这是一篇来自已证抗体库的有关人类 KRT16的综述,是根据93篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合KRT16 抗体。
KRT16 同义词: CK16; FNEPPK; K16; K1CP; KRT16A; NEPPK; PC1

赛默飞世尔
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2b
赛默飞世尔 KRT16抗体(Lab Vision, MS-343-P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2b). Sci Adv (2021) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 图 4a
赛默飞世尔 KRT16抗体(eBioscience, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4a). Proc Natl Acad Sci U S A (2020) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 猕猴; 0.2 ug/ml; 图 4g
赛默飞世尔 KRT16抗体(Thermo Fisher, 41-9003-82)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为0.2 ug/ml (图 4g). Science (2020) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1a
赛默飞世尔 KRT16抗体(eBioscience, 53-9003-80)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1a). Nat Cell Biol (2020) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类; 图 4, 5
赛默飞世尔 KRT16抗体(eBioscience, AE1/AE3)被用于被用于免疫细胞化学在人类样本上 (图 4, 5). Breast Cancer Res (2019) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫细胞化学; 人类; 图 s1b
赛默飞世尔 KRT16抗体(Thermo Fischer, MA5-13203)被用于被用于免疫细胞化学在人类样本上 (图 s1b). Sci Rep (2017) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:150; 表 2
赛默飞世尔 KRT16抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (表 2). Hum Pathol (2017) ncbi
小鼠 单克隆(LL025)
  • 免疫组化; 小鼠; 图 1g
  • 免疫印迹; 人类; 图 1d
赛默飞世尔 KRT16抗体(Thermo Fisher, MA5-13730)被用于被用于免疫组化在小鼠样本上 (图 1g) 和 被用于免疫印迹在人类样本上 (图 1d). J Exp Med (2017) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 图 3d
赛默飞世尔 KRT16抗体(Thermo Scientific, AE1-AE3)被用于被用于免疫组化在人类样本上 (图 3d). Case Rep Pathol (2016) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫细胞化学; 小鼠; 图 3c
  • 免疫印迹; 小鼠; 图 3d
赛默飞世尔 KRT16抗体(Thermo Scientific, MA5-13203)被用于被用于免疫细胞化学在小鼠样本上 (图 3c) 和 被用于免疫印迹在小鼠样本上 (图 3d). Oncogene (2017) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 图 5b
赛默飞世尔 KRT16抗体(Thermo Scientific, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5b). Breast Cancer Res Treat (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类; 1:50; 图 1
赛默飞世尔 KRT16抗体(ThermoFisher Scientific, MA5-13156)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1). Future Oncol (2016) ncbi
小鼠 单克隆(LL025)
  • 免疫组化; 人类; 图 2a
赛默飞世尔 KRT16抗体(Thermo Scientific, LL025)被用于被用于免疫组化在人类样本上 (图 2a). Exp Dermatol (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 图 s3
赛默飞世尔 KRT16抗体(分子探针, 985542A)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s3). Microbiome (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 图 s3
赛默飞世尔 KRT16抗体(Neomarkers, MS-343-P)被用于被用于免疫组化在人类样本上 (图 s3). Mol Cancer (2015) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛默飞世尔 KRT16抗体(Thermo Scientific, MA5-13203)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
赛默飞世尔 KRT16抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3). Pathol Res Pract (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 小鼠; 1:100; 表 2
赛默飞世尔 KRT16抗体(eBioscience, 41-9003)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (表 2). J Cell Physiol (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 表 2
赛默飞世尔 KRT16抗体(Thermo Scientific, AE1/AE3)被用于被用于免疫组化在人类样本上 (表 2). Diagn Cytopathol (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 鲤
赛默飞世尔 KRT16抗体(生活技术, MA5-13156)被用于被用于免疫细胞化学在鲤样本上. In Vitro Cell Dev Biol Anim (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类; 1 ul
赛默飞世尔 KRT16抗体(eBioscience, 53-9003-82)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上浓度为1 ul. Nanomedicine (2015) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 KRT16抗体(Thermo Scientific, 4545)被用于被用于免疫印迹在人类样本上浓度为1:1000. BMC Cancer (2015) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫印迹; 人类
赛默飞世尔 KRT16抗体(Thermo Fisher Scientific, MA5-13203)被用于被用于免疫印迹在人类样本上. Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(AE1/AE3)
赛默飞世尔 KRT16抗体(Invitrogen, AE1/AE3)被用于. In Vitro Cell Dev Biol Anim (2015) ncbi
小鼠 单克隆(LL025)
  • 免疫组化; 人类; 1:100
赛默飞世尔 KRT16抗体(NeoMarkers, MS620P0)被用于被用于免疫组化在人类样本上浓度为1:100. J Biomed Mater Res A (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 国内马; 1:100
赛默飞世尔 KRT16抗体(Fisher Scientific, MA1-82041)被用于被用于免疫细胞化学在国内马样本上浓度为1:100. Equine Vet J (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 10-20 ug/ml
赛默飞世尔 KRT16抗体(Lab.Vision, Ab-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为10-20 ug/ml. Asian Pac J Cancer Prev (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s6
赛默飞世尔 KRT16抗体(Thermo, MS-34)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s6). Nat Commun (2015) ncbi
小鼠 单克隆(AE1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s6
赛默飞世尔 KRT16抗体(Thermo, MS-34)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s6). Nat Commun (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 流式细胞仪; 斑马鱼; 1:100; 图 5
赛默飞世尔 KRT16抗体(Thermo Fisher Scientific, MA1-82041)被用于被用于流式细胞仪在斑马鱼样本上浓度为1:100 (图 5). Nat Commun (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5
赛默飞世尔 KRT16抗体(ThermoFisher Scientific, AE1/AE3)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5). Development (2015) ncbi
小鼠 单克隆(AE-1)
  • 免疫组化; 人类; ready-to-use
赛默飞世尔 KRT16抗体(Thermo Scientific, AE1)被用于被用于免疫组化在人类样本上浓度为ready-to-use. Medicine (Baltimore) (2014) ncbi
小鼠 单克隆(AE1)
  • 免疫组化; 人类; ready-to-use
赛默飞世尔 KRT16抗体(Thermo Scientific, AE1)被用于被用于免疫组化在人类样本上浓度为ready-to-use. Medicine (Baltimore) (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 KRT16抗体(Neo Markers, MS343)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Comp Med (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3
赛默飞世尔 KRT16抗体(eBioscience, 53-9003-80)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3). Nat Cell Biol (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 KRT16抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Hum Pathol (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 KRT16抗体(Thermo Fisher Scientific, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Rom J Morphol Embryol (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类
赛默飞世尔 KRT16抗体(Invitrogen, AE1/AE3)被用于被用于免疫细胞化学在人类样本上. Histopathology (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类
赛默飞世尔 KRT16抗体(Thermo, AE1/AE3)被用于被用于免疫组化在人类样本上. BMC Med Imaging (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类
赛默飞世尔 KRT16抗体(Thermo Fisher, AE1/AE3)被用于被用于免疫细胞化学在人类样本上. Biomed Mater (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 KRT16抗体(Thermoelectron, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上. BMC Med Imaging (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
赛默飞世尔 KRT16抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). Sci Rep (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类; 1:100; 图 1
赛默飞世尔 KRT16抗体(eBioscience, AE1/AE3)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 表 1
赛默飞世尔 KRT16抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化在人类样本上 (表 1). Head Face Med (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 1:200; 图 4
赛默飞世尔 KRT16抗体(Zymed, AE1-AE3)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4). Surg Neurol Int (2013) ncbi
小鼠 单克隆(LL025)
  • 免疫细胞化学; 人类
赛默飞世尔 KRT16抗体(Thermo Scientific, LL025)被用于被用于免疫细胞化学在人类样本上. J Periodontal Res (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 图 2
赛默飞世尔 KRT16抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化在人类样本上 (图 2). Diagn Pathol (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 大西洋鲑鱼; 1:50; 图 2
赛默飞世尔 KRT16抗体(Invitrogen, AE1/AE3)被用于被用于免疫细胞化学在大西洋鲑鱼样本上浓度为1:50 (图 2). Virol J (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 KRT16抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Med Sci Monit (2012) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 KRT16抗体(Thermo Scientific, MS-343)被用于被用于免疫组化-石蜡切片在小鼠样本上. Anat Cell Biol (2011) ncbi
小鼠 单克隆(C-11)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔 KRT16抗体(Labvision, MS-149)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫细胞化学在人类样本上浓度为1:100. Br J Cancer (2012) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 KRT16抗体(Neomarkers, MS 343-P)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. PLoS ONE (2011) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 0.4 ug/ul; 图 1
赛默飞世尔 KRT16抗体(NeoMarkers, MS-343)被用于被用于免疫组化在人类样本上浓度为0.4 ug/ul (图 1). Eur J Oral Sci (2010) ncbi
小鼠 单克隆(AE1)
  • 免疫组化-石蜡切片; 人类; 1:300; 表 2
赛默飞世尔 KRT16抗体(Zymed, AE1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (表 2). J Comp Pathol (2009) ncbi
小鼠 单克隆(AE-1)
  • 免疫组化-石蜡切片; 人类; 1:300; 表 2
赛默飞世尔 KRT16抗体(Zymed, AE1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (表 2). J Comp Pathol (2009) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 小鼠
赛默飞世尔 KRT16抗体(Invitrogen, C-11)被用于被用于免疫印迹在小鼠样本上. Infect Immun (2009) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 小鼠
赛默飞世尔 KRT16抗体(Invitrogen, C-11)被用于被用于免疫印迹在小鼠样本上. Infect Immun (2009) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 KRT16抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Cancer (2008) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 KRT16抗体(Lab Vision, MS-343-P)被用于被用于免疫印迹在人类样本上 (图 5). Int J Cancer (2005) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 小鼠
赛默飞世尔 KRT16抗体(NeoMarkers, C-11)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2004) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 小鼠
赛默飞世尔 KRT16抗体(NeoMarkers, C-11)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2004) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:80; 表 1
赛默飞世尔 KRT16抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:80 (表 1). Pathol Int (2004) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔 KRT16抗体(Zymed, AE1/AE3)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Gynecol Oncol (2003) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EP1615Y)
  • 免疫印迹; 人类; 1:5000; 图 4b
艾博抗(上海)贸易有限公司 KRT16抗体(Abcam, ab76416)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4b). Sci Adv (2021) ncbi
domestic rabbit 单克隆(EPR13504)
  • 免疫组化; 人类; 1:1000; 图 2c
艾博抗(上海)贸易有限公司 KRT16抗体(Abcam, EPR13504)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 2c). elife (2020) ncbi
圣克鲁斯生物技术
小鼠 单克隆(LL025)
  • 流式细胞仪; 人类; 图 5c
圣克鲁斯生物技术 KRT16抗体(Santa Cruz Biotechnology, LL025)被用于被用于流式细胞仪在人类样本上 (图 5c). Cell Death Differ (2020) ncbi
小鼠 单克隆(LL025)
  • 免疫组化-石蜡切片; 小鼠; 图 7a
圣克鲁斯生物技术 KRT16抗体(Santa Cruz, sc-53255)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7a). Redox Biol (2020) ncbi
小鼠 单克隆(LL025)
  • 免疫组化-石蜡切片; 人类; 图 2e
圣克鲁斯生物技术 KRT16抗体(Santa Cruz, sc-53255)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2e). Int J Mol Med (2016) ncbi
Acris Antibodies
单克隆(LL025)
  • 免疫组化-冰冻切片; 人类; 图 4d
Acris Antibodies KRT16抗体(Acris, SM1471-05)被用于被用于免疫组化-冰冻切片在人类样本上 (图 4d). J Histochem Cytochem (2018) ncbi
西格玛奥德里奇
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2h
西格玛奥德里奇 KRT16抗体(Sigma-Aldrich, C2562)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2h). J Clin Invest (2021) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1a
西格玛奥德里奇 KRT16抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1a). Cancer Immunol Immunother (2020) ncbi
小鼠 单克隆(C-11)
  • 免疫组化; 人类; 图 7a
西格玛奥德里奇 KRT16抗体(Sigma, C2931)被用于被用于免疫组化在人类样本上 (图 7a). Cell Rep (2018) ncbi
小鼠 单克隆(C-11)
  • 免疫组化-冰冻切片; 小鼠; 图 2a
西格玛奥德里奇 KRT16抗体(Sigma, C-11)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2a). PLoS ONE (2018) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 小鼠; 1:50; 图 3a
西格玛奥德里奇 KRT16抗体(Sigma-Aldrich, C2562)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3a). Science (2018) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s4a
西格玛奥德里奇 KRT16抗体(Sigma-Aldrich, C2562)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s4a). Am J Respir Cell Mol Biol (2017) ncbi
小鼠 单克隆(C-11)
  • 免疫细胞化学; 人类; 1:100; 图 6a
西格玛奥德里奇 KRT16抗体(Sigma, C-11)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6a). Nat Commun (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 小鼠; 图 6
西格玛奥德里奇 KRT16抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Am J Pathol (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2a
西格玛奥德里奇 KRT16抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 图 s5a
西格玛奥德里奇 KRT16抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s5a). Nature (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; pigs ; 1:100; 图 5h
西格玛奥德里奇 KRT16抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:100 (图 5h). Biotechnol J (2017) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 小鼠; 1:200
西格玛奥德里奇 KRT16抗体(Sigma, C2562)被用于被用于免疫组化在小鼠样本上浓度为1:200. Nat Commun (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 人类; 图 2b
西格玛奥德里奇 KRT16抗体(Sigma, c2562)被用于被用于免疫组化在人类样本上 (图 2b). Nat Biotechnol (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫细胞化学; 人类; 1:200; 图 5
西格玛奥德里奇 KRT16抗体(Sigma, C2562)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5). BMC Biol (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 人类; 1:4000; 表 2
西格玛奥德里奇 KRT16抗体(Sigma, C2562)被用于被用于免疫组化在人类样本上浓度为1:4000 (表 2). PLoS ONE (2016) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 人类; 1:1000; 图 1
西格玛奥德里奇 KRT16抗体(Sigma, C-2931)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫细胞化学; 小鼠; 图 2
西格玛奥德里奇 KRT16抗体(Sigma, C2562)被用于被用于免疫细胞化学在小鼠样本上 (图 2). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫细胞化学; 小鼠; 1:100; 图 2
西格玛奥德里奇 KRT16抗体(Sigma, C2562)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2). Fluids Barriers CNS (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 2
西格玛奥德里奇 KRT16抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 2). Clin Cancer Res (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇 KRT16抗体(Sigma, C2562)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 小鼠; 1:800; 图 5
西格玛奥德里奇 KRT16抗体(Sigma, C2562)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 5). Dis Model Mech (2015) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 大鼠
西格玛奥德里奇 KRT16抗体(Sigma-Aldrich, clone C-11)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(C-11)
  • 免疫细胞化学; 家羊; 10 ug/ml
西格玛奥德里奇 KRT16抗体(Sigma, C2931)被用于被用于免疫细胞化学在家羊样本上浓度为10 ug/ml. Cell Reprogram (2015) ncbi
小鼠 单克隆(C-11)
  • 免疫细胞化学; 非洲爪蛙
西格玛奥德里奇 KRT16抗体(Sigma, C2931)被用于被用于免疫细胞化学在非洲爪蛙样本上. Zygote (2015) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 1:2000
西格玛奥德里奇 KRT16抗体(Sigma-Aldrich, #C2562)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000. Am J Pathol (2014) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫印迹; 大鼠
西格玛奥德里奇 KRT16抗体(Sigma, C2562)被用于被用于免疫印迹在大鼠样本上. Carcinogenesis (2014) ncbi
小鼠 单克隆(C-11)
  • 免疫组化-石蜡切片; domestic rabbit; 1:100
西格玛奥德里奇 KRT16抗体(Sigma-Aldrich, C-11)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:100. Biomaterials (2014) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫印迹; 人类; 1:10000
  • 免疫印迹; pigs
西格玛奥德里奇 KRT16抗体(Sigma-Aldrich, C 2562)被用于被用于免疫印迹在人类样本上浓度为1:10000 和 被用于免疫印迹在pigs 样本上. Mol Oncol (2014) ncbi
小鼠 单克隆(C-11)
  • 免疫组化-石蜡切片; Gallot's lizard; 1:400
西格玛奥德里奇 KRT16抗体(Sigma-Aldrich, C2931)被用于被用于免疫组化-石蜡切片在Gallot's lizard样本上浓度为1:400. J Comp Neurol (2012) ncbi
文章列表
  1. Barthet V, Brucoli M, Ladds M, Nössing C, Kiourtis C, Baudot A, et al. Autophagy suppresses the formation of hepatocyte-derived cancer-initiating ductular progenitor cells in the liver. Sci Adv. 2021;7: pubmed 出版商
  2. Carter P, Schnell U, Chaney C, TONG B, Pan X, ye J, et al. Deletion of Lats1/2 in adult kidney epithelia leads to renal cell carcinoma. J Clin Invest. 2021;131: pubmed 出版商
  3. Laly A, Sliogeryte K, Pundel O, Ross R, Keeling M, Avisetti D, et al. The keratin network of intermediate filaments regulates keratinocyte rigidity sensing and nuclear mechanotransduction. Sci Adv. 2021;7: pubmed 出版商
  4. Biasci D, Smoragiewicz M, Connell C, Wang Z, Gao Y, Thaventhiran J, et al. CXCR4 inhibition in human pancreatic and colorectal cancers induces an integrated immune response. Proc Natl Acad Sci U S A. 2020;117:28960-28970 pubmed 出版商
  5. Benezeder T, Painsi C, Patra V, Dey S, Holcmann M, Lange Asschenfeldt B, et al. Dithranol targets keratinocytes, their crosstalk with neutrophils and inhibits the IL-36 inflammatory loop in psoriasis. elife. 2020;9: pubmed 出版商
  6. Chandrashekar A, Liu J, Martinot A, McMahan K, Mercado N, Peter L, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020;: pubmed 出版商
  7. Costanzo Garvey D, Keeley T, Case A, Watson G, Alsamraae M, Yu Y, et al. Neutrophils are mediators of metastatic prostate cancer progression in bone. Cancer Immunol Immunother. 2020;69:1113-1130 pubmed 出版商
  8. Sanz Gómez N, de Pedro I, Ortigosa B, Santamaria D, Malumbres M, de Carcer G, et al. Squamous differentiation requires G2/mitosis slippage to avoid apoptosis. Cell Death Differ. 2020;27:2451-2467 pubmed 出版商
  9. Gaglia G, Rashid R, Yapp C, Joshi G, Li C, Lindquist S, et al. HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat Cell Biol. 2020;22:151-158 pubmed 出版商
  10. Casares L, Garcia V, Garrido Rodríguez M, Millán E, Collado J, Garcia Martin A, et al. Cannabidiol induces antioxidant pathways in keratinocytes by targeting BACH1. Redox Biol. 2020;28:101321 pubmed 出版商
  11. Ramani V, Lemaire C, Triboulet M, Casey K, Heirich K, Renier C, et al. Investigating circulating tumor cells and distant metastases in patient-derived orthotopic xenograft models of triple-negative breast cancer. Breast Cancer Res. 2019;21:98 pubmed 出版商
  12. Barros Silva J, Linn D, Steiner I, Guo G, Ali A, Pakula H, et al. Single-Cell Analysis Identifies LY6D as a Marker Linking Castration-Resistant Prostate Luminal Cells to Prostate Progenitors and Cancer. Cell Rep. 2018;25:3504-3518.e6 pubmed 出版商
  13. Thyagarajan H, Lancaster J, Lira S, Ehrlich L. CCR8 is expressed by post-positive selection CD4-lineage thymocytes but is dispensable for central tolerance induction. PLoS ONE. 2018;13:e0200765 pubmed 出版商
  14. Simard Bisson C, Parent L, Moulin V, Fruteau de Laclos B. Characterization of Epidermal Lipoxygenase Expression in Normal Human Skin and Tissue-Engineered Skin Substitutes. J Histochem Cytochem. 2018;66:813-824 pubmed 出版商
  15. Pereira E, Kedrin D, Seano G, Gautier O, Meijer E, Jones D, et al. Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science. 2018;359:1403-1407 pubmed 出版商
  16. Aprile F, Källstig E, Limorenko G, Vendruscolo M, Ron D, Hansen C. The molecular chaperones DNAJB6 and Hsp70 cooperate to suppress α-synuclein aggregation. Sci Rep. 2017;7:9039 pubmed 出版商
  17. Wang X, Xia Q, Ni H, Ye S, Li R, Wang X, et al. SFPQ/PSF-TFE3 renal cell carcinoma: a clinicopathologic study emphasizing extended morphology and reviewing the differences between SFPQ-TFE3 RCC and the corresponding mesenchymal neoplasm despite an identical gene fusion. Hum Pathol. 2017;63:190-200 pubmed 出版商
  18. Takahashi T, Asano Y, Sugawara K, Yamashita T, Nakamura K, Saigusa R, et al. Epithelial Fli1 deficiency drives systemic autoimmunity and fibrosis: Possible roles in scleroderma. J Exp Med. 2017;214:1129-1151 pubmed 出版商
  19. Anderson P, Lynch T, Engelhardt J. Multipotent Myoepithelial Progenitor Cells Are Born Early during Airway Submucosal Gland Development. Am J Respir Cell Mol Biol. 2017;56:716-726 pubmed 出版商
  20. De Luca Johnson J, Zenali M. A Previously Undescribed Presentation of Mixed Adenoneuroendocrine Carcinoma. Case Rep Pathol. 2016;2016:9063634 pubmed
  21. Williamson S, Metcalf R, Trapani F, Mohan S, Antonello J, Abbott B, et al. Vasculogenic mimicry in small cell lung cancer. Nat Commun. 2016;7:13322 pubmed 出版商
  22. Ren S, Luo Y, Chen H, Warburton D, Lam H, Wang L, et al. Inactivation of Tsc2 in Mesoderm-Derived Cells Causes Polycystic Kidney Lesions and Impairs Lung Alveolarization. Am J Pathol. 2016;186:3261-3272 pubmed 出版商
  23. Takai K, Le A, Weaver V, Werb Z. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget. 2016;7:82889-82901 pubmed 出版商
  24. Cubillos S, Norgauer J. Low vitamin D-modulated calcium-regulating proteins in psoriasis vulgaris plaques: S100A7 overexpression depends on joint involvement. Int J Mol Med. 2016;38:1083-92 pubmed 出版商
  25. Thienpont B, Steinbacher J, Zhao H, D Anna F, Kuchnio A, Ploumakis A, et al. Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature. 2016;537:63-68 pubmed 出版商
  26. Schuerlein S, Schwarz T, Krziminski S, Gätzner S, Hoppensack A, Schwedhelm I, et al. A versatile modular bioreactor platform for Tissue Engineering. Biotechnol J. 2017;12: pubmed 出版商
  27. Reginensi A, Enderle L, Gregorieff A, Johnson R, Wrana J, McNeill H. A critical role for NF2 and the Hippo pathway in branching morphogenesis. Nat Commun. 2016;7:12309 pubmed 出版商
  28. Chen H, Wei Z, Sun J, Bhattacharya A, Savage D, Serda R, et al. A recellularized human colon model identifies cancer driver genes. Nat Biotechnol. 2016;34:845-51 pubmed 出版商
  29. Berens E, Sharif G, Schmidt M, Yan G, Shuptrine C, Weiner L, et al. Keratin-associated protein 5-5 controls cytoskeletal function and cancer cell vascular invasion. Oncogene. 2017;36:593-605 pubmed 出版商
  30. Toneff M, Sreekumar A, Tinnirello A, Hollander P, Habib S, Li S, et al. The Z-cad dual fluorescent sensor detects dynamic changes between the epithelial and mesenchymal cellular states. BMC Biol. 2016;14:47 pubmed 出版商
  31. Szalayova G, Ogrodnik A, Spencer B, Wade J, Bunn J, Ambaye A, et al. Human breast cancer biopsies induce eosinophil recruitment and enhance adjacent cancer cell proliferation. Breast Cancer Res Treat. 2016;157:461-74 pubmed 出版商
  32. Rigden H, Alias A, Havelock T, O Donnell R, Djukanovic R, Davies D, et al. Squamous Metaplasia Is Increased in the Bronchial Epithelium of Smokers with Chronic Obstructive Pulmonary Disease. PLoS ONE. 2016;11:e0156009 pubmed 出版商
  33. Fabbri R, Macciocca M, Vicenti R, Paradisi R, Klinger F, Pasquinelli G, et al. Doxorubicin and cisplatin induce apoptosis in ovarian stromal cells obtained from cryopreserved human ovarian tissue. Future Oncol. 2016;12:1699-711 pubmed 出版商
  34. Alaee M, Danesh G, Pasdar M. Plakoglobin Reduces the in vitro Growth, Migration and Invasion of Ovarian Cancer Cells Expressing N-Cadherin and Mutant p53. PLoS ONE. 2016;11:e0154323 pubmed 出版商
  35. Kobayashi K, Tsugami Y, Matsunaga K, Oyama S, Kuki C, Kumura H. Prolactin and glucocorticoid signaling induces lactation-specific tight junctions concurrent with ?-casein expression in mammary epithelial cells. Biochim Biophys Acta. 2016;1863:2006-16 pubmed 出版商
  36. Lazarevic I, Engelhardt B. Modeling immune functions of the mouse blood-cerebrospinal fluid barrier in vitro: primary rather than immortalized mouse choroid plexus epithelial cells are suited to study immune cell migration across this brain barrier. Fluids Barriers CNS. 2016;13:2 pubmed 出版商
  37. Tsianakas A, Brunner P, Ghoreschi K, Berger C, Loser K, Röcken M, et al. The single-chain anti-TNF-α antibody DLX105 induces clinical and biomarker responses upon local administration in patients with chronic plaque-type psoriasis. Exp Dermatol. 2016;25:428-33 pubmed 出版商
  38. Shin H, Pei Z, Martinez K, Rivera Viñas J, Méndez K, Cavallin H, et al. The first microbial environment of infants born by C-section: the operating room microbes. Microbiome. 2015;3:59 pubmed 出版商
  39. van Jaarsveld M, van Kuijk P, Boersma A, Helleman J, Van Ijcken W, Mathijssen R, et al. miR-634 restores drug sensitivity in resistant ovarian cancer cells by targeting the Ras-MAPK pathway. Mol Cancer. 2015;14:196 pubmed 出版商
  40. Gao L, Jiang Y, Mu L, Liu Y, Wang F, Wang P, et al. Efficient Generation of Mice with Consistent Transgene Expression by FEEST. Sci Rep. 2015;5:16284 pubmed 出版商
  41. Jung M, Ryu Y, Kang G. Investigation of the origin of stromal and endothelial cells at the desmoplastic interface in xenograft tumor in mice. Pathol Res Pract. 2015;211:925-30 pubmed 出版商
  42. Li Y, Adomat H, Guns E, Hojabrpour P, Duronio V, Curran T, et al. Identification of a Hematopoietic Cell Dedifferentiation-Inducing Factor. J Cell Physiol. 2016;231:1350-63 pubmed 出版商
  43. Hurley P, Sundi D, Shinder B, Simons B, Hughes R, Miller R, et al. Germline Variants in Asporin Vary by Race, Modulate the Tumor Microenvironment, and Are Differentially Associated with Metastatic Prostate Cancer. Clin Cancer Res. 2016;22:448-58 pubmed 出版商
  44. Sauter J, Ambaye A, Mount S. Increased utilization, verification, and clinical implications of immunocytochemistry: Experience in a northern New England hospital. Diagn Cytopathol. 2015;43:688-95 pubmed 出版商
  45. Yuri S, Nishikawa M, Yanagawa N, Jo O, Yanagawa N. Maintenance of Mouse Nephron Progenitor Cells in Aggregates with Gamma-Secretase Inhibitor. PLoS ONE. 2015;10:e0129242 pubmed 出版商
  46. Berry R, Ozdemir D, Aronow B, Lindström N, Dudnakova T, Thornburn A, et al. Deducing the stage of origin of Wilms' tumours from a developmental series of Wt1-mutant mice. Dis Model Mech. 2015;8:903-17 pubmed 出版商
  47. Swaminathan T, Basheer V, Kumar R, Kathirvelpandian A, Sood N, Jena J. Establishment and characterization of fin-derived cell line from ornamental carp, Cyprinus carpio koi, for virus isolation in India. In Vitro Cell Dev Biol Anim. 2015;51:705-13 pubmed 出版商
  48. Muhanna N, Mepham A, Mohamadi R, Chan H, Khan T, Akens M, et al. Nanoparticle-based sorting of circulating tumor cells by epithelial antigen expression during disease progression in an animal model. Nanomedicine. 2015;11:1613-20 pubmed 出版商
  49. Kershaw S, Cummings J, Morris K, Tugwood J, Dive C. Optimisation of immunofluorescence methods to determine MCT1 and MCT4 expression in circulating tumour cells. BMC Cancer. 2015;15:387 pubmed 出版商
  50. Katanov C, Lerrer S, Liubomirski Y, Leider Trejo L, Meshel T, Bar J, et al. Regulation of the inflammatory profile of stromal cells in human breast cancer: prominent roles for TNF-? and the NF-?B pathway. Stem Cell Res Ther. 2015;6:87 pubmed 出版商
  51. Sood N, Chaudhary D, Pradhan P, Verma D, Raja Swaminathan T, Kushwaha B, et al. Establishment and characterization of a continuous cell line from thymus of striped snakehead, Channa striatus (Bloch 1793). In Vitro Cell Dev Biol Anim. 2015;51:787-96 pubmed 出版商
  52. Matsusaki M, Fujimoto K, Shirakata Y, Hirakawa S, Hashimoto K, Akashi M. Development of full-thickness human skin equivalents with blood and lymph-like capillary networks by cell coating technology. J Biomed Mater Res A. 2015;103:3386-96 pubmed 出版商
  53. Fausther M, Goree J, Lavoie Ã, Graham A, Sévigny J, Dranoff J. Establishment and characterization of rat portal myofibroblast cell lines. PLoS ONE. 2015;10:e0121161 pubmed 出版商
  54. Aguiar C, Therrien J, Lemire P, Segura M, Smith L, Theoret C. Differentiation of equine induced pluripotent stem cells into a keratinocyte lineage. Equine Vet J. 2016;48:338-45 pubmed 出版商
  55. Ahmed H, Abdul Gader Suliman R, Abd El Aziz M, Alshammari F. Immunohistochemical expression of cytokeratins and epithelial membrane protein 2 in nasopharyngeal carcinoma and its potential implications. Asian Pac J Cancer Prev. 2015;16:653-6 pubmed
  56. Zheng L, Cardaci S, Jerby L, MacKenzie E, Sciacovelli M, Johnson T, et al. Fumarate induces redox-dependent senescence by modifying glutathione metabolism. Nat Commun. 2015;6:6001 pubmed 出版商
  57. Progatzky F, Sangha N, Yoshida N, McBrien M, Cheung J, Shia A, et al. Dietary cholesterol directly induces acute inflammasome-dependent intestinal inflammation. Nat Commun. 2014;5:5864 pubmed 出版商
  58. German S, Campbell K, Thornton E, McLachlan G, Sweetman D, Alberio R. Ovine induced pluripotent stem cells are resistant to reprogramming after nuclear transfer. Cell Reprogram. 2015;17:19-27 pubmed 出版商
  59. Suzuki D, Sahu R, Leu N, Senoo M. The carboxy-terminus of p63 links cell cycle control and the proliferative potential of epidermal progenitor cells. Development. 2015;142:282-90 pubmed 出版商
  60. BaÅŸak K, KiroÄŸlu K. Multiple oncocytic cystadenoma with intraluminal crystalloids in parotid gland: case report. Medicine (Baltimore). 2014;93:e246 pubmed 出版商
  61. Beck A, Brooks A, Zeiss C. Invasive ductular carcinoma in 2 rhesus macaques (Macaca mulatta). Comp Med. 2014;64:314-22 pubmed
  62. Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed 出版商
  63. Chierchia L, Tussellino M, Guarino D, Carotenuto R, DeMarco N, Campanella C, et al. Cytoskeletal proteins associate with components of the ribosomal maturation and translation apparatus in Xenopus stage I oocytes. Zygote. 2015;23:669-82 pubmed 出版商
  64. Li L, Fan X, Xia Q, Rao Q, Liu B, Yu B, et al. Concurrent loss of INI1, PBRM1, and BRM expression in epithelioid sarcoma: implications for the cocontributions of multiple SWI/SNF complex members to pathogenesis. Hum Pathol. 2014;45:2247-54 pubmed 出版商
  65. Costache M, Pătraşcu O, Dumitru A, Costache D, Voinea L, Simionescu O, et al. Histopathological findings concerning ocular melanomas. Rom J Morphol Embryol. 2014;55:649-53 pubmed
  66. Guan H, Tan J, Zhang F, Gao L, Bai L, Qi D, et al. Myofibroblasts from salivary gland adenoid cystic carcinomas promote cancer invasion by expressing MMP2 and CXCL12. Histopathology. 2015;66:781-90 pubmed 出版商
  67. Greaves E, Cousins F, Murray A, Esnal Zufiaurre A, Fassbender A, Horne A, et al. A novel mouse model of endometriosis mimics human phenotype and reveals insights into the inflammatory contribution of shed endometrium. Am J Pathol. 2014;184:1930-9 pubmed 出版商
  68. Ryszawy D, Sarna M, Rak M, Szpak K, Kedracka Krok S, Michalik M, et al. Functional links between Snail-1 and Cx43 account for the recruitment of Cx43-positive cells into the invasive front of prostate cancer. Carcinogenesis. 2014;35:1920-30 pubmed 出版商
  69. Liu Z, Yu N, Holz F, Yang F, Stanzel B. Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography. Biomaterials. 2014;35:2837-50 pubmed 出版商
  70. Stratmann A, Fecher D, Wangorsch G, Göttlich C, Walles T, Walles H, et al. Establishment of a human 3D lung cancer model based on a biological tissue matrix combined with a Boolean in silico model. Mol Oncol. 2014;8:351-65 pubmed 出版商
  71. Motomura K, Sumino H, Noguchi A, Horinouchi T, Nakanishi K. Sentinel nodes identified by computed tomography-lymphography accurately stage the axilla in patients with breast cancer. BMC Med Imaging. 2013;13:42 pubmed 出版商
  72. Bulysheva A, Bowlin G, Petrova S, Yeudall W. Enhanced chemoresistance of squamous carcinoma cells grown in 3D cryogenic electrospun scaffolds. Biomed Mater. 2013;8:055009 pubmed 出版商
  73. Motomura K, Izumi T, Tateishi S, Sumino H, Noguchi A, Horinouchi T, et al. Correlation between the area of high-signal intensity on SPIO-enhanced MR imaging and the pathologic size of sentinel node metastases in breast cancer patients with positive sentinel nodes. BMC Med Imaging. 2013;13:32 pubmed 出版商
  74. Qiu S, Wei X, Huang W, Wu M, Qin Y, Li Y, et al. Diagnostic and therapeutic strategy and the most efficient prognostic factors of breast malignant fibrous histiocytoma. Sci Rep. 2013;3:2529 pubmed 出版商
  75. Hosokawa M, Kenmotsu H, Koh Y, Yoshino T, Yoshikawa T, Naito T, et al. Size-based isolation of circulating tumor cells in lung cancer patients using a microcavity array system. PLoS ONE. 2013;8:e67466 pubmed 出版商
  76. Ohta K, Taki M, Ogawa I, Ono S, Mizuta K, Fujimoto S, et al. Malignant ossifying fibromyxoid tumor of the tongue: case report and review of the literature. Head Face Med. 2013;9:16 pubmed 出版商
  77. Nassiri F, Scheithauer B, Corwin D, Kaplan H, Mayberg M, Cusimano M, et al. Invasive thymoma metastatic to the cavernous sinus. Surg Neurol Int. 2013;4:74 pubmed 出版商
  78. Moffatt Jauregui C, Robinson B, de Moya A, Brockman R, Roman A, Cash M, et al. Establishment and characterization of a telomerase immortalized human gingival epithelial cell line. J Periodontal Res. 2013;48:713-21 pubmed 出版商
  79. Yang G, Li J, Jin H, Ding H. Is mammary not otherwise specified-type sarcoma with CD10 expression a distinct entity? A rare case report with immunohistochemical and ultrastructural study. Diagn Pathol. 2013;8:14 pubmed 出版商
  80. Weli S, Aamelfot M, Dale O, Koppang E, Falk K. Infectious salmon anaemia virus infection of Atlantic salmon gill epithelial cells. Virol J. 2013;10:5 pubmed 出版商
  81. Lv S, Song Y, Xu J, Shu H, Zhou Z, An N, et al. A novel TP53 somatic mutation involved in the pathogenesis of pediatric choroid plexus carcinoma. Med Sci Monit. 2012;18:CS37-41 pubmed
  82. Sohn W, Gwon G, An C, Moon C, Bae Y, Yamamoto H, et al. Morphological evidences in circumvallate papilla and von Ebners' gland development in mice. Anat Cell Biol. 2011;44:274-83 pubmed 出版商
  83. Khoja L, Backen A, Sloane R, Menasce L, Ryder D, Krebs M, et al. A pilot study to explore circulating tumour cells in pancreatic cancer as a novel biomarker. Br J Cancer. 2012;106:508-16 pubmed 出版商
  84. Romero Alemán M, Monzon Mayor M, Santos E, Lang D, Yanes C. Neuronal and glial differentiation during lizard (Gallotia galloti) visual system ontogeny. J Comp Neurol. 2012;520:2163-84 pubmed 出版商
  85. Kap M, Smedts F, Oosterhuis W, Winther R, Christensen N, Reischauer B, et al. Histological assessment of PAXgene tissue fixation and stabilization reagents. PLoS ONE. 2011;6:e27704 pubmed 出版商
  86. Brusevold I, Husvik C, Schreurs O, Schenck K, Bryne M, Søland T. Induction of invasion in an organotypic oral cancer model by CoCl2, a hypoxia mimetic. Eur J Oral Sci. 2010;118:168-76 pubmed 出版商
  87. Gil da Costa R, Santos M, Amorim I, Lopes C, Pereira P, Faustino A. An immunohistochemical study of feline endometrial adenocarcinoma. J Comp Pathol. 2009;140:254-9 pubmed 出版商
  88. Rhee K, Wu S, Wu X, Huso D, Karim B, Franco A, et al. Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice. Infect Immun. 2009;77:1708-18 pubmed 出版商
  89. Rodriguez F, Scheithauer B, Giannini C, Bryant S, Jenkins R. Epithelial and pseudoepithelial differentiation in glioblastoma and gliosarcoma: a comparative morphologic and molecular genetic study. Cancer. 2008;113:2779-89 pubmed 出版商
  90. Lu S, Yu G, Zhu Y, Archer M. Cyclooxygenase-2 overexpression in MCF-10F human breast epithelial cells inhibits proliferation, apoptosis and differentiation, and causes partial transformation. Int J Cancer. 2005;116:847-52 pubmed
  91. Gilbert S, Loranger A, Marceau N. Keratins modulate c-Flip/extracellular signal-regulated kinase 1 and 2 antiapoptotic signaling in simple epithelial cells. Mol Cell Biol. 2004;24:7072-81 pubmed
  92. Song S, Park S, Kim S, Suh Y. Oncocytic adrenocortical carcinomas: a pathological and immunohistochemical study of four cases in comparison with conventional adrenocortical carcinomas. Pathol Int. 2004;54:603-10 pubmed
  93. Kokenyesi R, Murray K, Benshushan A, Huntley E, Kao M. Invasion of interstitial matrix by a novel cell line from primary peritoneal carcinosarcoma, and by established ovarian carcinoma cell lines: role of cell-matrix adhesion molecules, proteinases, and E-cadherin expression. Gynecol Oncol. 2003;89:60-72 pubmed