这是一篇来自已证抗体库的有关人类 KRT19的综述,是根据217篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合KRT19 抗体。
KRT19 同义词: CK19; K19; K1CS

艾博抗(上海)贸易有限公司
小鼠 单克隆(A53-B)
  • 免疫组化; 人类; 图 3
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, ab194399)被用于被用于免疫组化在人类样本上 (图 3). Front Med (Lausanne) (2021) ncbi
小鼠 单克隆(A53-B/A2)
  • 免疫细胞化学; pigs ; 图 1a
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, ab7754)被用于被用于免疫细胞化学在pigs 样本上 (图 1a). Sci Rep (2021) ncbi
domestic rabbit 单克隆(EP1580Y)
  • 免疫组化-石蜡切片; 人类; 图 s1
艾博抗(上海)贸易有限公司 KRT19抗体(ABCAM, ab52625)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(EP1580Y)
  • 免疫组化; 小鼠; 1:200; 图 s1
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, ab52625)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s1). Arch Toxicol (2021) ncbi
domestic rabbit 单克隆(EPR1579Y)
  • 免疫细胞化学; 人类; 图 6j
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, ab76539)被用于被用于免疫细胞化学在人类样本上 (图 6j). elife (2021) ncbi
单克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 7c
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, ab9221)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 7c). Cell Stem Cell (2021) ncbi
domestic rabbit 单克隆(EP1580Y)
  • 免疫组化; 小鼠; 1:200; 图 1d
艾博抗(上海)贸易有限公司 KRT19抗体(Epitomics, AC-0073)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1d). Commun Biol (2021) ncbi
小鼠 单克隆(A53-B/A2)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 s12b
  • 免疫细胞化学; 人类; 1:100; 图 1c
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, ab7754)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 s12b) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 1c). Science (2021) ncbi
domestic rabbit 单克隆(EP1580Y)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 s12b
  • 免疫细胞化学; 人类; 1:100; 图 1c
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, ab52625)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 s12b) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 1c). Science (2021) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 人类; 图 1
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, ab203445)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Proc Natl Acad Sci U S A (2020) ncbi
domestic rabbit 单克隆(EP1580Y)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s2c
  • 免疫印迹; 小鼠; 1:5000; 图 s2a
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2c
  • 免疫印迹; 人类; 1:5000; 图 2a
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, ab52625)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s2c), 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s2a), 被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:5000 (图 2a). MBio (2020) ncbi
domestic rabbit 单克隆(EPNCIR127B)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5b
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, ab133496)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5b). elife (2020) ncbi
domestic rabbit 单克隆(EP1580Y)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s2b
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, Ab52625)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s2b). Cancer Cell (2020) ncbi
domestic rabbit 单克隆(EPNCIR127B)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3a
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, ab133496)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3a). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(EP1580Y)
  • 免疫组化; 人类; 1:200; 图 5e
艾博抗(上海)贸易有限公司 KRT19抗体(abcam, ab52625)被用于被用于免疫组化在人类样本上浓度为1:200 (图 5e). Nat Commun (2019) ncbi
domestic rabbit 单克隆(EPNCIR127B)
  • 免疫组化; 小鼠; 1:250; 图 2e
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, ab133496)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 2e). Carcinogenesis (2019) ncbi
domestic rabbit 单克隆(EP1580Y)
  • 免疫细胞化学; 人类; 1:200; 图 2c
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, ab52625)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2c). Stem Cell Res Ther (2019) ncbi
domestic rabbit 单克隆(EP1580Y)
  • 免疫印迹; 人类; 图 s4b
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, ab52625)被用于被用于免疫印迹在人类样本上 (图 s4b). Cell (2019) ncbi
domestic rabbit 单克隆(EPNCIR127B)
  • 免疫组化; 小鼠; 1:800; 图 s4f
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, EPNCIR127B)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 s4f). Nature (2019) ncbi
domestic rabbit 单克隆(EP1580Y)
  • 免疫细胞化学; 小鼠; 1:100; 图 3b
  • 免疫印迹; 小鼠; 1:500; 图 2b
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, ab52625)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3b) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 2b). Int J Mol Sci (2019) ncbi
domestic rabbit 单克隆(EPNCIR127B)
  • 免疫组化-冰冻切片; 小鼠; 图 s3a
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, EPNCIR127B)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s3a). Nat Immunol (2019) ncbi
小鼠 单克隆(A53-B/A2)
  • 免疫组化-冰冻切片; 人类; 图 1c
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, A53-B/A2)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1c). Cancer Res (2018) ncbi
domestic rabbit 单克隆(EP1580Y)
  • 免疫组化-冰冻切片; 小鼠; 图 1d
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, EP1580Y)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1d). Science (2018) ncbi
domestic rabbit 单克隆(EP1580Y)
  • 免疫组化; 小鼠; 1:400; 图 4f
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, 52625)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 4f). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 图 94
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, ab15463)被用于被用于免疫组化在大鼠样本上 (图 94). J Toxicol Pathol (2017) ncbi
domestic rabbit 单克隆(EP1580Y)
  • 免疫组化-石蜡切片; 小鼠; 图 s2a
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, ab52625)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2a). Nature (2017) ncbi
小鼠 单克隆(A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 图 3a
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, A53-B/A2)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3a). Lab Invest (2017) ncbi
小鼠 单克隆(BA16)
  • 免疫组化-冰冻切片; 人类; 1:50; 图 4
  • 免疫细胞化学; 人类; 1:25; 图 2
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, BA16)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (图 4) 和 被用于免疫细胞化学在人类样本上浓度为1:25 (图 2). Oncotarget (2017) ncbi
小鼠 单克隆(A53-B/A2)
  • 免疫细胞化学; 人类; 图 s1e
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, A53-B/A2)被用于被用于免疫细胞化学在人类样本上 (图 s1e). Nature (2017) ncbi
小鼠 单克隆(A53-B/A2)
  • 免疫组化; 人类; 1:50; 图 1b
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, ab7754)被用于被用于免疫组化在人类样本上浓度为1:50 (图 1b). BMC Cancer (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:40; 图 2e
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, ab15463)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:40 (图 2e). Lab Invest (2016) ncbi
domestic rabbit 单克隆(EPNCIR127B)
  • 免疫组化; 小鼠; 1:100; 图 10a
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, ab133496)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 10a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 2
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, ab15463)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
  • 免疫印迹; 人类; 1:500; 图 5
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, ab53119)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 5). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s2
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, 15463)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2). Cell Stem Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:800; 图 4
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, ab15463)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (图 4). Methods (2016) ncbi
单克隆
  • 免疫组化-石蜡切片; 人类; 1:400
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, ab9221)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400. Nat Med (2015) ncbi
domestic rabbit 单克隆(EPNCIR127B)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, Ab133496)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3). J Cell Mol Med (2015) ncbi
domestic rabbit 单克隆(EPNCIR127B)
  • 免疫组化-石蜡切片; 小鼠; 1:5000; 图 4
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, AB133496)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5000 (图 4). elife (2015) ncbi
domestic rabbit 单克隆(EP1580Y)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4C
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, ab52625)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4C). Sci Rep (2015) ncbi
domestic rabbit 单克隆(EPNCIR127B)
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司 KRT19抗体(abcam, ab133496)被用于被用于免疫组化在小鼠样本上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(A53-B/A2)
  • 免疫细胞化学; 人类; 1:25
  • 免疫组化; 人类; 1:25
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, A53-B/A2)被用于被用于免疫细胞化学在人类样本上浓度为1:25 和 被用于免疫组化在人类样本上浓度为1:25. Am J Pathol (2014) ncbi
单克隆
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, Ab9221)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(EPR1579Y)
  • 免疫组化-石蜡切片; 人类; 图 2
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, ab76539)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Cell Death Dis (2013) ncbi
domestic rabbit 单克隆(EPR1579Y)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, ab76539)被用于被用于免疫细胞化学在人类样本上. Stem Cells Dev (2014) ncbi
小鼠 单克隆(A53-B/A2)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 KRT19抗体(Abcam, ab7754)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2013) ncbi
赛默飞世尔
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2b
赛默飞世尔 KRT19抗体(Lab Vision, MS-343-P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2b). Sci Adv (2021) ncbi
小鼠 单克隆(A53-B/A2.26 (Ks19.1))
  • 免疫组化; 人类; 图 6c
赛默飞世尔 KRT19抗体(Thermo Fisher, MA5-12,663)被用于被用于免疫组化在人类样本上 (图 6c). Sci Rep (2021) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 图 4a
赛默飞世尔 KRT19抗体(eBioscience, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4a). Proc Natl Acad Sci U S A (2020) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 猕猴; 0.2 ug/ml; 图 4g
赛默飞世尔 KRT19抗体(Thermo Fisher, 41-9003-82)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为0.2 ug/ml (图 4g). Science (2020) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1a
赛默飞世尔 KRT19抗体(eBioscience, 53-9003-80)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1a). Nat Cell Biol (2020) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类; 图 4, 5
赛默飞世尔 KRT19抗体(eBioscience, AE1/AE3)被用于被用于免疫细胞化学在人类样本上 (图 4, 5). Breast Cancer Res (2019) ncbi
小鼠 单克隆(BA17)
  • 免疫组化-石蜡切片; 小鼠; 图 3e
赛默飞世尔 KRT19抗体(eBioscience, 14-9898-82)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3e). Cancer Res (2018) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫细胞化学; 人类; 图 s1b
赛默飞世尔 KRT19抗体(Thermo Fischer, MA5-13203)被用于被用于免疫细胞化学在人类样本上 (图 s1b). Sci Rep (2017) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:150; 表 2
赛默飞世尔 KRT19抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (表 2). Hum Pathol (2017) ncbi
小鼠 单克隆(A53-B/A2.26 (Ks19.1))
  • reverse phase protein lysate microarray; 人类; 图 7a
赛默飞世尔 KRT19抗体(Lab Vision, MS-201-P1ABX)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 7a). Cancer Cell (2017) ncbi
小鼠 单克隆(A53-B/A2.26 (Ks19.1))
  • 免疫细胞化学; 人类; 1:1000; 图 1c
  • 免疫印迹; 人类; 1:1000; 图 2c
赛默飞世尔 KRT19抗体(Thermo Scientific, MS-198)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Nature (2017) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 图 3d
赛默飞世尔 KRT19抗体(Thermo Scientific, AE1-AE3)被用于被用于免疫组化在人类样本上 (图 3d). Case Rep Pathol (2016) ncbi
小鼠 单克隆(A53-B/A2.26 (Ks19.1))
  • 免疫组化-石蜡切片; 人类; 图 1c
赛默飞世尔 KRT19抗体(Thermo Fisher, A53-B/A2.26)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). J Res Med Sci (2016) ncbi
小鼠 单克隆(RCK108)
  • 免疫细胞化学; 人类; 图 2f
  • 免疫印迹; 人类; 图 2e
赛默飞世尔 KRT19抗体(Thermo Fisher, RCK108)被用于被用于免疫细胞化学在人类样本上 (图 2f) 和 被用于免疫印迹在人类样本上 (图 2e). Sci Rep (2016) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫细胞化学; 小鼠; 图 3c
  • 免疫印迹; 小鼠; 图 3d
赛默飞世尔 KRT19抗体(Thermo Scientific, MA5-13203)被用于被用于免疫细胞化学在小鼠样本上 (图 3c) 和 被用于免疫印迹在小鼠样本上 (图 3d). Oncogene (2017) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 图 5b
赛默飞世尔 KRT19抗体(Thermo Scientific, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5b). Breast Cancer Res Treat (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类; 1:50; 图 1
赛默飞世尔 KRT19抗体(ThermoFisher Scientific, MA5-13156)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1). Future Oncol (2016) ncbi
小鼠 单克隆(A53-B/A2.26 (Ks19.1))
  • 免疫组化; 人类; 1:100
赛默飞世尔 KRT19抗体(Thermo Scientific, A53-B/A2.26)被用于被用于免疫组化在人类样本上浓度为1:100. Diagn Cytopathol (2016) ncbi
小鼠 单克隆(A53-B/A2.26 (Ks19.1))
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 4
  • 免疫印迹; 人类; 图 4
赛默飞世尔 KRT19抗体(Thermo Fisher Scientific, MS198-P)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). Genes Cancer (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 图 s3
赛默飞世尔 KRT19抗体(分子探针, 985542A)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s3). Microbiome (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 图 s3
赛默飞世尔 KRT19抗体(Neomarkers, MS-343-P)被用于被用于免疫组化在人类样本上 (图 s3). Mol Cancer (2015) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛默飞世尔 KRT19抗体(Thermo Scientific, MA5-13203)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
赛默飞世尔 KRT19抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3). Pathol Res Pract (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 小鼠; 1:100; 表 2
赛默飞世尔 KRT19抗体(eBioscience, 41-9003)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (表 2). J Cell Physiol (2016) ncbi
小鼠 单克隆(A53-B/A2.26 (Ks19.1))
  • 免疫组化-石蜡切片; 人类; 图 s1
赛默飞世尔 KRT19抗体(Thermo Scientific Lab Vision, ms-198-P0)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1). PLoS ONE (2015) ncbi
小鼠 单克隆(A53-B/A2.26 (Ks19.1))
  • 免疫组化-石蜡切片; 人类; 图 1c
赛默飞世尔 KRT19抗体(Thermo Fisher Scientific, A53-B)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). Endocrine (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 表 2
赛默飞世尔 KRT19抗体(Thermo Scientific, AE1/AE3)被用于被用于免疫组化在人类样本上 (表 2). Diagn Cytopathol (2015) ncbi
小鼠 单克隆(A53-B/A2.26 (Ks19.1))
  • 免疫组化-石蜡切片; 人类; 图 7
赛默飞世尔 KRT19抗体(Pierce, A53-B/A2.26)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7). Breast Cancer Res (2015) ncbi
小鼠 单克隆(A53-B/A2.26 (Ks19.1))
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 KRT19抗体(Thermo Scientific, A53-B/A.2.26)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Eur J Gastroenterol Hepatol (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 鲤
赛默飞世尔 KRT19抗体(生活技术, MA5-13156)被用于被用于免疫细胞化学在鲤样本上. In Vitro Cell Dev Biol Anim (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类; 1 ul
赛默飞世尔 KRT19抗体(eBioscience, 53-9003-82)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上浓度为1 ul. Nanomedicine (2015) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 KRT19抗体(Thermo Scientific, 4545)被用于被用于免疫印迹在人类样本上浓度为1:1000. BMC Cancer (2015) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫印迹; 人类
赛默飞世尔 KRT19抗体(Thermo Fisher Scientific, MA5-13203)被用于被用于免疫印迹在人类样本上. Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(A53-B/A2.26 (Ks19.1))
  • 免疫细胞化学; 人类; 1:200; 图 1
赛默飞世尔 KRT19抗体(Neomarkers/Thermo, A53-B/A2.26)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(AE1/AE3)
赛默飞世尔 KRT19抗体(Invitrogen, AE1/AE3)被用于. In Vitro Cell Dev Biol Anim (2015) ncbi
小鼠 单克隆(A53-B/A2.26 (Ks19.1))
  • 免疫组化; 人类
赛默飞世尔 KRT19抗体(Lab vision, A53-B/A2.26)被用于被用于免疫组化在人类样本上. J Egypt Natl Canc Inst (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 国内马; 1:100
赛默飞世尔 KRT19抗体(Fisher Scientific, MA1-82041)被用于被用于免疫细胞化学在国内马样本上浓度为1:100. Equine Vet J (2016) ncbi
小鼠 单克隆(A53-B/A2.26 (Ks19.1))
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 KRT19抗体(THERMO, A53-B/A2.26)被用于被用于免疫组化-石蜡切片在人类样本上. Int J Clin Exp Pathol (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 10-20 ug/ml
赛默飞世尔 KRT19抗体(Lab.Vision, Ab-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为10-20 ug/ml. Asian Pac J Cancer Prev (2015) ncbi
小鼠 单克隆(BA17)
  • 免疫组化-石蜡切片; black ferret; 1:1; 图 6
赛默飞世尔 KRT19抗体(Thermo Fisher Scientific, BA17)被用于被用于免疫组化-石蜡切片在black ferret样本上浓度为1:1 (图 6). J Vet Med Sci (2015) ncbi
小鼠 单克隆(AE1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s6
赛默飞世尔 KRT19抗体(Thermo, MS-34)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s6). Nat Commun (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s6
赛默飞世尔 KRT19抗体(Thermo, MS-34)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s6). Nat Commun (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 流式细胞仪; 斑马鱼; 1:100; 图 5
赛默飞世尔 KRT19抗体(Thermo Fisher Scientific, MA1-82041)被用于被用于流式细胞仪在斑马鱼样本上浓度为1:100 (图 5). Nat Commun (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5
赛默飞世尔 KRT19抗体(ThermoFisher Scientific, AE1/AE3)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5). Development (2015) ncbi
小鼠 单克隆(AE-1)
  • 免疫组化; 人类; ready-to-use
赛默飞世尔 KRT19抗体(Thermo Scientific, AE1)被用于被用于免疫组化在人类样本上浓度为ready-to-use. Medicine (Baltimore) (2014) ncbi
小鼠 单克隆(AE1)
  • 免疫组化; 人类; ready-to-use
赛默飞世尔 KRT19抗体(Thermo Scientific, AE1)被用于被用于免疫组化在人类样本上浓度为ready-to-use. Medicine (Baltimore) (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 KRT19抗体(Neo Markers, MS343)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Comp Med (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3
赛默飞世尔 KRT19抗体(eBioscience, 53-9003-80)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3). Nat Cell Biol (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 KRT19抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Hum Pathol (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 KRT19抗体(Thermo Fisher Scientific, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Rom J Morphol Embryol (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类
赛默飞世尔 KRT19抗体(Invitrogen, AE1/AE3)被用于被用于免疫细胞化学在人类样本上. Histopathology (2015) ncbi
小鼠 单克隆(RCK108)
  • 免疫组化; 人类; 图 1
赛默飞世尔 KRT19抗体(Thermo Fisher Scientific, MS1902P0)被用于被用于免疫组化在人类样本上 (图 1). Nature (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类
赛默飞世尔 KRT19抗体(Thermo, AE1/AE3)被用于被用于免疫组化在人类样本上. BMC Med Imaging (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类
赛默飞世尔 KRT19抗体(Thermo Fisher, AE1/AE3)被用于被用于免疫细胞化学在人类样本上. Biomed Mater (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 KRT19抗体(Thermoelectron, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上. BMC Med Imaging (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
赛默飞世尔 KRT19抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). Sci Rep (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类; 1:100; 图 1
赛默飞世尔 KRT19抗体(eBioscience, AE1/AE3)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 表 1
赛默飞世尔 KRT19抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化在人类样本上 (表 1). Head Face Med (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 1:200; 图 4
赛默飞世尔 KRT19抗体(Zymed, AE1-AE3)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4). Surg Neurol Int (2013) ncbi
小鼠 单克隆(A53-B/A2.26 (Ks19.1))
  • 免疫细胞化学; 人类
赛默飞世尔 KRT19抗体(Thermo Scientific, Ks19.1)被用于被用于免疫细胞化学在人类样本上. J Periodontal Res (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 图 2
赛默飞世尔 KRT19抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化在人类样本上 (图 2). Diagn Pathol (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 大西洋鲑鱼; 1:50; 图 2
赛默飞世尔 KRT19抗体(Invitrogen, AE1/AE3)被用于被用于免疫细胞化学在大西洋鲑鱼样本上浓度为1:50 (图 2). Virol J (2013) ncbi
小鼠 单克隆(A53-B/A2.26 (Ks19.1))
  • 免疫印迹; 人类; 图 4
赛默飞世尔 KRT19抗体(Thermo Fisher, A53-B/A2.26)被用于被用于免疫印迹在人类样本上 (图 4). Clin Cancer Res (2012) ncbi
小鼠 单克隆(A53-B/A2.26 (Ks19.1))
  • 免疫组化; 人类; 图 1
赛默飞世尔 KRT19抗体(Lab Vision Corporation, A53-B/A2.26)被用于被用于免疫组化在人类样本上 (图 1). BMC Res Notes (2012) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 KRT19抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Med Sci Monit (2012) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 KRT19抗体(Thermo Scientific, MS-343)被用于被用于免疫组化-石蜡切片在小鼠样本上. Anat Cell Biol (2011) ncbi
小鼠 单克隆(C-11)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔 KRT19抗体(Labvision, MS-149)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫细胞化学在人类样本上浓度为1:100. Br J Cancer (2012) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 KRT19抗体(Neomarkers, MS 343-P)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. PLoS ONE (2011) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 0.4 ug/ul; 图 1
赛默飞世尔 KRT19抗体(NeoMarkers, MS-343)被用于被用于免疫组化在人类样本上浓度为0.4 ug/ul (图 1). Eur J Oral Sci (2010) ncbi
小鼠 单克隆(AE1)
  • 免疫组化-石蜡切片; 人类; 1:300; 表 2
赛默飞世尔 KRT19抗体(Zymed, AE1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (表 2). J Comp Pathol (2009) ncbi
小鼠 单克隆(AE-1)
  • 免疫组化-石蜡切片; 人类; 1:300; 表 2
赛默飞世尔 KRT19抗体(Zymed, AE1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (表 2). J Comp Pathol (2009) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 小鼠
赛默飞世尔 KRT19抗体(Invitrogen, C-11)被用于被用于免疫印迹在小鼠样本上. Infect Immun (2009) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 小鼠
赛默飞世尔 KRT19抗体(Invitrogen, C-11)被用于被用于免疫印迹在小鼠样本上. Infect Immun (2009) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 KRT19抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Cancer (2008) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 KRT19抗体(Lab Vision, MS-343-P)被用于被用于免疫印迹在人类样本上 (图 5). Int J Cancer (2005) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 小鼠
赛默飞世尔 KRT19抗体(NeoMarkers, C-11)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2004) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 小鼠
赛默飞世尔 KRT19抗体(NeoMarkers, C-11)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2004) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:80; 表 1
赛默飞世尔 KRT19抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:80 (表 1). Pathol Int (2004) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔 KRT19抗体(Zymed, AE1/AE3)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Gynecol Oncol (2003) ncbi
圣克鲁斯生物技术
小鼠 单克隆(A-3)
  • 免疫印迹; 小鼠; 1:1000; 图 s2i
圣克鲁斯生物技术 KRT19抗体(Santa Cruz, sc-376126)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2i). Nat Commun (2020) ncbi
小鼠 单克隆(A-3)
  • 免疫组化; 小鼠; 1:300
圣克鲁斯生物技术 KRT19抗体(Santa Cruz, sc-376126)被用于被用于免疫组化在小鼠样本上浓度为1:300. Nature (2019) ncbi
小鼠 单克隆(BA17)
  • 免疫组化-石蜡切片; 犬; 1:200; 图 3c
圣克鲁斯生物技术 KRT19抗体(Santa Cruz Biotechnology, BA17)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:200 (图 3c). J Vet Med Sci (2019) ncbi
小鼠 单克隆(A-3)
  • 免疫组化-冰冻切片; 大鼠; 图 s4a
圣克鲁斯生物技术 KRT19抗体(SantaCruz, sc-376126)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 s4a). Oncotarget (2017) ncbi
小鼠 单克隆(SPM266)
  • 免疫细胞化学; 小鼠; 1:200; 图 2a
圣克鲁斯生物技术 KRT19抗体(Santa Cruz, Sc-56371)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2a). Sci Rep (2017) ncbi
小鼠 单克隆(A53-B/A2)
  • 免疫沉淀; 人类; 图 3d
  • 免疫细胞化学; 人类; 图 2b
  • 免疫印迹; 人类; 图 s6
圣克鲁斯生物技术 KRT19抗体(Santa Cruz, sc-6278)被用于被用于免疫沉淀在人类样本上 (图 3d), 被用于免疫细胞化学在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上 (图 s6). Sci Rep (2016) ncbi
小鼠 单克隆(RCK108)
  • 免疫印迹; 人类; 1:200; 图 2d
圣克鲁斯生物技术 KRT19抗体(Santa Cruz, sc-53003)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2d). Oncotarget (2016) ncbi
小鼠 单克隆(A-3)
  • 免疫组化; 人类; 1:500; 图 1c
圣克鲁斯生物技术 KRT19抗体(SantaCruz, sc-376126)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1c). Cancer Sci (2016) ncbi
小鼠 单克隆(BA17)
  • 免疫印迹; 人类; 图 1b
圣克鲁斯生物技术 KRT19抗体(Santa Cruz, SC-53258)被用于被用于免疫印迹在人类样本上 (图 1b). Oncogene (2017) ncbi
小鼠 单克隆(A53-B/A2)
  • 免疫细胞化学; 人类; 1:100; 图 3
圣克鲁斯生物技术 KRT19抗体(Santa Cruz, sc6278)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(SPM266)
  • 免疫印迹; 大鼠; 图 2
圣克鲁斯生物技术 KRT19抗体(Santa Cruz, SC-56371)被用于被用于免疫印迹在大鼠样本上 (图 2). Int J Mol Sci (2015) ncbi
小鼠 单克隆(A53-B/A2)
  • 免疫组化; 人类; 1:100
圣克鲁斯生物技术 KRT19抗体(Santa Cruz Biotechnology, A53-B/A2)被用于被用于免疫组化在人类样本上浓度为1:100. Virchows Arch (2015) ncbi
Novus Biologicals
domestic rabbit 多克隆(OX-6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2b
Novus Biologicals KRT19抗体(Novus, NB100-687)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2b). Sci Adv (2021) ncbi
domestic rabbit 多克隆(OX-6)
  • 免疫细胞化学; 人类; 1:100; 图 2a
Novus Biologicals KRT19抗体(Novus, NB100-687)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2a). Sci Rep (2020) ncbi
domestic rabbit 多克隆(OX-6)
Novus Biologicals KRT19抗体(Novus Biologicals, NB100-687)被用于. Sci Rep (2015) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(RCK108)
  • 免疫组化; 人类; 1:100; 图 1f
丹科医疗器械技术服务(上海)有限公司 KRT19抗体(DAKO, M0888)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1f). J Clin Med (2019) ncbi
小鼠 单克隆(RCK108)
  • 免疫组化; 人类; 图 10d
丹科医疗器械技术服务(上海)有限公司 KRT19抗体(Dako, M088)被用于被用于免疫组化在人类样本上 (图 10d). Development (2017) ncbi
小鼠 单克隆(RCK108)
  • 免疫组化-石蜡切片; 犬; 图 st7
丹科医疗器械技术服务(上海)有限公司 KRT19抗体(Dako, M0888)被用于被用于免疫组化-石蜡切片在犬样本上 (图 st7). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(RCK108)
  • 免疫细胞化学; 人类; 1:200; 图 7a
丹科医疗器械技术服务(上海)有限公司 KRT19抗体(Dako, M0888)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 7a). Sci Rep (2017) ncbi
小鼠 单克隆(RCK108)
  • 免疫组化-石蜡切片; 小鼠; 1:75; 图 4c
丹科医疗器械技术服务(上海)有限公司 KRT19抗体(Dako, M0888)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:75 (图 4c). Oncotarget (2017) ncbi
小鼠 单克隆(RCK108)
  • 免疫组化; 人类; 1:100; 图 5g
丹科医疗器械技术服务(上海)有限公司 KRT19抗体(Dako, M0888)被用于被用于免疫组化在人类样本上浓度为1:100 (图 5g). Nat Med (2016) ncbi
小鼠 单克隆(RCK108)
  • 免疫组化-石蜡切片; 人类; 图 2
丹科医疗器械技术服务(上海)有限公司 KRT19抗体(Dako, RCK108)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). J Exp Clin Cancer Res (2016) ncbi
小鼠 单克隆(RCK108)
  • 免疫印迹; 人类; 图 2a
丹科医疗器械技术服务(上海)有限公司 KRT19抗体(Dako, RCK108)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(RCK108)
  • 免疫组化-石蜡切片; 人类; 表 2
丹科医疗器械技术服务(上海)有限公司 KRT19抗体(Dako, RCK108)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2). Bull Exp Biol Med (2016) ncbi
小鼠 单克隆(RCK108)
  • 免疫组化-石蜡切片; 人类; 图 10
丹科医疗器械技术服务(上海)有限公司 KRT19抗体(DakoCytomation, M0888)被用于被用于免疫组化-石蜡切片在人类样本上 (图 10). J Orthop Res (2016) ncbi
小鼠 单克隆(RCK108)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 KRT19抗体(Dako, RCK108)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Exp Ther Med (2016) ncbi
小鼠 单克隆(RCK108)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 3b
丹科医疗器械技术服务(上海)有限公司 KRT19抗体(Dako, RCK108)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 3b). Histopathology (2016) ncbi
小鼠 单克隆(RCK108)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 5
丹科医疗器械技术服务(上海)有限公司 KRT19抗体(Dako, M 0888)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 5). Diabetes (2016) ncbi
小鼠 单克隆(RCK108)
  • 免疫组化; 人类; 1:200; 表 1
丹科医疗器械技术服务(上海)有限公司 KRT19抗体(Dako, RCK 108)被用于被用于免疫组化在人类样本上浓度为1:200 (表 1). Oral Surg Oral Med Oral Pathol Oral Radiol (2016) ncbi
小鼠 单克隆(RCK108)
  • 免疫组化-石蜡切片; 人类; 1:40
丹科医疗器械技术服务(上海)有限公司 KRT19抗体(Dako, RCK108)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40. J Pathol (2016) ncbi
小鼠 单克隆(RCK108)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
丹科医疗器械技术服务(上海)有限公司 KRT19抗体(Dako, RCK 108)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1). Diagn Pathol (2015) ncbi
小鼠 单克隆(RCK108)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4a
丹科医疗器械技术服务(上海)有限公司 KRT19抗体(Dako, RCK108)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4a). Biomed Res Int (2015) ncbi
小鼠 单克隆(RCK108)
  • 免疫组化; 人类; 1:100
  • 免疫组化; 小鼠; 1:100
丹科医疗器械技术服务(上海)有限公司 KRT19抗体(Dako, RCK108)被用于被用于免疫组化在人类样本上浓度为1:100 和 被用于免疫组化在小鼠样本上浓度为1:100. Am J Pathol (2015) ncbi
小鼠 单克隆(RCK108)
  • 免疫组化; 人类; 1:150
丹科医疗器械技术服务(上海)有限公司 KRT19抗体(Dako, RCK108)被用于被用于免疫组化在人类样本上浓度为1:150. Rom J Morphol Embryol (2014) ncbi
小鼠 单克隆(RCK108)
  • 免疫组化; 人类; 1:20
丹科医疗器械技术服务(上海)有限公司 KRT19抗体(Dako, RCK108)被用于被用于免疫组化在人类样本上浓度为1:20. Head Neck Pathol (2015) ncbi
小鼠 单克隆(RCK108)
  • 免疫组化-冰冻切片; 人类; 图 6
丹科医疗器械技术服务(上海)有限公司 KRT19抗体(Dako Cytomation, RCK108)被用于被用于免疫组化-冰冻切片在人类样本上 (图 6). PLoS ONE (2014) ncbi
小鼠 单克隆(RCK108)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 KRT19抗体(Dako, RCK108)被用于被用于免疫组化在人类样本上. Hum Gene Ther Methods (2014) ncbi
小鼠 单克隆(RCK108)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 KRT19抗体(DAKO, RCK108)被用于被用于免疫组化在人类样本上. J Invest Dermatol (2014) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(BA17)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 KRT19抗体(Cell Signaling, 4558)被用于被用于免疫印迹在人类样本上 (图 2a). Sci Rep (2016) ncbi
小鼠 单克隆(BA17)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 KRT19抗体(Cell Signaling Tech, 4558S)被用于被用于免疫印迹在人类样本上 (图 s1). Cancer Biol Ther (2015) ncbi
Developmental Studies Hybridoma Bank
大鼠 单克隆(TROMA-III)
  • 免疫组化; 小鼠; 图 1j
Developmental Studies Hybridoma Bank KRT19抗体(Developmental Studies Hybridoma Bank (DSHB), TROMAIII)被用于被用于免疫组化在小鼠样本上 (图 1j). Cell Rep (2021) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫组化; 人类; 图 4g
Developmental Studies Hybridoma Bank KRT19抗体(DSHB, TROMAIII)被用于被用于免疫组化在人类样本上 (图 4g). Commun Biol (2021) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫细胞化学; 小鼠; 图 7d
  • 免疫组化; 小鼠; 1:100; 图 6i
Developmental Studies Hybridoma Bank KRT19抗体(DSHB, TROMA-III)被用于被用于免疫细胞化学在小鼠样本上 (图 7d) 和 被用于免疫组化在小鼠样本上浓度为1:100 (图 6i). Cancer Res (2021) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫组化; 小鼠; 图 1b
Developmental Studies Hybridoma Bank KRT19抗体(DSHB, TROMA-III)被用于被用于免疫组化在小鼠样本上 (图 1b). Cancer Discov (2021) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫组化; 小鼠; 图 5f
  • 免疫组化; 人类; 图 5f
Developmental Studies Hybridoma Bank KRT19抗体(DSHB, Troma III)被用于被用于免疫组化在小鼠样本上 (图 5f) 和 被用于免疫组化在人类样本上 (图 5f). elife (2021) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1f
Developmental Studies Hybridoma Bank KRT19抗体(DSHB, TROMA-III)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1f). Int J Mol Sci (2021) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2b
Developmental Studies Hybridoma Bank KRT19抗体(DSHB, TROMA-III)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2b). elife (2021) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 s12b
  • 免疫细胞化学; 人类; 1:100; 图 1c
Developmental Studies Hybridoma Bank KRT19抗体(DSHB, TROMA III)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 s12b) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 1c). Science (2021) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫细胞化学; 小鼠; 1:200; 图 s3d
Developmental Studies Hybridoma Bank KRT19抗体(Developmental Studies Hybridoma Bank, TROMA-III)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s3d). Development (2019) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫组化-石蜡切片; 小鼠; 图 1d
  • 免疫印迹; 小鼠; 图 4c
Developmental Studies Hybridoma Bank KRT19抗体(DSHB, TROMA-III)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1d) 和 被用于免疫印迹在小鼠样本上 (图 4c). Cell Death Differ (2019) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫组化-石蜡切片; 小鼠; 1:3; 图 5c
Developmental Studies Hybridoma Bank KRT19抗体(DSHB, TROMA-III)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:3 (图 5c). Cell Death Dis (2018) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫组化; 小鼠; 图 3b
Developmental Studies Hybridoma Bank KRT19抗体(DHSB, TROMA-III)被用于被用于免疫组化在小鼠样本上 (图 3b). Gastroenterology (2018) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1d
Developmental Studies Hybridoma Bank KRT19抗体(DSHB, TROMA-III)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1d). Cancer Cell (2017) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫组化-石蜡切片; 小鼠; 图 s2b
Developmental Studies Hybridoma Bank KRT19抗体(DSHB, TROMA-III)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2b). J Clin Invest (2017) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫组化-冰冻切片; 小鼠; 图 1b
Developmental Studies Hybridoma Bank KRT19抗体(DSHB, Troma-III)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1b). J Exp Med (2017) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫组化; 小鼠; 图 1d
Developmental Studies Hybridoma Bank KRT19抗体(DSHB, Troma-III)被用于被用于免疫组化在小鼠样本上 (图 1d). Cell Mol Gastroenterol Hepatol (2017) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1d
Developmental Studies Hybridoma Bank KRT19抗体(DSHB, TROMA-III)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1d). Nat Commun (2016) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫组化; 人类; 图 1b
Developmental Studies Hybridoma Bank KRT19抗体(DSHB, TROMA-III)被用于被用于免疫组化在人类样本上 (图 1b). Oncotarget (2016) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫组化; 小鼠; 1:100; 图 3d
Developmental Studies Hybridoma Bank KRT19抗体(hybridoma bank, TromaIII)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3d). Gut (2017) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫组化-冰冻切片; 小鼠; 图 1
Developmental Studies Hybridoma Bank KRT19抗体(DSHB, TROMA-III)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Cell Adh Migr (2016) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫细胞化学; 小鼠; 1:10; 图 4
Developmental Studies Hybridoma Bank KRT19抗体(Developmental Studies Hybridoma Bank, TROMAIII)被用于被用于免疫细胞化学在小鼠样本上浓度为1:10 (图 4). Hepatology (2016) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫组化-石蜡切片; 小鼠; 图 s2c
Developmental Studies Hybridoma Bank KRT19抗体(DSHB, TROMA-III)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2c). Gastroenterology (2016) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s2
Developmental Studies Hybridoma Bank KRT19抗体(Developmental Studies Hybridoma Bank, TROMAIII)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s2). Oncogene (2016) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫细胞化学; 小鼠; 图 2
Developmental Studies Hybridoma Bank KRT19抗体(Developmental Studies Hybridoma Bank, Troma III)被用于被用于免疫细胞化学在小鼠样本上 (图 2). Dev Dyn (2016) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫组化-石蜡切片; 小鼠; 图 4
  • 免疫组化-石蜡切片; 人类; 图 4
Developmental Studies Hybridoma Bank KRT19抗体(Developmental Studies Hybridoma Bank, TROMA-III)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4) 和 被用于免疫组化-石蜡切片在人类样本上 (图 4). Nat Immunol (2015) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s5e
Developmental Studies Hybridoma Bank KRT19抗体(DSHB, TromaIII)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s5e). Nat Med (2015) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫组化-石蜡切片; 小鼠; 图 1
Developmental Studies Hybridoma Bank KRT19抗体(Developmental Studies Hybridoma Bank, TROMA-III)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Genes Dev (2015) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫组化-石蜡切片; 小鼠; 图 2
Developmental Studies Hybridoma Bank KRT19抗体(Developmental Studies Hybridoma Bank, TROMAIII)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Oncotarget (2015) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫细胞化学; 人类; 1:20
Developmental Studies Hybridoma Bank KRT19抗体(Developmental Studies Hybridoma Bank, Troma-III)被用于被用于免疫细胞化学在人类样本上浓度为1:20. Front Cell Dev Biol (2015) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫印迹; 小鼠; 1:500; 图 s3
Developmental Studies Hybridoma Bank KRT19抗体(Developmental Studies Hybridoma Bank, Troma III)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s3). PLoS ONE (2014) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2
Developmental Studies Hybridoma Bank KRT19抗体(Developmental Studies Hybridoma Bank, TROMA-III-c)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2). Oncogene (2015) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫组化-石蜡切片; 小鼠; 图 s2
Developmental Studies Hybridoma Bank KRT19抗体(Developmental Studies Hybridoma Bank, TROMA-III)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2). Cell Death Differ (2014) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 7
Developmental Studies Hybridoma Bank KRT19抗体(Hydroma Bank, Troma III)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 7). PLoS ONE (2014) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫组化-石蜡切片; 大鼠; 1:750
Developmental Studies Hybridoma Bank KRT19抗体(Hybridoma Bank, Troma-III)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:750. Alcohol Clin Exp Res (2014) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫组化-石蜡切片; 小鼠
Developmental Studies Hybridoma Bank KRT19抗体(Developmental Studies Hybridoma Bank, TROMA-III)被用于被用于免疫组化-石蜡切片在小鼠样本上. Genes Dev (2013) ncbi
大鼠 单克隆(TROMA-III)
  • 免疫组化-石蜡切片; 小鼠; 1:200
Developmental Studies Hybridoma Bank KRT19抗体(DSHB, TROMA III)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. J Clin Invest (2012) ncbi
西格玛奥德里奇
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2h
西格玛奥德里奇 KRT19抗体(Sigma-Aldrich, C2562)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2h). J Clin Invest (2021) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1a
西格玛奥德里奇 KRT19抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1a). Cancer Immunol Immunother (2020) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 小鼠; 1:50; 图 3a
西格玛奥德里奇 KRT19抗体(Sigma-Aldrich, C2562)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3a). Science (2018) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s4a
西格玛奥德里奇 KRT19抗体(Sigma-Aldrich, C2562)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s4a). Am J Respir Cell Mol Biol (2017) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 小鼠; 图 6
西格玛奥德里奇 KRT19抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Am J Pathol (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2a
西格玛奥德里奇 KRT19抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 图 s5a
西格玛奥德里奇 KRT19抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s5a). Nature (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; pigs ; 1:100; 图 5h
西格玛奥德里奇 KRT19抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:100 (图 5h). Biotechnol J (2017) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 小鼠; 1:200
西格玛奥德里奇 KRT19抗体(Sigma, C2562)被用于被用于免疫组化在小鼠样本上浓度为1:200. Nat Commun (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 人类; 图 2b
西格玛奥德里奇 KRT19抗体(Sigma, c2562)被用于被用于免疫组化在人类样本上 (图 2b). Nat Biotechnol (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫细胞化学; 人类; 1:200; 图 5
西格玛奥德里奇 KRT19抗体(Sigma, C2562)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5). BMC Biol (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 人类; 1:4000; 表 2
西格玛奥德里奇 KRT19抗体(Sigma, C2562)被用于被用于免疫组化在人类样本上浓度为1:4000 (表 2). PLoS ONE (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫细胞化学; 小鼠; 图 2
西格玛奥德里奇 KRT19抗体(Sigma, C2562)被用于被用于免疫细胞化学在小鼠样本上 (图 2). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫细胞化学; 小鼠; 1:100; 图 2
西格玛奥德里奇 KRT19抗体(Sigma, C2562)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2). Fluids Barriers CNS (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 2
西格玛奥德里奇 KRT19抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 2). Clin Cancer Res (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇 KRT19抗体(Sigma, C2562)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 小鼠; 1:800; 图 5
西格玛奥德里奇 KRT19抗体(Sigma, C2562)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 5). Dis Model Mech (2015) ncbi
小鼠 单克隆(A53-B/A2)
  • 免疫细胞化学; 人类; 1:500; 图 S6
西格玛奥德里奇 KRT19抗体(Sigma, A53-B/A2)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 S6). Cell Cycle (2014) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 1:2000
西格玛奥德里奇 KRT19抗体(Sigma-Aldrich, #C2562)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000. Am J Pathol (2014) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫印迹; 大鼠
西格玛奥德里奇 KRT19抗体(Sigma, C2562)被用于被用于免疫印迹在大鼠样本上. Carcinogenesis (2014) ncbi
小鼠 单克隆(A53-B/A2)
  • 免疫组化-石蜡切片; domestic rabbit; 1:100
西格玛奥德里奇 KRT19抗体(Sigma-Aldrich, A53-B/A2)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:100. Biomaterials (2014) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫印迹; 人类; 1:10000
  • 免疫印迹; pigs
西格玛奥德里奇 KRT19抗体(Sigma-Aldrich, C 2562)被用于被用于免疫印迹在人类样本上浓度为1:10000 和 被用于免疫印迹在pigs 样本上. Mol Oncol (2014) ncbi
徕卡显微系统(上海)贸易有限公司
单克隆(b170)
  • 免疫组化-石蜡切片; 人类; 1:25; 图 2
徕卡显微系统(上海)贸易有限公司 KRT19抗体(Leica, b170)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25 (图 2). Hum Pathol (2017) ncbi
单克隆(b170)
  • 免疫组化; 犬; 图 S1d,S2d,S3d,S4d
徕卡显微系统(上海)贸易有限公司 KRT19抗体(Leica, b170)被用于被用于免疫组化在犬样本上 (图 S1d,S2d,S3d,S4d). J Vet Med Sci (2017) ncbi
单克隆(b170)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 4a
徕卡显微系统(上海)贸易有限公司 KRT19抗体(Leica Biosystems, B170)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 4a). BMC Cancer (2016) ncbi
单克隆(b170)
  • 免疫组化; 大鼠; 1:200
徕卡显微系统(上海)贸易有限公司 KRT19抗体(Novocastra Laboratories, b170)被用于被用于免疫组化在大鼠样本上浓度为1:200. Exp Mol Pathol (2015) ncbi
单克隆(b170)
  • 免疫组化-石蜡切片; 猫; 1:100; 图 2
徕卡显微系统(上海)贸易有限公司 KRT19抗体(Novocastra, b170)被用于被用于免疫组化-石蜡切片在猫样本上浓度为1:100 (图 2). Vet J (2014) ncbi
单克隆(b170)
  • 免疫组化-石蜡切片; 人类; 1:100
徕卡显微系统(上海)贸易有限公司 KRT19抗体(Leica/Novocastra, b170)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Exp Hematol Oncol (2014) ncbi
文章列表
  1. Wu C, Cheng D, Peng Y, Li Y, Fu C, Wang Y, et al. Hepatic BRD4 Is Upregulated in Liver Fibrosis of Various Etiologies and Positively Correlated to Fibrotic Severity. Front Med (Lausanne). 2021;8:683506 pubmed 出版商
  2. Molina L, Zhu J, Li Q, Pradhan Sundd T, Krutsenko Y, Sayed K, et al. Compensatory hepatic adaptation accompanies permanent absence of intrahepatic biliary network due to YAP1 loss in liver progenitors. Cell Rep. 2021;36:109310 pubmed 出版商
  3. Bailey K, Cartwright S, Patel N, Remmers N, Lazenby A, Hollingsworth M, et al. Porcine pancreatic ductal epithelial cells transformed with KRASG12D and SV40T are tumorigenic. Sci Rep. 2021;11:13436 pubmed 出版商
  4. Pocaterra A, Scattolin G, Romani P, Ament C, Ribback S, Chen X, et al. Fascin1 empowers YAP mechanotransduction and promotes cholangiocarcinoma development. Commun Biol. 2021;4:763 pubmed 出版商
  5. Zhao Y, Li Z, Zhu Y, Fu J, Zhao X, Zhang Y, et al. Single-Cell Transcriptome Analysis Uncovers Intratumoral Heterogeneity and Underlying Mechanisms for Drug Resistance in Hepatobiliary Tumor Organoids. Adv Sci (Weinh). 2021;8:e2003897 pubmed 出版商
  6. Barthet V, Brucoli M, Ladds M, Nössing C, Kiourtis C, Baudot A, et al. Autophagy suppresses the formation of hepatocyte-derived cancer-initiating ductular progenitor cells in the liver. Sci Adv. 2021;7: pubmed 出版商
  7. Carter P, Schnell U, Chaney C, TONG B, Pan X, ye J, et al. Deletion of Lats1/2 in adult kidney epithelia leads to renal cell carcinoma. J Clin Invest. 2021;131: pubmed 出版商
  8. Howell L, Jenkins R, Lynch S, Duckworth C, Kevin Park B, Goldring C. Proteomic profiling of murine biliary-derived hepatic organoids and their capacity for drug disposition, bioactivation and detoxification. Arch Toxicol. 2021;95:2413-2430 pubmed 出版商
  9. Kemp S, Carpenter E, Steele N, Donahue K, Nwosu Z, Pacheco A, et al. Apolipoprotein E Promotes Immune Suppression in Pancreatic Cancer through NF-κB-Mediated Production of CXCL1. Cancer Res. 2021;81:4305-4318 pubmed 出版商
  10. Flowers B, Xu H, Mulligan A, Hanson K, Seoane J, Vogel H, et al. Cell of Origin Influences Pancreatic Cancer Subtype. Cancer Discov. 2021;11:660-677 pubmed 出版商
  11. Hendley A, Rao A, Leonhardt L, Ashe S, Smith J, Giacometti S, et al. Single-cell transcriptome analysis defines heterogeneity of the murine pancreatic ductal tree. elife. 2021;10: pubmed 出版商
  12. Hsieh M, Weng C, Lin Y, Wu C, Chen L, Cheng K. Inhibition of β-Catenin Activity Abolishes LKB1 Loss-Driven Pancreatic Cystadenoma in Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  13. Huang L, Desai R, Conrad D, Leite N, Akshinthala D, Lim C, et al. Commitment and oncogene-induced plasticity of human stem cell-derived pancreatic acinar and ductal organoids. Cell Stem Cell. 2021;28:1090-1104.e6 pubmed 出版商
  14. Hunter S, McIntosh B, Shi Y, Sperberg R, Funatogawa C, Labanieh L, et al. An engineered ligand trap inhibits leukemia inhibitory factor as pancreatic cancer treatment strategy. Commun Biol. 2021;4:452 pubmed 出版商
  15. Hendricks Wenger A, Aycock K, Nagai Singer M, Coutermarsh Ott S, Lorenzo M, Gannon J, et al. Establishing an immunocompromised porcine model of human cancer for novel therapy development with pancreatic adenocarcinoma and irreversible electroporation. Sci Rep. 2021;11:7584 pubmed 出版商
  16. Hankeova S, Salplachta J, Zikmund T, Kavkova M, Van Hul N, Brinek A, et al. DUCT reveals architectural mechanisms contributing to bile duct recovery in a mouse model for Alagille syndrome. elife. 2021;10: pubmed 出版商
  17. Sampaziotis F, Muraro D, Tysoe O, Sawiak S, Beach T, Godfrey E, et al. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver. Science. 2021;371:839-846 pubmed 出版商
  18. Biasci D, Smoragiewicz M, Connell C, Wang Z, Gao Y, Thaventhiran J, et al. CXCR4 inhibition in human pancreatic and colorectal cancers induces an integrated immune response. Proc Natl Acad Sci U S A. 2020;117:28960-28970 pubmed 出版商
  19. Sepe L, Hartl K, Iftekhar A, Berger H, Kumar N, Goosmann C, et al. Genotoxic Effect of Salmonella Paratyphi A Infection on Human Primary Gallbladder Cells. MBio. 2020;11: pubmed 出版商
  20. Lau A, Li Z, Danai L, Westermark A, Darnell A, Ferreira R, et al. Dissecting cell-type-specific metabolism in pancreatic ductal adenocarcinoma. elife. 2020;9: pubmed 出版商
  21. Chandrashekar A, Liu J, Martinot A, McMahan K, Mercado N, Peter L, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020;: pubmed 出版商
  22. Costanzo Garvey D, Keeley T, Case A, Watson G, Alsamraae M, Yu Y, et al. Neutrophils are mediators of metastatic prostate cancer progression in bone. Cancer Immunol Immunother. 2020;69:1113-1130 pubmed 出版商
  23. Gaglia G, Rashid R, Yapp C, Joshi G, Li C, Lindquist S, et al. HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat Cell Biol. 2020;22:151-158 pubmed 出版商
  24. Cheung E, DeNicola G, Nixon C, Blyth K, Labuschagne C, Tuveson D, et al. Dynamic ROS Control by TIGAR Regulates the Initiation and Progression of Pancreatic Cancer. Cancer Cell. 2020;37:168-182.e4 pubmed 出版商
  25. Rahman M, Wruck W, Spitzhorn L, Nguyen L, Bohndorf M, Martins S, et al. The FGF, TGFβ and WNT axis Modulate Self-renewal of Human SIX2+ Urine Derived Renal Progenitor Cells. Sci Rep. 2020;10:739 pubmed 出版商
  26. Wang G, Xu J, Zhao J, Yin W, Liu D, Chen W, et al. Arf1-mediated lipid metabolism sustains cancer cells and its ablation induces anti-tumor immune responses in mice. Nat Commun. 2020;11:220 pubmed 出版商
  27. Shen J, Zhou Y, Zhang X, Peng W, Peng C, Zhou Q, et al. Loss of FoxA2 accelerates neoplastic changes in the intrahepatic bile duct partly via the MAPK signaling pathway. Aging (Albany NY). 2019;11:9280-9294 pubmed 出版商
  28. Ramani V, Lemaire C, Triboulet M, Casey K, Heirich K, Renier C, et al. Investigating circulating tumor cells and distant metastases in patient-derived orthotopic xenograft models of triple-negative breast cancer. Breast Cancer Res. 2019;21:98 pubmed 出版商
  29. Kim Y, You H, Park S, Kim M, Chae H, Park J, et al. A Mutation in ZNF143 as a Novel Candidate Gene for Endothelial Corneal Dystrophy. J Clin Med. 2019;8: pubmed 出版商
  30. Segal J, Kent D, Wesche D, Ng S, Serra M, Oulès B, et al. Single cell analysis of human foetal liver captures the transcriptional profile of hepatobiliary hybrid progenitors. Nat Commun. 2019;10:3350 pubmed 出版商
  31. Mishra A, Emamgholi F, Erlangga Z, Hartleben B, Unger K, Wolff K, et al. Generation of focal mutations and large genomic deletions in the pancreas using inducible in vivo genome editing. Carcinogenesis. 2019;: pubmed 出版商
  32. Zhou H, Wang L, Zhang C, Hu J, Chen J, Du W, et al. Feasibility of repairing full-thickness skin defects by iPSC-derived epithelial stem cells seeded on a human acellular amniotic membrane. Stem Cell Res Ther. 2019;10:155 pubmed 出版商
  33. Prior N, Hindley C, Rost F, Meléndez E, Lau W, Gottgens B, et al. Lgr5+ stem and progenitor cells reside at the apex of a heterogeneous embryonic hepatoblast pool. Development. 2019;146: pubmed 出版商
  34. Guiu J, Hannezo E, Yui S, Demharter S, Ulyanchenko S, Maimets M, et al. Tracing the origin of adult intestinal stem cells. Nature. 2019;570:107-111 pubmed 出版商
  35. Krishna Subramanian S, Singer S, Armaka M, Banales J, Hölzer K, Schirmacher P, et al. RIPK1 and death receptor signaling drive biliary damage and early liver tumorigenesis in mice with chronic hepatobiliary injury. Cell Death Differ. 2019;: pubmed 出版商
  36. Jeppesen D, Fenix A, Franklin J, Higginbotham J, Zhang Q, Zimmerman L, et al. Reassessment of Exosome Composition. Cell. 2019;177:428-445.e18 pubmed 出版商
  37. Lee J, Stone M, Porrett P, Thomas S, Komar C, Li J, et al. Hepatocytes direct the formation of a pro-metastatic niche in the liver. Nature. 2019;567:249-252 pubmed 出版商
  38. Mona M, Miller R, Li H, Park Y, Zaman R, Yang L, et al. MIST1, an Inductive Signal for Salivary Amylase in Mesenchymal Stem Cells. Int J Mol Sci. 2019;20: pubmed 出版商
  39. Liu M, O Connor R, Trefely S, Graham K, Snyder N, Beatty G. Metabolic rewiring of macrophages by CpG potentiates clearance of cancer cells and overcomes tumor-expressed CD47-mediated 'don't-eat-me' signal. Nat Immunol. 2019;20:265-275 pubmed 出版商
  40. Lee S, Ji H, Baek S, Lee A, Kim M, Park S, et al. Feline-type cystic basal cell tumor filled with abundant melanin pigment-rich fluid in a dog. J Vet Med Sci. 2019;81:269-273 pubmed 出版商
  41. Gorth D, Shapiro I, Risbud M. Transgenic mice overexpressing human TNF-α experience early onset spontaneous intervertebral disc herniation in the absence of overt degeneration. Cell Death Dis. 2018;10:7 pubmed 出版商
  42. Wu T, Xu K, Martinek J, Young R, Banchereau R, George J, et al. IL1 Receptor Antagonist Controls Transcriptional Signature of Inflammation in Patients with Metastatic Breast Cancer. Cancer Res. 2018;78:5243-5258 pubmed 出版商
  43. Pommier A, Anaparthy N, Memos N, Kelley Z, Gouronnec A, Yan R, et al. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science. 2018;360: pubmed 出版商
  44. Pereira E, Kedrin D, Seano G, Gautier O, Meijer E, Jones D, et al. Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science. 2018;359:1403-1407 pubmed 出版商
  45. He P, Yang J, Yang V, Bialkowska A. Krüppel-like Factor 5, Increased in Pancreatic Ductal Adenocarcinoma, Promotes Proliferation, Acinar-to-Ductal Metaplasia, Pancreatic Intraepithelial Neoplasia, and Tumor Growth in Mice. Gastroenterology. 2018;154:1494-1508.e13 pubmed 出版商
  46. Qin D, Yan Y, Hu B, Zhang W, Li H, Li X, et al. Wisp2 disruption represses Cxcr4 expression and inhibits BMSCs homing to injured liver. Oncotarget. 2017;8:98823-98836 pubmed 出版商
  47. Brooks J, Fleischmann Mundt B, Woller N, Niemann J, Ribback S, Peters K, et al. Perioperative, Spatiotemporally Coordinated Activation of T and NK Cells Prevents Recurrence of Pancreatic Cancer. Cancer Res. 2018;78:475-488 pubmed 出版商
  48. Mello S, Valente L, Raj N, Seoane J, Flowers B, McClendon J, et al. A p53 Super-tumor Suppressor Reveals a Tumor Suppressive p53-Ptpn14-Yap Axis in Pancreatic Cancer. Cancer Cell. 2017;32:460-473.e6 pubmed 出版商
  49. Aprile F, Källstig E, Limorenko G, Vendruscolo M, Ron D, Hansen C. The molecular chaperones DNAJB6 and Hsp70 cooperate to suppress α-synuclein aggregation. Sci Rep. 2017;7:9039 pubmed 出版商
  50. Van T, Polykratis A, Straub B, Kondylis V, Papadopoulou N, Pasparakis M. Kinase-independent functions of RIPK1 regulate hepatocyte survival and liver carcinogenesis. J Clin Invest. 2017;127:2662-2677 pubmed 出版商
  51. Kamerkar S, LeBleu V, Sugimoto H, Yang S, Ruivo C, Melo S, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 2017;546:498-503 pubmed 出版商
  52. Haston S, Pozzi S, Carreno G, Manshaei S, Panousopoulos L, González Meljem J, et al. MAPK pathway control of stem cell proliferation and differentiation in the embryonic pituitary provides insights into the pathogenesis of papillary craniopharyngioma. Development. 2017;144:2141-2152 pubmed 出版商
  53. Daley D, Mani V, Mohan N, Akkad N, Pandian G, Savadkar S, et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J Exp Med. 2017;214:1711-1724 pubmed 出版商
  54. Wang X, Xia Q, Ni H, Ye S, Li R, Wang X, et al. SFPQ/PSF-TFE3 renal cell carcinoma: a clinicopathologic study emphasizing extended morphology and reviewing the differences between SFPQ-TFE3 RCC and the corresponding mesenchymal neoplasm despite an identical gene fusion. Hum Pathol. 2017;63:190-200 pubmed 出版商
  55. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  56. Braxton D, Saxe D, Damjanov N, Stashek K, Shroff S, Morrissette J, et al. Molecular and cytogenomic profiling of hepatic adenocarcinoma expressing inhibinA, a mimicker of neuroendocrine tumors: proposal to reclassify as "cholangioblastic variant of intrahepatic cholangiocarcinoma". Hum Pathol. 2017;62:232-241 pubmed 出版商
  57. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  58. Delhove J, Buckley S, Perocheau D, Karda R, Arbuthnot P, Henderson N, et al. Longitudinal in vivo bioimaging of hepatocyte transcription factor activity following cholestatic liver injury in mice. Sci Rep. 2017;7:41874 pubmed 出版商
  59. Watanabe K, Chambers J, Uchida K, Nibe K, Ushio N, Horiuchi N, et al. A cutaneous mixed tumor in a dog. J Vet Med Sci. 2017;79:670-673 pubmed 出版商
  60. Anderson P, Lynch T, Engelhardt J. Multipotent Myoepithelial Progenitor Cells Are Born Early during Airway Submucosal Gland Development. Am J Respir Cell Mol Biol. 2017;56:716-726 pubmed 出版商
  61. Abboud Jarrous G, Priya S, Maimon A, Fischman S, Cohen Elisha M, Czerninski R, et al. Protein S drives oral squamous cell carcinoma tumorigenicity through regulation of AXL. Oncotarget. 2017;8:13986-14002 pubmed 出版商
  62. Yamaguchi T, Sato H, Kato Itoh M, Goto T, Hara H, Sanbo M, et al. Interspecies organogenesis generates autologous functional islets. Nature. 2017;542:191-196 pubmed 出版商
  63. Poon M, Jiang D, Qin P, Zhang Y, Qiu B, Chanda S, et al. Inhibition of NUCKS Facilitates Corneal Recovery Following Alkali Burn. Sci Rep. 2017;7:41224 pubmed 出版商
  64. Roy I, Boyle K, Vonderhaar E, Zimmerman N, Gorse E, Mackinnon A, et al. Cancer cell chemokines direct chemotaxis of activated stellate cells in pancreatic ductal adenocarcinoma. Lab Invest. 2017;97:302-317 pubmed 出版商
  65. Halbrook C, Wen H, Ruggeri J, Takeuchi K, Zhang Y, di Magliano M, et al. Mitogen-activated Protein Kinase Kinase Activity Maintains Acinar-to-Ductal Metaplasia and Is Required for Organ Regeneration in Pancreatitis. Cell Mol Gastroenterol Hepatol. 2017;3:99-118 pubmed 出版商
  66. Hopkinson B, Klitgaard M, Petersen O, Villadsen R, Rønnov Jessen L, Kim J. Establishment of a normal-derived estrogen receptor-positive cell line comparable to the prevailing human breast cancer subtype. Oncotarget. 2017;8:10580-10593 pubmed 出版商
  67. Britschgi A, Duss S, Kim S, Couto J, Brinkhaus H, Koren S, et al. The Hippo kinases LATS1 and 2 control human breast cell fate via crosstalk with ERα. Nature. 2017;541:541-545 pubmed 出版商
  68. Sørensen K, Meldgaard T, Melchjorsen C, Fridriksdottir A, Pedersen H, Petersen O, et al. Upregulation of Mrps18a in breast cancer identified by selecting phage antibody libraries on breast tissue sections. BMC Cancer. 2017;17:19 pubmed 出版商
  69. Ohtsuka T, Sakaguchi M, Yamamoto H, Tomida S, Takata K, Shien K, et al. Interaction of cytokeratin 19 head domain and HER2 in the cytoplasm leads to activation of HER2-Erk pathway. Sci Rep. 2016;6:39557 pubmed 出版商
  70. De Luca Johnson J, Zenali M. A Previously Undescribed Presentation of Mixed Adenoneuroendocrine Carcinoma. Case Rep Pathol. 2016;2016:9063634 pubmed
  71. Erdogan Durmus S, Ozcan D, Yarikkaya E, Kurt A, Arslan A. CD56, HBME-1 and cytokeratin 19 expressions in papillary thyroid carcinoma and nodular thyroid lesions. J Res Med Sci. 2016;21:49 pubmed
  72. Takano M, Shimada K, Fujii T, Morita K, Takeda M, Nakajima Y, et al. Keratin 19 as a key molecule in progression of human hepatocellular carcinomas through invasion and angiogenesis. BMC Cancer. 2016;16:903 pubmed
  73. Pu W, Zhang H, Huang X, Tian X, He L, Wang Y, et al. Mfsd2a+ hepatocytes repopulate the liver during injury and regeneration. Nat Commun. 2016;7:13369 pubmed 出版商
  74. Li Q, Wang H, Zogopoulos G, Shao Q, Dong K, Lv F, et al. Reg proteins promote acinar-to-ductal metaplasia and act as novel diagnostic and prognostic markers in pancreatic ductal adenocarcinoma. Oncotarget. 2016;7:77838-77853 pubmed 出版商
  75. Ren S, Luo Y, Chen H, Warburton D, Lam H, Wang L, et al. Inactivation of Tsc2 in Mesoderm-Derived Cells Causes Polycystic Kidney Lesions and Impairs Lung Alveolarization. Am J Pathol. 2016;186:3261-3272 pubmed 出版商
  76. Takai K, Le A, Weaver V, Werb Z. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget. 2016;7:82889-82901 pubmed 出版商
  77. Frentzas S, Simoneau E, Bridgeman V, Vermeulen P, Foo S, Kostaras E, et al. Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases. Nat Med. 2016;22:1294-1302 pubmed 出版商
  78. Lamballe F, Toscano S, Conti F, Arechederra M, Baeza N, Figarella Branger D, et al. Coordination of signalling networks and tumorigenic properties by ABL in glioblastoma cells. Oncotarget. 2016;7:74747-74767 pubmed 出版商
  79. Kuga T, Kume H, Adachi J, Kawasaki N, Shimizu M, Hoshino I, et al. Casein kinase 1 is recruited to nuclear speckles by FAM83H and SON. Sci Rep. 2016;6:34472 pubmed 出版商
  80. Suzuki Y, Katagiri H, Wang T, Kakisaka K, Kume K, Nishizuka S, et al. Ductular reactions in the liver regeneration process with local inflammation after physical partial hepatectomy. Lab Invest. 2016;96:1211-1222 pubmed 出版商
  81. Muzumdar M, Dorans K, Chung K, Robbins R, Tammela T, Gocheva V, et al. Clonal dynamics following p53 loss of heterozygosity in Kras-driven cancers. Nat Commun. 2016;7:12685 pubmed 出版商
  82. Thienpont B, Steinbacher J, Zhao H, D Anna F, Kuchnio A, Ploumakis A, et al. Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature. 2016;537:63-68 pubmed 出版商
  83. Schuerlein S, Schwarz T, Krziminski S, Gätzner S, Hoppensack A, Schwedhelm I, et al. A versatile modular bioreactor platform for Tissue Engineering. Biotechnol J. 2017;12: pubmed 出版商
  84. Yoshida M, Miyasaka Y, Ohuchida K, Okumura T, Zheng B, Torata N, et al. Calpain inhibitor calpeptin suppresses pancreatic cancer by disrupting cancer-stromal interactions in a mouse xenograft model. Cancer Sci. 2016;107:1443-1452 pubmed 出版商
  85. Reginensi A, Enderle L, Gregorieff A, Johnson R, Wrana J, McNeill H. A critical role for NF2 and the Hippo pathway in branching morphogenesis. Nat Commun. 2016;7:12309 pubmed 出版商
  86. Zhang Y, Velez Delgado A, Mathew E, Li D, Mendez F, Flannagan K, et al. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut. 2017;66:124-136 pubmed 出版商
  87. Chen H, Wei Z, Sun J, Bhattacharya A, Savage D, Serda R, et al. A recellularized human colon model identifies cancer driver genes. Nat Biotechnol. 2016;34:845-51 pubmed 出版商
  88. Berens E, Sharif G, Schmidt M, Yan G, Shuptrine C, Weiner L, et al. Keratin-associated protein 5-5 controls cytoskeletal function and cancer cell vascular invasion. Oncogene. 2017;36:593-605 pubmed 出版商
  89. Saha S, Choi H, Kim B, Dayem A, Yang G, Kim K, et al. KRT19 directly interacts with β-catenin/RAC1 complex to regulate NUMB-dependent NOTCH signaling pathway and breast cancer properties. Oncogene. 2017;36:332-349 pubmed 出版商
  90. Li H, Mai R, Huang H, Chou C, Chang Y, Chang Y, et al. DDX3 Represses Stemness by Epigenetically Modulating Tumor-suppressive miRNAs in Hepatocellular Carcinoma. Sci Rep. 2016;6:28637 pubmed 出版商
  91. Toneff M, Sreekumar A, Tinnirello A, Hollander P, Habib S, Li S, et al. The Z-cad dual fluorescent sensor detects dynamic changes between the epithelial and mesenchymal cellular states. BMC Biol. 2016;14:47 pubmed 出版商
  92. Szalayova G, Ogrodnik A, Spencer B, Wade J, Bunn J, Ambaye A, et al. Human breast cancer biopsies induce eosinophil recruitment and enhance adjacent cancer cell proliferation. Breast Cancer Res Treat. 2016;157:461-74 pubmed 出版商
  93. Rigden H, Alias A, Havelock T, O Donnell R, Djukanovic R, Davies D, et al. Squamous Metaplasia Is Increased in the Bronchial Epithelium of Smokers with Chronic Obstructive Pulmonary Disease. PLoS ONE. 2016;11:e0156009 pubmed 出版商
  94. Hamam D, Abdouh M, Gao Z, Arena V, Arena M, Arena G. Transfer of malignant trait to BRCA1 deficient human fibroblasts following exposure to serum of cancer patients. J Exp Clin Cancer Res. 2016;35:80 pubmed 出版商
  95. Fabbri R, Macciocca M, Vicenti R, Paradisi R, Klinger F, Pasquinelli G, et al. Doxorubicin and cisplatin induce apoptosis in ovarian stromal cells obtained from cryopreserved human ovarian tissue. Future Oncol. 2016;12:1699-711 pubmed 出版商
  96. Giovannini C, Minguzzi M, Genovese F, Baglioni M, Gualandi A, Ravaioli M, et al. Molecular and proteomic insight into Notch1 characterization in hepatocellular carcinoma. Oncotarget. 2016;7:39609-39626 pubmed 出版商
  97. Cetin S, Kir G, Yilmaz M. Thyroid Paraganglioma Diagnosed by Fine-Needle Aspiration Biopsy, Correlated With Histopathological Findings: Report of a Case. Diagn Cytopathol. 2016;44:643-7 pubmed 出版商
  98. Bell C, Hendriks D, Moro S, Ellis E, Walsh J, Renblom A, et al. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease. Sci Rep. 2016;6:25187 pubmed 出版商
  99. Kobayashi K, Tsugami Y, Matsunaga K, Oyama S, Kuki C, Kumura H. Prolactin and glucocorticoid signaling induces lactation-specific tight junctions concurrent with ?-casein expression in mammary epithelial cells. Biochim Biophys Acta. 2016;1863:2006-16 pubmed 出版商
  100. Hintermann E, Bayer M, Ehser J, Aurrand Lions M, Pfeilschifter J, Imhof B, et al. Murine junctional adhesion molecules JAM-B and JAM-C mediate endothelial and stellate cell interactions during hepatic fibrosis. Cell Adh Migr. 2016;10:419-33 pubmed 出版商
  101. Waisbourd Zinman O, Koh H, Tsai S, Lavrut P, Dang C, Zhao X, et al. The toxin biliatresone causes mouse extrahepatic cholangiocyte damage and fibrosis through decreased glutathione and SOX17. Hepatology. 2016;64:880-93 pubmed 出版商
  102. Abrosimov A, Dvinskikh N, Sidorin A. Cells of Benign and Borderline Thyroid Tumor Express Malignancy Markers. Bull Exp Biol Med. 2016;160:698-701 pubmed 出版商
  103. Hong X, Zhang J, Wu Q, Wang W, Ye A, Song W, et al. Challenges in detecting pre-malignant pancreatic lesions during acute pancreatitis using a serum microRNA assay: a study based on KrasG12D transgenic mice. Oncotarget. 2016;7:22700-10 pubmed 出版商
  104. Yang S, Sun Y, Geng Z, Ma K, Sun X, Fu X. Abnormalities in the basement membrane structure promote basal keratinocytes in the epidermis of hypertrophic scars to adopt a proliferative phenotype. Int J Mol Med. 2016;37:1263-73 pubmed 出版商
  105. Seifert L, Werba G, Tiwari S, Giao Ly N, Nguy S, Alothman S, et al. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice. Gastroenterology. 2016;150:1659-1672.e5 pubmed 出版商
  106. Song G, Pacher M, Balakrishnan A, Yuan Q, Tsay H, Yang D, et al. Direct Reprogramming of Hepatic Myofibroblasts into Hepatocytes In Vivo Attenuates Liver Fibrosis. Cell Stem Cell. 2016;18:797-808 pubmed 出版商
  107. Rodrigues Pinto R, Berry A, Piper Hanley K, Hanley N, Richardson S, Hoyland J. Spatiotemporal analysis of putative notochordal cell markers reveals CD24 and keratins 8, 18, and 19 as notochord-specific markers during early human intervertebral disc development. J Orthop Res. 2016;34:1327-40 pubmed 出版商
  108. Li H, Shen P, Liang Y, Zhang F. Fibroblastic reticular cell tumor of the breast: A case report and review of the literature. Exp Ther Med. 2016;11:561-564 pubmed
  109. Lazarevic I, Engelhardt B. Modeling immune functions of the mouse blood-cerebrospinal fluid barrier in vitro: primary rather than immortalized mouse choroid plexus epithelial cells are suited to study immune cell migration across this brain barrier. Fluids Barriers CNS. 2016;13:2 pubmed 出版商
  110. Guedj N, Vaquero J, Clapéron A, Mergey M, Chrétien Y, Paradis V, et al. Loss of ezrin in human intrahepatic cholangiocarcinoma is associated with ectopic expression of E-cadherin. Histopathology. 2016;69:211-21 pubmed 出版商
  111. Bruin J, Saber N, O Dwyer S, Fox J, Mojibian M, Arora P, et al. Hypothyroidism Impairs Human Stem Cell-Derived Pancreatic Progenitor Cell Maturation in Mice. Diabetes. 2016;65:1297-309 pubmed 出版商
  112. Martínez Martínez M, Mosqueda Taylor A, Delgado Azañero W, Rumayor Piña A, de Almeida O. Primary intraosseous squamous cell carcinoma arising in an odontogenic keratocyst previously treated with marsupialization: case report and immunohistochemical study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;121:e87-95 pubmed 出版商
  113. Fleury H, Communal L, Carmona E, Portelance L, Arcand S, Rahimi K, et al. Novel high-grade serous epithelial ovarian cancer cell lines that reflect the molecular diversity of both the sporadic and hereditary disease. Genes Cancer. 2015;6:378-398 pubmed
  114. Shin H, Pei Z, Martinez K, Rivera Viñas J, Méndez K, Cavallin H, et al. The first microbial environment of infants born by C-section: the operating room microbes. Microbiome. 2015;3:59 pubmed 出版商
  115. Diersch S, Wirth M, Schneeweis C, Jörs S, Geisler F, Siveke J, et al. Kras(G12D) induces EGFR-MYC cross signaling in murine primary pancreatic ductal epithelial cells. Oncogene. 2016;35:3880-6 pubmed 出版商
  116. van Jaarsveld M, van Kuijk P, Boersma A, Helleman J, Van Ijcken W, Mathijssen R, et al. miR-634 restores drug sensitivity in resistant ovarian cancer cells by targeting the Ras-MAPK pathway. Mol Cancer. 2015;14:196 pubmed 出版商
  117. Gao L, Jiang Y, Mu L, Liu Y, Wang F, Wang P, et al. Efficient Generation of Mice with Consistent Transgene Expression by FEEST. Sci Rep. 2015;5:16284 pubmed 出版商
  118. Jung M, Ryu Y, Kang G. Investigation of the origin of stromal and endothelial cells at the desmoplastic interface in xenograft tumor in mice. Pathol Res Pract. 2015;211:925-30 pubmed 出版商
  119. Li Y, Adomat H, Guns E, Hojabrpour P, Duronio V, Curran T, et al. Identification of a Hematopoietic Cell Dedifferentiation-Inducing Factor. J Cell Physiol. 2016;231:1350-63 pubmed 出版商
  120. Korytnikov R, Nostro M. Generation of polyhormonal and multipotent pancreatic progenitor lineages from human pluripotent stem cells. Methods. 2016;101:56-64 pubmed 出版商
  121. Pajoohesh Ganji A, Pal Ghosh S, Tadvalkar G, Stepp M. K14 + compound niches are present on the mouse cornea early after birth and expand after debridement wounds. Dev Dyn. 2016;245:132-43 pubmed 出版商
  122. McCart Reed A, Kutasovic J, Vargas A, Jayanthan J, Al Murrani A, Reid L, et al. An epithelial to mesenchymal transition programme does not usually drive the phenotype of invasive lobular carcinomas. J Pathol. 2016;238:489-94 pubmed 出版商
  123. DunÄ‘erović D, Lipkovski J, Boričic I, Soldatović I, Božic V, Cvejić D, et al. Defining the value of CD56, CK19, Galectin 3 and HBME-1 in diagnosis of follicular cell derived lesions of thyroid with systematic review of literature. Diagn Pathol. 2015;10:196 pubmed 出版商
  124. Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol. 2015;16:1235-44 pubmed 出版商
  125. Huang L, Holtzinger A, Jagan I, BeGora M, Lohse I, Ngai N, et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat Med. 2015;21:1364-71 pubmed 出版商
  126. Hurley P, Sundi D, Shinder B, Simons B, Hughes R, Miller R, et al. Germline Variants in Asporin Vary by Race, Modulate the Tumor Microenvironment, and Are Differentially Associated with Metastatic Prostate Cancer. Clin Cancer Res. 2016;22:448-58 pubmed 出版商
  127. Mazur P, Herner A, Mello S, Wirth M, Hausmann S, Sánchez Rivera F, et al. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat Med. 2015;21:1163-71 pubmed 出版商
  128. Sawitza I, Kordes C, Götze S, Herebian D, Häussinger D. Bile acids induce hepatic differentiation of mesenchymal stem cells. Sci Rep. 2015;5:13320 pubmed 出版商
  129. He D, Lu Y, Hu H, Zhang J, Qin B, Wang Y, et al. The Wnt11 Signaling Pathway in Potential Cellular EMT and Osteochondral Differentiation Progression in Nephrolithiasis Formation. Int J Mol Sci. 2015;16:16313-29 pubmed 出版商
  130. Shah S, Miller P, Garcia Contreras M, Ao Z, Machlin L, Issa E, et al. Hierarchical paracrine interaction of breast cancer associated fibroblasts with cancer cells via hMAPK-microRNAs to drive ER-negative breast cancer phenotype. Cancer Biol Ther. 2015;16:1671-81 pubmed 出版商
  131. Labouba I, Le Page C, Communal L, Kristessen T, You X, Péant B, et al. Potential Cross-Talk between Alternative and Classical NF-κB Pathways in Prostate Cancer Tissues as Measured by a Multi-Staining Immunofluorescence Co-Localization Assay. PLoS ONE. 2015;10:e0131024 pubmed 出版商
  132. Chiou S, Winters I, Wang J, Naranjo S, Dudgeon C, Tamburini F, et al. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes Dev. 2015;29:1576-85 pubmed 出版商
  133. Malik I, Stange I, Martius G, Cameron S, Rave Fränk M, Hess C, et al. Role of PECAM-1 in radiation-induced liver inflammation. J Cell Mol Med. 2015;19:2441-52 pubmed 出版商
  134. Krah N, De La O J, Swift G, Hoang C, Willet S, Chen Pan F, et al. The acinar differentiation determinant PTF1A inhibits initiation of pancreatic ductal adenocarcinoma. elife. 2015;4: pubmed 出版商
  135. Trimboli P, Guidobaldi L, Amendola S, Nasrollah N, Romanelli F, Attanasio D, et al. Galectin-3 and HBME-1 improve the accuracy of core biopsy in indeterminate thyroid nodules. Endocrine. 2016;52:39-45 pubmed 出版商
  136. Sauter J, Ambaye A, Mount S. Increased utilization, verification, and clinical implications of immunocytochemistry: Experience in a northern New England hospital. Diagn Cytopathol. 2015;43:688-95 pubmed 出版商
  137. Penheiter A, Erdogan S, Murphy S, Hart S, Felipe Lima J, Rakhshan Rohakhtar F, et al. Transcriptomic and Immunohistochemical Profiling of SLC6A14 in Pancreatic Ductal Adenocarcinoma. Biomed Res Int. 2015;2015:593572 pubmed 出版商
  138. Kwon J, NABINGER S, Vega Z, Sahu S, Alluri R, Abdul Sater Z, et al. Pathophysiological role of microRNA-29 in pancreatic cancer stroma. Sci Rep. 2015;5:11450 pubmed 出版商
  139. Yuri S, Nishikawa M, Yanagawa N, Jo O, Yanagawa N. Maintenance of Mouse Nephron Progenitor Cells in Aggregates with Gamma-Secretase Inhibitor. PLoS ONE. 2015;10:e0129242 pubmed 出版商
  140. Huo C, Chew G, Hill P, Huang D, Ingman W, Hodson L, et al. High mammographic density is associated with an increase in stromal collagen and immune cells within the mammary epithelium. Breast Cancer Res. 2015;17:79 pubmed 出版商
  141. Berry R, Ozdemir D, Aronow B, Lindström N, Dudnakova T, Thornburn A, et al. Deducing the stage of origin of Wilms' tumours from a developmental series of Wt1-mutant mice. Dis Model Mech. 2015;8:903-17 pubmed 出版商
  142. Fatourou E, Koskinas J, Karandrea D, Palaiologou M, Syminelaki T, Karanikolas M, et al. Keratin 19 protein expression is an independent predictor of survival in human hepatocellular carcinoma. Eur J Gastroenterol Hepatol. 2015;27:1094-102 pubmed 出版商
  143. Swaminathan T, Basheer V, Kumar R, Kathirvelpandian A, Sood N, Jena J. Establishment and characterization of fin-derived cell line from ornamental carp, Cyprinus carpio koi, for virus isolation in India. In Vitro Cell Dev Biol Anim. 2015;51:705-13 pubmed 出版商
  144. Vanoli A, Argenti F, Vinci A, La Rosa S, Viglio A, Riboni R, et al. Hepatoid carcinoma of the pancreas with lymphoid stroma: first description of the clinical, morphological, immunohistochemical, and molecular characteristics of an unusual pancreatic carcinoma. Virchows Arch. 2015;467:237-45 pubmed 出版商
  145. Muhanna N, Mepham A, Mohamadi R, Chan H, Khan T, Akens M, et al. Nanoparticle-based sorting of circulating tumor cells by epithelial antigen expression during disease progression in an animal model. Nanomedicine. 2015;11:1613-20 pubmed 出版商
  146. Kershaw S, Cummings J, Morris K, Tugwood J, Dive C. Optimisation of immunofluorescence methods to determine MCT1 and MCT4 expression in circulating tumour cells. BMC Cancer. 2015;15:387 pubmed 出版商
  147. Saiman Y, Sugiyama T, Simchoni N, Spirli C, Bansal M. Biliary Epithelial Cells Are Not the Predominant Source of Hepatic CXCL12. Am J Pathol. 2015;185:1859-66 pubmed 出版商
  148. Katanov C, Lerrer S, Liubomirski Y, Leider Trejo L, Meshel T, Bar J, et al. Regulation of the inflammatory profile of stromal cells in human breast cancer: prominent roles for TNF-? and the NF-?B pathway. Stem Cell Res Ther. 2015;6:87 pubmed 出版商
  149. Hines W, Yaswen P, Bissell M. Modelling breast cancer requires identification and correction of a critical cell lineage-dependent transduction bias. Nat Commun. 2015;6:6927 pubmed 出版商
  150. Sood N, Chaudhary D, Pradhan P, Verma D, Raja Swaminathan T, Kushwaha B, et al. Establishment and characterization of a continuous cell line from thymus of striped snakehead, Channa striatus (Bloch 1793). In Vitro Cell Dev Biol Anim. 2015;51:787-96 pubmed 出版商
  151. Li X, Tao J, Cigliano A, Sini M, Calderaro J, Azoulay D, et al. Co-activation of PIK3CA and Yap promotes development of hepatocellular and cholangiocellular tumors in mouse and human liver. Oncotarget. 2015;6:10102-15 pubmed
  152. Lee J, Garbe J, Vrba L, Miyano M, Futscher B, Stampfer M, et al. Age and the means of bypassing stasis influence the intrinsic subtype of immortalized human mammary epithelial cells. Front Cell Dev Biol. 2015;3:13 pubmed 出版商
  153. Yassin F. Diagnostic criteria of well differentiated thyroid tumor of uncertain malignant potential; a histomorphological and immunohistochemical appraisal. J Egypt Natl Canc Inst. 2015;27:59-67 pubmed 出版商
  154. Bogaerts E, Heindryckx F, Devisscher L, Paridaens A, Vandewynckel Y, Van den Bussche A, et al. Time-dependent effect of hypoxia on tumor progression and liver progenitor cell markers in primary liver tumors. PLoS ONE. 2015;10:e0119555 pubmed 出版商
  155. Aguiar C, Therrien J, Lemire P, Segura M, Smith L, Theoret C. Differentiation of equine induced pluripotent stem cells into a keratinocyte lineage. Equine Vet J. 2016;48:338-45 pubmed 出版商
  156. Tennakoon A, Izawa T, Wijesundera K, Katou Ichikawa C, Tanaka M, Golbar H, et al. Analysis of glial fibrillary acidic protein (GFAP)-expressing ductular cells in a rat liver cirrhosis model induced by repeated injections of thioacetamide (TAA). Exp Mol Pathol. 2015;98:476-85 pubmed 出版商
  157. Chen Q, Gu Y, Liu B. Clinicopathological characteristics of kidney mucinous tubular and spindle cell carcinoma. Int J Clin Exp Pathol. 2015;8:1007-12 pubmed
  158. Ahmed H, Abdul Gader Suliman R, Abd El Aziz M, Alshammari F. Immunohistochemical expression of cytokeratins and epithelial membrane protein 2 in nasopharyngeal carcinoma and its potential implications. Asian Pac J Cancer Prev. 2015;16:653-6 pubmed
  159. Yui T, Ohmachi T, Matsuda K, Okamoto M, Taniyama H. Histochemical and immunohistochemical characterization of chordoma in ferrets. J Vet Med Sci. 2015;77:467-73 pubmed 出版商
  160. Zheng L, Cardaci S, Jerby L, MacKenzie E, Sciacovelli M, Johnson T, et al. Fumarate induces redox-dependent senescence by modifying glutathione metabolism. Nat Commun. 2015;6:6001 pubmed 出版商
  161. Progatzky F, Sangha N, Yoshida N, McBrien M, Cheung J, Shia A, et al. Dietary cholesterol directly induces acute inflammasome-dependent intestinal inflammation. Nat Commun. 2014;5:5864 pubmed 出版商
  162. Suzuki D, Sahu R, Leu N, Senoo M. The carboxy-terminus of p63 links cell cycle control and the proliferative potential of epidermal progenitor cells. Development. 2015;142:282-90 pubmed 出版商
  163. BaÅŸak K, KiroÄŸlu K. Multiple oncocytic cystadenoma with intraluminal crystalloids in parotid gland: case report. Medicine (Baltimore). 2014;93:e246 pubmed 出版商
  164. Garbe J, Vrba L, Sputova K, Fuchs L, Novak P, Brothman A, et al. Immortalization of normal human mammary epithelial cells in two steps by direct targeting of senescence barriers does not require gross genomic alterations. Cell Cycle. 2014;13:3423-35 pubmed 出版商
  165. van Sprundel R, van den Ingh T, Guscetti F, Kershaw O, van Wolferen M, Rothuizen J, et al. Classification of primary hepatic tumours in the cat. Vet J. 2014;202:255-66 pubmed 出版商
  166. Calangiu C, Simionescu C, Stepan A, Cernea D, Zăvoi R, Mărgăritescu C. The expression of CK19, vimentin and E-cadherin in differentiated thyroid carcinomas. Rom J Morphol Embryol. 2014;55:919-25 pubmed
  167. Beck A, Brooks A, Zeiss C. Invasive ductular carcinoma in 2 rhesus macaques (Macaca mulatta). Comp Med. 2014;64:314-22 pubmed
  168. Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed 出版商
  169. Wögenstein K, Szabo S, Lunova M, Wiche G, Haybaeck J, Strnad P, et al. Epiplakin deficiency aggravates murine caerulein-induced acute pancreatitis and favors the formation of acinar keratin granules. PLoS ONE. 2014;9:e108323 pubmed 出版商
  170. Li L, Fan X, Xia Q, Rao Q, Liu B, Yu B, et al. Concurrent loss of INI1, PBRM1, and BRM expression in epithelioid sarcoma: implications for the cocontributions of multiple SWI/SNF complex members to pathogenesis. Hum Pathol. 2014;45:2247-54 pubmed 出版商
  171. Costache M, Pătraşcu O, Dumitru A, Costache D, Voinea L, Simionescu O, et al. Histopathological findings concerning ocular melanomas. Rom J Morphol Embryol. 2014;55:649-53 pubmed
  172. Thompson L, Bauer J, Chiosea S, McHugh J, Seethala R, Miettinen M, et al. Canalicular adenoma: a clinicopathologic and immunohistochemical analysis of 67 cases with a review of the literature. Head Neck Pathol. 2015;9:181-95 pubmed 出版商
  173. Morris S, Carter K, Baek J, Koszarek A, Yeh M, Knoblaugh S, et al. TGF-? signaling alters the pattern of liver tumorigenesis induced by Pten inactivation. Oncogene. 2015;34:3273-82 pubmed 出版商
  174. Guan H, Tan J, Zhang F, Gao L, Bai L, Qi D, et al. Myofibroblasts from salivary gland adenoid cystic carcinomas promote cancer invasion by expressing MMP2 and CXCL12. Histopathology. 2015;66:781-90 pubmed 出版商
  175. Calabro S, Maczurek A, Morgan A, Tu T, Wen V, Yee C, et al. Hepatocyte produced matrix metalloproteinases are regulated by CD147 in liver fibrogenesis. PLoS ONE. 2014;9:e90571 pubmed 出版商
  176. Ouyang H, Xue Y, Lin Y, Zhang X, Xi L, Patel S, et al. WNT7A and PAX6 define corneal epithelium homeostasis and pathogenesis. Nature. 2014;511:358-61 pubmed 出版商
  177. Ehlken H, Krishna Subramanian S, Ochoa Callejero L, Kondylis V, Nadi N, Straub B, et al. Death receptor-independent FADD signalling triggers hepatitis and hepatocellular carcinoma in mice with liver parenchymal cell-specific NEMO knockout. Cell Death Differ. 2014;21:1721-32 pubmed 出版商
  178. Greaves E, Cousins F, Murray A, Esnal Zufiaurre A, Fassbender A, Horne A, et al. A novel mouse model of endometriosis mimics human phenotype and reveals insights into the inflammatory contribution of shed endometrium. Am J Pathol. 2014;184:1930-9 pubmed 出版商
  179. Zhang L, Frank R, Furth E, Ziober A, LiVolsi V, Zhang P. Expression and diagnostic values of calretinin and CK5/6 in cholangiocarcinoma. Exp Hematol Oncol. 2014;3:12 pubmed 出版商
  180. Shimoda M, Chen S, Noguchi H, Takita M, Sugimoto K, Itoh T, et al. A new method for generating insulin-secreting cells from human pancreatic epithelial cells after islet isolation transformed by NeuroD1. Hum Gene Ther Methods. 2014;25:206-19 pubmed 出版商
  181. Balk Møller E, Kim J, Hopkinson B, Timmermans Wielenga V, Petersen O, Villadsen R. A marker of endocrine receptor-positive cells, CEACAM6, is shared by two major classes of breast cancer: luminal and HER2-enriched. Am J Pathol. 2014;184:1198-208 pubmed 出版商
  182. Ryszawy D, Sarna M, Rak M, Szpak K, Kedracka Krok S, Michalik M, et al. Functional links between Snail-1 and Cx43 account for the recruitment of Cx43-positive cells into the invasive front of prostate cancer. Carcinogenesis. 2014;35:1920-30 pubmed 出版商
  183. Ye J, Vives Pi M, Gillespie K. Maternal microchimerism: increased in the insulin positive compartment of type 1 diabetes pancreas but not in infiltrating immune cells or replicating islet cells. PLoS ONE. 2014;9:e86985 pubmed 出版商
  184. Pontiggia L, Biedermann T, Böttcher Haberzeth S, Oliveira C, Braziulis E, Klar A, et al. De novo epidermal regeneration using human eccrine sweat gland cells: higher competence of secretory over absorptive cells. J Invest Dermatol. 2014;134:1735-1742 pubmed 出版商
  185. Liu Z, Yu N, Holz F, Yang F, Stanzel B. Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography. Biomaterials. 2014;35:2837-50 pubmed 出版商
  186. Karaca G, Swiderska Syn M, Xie G, Syn W, Krüger L, Machado M, et al. TWEAK/Fn14 signaling is required for liver regeneration after partial hepatectomy in mice. PLoS ONE. 2014;9:e83987 pubmed 出版商
  187. Stratmann A, Fecher D, Wangorsch G, Göttlich C, Walles T, Walles H, et al. Establishment of a human 3D lung cancer model based on a biological tissue matrix combined with a Boolean in silico model. Mol Oncol. 2014;8:351-65 pubmed 出版商
  188. Motomura K, Sumino H, Noguchi A, Horinouchi T, Nakanishi K. Sentinel nodes identified by computed tomography-lymphography accurately stage the axilla in patients with breast cancer. BMC Med Imaging. 2013;13:42 pubmed 出版商
  189. Chan I, Guy C, Machado M, Wank A, Kadiyala V, Michelotti G, et al. Alcohol activates the hedgehog pathway and induces related procarcinogenic processes in the alcohol-preferring rat model of hepatocarcinogenesis. Alcohol Clin Exp Res. 2014;38:787-800 pubmed 出版商
  190. Liu H, Zhang W, Jia Y, Yu Q, Grau G, Peng L, et al. Single-cell clones of liver cancer stem cells have the potential of differentiating into different types of tumor cells. Cell Death Dis. 2013;4:e857 pubmed 出版商
  191. Bulysheva A, Bowlin G, Petrova S, Yeudall W. Enhanced chemoresistance of squamous carcinoma cells grown in 3D cryogenic electrospun scaffolds. Biomed Mater. 2013;8:055009 pubmed 出版商
  192. Motomura K, Izumi T, Tateishi S, Sumino H, Noguchi A, Horinouchi T, et al. Correlation between the area of high-signal intensity on SPIO-enhanced MR imaging and the pathologic size of sentinel node metastases in breast cancer patients with positive sentinel nodes. BMC Med Imaging. 2013;13:32 pubmed 出版商
  193. Qiu S, Wei X, Huang W, Wu M, Qin Y, Li Y, et al. Diagnostic and therapeutic strategy and the most efficient prognostic factors of breast malignant fibrous histiocytoma. Sci Rep. 2013;3:2529 pubmed 出版商
  194. Rodrigues R, De Kock J, Branson S, Vinken M, Meganathan K, Chaudhari U, et al. Human skin-derived stem cells as a novel cell source for in vitro hepatotoxicity screening of pharmaceuticals. Stem Cells Dev. 2014;23:44-55 pubmed 出版商
  195. Hosokawa M, Kenmotsu H, Koh Y, Yoshino T, Yoshikawa T, Naito T, et al. Size-based isolation of circulating tumor cells in lung cancer patients using a microcavity array system. PLoS ONE. 2013;8:e67466 pubmed 出版商
  196. Ohta K, Taki M, Ogawa I, Ono S, Mizuta K, Fujimoto S, et al. Malignant ossifying fibromyxoid tumor of the tongue: case report and review of the literature. Head Face Med. 2013;9:16 pubmed 出版商
  197. Nassiri F, Scheithauer B, Corwin D, Kaplan H, Mayberg M, Cusimano M, et al. Invasive thymoma metastatic to the cavernous sinus. Surg Neurol Int. 2013;4:74 pubmed 出版商
  198. Sigurdsson V, Ingthorsson S, Hilmarsdottir B, Gustafsdottir S, Franzdóttir S, Arason A, et al. Expression and functional role of sprouty-2 in breast morphogenesis. PLoS ONE. 2013;8:e60798 pubmed 出版商
  199. Moffatt Jauregui C, Robinson B, de Moya A, Brockman R, Roman A, Cash M, et al. Establishment and characterization of a telomerase immortalized human gingival epithelial cell line. J Periodontal Res. 2013;48:713-21 pubmed 出版商
  200. Yang G, Li J, Jin H, Ding H. Is mammary not otherwise specified-type sarcoma with CD10 expression a distinct entity? A rare case report with immunohistochemical and ultrastructural study. Diagn Pathol. 2013;8:14 pubmed 出版商
  201. Reichert M, Takano S, von Burstin J, Kim S, Lee J, Ihida Stansbury K, et al. The Prrx1 homeodomain transcription factor plays a central role in pancreatic regeneration and carcinogenesis. Genes Dev. 2013;27:288-300 pubmed 出版商
  202. Weli S, Aamelfot M, Dale O, Koppang E, Falk K. Infectious salmon anaemia virus infection of Atlantic salmon gill epithelial cells. Virol J. 2013;10:5 pubmed 出版商
  203. Takahashi Y, Kupferman M, Bell D, Jiffar T, Lee J, Xie T, et al. Establishment and characterization of novel cell lines from sinonasal undifferentiated carcinoma. Clin Cancer Res. 2012;18:6178-87 pubmed 出版商
  204. Carrasco M, Delgado I, Soria B, Martin F, Rojas A. GATA4 and GATA6 control mouse pancreas organogenesis. J Clin Invest. 2012;122:3504-15 pubmed 出版商
  205. Guimei M, Baddour N, Elkaffash D, Abdou L, Taher Y. Gremlin in the pathogenesis of hepatocellular carcinoma complicating chronic hepatitis C: an immunohistochemical and PCR study of human liver biopsies. BMC Res Notes. 2012;5:390 pubmed 出版商
  206. Lv S, Song Y, Xu J, Shu H, Zhou Z, An N, et al. A novel TP53 somatic mutation involved in the pathogenesis of pediatric choroid plexus carcinoma. Med Sci Monit. 2012;18:CS37-41 pubmed
  207. Sohn W, Gwon G, An C, Moon C, Bae Y, Yamamoto H, et al. Morphological evidences in circumvallate papilla and von Ebners' gland development in mice. Anat Cell Biol. 2011;44:274-83 pubmed 出版商
  208. Khoja L, Backen A, Sloane R, Menasce L, Ryder D, Krebs M, et al. A pilot study to explore circulating tumour cells in pancreatic cancer as a novel biomarker. Br J Cancer. 2012;106:508-16 pubmed 出版商
  209. Kap M, Smedts F, Oosterhuis W, Winther R, Christensen N, Reischauer B, et al. Histological assessment of PAXgene tissue fixation and stabilization reagents. PLoS ONE. 2011;6:e27704 pubmed 出版商
  210. Brusevold I, Husvik C, Schreurs O, Schenck K, Bryne M, Søland T. Induction of invasion in an organotypic oral cancer model by CoCl2, a hypoxia mimetic. Eur J Oral Sci. 2010;118:168-76 pubmed 出版商
  211. Gil da Costa R, Santos M, Amorim I, Lopes C, Pereira P, Faustino A. An immunohistochemical study of feline endometrial adenocarcinoma. J Comp Pathol. 2009;140:254-9 pubmed 出版商
  212. Rhee K, Wu S, Wu X, Huso D, Karim B, Franco A, et al. Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice. Infect Immun. 2009;77:1708-18 pubmed 出版商
  213. Rodriguez F, Scheithauer B, Giannini C, Bryant S, Jenkins R. Epithelial and pseudoepithelial differentiation in glioblastoma and gliosarcoma: a comparative morphologic and molecular genetic study. Cancer. 2008;113:2779-89 pubmed 出版商
  214. Lu S, Yu G, Zhu Y, Archer M. Cyclooxygenase-2 overexpression in MCF-10F human breast epithelial cells inhibits proliferation, apoptosis and differentiation, and causes partial transformation. Int J Cancer. 2005;116:847-52 pubmed
  215. Gilbert S, Loranger A, Marceau N. Keratins modulate c-Flip/extracellular signal-regulated kinase 1 and 2 antiapoptotic signaling in simple epithelial cells. Mol Cell Biol. 2004;24:7072-81 pubmed
  216. Song S, Park S, Kim S, Suh Y. Oncocytic adrenocortical carcinomas: a pathological and immunohistochemical study of four cases in comparison with conventional adrenocortical carcinomas. Pathol Int. 2004;54:603-10 pubmed
  217. Kokenyesi R, Murray K, Benshushan A, Huntley E, Kao M. Invasion of interstitial matrix by a novel cell line from primary peritoneal carcinosarcoma, and by established ovarian carcinoma cell lines: role of cell-matrix adhesion molecules, proteinases, and E-cadherin expression. Gynecol Oncol. 2003;89:60-72 pubmed