
  75. Mikhailova A, Ilmarinen T, Ratnayake A, Petrovski G, Uusitalo H, Skottman H, et al. Human pluripotent stem cell-derived limbal epithelial stem cells on bioengineered matrices for corneal reconstruction. Exp Eye Res. 2016;146:26-34 pubmed 出版商
  76. Shin H, Pei Z, Martinez K, Rivera Viñas J, Méndez K, Cavallin H, et al. The first microbial environment of infants born by C-section: the operating room microbes. Microbiome. 2015;3:59 pubmed 出版商
  77. Ge Y, Zhang L, Nikolova M, Reva B, Fuchs E. Strand-specific in vivo screen of cancer-associated miRNAs unveils a role for miR-21(∗) in SCC progression. Nat Cell Biol. 2016;18:111-21 pubmed 出版商
  78. van Jaarsveld M, van Kuijk P, Boersma A, Helleman J, Van Ijcken W, Mathijssen R, et al. miR-634 restores drug sensitivity in resistant ovarian cancer cells by targeting the Ras-MAPK pathway. Mol Cancer. 2015;14:196 pubmed 出版商
  79. Gao L, Jiang Y, Mu L, Liu Y, Wang F, Wang P, et al. Efficient Generation of Mice with Consistent Transgene Expression by FEEST. Sci Rep. 2015;5:16284 pubmed 出版商
  80. Jung M, Ryu Y, Kang G. Investigation of the origin of stromal and endothelial cells at the desmoplastic interface in xenograft tumor in mice. Pathol Res Pract. 2015;211:925-30 pubmed 出版商
  81. Li Y, Adomat H, Guns E, Hojabrpour P, Duronio V, Curran T, et al. Identification of a Hematopoietic Cell Dedifferentiation-Inducing Factor. J Cell Physiol. 2016;231:1350-63 pubmed 出版商
  82. Hurley P, Sundi D, Shinder B, Simons B, Hughes R, Miller R, et al. Germline Variants in Asporin Vary by Race, Modulate the Tumor Microenvironment, and Are Differentially Associated with Metastatic Prostate Cancer. Clin Cancer Res. 2016;22:448-58 pubmed 出版商
  83. Stewart M, Bechberger J, Welch I, Naus C, Laird D. Cx26 knockout predisposes the mammary gland to primary mammary tumors in a DMBA-induced mouse model of breast cancer. Oncotarget. 2015;6:37185-99 pubmed 出版商
  84. Sauter J, Ambaye A, Mount S. Increased utilization, verification, and clinical implications of immunocytochemistry: Experience in a northern New England hospital. Diagn Cytopathol. 2015;43:688-95 pubmed 出版商
  85. Yuri S, Nishikawa M, Yanagawa N, Jo O, Yanagawa N. Maintenance of Mouse Nephron Progenitor Cells in Aggregates with Gamma-Secretase Inhibitor. PLoS ONE. 2015;10:e0129242 pubmed 出版商
  86. Berry R, Ozdemir D, Aronow B, Lindström N, Dudnakova T, Thornburn A, et al. Deducing the stage of origin of Wilms' tumours from a developmental series of Wt1-mutant mice. Dis Model Mech. 2015;8:903-17 pubmed 出版商
  87. Swaminathan T, Basheer V, Kumar R, Kathirvelpandian A, Sood N, Jena J. Establishment and characterization of fin-derived cell line from ornamental carp, Cyprinus carpio koi, for virus isolation in India. In Vitro Cell Dev Biol Anim. 2015;51:705-13 pubmed 出版商
  88. Muhanna N, Mepham A, Mohamadi R, Chan H, Khan T, Akens M, et al. Nanoparticle-based sorting of circulating tumor cells by epithelial antigen expression during disease progression in an animal model. Nanomedicine. 2015;11:1613-20 pubmed 出版商
  89. Linardi R, Megee S, Mainardi S, Senoo M, Galantino Homer H. Expression and localization of epithelial stem cell and differentiation markers in equine skin, eye and hoof. Vet Dermatol. 2015;26:213-e47 pubmed 出版商
  90. Kershaw S, Cummings J, Morris K, Tugwood J, Dive C. Optimisation of immunofluorescence methods to determine MCT1 and MCT4 expression in circulating tumour cells. BMC Cancer. 2015;15:387 pubmed 出版商
  91. Katanov C, Lerrer S, Liubomirski Y, Leider Trejo L, Meshel T, Bar J, et al. Regulation of the inflammatory profile of stromal cells in human breast cancer: prominent roles for TNF-? and the NF-?B pathway. Stem Cell Res Ther. 2015;6:87 pubmed 出版商
  92. Sood N, Chaudhary D, Pradhan P, Verma D, Raja Swaminathan T, Kushwaha B, et al. Establishment and characterization of a continuous cell line from thymus of striped snakehead, Channa striatus (Bloch 1793). In Vitro Cell Dev Biol Anim. 2015;51:787-96 pubmed 出版商
  93. Matsusaki M, Fujimoto K, Shirakata Y, Hirakawa S, Hashimoto K, Akashi M. Development of full-thickness human skin equivalents with blood and lymph-like capillary networks by cell coating technology. J Biomed Mater Res A. 2015;103:3386-96 pubmed 出版商
  94. von Neubeck C, Geniza M, Kauer P, Robinson R, Chrisler W, Sowa M. The effect of low dose ionizing radiation on homeostasis and functional integrity in an organotypic human skin model. Mutat Res. 2015;775:10-8 pubmed 出版商
  95. Fausther M, Goree J, Lavoie Ã, Graham A, Sévigny J, Dranoff J. Establishment and characterization of rat portal myofibroblast cell lines. PLoS ONE. 2015;10:e0121161 pubmed 出版商
  96. Kawada M, Inoue H, Ohba S, Yoshida J, Masuda T, Yamasaki M, et al. Stromal cells positively and negatively modulate the growth of cancer cells: stimulation via the PGE2-TNFα-IL-6 pathway and inhibition via secreted GAPDH-E-cadherin interaction. PLoS ONE. 2015;10:e0119415 pubmed 出版商
  97. Aguiar C, Therrien J, Lemire P, Segura M, Smith L, Theoret C. Differentiation of equine induced pluripotent stem cells into a keratinocyte lineage. Equine Vet J. 2016;48:338-45 pubmed 出版商
  98. van Drongelen V, Danso M, Out J, Mulder A, Lavrijsen A, Bouwstra J, et al. Explant cultures of atopic dermatitis biopsies maintain their epidermal characteristics in vitro. Cell Tissue Res. 2015;361:789-97 pubmed 出版商
  99. Xu Y, Fu W, Wang Z, Li G, Zhang X. A tissue-specific scaffold for tissue engineering-based ureteral reconstruction. PLoS ONE. 2015;10:e0120244 pubmed 出版商
  100. Ahmed H, Abdul Gader Suliman R, Abd El Aziz M, Alshammari F. Immunohistochemical expression of cytokeratins and epithelial membrane protein 2 in nasopharyngeal carcinoma and its potential implications. Asian Pac J Cancer Prev. 2015;16:653-6 pubmed
  101. Chajra H, Amstutz B, Schweikert K, Auriol D, Redziniak G, Lefèvre F. Opioid receptor delta as a global modulator of skin differentiation and barrier function repair. Int J Cosmet Sci. 2015;37:386-94 pubmed 出版商
  102. Zheng L, Cardaci S, Jerby L, MacKenzie E, Sciacovelli M, Johnson T, et al. Fumarate induces redox-dependent senescence by modifying glutathione metabolism. Nat Commun. 2015;6:6001 pubmed 出版商
  103. Petrosyan A, Ali M, Cheng P. Keratin 1 plays a critical role in golgi localization of core 2 N-acetylglucosaminyltransferase M via interaction with its cytoplasmic tail. J Biol Chem. 2015;290:6256-69 pubmed 出版商
  104. Progatzky F, Sangha N, Yoshida N, McBrien M, Cheung J, Shia A, et al. Dietary cholesterol directly induces acute inflammasome-dependent intestinal inflammation. Nat Commun. 2014;5:5864 pubmed 出版商
  105. German S, Campbell K, Thornton E, McLachlan G, Sweetman D, Alberio R. Ovine induced pluripotent stem cells are resistant to reprogramming after nuclear transfer. Cell Reprogram. 2015;17:19-27 pubmed 出版商
  106. Suzuki D, Sahu R, Leu N, Senoo M. The carboxy-terminus of p63 links cell cycle control and the proliferative potential of epidermal progenitor cells. Development. 2015;142:282-90 pubmed 出版商
  107. BaÅŸak K, KiroÄŸlu K. Multiple oncocytic cystadenoma with intraluminal crystalloids in parotid gland: case report. Medicine (Baltimore). 2014;93:e246 pubmed 出版商
  108. Beck A, Brooks A, Zeiss C. Invasive ductular carcinoma in 2 rhesus macaques (Macaca mulatta). Comp Med. 2014;64:314-22 pubmed
  109. Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed 出版商
  110. Ghaffari A, Hoskin V, Szeto A, Hum M, Liaghati N, Nakatsu K, et al. A novel role for ezrin in breast cancer angio/lymphangiogenesis. Breast Cancer Res. 2014;16:438 pubmed 出版商
  111. Chierchia L, Tussellino M, Guarino D, Carotenuto R, DeMarco N, Campanella C, et al. Cytoskeletal proteins associate with components of the ribosomal maturation and translation apparatus in Xenopus stage I oocytes. Zygote. 2015;23:669-82 pubmed 出版商
  112. Li L, Fan X, Xia Q, Rao Q, Liu B, Yu B, et al. Concurrent loss of INI1, PBRM1, and BRM expression in epithelioid sarcoma: implications for the cocontributions of multiple SWI/SNF complex members to pathogenesis. Hum Pathol. 2014;45:2247-54 pubmed 出版商
  113. Sajin M, Luchian M, Hodorogea Prisăcaru A, Dumitru A, Pătraşcu O, Costache D, et al. Trichilemmal carcinoma - a rare cutaneous malignancy: report of two cases. Rom J Morphol Embryol. 2014;55:687-91 pubmed
  114. Costache M, Pătraşcu O, Dumitru A, Costache D, Voinea L, Simionescu O, et al. Histopathological findings concerning ocular melanomas. Rom J Morphol Embryol. 2014;55:649-53 pubmed
  115. Neumann C, Bigliardi Qi M, Widmann C, Bigliardi P. The δ-opioid receptor affects epidermal homeostasis via ERK-dependent inhibition of transcription factor POU2F3. J Invest Dermatol. 2015;135:471-480 pubmed 出版商
  116. Guan H, Tan J, Zhang F, Gao L, Bai L, Qi D, et al. Myofibroblasts from salivary gland adenoid cystic carcinomas promote cancer invasion by expressing MMP2 and CXCL12. Histopathology. 2015;66:781-90 pubmed 出版商
  117. Ouyang H, Xue Y, Lin Y, Zhang X, Xi L, Patel S, et al. WNT7A and PAX6 define corneal epithelium homeostasis and pathogenesis. Nature. 2014;511:358-61 pubmed 出版商
  118. Rabeony H, Petit Paris I, Garnier J, Barrault C, Pedretti N, Guilloteau K, et al. Inhibition of keratinocyte differentiation by the synergistic effect of IL-17A, IL-22, IL-1?, TNF? and oncostatin M. PLoS ONE. 2014;9:e101937 pubmed 出版商
  119. Lindström A, Hellberg D. Immunohistochemical LRIG3 expression in cervical intraepithelial neoplasia and invasive squamous cell cervical cancer: association with expression of tumor markers, hormones, high-risk HPV-infection, smoking and patient outcome. Eur J Histochem. 2014;58:2227 pubmed 出版商
  120. Sauder C, Koziel J, Choi M, Fox M, Grimes B, Badve S, et al. Phenotypic plasticity in normal breast derived epithelial cells. BMC Cell Biol. 2014;15:20 pubmed 出版商
  121. Greaves E, Cousins F, Murray A, Esnal Zufiaurre A, Fassbender A, Horne A, et al. A novel mouse model of endometriosis mimics human phenotype and reveals insights into the inflammatory contribution of shed endometrium. Am J Pathol. 2014;184:1930-9 pubmed 出版商
  122. Muchkaeva I, Dashinimaev E, Artyuhov A, Myagkova E, Vorotelyak E, Yegorov Y, et al. Generation of iPS Cells from Human Hair Follice Dermal Papilla Cells. Acta Naturae. 2014;6:45-53 pubmed
  123. Ryszawy D, Sarna M, Rak M, Szpak K, Kedracka Krok S, Michalik M, et al. Functional links between Snail-1 and Cx43 account for the recruitment of Cx43-positive cells into the invasive front of prostate cancer. Carcinogenesis. 2014;35:1920-30 pubmed 出版商
  124. Brueggmann D, Templeman C, Starzinski Powitz A, Rao N, Gayther S, Lawrenson K. Novel three-dimensional in vitro models of ovarian endometriosis. J Ovarian Res. 2014;7:17 pubmed 出版商
  125. Liu Z, Yu N, Holz F, Yang F, Stanzel B. Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography. Biomaterials. 2014;35:2837-50 pubmed 出版商
  126. Stratmann A, Fecher D, Wangorsch G, Göttlich C, Walles T, Walles H, et al. Establishment of a human 3D lung cancer model based on a biological tissue matrix combined with a Boolean in silico model. Mol Oncol. 2014;8:351-65 pubmed 出版商
  127. Motomura K, Sumino H, Noguchi A, Horinouchi T, Nakanishi K. Sentinel nodes identified by computed tomography-lymphography accurately stage the axilla in patients with breast cancer. BMC Med Imaging. 2013;13:42 pubmed 出版商
  128. Trietsch M, Peters A, Gaarenstroom K, van Koningsbrugge S, Ter Haar N, Osse E, et al. Spindle cell morphology is related to poor prognosis in vulvar squamous cell carcinoma. Br J Cancer. 2013;109:2259-65 pubmed 出版商
  129. Bulysheva A, Bowlin G, Petrova S, Yeudall W. Enhanced chemoresistance of squamous carcinoma cells grown in 3D cryogenic electrospun scaffolds. Biomed Mater. 2013;8:055009 pubmed 出版商
  130. Motomura K, Izumi T, Tateishi S, Sumino H, Noguchi A, Horinouchi T, et al. Correlation between the area of high-signal intensity on SPIO-enhanced MR imaging and the pathologic size of sentinel node metastases in breast cancer patients with positive sentinel nodes. BMC Med Imaging. 2013;13:32 pubmed 出版商
  131. Qiu S, Wei X, Huang W, Wu M, Qin Y, Li Y, et al. Diagnostic and therapeutic strategy and the most efficient prognostic factors of breast malignant fibrous histiocytoma. Sci Rep. 2013;3:2529 pubmed 出版商
  132. Hosokawa M, Kenmotsu H, Koh Y, Yoshino T, Yoshikawa T, Naito T, et al. Size-based isolation of circulating tumor cells in lung cancer patients using a microcavity array system. PLoS ONE. 2013;8:e67466 pubmed 出版商
  133. Ohta K, Taki M, Ogawa I, Ono S, Mizuta K, Fujimoto S, et al. Malignant ossifying fibromyxoid tumor of the tongue: case report and review of the literature. Head Face Med. 2013;9:16 pubmed 出版商
  134. Hughes M, Jiang T, Lin S, Leung Y, Kobielak K, Widelitz R, et al. Disrupted ectodermal organ morphogenesis in mice with a conditional histone deacetylase 1, 2 deletion in the epidermis. J Invest Dermatol. 2014;134:24-32 pubmed 出版商
  135. Nassiri F, Scheithauer B, Corwin D, Kaplan H, Mayberg M, Cusimano M, et al. Invasive thymoma metastatic to the cavernous sinus. Surg Neurol Int. 2013;4:74 pubmed 出版商
  136. Lian X, Selekman J, Bao X, Hsiao C, Zhu K, Palecek S. A small molecule inhibitor of SRC family kinases promotes simple epithelial differentiation of human pluripotent stem cells. PLoS ONE. 2013;8:e60016 pubmed 出版商
  137. Moffatt Jauregui C, Robinson B, de Moya A, Brockman R, Roman A, Cash M, et al. Establishment and characterization of a telomerase immortalized human gingival epithelial cell line. J Periodontal Res. 2013;48:713-21 pubmed 出版商
  138. Yang G, Li J, Jin H, Ding H. Is mammary not otherwise specified-type sarcoma with CD10 expression a distinct entity? A rare case report with immunohistochemical and ultrastructural study. Diagn Pathol. 2013;8:14 pubmed 出版商
  139. Weli S, Aamelfot M, Dale O, Koppang E, Falk K. Infectious salmon anaemia virus infection of Atlantic salmon gill epithelial cells. Virol J. 2013;10:5 pubmed 出版商
  140. Kretz M, Siprashvili Z, Chu C, Webster D, Zehnder A, Qu K, et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature. 2013;493:231-5 pubmed 出版商
  141. Lv S, Song Y, Xu J, Shu H, Zhou Z, An N, et al. A novel TP53 somatic mutation involved in the pathogenesis of pediatric choroid plexus carcinoma. Med Sci Monit. 2012;18:CS37-41 pubmed
  142. Wallace L, Roberts Thompson L, Reichelt J. Deletion of K1/K10 does not impair epidermal stratification but affects desmosomal structure and nuclear integrity. J Cell Sci. 2012;125:1750-8 pubmed 出版商
  143. Sohn W, Gwon G, An C, Moon C, Bae Y, Yamamoto H, et al. Morphological evidences in circumvallate papilla and von Ebners' gland development in mice. Anat Cell Biol. 2011;44:274-83 pubmed 出版商
  144. Khoja L, Backen A, Sloane R, Menasce L, Ryder D, Krebs M, et al. A pilot study to explore circulating tumour cells in pancreatic cancer as a novel biomarker. Br J Cancer. 2012;106:508-16 pubmed 出版商
  145. Romero Alemán M, Monzon Mayor M, Santos E, Lang D, Yanes C. Neuronal and glial differentiation during lizard (Gallotia galloti) visual system ontogeny. J Comp Neurol. 2012;520:2163-84 pubmed 出版商
  146. Kap M, Smedts F, Oosterhuis W, Winther R, Christensen N, Reischauer B, et al. Histological assessment of PAXgene tissue fixation and stabilization reagents. PLoS ONE. 2011;6:e27704 pubmed 出版商
  147. Petrilli G, Lorenzi L, Paracchini R, Ubiali A, Schumacher R, Cabassa P, et al. Epstein-Barr virus-associated adrenal smooth muscle tumors and disseminated diffuse large B-cell lymphoma in a child with common variable immunodeficiency: a case report and review of the literature. Int J Surg Pathol. 2014;22:712-21 pubmed 出版商
  148. Brusevold I, Husvik C, Schreurs O, Schenck K, Bryne M, Søland T. Induction of invasion in an organotypic oral cancer model by CoCl2, a hypoxia mimetic. Eur J Oral Sci. 2010;118:168-76 pubmed 出版商
  149. Samir R, Asplund A, Tot T, Pekar G, Hellberg D. Tissue tumor marker expression in smokers, including serum cotinine concentrations, in women with cervical intraepithelial neoplasia or normal squamous cervical epithelium. Am J Obstet Gynecol. 2010;202:579.e1-7 pubmed 出版商
  150. Gil da Costa R, Santos M, Amorim I, Lopes C, Pereira P, Faustino A. An immunohistochemical study of feline endometrial adenocarcinoma. J Comp Pathol. 2009;140:254-9 pubmed 出版商
  151. Rhee K, Wu S, Wu X, Huso D, Karim B, Franco A, et al. Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice. Infect Immun. 2009;77:1708-18 pubmed 出版商
  152. Rodriguez F, Scheithauer B, Giannini C, Bryant S, Jenkins R. Epithelial and pseudoepithelial differentiation in glioblastoma and gliosarcoma: a comparative morphologic and molecular genetic study. Cancer. 2008;113:2779-89 pubmed 出版商
  153. Lu S, Yu G, Zhu Y, Archer M. Cyclooxygenase-2 overexpression in MCF-10F human breast epithelial cells inhibits proliferation, apoptosis and differentiation, and causes partial transformation. Int J Cancer. 2005;116:847-52 pubmed
  154. Gilbert S, Loranger A, Marceau N. Keratins modulate c-Flip/extracellular signal-regulated kinase 1 and 2 antiapoptotic signaling in simple epithelial cells. Mol Cell Biol. 2004;24:7072-81 pubmed
  155. Song S, Park S, Kim S, Suh Y. Oncocytic adrenocortical carcinomas: a pathological and immunohistochemical study of four cases in comparison with conventional adrenocortical carcinomas. Pathol Int. 2004;54:603-10 pubmed
  156. Kokenyesi R, Murray K, Benshushan A, Huntley E, Kao M. Invasion of interstitial matrix by a novel cell line from primary peritoneal carcinosarcoma, and by established ovarian carcinoma cell lines: role of cell-matrix adhesion molecules, proteinases, and E-cadherin expression. Gynecol Oncol. 2003;89:60-72 pubmed